JP4474796B2 - Method for preparing laminate for electrical wiring board and varnish composition for prepreg production - Google Patents

Method for preparing laminate for electrical wiring board and varnish composition for prepreg production Download PDF

Info

Publication number
JP4474796B2
JP4474796B2 JP2001146304A JP2001146304A JP4474796B2 JP 4474796 B2 JP4474796 B2 JP 4474796B2 JP 2001146304 A JP2001146304 A JP 2001146304A JP 2001146304 A JP2001146304 A JP 2001146304A JP 4474796 B2 JP4474796 B2 JP 4474796B2
Authority
JP
Japan
Prior art keywords
resin
core
thermosetting resin
preparation
polymer particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001146304A
Other languages
Japanese (ja)
Other versions
JP2002338875A (en
Inventor
真一 鴨志田
良幸 武田
健一 大堀
紀大 阿部
康之 平井
稔 垣谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001146304A priority Critical patent/JP4474796B2/en
Publication of JP2002338875A publication Critical patent/JP2002338875A/en
Application granted granted Critical
Publication of JP4474796B2 publication Critical patent/JP4474796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、電気配線板用積層板及びプリプレグを製造するのに用いられるワニス組成物に関する。さらに詳しくは、熱硬化性樹脂を含みこれを硬化させて製造される、耐衝撃性改善剤としてコア−シェル型ポリマー粒子を含有させた電気配線板用積層板及びプリプレグ製造用ワニス組成物に関する。
【0002】
【従来の技術】
一般にコア−シェル型ポリマー粒子は、ゴム状ポリマーから成る軟質コアがそのコアにグラフト結合した硬質ポリマーの“シェル”によって取り囲まれた二層構造の複合材料であり、近年、一次粒子径が0.01〜0.1μmのものが多く製造され、プラスチック構造材料などの耐衝撃性改善剤として普及しつつある。コア−シェル型ポリマー粒子を添加、分散させて、材料に効果的に耐衝撃性を付与するためには、コアに採用する材料選択と同時に、分散媒体となる材料に対してポリマー粒子が高い吸着性(アドヒージョン)を有していることが非常に重要である。耐衝撃性を向上させようとする材料に対して十分な混和性(ミシビリティ)を有するよう、ポリマー粒子に採用するシェルの材料は適切に選択されて、効果的な耐衝撃性付与が行われている。
【0003】
他方、電子素子及び回路配線を積層する電気配線板用積層板は、加工の際に打ち抜き加工を要し、このため耐衝撃強度、機械的応力緩和能力を有することが求められている。このような強度、能力を有することによって、加工時のクラック防止、層間剥離による白化の発生防止、進展抑制が望まれる材料である。このため、従来から非常に剛直で高強度、耐熱性、耐溶剤性にも優れる、熱硬化性樹脂から製造される積層板が一般に用いられている。このような積層板を形成している硬化済樹脂は、分子レベルで見れば、構成ポリマー鎖同士が架橋によって複雑に結び付いた三次元ネットワーク結合構造を有し、このため確かに非常に剛直で高強度であるが、反面この剛直な骨格がために、同時に瞬時的な耐衝撃性、クラックの初期発生に関して時に脆さをも露呈する材料である。
【0004】
従って、電気配線板用積層板にも、近年種々の分野で用いられてきている前記のごとくのコア−シェル型ポリマー粒子を添加し、その機械的強度、とりわけ耐衝撃性、クラック発生防止能、を高め、加工時十分に“タフ”な積層板材料を得ようとするニーズは依然高い。
【0005】
【発明が解決しようとする課題】
しかしながら、これまでの検討では、熱硬化性樹脂を硬化させて製造する積層板の場合、製造の過程で、添加したコア−シェル型ポリマー粒子が相互に融着、凝集を起こし、結果として不均一な分散状態を招いてしまい、十分な耐衝撃性を得ることが困難であった。
【0006】
本発明は、熱硬化性樹脂を硬化させて成る積層板乃至プリプレグを製造するためのワニス組成物において、ポリマー粒子の相互融着を抑制し、該粒子が一次粒子径で分散しているワニス組成物を調製する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、粘度が2000mPa・s以下である樹脂中に、有機溶剤の実質的不存在下かつ60℃以下の温度にて、ゴム状ポリマーから成るコア部を有するコア−シェル型ポリマー粒子を分散させて分散物を得、該分散物にさらに熱硬化性樹脂を添加することによって調製する、該熱硬化性樹脂を硬化させて成る電気配線板用積層板及びプリプレグ製造用ワニス組成物の調製方法である。
【0008】
前記分散の過程が60℃を越える温度、或いは有機溶剤の存在下で行われると、ポリマー粒子の融着、凝集を招き得るので、これらは避けなければならない。前記樹脂中へのコア−シェル型ポリマー粒子の易分散のため、前記樹脂は粘度2000mPa・s以下のものを使用する。これを超える粘度の樹脂を使用すると撹拌さえ困難な場合もある。特に液状のものが望ましく、最終的に得られる積層板及びプリプレグの特性をも考え合わせると、液状のビスフェノールF型エポキシ樹脂が好適である。
【0009】
前記シェルは、ポリメチルメタクリレート、ポリ(メチルメタクリレート−スチレン)、ポリ(メチルメタクリレート−グリシジルメタクリレート)或いはこれらの混合物から成るポリマーより構成されることができる。
【0010】
前記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂或いはこれらの混合物を用いることができる。特に、ジヒドロベンゾオキサジン樹脂から成ることが望ましい。前記コア部のゴム状ポリマーは、スチレン−ブタジエンゴム、水素化スチレン−ブタジエンゴム、アクリルゴム或いはこれらの混合物から構成されることができる。さらに、前記コア−シェル型ポリマー粒子の平均粒径は0.01〜0.1μmであることが望ましい。
【0011】
熱硬化性樹脂を添加した後又は同時に、さらに有機溶媒を添加してワニスとすることができる。
【0012】
既に述べたように耐衝撃性を付与させようとする材料と耐衝撃性付与剤として添加するコア−シェル型ポリマー粒子のシェル材料とは相互に高い混和性を有する組み合わせであることが望ましいとされる。本発明者らは、従来の熱硬化性樹脂から製造される電気配線板用積層板においては、実はこの選択が逆に合い矛盾する問題を提起する形になっていたと認識している。
【0013】
安定した分散状態を達成したワニスを得るための溶媒として、さらには樹脂を硬化させて積層板を得る過程で硬化剤、硬化促進剤として、やはり該熱硬化性樹脂と混和性すなわち親和性の高い有機溶剤を種々介在させなければならないが、このことはこのような必須の溶剤が同じようにシェル材料に対しても親和性良好であることを意味する。すなわち、従来の手法の範囲内では、親和性が良いため有機溶剤分子は容易に薄膜層であるシェル層に侵入し得、内部の軟質コア層を侵し、結果として、添加したコア−シェル型ポリマー粒子が相互に融着、不均一分散を起こし易い状況を招く。このようなことで、従来の積層板においては、熱硬化性樹脂を硬化させて得る積層板の製法と、コア−シェル型ポリマー粒子配合による耐衝撃性付与とが十分両立し得ていなかったと理解される。
【0014】
本発明では、コア−シェル型ポリマー粒子を有機溶剤の不存在下でまず樹脂中、望ましくは液状の樹脂中に添加し、この混合物の分散状態を達成しておく。この分散体を用いてワニスの調製、硬化反応の進行を行っていく。前記樹脂中でのポリマー粒子の分散過程が既に行われているのであれば、その後のワニス調製、硬化反応において有機溶剤の添加があっても良い。最初の樹脂中へのコア−シェル型ポリマー粒子の分散処理によって、該ポリマー粒子の表面すなわちシェル部外面は分散媒である樹脂によって“濡れ”、吸着を受け、このためこの後は有機溶剤のシェルポリマー分子への直接の攻撃は妨げられ、材料に耐衝撃性を付与する中央のコア部は保護される形となる。他方、外周のシェル部の存在によって、樹脂とコア−シェル型ポリマー粒子とが一体となって、その後の分散過程、硬化反応に付される。なお、このような作用実現の観点からは、最初に用いる前記樹脂とシェルポリマー材料とは、やはり混和性が高い組み合わせであることがより望ましいと言える。
【0015】
本発明の方法を用いれば、ワニス組成物中に於いてコア−シェル型ポリマー相互の融着など極力防止され、その分散性を格段に向上させることが出来る。従って、本発明の方法によって調製された組成物を用いて積層板を製造すれば、コア−シェル型ポリマーの適切な材料、添加量の設計、選択のもとで、効果的な耐衝撃性付与が期待される。
【0016】
【発明の実施の形態】
本発明に用いるコア−シェル型ポリマー粒子は、好適には、コア部がスチレン−ブタジエンゴム、水素化スチレン−ブタジエンゴム、アクリルゴム等からなり、シェル部が熱硬化性樹脂への分散性のよいポリメチルメタクリレート、ポリ(メチルメタクリレート−スチレン)、ポリ(メチルメタクリレート−グリシジルメタクリレート)等から構成された2層構造の粒子で、その一次平均粒子径は、約0.01μm〜0.1μmの微少粒子となっているものである。
【0017】
本発明で使用するワニス組成物を構成する熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂等の熱硬化性樹脂が挙がられ、これらの熱硬化性樹脂を2種類以上適宜組み合わせて使用することもできる。特に、剛直な分子構造を有し高弾性な樹脂系において、可撓性、靭性の向上による打抜加工性改善効果は大きく発揮される。熱硬化性樹脂としてさらに具体的には、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、N,N,N’,N’−テトラグリシジル−p−フェニレンジアミン、2,4,6−トリグリシジルイソシアヌレート、レゾール型フェノール樹脂、ジヒドロベンゾオキサジン樹脂、ジアリルフタレート樹脂などが好適である。これらの熱硬化性樹脂の中でも、芳香族成分が多くかつ窒素含有化合物であるため難燃性に優れ、更に低吸水であるため吸湿耐熱性に優れた特性を有しながらも、硬く脆い性質のために従来法の範囲では難点のある、下記化学式で表わされるジヒドロベンゾオキサジン樹脂を用いた場合に、最も打抜加工性改善の効果が大きい。本発明の効果をより顕著に得るためには、前記ジヒドロベンゾオキサジン樹脂の含有量は、樹脂組成物全体の25重量%以上65重量%以下であることが望ましい。ジヒドロベンゾオキサジン樹脂が25重量%未満であると、難燃性、吸湿耐熱性という優れた特性が明瞭に現れにくく、65重量%を超える場合には、硬く脆い性質が顕著となり、打抜加工性が悪化することから好ましくない。なお、これら熱硬化性樹脂は、単独で又は適宜2種類以上組み合わせて使用される。
【0018】
【化1】

Figure 0004474796
(R1,R2は特に構造を規定しない有機基、nは2以上の正の整数)
本発明のワニス組成物には、さらに必要な硬化剤及び硬化促進剤を添加して硬化反応を進行させることができる。硬化剤及び硬化促進剤としては、それぞれの熱硬化性樹脂について公知の硬化剤及び、硬化促進剤を使用することができ、格別制限はない。また、本発明のワニス組成物には、水酸化アルミニウム、水酸化マグネシウム等の無機水和物、アルミナ、シリカ、ガラス粉等の汎用無機充填剤等を目的に応じて使用可能である。
【0019】
【実施例】
〔実施例1〕
(1)分散用の樹脂として、液状ビスフェノールF型エポキシ樹脂のYDF−170(東都化成社製、エポキシ当量169)10重量部に、コア−シェル型ポリマー粒子として、スチレン−ブタジエンゴム系コア−シェル型ゴムのパラロイドEXL−2655(呉羽化学工業社製)を3重量部を秤量し、添加し、その混合物を50℃まで昇温し、4時間撹拌、分散した。
【0020】
(2)ビスフェノールF−アニリン型ジヒドロベンゾオキサジン樹脂(樹脂分65%のメチルエチルケトン溶液、ビスフェノールF100重量部、37%ホルマリン162重量部、メチルエチルケトン100重量部を混合し、ここへアニリン93重量部を1時間で添加し、80℃に昇温して7時間反応させ、これを濃縮脱水して得たもの)を固形分で43重量部を秤量し、(1)で得た分散体に添加し、さらに撹拌した。
【0021】
(3)メラミン変性フェノールノボラック樹脂のLA−1356(大日本インキ化学工業社製、樹脂分60%のメチルエチルケトン溶液、窒素含有率19%)を固形分で20重量部を秤量し、(2)で得た分散体にさらに添加し、撹拌した。
【0022】
(4)フェノールノボラック型エポキシ樹脂のDEN438(ダウ・ケミカル社製、樹脂分65%のメチルエチルケトン溶液、エポキシ当量180)を固形分で24重量部を秤量し、(3)で得た分散体にさらに添加し、撹拌した。
【0023】
(5)上記(4)で得られたワニス組成物中のコア−シェル型ポリマー粒子の分散状態を、実体顕微鏡にて観察した。観察の評価結果を表1に示した。
【0024】
〔実施例2〕
実施例1で用いたコア−シェル型ポリマー粒子の代わりに、コア部がアクリルゴム系のポリマーであるコア−シェル型ポリマー粒子:スタフィロイドAC−3355(武田薬品工業社製)に置き換え、その他は実施例1と同一の手順を経て、対応する分散体を得た。分散状態観察の評価結果を表1に示した。
【0025】
〔比較例1〕
実施例1の段階(1)において行った50℃への昇温、コア−シェル型ポリマー粒子の添加、撹拌、分散を一切行わず、代わりに、実施例1の段階(4)の直後に同一量のコア−シェル型ポリマー粒子の添加を行い、混合物を50℃まで昇温し、4時間撹拌、分散した以外は、実施例1と同一の手順を経て、対応する分散体を得た。
【0026】
〔比較例2〕
実施例1の段階(1)で用いた分散用の樹脂の代わりに、フェノールノボラック型エポキシ樹脂:DEN438(ダウ・ケミカル社製、樹脂分65%のメチルエチルケトン溶液、エポキシ当量180)10重量部を使用した以外は、実施例1と同一の手順を経て、対応する分散体を得た。
【0027】
〔比較例3〕
実施例1の段階(1)で用いた分散用の樹脂の代わりに、ビスフェノールA型エポキシ樹脂:DER−661L(ダウケミカル社製)を使用し、なおかつ50℃ではなく80℃に加温した以外は、実施例1と同一の手順を経て、対応する分散体を得た。
【0028】
以上の各実施例、比較例で得られた分散体を用いて積層板を製造し、各々について耐衝撃性試験並びに打抜加工性試験を行った。結果を表1中に示す。
【0029】
耐衝撃性試験
厚さ0.8mmの全面エッチング積層板を試料とし、重量200gの鉄球を100mmの高さから試料に落下させ、裏面に発生したクラックの直径により評価した。
【0030】
打抜加工性試験
厚さ1.6mmの全面エッチング積層板を試料とし、幅径1mmのスリットを有する打抜き金型で80トン油圧プレスによりノックアウト圧88.2KN、ホルダー圧181.3KNで打抜き、スリット周りに生じた白化量をスリット端部からの長さで評価した。
【0031】
【表1】
Figure 0004474796
【0032】
【発明の効果】
本発明の方法によれば、熱硬化性樹脂を硬化させて得る電気配線用積層板乃至プリプレグ製造に用いるワニス組成物中にて、添加したコア−シェル型ポリマー粒子相互の融着、不均一分散が効果的に回避でき、一次粒子状態での分散状態が可能となる。結果として、本発明によるワニス組成物を用いれば、耐衝撃性、打抜き加工性が顕著に優れた電気配線板用積層板を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a varnish composition used to produce a laminate for an electrical wiring board and a prepreg. More specifically, the present invention relates to a laminate for an electric wiring board and a varnish composition for producing a prepreg, which contains a thermosetting resin and is produced by curing the resin and contains core-shell type polymer particles as an impact resistance improver.
[0002]
[Prior art]
In general, a core-shell type polymer particle is a composite material having a two-layer structure in which a soft core composed of a rubber-like polymer is surrounded by a “shell” of a hard polymer grafted to the core. Many products having a thickness of 01 to 0.1 μm are manufactured and are becoming popular as impact resistance improvers for plastic structural materials and the like. In order to add and disperse the core-shell type polymer particles and effectively impart the impact resistance to the material, at the same time as selecting the material to be used for the core, the polymer particles are highly adsorbed to the material as the dispersion medium. It is very important to have sex. In order to have sufficient miscibility with the material to be improved in impact resistance, the shell material used for the polymer particles is appropriately selected to provide effective impact resistance. Yes.
[0003]
On the other hand, a laminate for an electric wiring board that laminates electronic elements and circuit wiring requires punching during processing, and is therefore required to have impact resistance strength and mechanical stress relaxation ability. By having such strength and ability, the material is desired to prevent cracking during processing, prevent whitening due to delamination, and suppress progress. For this reason, a laminate made from a thermosetting resin, which is very rigid and has high strength, heat resistance and solvent resistance, has been generally used. The cured resin forming such a laminate has a three-dimensional network bond structure in which the constituent polymer chains are intricately linked by cross-linking when viewed at the molecular level. Although it is strong, on the other hand, because of its rigid skeleton, it is a material that at the same time exhibits instantaneous impact resistance and sometimes brittleness regarding the initial generation of cracks.
[0004]
Therefore, the core-shell type polymer particles as described above, which have been used in various fields in recent years, are also added to the laminate for electrical wiring boards, and its mechanical strength, especially impact resistance, crack generation prevention ability, There is still a strong need to obtain a laminate material that is sufficiently tough during processing.
[0005]
[Problems to be solved by the invention]
However, in the study so far, in the case of a laminate produced by curing a thermosetting resin, the added core-shell type polymer particles are mutually fused and aggregated during the production process, resulting in non-uniformity. It was difficult to obtain sufficient impact resistance.
[0006]
The present invention relates to a varnish composition for producing a laminate or a prepreg obtained by curing a thermosetting resin, wherein the fusion of polymer particles is suppressed and the particles are dispersed with a primary particle size. It aims at providing the method of preparing a thing.
[0007]
[Means for Solving the Problems]
The present invention disperses core-shell type polymer particles having a core portion made of a rubber-like polymer in a resin having a viscosity of 2000 mPa · s or less in the substantial absence of an organic solvent and at a temperature of 60 ° C. or less. To obtain a dispersion, and further by adding a thermosetting resin to the dispersion, and to prepare a laminate for an electric wiring board obtained by curing the thermosetting resin and a varnish composition for producing a prepreg It is.
[0008]
If the dispersion process is carried out at a temperature exceeding 60 ° C. or in the presence of an organic solvent, the polymer particles may be fused and agglomerated, which must be avoided. In order to easily disperse the core-shell type polymer particles in the resin, the resin having a viscosity of 2000 mPa · s or less is used. If a resin with a viscosity exceeding this is used, even stirring may be difficult. In particular, a liquid one is desirable, and a liquid bisphenol F-type epoxy resin is suitable considering the characteristics of the finally obtained laminate and prepreg.
[0009]
The shell may be composed of a polymer composed of polymethyl methacrylate, poly (methyl methacrylate-styrene), poly (methyl methacrylate-glycidyl methacrylate), or a mixture thereof.
[0010]
As the thermosetting resin, an epoxy resin, a phenol resin, a polyimide resin, or a mixture thereof can be used. In particular, it is desirable to consist of dihydrobenzoxazine resin. The rubber-like polymer of the core part may be composed of styrene-butadiene rubber, hydrogenated styrene-butadiene rubber, acrylic rubber, or a mixture thereof. Furthermore, the average particle diameter of the core-shell type polymer particles is preferably 0.01 to 0.1 μm.
[0011]
After adding the thermosetting resin or simultaneously, an organic solvent can be further added to form a varnish.
[0012]
As described above, it is desirable that the material to be imparted with impact resistance and the shell material of the core-shell type polymer particles to be added as the impact imparting agent should be a combination having high miscibility with each other. The The inventors of the present invention recognize that, in the conventional laminated board for electric wiring boards manufactured from thermosetting resin, this selection is contrary to each other and raises a contradictory problem.
[0013]
As a solvent for obtaining a varnish that has achieved a stable dispersion state, and also as a curing agent and a curing accelerator in the process of obtaining a laminate by curing the resin, it is also highly miscible with the thermosetting resin, that is, has a high affinity. Various organic solvents must be interposed, which means that such essential solvents have good affinity for the shell material as well. That is, within the scope of the conventional method, since the affinity is good, the organic solvent molecules can easily penetrate into the shell layer, which is a thin film layer, erodes the internal soft core layer, and as a result, the added core-shell type polymer. This leads to a situation where the particles are likely to be fused and non-uniformly dispersed. Under such circumstances, in conventional laminates, it was understood that the method of producing a laminate obtained by curing a thermosetting resin and imparting impact resistance by blending core-shell type polymer particles could not be sufficiently compatible. Is done.
[0014]
In the present invention, the core-shell type polymer particles are first added to a resin, preferably a liquid resin, in the absence of an organic solvent to achieve a dispersed state of the mixture. Using this dispersion, the varnish is prepared and the curing reaction proceeds. If the dispersion process of the polymer particles in the resin has already been performed, an organic solvent may be added in the subsequent varnish preparation and curing reaction. By the dispersion treatment of the core-shell type polymer particles in the first resin, the surface of the polymer particles, that is, the outer surface of the shell portion is “wetted” and adsorbed by the resin as the dispersion medium. Direct attack on the polymer molecules is prevented and the central core that imparts impact resistance to the material is protected. On the other hand, due to the presence of the outer shell portion, the resin and the core-shell type polymer particles are integrated and subjected to the subsequent dispersion process and curing reaction. From the viewpoint of realizing such an action, it can be said that the resin and the shell polymer material to be used first are preferably a combination having high miscibility.
[0015]
If the method of the present invention is used, in the varnish composition, fusion between core-shell type polymers is prevented as much as possible, and the dispersibility can be remarkably improved. Therefore, if a laminate is manufactured using the composition prepared by the method of the present invention, effective impact resistance can be imparted based on the design and selection of appropriate materials and addition amounts of the core-shell type polymer. There is expected.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The core-shell type polymer particles used in the present invention preferably have a core portion made of styrene-butadiene rubber, hydrogenated styrene-butadiene rubber, acrylic rubber or the like, and the shell portion has good dispersibility in a thermosetting resin. Particles with a two-layer structure composed of polymethyl methacrylate, poly (methyl methacrylate-styrene), poly (methyl methacrylate-glycidyl methacrylate), etc., and have a primary average particle size of about 0.01 μm to 0.1 μm. It is what has become.
[0017]
Examples of the thermosetting resin constituting the varnish composition used in the present invention include thermosetting resins such as epoxy resins, phenol resins, and polyimide resins, and two or more of these thermosetting resins are appropriately combined. Can also be used. In particular, in a resin system having a rigid molecular structure and high elasticity, the effect of improving punchability by improving flexibility and toughness is greatly exhibited. More specifically, as the thermosetting resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, N, N, N ′, N′-tetraglycidyl-p-phenylenediamine, 2,4,6-triglycidyl isocyanate Nurate, resol type phenol resin, dihydrobenzoxazine resin, diallyl phthalate resin, and the like are preferable. Among these thermosetting resins, there are many aromatic components and nitrogen-containing compounds, so it has excellent flame retardancy, and since it has low water absorption, it has excellent moisture absorption heat resistance, but it is hard and brittle. Therefore, when a dihydrobenzoxazine resin represented by the following chemical formula, which is difficult in the range of the conventional method, is used, the effect of improving the punching workability is the greatest. In order to obtain the effects of the present invention more remarkably, the content of the dihydrobenzoxazine resin is desirably 25% by weight or more and 65% by weight or less of the entire resin composition. When the dihydrobenzoxazine resin is less than 25% by weight, excellent properties such as flame retardancy and hygroscopic heat resistance are not readily apparent. When the dihydrobenzoxazine resin exceeds 65% by weight, hard and brittle properties become prominent, and punching processability is remarkable. Is not preferable because it deteriorates. In addition, these thermosetting resins are used individually or in combination of 2 or more types as appropriate.
[0018]
[Chemical 1]
Figure 0004474796
(R 1 and R 2 are organic groups that do not particularly define the structure, and n is a positive integer of 2 or more)
To the varnish composition of the present invention, necessary curing agents and curing accelerators can be further added to advance the curing reaction. As a hardening | curing agent and a hardening accelerator, a well-known hardening | curing agent and a hardening accelerator can be used about each thermosetting resin, and there is no special restriction | limiting. The varnish composition of the present invention can use inorganic hydrates such as aluminum hydroxide and magnesium hydroxide, general-purpose inorganic fillers such as alumina, silica, and glass powder according to the purpose.
[0019]
【Example】
[Example 1]
(1) As dispersion resin, 10 parts by weight of liquid bisphenol F type epoxy resin YDF-170 (manufactured by Toto Kasei Co., Ltd., epoxy equivalent 169), as core-shell type polymer particles, styrene-butadiene rubber-based core-shell 3 parts by weight of paraloid EXL-2655 (manufactured by Kureha Chemical Industry Co., Ltd.), a mold rubber, was weighed and added, and the mixture was heated to 50 ° C. and stirred and dispersed for 4 hours.
[0020]
(2) Bisphenol F-aniline type dihydrobenzoxazine resin (Methyl ethyl ketone solution with 65% resin content, 100 parts by weight of bisphenol F, 162 parts by weight of 37% formalin and 100 parts by weight of methyl ethyl ketone were mixed, and 93 parts by weight of aniline was added thereto for 1 hour. Was added to the dispersion obtained in (1), and was added to the dispersion obtained in (1). Stir.
[0021]
(3) Weighed 20 parts by weight of solid content of LA-1356 (manufactured by Dainippon Ink & Chemicals, Inc., methyl ethyl ketone solution with a resin content of 60%, nitrogen content 19%) of melamine-modified phenol novolac resin, Further added to the resulting dispersion and stirred.
[0022]
(4) Phenol novolac epoxy resin DEN438 (manufactured by Dow Chemical Co., Ltd., methyl ethyl ketone solution with a resin content of 65%, epoxy equivalent 180) was weighed in 24 parts by weight in solid content, and the dispersion obtained in (3) was further added. Added and stirred.
[0023]
(5) The dispersion state of the core-shell type polymer particles in the varnish composition obtained in the above (4) was observed with a stereomicroscope. The evaluation results of the observation are shown in Table 1.
[0024]
[Example 2]
Instead of the core-shell type polymer particles used in Example 1, the core part is replaced with core-shell type polymer particles whose core part is an acrylic rubber-based polymer: Staphyloid AC-3355 (manufactured by Takeda Pharmaceutical Company Limited). The corresponding dispersion was obtained through the same procedure as in Example 1. The evaluation results of the dispersion state observation are shown in Table 1.
[0025]
[Comparative Example 1]
No temperature increase to 50 ° C., addition of core-shell type polymer particles, stirring and dispersion performed in step (1) of Example 1 were performed, but instead, the same immediately after step (4) of Example 1 An amount of core-shell polymer particles was added, the mixture was heated to 50 ° C., stirred and dispersed for 4 hours, and the corresponding dispersion was obtained through the same procedure as in Example 1.
[0026]
[Comparative Example 2]
Instead of the dispersing resin used in step (1) of Example 1, 10 parts by weight of phenol novolac type epoxy resin: DEN438 (manufactured by Dow Chemical Co., Ltd., methyl ethyl ketone solution with a resin content of 65%, epoxy equivalent 180) A corresponding dispersion was obtained through the same procedure as in Example 1 except that.
[0027]
[Comparative Example 3]
A bisphenol A type epoxy resin: DER-661L (manufactured by Dow Chemical Co.) was used in place of the dispersing resin used in the step (1) of Example 1, and it was heated to 80 ° C. instead of 50 ° C. Passed through the same procedure as Example 1 to obtain the corresponding dispersion.
[0028]
Laminates were produced using the dispersions obtained in the above Examples and Comparative Examples, and impact resistance tests and punching workability tests were performed on each. The results are shown in Table 1.
[0029]
Impact resistance test A 0.8 mm-thick full-surface etched laminate was used as a sample, and an iron ball having a weight of 200 g was dropped onto the sample from a height of 100 mm, and evaluation was made based on the diameter of cracks generated on the back surface.
[0030]
Punching workability test A 1.6mm-thick whole-etched laminated plate is used as a sample, a punching die having a slit with a width of 1mm, and a knockout pressure of 88.2KN and a holder pressure of 181.3KN by an 80-ton hydraulic press. The amount of whitening produced around the slit was evaluated by the length from the end of the slit.
[0031]
[Table 1]
Figure 0004474796
[0032]
【The invention's effect】
According to the method of the present invention, the added core-shell type polymer particles are fused and non-uniformly dispersed in an electric wiring laminate or varnish composition used for manufacturing a prepreg obtained by curing a thermosetting resin. Can be effectively avoided, and a dispersed state in a primary particle state becomes possible. As a result, if the varnish composition according to the present invention is used, it is possible to produce a laminate for an electric wiring board that is remarkably excellent in impact resistance and punching workability.

Claims (6)

粘度が2000mPa・s以下である液状ビスフェノールF型エポキシ樹脂中に、有機溶剤の実質的不存在下かつ60℃以下の温度にて、ゴム状ポリマーから成るコア部を有し、シェル部が、ポリメチルメタクリレート、ポリ(メチルメタクリレート−スチレン)、ポリ(メチルメタクリレート−グリシジルメタクリレート)及びこれらの混合物から成る群から選択されたポリマーから成るコア−シェル型ポリマー粒子を分散させて分散物を得、該分散物にさらに熱硬化性樹脂を添加することによって調製する、該熱硬化性樹脂を硬化させて成る電気配線板用積層板及びプリプレグ製造用ワニス組成物の調製方法。In a liquid bisphenol F type epoxy resin having a viscosity of less than 2000 mPa · s, at the substantial absence and 60 ° C. below the temperature of the organic solvent, have a core portion made of a rubbery polymer, shell portion, poly Dispersion is obtained by dispersing core-shell type polymer particles made of a polymer selected from the group consisting of methyl methacrylate, poly (methyl methacrylate-styrene), poly (methyl methacrylate-glycidyl methacrylate), and mixtures thereof. A method for preparing a laminate for an electric wiring board and a varnish composition for producing a prepreg, which are prepared by further adding a thermosetting resin to a product and curing the thermosetting resin. 前記熱硬化性樹脂が、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂及びこれらの混合物から成る群から選択された樹脂から成る、請求項1に記載の調製方法。  The preparation method according to claim 1, wherein the thermosetting resin comprises a resin selected from the group consisting of an epoxy resin, a phenol resin, a polyimide resin, and a mixture thereof. 前記熱硬化性樹脂がジヒドロベンゾオキサジン樹脂から成る、請求項に記載の調製方法。The preparation method according to claim 2 , wherein the thermosetting resin comprises a dihydrobenzoxazine resin. 前記コア部のゴム状ポリマーが、スチレン−ブタジエンゴム、水素化スチレン−ブタジエンゴム、アクリルゴム及びこれらの混合物から成る群より選択されたポリマーから成る、請求項1に記載の調製方法。  The preparation method according to claim 1, wherein the rubber-like polymer of the core portion comprises a polymer selected from the group consisting of styrene-butadiene rubber, hydrogenated styrene-butadiene rubber, acrylic rubber, and mixtures thereof. 前記コア−シェル型ポリマー粒子の平均粒径が0.01〜0.1μmである、請求項1に記載の調製方法。  The preparation method according to claim 1, wherein the core-shell type polymer particles have an average particle size of 0.01 to 0.1 μm. 該熱硬化性樹脂を添加した後又は同時に、さらに有機溶媒を添加してワニスとする、請求項1に記載の調製方法。The preparation method according to claim 1, wherein an organic solvent is further added to form a varnish after or simultaneously with the addition of the thermosetting resin.
JP2001146304A 2001-05-16 2001-05-16 Method for preparing laminate for electrical wiring board and varnish composition for prepreg production Expired - Lifetime JP4474796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001146304A JP4474796B2 (en) 2001-05-16 2001-05-16 Method for preparing laminate for electrical wiring board and varnish composition for prepreg production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001146304A JP4474796B2 (en) 2001-05-16 2001-05-16 Method for preparing laminate for electrical wiring board and varnish composition for prepreg production

Publications (2)

Publication Number Publication Date
JP2002338875A JP2002338875A (en) 2002-11-27
JP4474796B2 true JP4474796B2 (en) 2010-06-09

Family

ID=18991977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001146304A Expired - Lifetime JP4474796B2 (en) 2001-05-16 2001-05-16 Method for preparing laminate for electrical wiring board and varnish composition for prepreg production

Country Status (1)

Country Link
JP (1) JP4474796B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970063B1 (en) 2005-04-27 2010-07-16 히다치 가세고교 가부시끼가이샤 Composite, prepreg, laminated plate clad with metal foil, material for connecting circuit board, and multilayer printed wiring board and method for manufacture thereof
JP2008081681A (en) * 2006-09-28 2008-04-10 Fujikura Ltd Epoxy-based adhesive, coverlay, prepreg, metal-clad laminate and printed wiring board
JP5409373B2 (en) * 2006-11-13 2014-02-05 ヘンケル コーポレイション Benzoxazine composition having core-shell rubber
US20100096173A1 (en) 2007-02-23 2010-04-22 Kentaro Fujino Epoxy resin composition, prepreg, and laminate and printed wiring board
JP5396721B2 (en) * 2008-02-26 2014-01-22 パナソニック株式会社 Thermally conductive cured product, heat dissipation substrate using the same, and manufacturing method thereof
CN107916090B (en) * 2017-11-03 2020-07-28 浙江福斯特新材料研究院有限公司 Low-modulus high-bonding-capacity thermoplastic polyimide composition and application and preparation method thereof

Also Published As

Publication number Publication date
JP2002338875A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
US6894113B2 (en) Thermoset materials with improved impact resistance
JP5192259B2 (en) Epoxy resin composition, prepreg, laminate, and printed wiring board
US10294341B2 (en) Thermosetting resin composition for semiconductor package and prepreg using the same
TW201224001A (en) Process for producing compatibilized resin, thermosetting resin composition, prepreg, and laminate
CN1803916A (en) Resin composite and prepreg and laminate materials used thereof
TW201012860A (en) Epoxy resin composition, prepreg, cured body, sheet-like molded body, laminate and multilayer laminate
US10876000B2 (en) Thermosetting resin composition, prepreg, laminated board, printed wiring board, and high speed communication-compatible module
TW201010531A (en) High thermal conductivity, high glass transition temperature (Tg) resin composition and its pre-impregnated and coating materials for printed circuit boards
CN106795307A (en) Prepreg and metal-coated laminated board, printed wiring board
CN108976709A (en) Hardening resin composition
TW200404088A (en) Resin composition with excellent dielectric characteristics, process for producing resin composition, varnish prepared from the same, process for producing the same, prepreg made with these, and metal-clad laminate
JPWO2008090614A1 (en) Prepreg, printed wiring board, multilayer circuit board, and method for manufacturing printed wiring board
JP4058672B2 (en) Epoxy resin composition and cured product thereof
JP2017179035A (en) Resin composition, prepreg, metal clad laminate, printed wiring board and metal foil with resin
JP2016060870A (en) Thermosetting resin composition and method for producing the same, and prepreg, laminate and printed wiring board prepared therewith
JP4474796B2 (en) Method for preparing laminate for electrical wiring board and varnish composition for prepreg production
JP6946578B2 (en) Resin composition and its manufacturing method
JP2006143973A (en) Epoxy resin composition and prepreg, laminate and printed wiring board
JPH01178547A (en) Rubber-modified phenol resin and its production
JP2004027000A (en) Epoxy resin composition, prepreg and laminated sheet
JP4171084B2 (en) Thermosetting resin composition
JP4765975B2 (en) Laminated board and printed wiring board using the same
JPH02155113A (en) Conductive silver paste
JPH0948915A (en) Curable resin composition, molded product thereof and production thereof
JP2004346101A (en) Molding method and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3