JPH0518981A - Gas-liquid two phase flow measurement device - Google Patents

Gas-liquid two phase flow measurement device

Info

Publication number
JPH0518981A
JPH0518981A JP19708391A JP19708391A JPH0518981A JP H0518981 A JPH0518981 A JP H0518981A JP 19708391 A JP19708391 A JP 19708391A JP 19708391 A JP19708391 A JP 19708391A JP H0518981 A JPH0518981 A JP H0518981A
Authority
JP
Japan
Prior art keywords
light
optical fiber
liquid
gas
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19708391A
Other languages
Japanese (ja)
Inventor
Masaki Nishiura
賢亀 西浦
Masakatsu Kimura
正勝 木村
Yoshihiro Taki
義宏 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAGAKU KOGYO KK
Mitsubishi Cable Industries Ltd
Nippon Chemical Industrial Co Ltd
Original Assignee
NIPPON KAGAKU KOGYO KK
Mitsubishi Cable Industries Ltd
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAGAKU KOGYO KK, Mitsubishi Cable Industries Ltd, Nippon Chemical Industrial Co Ltd filed Critical NIPPON KAGAKU KOGYO KK
Priority to JP19708391A priority Critical patent/JPH0518981A/en
Publication of JPH0518981A publication Critical patent/JPH0518981A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To apply the measurement device for detecting gas-liquid two-phases and the velocity of bubbles and the like by the use of an optical fiber under an environment of high temperature and pressure. CONSTITUTION:An optical fiber 1 for beam emission is centered and a group of optical fibers arranging another optical fiber 2 for beam receiving in the circumference thereof are brought into contact with a transparent sapphire probe 3 for passing a beam A laser beam is irradiated from the end face of the optical fiber l for beam emission, introduced to the optical fiber 2 for beam receiving as a reflection beam of different reflectance in response to gas-liquid two-phases and at the same time the reflection beam Doppler-shifted on the surface of bubbles 5 and the like is guided to the optical fiber 1 for beam emission. As the result, a bubble speed and a bubble diameter are measured on the basis of the level difference of the reflection beam and a Doppler shift frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気液二相流における気泡
速度,気泡径等を測定するための装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring bubble velocity, bubble diameter, etc. in a gas-liquid two-phase flow.

【0002】[0002]

【従来の技術】従来気液二相流の計測装置は例えば特公
昭62-58441号に示されているように、光ファイバを用い
た気液二相流計測装置が提案されている。これは光ファ
イバの一端を気液二相流の流れ方向に対して垂直になる
ように配置し、光ファイバの他端からレーザ光を入光す
る。そして光ファイバの端面から得られる反射光が気相
と液相に接しているときにレベルが変化し、又ドップラ
ーシフトを生じることから、反射光の高周波成分より気
泡速度、低周波成分から気泡通過速度を求めるようにし
たものである。
2. Description of the Related Art As a conventional gas-liquid two-phase flow measuring device, a gas-liquid two-phase flow measuring device using an optical fiber has been proposed, as disclosed in Japanese Patent Publication No. 62-58441. In this, one end of the optical fiber is arranged so as to be perpendicular to the flow direction of the gas-liquid two-phase flow, and laser light is incident from the other end of the optical fiber. The level of the reflected light obtained from the end face of the optical fiber changes when it is in contact with the gas phase and the liquid phase, and Doppler shift occurs.Therefore, the bubble velocity is higher than the high frequency component of the reflected light and the bubble passes from the low frequency component. It is designed to calculate speed.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのよう
な従来の気液二相流の計測装置において、高温高圧の環
境下で使用する場合には、耐環境性を向上させるために
光ファイバの端面に保護用のカバーを被せる必要があ
る。その場合には光ファイバからの反射光のレベルが低
く、特に低周波成分の信号を検出することができなくな
るという欠点があった。
However, in such a conventional gas-liquid two-phase flow measuring device, when it is used in a high temperature and high pressure environment, the end face of the optical fiber is improved in order to improve the environmental resistance. It is necessary to cover it with a protective cover. In that case, there is a drawback that the level of the reflected light from the optical fiber is low and a signal of a low frequency component cannot be detected.

【0004】本発明はこのような従来の気液二相流の計
測装置の問題点に鑑みてなされたものであって、高温高
圧の環境下においても気液二相流の気泡速度や気泡径を
測定できるようにすることを技術的課題とする。
The present invention has been made in view of the above problems of the conventional measuring apparatus for gas-liquid two-phase flow, and the bubble velocity and bubble diameter of the gas-liquid two-phase flow are high even under the environment of high temperature and high pressure. It is a technical subject to be able to measure.

【0005】[0005]

【課題を解決するための手段】本発明は単一の周波数で
一定の偏光面を有する光を発生させる光源と、光源より
与えられる光を透過させる偏光ビームスプリッタと、偏
光ビームスプリッタを透過する光源からの光が一方の端
面に与えられる投光用の光ファイバと、投光用光ファイ
バの端面を当接させ、気液二相流の流れ方向に対向して
配置された透明のプローブと、投光用の光ファイバの他
方の端面を中心としてプローブに一端が当接する複数の
受光用の光ファイバと、投光用光ファイバより偏光ビー
ムスプリッタに与えられる気液二相の境界面からの反射
光のうち偏光ビームスプリッタで再び反射される光が与
えられるように配設された第1の受光素子と、第1の受
光素子より得られる信号の高周波成分から気泡速度を求
める気泡速度演算手段と、受光用光ファイバの反射光を
電気信号に変換する第2の受光素子と、第2の受光素子
の信号レベルの変化に基づいて気泡通過時間を求める通
過時間測定手段と、を具備することを特徴とするもので
ある。
SUMMARY OF THE INVENTION The present invention is directed to a light source for generating light having a constant plane of polarization at a single frequency, a polarizing beam splitter for transmitting light provided by the light source, and a light source for transmitting the polarized beam splitter. An optical fiber for projecting light from one end face of the optical fiber, abutting the end face of the projecting optical fiber, and a transparent probe arranged opposite to the flow direction of the gas-liquid two-phase flow, Reflection from the interface between the two phases of gas and liquid given to the polarization beam splitter from the multiple optical fibers for receiving light, one end of which contacts the probe around the other end face of the optical fiber for projecting light. A first light receiving element arranged so as to give light that is reflected again by the polarization beam splitter of the light, and a bubble speed calculation for obtaining a bubble speed from a high frequency component of a signal obtained from the first light receiving element A step, a second light receiving element for converting the reflected light of the light receiving optical fiber into an electric signal, and a passage time measuring means for obtaining a bubble passage time based on a change in the signal level of the second light receiving element. It is characterized by that.

【0006】[0006]

【作用】このような特徴を有する本発明によれば、光源
の光を偏光ビームスプリッタを介して投光用光ファイバ
に導いている。プローブの先端が液相と気相のいずれに
接しているかによって受光用光ファイバに受光されるレ
ベルが異なるため、これに基づいて反射光の信号を検出
している。又投光用光ファイバに得られる高周波成分か
らドップラーシフト周波数を検出し、気相や液相の移動
速度を検出するようにしている。
According to the present invention having such characteristics, the light from the light source is guided to the light projecting optical fiber through the polarization beam splitter. Since the level of light received by the light-receiving optical fiber differs depending on whether the tip of the probe is in contact with the liquid phase or the gas phase, the reflected light signal is detected based on this. Further, the Doppler shift frequency is detected from the high frequency component obtained in the light projecting optical fiber, and the moving speed of the gas phase or the liquid phase is detected.

【0007】[0007]

【実施例】図1は本発明の一実施例による気液二相流の
原理を説明するための原理図である。本図において投光
用の光ファイバ1,受光用の光ファイバ2を図示のよう
に下端のみが円錐台形状に形成された円筒形のサファイ
アプローブ3の端部に当接するように構成しておく。こ
こで受光用の光ファイバ2は投光用の光ファイバを中心
としてその周囲の特定円周上に複数本、例えば19本配
置する。さて投受光用光ファイバ1,2とプローブ3と
を固定してその先端面3aを気液二相流に対向するよう
に固定する。ここで4は液相、5は気泡を表すものと
し、図1(a)はプローブ3の端面3aが近接した気泡
5と対向している状態、図1(b)は気泡5に接触した
端面3aが気泡5の表面を貫いてその中に含まれた状
態、図1(c)は気泡5が端面3aを通過し終えた状態
を示す。又矢印は気液二相流の方向を示すものとする。
FIG. 1 is a principle diagram for explaining the principle of gas-liquid two-phase flow according to an embodiment of the present invention. In this figure, an optical fiber 1 for projecting light and an optical fiber 2 for receiving light are configured so as to abut on the end of a cylindrical sapphire probe 3 whose only lower end is formed in a truncated cone shape as shown. .. Here, a plurality of, for example, 19 optical fibers 2 for receiving light are arranged around a specific circumference around the optical fiber for projecting light. Now, the light emitting / receiving optical fibers 1 and 2 and the probe 3 are fixed, and the tip end surface 3a is fixed so as to face the gas-liquid two-phase flow. Here, 4 represents a liquid phase, and 5 represents a bubble. In FIG. 1A, the end face 3a of the probe 3 faces the adjacent bubble 5, and in FIG. 1B, the end face in contact with the bubble 5. 3a shows a state where the bubble 5 penetrates the surface of the bubble 5 and is contained therein, and FIG. 1 (c) shows a state in which the bubble 5 has finished passing through the end face 3a. The arrow indicates the direction of gas-liquid two-phase flow.

【0008】さて光が投光用光ファイバ1を透過してサ
ファイアプローブ3に照射されると、光の大部分は端面
3aを透過するが、その一部は端面3aで反射し光ファ
イバ1及び受光用の光ファイバ2に再び入射される。こ
の反射光強度は端面3aが接する媒質の屈折率によって
異なるが、サファイアの屈折率ncを 1.7、液相、例えば
水の屈折率n1を 1.3、気泡例えば空気の屈折率naを1と
すると、図1(a),(c)に示すように端面3aが液
相と接している場合の反射光強度は約 0.2〜 0.5%であ
り、気泡と接している場合の約 6.7%よりも小さくな
る。従って図1(a)〜(c)に示すように気泡5がサ
ファイアプローブ3の端面3aに向かって接近し、これ
を貫通して通過した場合には受光用の光ファイバ2で得
られる光強度は図2(a)で示すものとなる。ここで時
刻t2は気泡5が端面3aで接した時点、t4は端面3aが
気泡を通過し終えて液相に接し始めた時点を示してお
り、時刻t2〜t4の間は端面3aが気泡に接しているた
め、その間だけ反射光強度が強くなっている。
When light passes through the light projecting optical fiber 1 and is applied to the sapphire probe 3, most of the light passes through the end face 3a, but part of the light is reflected by the end face 3a and the optical fiber 1 and The light is incident on the optical fiber 2 for receiving light again. This reflected light intensity varies depending on the refractive index of the medium with which the end face 3a is in contact, but assuming that the refractive index nc of sapphire is 1.7, the refractive index n1 of liquid phase such as water is 1.3, and the refractive index na of bubbles such as air is 1. As shown in FIGS. 1 (a) and 1 (c), the reflected light intensity is about 0.2 to 0.5% when the end face 3a is in contact with the liquid phase, which is smaller than about 6.7% when it is in contact with bubbles. Therefore, as shown in FIGS. 1A to 1C, when the bubble 5 approaches the end face 3a of the sapphire probe 3 and passes through the end face 3a, the light intensity obtained by the optical fiber 2 for receiving light is increased. Is as shown in FIG. Here at time t 2 is the bubble 5 in contact with the end face 3a, t 4 shows the time when the end face 3a began contact with the liquid phase finishes passing through the bubble, during the time t 2 ~t 4 end surface Since 3a is in contact with the bubbles, the intensity of the reflected light is high only during that time.

【0009】又図1(a),(b)において、サファイ
アプローブ3の端面3aを透過した光は夫々気泡5の外
面及び内面、即ち二相の境界面で反射し、再びサファイ
アプローブ3内に入射する。この光は一部が受光用光フ
ァイバ2と投光用光ファイバ1に再び入射されることと
なる。さて気泡5は矢印方向に速度Vで動いているた
め、この気泡面からの反射光はドップラー効果によりわ
ずかに周波数が高くなる。今入射光の周波数をfi、気泡
を接近時のドップラー効果による周波数偏移量、即ちド
ップラーシフト周波数をΔfi、光束をcとすると、次の
式(1)の関係が成り立つ。
In FIGS. 1A and 1B, the light transmitted through the end surface 3a of the sapphire probe 3 is reflected on the outer surface and the inner surface of the bubble 5, that is, the boundary surface between the two phases, and enters the sapphire probe 3 again. Incident. A part of this light will be incident on the light receiving optical fiber 2 and the light projecting optical fiber 1 again. Since the bubble 5 is moving at the velocity V in the direction of the arrow, the frequency of the reflected light from the bubble surface is slightly increased due to the Doppler effect. Now, if the frequency of the incident light is fi, the frequency shift amount due to the Doppler effect at the time of approaching a bubble, that is, the Doppler shift frequency is Δfi, and the luminous flux is c, the relationship of the following formula (1) is established.

【数1】 又気泡が端面1aを通過し終える前のドップラー効果に
よるドップラーシフト周波数をΔf0とすると、(1)式
と同様に次の式(2)が成り立つ。
[Equation 1] Further, when the Doppler shift frequency due to the Doppler effect before the air bubbles have finished passing through the end face 1a is Δf 0 , the following equation (2) is established similarly to the equation (1).

【数2】 そしてサファイアプローブ3の端面3aの反射光はその
周波数が光源の光の周波数fiと等しいので、気泡面から
の反射光との光ビートをとることによってドップラー効
果によるドップラーシフト周波数を検出することができ
る。図2(b)は気泡面からの反射光の光強度の時間的
変化を示すものであって、図2(a)と時間軸を揃えて
いる。本図に示すように気泡5が端面3aに接する直前
の時刻t1から端面3aに接した時刻t2までの間、及び気
泡5が端面3aを通過し終える直前の時刻t3から通過し
終える時刻t4までの間で、気泡面、即ち二相境界面から
の反射光が得られ、そのレベルは徐々に増加する。これ
らの反射光の有する周波数はいずれもドップラー効果に
よる周波数偏移があるので、投光用の光ファイバの光源
部分で反射光を参照光とするヘテロダイン検波を行うこ
とによって得られるドップラーシフト周波数を測定すれ
ば、前述した式(1),(2)より気泡速度Vを測定す
ることができる。又図2(a),(b)に示すように時
刻t2とt4の時間間隔を検出することにより気泡通過時間
が測定できる。更に気泡速度と気泡通過時間から気泡径
を計測することもできる。
[Equation 2] Since the frequency of the reflected light from the end face 3a of the sapphire probe 3 is equal to the frequency fi of the light from the light source, the Doppler shift frequency due to the Doppler effect can be detected by taking an optical beat with the reflected light from the bubble surface. .. FIG. 2B shows the temporal change of the light intensity of the reflected light from the bubble surface, and the time axis is aligned with that of FIG. 2A. As shown in this figure, from the time t 1 immediately before the bubble 5 contacts the end face 3a to the time t 2 just before contacting the end face 3a, and from the time t 3 just before the bubble 5 finishes passing the end face 3a, finishes passing. in between times t 4, the bubble surface, i.e. the reflected light from the two-phase boundary surface is obtained, the level gradually increases. Since the frequencies of these reflected lights have frequency shifts due to the Doppler effect, the Doppler shift frequency obtained by performing heterodyne detection using the reflected light as the reference light at the light source part of the optical fiber for projection is measured. Then, the bubble velocity V can be measured by the above equations (1) and (2). Further, as shown in FIGS. 2A and 2B, the bubble passing time can be measured by detecting the time interval between the times t 2 and t 4 . Further, the bubble diameter can be measured from the bubble velocity and bubble passage time.

【0010】図3は本発明の一実施例による気液二相流
の計測装置の全体構成を示すブロック図である。本図に
おいて11は単一の振動数を有するレーザ発振器であっ
て、レーザビームの偏光面を偏光ビームスプリッタ12
を通過する方向に設定しておく。そうすればレーザ発振
器11から出射されたレーザ光は偏光ビームスプリッタ
12を通過し、レンズ13を介して投光用の光ファイバ
1に導かれる。レーザ光の偏光面は光ファイバ1を伝わ
る過程でランダムとなる。この投光用光ファイバ1から
得られた反射光のうち、偏光ビームスプリッタ12によ
って反射される位置に集光レンズ14を介して第1の受
光素子、例えばアバランシェ型のフォトダイオード(A
PD)15を配置する。フォトダイオード15は元のレ
ーザ光源11からの単一波長のレーザ光との光ビームを
その周波数に対応した電気信号に変換するヘテロダイン
検波を行うものであって、その出力は増幅器16を介し
て周波数測定器17に与えられる。増幅器16及び周波
数測定器17はフォトダイオード15から得られる高周
波成分から気泡速度を求める気泡速度演算手段である。
FIG. 3 is a block diagram showing the overall construction of a gas-liquid two-phase flow measuring apparatus according to an embodiment of the present invention. In the figure, 11 is a laser oscillator having a single frequency, and the polarization plane of the laser beam is changed to a polarization beam splitter 12
Set the direction to pass through. Then, the laser light emitted from the laser oscillator 11 passes through the polarization beam splitter 12 and is guided to the light projecting optical fiber 1 through the lens 13. The polarization plane of the laser light becomes random in the process of being transmitted through the optical fiber 1. Of the reflected light obtained from the light projecting optical fiber 1, a first light receiving element, for example, an avalanche type photodiode (A
PD) 15 is placed. The photodiode 15 performs heterodyne detection for converting a light beam from the original laser light source 11 and a laser beam of a single wavelength into an electric signal corresponding to the frequency, and its output is frequency-dependent through the amplifier 16. It is given to the measuring device 17. The amplifier 16 and the frequency measuring device 17 are bubble velocity calculating means for obtaining the bubble velocity from the high frequency component obtained from the photodiode 15.

【0011】一方受光用の光ファイバ2の端面には集光
レンズ21を介して第2の受光素子であるフォトダイオ
ード(PD)22が設けられる。フォトダイオード22
は反射光の光強度に対応する電気信号を発生するもので
あって、その出力は増幅器23を介して時間間隔測定器
24に与えられる。増幅器23,時間間隔測定器24は
フォトダイオード22の信号レベルの変化に基づいて気
泡の通過時間を求める通過時間測定手段を構成してい
る。周波数測定器17及び時間間隔測定器の出力は信号
処理回路25に伝えられる。信号処理回路25は前述し
たように気泡速度,気泡通過時間によって気泡径やボイ
ド率を算出し、表示器26によって表示するように構成
される。
On the other hand, a photodiode (PD) 22 as a second light receiving element is provided on the end face of the optical fiber 2 for receiving light via a condenser lens 21. Photodiode 22
Generates an electric signal corresponding to the light intensity of the reflected light, and its output is given to the time interval measuring device 24 via the amplifier 23. The amplifier 23 and the time interval measuring device 24 constitute a passage time measuring means for obtaining the passage time of bubbles based on the change in the signal level of the photodiode 22. The outputs of the frequency measuring device 17 and the time interval measuring device are transmitted to the signal processing circuit 25. As described above, the signal processing circuit 25 is configured to calculate the bubble diameter and the void rate based on the bubble velocity and the bubble passage time, and display them on the display 26.

【0012】さて光ファイバは図4に示すように投光用
及び受光用の光ファイバ1,2がプローブの先端面では
一体となるように構成されている。図4(a)はプロー
ブを構成する光ファイバの先端部を示す断面図、(b)
はそのA−A線拡大断面図であって、投光用の光ファイ
バ1が中央部に位置し、周囲には受光用の複数、例えば
19本の光ファイバ2-1〜2-19 を円周上に配置する。
これらの光ファイバの端面は図示のように円筒形で先端
のみが円錐台形状に構成されたサファイアプローブ3の
端面に当接している。このサファイアプローブ3の根本
部分は図示のように金属製のスリーブ6によって覆われ
ている。そしてスリーブ6の一部分に図示のように電子
ビーム溶接を行ってその内部の投光用光ファイバ1及び
受光用光ファイバ2-1〜2-19 を固定している。ここで
受光用光ファイバ2-1〜2-19 は全て図3に示すフォト
ダイオード22に導くように構成されている。
As shown in FIG. 4, the optical fiber is constructed so that the optical fibers 1 and 2 for projecting and receiving light are integrated at the tip surface of the probe. FIG. 4A is a cross-sectional view showing a tip portion of an optical fiber forming a probe, FIG.
Is an enlarged cross-sectional view taken along the line AA, in which an optical fiber 1 for projecting light is located in the central portion, and a plurality of, for example, 19 optical fibers 2-1 to 2-19 for receiving light are surrounded by a circle. Place it on the circumference.
The end faces of these optical fibers are in contact with the end face of the sapphire probe 3 which is cylindrical and has only a tip formed in a truncated cone shape as shown in the figure. The root portion of the sapphire probe 3 is covered with a metal sleeve 6 as shown in the figure. Then, electron beam welding is performed on a part of the sleeve 6 to fix the light projecting optical fiber 1 and the light receiving optical fibers 2-1 to 2-19 therein. Here, all of the light-receiving optical fibers 2-1 to 2-19 are constructed so as to be guided to the photodiode 22 shown in FIG.

【0013】次に本実施例の動作について説明する。レ
ーザ光源11を駆動するとレーザ光は偏光ビームスプリ
ッタ12を介して投光用光ファイバ1に入射され、図示
のようにその先端部分に導かれる。そしてサファイアプ
ローブ3を介して気液二相流に照射される。さて前述し
たように気泡5がサファイアプローブ3の先端に近づき
端面3aが液相中か気相中によって異なる強度を有する
反射光となって受光用光ファイバ2-1〜2-19 を介して
フォトダイオード22に与えられる。従ってフォトダイ
オード22の反射光強度に基づいた信号が得られる。こ
の信号はプローブの端面が液相又は気相のいずれにある
かを判別する信号として用いられる。時間間隔測定器2
4ではこの信号を弁別し、気相及び液相に接している時
間の間隔を測定している。
Next, the operation of this embodiment will be described. When the laser light source 11 is driven, the laser light enters the light projecting optical fiber 1 through the polarization beam splitter 12 and is guided to the tip portion thereof as shown in the figure. Then, the gas-liquid two-phase flow is irradiated through the sapphire probe 3. As described above, the bubble 5 approaches the tip of the sapphire probe 3 and the end face 3a becomes reflected light having different intensities depending on whether it is in the liquid phase or in the gas phase. It is provided to the diode 22. Therefore, a signal based on the reflected light intensity of the photodiode 22 is obtained. This signal is used as a signal for determining whether the end face of the probe is in the liquid phase or the gas phase. Time interval measuring device 2
In 4, the signal is discriminated and the time interval in contact with the gas phase and the liquid phase is measured.

【0014】又サファイアプローブ3の先端3aからの
出射光も気液二相流の境界面でその一部が反射され、投
光用の光ファイバ1に戻る。これらの反射光の偏光面は
いずれもランダムであるため、反射光の一部は投光用光
ファイバ1を介し偏光ビームスプリッタ12で反射され
てフォトダイオード15に伝えられる。フォトダイオー
ド15では反射光の周波数の差であるドップラーシフト
周波数(気相突入時にはΔfi、液相突入時にはΔf0)の
電気信号を発生する。この信号はフォトダイオード15
によってヘテロダイン検波され、図2(c)に示すよう
な信号が得られる。この信号を周波数測定器17で測定
することによって気泡速度に関する情報を得ている。こ
うして信号処理回路25により気泡速度,気泡通過時間
及びこれらに基づいて気泡径やボイド率(気体と液体と
の体積率)を演算により求め表示器26によって表示す
る。
The light emitted from the tip 3a of the sapphire probe 3 is also partially reflected at the boundary surface of the gas-liquid two-phase flow and returns to the optical fiber 1 for projecting light. Since the polarization planes of these reflected lights are all random, part of the reflected light is reflected by the polarization beam splitter 12 via the light projecting optical fiber 1 and transmitted to the photodiode 15. The photodiode 15 generates an electric signal having a Doppler shift frequency (Δfi at the time of entering the gas phase and Δf 0 at the time of entering the liquid phase), which is the difference in the frequency of the reflected light. This signal is the photodiode 15
By the heterodyne detection by, a signal as shown in FIG. 2C is obtained. Information about the bubble velocity is obtained by measuring this signal with the frequency measuring device 17. In this way, the signal processing circuit 25 calculates the bubble velocity and bubble passage time and the bubble diameter and void ratio (volume ratio of gas and liquid) based on these, and displays them on the display 26.

【0015】尚式(1),(2)より知られるように、
ドップラーシフト周波数Δfi,Δf0の比は液相と気相の
屈折率n1, naの比に等しい。従って液相又は気相の一方
の屈折率が既知であれば多数の屈折率はドップラーシフ
ト周波数の比より求めることも可能である。又本実施例
は液相中を気泡が通過する気液二相流について説明した
が、気相中を液滴が通過する気液二相流に対しても、又
気相と液相が交互に通過する気液二相流に対しても本発
明の装置を適用し得ることはいうまでもない。又本実施
例はプローブとしてサファイアを用いているが、高温,
高圧に耐え屈折率が高いものであれば他の透明の物質を
用いてプローブを構成することも可能である。
As known from the equations (1) and (2),
The ratio of the Doppler shift frequencies Δfi and Δf 0 is equal to the ratio of the refractive indices n1 and na of the liquid and gas phases. Therefore, if the refractive index of one of the liquid phase and the gas phase is known, it is possible to obtain many refractive indexes from the ratio of the Doppler shift frequencies. Although the present embodiment has described the gas-liquid two-phase flow in which bubbles pass through the liquid phase, the gas-liquid two-phase flow also alternates for the gas-liquid two-phase flow where droplets pass through the gas phase. It goes without saying that the apparatus of the present invention can be applied to a gas-liquid two-phase flow passing through the. Further, although sapphire is used as the probe in this embodiment,
It is also possible to construct the probe using another transparent substance as long as it can withstand high pressure and has a high refractive index.

【0016】[0016]

【発明の効果】以上詳細に説明したように本発明によれ
ば、光ファイバの先端部を透明のプローブで覆い投光用
光ファイバ及び受光用の光ファイバを分離しているた
め、高温高圧の環境下においても気液二相流の計測装置
を適用することができるという効果が得られる。
As described in detail above, according to the present invention, since the tip of the optical fiber is covered with the transparent probe to separate the optical fiber for projecting light and the optical fiber for receiving light, high temperature and high pressure are applied. The effect that the gas-liquid two-phase flow measuring device can be applied even under the environment is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を示す原理図である。FIG. 1 is a principle diagram showing the principle of the present invention.

【図2】(a),(b)は夫々光ファイバ端面及び気泡
端面の反射光の強度変化を示すグラフ、(c)はフォト
ダイオードの出力波形図である。
2A and 2B are graphs showing changes in the intensity of reflected light at the optical fiber end face and the bubble end face, respectively, and FIG. 2C is an output waveform diagram of the photodiode.

【図3】本発明の一実施例による気液二相流の計測装置
の信号処理部の構成を示すブロック図である。
FIG. 3 is a block diagram showing a configuration of a signal processing unit of a gas-liquid two-phase flow measuring apparatus according to an embodiment of the present invention.

【図4】(a)本実施例による気液二相流の計測装置の
プローブ部分を示す断面図、(b)はそのA−A線断面
図である。
FIG. 4A is a sectional view showing a probe portion of a gas-liquid two-phase flow measuring apparatus according to the present embodiment, and FIG. 4B is a sectional view taken along line AA.

【符号の説明】[Explanation of symbols]

1 投光用光ファイバ 2, 2-1〜2-19 受光用光ファイバ 3 サファイアプローブ 3a 端面 5 気泡 11 レーザ発振器 12 偏光ビームスプリッタ 15 アバランシェ型フォトダイオード 17 周波数測定器 22 フォトダイオード 24 時間間隔測定器 25 信号処理回路 26 表示器 1 Optical fiber for projecting light 2, 2-1 to 2-19 Optical fiber for receiving light 3 Sapphire probe 3a End face 5 Bubble 11 Laser oscillator 12 Polarizing beam splitter 15 Avalanche photodiode 17 Frequency measuring instrument 22 Photodiode 24 Time interval measuring instrument 25 signal processing circuit 26 indicator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 滝 義宏 東京都中央区八重洲1丁目5番20号 日本 褐炭液化株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshihiro Taki 1-5-20 Yaesu, Chuo-ku, Tokyo Japan Lignite Liquefaction Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】 単一の周波数で一定の偏光面を有する光
を発生させる光源と、 前記光源より与えられる光を透過させる偏光ビームスプ
リッタと、 前記偏光ビームスプリッタを透過する光源からの光が一
方の端面に与えられる投光用の光ファイバと、 前記投光用光ファイバの端面を当接させ、気液二相流の
流れ方向に対向して配置された透明のプローブと、 前記投光用の光ファイバの他方の端面を中心として前記
プローブに一端が当接する複数の受光用の光ファイバ
と、 前記投光用光ファイバより偏光ビームスプリッタに与え
られる気液二相の境界面からの反射光のうち偏光ビーム
スプリッタで再び反射される光が与えられるように配設
された第1の受光素子と、 前記第1の受光素子より得られる信号の高周波成分から
気泡速度を求める気泡速度演算手段と、 前記受光用光ファイバの反射光を電気信号に変換する第
2の受光素子と、 前記第2の受光素子の信号レベルの変化に基づいて気泡
通過時間を求める通過時間測定手段と、を具備すること
を特徴とする気液二相流の計測装置。
Claim: What is claimed is: 1. A light source for generating light having a constant polarization plane at a single frequency, a polarizing beam splitter for transmitting light provided by the light source, and a polarizing beam splitter. A light-transmitting optical fiber to which light from a light source is given to one end surface, and a transparent probe arranged so as to bring the end surface of the light-projecting optical fiber into contact with each other and facing each other in the flow direction of the gas-liquid two-phase flow. A plurality of light-receiving optical fibers, one end of which abuts on the probe around the other end face of the light-projecting optical fiber, and a gas-liquid two-phase provided from the light-projecting optical fiber to the polarization beam splitter. From the first light receiving element arranged so as to give the light that is reflected again by the polarization beam splitter among the light reflected from the boundary surface, and from the high-frequency component of the signal obtained from the first light receiving element, A bubble velocity calculating means for obtaining a bubble velocity, a second light receiving element for converting the reflected light of the light receiving optical fiber into an electric signal, and a bubble passing time based on a change in the signal level of the second light receiving element. A gas-liquid two-phase flow measuring device comprising: a transit time measuring means.
JP19708391A 1991-07-10 1991-07-10 Gas-liquid two phase flow measurement device Pending JPH0518981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19708391A JPH0518981A (en) 1991-07-10 1991-07-10 Gas-liquid two phase flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19708391A JPH0518981A (en) 1991-07-10 1991-07-10 Gas-liquid two phase flow measurement device

Publications (1)

Publication Number Publication Date
JPH0518981A true JPH0518981A (en) 1993-01-26

Family

ID=16368442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19708391A Pending JPH0518981A (en) 1991-07-10 1991-07-10 Gas-liquid two phase flow measurement device

Country Status (1)

Country Link
JP (1) JPH0518981A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216476A (en) * 2008-03-10 2009-09-24 National Univ Corp Shizuoka Univ Optical fiber probe bubble measuring device and method
JP2011059062A (en) * 2009-09-14 2011-03-24 Toshiba Corp Droplet measuring device in steam turbine
US8312981B2 (en) 2008-02-21 2012-11-20 Grenzebach Maschinenbau Gmbh Method and device for conveying and rotating impact-sensitive panels in ultra clean rooms
CN105628959A (en) * 2015-12-22 2016-06-01 东北大学 Method of using probes to measure size of bubble in gas-liquid reactor
WO2017213161A1 (en) * 2016-06-07 2017-12-14 三菱重工業株式会社 Optical sensor
CN111982862A (en) * 2020-08-01 2020-11-24 中国石油天然气股份有限公司 Calculation method of gas-liquid two-phase flow gas holdup of optical fiber sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8312981B2 (en) 2008-02-21 2012-11-20 Grenzebach Maschinenbau Gmbh Method and device for conveying and rotating impact-sensitive panels in ultra clean rooms
JP2009216476A (en) * 2008-03-10 2009-09-24 National Univ Corp Shizuoka Univ Optical fiber probe bubble measuring device and method
JP2011059062A (en) * 2009-09-14 2011-03-24 Toshiba Corp Droplet measuring device in steam turbine
CN105628959A (en) * 2015-12-22 2016-06-01 东北大学 Method of using probes to measure size of bubble in gas-liquid reactor
WO2017213161A1 (en) * 2016-06-07 2017-12-14 三菱重工業株式会社 Optical sensor
CN109313013A (en) * 2016-06-07 2019-02-05 三菱重工业株式会社 Optical sensor
US10760897B2 (en) 2016-06-07 2020-09-01 Mitsubishi Heavy Industries, Ltd. Optical sensor
CN111982862A (en) * 2020-08-01 2020-11-24 中国石油天然气股份有限公司 Calculation method of gas-liquid two-phase flow gas holdup of optical fiber sensor
CN111982862B (en) * 2020-08-01 2023-10-27 中国石油天然气股份有限公司 Calculation method for gas-liquid two-phase flow gas holding rate of optical fiber sensor

Similar Documents

Publication Publication Date Title
JP3279116B2 (en) Laser Doppler velocimeter
US4569588A (en) Light frequency change detecting method and apparatus
JP4494779B2 (en) Non-invasive glucose meter
US7466399B2 (en) Fiber optic flow sensing device and method
WO2010058322A1 (en) Laser self-mixing differential doppler velocimetry and vibrometry
US4516432A (en) Apparatus for measuring two-phase flow
JPS6162885A (en) Distance/speed meter
JPH0518981A (en) Gas-liquid two phase flow measurement device
JP2001272259A (en) Flowmeter
US7012688B2 (en) Method and apparatus for measuring particle motion optically
US3864041A (en) Doppler-shift velocity measurement system using a two-frequency laser
JPS6238335A (en) Optical fiber simultaneous measuring instrument for pressure and flow velocity
CN111812665A (en) Pulse and phase integrated laser ranging device
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
JPS5948668A (en) Optical fiber speedometer
US3457419A (en) Fluid flow meter in which laser light scattered by the fluid and by a stationary scattering center is heterodyned
JPS5811565B2 (en) fiber optic equipment
JPS5837496B2 (en) Optical fiber length measurement method
JPH0875434A (en) Surface form measuring device
JPH0115833B2 (en)
JPH05172657A (en) Optical fiber distributed temperature sensor
CN114137251A (en) Integrated multipurpose laser Doppler current measuring instrument
RU99309U1 (en) DEVICE FOR MEASURING THE SPEED OF A BIOLOGICAL LIQUID BASED ON AN OPTICAL DIVIDER
JPS5812539B2 (en) fiber optic equipment
JPS63121722A (en) Temperature distribution detector