TWI302547B - - Google Patents

Download PDF

Info

Publication number
TWI302547B
TWI302547B TW91133308A TW91133308A TWI302547B TW I302547 B TWI302547 B TW I302547B TW 91133308 A TW91133308 A TW 91133308A TW 91133308 A TW91133308 A TW 91133308A TW I302547 B TWI302547 B TW I302547B
Authority
TW
Taiwan
Prior art keywords
rubber
thermosetting resin
fully vulcanized
vulcanized powder
resin
Prior art date
Application number
TW91133308A
Other languages
Chinese (zh)
Other versions
TW200407393A (en
Inventor
Huang-Fan
jin-liang Qiao
yi-qun Liu
Xiao-Hong Zhang
jian-ming Gao
zhi-hai Song
Original Assignee
China Petrochemical Technology Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petrochemical Technology Company filed Critical China Petrochemical Technology Company
Priority to TW91133308A priority Critical patent/TW200407393A/en
Publication of TW200407393A publication Critical patent/TW200407393A/en
Application granted granted Critical
Publication of TWI302547B publication Critical patent/TWI302547B/zh

Links

Description

1302547 【發明所屬之技術領域】 製備方法 的熱固性 本發明涉及一種增韌熱固性樹脂及其 ,更具體地說,本發明涉及一種橡膠增拿刀 樹脂及其製備方法。 5 【先前技術】 熱固性樹脂與熱塑性樹脂共同構成了合匕 大體系。熱固性樹脂在製造或加工的前 ::月曰的兩 態或具有可溶可溶性質,通過加熱、c是液 10 15 20 紫外線、射線等)可使之發生化學變化而交聯、他方#法(如 的二維網狀結構樹脂。熱固性樹脂包括、合不炫 . 脂、不餘 和聚酯、酚醛樹脂、氨基樹脂、醇酸樹脂以及有機矽等 樹脂。其中裱氧樹脂和不飽和聚酯樹脂是三大熱固性樹 脂中具有代表性的兩種熱固性樹脂。與熱塑性樹脂相比 ,熱固性樹脂耐熱性好,硬度高,電性能優異,工業和 民用上均得到廣泛應用。然而熱固性樹脂固化後,質地 硬而脆,耐開裂性差,韌性低,在很多方面的應用都受 到限制。因此,如何提高熱固性樹脂的韌性,使其綜合 的物理機械性能更加優異,成爲人們長久以來進行研究 的一個方向。 現有技術中提高熱固性樹脂韌性的主要方法有4種 ’它們是:(1)提高主鏈柔性的化學改性法;提高聚 s單體的分子里’(3)降低熱固性樹脂的交聯密度;(4) 加入增勃劑。其中,加入增韌劑的方法是目前最爲有效 的熱固性樹脂增韌方法。這種方法是二十世紀六十年代 由Me Garry和Wi llner·發明的,他們發現將液體端羧基 丁腈橡膠(CTBN)與環氧樹脂預聚物混合,在一定條件下 固化’液體端魏基丁腈橡膠能顯著提高環氧樹脂的韌性 。幾十年來’人們詳細研究了 CTBN的分子量、端基活性 25 1302547 、腈含量、CTBN橡膠與環氧樹脂基體的介面给接行爲、 固化劑的種類、用量和固化工藝等對CTBN增韌環氧樹脂 的影響。除用CTBN增韌環氧樹脂外,人們還進行了其他 端羧基的橡膠(端羧基聚丁二烯CTB、端羧基丁苯橡膠 CTBS、端羧基聚醚CTPE等)和各種端羥基橡膠(液體端瘦 基丁腈橡膠HTBN、端羥基聚丁二烯HTPB等)增韌環氧樹 脂的研究。例如參見文獻:CHARLES B· ARENDS主編《 POLYMER TOUGHENING》,MARCEL DEKKER , Inc 出版, Ρ· 131 ;吳培熙、張留城編I 工業出版社,1 9 9 6,p. 311 ; 料科學與工程,1987年第5 程塑料應用,1 9 8 9年第2期 編著,“環氧樹脂”,化學 (1 9 9 9年)所述。一般認爲, 樹脂的作用,必須符合以下 溶解在未固化的樹脂體系中 生相分離,形成一定粒徑的 。相分離的控制會直接影響 有技術增韌熱固性樹脂時, ,對工藝控制的要求也彳艮高 分子結構中必須含有能與基 ,以使橡膠相和基體之間産 才能達到一定的增韌效果。 一般椽膠用量均較大,因此 強度的下降。概括起來,用 在4個主要問題,它們是: 的熱變形溫度和玻璃化溫度 進行增韌改性的時候,往往 變形溫度和玻璃化溫度下降 10 15 20 卜’聚合物共混改性,中國輕< 李甯生、孫載堅,高分子材 期第8-13頁;閻恒梅,工 第45-52頁;陳平、劉勝平 工業出版社,第126-138頁 要想使橡膠起到增韌熱固性 條件··( 1 )橡膠相要能很好地 ,並能在樹脂交聯過程中發 橡膠微區分散於基體樹脂中 橡膠相的粒徑。因此利用j見 對橡膠相的選擇有很大限制 ’操作比較複雜;(2 )橡膠的 體樹脂進行反應的活性基團 生化學鍵或有好的相容性, (3)要達到一定的增韌效果, 會導致熱固性樹脂耐熱性和 液體橡膠增韌熱固性樹脂存 (1)熱固性樹脂一般具有較高 ’當用玻璃化溫度低的橡膠 使改性後的熱固性樹脂的熱 报多,即製品的耐熱性降低 25 1302547 埶固性樹脂的強度也會降低。(2)對不飽和聚醋等 形 树脂增勒效果不明顯;⑻橡膠粒徑不穩定,微觀 拗i (:控制’導致製品性能不易重復;⑷當裂紋快速 二(如$行標準的懸臂樑衝搫試驗)時,I明顯增韌效 有效的營4 u ^ 7旨硪,其中敢 ,這》极1當屬具有芯殼結構的橡膠粒子增韌環氧樹 氧樹心靭方法可以使環氧樹脂的韌性提高,而保持 10 15 20 曰勺破璃化溫度不降低。但這、^ ^ ^ 效地解沐列仏 1 、徑、軔方法仍不能 時,對产^、快速增長(如進行標準的懸臂樑衝擊試廢 璃化心乳樹脂無明顯增韋刃效果的問冑。而且樹脂的 低,降低並不說明其熱變形溫度即耐熱溫度不 度。乂這種方法不能使環氧樹脂具有較高的熱變形 下降2外j爲了克服橡膠改性熱固性樹脂帶來的耐熱性 塑性椒2題,近年來人們開始研究用某些耐熱性高的熱 —^知(如·聚醚颯pES、聚醚亞胺樹脂Μ〗、末端具 5能基的聚芳醚砜PSF等)改性熱固性樹脂。這種體系 然有助於提高耐熱性,但增韌效果卻不是很理想。參 見例如吳培熙、張留城編著,聚合物共混改性,中國輕 工業出版社,1 9 96,P, 311 ; H. KISH I,Y-B. SHI,J. HUANG , A· F· YEE , JOURNAL OF MATERRIALS SCIENCE 32(1997) 76卜771 。 因此,如何在保持熱固性樹脂的耐熱性的同時,提 2 5 高樹脂的韌性成爲研究的一個難點和熱點。 【發明内容】 鑑於上述情況,本發明人在熱固性樹脂增韌領域進 行了廣泛深入的研究,結果在經過多次試驗後發現使用 全硫化粉末橡膠增韌熱固性樹脂具有很好的增韌效果, 9 1302547 並因此發現一種對熱固性樹脂普適的增韌方法。本發明 正是基於上述發現得以完成。 因此,本發明的一般目的是提供一種增韌熱固性樹 脂及其製備方法,該增韌樹脂包含熱固性樹脂及分散於 5 其中的橡膠粒子。 本發明的具體目的是提供一種利用全硫化粉末橡膠 增韌的熱固性樹脂。該增韌熱固性樹脂具有如下特點: (1 )橡膠粒子在熱固性樹脂基體中分散均勻,平均粒徑約 爲 2 0〜5 0 0 nm ;( 2 )橡膠粒子的大小固定,不隨橡膠用量 10 和固化工藝的改變而變化,增韋刃樹脂的性能穩定性好; (3)增韌效果明顯,特別是裂紋快速增長(如進行標準的 懸臂樑衝擊試驗)時的增韌效果非常明顯;(4)增韌的熱 固性樹脂具有優異的抗衝擊性能的同時也具有較高的強 度、模量和耐熱性,甚至在一定的增勃條件下,可使熱 15 固性樹脂的衝擊強度、玻璃化溫度和熱變形溫度同、寺得 到提高。 本發明的另一具體目的是提供一種製備全硫化粉末 橡膠增韌的熱固性樹脂的方法。該種增韌熱固性樹脂製 備過程中操作工藝簡單,成本低於現有技術中的製備方 20 法。 本發明一方面提供了 一種增韌熱固性樹脂,該樹脂 包含以下組分:熱固性樹脂和平均粒徑在2 0〜5 0 0 n m的橡 膠粒子,橡膠粒子爲均相結構,其凝膠含量爲 7 5 %重量 或更高,橡膠粒子總重量和熱固性樹脂總重量的比爲 25 (0· 5〜9 5 ) : 1 0 0 ° 本發明另一方面提供了 一種製備增韌熱固性樹脂的 方法,其特徵在於將所述的平均粒徑爲20〜50 Onm的橡膠 粒子與熱固性樹脂預聚物混合均勻,同時加入起固化作 用的助劑,之後固化而得所述的增韌熱固性樹脂,其中 10 1302547 橡膠粒子總重量與熱固性樹脂預聚物總重量之比爲 (0·5〜95) : 1〇〇 。 本發明的這些及其他目的、特徵和優點在結合 附圖閱讀完整個說明書後將變得更加清楚明瞭。 5 【實施方式】 本發明的增韌熱固性樹脂包含以下組分:熱固性樹脂 和平均粒徑在20〜5 0 0nm,優選爲30〜2 0 0nm,更優選爲 5 0〜1 5 0 nm的橡膠粒子。其中橡膠粒子爲均相結構,其凝 膠含量爲75 %重量或更高,優選爲85 %重量或更高。橡膠 1 0 粒子和樹脂的重量比爲(0 · 5〜9 5 ) : 1 〇 〇,優選爲(1〜4 5 ): 100,更優選爲(1〜30): 100。 在該增韌熱固性樹脂中,作爲連續相的熱固性樹脂 包括環氧樹脂、不飽和聚酯、酚醛樹脂、氨基樹脂、醇 酸樹脂以及有機矽等樹脂。優選爲環氧樹脂、不飽和聚 1 5 酯、酚醛樹脂。 在該增韌熱固性樹脂中,作爲分散相的橡膠粒子優選 爲均相結構的橡膠粒子,其最好爲凝膠含量75%重量或 更高。該種橡膠粒子可採用按照本發明人於2 0 0 0年9月 18曰提交的國際申請w〇〇 1 /40 35 6 (對應於美國專利 20 6 423760 )以及200 0年6月15日申請的中國專利 0 0 1 0 9 2 1 7 · 0所製備的全硫化粉末橡膠,包括以下全硫化 粉末橡膠的至少一種:全硫化粉末天然橡膠、全硫化粉 末丁苯橡膠、全硫化粉末羧基丁苯橡膠、全硫化粉末丁 腈橡膠、全硫化粉末緩基丁腈橡膠、全硫化粉末聚丁一 25 烯橡膠、全硫化粉末氯丁橡膠、全硫化粉末矽橡膠、全 硫化粉末丙烯酸酯類橡膠、全硫化粉末丁苯吡橡膠、全 琉化粉末異戊橡膠、全硫化粉末丁基橡膠、全硫化粉末 乙丙橡膠、全硫化粉末聚硫橡膠、全硫化粉末丙烯酸酯一 丁二烯橡膠、全硫化粉末聚氨酯或全硫化粉末氟橡膠。 11 1302547 該種全硫化粉末橡谬是指凝膠含量達60 %重量或更高, 優選爲7 5 %重量或更焉’乾燥後無需加隔離劑即可自由 流動的橡膠微粉。該粉末橡膠是通過對橡膠膠乳輻照交 聯使橡膠粒子粒徑固定而得的。 本發明的增韌熱固性樹脂的製備方法是:將所述的 平均粒徑爲20〜50〇nm的橡膠粒子與熱固性樹脂預聚物滿 合均勻,同時加入起固化作用的助劑或其他常用助劑, 10 15 20 25 之後固化而得所述的增韌熱固性樹脂。以上所述的橡膠 粒子與熱固性樹脂預聚物的混合按以下兩種方法之一進 行:a· —步混合:將橡膠粒子與熱固性樹脂預聚物按比 例直接混合;b ·兩步混合:將橡膠粒子與一部分熱固性 樹脂預聚物以(1〜1 0 〇 ) : 1 〇 〇的重量比進行預混,制得預 混料’再將預混料與剩餘的熱固性樹脂預聚物混合。預 混料中,橡膠粒子與熱固性樹脂預聚物的重量比優選爲 y ^ ϋ u ^ ·丄υ υ。無爾以一步法·兄 合或以兩步法混合,總之温人4 士 & σ物中橡膠粒子總重1與秀 固性樹脂預聚物總重量的番旦& & & , λ λ、 至π董里比應爲(0 · 5〜9 5 ) : 1 〇 〇, 選爲(1〜45):100,更傷邏 I ^ 優選爲(1〜3 0 ) : 1 0 0。本發明的今 法中,起固化作用的助劑& ^ J ^ 助劑,t括固化劑和/或固;、固性樹脂領域常用的此类 交聯助劑、引發劑等。Α、、曰A 凡匕括乂聯劑和/ g 甘〉Wj合方半 h 士 劑及其他常規助劑可在預混 / •宁起固化作用的j 時加入。 、加入,也可在第二步混4 π々π T诼膠粒子 ,更優選爲5〇~15〇nme該種^均粒.一丨无避爲3〇 橡膠粒子,其最好爲凝膠含量^杈子優選爲均相結 85%重量或更高的橡膠粒子。%重量或更高、優; 在製備本發明的增勒熱固性 括環氧樹脂、不飽和聚醋、心脂:’熱固性樹; 虱基樹脂、 12 1302547 樹脂以及有機矽等樹脂。優選爲環氧樹脂、不飽和聚酯 、酚醛樹脂。 本方法中橡膠粒子可採用按照本發明人於2 0 0 0年9 月18日提交的國際申請WO 01/40356 (對應於美國專利 5 6 4 2 3 7 6 0 )以及2 0 0 0年6月1 5日申請的中國專利 0 0 1 0 9 2 1 7. 0所製備的全硫化粉末橡膠,包括以下全硫化 粉末橡膠的至少一種:全硫化粉末天然橡膠、全硫化粉 末丁苯橡膠、全硫化粉末羧基丁苯橡膠、全硫化粉末丁 腈橡膠、全硫化粉末羧基丁腈橡膠、全硫化粉末聚丁二 10 烯橡膠、全硫化粉末氯丁橡膠、全硫化粉末矽橡膠、全 硫化粉末丙烯酸酯類橡膠、全硫化粉末丁苯吡橡膠、全 硫化粉末異戊橡膠、全硫化粉末丁基橡膠、全碳化粉末 乙丙橡膠、全硫化粉末聚硫橡膠、全硫化粉末丙烯酸酯-丁二烯橡膠、全硫化粉末聚氨酯或全硫化粉末氟橡膠。 1 5 該種全硫化粉末橡膠是指凝膠含量達6 0 %重量或更高, 優選爲75%重量或更高,乾燥後無需加隔離劑即可自由 流動的橡膠微粉。該粉末橡膠是通過將橡膠乳液輻照交 聯使橡膠粒子粒徑固定而得的。該種全硫化粉末橡膠容 易與各種熱固性樹脂混合。 20 在上述的製備過程中,熱固性樹脂預聚物的混料溫 度、固化(或交聯)條件(包括溫度、時間、起固化作用的 助劑等等)及使用的設備均爲熱固性樹脂通常加工中所用 的加工及固化(或交聯)設備。在此用到的起固化作用的 助劑及其用量也爲熱固性樹脂通用的助劑及其用量。此 25 外,根據加工需要,還可適量加入熱固性樹脂加工的常 規助劑,如固化助劑、交聯引發劑等。不同的熱固性樹 脂其通常加工、固化(交聯)的條件有所不同。例如對於 環氧樹脂,一般先將固化劑及其它組分與環氧樹脂預聚 物混合均句,混合方法一般採用三輥研磨機、攪拌機、 13 1302547 捏合機、單螺桿擠出機、雙螺桿擠出機、開煉機及密煉 機等常規設備進行混料,混料可在室溫下進行。然後對 混合物抽真空。再將混合物注入預熱了的模具中,在一 定的固化溫度及時間下固化而得到固化的環氧樹脂。常 5 用的固化劑可選自多元胺類(二亞乙基三胺DETA、二氨 基二苯砜DDS、雙氰胺DICY等)、酸酐類(苯二甲酸酐PA 、甲基四氫苯酐MeTHPA等)和聚 胺類聚合物。此外, 還可以加入固化促進劑如三乙醇胺等。對於不飽和聚酯 來說,其預聚物自身已包含有可聚合的單體如苯乙烯等 10 烯烴類單體,一般只需加入交聯引發劑如有機過氧化物 等。在將交聯引發劑及其它組分與不飽和聚酯預聚物混 合均勻後,不對混合物抽真空,而直接將混合物注入預 熱了的模具中,在一定的溫度及時間下固化。總之本發 明的方法中所涉及到的熱固性樹脂的加工固化方法均可 15 採用現有技術中的常規方法。 本發明的增韌熱固性樹脂,所含橡膠相粒徑小,且 粒徑均勻、穩定,增韌效果,特別是裂紋快速增長(如進 行標準的懸臂樑衝擊試驗)時的增韌效果非常明顯。增韌 的熱固性樹脂具有優異的抗衝擊性能及較高的強度、模 2 0 量和财熱性,在一定的增韋刃條件下,可使熱固性樹脂的 衝擊強度、玻璃化溫度和熱變形溫度同時得到提高。可 應用於廣泛的領域。本發明的增韌熱固性樹脂製備方法 操作工藝簡單,成本較現有技術低,適用於各種熱固性 樹脂的增韋刃。 25 實施例 下面結合實施例進一步描述本發明,本發明的範圍 不受這些實施例的限制。除非另有說明,以下實施例中 的所有份數均按重量計。 14 1302547 列 1 預混料的製備 將全硫化緩基丁腈粉末橡膠(在蘭化合成 其τ吐〜+丄 & Μ脂廠的讀 土丁腈乳液中,按羧基丁腈乳液幹膠重量的 w μ v 0^6加入父 7助劑三羥曱基丙烷三丙烯酸酯後,進行輻照硫化,輻 照劑量爲2. 5Mrad,經噴霧乾燥後得到,凝膜人旦 10 20 • 1^重置,平均粒徑約爲9〇nm)20份與1〇〇份環氧樹脂 貝祆物(無錫樹脂廠生産,牌號爲:E-44)混合,用三輥 機研磨三遍,製成全硫化羧基丁腈粉末裱膠與環氧 樹脂預聚物的預混料(關RT-1)。 增韌熱固性樹脂的製備 稱取24克環氧樹脂預聚物(同上)、環氧樹脂預聚物 ”橡膠粒子的預混料(NMRT-1)43· 2克、45克甲基四氫苯 酐(浙江嘉興東方化工廠)放到三口燒瓶中,在9〇它恒溫 f浴加熱下,攪拌混合3〇分鐘,加人〇9克三乙醇胺T 佳木斯石油化工廠),攪拌並抽真空5分鐘,然後把混合 物澆注到已經預熱到130°C的聚四氟乙烯模具中,在13〇 C下預固化1小時’冷卻脫模,在1丨〇下後固化1 6小 時’得製品,測試各種性能。試驗結果見表1。該樣品的 f射電鏡照片如第一圖,圖中陰影部分爲分散在熱固性 树月曰母體中的橡膠粒子,平均粒徑約爲g 〇 n m。 將環氧樹脂預聚物和的用量分別改爲48克 矛1 4 · 4克、其餘條件同實施例1,試驗結果見表1。 堂施复』 將環氧樹脂預聚物和NMRT-i的用量分別改爲36克 15 1302547 孝2 8. 8克’其餘條件同實施例丨,試驗結果見表卜 和^將%氧樹脂預聚物和NMRT-1的用量分別改爲12克 • 6克’其餘條件同實施例1,試驗結果見表1。 10 不加環氧樹脂預聚物 1 ) 7 2克、其餘條件同實施 ,只稱取上述預混料(NMRT-例1,試驗結果見表1。 i施例fi 預混料的製備 將全硫化羧基丁腌私 與100重量份環氧樹脂膠(同實施例1)10重量份 15輥研磨機研磨五遍,势成^物(同實施例D混合,用三 丁腈粉末橡膠的混合物“樹脂預聚物與全硫化羧基 增韌熱固性樹脂的製備 稱取 66 克 NMRT-2、45 * 1)放到三口燒瓶中,在9〇見甲基四氫苯酐(同實施例 20 30分鐘,加入〇· 3克三乙,,溫水浴加熱下,攪拌混合 真空5分鐘,然後把;…:、、f、、(同實施例”,攪拌並抽 聚四氟乙烯模具中,在13〇。先'主到已經預熱到UOt的 模,在not:下後固化16 、\下預胃固化1小時,冷卻脫 。試驗結果見表1。 捋’彳于製品,测試各種性能 25 實施例 將全硫化羧基丁勝粉. 膠(在蘭化膠乳研製中心的,改爲全硫化丁腈粉末; 幹…的,加入交聯助劑三經甲基丙烧三丙:二 16 1302547 L進行輻照硫,,輻照劑量爲2 5Mrad,經喷霧乾燥 ^ =到,凝膠含篁85.3%’平均粒徑爲i〇〇nm)其餘條件 Μ貫施例1,試驗結果見表iBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a toughening thermosetting resin and, more particularly, to a rubberizing knife resin and a method of producing the same. 5 [Prior Art] Thermosetting resins and thermoplastic resins constitute a combined system. Thermosetting resin before the manufacture or processing:: two-state or a soluble soluble substance, by heating, c is liquid 10 15 20 ultraviolet rays, radiation, etc.) can cause chemical changes and cross-linking, other methods ( Such as two-dimensional network structure resin. Thermosetting resin includes, not dazzle. Grease, spare and polyester, phenolic resin, amino resin, alkyd resin and organic antimony resin. Among them, epoxy resin and unsaturated polyester resin It is a representative of two thermosetting resins in the three thermosetting resins. Compared with thermoplastic resins, thermosetting resins have good heat resistance, high hardness and excellent electrical properties, and are widely used in industrial and civil applications. However, after curing of thermosetting resins, texture It is hard and brittle, has poor crack resistance and low toughness, and is limited in many applications. Therefore, how to improve the toughness of thermosetting resin and make its comprehensive physical and mechanical properties more excellent has become a direction that people have been studying for a long time. There are four main methods for improving the toughness of thermosetting resins in technology. They are: (1) Chemicals that improve the flexibility of the main chain. Sexual method; increase the molecular weight of the polys monomer' (3) reduce the crosslink density of the thermosetting resin; (4) add the booster. Among them, the method of adding the toughening agent is the most effective method for toughening the thermosetting resin. Invented by Me Garry and Willner in the 1960s, they found that liquid-terminated carboxylated nitrile rubber (CTBN) was mixed with an epoxy resin prepolymer to cure the liquid end under certain conditions. Weijiding nitrile rubber can significantly improve the toughness of epoxy resin. For decades, people have studied the molecular weight of CTBN, end group activity 25 1302547, nitrile content, interface bonding behavior of CTBN rubber and epoxy resin matrix, and types of curing agent. The effect of the amount, curing process, etc. on the CTBN toughened epoxy resin. In addition to the CTBN toughening epoxy resin, other carboxyl-terminated rubbers (terminal carboxyl polybutadiene CTB, carboxylated styrene butadiene rubber CTBS) were also carried out. , terminal carboxyl polyether (CTPE, etc.) and various terminal hydroxyl rubber (liquid end-based nitrile rubber HTBN, hydroxyl-terminated polybutadiene HTPB, etc.) toughen epoxy resin. For example, see the literature: CHARLES B. ARENDS Editor-in-Chief "Polymer TOUGHENING", published by MARCEL DEKKER, Inc., Ρ·131; Wu Peixi, Zhang Liucheng, I Industrial Press, 1 9 9 6, p. 311; Materials Science and Engineering, 1987, 5th Plastic Applications, Edited in the second issue of 1989, “Epoxy Resin”, Chemistry (1989). It is generally believed that the role of the resin must conform to the following phase separation in the uncured resin system. The formation of a certain particle size. The phase separation control will directly affect the technical toughening of the thermosetting resin, the process control requirements, the polymer structure must contain energy and base, so that the rubber phase and the matrix between the production Achieve a certain toughening effect. Generally, the amount of silicone rubber is large, so the strength is lowered. To sum it up, when used in four main problems, they are: When the heat distortion temperature and the glass transition temperature are toughened, the deformation temperature and the glass transition temperature tend to drop 10 15 20 卜 'Polymer blend modification, China Light < Li Ningsheng, Sun Zaijian, Polymer Materials, pp. 8-13; Qi Hengmei, Gongdi 45-52; Chen Ping, Liu Shengping Industrial Press, pp. 126-138 to make rubber toughen thermosetting conditions (1) The rubber phase should be excellent and the particle size of the rubber phase dispersed in the matrix resin during the resin cross-linking process. Therefore, the use of j sees the choice of the rubber phase is very limited 'operation is more complicated; (2) the rubber resin's reactive resin reacts with the active group or has good compatibility, (3) to achieve a certain degree of toughening The effect will result in the heat resistance of the thermosetting resin and the liquid rubber toughening thermosetting resin. (1) The thermosetting resin generally has a higher 'when the rubber having a lower glass transition temperature is used to heat the modified thermosetting resin, that is, the heat resistance of the product. Reduced strength 25 1302547 The strength of the tamping resin will also decrease. (2) The effect of the unsaturated resin is not obvious; (8) the rubber particle size is unstable, the microscopic 拗i (: control 'causes the product performance is not easy to repeat; (4) when the crack is fast two (such as the standard cantilever beam) When the rushing test), I significantly enhanced the effectiveness of the battalion 4 u ^ 7 硪, which dare, this "1" is a rubber particle toughening epoxy tree core toughness method with a core-shell structure can make the ring The toughness of the oxy-resin is improved, while the glass-breaking temperature of 10 15 20 曰 is not reduced. However, ^ ^ ^ effectively solves the problem of 仏 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The standard cantilever beam impact test waste glass core resin has no obvious effect of increasing the edge of the blade. Moreover, the low and low resin does not indicate that the heat distortion temperature is the heat resistance temperature. Resin has a high thermal deformation drop 2 outside j In order to overcome the heat-resistant plastic pepper caused by rubber-modified thermosetting resin 2, in recent years, people began to study some heat with high heat resistance (such as · polyether 飒pES, polyetherimide resin Μ, and terminal group with 5 energy base Ether sulfone PSF, etc.) modified thermosetting resin. This system helps to improve heat resistance, but the toughening effect is not very good. See, for example, Wu Peixi, Zhang Liucheng, Polymer Blending Modification, China Light Industry Press, 1 9 96, P, 311 ; H. KISH I, YB. SHI, J. HUANG, A· F· YEE , JOURNAL OF MATERRIALS SCIENCE 32 (1997) 76 771 . Therefore, how to maintain the heat resistance of the thermosetting resin In view of the above, the present inventors conducted extensive and intensive research in the field of toughening of thermosetting resins, and found that after using a plurality of tests, it was found that the use of the whole was intensively studied. Vulcanized powder rubber toughened thermosetting resin has a good toughening effect, 9 1302547 and thus found a universal toughening method for thermosetting resins. The present invention has been completed based on the above findings. Therefore, the general object of the present invention is to provide A toughening thermosetting resin comprising a thermosetting resin and rubber particles dispersed therein, and a preparation method thereof The object is to provide a thermosetting resin which is toughened by a fully vulcanized powder rubber. The toughening thermosetting resin has the following characteristics: (1) The rubber particles are uniformly dispersed in the thermosetting resin matrix, and the average particle diameter is about 20 to 500 nm. (2) The size of the rubber particles is fixed, does not change with the amount of rubber 10 and the curing process, and the performance stability of the Weiwei resin is good; (3) The toughening effect is obvious, especially the crack grows rapidly (such as the standard) The toughening effect of the cantilever beam impact test is very obvious; (4) the toughened thermosetting resin has excellent impact resistance and high strength, modulus and heat resistance, even in certain conditions Under the pressure, the impact strength, the glass transition temperature and the heat distortion temperature of the hot 15 curable resin can be improved. Another specific object of the present invention is to provide a process for preparing a fully vulcanized powder rubber toughened thermosetting resin. The process of the toughening thermosetting resin is simple in operation, and the cost is lower than that in the prior art. In one aspect, the present invention provides a toughening thermosetting resin comprising the following components: a thermosetting resin and rubber particles having an average particle diameter of 20 to 500 nm, and the rubber particles have a homogeneous structure and a gel content of 7 5% by weight or more, the ratio of the total weight of the rubber particles to the total weight of the thermosetting resin is 25 (0.5 5 to 9 5 ): 1 0 0 ° Another aspect of the present invention provides a method of preparing a toughened thermosetting resin, which The invention is characterized in that the rubber particles having an average particle diameter of 20 to 50 Onm are uniformly mixed with the thermosetting resin prepolymer, and a curing auxiliary agent is added, followed by curing to obtain the toughened thermosetting resin, wherein 10 1302547 The ratio of the total weight of the rubber particles to the total weight of the thermosetting resin prepolymer is (0·5 to 95): 1 〇〇. These and other objects, features and advantages of the present invention will become apparent from [Embodiment] The toughening thermosetting resin of the present invention comprises the following components: a thermosetting resin and a rubber having an average particle diameter of 20 to 50,000 nm, preferably 30 to 2,000 nm, more preferably 50 to 150 nm. particle. The rubber particles are in a homogeneous structure and have a gel content of 75% by weight or more, preferably 85% by weight or more. The weight ratio of the rubber 10 particles to the resin is (0·5 to 9 5 ) : 1 〇 〇, preferably (1 to 4 5 ): 100, more preferably (1 to 30): 100. In the toughening thermosetting resin, the thermosetting resin as a continuous phase includes an epoxy resin, an unsaturated polyester, a phenol resin, an amino resin, an alkyd resin, and a resin such as an organic hydrazine. Preferred are epoxy resins, unsaturated poly5 esters, and phenolic resins. In the toughening thermosetting resin, the rubber particles as the dispersed phase are preferably rubber particles having a homogeneous structure, and it is preferably a gel content of 75% by weight or more. The rubber particles can be applied according to the international application submitted by the inventor on September 18, 2000, corresponding to US Patent No. 20 6 423760 and June 15, 2000. The wholly-vulcanized powder rubber prepared by the Chinese patent 0 0 1 0 9 2 1 7 · 0 includes at least one of the following fully vulcanized powder rubbers: fully vulcanized powder natural rubber, fully vulcanized powder styrene-butadiene rubber, fully vulcanized powder carboxylated styrene-butadiene Rubber, fully vulcanized powder nitrile rubber, fully vulcanized powder slow-base nitrile rubber, fully vulcanized powder polybutylene 25 olefin rubber, fully vulcanized powder chloroprene rubber, fully vulcanized powder 矽 rubber, fully vulcanized powder acrylate rubber, all Vulcanized powder styrene-butadiene rubber, fully bismuth powder isoprene rubber, fully vulcanized powder butyl rubber, fully vulcanized powder ethylene propylene rubber, fully vulcanized powder polysulfide rubber, fully vulcanized powder acrylate-butadiene rubber, fully vulcanized powder Polyurethane or fully vulcanized powder fluoro rubber. 11 1302547 The fully vulcanized powdered rubber refers to a rubber micropowder having a gel content of 60% by weight or more, preferably 7.5 % by weight or more, which is free flowing without the need for a release agent after drying. The powder rubber is obtained by irradiating the rubber latex with radiation to fix the particle diameter of the rubber particles. The toughening thermosetting resin of the present invention is prepared by uniformly mixing the rubber particles having an average particle diameter of 20 to 50 〇 nm and a thermosetting resin prepolymer, and adding an auxiliary agent for curing or other common assistance. The toughening thermosetting resin is cured after 10 15 20 25 . The mixing of the rubber particles and the thermosetting resin prepolymer described above is carried out in one of two ways: a·-step mixing: mixing the rubber particles directly with the thermosetting resin prepolymer in proportion; b· two-step mixing: The rubber particles are premixed with a part of the thermosetting resin prepolymer in a weight ratio of (1 to 10 Torr): 1 Torr to prepare a premix, and the premix is mixed with the remaining thermosetting resin prepolymer. In the premix, the weight ratio of the rubber particles to the thermosetting resin prepolymer is preferably y ^ ϋ u ^ · 丄υ υ. No one is mixed with a one-step method or a two-step method. In general, the total weight of the rubber particles in the squirrel and the total weight of the fine resin prepolymer are dandan &&& λ λ, to π Tungri ratio should be (0 · 5~9 5 ) : 1 〇〇, selected as (1~45): 100, more damage logic I ^ is preferably (1~3 0 ) : 1 0 0 . In the present invention, the curing agent & ^ J ^ auxiliary agent, t curing agent and / or solid; such crosslinking aids, initiators and the like commonly used in the field of solid resins. Α, 曰A 匕 乂 乂 乂 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 及 及And adding, in the second step, mixing 4 π 々 π T 诼 rubber particles, more preferably 5 〇 15 15 〇 me 该 该 该 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The content of the scorpion is preferably a rubber particle which is homogeneously bonded to 85% by weight or more. % by weight or more, in the preparation of the thermosetting epoxy resin, unsaturated polyester, heart fat: 'thermosetting tree; sulfhydryl resin, 12 1302547 resin and organic hydrazine resin. Preferred are epoxy resins, unsaturated polyesters, and phenolic resins. The rubber particles in the method can be used in accordance with the international application WO 01/40356 filed by the present inventor on September 18, 2000 (corresponding to U.S. Patent 5 6 4 2 3 7 6 0) and 2000. The fully vulcanized powder rubber prepared by Chinese patent 0 0 1 0 9 2 1 7. 0 applied for on the 15th of the month includes at least one of the following fully vulcanized powdered rubber: fully vulcanized powder natural rubber, fully vulcanized powder styrene butadiene rubber, all Vulcanized powder carboxylated styrene butadiene rubber, fully vulcanized powdered nitrile rubber, fully vulcanized powder carboxylated nitrile rubber, fully vulcanized powder polybutadiene rubber, fully vulcanized powder neoprene, fully vulcanized powder niobium rubber, fully vulcanized powder acrylate Rubber, fully vulcanized powder styrene-butadiene rubber, fully vulcanized powder isoprene rubber, fully vulcanized powder butyl rubber, fully carbonized powder ethylene propylene rubber, fully vulcanized powder polysulfide rubber, fully vulcanized powder acrylate-butadiene rubber, Fully vulcanized powdered polyurethane or fully vulcanized powdered fluororubber. 1 5 The fully vulcanized powdered rubber refers to a rubber fine powder having a gel content of 60% by weight or more, preferably 75% by weight or more, which can be freely flowed without a release agent after drying. The powder rubber is obtained by crosslinking the rubber emulsion by irradiation to fix the particle diameter of the rubber particles. This fully vulcanized powdered rubber is easily mixed with various thermosetting resins. 20 In the above preparation process, the temperature of the thermosetting resin prepolymer, the curing (or crosslinking) conditions (including temperature, time, additives for curing, etc.) and the equipment used are all thermosetting resins. Processing and curing (or cross-linking) equipment used in the process. The curing aids and amounts thereof used herein are also general-purpose additives and amounts of thermosetting resins. In addition to the processing needs, it is also possible to add a suitable amount of conventional additives for thermosetting resin processing, such as curing assistants and crosslinking initiators. Different thermosetting resins have different conditions for processing and curing (crosslinking). For example, for epoxy resin, the curing agent and other components are generally mixed with the epoxy resin prepolymer. The mixing method generally uses a three-roll mill, a mixer, a 13 1302547 kneader, a single-screw extruder, and a twin-screw. Mixing equipment such as an extruder, an open mill, and an internal mixer can be carried out at room temperature. The mixture is then evacuated. The mixture is then poured into a preheated mold and cured at a curing temperature and time to obtain a cured epoxy resin. The curing agent for normal 5 may be selected from polyamines (diethylene triamine DETA, diaminodiphenyl sulfone DDS, dicyandiamide DICY, etc.), acid anhydrides (phthalic anhydride PA, methyltetrahydrophthalic anhydride MeTHPA) Etc) and polyamine polymers. Further, a curing accelerator such as triethanolamine or the like may also be added. For the unsaturated polyester, the prepolymer itself already contains a polymerizable monomer such as 10 olefin monomers such as styrene, and generally only a crosslinking initiator such as an organic peroxide is added. After the crosslinking initiator and other components are uniformly mixed with the unsaturated polyester prepolymer, the mixture is not vacuumed, and the mixture is directly poured into the preheated mold to be cured at a certain temperature and time. In summary, the method of processing and curing the thermosetting resin involved in the method of the present invention can be carried out by a conventional method in the prior art. The toughened thermosetting resin of the present invention has a small particle diameter, a uniform particle size, a stable, toughening effect, and particularly a toughening effect when the crack is rapidly increased (e.g., a standard Izod impact test). Toughened thermosetting resin has excellent impact resistance and high strength, modulus and heat, and can simultaneously improve the impact strength, glass transition temperature and heat distortion temperature of thermosetting resin under certain conditions of increasing edge. Improved. Can be applied to a wide range of fields. The preparation method of the toughened thermosetting resin of the invention is simple in operation process and low in cost compared with the prior art, and is suitable for increasing the edge of various thermosetting resins. The present invention is further described in the following examples, and the scope of the present invention is not limited by the examples. All parts in the following examples are by weight unless otherwise indicated. 14 1302547 Column 1 Preparation of Premixes Fully vulcanized ketone-butadiene-nitrile powder rubber (in the well-known nitrile emulsion of the sputum-+丄& Μ 厂 , , , 按 按 羧基The w μ v 0^6 is added to the parent 7 auxiliary trihydroxy decylpropane triacrylate, and then irradiated and vulcanized, the irradiation dose is 2. 5Mrad, obtained by spray drying, the coagulating film 10 20 • 1^ Reset, average particle size is about 9〇nm) 20 parts and 1〇〇 part epoxy resin shellfish (produced by Wuxi Resin Factory, grade: E-44), three times by three-roller Pre-mixture of fully vulcanized carboxylated nitrile powder tannin and epoxy resin prepolymer (off RT-1). Preparation of Toughened Thermosetting Resin 24 g of epoxy resin prepolymer (same as above), epoxy resin prepolymer" premix of rubber particles (NMRT-1) 43 · 2 g, 45 g of methyl tetrahydrophthalic anhydride (Zhejiang Jiaxing Dongfang Chemical Plant) Put it in a three-necked flask, stir it under a constant temperature f bath of 9 ,, stir for 3 minutes, add 9 g of triethanolamine T Jiamusi Petrochemical Plant), stir and vacuum for 5 minutes. Then, the mixture was poured into a Teflon mold which had been preheated to 130 ° C, pre-cured at 13 ° C for 1 hour, and then cooled and demolded, and cured at 1 Torr for 16 hours to obtain various products. The test results are shown in Table 1. The photomicrograph of the sample is shown in the first figure, and the shaded part is the rubber particles dispersed in the matrix of the thermosetting tree, the average particle size is about g 〇 nm. The amount of the prepolymer and the amount of the prepolymer were changed to 48 g spears 14.4 g, and the remaining conditions were the same as those in Example 1. The test results are shown in Table 1. The application of the epoxy resin prepolymer and the NMRT-i were changed separately. For 36 g 15 1302547 filial piety 2 8. 8 g 'the rest of the conditions are the same as the examples, the test knot See Table and Table 2. Change the amount of % oxygen resin prepolymer and NMRT-1 to 12 g • 6 g, respectively. The remaining conditions are the same as in Example 1. The test results are shown in Table 1. 10 No epoxy resin prepolymer 1) 7 2g, the rest of the conditions are the same, only the above premix is weighed (NMRT-case 1, the test results are shown in Table 1. i Example fi premix preparation of the fully vulcanized carboxylate and 100 parts by weight Epoxy resin glue (same as in Example 1) 10 parts by weight of a 15 roll mill was milled five times to form a mixture (mixed with Example D, using a mixture of tributyl nitrile powder rubber) "resin prepolymer and fully vulcanized carboxyl group Preparation of Tough Thermosetting Resin Weighed 66 g of NMRT-2, 45 * 1) and placed it in a three-necked flask. At 9 〇, see methyltetrahydrophthalic anhydride (the same as Example 20, 30 minutes, adding 〇·3 g of triethyl, warm) After heating in a water bath, the mixture was stirred and vacuumed for 5 minutes, then [...], f, (in the same example), stirred and pumped into a tetrafluoroethylene mold at 13 Torr. First, the main to have been preheated to UOt Mold, after not: post-cure 16 , \ pre-gastric curing for 1 hour, cooling off. Test results are shown in Table 1. 捋 '彳 products, test various Performance 25 Example will be fully vulcanized carboxylate Dingsheng powder. Glue (in the Lanhua latex development center, changed to fully vulcanized nitrile powder; dry ..., added cross-linking auxiliary three via methyl propyl triacetate: two 16 1302547 L is irradiated with sulfur, the irradiation dose is 25 Mrad, spray dried ^ = to, the gel contains 85.3% 'average particle size is i〇〇nm) and the remaining conditions are consistent with Example 1, the test results are shown in Table i

10 /取60克環氧樹脂預聚物(同實施例n、45克甲基 四虱笨酐(同實施例n放到三口燒瓶中,在9(TC恒溫水 :加熱下’授拌混合30分鐘,加入0.9克三乙醇胺(同 :施例授拌並抽真空5分鐘,$後把混合物洗注到 A預熱到1 3 0 C的聚四氟乙烯模具中,在i 3 〇下預固 化1小時,冷卻脫模,在11 〇 t下後固化J 6小時,得製 品’測試各種性能。試驗結果見表i。 2— 15 稱取60克環氧樹脂預聚物、7· 2克液體端羧基丁腈 橡膠(蘭化研究院生産,牌號爲:CTBN-2_16)、45克甲 基=氫苯野(同實施例1)放到三口燒瓶中,在9(rc恒溫 X /谷加熱下,擾拌合3 〇分鐘,加入〇 · g克三乙醇胺( 同實施例1 ),攪拌並抽真空5分鐘,然後把混合物澆注 到已經預熱到130C的聚四氟乙婦模具中,在下預 固化1小時,冷卻脫模,在11(rc下後固化16小時,得 製品,測試各種性能。試驗結果見表1。 比較例3 25 除液體端羧基丁腈橡膠用量改爲28.8克外,其餘條 件同比較例2。試驗結果見表1。 實施例8 預混料的製備 將全硫化緩基丁腈粉末橡膠(在蘭化合成樹脂廠的叛 30 基丁腈乳液中,按羧基丁腈乳液幹膠重量的3%加入交 17 1302547 基丁腈乳液中,按羧基丁腈乳液幹膠重量的3%加入交 聯助劑三羥甲基丙烷三丙烯酸S旨後,進行輻照硫化,輻 照劑量爲2. 5Mrad,經喷霧乾燥後得到,凝膠含量爲 9 6· 1%重量,平均粒徑爲90nm)10份與100份不飽和聚酯 5 預聚物(北京玻璃鋼研究設計院生産,牌號爲:UP-1 9 1) 混合,用三輥研磨機研磨三遍,製成不飽和聚酯預聚物 與全硫化敌基丁腈粉末橡膠的預混料(NUpT-i)。 增韌熱固性樹脂的製備 稱取60克不飽和聚酯預聚物(同上)、不飽和聚酯預 10 聚物與橡膠粒子預混料(N UP T - 1 ) 6 6克、3克過氧化甲乙 酮的5 0 %鄰本二甲酸一甲酯溶液(北京玻璃鋼研究設計院 生産)放到二口燒瓶中,在6 〇它恒溫水浴加熱下,擾拌 混合3 0分鐘,然後把混合物洗注到已經預熱到g 〇。。的 聚四氟乙烯模具中,在9 〇 X:下固化2小時,冷卻脫模, 15得製品’測試各種性能。試驗結果見表2。 此鲛例4 稱取120克不飽和聚酯預聚物(北京玻璃鋼研究設計 20 25 =生産,牌號爲:UP-191)、3克過氧化曱乙酮的5〇%鄰 =一曱酸一甲8旨溶液(北京玻璃鋼研究設計院生産)放到 丁 Γ、ίτ瓶中,在6 0 c恒溫水浴加熱下,攪拌混合3 0分鐘 1 4 ί 物,堯〉主到已經預熱到9 〇 °C的聚四氟乙烯模 具中,在9 0 C下固务9 1 + 久# u i U化2小時,冷卻脫模,得製品,測試 各種性能。試驗結果見表 18 30 1302547 表1 專案 橡膠與 樹脂重 量比 衝擊 強度 彎曲 強度 彎曲 模量 玻璃化 溫度* 熱變 形 溫度 單位 -- k J /m 2 Mpa GPa °C °C 實施例 1 12 : 100 22. 3 81· 4 2. 76 114. 2(D SC) 114.4 實施例 2 4:100 14. 3 97. 9 2.90 113. 2(D SC) 112.4 實施例 3 8:100 17. 1 88.1 2. 71 110· 6(D SC) 111.6 實施例 4 16 : 100 19. 4 81.9 2. 43 111.4(D SC) 114. 3 實施例 5 20 : 100 25. 4 76. 5 2. 43 109.6(D SC) 114.9 實施例 6 10:100 18. 3 87. 7 2. 76 10 5. 1(D SC) 110.0 實施例 7 12 : 100 16. 1 77. 6 2. 52 114·4(D SC) 108. 3 比較例 1 0 : 100 11.4 102 3.18 108.9(D SC) 113.2 比較例 2 12 : 100 15. 9 86. 6 2. 66 107.0(D SC) 107. 6 比較例 3 48 : 100 16. 2 23. 0 1. 07 9. 6(DMA) 91.6 測試 標準 GB18 43- 96 GB93 41- 88 GB93 41- 88 GB163 4-79 *:環氧樹脂相的玻璃化溫度 19 1302547 表2 專案 橡膠與 樹脂重 量比 衝擊 強度 彎曲 強度 彎曲 模量 玻璃 化 溫度* 熱變 形 溫度 單位 -- kJ/m2 Mpa GPa (DSC) °C °C 實施例 8 5 : 100 3. 6 76. 4 2. 51 41. 0 75. 0 比較例 4 0 : 10 0 2. 8 84. 6 2. 92 38. 3 70. 8 測試 標準 — GB18 GB934 GB93 —一 GB163 43- 1-88 41- 4-79 96 88 * :不飽和聚酯相的玻璃化溫度 【圖式簡單說明】 第一圖爲實施例1的樣品透射電鏡(TEM)照片,放大 5 倍數爲 29000倍。圖中尺規所示爲 500nm,顆粒狀陰影 部分爲分散在熱固性樹脂母體中的橡膠粒子,平均粒徑 約爲Θ 0 n m 〇 【圖式之主要元件代表符號簡單說明】 1010 / take 60 grams of epoxy resin prepolymer (same as the example n, 45 grams of methyl tetrahydroanhydride (same as the example n placed in a three-necked flask, at 9 (TC constant temperature water: heating 'mixed mix 30 Minutes, add 0.9 g of triethanolamine (same as: apply the mixture and vacuum for 5 minutes, then wash the mixture into A PTFE mold preheated to 130 ° C, pre-cured under i 3 〇 After 1 hour, the mold was cooled and solidified, and then solidified at 11 〇t for 6 hours to obtain various properties of the product. The test results are shown in Table i. 2-15 Weigh 60 g of epoxy resin prepolymer, 7.2 g of liquid The terminal carboxylated nitrile rubber (produced by Lanhua Research Institute, grade: CTBN-2_16), 45 g of methyl = hydrogen benzene field (same as in Example 1) was placed in a three-necked flask at 9 (rc constant temperature X / valley heating) Mix for 3 〇 minutes, add 〇·g g triethanolamine (same as in Example 1), stir and vacuum for 5 minutes, then pour the mixture into the PTFE mold that has been preheated to 130C. After curing for 1 hour, the mold was cooled and cooled, and cured at 11 (rc) for 16 hours to obtain a product, and various properties were tested. The test results are shown in Table 1. Comparative Example 3 25 The amount of the terminal carboxyl group nitrile rubber was changed to 28.8 g, and the other conditions were the same as those in the comparative example 2. The test results are shown in Table 1. Example 8 Preparation of the premix The fully vulcanized slow-butadiene nitrile powder rubber (in the Lanhua Synthetic Resin Factory) In the rebellious 30-butyronitrile emulsion, add 3% of the weight of the carboxylated nitrile emulsion dry glue to the 171302547 butyl nitrile emulsion, and add the cross-linking aid trimethylol according to 3% by weight of the carboxylated nitrile emulsion dry glue. After propane triacrylate S, the irradiation is vulcanized, the irradiation dose is 2. 5 Mrad, obtained by spray drying, the gel content is 9.6 wt%, the average particle diameter is 90 nm) 10 parts and 100 parts Saturated polyester 5 prepolymer (produced by Beijing FRP Research and Design Institute, grade: UP-1 9 1), mixed and ground three times with a three-roll mill to prepare unsaturated polyester prepolymer and fully sulfided base Premix of nitrile powder rubber (NUpT-i) Preparation of toughened thermosetting resin 60 g of unsaturated polyester prepolymer (supra), unsaturated polyester prepolymer and rubber particle premix (N UP T - 1 ) 6 6 g, 3 g of methyl ethyl ketone peroxide 50% o-formyl dicarboxylic acid monomethyl ester solution (Beijing It is placed in a two-necked flask, heated in a constant temperature water bath at 6 Torr, mixed for 30 minutes, and then the mixture is washed into a Teflon mold that has been preheated to g 〇. Curing at 9 〇X: for 2 hours, cooling and demoulding, 15 products were tested for various properties. The test results are shown in Table 2. This example 4 weighs 120 grams of unsaturated polyester prepolymer (Beijing FRP Research Design 20 25 = production, grade: UP-191), 3 grams of 〇 过 曱 的 的 〇 邻 曱 曱 曱 曱 曱 曱 旨 旨 旨 旨 旨 旨 旨 旨 旨 旨 ( ( ( ( ( ( ( ( 旨 旨 旨 旨 旨 旨 旨 旨In a constant temperature water bath heated to 60 ° C, stir and mix for 10 minutes 1 4 ί, 尧 〉 main to the PTFE mold that has been preheated to 9 〇 ° C, at 9 0 C for 9 1 + long # ui U 2 hours, cooling and demoulding, get products, test various performances. The test results are shown in Table 18. 30 1302547 Table 1 Specialized rubber to resin weight ratio Impact strength Bending strength Bending modulus Glass transition temperature * Heat distortion temperature unit -- k J /m 2 Mpa GPa °C °C Example 1 12 : 100 22 3 81· 4 2. 76 114. 2(D SC) 114.4 Example 2 4:100 14. 3 97. 9 2.90 113. 2(D SC) 112.4 Example 3 8:100 17. 1 88.1 2. 71 110· 6(D SC) 111.6 Example 4 16 : 100 19. 4 81.9 2. 43 111.4 (D SC) 114. 3 Example 5 20 : 100 25. 4 76. 5 2. 43 109.6 (D SC) 114.9 Example 6 10:100 18. 3 87. 7 2. 76 10 5. 1 (D SC) 110.0 Example 7 12: 100 16. 1 77. 6 2. 52 114·4 (D SC) 108. 3 Comparison Example 1 0 : 100 11.4 102 3.18 108.9 (D SC) 113.2 Comparative Example 2 12 : 100 15. 9 86. 6 2. 66 107.0 (D SC) 107. 6 Comparative Example 3 48 : 100 16. 2 23. 0 1 07 9. 6(DMA) 91.6 Test Standard GB18 43- 96 GB93 41- 88 GB93 41- 88 GB163 4-79 *: Glass transition temperature of epoxy resin phase 19 1302547 Table 2 Projectile rubber to resin weight ratio impact strength bending Strength flexural modulus glass transition temperature * heat distortion temperature Unit -- kJ/m2 Mpa GPa (DSC) °C °C Example 8 5 : 100 3. 6 76. 4 2. 51 41. 0 75. 0 Comparative Example 4 0 : 10 0 2. 8 84. 6 2 92 38. 3 70. 8 Test Standard — GB18 GB934 GB93 —1GB163 43- 1-88 41- 4-79 96 88 * : Glass transition temperature of unsaturated polyester phase [Simple description of the diagram] The first picture shows A sample transmission electron microscope (TEM) photograph of Example 1 was magnified 5 times to 29000 times. In the figure, the ruler shows 500 nm, and the grainy shaded portion is rubber particles dispersed in the matrix of the thermosetting resin, and the average particle diameter is about Θ 0 n m 〇 [Simplified description of the main components of the figure] 10

Claims (1)

1302547 拾、申請專利範圍 1 · 一種增勤熱固性樹脂,其特徵在於該增韌樹脂包含 以下組分:熱固性樹脂和平均粒徑在2 〇〜5 〇 〇ηιη的橡 膠粒子’橡膠粒子爲均相結構,其凝膠含量爲7 5 %重 量或更南’橡膠粒子總重量和熱固性樹脂總重量的 比爲(0.5〜95):100 。 2 ·如申請專利範圍第1項所述的增韌熱固性樹脂,其 特徵在於所述熱固性樹脂爲環氧樹脂、不飽和聚酯 、盼酸樹脂、氨基樹脂或有機矽。 3·如申請專利範圍第2項所述的增韌熱固性樹脂,其 特徵在於所述熱固性樹脂爲環氧樹脂、不飽和聚酯 或紛酸樹脂。 4 ·如申凊專利範圍第1項所述的增韌熱固性樹脂,其 特徵在於所述橡膠粒子的平均粒徑範圍爲3〇〜2〇〇nm 〇 5 ·如申请專利範圍第1項所述的增韌熱固性樹脂,其 特徵在於所述橡膠粒子的平均粒徑範圍爲5〇〜i5〇nm 6. 如申請專利範圍第1項所述的增韌熱固性樹脂,^ 特徵在於所述橡膠粒子總重量與熱固性樹脂總重量/ 的比爲(1〜45 ) : 1 0 0。 ~ 里 如申請專利範®第卜6項中任一項所述的增拿刀埶g 性樹脂,其特徵在於所述橡膠粒子爲全硫化粉末橡 膠。 如申請專利範圍第7項所述的增韌熱固性樹脂,』 特徵在於所述的全硫化粉末橡膠包括以下物質的至/ 少一種:全硫化粉末天然橡膠、全硫化粉末丁苯橡 21 8. 1302547 膠、全硫化粉末羧基丁苯橡膠、全硫化粉末丁腈橡 膠、全硫化粉末羧基丁腈橡膠、全硫化粉末聚丁二 烯橡膠、全硫化粉末氯丁橡膠、全硫化粉末矽橡膠 、全硫化粉末丙烯酸酯類橡膠、全硫化粉末丁苯吡 橡膠、全硫化粉末異戊橡膠、全硫化粉末丁基橡膠 、全硫化粉末乙丙橡膠、全硫化粉末聚硫橡膠、全 硫化粉末丙烯酸酯-丁二烯橡膠、全硫化粉末聚氨酯 或全硫化粉末氟橡膠。 9. 一種製備如申請專利範圍第1 -8項中任一項所述的 增韌熱固性樹脂的方法,其特徵在於將所述的平均 粒徑爲2 0〜5 0 0 nm的橡膠粒子與熱固性樹脂預聚物混 合均勻,同時加入起固化作用的助劑,之後固化而 得所述的增韌熱固性樹脂,其中橡膠粒子總重量與 熱固性樹脂預聚物總重量之比爲(0 . 5〜9 5 ) : 1 0 0。 10. 如申請專利範圍第9項所述的方法,其特徵在於所 述橡膠粒子與熱固性樹脂預聚物的混合通過將橡膠 粒子與熱固性樹脂預聚物按比例直接混合的一步法 進行。 11. 如申請專利範圍第9項所述的方法,其特徵在於所 述橡膠粒子與熱固性樹脂預聚物的混合通過將橡膠 粒子與一部分熱固性樹脂預聚物以(1〜1 〇 〇 ) : 1 〇 〇的 重量比進行預混,製得預混料,再將預混料與剩餘 的熱固性樹脂預聚物混合的兩步法進行。 12. 如申請專利範圍第11項所述的製備方法, 其特徵在於預混料中橡膠粒子與熱固性樹脂預 聚物的重量比爲(5〜50) : 1 00。 221302547 Pickup, Patent Application No. 1 · An enhanced thermosetting resin characterized in that the toughening resin comprises the following components: a thermosetting resin and rubber particles having an average particle diameter of 2 〇 5 5 〇〇 ηηη rubber particles are homogeneous structures The ratio of the total weight of the rubber particles to the total weight of the thermosetting resin is (0.5 to 95): 100. The toughening thermosetting resin according to claim 1, wherein the thermosetting resin is an epoxy resin, an unsaturated polyester, an acid-promoting resin, an amino resin or an organic hydrazine. 3. The toughening thermosetting resin according to claim 2, wherein the thermosetting resin is an epoxy resin, an unsaturated polyester or an acid resin. The toughening thermosetting resin according to claim 1, wherein the rubber particles have an average particle diameter ranging from 3 〇 to 2 〇〇 nm 〇 5 as described in claim 1 The toughened thermosetting resin is characterized in that the rubber particles have an average particle diameter ranging from 5 Å to 5 Å nm. 6. The toughened thermosetting resin according to claim 1, wherein the rubber particles are total The ratio of the weight to the total weight of the thermosetting resin is (1 to 45): 1 0 0. The squeegee g-resin according to any one of the preceding claims, wherein the rubber particles are fully vulcanized powder rubber. The toughened thermosetting resin according to claim 7 is characterized in that the fully vulcanized powder rubber comprises at least one of the following: a fully vulcanized powder natural rubber, a fully vulcanized powder styrene butadiene rubber 201 8. 1302547 Glue, fully vulcanized powder carboxylated styrene butadiene rubber, fully vulcanized powdered nitrile rubber, fully vulcanized powder carboxylated nitrile rubber, fully vulcanized powder polybutadiene rubber, fully vulcanized powder neoprene, fully vulcanized powder niobium rubber, fully vulcanized powder Acrylate rubber, fully vulcanized powder styrene-butadiene rubber, fully vulcanized powder isoprene rubber, fully vulcanized powder butyl rubber, fully vulcanized powder ethylene propylene rubber, fully vulcanized powder polysulfide rubber, fully vulcanized powder acrylate-butadiene Rubber, fully vulcanized powder polyurethane or fully vulcanized powder fluoro rubber. A method for producing a toughened thermosetting resin according to any one of claims 1 to 8, wherein the rubber particles having an average particle diameter of 20 to 50,000 nm and thermosetting properties are obtained. The resin prepolymer is uniformly mixed, and a curing agent is added, and then cured to obtain the toughened thermosetting resin, wherein the ratio of the total weight of the rubber particles to the total weight of the thermosetting resin prepolymer is (0. 5~9) 5) : 1 0 0. 10. The method according to claim 9, wherein the mixing of the rubber particles with the thermosetting resin prepolymer is carried out by a one-step method of directly mixing the rubber particles and the thermosetting resin prepolymer in proportion. 11. The method according to claim 9, wherein the rubber particles are mixed with the thermosetting resin prepolymer by (1 to 1 〇〇) the rubber particles and a part of the thermosetting resin prepolymer: 1 The weight ratio of rhodium is premixed to produce a premix, which is then carried out in a two-step process in which the premix is mixed with the remaining thermosetting resin prepolymer. 12. The preparation method according to claim 11, wherein the weight ratio of the rubber particles to the thermosetting resin prepolymer in the premix is (5 to 50): 1 00. twenty two
TW91133308A 2002-11-13 2002-11-13 Toughened thermosetting resin and preparation method thereof TW200407393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91133308A TW200407393A (en) 2002-11-13 2002-11-13 Toughened thermosetting resin and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91133308A TW200407393A (en) 2002-11-13 2002-11-13 Toughened thermosetting resin and preparation method thereof

Publications (2)

Publication Number Publication Date
TW200407393A TW200407393A (en) 2004-05-16
TWI302547B true TWI302547B (en) 2008-11-01

Family

ID=45070506

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91133308A TW200407393A (en) 2002-11-13 2002-11-13 Toughened thermosetting resin and preparation method thereof

Country Status (1)

Country Link
TW (1) TW200407393A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114888913B (en) * 2022-05-13 2023-07-18 安徽德润工艺品有限公司 Production process method for in-situ crosslinking self-toughening braided wicker

Also Published As

Publication number Publication date
TW200407393A (en) 2004-05-16

Similar Documents

Publication Publication Date Title
JP4889921B2 (en) Reinforced thermosetting resin composition and method for producing the same
CN102286189B (en) Method for preparing graphene oxide/epoxide resin nano composite material
JP2018500441A (en) Composition comprising multi-stage polymer, process for its preparation and use thereof
JP5789297B2 (en) Epoxy resin composition, cured product, and preparation method thereof
WO2001098395A1 (en) Silicone rubber in the form of a finely divided powder, method for the production and the use of the same
WO2001040356A1 (en) Full vulcanized powdered rubber with controllable particle diameter, preparing method and uses thereof
CN101050344A (en) Epoxy binder modified by micropowder of crosslinked rubber, and preparation method
CN1284776C (en) Benzoxazine intermediate containing N-allyl and composition and preparation thereof
CN102190858B (en) Epoxy resin material toughened by nanometer silica and preparation method thereof
CN1402752A (en) Full vulcanized powdered rubber with controllable particle diameter, preparing method thereof
CN103965590A (en) Synergistically toughened epoxy resin composite material and preparation method thereof
JP5045239B2 (en) Thermosetting resin composition, core-shell polymer, cured product
JP2018500439A (en) Polymer composition, process for its preparation, use thereof and composition comprising it
JP5205811B2 (en) Thermosetting resin composition, cured product
TWI302547B (en)
Strohmeier et al. Approaches toward in situ reinforcement of organic rubbers: Strategy and recent progress
JP2006052385A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
CN108047653A (en) A kind of Toughening Modification of Epoxy micro-sphere material
WO2024011919A1 (en) Preparation method for eva material and eva material
CN108164657A (en) A kind of shape memory epoxy foam
JP2006257391A (en) Epoxy resin composition for fiber-reinforced composite material
JP2012136713A (en) Core-shell polymer
JP4474796B2 (en) Method for preparing laminate for electrical wiring board and varnish composition for prepreg production
JP2012092356A (en) Core-shell polymer and cured product
JP2008291153A (en) Thermosetting resin composition, core-shell polymer and cured product

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent