JPS6162885A - Distance/speed meter - Google Patents

Distance/speed meter

Info

Publication number
JPS6162885A
JPS6162885A JP59185837A JP18583784A JPS6162885A JP S6162885 A JPS6162885 A JP S6162885A JP 59185837 A JP59185837 A JP 59185837A JP 18583784 A JP18583784 A JP 18583784A JP S6162885 A JPS6162885 A JP S6162885A
Authority
JP
Japan
Prior art keywords
light
distance
reflected
measured
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59185837A
Other languages
Japanese (ja)
Inventor
Yoshinobu Tsujimoto
辻本 好伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59185837A priority Critical patent/JPS6162885A/en
Publication of JPS6162885A publication Critical patent/JPS6162885A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To measure the distance and speed simultaneously in the same optical system, by detecting the distance and speed with separate beam splitters and photo detectors when an interfering lights are reflected back from the surface of an object to be measured passing through two beam splitters. CONSTITUTION:A semiconductor laser light source 1 with the oscillation wave length stabilized is modulated in the pulse and intensity with a driving section 2. A modulated light 4 turned to a parallel beam with a lens 3 is reflected on the surface of an object 6 to be measured passing through beam splitters 5 and 5'. When reflected, light of an oscillation frequency f0 undergoes a Doppler shift based on the motion of the object being measured and is returned as reflected light with the oscillation frequency of f0+DELTAf. A decision circuit section 9 judges the time lag or the like of the reflection pulse light to calculate the distance of the object being measured. On the other hand, the difference DELTAf between the frequencies f0 and f0+f made incident as reflected with a mirror 10 is detected with a detection circuit section 11 to find the speed of the object being measured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は比較的近距離にある対象物の距離とその位置に
おける対象物のjη(動の速度を測定するn1測機器分
野に関するものである3、 従来例の構成とその問題点 光パルスの反射時間遅J1や、強度変調さ11だ反射光
の位相ずれにより距離を測定する手段は従来より知られ
ているが、いずわも光源にけHe −N e等の管球レ
ーザを用い、変調にはKDP等の夕)部変調器を用いて
いるため大がかりな装置となり持ち運びに不便71寸1
:かりでなく、電源の容厳も犬きく、小型で携帯可能な
電源内蔵の測定器は実現がむつか17か−、ノこ。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the field of measuring instruments that measure the distance of objects at a relatively short distance and the velocity of jη (movement) of the object at that position. Conventional configuration and its problems Means for measuring distance based on the reflection time delay J1 of a light pulse or the phase shift of intensity-modulated reflected light have been known for a long time. - Since a tube laser such as Ne is used and a modulator such as KDP is used for modulation, the device is large and inconvenient to carry.
:It is difficult to realize a small, portable measuring device with a built-in power supply, as the power supply is also very demanding.

一方、ドツプラ効果を利用したレーザドツプラ連1α吉
lも光源に1.l、He −N eを用いるものが殆ん
どで、従−4て先に述へた如き問題点を有している。
On the other hand, the laser Doppler series 1αKiI, which utilizes the Doppler effect, also uses 1. Most of them use He-N e, and they have the problems mentioned above.

発明の目的 ]\発明し」、iSi+述1〜/C欠点を改善するとと
もに、距離ノー速度を同一の光学係で同時に測定するこ
とが「1目I′iKな11°1jlAf+速度t1を提
供することを目的とする。
OBJECTIVE OF THE INVENTION] In order to improve the drawbacks of iSi+ mentioned 1-/C, it is possible to simultaneously measure the distance and velocity with the same optical system, thereby providing 11°1jlAf+velocity t1. The purpose is to

発明の構成 」\発明し1:、・It行ヒ−ムにされたり干渉性の光
が受)Yl ’Airを1iiiえ/び一部つのビーム
スプリッタを通過し被測>i::物の表1111−C反
射して戻る際−力のビームスプリッタと受)Y、器で距
離を、他方のビームスプリッタと受光器で速度を検出す
る構成となっている。
Structure of the Invention\Invention 1:, It row beam or coherent light is received) Table 1111-C When reflecting back - Force beam splitter and receiver) The configuration is such that the distance is detected by the beam splitter and the receiver, and the speed is detected by the other beam splitter and receiver.

距打n 1llll定r1、パルス光の反射時間遅れあ
るいは強度変調さJ]だ反射)’l’;のイ〜ン相ずれ
により行い、速度検出(・−1、他のビーノ、スプリッ
タで一部分岐された出射光とドツプラ/ノドを受けだ反
射光を同ビームスプリッタで重畳して受光器に入射させ
ることに」:り行われる。光源には光フイードバツク効
果により、波長、温度特性が安定化された半導体レーザ
を用いることにより小型軽計化される。
Distance n 1llllll constant r1, pulsed light reflection time delay or intensity modulation J] is carried out by the phase shift of 'l';, speed detection (-1, other beano, partial branching with splitter This is done by superimposing the emitted light and the reflected light received by the Doppler/Node using the same beam splitter and inputting it into the receiver.The light source has stabilized wavelength and temperature characteristics due to the optical feedback effect. By using a semiconductor laser, the device can be made smaller and lighter.

実施例の説明 以下実施例を図によって説明する。発振波長が安定化さ
れた半導体レーザ光源1は駆動部2によりパルス変調あ
るいは強度変調される。レンズ3で平行ビームとなった
変調光4はビームスプリッタ6.5′を通過し、被測定
物6の表面で反射する。
DESCRIPTION OF EMBODIMENTS Examples will now be described with reference to the drawings. A semiconductor laser light source 1 whose oscillation wavelength has been stabilized is pulse-modulated or intensity-modulated by a driving section 2 . The modulated light 4, which has been turned into a parallel beam by the lens 3, passes through the beam splitter 6.5' and is reflected by the surface of the object to be measured 6.

発振周波数f。の光は反射の際被測定物の運動に基づく
ドツプラシフトを受は発振周波数がf。I−Δfの反射
光7となって返って来る。反射光7の一部はビームスプ
リッタ5で受光器へ導かれ、判定回路部9において出射
パルス光に対する反射パルス光の時間遅れあるいは強度
変調反射光の位相ずれを判定し、被測定物の距離を算出
する。今光速として真空中のそれを採用すれば(空気の
屈折率1l−J、光波長により1.0003±0.00
003の範囲で変化するが1としても大きな誤差原因と
はならないン11]Sの)で、パルス遅延の生ずる距離
は30確に相当l−1刊定回路部9かInsの時間分解
能を有するものと−ずJ’l iI:130 nr+の
距離差が判定可能となる。
Oscillation frequency f. When reflected, the light undergoes a Doppler shift based on the movement of the object to be measured, and the oscillation frequency is f. It returns as reflected light 7 of I-Δf. A part of the reflected light 7 is guided to a light receiver by a beam splitter 5, and a determination circuit 9 determines the time delay of the reflected pulsed light with respect to the emitted pulsed light or the phase shift of the intensity modulated reflected light, and determines the distance to the object to be measured. calculate. Now, if we adopt the speed of light in vacuum (the refractive index of air is 1l-J, and the wavelength of light is 1.0003±0.00
It varies within the range of 003, but even if it is 1, it does not cause a large error (11]S), and the distance at which the pulse delay occurs is equivalent to 30 sec. It becomes possible to determine the distance difference of Tozu J'l iI:130 nr+.

−力、強度変調さJまた光のイ1シ相ずれにより距離合
−刊定するkll’あいCI、距離りは次式で表わされ
るここで N:整数(通常1) φ:出射光と反射光の位相差 である 今500111+の強度変調光は60cmの波長を有l
〜、1°の分解能で位相差が判定できるとすると、距離
分解能は0.8mmとなり高精度の測定力i1能となる
- Force, intensity modulation J Also, the distance is determined jointly by the phase shift of the light.The distance is expressed by the following formula: where: N: integer (usually 1) φ: emitted light and reflected light The phase difference of light is now 500111+ intensity modulated light has a wavelength of 60 cm.
Assuming that the phase difference can be determined with a resolution of 1°, the distance resolution will be 0.8 mm, resulting in a highly accurate measurement power i1.

従−)でパルスの遅延を観察する方法と位相ずれを検1
10−る方θ、はぞJ]それの目的に応じて選定して用
いわけ団い。
How to observe pulse delay and detect phase shift using
10-Ruhou θ, Hazo J] Select and use groups according to their purpose.

次に、周波数f。十Δfの反射光子の一部はビーl、ス
プリッタ5′に」、・いても分岐され受光器8′へ導か
、tする。受)Y、器8′には出q1光4の一部がビー
ムスプリツタ5′テ分岐され鏡10で反射されて入射す
る周θl IIl、1’0の尾イ、重畳されている。検
出回路部被測定物の速度を知ることができる。
Next, the frequency f. A part of the reflected photons of 1.DELTA.f are split off into the beam splitter 5' and guided to the photoreceiver 8'. A part of the output light 4 is split by the beam splitter 5', reflected by the mirror 10, and is superimposed on the incident beam θl IIl, 1'0 and the tail A of the receiver 8'. Detection circuit section The speed of the object to be measured can be determined.

今、被測定物Vの速度で動いているとするとドツプラ効
果による光周波数のシフトΔfは次式で光の波長と17
で11Zm の光源を用いたばあい、1mm/sec 
と1 k m/secの速度で動いている被測定物はそ
れぞれ2 kl++および2GHz  の光周波数シフ
トを引き起す。これらの周波数範囲は通常のスペクトル
分析器で測定できる範囲である。
Now, assuming that the object to be measured is moving at the speed of the object V, the shift Δf of the optical frequency due to the Doppler effect is expressed by the following equation, which is the wavelength of light and 17
When using a light source of 11 Zm, 1 mm/sec
and an object moving at a speed of 1 km/sec induces an optical frequency shift of 2 kl++ and 2 GHz, respectively. These frequency ranges are within the range that can be measured with an ordinary spectrum analyzer.

なお、本発明においてはレーザ光源1としては周波数の
安定なものが望捷しく、光フイードバツク機能を有する
レーザ光源を使用して周波数の安物の距離と速度を同時
に検出でき、かつ光源部に半導体レーザを用いているた
め、測定ヘッド部(第1図の9,11を除く部分)が携
帯可能なコンパクトな形にすることができ、距離、速度
泪J−して産集利用に友いに貢献するものである。
In addition, in the present invention, it is desirable that the laser light source 1 has a stable frequency, and a laser light source with an optical feedback function can be used to detect the distance and speed at the same time, and a semiconductor laser in the light source section can be used. Because of this, the measuring head (excluding parts 9 and 11 in Figure 1) can be made into a portable and compact form, which contributes to the use of harvest collection by measuring distance and speed. It is something to do.

【図面の簡単な説明】[Brief explanation of the drawing]

Iンl i、、l:本発明の一実施例の距離、測度の検
111装置の概略描成を示す図である。 1・・・半導体レーザ、2・・・同上レーザ駆動部、3
・−・同1.レーザ光を平行ビームにするレンズ、4・
・・才行ビーノ、(光周波数f。)、5,5′  ・・
・・ビーl、スプリッタ、6・・・・被測安物、7・・
・・・反射光・14周波数1゜−IΔJ)、8,8′・
・・・受光器、9・・・・光パルスI’Alft1 、
ijl i)又r土強度変調光位相ずれ判定回路部、1
0−・・ 鏡、11・・・・・・光周波数のドツプラシ
フト検出回路部。 代、T+1!人の氏名 弁理上 中 尾 敏 男 ほか
1名嘗 ■ 竪 1ぜ ?
Inl i,,l: A diagram showing a schematic depiction of a distance and measure detection 111 apparatus according to an embodiment of the present invention. 1... Semiconductor laser, 2... Laser drive section same as above, 3
・-・Same 1. Lens that converts laser light into a parallel beam, 4.
...Saiko Bino, (light frequency f.), 5,5'...
... beer l, splitter, 6... cheap item to be measured, 7...
...Reflected light・14 frequency 1゜−IΔJ), 8,8′・
... Light receiver, 9... Light pulse I'Alft1,
i) Intensity modulated light phase shift determination circuit section, 1
0-...Mirror, 11... Optical frequency Doppler shift detection circuit section. Generation, T+1! Person's name: On the patent attorney Toshi Nakao and 1 other person■ Tate 1ze?

Claims (4)

【特許請求の範囲】[Claims] (1)光源とこの光源の光を平行ビームにする手段を有
し、前記平行ビームの光軸上に二つのビームスプリッタ
とこれらビームスプリッタにより分岐された光に対応す
る二つの受光器を備え、第1のビームスプリッタは前記
第1のビームスプリッタを通過して被測定物の表面で反
射した光が前記第1のビームスプリッタに対応する受光
器に導かれるように配置され、第2のビームスプリッタ
は前記光源からの出射光の一部と、前記第2のビームス
プリッタを通過して被測定物の表面で反射した光が重畳
されて前記第2のビームスプリッタに対応する受光器に
導かれるよう配置されたことを特徴とする距離速度計。
(1) having a light source and means for converting the light from the light source into parallel beams, and comprising two beam splitters on the optical axis of the parallel beams and two light receivers corresponding to the light split by these beam splitters; The first beam splitter is arranged so that the light that passes through the first beam splitter and is reflected on the surface of the object to be measured is guided to the light receiver corresponding to the first beam splitter, and the second beam splitter is such that a part of the light emitted from the light source and the light that has passed through the second beam splitter and reflected on the surface of the object to be measured are superimposed and guided to a light receiver corresponding to the second beam splitter. A distance speedometer characterized by being placed.
(2)光源として光をフィードバックする機能を持った
半導体レーザを用いた特許請求の範囲第1項記載の距離
速度計。
(2) The distance and velocity meter according to claim 1, which uses a semiconductor laser having a light feedback function as a light source.
(3)距離検出情報として反射光パルスの遅延時間を、
速度検出情報としてドップラ効果による光周波数変化を
組合せて用いたことを特徴とする特許請求の範囲第1項
記載の距離速度計。
(3) Delay time of reflected light pulse as distance detection information,
2. The distance and velocity meter according to claim 1, characterized in that optical frequency changes due to the Doppler effect are used in combination as speed detection information.
(4)距離検出情報として強度変調された出射光と反射
光の位相差を、速度検出情報としてドップラ効果による
光周波数変化を組合せて用いることを特徴とする特許請
求の範囲第1項記載の距離速度計。
(4) The distance according to claim 1, characterized in that the phase difference between the intensity-modulated emitted light and the reflected light is used as the distance detection information in combination with the optical frequency change due to the Doppler effect as the speed detection information. speedometer.
JP59185837A 1984-09-05 1984-09-05 Distance/speed meter Pending JPS6162885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59185837A JPS6162885A (en) 1984-09-05 1984-09-05 Distance/speed meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59185837A JPS6162885A (en) 1984-09-05 1984-09-05 Distance/speed meter

Publications (1)

Publication Number Publication Date
JPS6162885A true JPS6162885A (en) 1986-03-31

Family

ID=16177743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59185837A Pending JPS6162885A (en) 1984-09-05 1984-09-05 Distance/speed meter

Country Status (1)

Country Link
JP (1) JPS6162885A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111489A (en) * 1986-10-20 1988-05-16 チャールズ、ピー、ウォン Device for measuring displacement of reflective intensity target moving from reference position
FR2949263A1 (en) * 2009-08-24 2011-02-25 Astrium Sas MEASURING A SPEED OF MOVING A MOBILE ELEMENT
JP2012533748A (en) * 2009-07-22 2012-12-27 ファロ テクノロジーズ インコーポレーテッド Method for optically scanning and measuring an object
JP2015125062A (en) * 2013-12-26 2015-07-06 株式会社豊田中央研究所 Rader system and direction measuring method of velocity
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
JP2015129646A (en) * 2014-01-06 2015-07-16 株式会社豊田中央研究所 Radar device and method for measuring distance and speed
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
WO2017187484A1 (en) * 2016-04-25 2017-11-02 株式会社日立製作所 Object imaging device
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111489A (en) * 1986-10-20 1988-05-16 チャールズ、ピー、ウォン Device for measuring displacement of reflective intensity target moving from reference position
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
JP2012533748A (en) * 2009-07-22 2012-12-27 ファロ テクノロジーズ インコーポレーテッド Method for optically scanning and measuring an object
FR2949263A1 (en) * 2009-08-24 2011-02-25 Astrium Sas MEASURING A SPEED OF MOVING A MOBILE ELEMENT
WO2011023878A1 (en) 2009-08-24 2011-03-03 Astrium Sas Measuring the traveling speed of a mobile element
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US11035955B2 (en) 2012-10-05 2021-06-15 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US11112501B2 (en) 2012-10-05 2021-09-07 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9817121B2 (en) 2013-12-26 2017-11-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Radar apparatus and method of determining sign of velocity
JP2015125062A (en) * 2013-12-26 2015-07-06 株式会社豊田中央研究所 Rader system and direction measuring method of velocity
JP2015129646A (en) * 2014-01-06 2015-07-16 株式会社豊田中央研究所 Radar device and method for measuring distance and speed
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
WO2017187484A1 (en) * 2016-04-25 2017-11-02 株式会社日立製作所 Object imaging device
JPWO2017187484A1 (en) * 2016-04-25 2018-12-20 株式会社日立製作所 Object imaging device

Similar Documents

Publication Publication Date Title
US5309212A (en) Scanning rangefinder with range to frequency conversion
JPS6162885A (en) Distance/speed meter
US5054911A (en) Light wave distance measuring instrument of the pulse type
US5748295A (en) Method and apparatus for determining the range, direction and velocity of an object
EP0640846A2 (en) Optical measuring apparatus
JPH06186336A (en) Electro-optical distance measuring equipment and light source means
US5583638A (en) Angular michelson interferometer and optical wavemeter based on a rotating periscope
EP0947834B1 (en) Detection of air flow speed and flow direction
JP3132894B2 (en) Distance measuring device
US6844936B2 (en) Device for the non-contacting measurement of an object to be measured, particularly for distance and/or vibration measurement
JPH06174844A (en) Laser distance measuring apparatus
JP3241857B2 (en) Optical rangefinder
JP3065446B2 (en) Ultrasonic vibration measurement method
JP2521872B2 (en) Frequency modulation optical fiber displacement measuring device
JPH0518981A (en) Gas-liquid two phase flow measurement device
US4397548A (en) Distance measuring system
JP3236941B2 (en) Distance measurement method for lightwave distance meter
JPH0875434A (en) Surface form measuring device
EP1055938A2 (en) Light source means and light wave range finder
JPH0875433A (en) Surface form measuring device
JPS6371675A (en) Laser distance measuring instrument
JP3096795B2 (en) Tracking ranging system
JPH07174511A (en) Displacement measuring device
JPS5837496B2 (en) Optical fiber length measurement method
GB2108348A (en) Doppler lidar