JP2011013108A - Lightwave distance meter - Google Patents

Lightwave distance meter Download PDF

Info

Publication number
JP2011013108A
JP2011013108A JP2009157781A JP2009157781A JP2011013108A JP 2011013108 A JP2011013108 A JP 2011013108A JP 2009157781 A JP2009157781 A JP 2009157781A JP 2009157781 A JP2009157781 A JP 2009157781A JP 2011013108 A JP2011013108 A JP 2011013108A
Authority
JP
Japan
Prior art keywords
light
distance
signal
target reflector
distance meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009157781A
Other languages
Japanese (ja)
Other versions
JP5665286B2 (en
Inventor
Yasutoshi Aoki
康俊 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Topcon Co Ltd
Original Assignee
Sokkia Topcon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Topcon Co Ltd filed Critical Sokkia Topcon Co Ltd
Priority to JP2009157781A priority Critical patent/JP5665286B2/en
Publication of JP2011013108A publication Critical patent/JP2011013108A/en
Application granted granted Critical
Publication of JP5665286B2 publication Critical patent/JP5665286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lightwave distance meter dispensing with any variable received-light density filter and allowing a distance measuring light amount to be adjusted at higher speed.SOLUTION: This lightwave distance meter includes a light send-out means 100 for sending out light which is intensity-modulated by a signal superimposed on a carrier of a certain frequency, a light separating means 102 for sending out the light from the send-out means 100 to one chosen between a target reflector 22 disposed at a measurement point and a reference optical path 25, a light receiving means (light receiving element 30) for receiving distance measuring light reflected by the target reflector 22 or reference light having passed along the optical path 25 to output a distance measurement signal and a reference signal, and a distance calculation means (CPU 41) for finding an airline distance to the target reflector 22 based on a phase difference between the measurement signal and the reference signal. The send-out means 100 includes a light amount adjustment means 101.

Description

本発明は、強度変調されて所定の位相を有する光を目標反射物に反射させて得た測距光と、前記強度変調光を参照光通路へ射出して得た参照光の位相差を測定して目標反射物までの直線距離を測定する光波距離計に関する。   The present invention measures the phase difference between ranging light obtained by reflecting light having a predetermined phase that is intensity-modulated to a target reflector, and reference light obtained by emitting the intensity-modulated light to a reference light path. The present invention relates to a light wave rangefinder that measures a linear distance to a target reflector.

従来の光波距離計には、強度変調されて所定の位相を有する光を測定地点に配置したプリズムや反射鏡等の目標反射物に反射させて得られる測距光と、前記強度変調光を参照光通路へ射出して得た参照光を受光手段でそれぞれ受光して出力された、前記測距光の電気信号(測距信号)と参照光の電気信号(参照信号)の位相差を算出して目標反射物までの直線距離を測定するもの(一般的に位相差方式光波距離計という)がある。位相差方式光波距離計は、測定距離に応じて測距光と参照光の位相差が変化することを利用したものである。   In the conventional optical distance meter, the distance-modulated light obtained by reflecting the intensity-modulated light having a predetermined phase to a target reflector such as a prism or a reflecting mirror arranged at the measurement point, and the intensity-modulated light are referred to Calculates the phase difference between the electrical signal (ranging signal) of the distance measuring light and the electrical signal (reference signal) of the reference light, which are received and output by the light receiving means, respectively. Some measure the linear distance to the target reflector (generally referred to as a phase difference type lightwave distance meter). The phase difference type lightwave distance meter utilizes the fact that the phase difference between the distance measuring light and the reference light changes according to the measurement distance.

測距光と参照光の位相差Δφは、目標反射物までの測距距離をD、変調周波数をf、高速をCとすると、Δφ=4πfD/Cで表され、測距距離Dは、位相差Δφを測定することで求められる。また、実際の測定においては、2つ以上の大きさの異なる周波数による変調光が使用され、それぞれの分解能に応じて距離値の各桁が決定される。   The phase difference Δφ between the distance measuring light and the reference light is expressed by Δφ = 4πfD / C, where D is the distance measured to the target reflector, f is the modulation frequency, and C is the high speed. It is obtained by measuring the phase difference Δφ. In actual measurement, modulated light having two or more different frequencies is used, and each digit of the distance value is determined according to each resolution.

かかる光波距離計においては、光波距離計から目標反射物までの距離が近いと受光される測距光の光量が強くなり、前記距離が遠いと測距光の光量が弱くなるため、光波距離計から目標反射物までの距離に応じて測距信号の出力レベルにバラツキが発生する。そこで、かかる光波距離計においては、例えば、下記特許文献1に示すように、目標反射物と受光手段との間にモーター等で駆動する可変式受光濃度フィルター機構を設けて反射光(測距光)の絞り調節を行うことにより、測距光量を最適な状態に調節していた。   In such a light wave distance meter, the light amount of the ranging light received when the distance from the light wave distance meter to the target reflector is short becomes strong, and the light amount of the distance measuring light becomes weak when the distance is long. The output level of the ranging signal varies depending on the distance from the target reflector to the target. Therefore, in such a light wave distance meter, for example, as shown in Patent Document 1 below, a variable light reception density filter mechanism that is driven by a motor or the like is provided between a target reflector and a light receiving means, and reflected light (ranging light). ) To adjust the amount of distance measuring light to an optimum state.

特公昭51−8340号公報Japanese Patent Publication No.51-8340

従来の光波距離計に使用されていた可変式受光濃度フィルター機構は、機械的な構造を動作させて絞り調節を行った結果、光量調節に時間がかかっていた。特に、光波距離計から数km離れた測定地点にプリズムを配置して行われるような遠距離測距においては、送出された測距光が大気の揺らぎによって光路を曲げられ、測距光量が大きく変化した結果、光量調節に数秒程度かかり、所定の測距仕様時間内に光量を調節できなくなるという問題が発生していた。   The variable light-receiving density filter mechanism used in the conventional lightwave distance meter takes a long time to adjust the light amount as a result of operating the mechanical structure and adjusting the aperture. In particular, in long-distance ranging performed by placing a prism at a measurement point several kilometers away from the optical wave distance meter, the transmitted distance-measuring light has its optical path bent due to atmospheric fluctuations, resulting in a large amount of distance-measuring light. As a result of the change, it took about several seconds to adjust the light amount, and there was a problem that the light amount could not be adjusted within a predetermined distance measurement specification time.

本願発明は、かかる問題点に鑑みて、可変式受光濃度フィルターが不要であって、測距光量がより高速に調節出来る光波距離計を提供するものである。   In view of such problems, the present invention provides a lightwave distance meter that does not require a variable light-receiving density filter and that can adjust the distance-measuring light amount at a higher speed.

請求項1の光波距離計は、一定周波数の搬送波を重畳化した信号によって強度変調された光を送出する光送出手段と、該光送出手段の光を測定地点に配置した目標反射物または参照光路のうち選択された一方に送出する光分出手段と、前記目標反射物で反射された測距光または前記参照光路を通過した参照光を受光して測距信号と参照信号を出力する受光手段と、前記測距信号と参照信号の位相差によって目標反射物までの直線距離を求める距離算出手段と、を備えた光波距離計において、前記光送出手段に光量調節手段を設けた。即ち、請求項1では、機械的な動作手段で受光する反射光量を調節をする代わりに、電気的手段によって発光素子の点灯光量を調節することにした。   A lightwave distance meter according to claim 1 is a light transmission means for transmitting light whose intensity is modulated by a signal on which a carrier wave having a constant frequency is superimposed, and a target reflector or reference optical path in which the light of the light transmission means is disposed at a measurement point. And a light receiving means for receiving a distance measuring light reflected by the target reflector or a reference light passing through the reference light path and outputting a distance measuring signal and a reference signal. And a distance calculation means for obtaining a linear distance to the target reflector based on a phase difference between the distance measurement signal and the reference signal, and a light amount adjustment means is provided in the light transmission means. That is, in claim 1, instead of adjusting the amount of reflected light received by the mechanical operating means, the lighting amount of the light emitting element is adjusted by the electric means.

(作用)発光素子における点灯光量は、電気的手段のみによって調節でき、調節時に可変式受光濃度フィルターによるモーター等の機械的な動作を含まないため、調節に必要な時間が短い。また、光波距離計は、モーター等の配置スペースが不要になる。   (Operation) The lighting amount of light in the light emitting element can be adjusted only by electric means, and does not include a mechanical operation such as a motor by a variable light-receiving density filter at the time of adjustment, so that the time required for adjustment is short. In addition, the optical distance meter does not require an arrangement space for a motor or the like.

請求項2は、請求項1の光波距離計において、前記光送出手段が発光素子を有し、前記光量調節手段が、直流の電圧を供給されつつ前記発光素子に接続された可変抵抗手段と、該可変抵抗手段の制御手段と、を有するようにした。   According to a second aspect of the present invention, in the lightwave distance meter according to the first aspect, the light transmitting unit includes a light emitting element, and the light amount adjusting unit is connected to the light emitting element while being supplied with a DC voltage. Control means for the variable resistance means.

(作用)発光素子に負荷される抵抗値を調節して発光素子の発光量を変化させることによって、測距光の光量が極めて短時間で調節される。   (Operation) By adjusting the resistance value applied to the light emitting element to change the light emission amount of the light emitting element, the light amount of the distance measuring light is adjusted in a very short time.

請求項3は、請求項2の光波距離計において、前記可変抵抗手段をデジタルポテンショメータによって構成した。   According to a third aspect of the present invention, in the optical distance meter of the second aspect, the variable resistance means is constituted by a digital potentiometer.

(作用)デジタルポテンショメータは、発光素子の微細な光量調節を可能にする。   (Operation) The digital potentiometer enables fine light amount adjustment of the light emitting element.

請求項1または2の光波距離計によれば、測距光の光量調節時間が従来よりも大幅に短縮されるため、測距仕様時間内における光量調節回数を増やすことが出来る。その結果、光波距離計と目標反射物との間で大気に大きな揺らぎが発生したために1度で光量の調節が完了しないような場合であっても、回数を重ねることによって測距仕様時間内に光量調節を完了出来る可能性が高くなる。また、可変式受光濃度フィルターのモーター等の機構が不要になるため、光波距離計の大きさがコンパクトになるとともに、コストダウンが図られる。   According to the lightwave distance meter of claim 1 or 2, since the light amount adjustment time of the distance measuring light is significantly shortened compared to the conventional one, the number of times of light amount adjustment within the distance measurement specification time can be increased. As a result, even if the adjustment of the amount of light is not completed at one time due to a large fluctuation in the atmosphere between the lightwave distance meter and the target reflector, the number of times is repeated within the distance measurement specification time even if the adjustment is not completed. The possibility that the light intensity adjustment can be completed is increased. In addition, since a mechanism such as a motor for the variable light-receiving density filter is not required, the size of the lightwave distance meter is reduced and the cost is reduced.

請求項3の光波距離計によれば、測距光量を微細に調節出来るため、より誤差の少ない距離測定が可能になる。   According to the optical distance meter of the third aspect, the distance measurement light quantity can be finely adjusted, so that distance measurement with less error is possible.

光波距離計の実施例のブロック図である。It is a block diagram of the Example of a light wave distance meter. 測距光量が適正光量を超えている場合における測距光量調節の説明図である。It is explanatory drawing of ranging light quantity adjustment in case the ranging light quantity exceeds the appropriate light quantity. 測距光量が適正光量を超えていない場合における説明図である。It is explanatory drawing in case the ranging light quantity does not exceed the appropriate light quantity.

次に、図1により光波距離計の最適な実施形態を説明する。実施例の光波距離計は、以下に示す光送出手段100、発光素子の光量調節手段101、受光手段(受光素子30)、ローカル信号送出手段103、及び距離算出手段(CPU41)等を構成要素に含む。   Next, an optimal embodiment of the lightwave distance meter will be described with reference to FIG. The lightwave distance meter of the embodiment is composed of the light transmitting means 100, the light amount adjusting means 101 of the light emitting element, the light receiving means (light receiving element 30), the local signal transmitting means 103, the distance calculating means (CPU 41), and the like as described below. Including.

発振器1、分周器2、周波数重畳回路3,駆動回路4及び発光素子10は、図1に示すように順番に接続されて、光送出手段100を構成する。   The oscillator 1, the frequency divider 2, the frequency superimposing circuit 3, the driving circuit 4, and the light emitting element 10 are connected in order as shown in FIG.

発振器1は、所定の周波数を有する基準搬送波信号F1を発生させる。分周器2は、基準搬送波信号F1を分周して異なる周波数を有する基準搬送波信号F2,F3を発生させる。基準搬送波信号F1,F2,F3は、周波数重畳回路3によって重畳化される。電圧供給を受ける駆動回路4は、重畳化された基準搬送波信号(F1,F2,F3)に基づく交流信号によって発光素子10を発光させ、重畳化された基準搬送波信号(F1,F2,F3)の振幅で強度変調した光を送出させる。   The oscillator 1 generates a reference carrier signal F1 having a predetermined frequency. The frequency divider 2 divides the reference carrier signal F1 to generate reference carrier signals F2 and F3 having different frequencies. The reference carrier signals F1, F2, and F3 are superimposed by the frequency superimposing circuit 3. The drive circuit 4 receiving the voltage supply causes the light emitting element 10 to emit light by an AC signal based on the superimposed reference carrier signal (F1, F2, F3), and the superimposed reference carrier signal (F1, F2, F3) The light whose intensity is modulated by the amplitude is transmitted.

発光素子10には、一定値の抵抗を発光素子10に負荷する負荷抵抗8とデジタルポテンショメータ9(可変抵抗手段)が接続される。また、負荷抵抗8は、導通と非導通を切り替え可能なデジタルスイッチ13を介して直流電源14から直流電圧の供給を受ける。デジタルポテンショメータ9には、制御手段12が接続される。デジタルポテンショメータ9は、制御手段12によって制御される可変抵抗器であって、発光素子10に負荷される抵抗を変化させる。また、デジタルポテンショメータ9は、負荷抵抗8、制御手段12、デジタルスイッチ13、直流電源14と共に光量調節手段101を構成する。   Connected to the light emitting element 10 are a load resistor 8 and a digital potentiometer 9 (variable resistance means) for loading the light emitting element 10 with a constant resistance. The load resistor 8 is supplied with a DC voltage from a DC power supply 14 via a digital switch 13 that can be switched between conduction and non-conduction. Control means 12 is connected to the digital potentiometer 9. The digital potentiometer 9 is a variable resistor controlled by the control means 12 and changes the resistance loaded on the light emitting element 10. The digital potentiometer 9 constitutes a light amount adjusting means 101 together with the load resistor 8, the control means 12, the digital switch 13 and the DC power supply 14.

発光素子10に負荷される抵抗値は、負荷抵抗8とデジタルポテンショメータ9の合成抵抗値によって定められる。発光素子10は、直流電圧を受けた状態で制御手段12によってデジタルポテンショメータ9の抵抗値を上げると発光光量が減少し、前記抵抗値を下げると発光光量が増加する。   The resistance value loaded on the light emitting element 10 is determined by the combined resistance value of the load resistance 8 and the digital potentiometer 9. When the resistance value of the digital potentiometer 9 is increased by the control means 12 while receiving a direct current voltage, the light emitting element 10 decreases the emitted light amount, and decreasing the resistance value increases the emitted light amount.

ビームスプリッタ20は、切り替えシャッター27と共に光分出手段102を構成する。発光素子10から送出された光は、ビームスプリッタ20に入力されて、測距光路21方向と参照光路25方向に2分割されると共に分割された光のいずれかを切替シャッター27によって遮光される。前記分割光は、測距光路21側または参照光路25側のうち切替シャッター27に遮光されていない方の光路に送出される。   The beam splitter 20 constitutes the light extraction means 102 together with the switching shutter 27. The light transmitted from the light emitting element 10 is input to the beam splitter 20 and divided into two in the distance measuring optical path 21 direction and the reference optical path 25 direction, and one of the divided lights is shielded by the switching shutter 27. The split light is transmitted to the optical path that is not shielded by the switching shutter 27 on the distance measuring optical path 21 side or the reference optical path 25 side.

切替シャッター27によって参照光路25側が遮光されることにより、測距光路21へ送出した光は、測定地点に配置したプリズム等の目標反射物22によって測距光路23に反射される。該反射された光(以降は、測距光という)は、受光光学24(集光レンズ等)で集光されて受光素子30(光受光手段)によって受光される。一方、シャッター27を切り替えて測距光路21側が遮光されることにより、参照光路25へ送出した光(以降は、参照光という)は、濃度フィルタ26で一定の光量調節を受けたあと受光素子30によって受光される。   Since the reference optical path 25 side is shielded by the switching shutter 27, the light transmitted to the distance measuring optical path 21 is reflected to the distance measuring optical path 23 by the target reflector 22 such as a prism disposed at the measurement point. The reflected light (hereinafter referred to as distance measuring light) is collected by the light receiving optical unit 24 (such as a condensing lens) and received by the light receiving element 30 (light receiving unit). On the other hand, by switching the shutter 27 and blocking the distance measuring optical path 21 side, the light transmitted to the reference optical path 25 (hereinafter referred to as reference light) is subjected to constant light amount adjustment by the density filter 26 and then the light receiving element 30. Is received by.

受光素子30には、増幅器31が接続され、増幅器31には、基準搬送波信号(F1,F2,F3)毎に周波数変換機(32,35,38)、低域フィルタ(33,36,39)、ADコンバータ(34,37,40)が接続されている。ADコンバータ(34,37,40)は、CPU41に接続され、CPU41は、デジタル信号化された測距信号と参照信号の位相差を検出すると共に測定距離の算出を行う。   An amplifier 31 is connected to the light receiving element 30, and a frequency converter (32, 35, 38) and a low-pass filter (33, 36, 39) are connected to the amplifier 31 for each reference carrier signal (F1, F2, F3). The AD converters (34, 37, 40) are connected. The AD converters (34, 37, 40) are connected to the CPU 41. The CPU 41 detects the phase difference between the digital ranging signal and the reference signal and calculates the measuring distance.

測距光と参照光は、受光素子30によって、基準搬送波信号(F1,F2,F3)を示す電気信号に変換され、増幅器31で増幅されたあと、(F1,F2,F3)を示す電気信号毎に周波数変換機(32,35,38)にそれぞれ入力される。   The distance measuring light and the reference light are converted by the light receiving element 30 into electric signals indicating the reference carrier signals (F1, F2, F3), amplified by the amplifier 31, and then electric signals indicating (F1, F2, F3). Each is input to the frequency converter (32, 35, 38).

一方、PLL(Phase Locked Loop)5、ローカル信号発振器6、周波数生成回路7は、ローカル信号送出手段103を構成する。PLL5は、発振器1に接続され、ローカル信号発振器6は、双方向の信号線によってPLL5と接続される。周波数生成回路7は、発振器1とローカル信号発振器6にそれぞれ接続される。またローカル信号発振器6は、周波数変換機32に接続され、周波数生成回路7は、周波数変換器(35,38)に接続されている。   On the other hand, a PLL (Phase Locked Loop) 5, a local signal oscillator 6, and a frequency generation circuit 7 constitute a local signal transmission unit 103. The PLL 5 is connected to the oscillator 1, and the local signal oscillator 6 is connected to the PLL 5 through a bidirectional signal line. The frequency generation circuit 7 is connected to the oscillator 1 and the local signal oscillator 6 respectively. The local signal oscillator 6 is connected to the frequency converter 32, and the frequency generation circuit 7 is connected to the frequency converter (35, 38).

ローカル信号発振器6は、PLL5を介して発振器1から基準搬送波信号F1を受けることにより、信号F1よりも微小値Δf1だけ周波数のずれている周波数信号F1+Δf1を周波数変換機32に出力する。周波数生成回路7は、発振器1から搬送波信号F1を受け、更にローカル信号発振器6から周波数信号F1+Δf1を受ける。そして、周波数生成回路7は、まず基準搬送波信号F1を搬送波信号F2,F3に分周すると共に、周波数信号F1+Δf1に基づいて、搬送波信号F2,F3よりも更に微小値Δf2、Δf3だけ周波数のずれている周波数信号F2+Δf2とF3+Δf3をそれぞれ出力する。周波数信号(F2+Δf2,F3+Δf3)は、それぞれ周波数変換器(35,38)に入力される。   The local signal oscillator 6 receives the reference carrier signal F1 from the oscillator 1 via the PLL 5, and outputs a frequency signal F1 + Δf1 whose frequency is shifted by a minute value Δf1 from the signal F1 to the frequency converter 32. The frequency generation circuit 7 receives the carrier signal F1 from the oscillator 1 and further receives the frequency signal F1 + Δf1 from the local signal oscillator 6. Then, the frequency generation circuit 7 first divides the reference carrier signal F1 into carrier signals F2 and F3, and based on the frequency signal F1 + Δf1, the frequency generation circuit 7 has a frequency that is smaller by the minute values Δf2 and Δf3 than the carrier signals F2 and F3. The shifted frequency signals F2 + Δf2 and F3 + Δf3 are output. The frequency signals (F2 + Δf2, F3 + Δf3) are input to the frequency converters (35, 38), respectively.

周波数変換器(32,35,38)は、測距光または参照光として入力された基準搬送波信号(F1,F2,F3)をローカル信号送出手段103側の周波数信号(F1+Δf1,F2+Δf2,F3+Δf3)に基づいて、より周波数帯が低く扱い易い周波数信号(Δf1,Δf2,Δf3)に変換する。周波数信号(Δf1,Δf2,Δf3)は、周波数変換機(32,35,38)で発生したノイズを低域フィルタ(33,36,39)によって除去されて、ADコンバータ(34,37,40)に送られ、電気信号からデジタルデータ(Δf1’,Δf2’,Δf3’)に変換される。   The frequency converter (32, 35, 38) converts the reference carrier signals (F1, F2, F3) input as distance measuring light or reference light into frequency signals (F1 + Δf1, F2 + Δf2, F3 + Δf3) on the local signal transmission means 103 side. ) Is converted into frequency signals (Δf1, Δf2, Δf3) having a lower frequency band and easy to handle. In the frequency signals (Δf1, Δf2, Δf3), the noise generated in the frequency converter (32, 35, 38) is removed by the low-pass filter (33, 36, 39), and the AD converter (34, 37, 40). And is converted from the electrical signal into digital data (Δf1 ′, Δf2 ′, Δf3 ′).

CPU41は、デジタルデータとなった測距光と参照光の周波数信号(Δf1’,Δf2’,Δf3’)からそれぞれの振幅と位相情報を解析し、測距光と参照光の位相差により、光波距離計から目標反射物22に至る直線距離を少ない誤差で算出する。   The CPU 41 analyzes the amplitude and phase information from the distance measurement light and the reference light frequency signals (Δf1 ′, Δf2 ′, Δf3 ′), which are digital data, and calculates the optical wave based on the phase difference between the distance measurement light and the reference light. The straight line distance from the distance meter to the target reflector 22 is calculated with a small error.

次にデジタルポテンショメータ9による測距光量の調節を説明する。図1に示す制御手段12は、CPU41で解析された測距光の振幅(光量)に応じてデジタルポテンショメータ9の抵抗値を調節し、発光素子10による出力を変化させることで測距光量を調節する。   Next, adjustment of the distance measuring light amount by the digital potentiometer 9 will be described. 1 adjusts the resistance value of the digital potentiometer 9 in accordance with the amplitude (light quantity) of the distance measuring light analyzed by the CPU 41, and adjusts the distance measuring light quantity by changing the output of the light emitting element 10. To do.

光波距離計には、仕様に応じて適正光量と下限光量が定められており、それら光量の設定値が記憶手段43に記憶されている。CPU41は、測距信号の振幅から得られる光量の数値を記憶手段43の設定値と比較して差を測定し、抵抗値の制御信号をデジタルポテンショメータ9に送出する。その結果、測距光の測定時における発光素子10の発光量は、デジタルポテンショメータ9の変更された抵抗値に応じて調節される。   In the optical distance meter, an appropriate light amount and a lower limit light amount are determined according to specifications, and set values of these light amounts are stored in the storage means 43. The CPU 41 compares the numerical value of the light quantity obtained from the amplitude of the distance measurement signal with the set value of the storage means 43 to measure the difference, and sends a resistance value control signal to the digital potentiometer 9. As a result, the light emission amount of the light emitting element 10 at the time of measuring the distance measuring light is adjusted according to the changed resistance value of the digital potentiometer 9.

また、参照光の光量は、測距光の調節に伴って測距光と同様に変化する。このようにして測距光の光量調節結果を利用して参照光の光量を変化させた場合、発光素子10においては、発光時に位相の変化が生じにくくなる。その結果、参照光は、温度ドリフトによる位相の変化を最小限に抑制することが出来る。   The light amount of the reference light changes in the same manner as the distance measuring light with the adjustment of the distance measuring light. When the light amount of the reference light is changed using the light amount adjustment result of the distance measuring light in this manner, the light emitting element 10 is less likely to cause a phase change during light emission. As a result, the reference light can suppress a change in phase due to temperature drift to a minimum.

また、測距光量の具体的な調節は、参照光量を予めデジタルポテンショメータ9によって適正光量に調節した状態で以下のように行われる。測距光量は、光波距離計から目標反射物22までの距離に応じて、適正光量より多い場合(図2を参照)と適正光量より少ない場合(図3を参照)がある。   Further, the specific adjustment of the distance measuring light amount is performed as follows with the reference light amount adjusted in advance to the appropriate light amount by the digital potentiometer 9. Depending on the distance from the light wave rangefinder to the target reflector 22, the distance measurement light amount may be greater than the appropriate light amount (see FIG. 2) or less than the appropriate light amount (see FIG. 3).

即ち、光波距離計から目標反射物22に至る測距を行った結果、図2に示すように測距光量が適正光量より多い場合には、デジタルポテンショメータ9の抵抗値を増加させて測距光量を適正光量まで減少させる。その際、参照光量は、測距光の減少に伴って適正光量から少なくなる。参照光量が下限光量を上回る場合には、測距(距離測定)を行い、参照光量が下限光量を下回る場合には、測距を中止する。   That is, as a result of the distance measurement from the light wave distance meter to the target reflector 22, as shown in FIG. 2, when the distance light quantity is larger than the appropriate light quantity, the resistance value of the digital potentiometer 9 is increased to increase the distance light quantity. Is reduced to the appropriate light level. At this time, the reference light amount decreases from the appropriate light amount as the distance measuring light decreases. When the reference light amount exceeds the lower limit light amount, distance measurement (distance measurement) is performed, and when the reference light amount falls below the lower limit light amount, the distance measurement is stopped.

一方、目標反射物22までの測距を行った結果、図3に示すように、測距光量が参照光量より少ない場合には、デジタルポテンショメータ9による測距光量の調節を行わない。そして測距光量が下限光量を超えている場合には、測距を行い、測距光量が下限光量を下回る場合には、測距を中止する。   On the other hand, as a result of the distance measurement to the target reflector 22, as shown in FIG. 3, when the distance light quantity is smaller than the reference light quantity, the digital potentiometer 9 does not adjust the distance light quantity. If the distance light quantity exceeds the lower limit light quantity, the distance is measured. If the distance light quantity falls below the lower limit light quantity, the distance measurement is stopped.

9 デジタルポテンショメータ(可変抵抗手段)
10 発光素子
12 制御手段
22 目標反射物
25 参照光路
30 受光素子(受光手段)
41 CPU(距離算出手段)
100 光送出手段
101 光量調節手段
102 光分出手段
9 Digital potentiometer (variable resistance means)
DESCRIPTION OF SYMBOLS 10 Light emitting element 12 Control means 22 Target reflector 25 Reference optical path 30 Light receiving element (light receiving means)
41 CPU (distance calculation means)
DESCRIPTION OF SYMBOLS 100 Light transmission means 101 Light quantity adjustment means 102 Light extraction means

Claims (3)

一定周波数の搬送波を重畳化した信号によって強度変調された光を送出する光送出手段と、該光送出手段の光を測定地点に配置した目標反射物または参照光路のうち選択された一方に送出する光分出手段と、前記目標反射物で反射された測距光または前記参照光路を通過した参照光を受光して測距信号と参照信号を出力する受光手段と、前記測距信号と参照信号の位相差によって目標反射物までの直線距離を求める距離算出手段と、を備えた光波距離計において、
前記光送出手段に光量調節手段を設けたことを特徴とする、光波距離計。
Light transmitting means for transmitting light whose intensity is modulated by a signal with a carrier wave having a constant frequency superimposed thereon, and light from the light transmitting means is transmitted to a selected one of a target reflector or a reference optical path disposed at a measurement point A light output unit; a light receiving unit that receives the ranging light reflected by the target reflector or the reference light that has passed through the reference optical path; and outputs a ranging signal and a reference signal; and the ranging signal and the reference signal A distance calculation means for obtaining a linear distance to the target reflector by the phase difference of
A light wave distance meter characterized in that a light amount adjusting means is provided in the light sending means.
前記光送出手段は、発光素子を有し、
前記光量調節手段は、直流の電圧を供給されつつ前記発光素子に接続された可変抵抗手段と、該可変抵抗手段の制御手段と、を有することを特徴とする請求項1に記載の光波距離計。
The light sending means has a light emitting element,
2. The light wave distance meter according to claim 1, wherein the light amount adjusting means includes variable resistance means connected to the light emitting element while being supplied with a DC voltage, and control means for the variable resistance means. .
前記可変抵抗手段は、デジタルポテンショメータであることを特徴とする請求項2に記載の光波距離計。   The light wave distance meter according to claim 2, wherein the variable resistance means is a digital potentiometer.
JP2009157781A 2009-07-02 2009-07-02 Light wave distance meter Active JP5665286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157781A JP5665286B2 (en) 2009-07-02 2009-07-02 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157781A JP5665286B2 (en) 2009-07-02 2009-07-02 Light wave distance meter

Publications (2)

Publication Number Publication Date
JP2011013108A true JP2011013108A (en) 2011-01-20
JP5665286B2 JP5665286B2 (en) 2015-02-04

Family

ID=43592163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157781A Active JP5665286B2 (en) 2009-07-02 2009-07-02 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP5665286B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237720A (en) * 2011-05-13 2012-12-06 Sokkia Topcon Co Ltd Light wave range finder
JP2013185983A (en) * 2012-03-08 2013-09-19 Topcon Corp Light-wave range finder
JP2021510417A (en) * 2018-01-10 2021-04-22 ベロダイン ライダー ユーエスエー,インコーポレイテッド LIDAR-based distance measurement with layered power control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189584A (en) * 1989-12-19 1991-08-19 Omron Corp Distance measuring instrument
JPH05297140A (en) * 1992-04-15 1993-11-12 Topcon Corp Light wave range finder and light quantity regulating device used therein
JPH06230129A (en) * 1993-02-02 1994-08-19 Sokkia Co Ltd Electro-optical range finder
JP2006138702A (en) * 2004-11-11 2006-06-01 Sokkia Co Ltd Light wave range finder
JP2007003355A (en) * 2005-06-23 2007-01-11 Shinku Rei:Kk Instrument for measuring propagation time of pulse light, and application device such as virtual mouse

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189584A (en) * 1989-12-19 1991-08-19 Omron Corp Distance measuring instrument
JPH05297140A (en) * 1992-04-15 1993-11-12 Topcon Corp Light wave range finder and light quantity regulating device used therein
JPH06230129A (en) * 1993-02-02 1994-08-19 Sokkia Co Ltd Electro-optical range finder
JP2006138702A (en) * 2004-11-11 2006-06-01 Sokkia Co Ltd Light wave range finder
JP2007003355A (en) * 2005-06-23 2007-01-11 Shinku Rei:Kk Instrument for measuring propagation time of pulse light, and application device such as virtual mouse

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237720A (en) * 2011-05-13 2012-12-06 Sokkia Topcon Co Ltd Light wave range finder
JP2013185983A (en) * 2012-03-08 2013-09-19 Topcon Corp Light-wave range finder
JP2021510417A (en) * 2018-01-10 2021-04-22 ベロダイン ライダー ユーエスエー,インコーポレイテッド LIDAR-based distance measurement with layered power control

Also Published As

Publication number Publication date
JP5665286B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
KR100484345B1 (en) Device for calibrating distance-measuring apparatus
EP0640846B1 (en) Optical measuring apparatus
US20120176594A1 (en) Phase Measurement Calibrating Method And Calibrating Device Based on Liquid Crystal Light Valve Principle
US11333760B2 (en) Frequency modulation for interference free optical time of flight system
JP4828245B2 (en) Light wave distance meter
US8570494B2 (en) Electro-optical distance meter
JP5665286B2 (en) Light wave distance meter
US8264284B2 (en) Atomic frequency acquisition device based on self-mixing interference
JP2006329797A (en) Light wave range finder
JPH0552957A (en) Distance-measuring device
US11269074B2 (en) Electro-optical distance meter and electro-optical distance measurement method
EP4249947A1 (en) Electro-optical distance meter
JP2016166816A (en) Coherent laser rader system and target measuring method
KR100585558B1 (en) Laser range finder
JP5840209B2 (en) Lightwave ranging device
JP5730094B2 (en) Light wave distance meter
US11353586B2 (en) Light wave distance meter
JP5535599B2 (en) Light wave distance meter
JP2023142442A (en) Light wave rangefinder
JP5916443B2 (en) Light wave distance meter
US11539185B2 (en) Laser apparatus
JP5234653B2 (en) Light wave distance meter
JP5450181B2 (en) Light wave distance meter
JP2008267893A (en) Electro-optical range finder
KR200349692Y1 (en) Laser range finder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5665286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250