TWI302197B - Reference ph sensor, the preparation and application thereof - Google Patents

Reference ph sensor, the preparation and application thereof Download PDF

Info

Publication number
TWI302197B
TWI302197B TW095100302A TW95100302A TWI302197B TW I302197 B TWI302197 B TW I302197B TW 095100302 A TW095100302 A TW 095100302A TW 95100302 A TW95100302 A TW 95100302A TW I302197 B TWI302197 B TW I302197B
Authority
TW
Taiwan
Prior art keywords
substrate
sensing
solution
field effect
sensor
Prior art date
Application number
TW095100302A
Other languages
English (en)
Other versions
TW200726972A (en
Inventor
Jung Chuan Chou
Diing Jia Tzeng
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW095100302A priority Critical patent/TWI302197B/zh
Priority to US11/448,478 priority patent/US7582500B2/en
Publication of TW200726972A publication Critical patent/TW200726972A/zh
Application granted granted Critical
Publication of TWI302197B publication Critical patent/TWI302197B/zh
Priority to US12/397,231 priority patent/US7727370B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/12Condition responsive control

Description

1302197 九、發明說明: 【發明所屬之 >技術領域】 本發明係有關於酸鹼離子感測場效電晶體,更特別 地,係有關於延伸式閘極離子感測場效電晶體之平面固態 參考電極。 【先前技術】 由於傳統有機物定量分析法於貪際應用上有許多缺點 [J· U. Chen,Biological Industry, Vol.4(3),1993, ρρ·205·212; # D· G· Huang,W· S· Chen,及 R· C· Hsu, Biological Industry, VoL7(4),1996, ρρ·291-298; S· Zhang, G· Wright, Y· Yang, Biosensors and Bioelectronics VoL15,2000, PP.273-282],例 如:操作複雜、分析時間過長'、設備昂貴、無法應甩於連 續之偵測等。故尋找出一種能彌補傳統定量分析之缺點的 研究係一重要主題,而生物感測器即係結合生物化學、電 子電路、材料科學與光學等學理而設計出,以符合各領域 所需之生物感測器。 離子感測場效電晶體(Ion-Sensitive Field Effect Transistor,ISFET)首先由 Ρ· Bergveld 於 1970 年所提出, 且為迅速發展之微型感測元件[Bergveld,IEEE Tran, on Biomed· Eng.,Vol· BME-17, 1970, pp.710-714]。此元件係 電化學與微電子應用之產品,其本身具有離子選擇電極之 功能,又具有場效電晶體之特性,係一種與傳統電極截然 不同的離子感測元件。其具備微小化、易儀表化及適合自 動化系統設計之優點。離子感測場效電晶體係一種半導體 0619-A20704TWF(N2);chiumeow 5 1302197 酸鹼度感測器,其主要原理是移除金屬-氧化物-半導體場 效電晶體(MOSFET)之金屬閘極,並將之置於水溶液中,以 允許移除閘極金屬區域之二氧化石夕層能與水溶液接觸,其 於待測水溶液中會與二氧化矽層產生一界面電位,故可達 到其感測水溶液離子濃度之目的。此相關ISFET之研究, 諸如材料之改進[Manuela Adami 等人,Sensors and Actuators B,Vol.24-25, 1995, pp.889-893 ; A· S· Poghossian 等人,Sensors and Actuators B,Vol.7,1992, ρρ·367-370 ; T· Katsube 等人
I ’ Sensors and Actuators B,Vol.2, 1982, ρρ·399-410],參考電極之 微小化的研究[S.D· Collins 等人,Sensors and Actuators B, Vol.lO,1993, ρρ·169_178; Yuri G· Vlasov,Andrey V· Bratov, Sensors and Actuators B,Vol.10, 1992, ρρ·1_6; C· Diekmann 等 人 Sensors and Actuators B,Vol.24-25, 1995, ρρ·276_278], 結構之改進[C· Cane 等人,Sensors and Actuators B,Vol.35-36, 1996, ρρ·136_140; Pavel Neuzil 等人,Sensors and Actuators B, _ Vol.24_25, 1995, pp.232-235]等皆已成功地探討。 延伸式閘極場效電晶體(Extended Gate Field Effect Transistor,EGFET)係一種發展自ISFET之元件,首次由J· Spiegel[J.Van Der Spiegel 等人,Sensors and Actuators,Vol.4, 1983, ρρ·291-298]所提出,其元件不像ISFET,EGFET保留 原有MOSFET上之閘極,及具有鑛金之感測膜於其延伸自 金屬閘極的另一端。與ISFET比較,EGFET具有以下幾項 優點:(1)元件上之導線提供靜電保護;(2)避免電晶體元件 直接與水溶液接觸;以及(3)降低元件上之光效應[P. 6 1302197 , 1
Bergveld ^ A. Sibbald ^t^^Analytical and Biomedical
Application 〇f Ion_Sensitive Fidd Effect 丁咖如 爾(Elsevier)科學出版公司,紐約,1988,ρρ·2_6〇]。 ^ 參考電極係電化學感測元件之一種型式,其是一種電 極所建立之一標準參考電位,可偵測不同溶液之標準電 位。其工作原理係利用於不同溶液中該參考電極表面電位 保持穩定之特性,避免感測元件偵測不同溶液時造成感測 度之誤差。一般使用於普通電化學感測元件之參考電極是 _甘水電極或銀/氯化銀電極,且大部份參考電極皆是澄式參 考龟極’故一般參考電極並無法進行微小化,又需長時間 次於相關緩衝液之中’不易於使用和儲存。因此,為了違 到微小化製造及乾燥儲存之目的,於最近幾年,參考電極 '之設計成為一重要的研究主題,並且有相關文獻針對此觀 點進行討論。參考pH ISFET相關文章,可發現參考電極 之微小化係當前感測元件發展的潮流,其正確製造方法包 括微電氣治金程序、銀/氯化銀薄膜沈積、差動對電路設計 •等[Huixian Zhu 等人,Sensors and Actuators B,Vol. 46, 1998, ρρ· 155_159; Joseph J· Pancrazio 等人,Biosensors and Bioelectronics,Vol· 13,1998, pp· 971-979; N· Zine 等人, “Multisensor Silicon Needle for Cardiac Applications”, Proceedings of The 1st Annual International Conference on Microtechnologies in Medicine and Biology,2000,pp· 216-219 ; R· J· Reay 等人,“An Integrated CMOS Potentiostat for Miniaturized Electroanalytical Instrumentation’’, 0619-A20704TWF(N2);chiumeow , 1302197 « '
Proceedings of the IEEE International Solid-State Circuits Conference,1994, pp· 162-163]。 除相關學術研究論文,尚有一些相關專利技術揭露, 例如,美國專利第6,251,246號(發明人為Andy d. c·
Chan’申請日1998年2月26曰)揭露離子選擇性電極之固 態接面材料,其乃於一離子選擇性感測器或離子場效電晶 •體等元件與電子性區域之間,利用一聚合材料形成一穩 定、可重複製造之介面。上述聚合材料之優點係可提供一 Φ内部固態式參考電極與一離子選擇性材料,故可應用於離 子選擇性感測裔。本發明人之美國專利第6,218 208號(申 請日1999年7月2日)揭露-種以二氧化錫薄膜為酸驗度 感測層之多結構#子感測器的製造方法。離子感測場效電 ^晶體(ISFET)多結構有絕佳之表現,於pH2至ρΗ1〇間之環 境中大約有56至58 mV/ρΗ呈線性之感测度。若ISFET感 測兀件於適當之汲源電流下操作,大約有^扭乂/天之低漂移 特性,響應時間少於(U秒。另外上述離子感測場效電晶 響體尚有製程系統成本低及可量產之特性。 此外,美國專利第5,309,0δ5號(發明人為Byung Ki
Sohn’帽日㈣日)揭露離子場效電晶體生 物感測器之量測電路,其具有結構簡單及易積體化之特 性。上述量測電路由二個ISFET當成輸入端,其中之一是 酵素場效電晶體’另-是參考場效電晶體。此電路具有不 同之振幅以放大感測元件的檢測輸出訊號。其BFET之電 壓變化將升高,並藉由使用一種不穩定半參考電極,因其 0619-A20704TWF(N2);chiumeow 1302197 會受到溫纽變之料,故h件之I作特㈣可調整 的’藉由改變讀出電路之增益達到此—目的。此酬T生 物感測H以單W實現,其具有量測電路可達到感測元件 之微小化目的。另錢專利第5,296,122號(發明人為 TeruakiKats*等人’申請日1992年2月18日)揭露一種 形成薄膜m賴為1水性膜,可應用於刪τ 之參考電極’上述疏水性膜細㈣電㈣錢鍍法所製
成的。此裝置之設備包括-個真空腔、—個原子光束產生 器、-_材座、-麵板。上述_可適合於離子感測 器之使用,諸如ISFET與酵素感測器。 美國專利第4,641,刚號(發日狀為Satsuki KGmatsu, 申請日1984年12月4日)揭露—種量測特定離子濃度之裝 置。於容ϋ中之待測液藉由參考f極的幫助與isfet且有 閘極電位雜會對特定離子具有靈敏度,包含—串轉考 電阻之電路與-固定電壓供應源連接至離子感測場效電晶 體之没源極,-種電健制電路穿過參考電阻以偵測參考 電阻之電位差,控制離子感測場效電晶體之源極或汲極電 位,如此之電位差㈣於設定值,且量咖n及極之電 位計可當成量測離子濃度。此外,美國專利第 號(發明人為Mathias Krauss等人,申請曰1993年8月4 日)揭露-独ISFET t路佈局完成量測溶液中離子漢度 之電路架構。上述電路佈局可揭露埸效電晶體之閘極電壓 差,其由二個量測/測試放大器、二個isfet及二個完全相 同之FET所組成的。此二個18?£1係連接至fet,且以第 0619-A20704TWF(N2);chiumeow 1302197 r ' 一個放大器顯示其介於ISFET與FET間之閘極電壓的改 變,以第二個放大器顯示二個iSFET之輸出差異,其第一 個放大器接四個參考電極用來當接地之參考電極,以上之 架構具有偵測離子濃度之能力。 此外,美國專利第4,882,292號(發明人為Ernst J·與 MariaD,申請曰1987年9月4曰)揭露-種參考場效電晶 體(Reference Field Effect Transistor,REFET)或化學修飾場 效電晶體(Chemically Modified Field Effect Transistor, 參CHEMFET)之製造方法。上述方法藉由(…親水性聚合層與 絕緣層形成共價鍵結,應用於半導體材料;(b)水之吸收或 水溶液進入親水性聚合層;(c)親水性聚合層與水之束缚以 保持親水性聚合層同時包含電解液或缓衝液。 * 另美國專利第5,684,619號(發明人為Shabrang Mani 等人,申請曰1990年8月7日)揭露一種改進電變色元件 之型式,其具有一種電變色電極與離子導體接觸。上述改 進係於離子導體與黃金層之間介入非電變色材料氧化釕, 春使離子導體與黃金層接觸,以改善其性能。 依據上述相關研究,可發現乾式固態參考電極與平面 感測元件構造係目前亟待解決之問題。且傳統技術仍存在 許多缺點,如設計不佳等,亟需改良。 【發明内容】 回顧前述傳統感測元件之不佳條件,本發明人等致力 於改進與革新,經過多時積極、專心地研究,成功地發展 出一種新型平面固態參考電極之製造方法,所製造之參考 0619-A20704TWF(N2);chiumeow 1302197 場效電aa體可設計為差動式酸驗度感測元件,酸驗對照威 測器為砒硌/氧化釕/矽(ppy/Ru〇x/si)基板之結構,具有較低 之酸鹼感測度,同時利用另一氧化釕/矽(RuOx/Si)基板結構 作為準電極以提供電解液之基準電位。依據本發明之平面 • 參考電極,其可消除於電極微型化之製程中需於微型孔洞 • ’主入參考電極液之缺點,並可達成感測元件之乾燥儲存與 平面式的架構。 ’ φ 因此,本發明之一型態係提供一種酸鹼度對照之感測 器,其係一延伸式閘極場效電晶體結構。上述酸鹼度對照 之感測斋包括:一金氧半場效電晶體,位於一半導體基底 上,一感測70件,其包括一基板,一固態導電離子感測薄 膜位於上述基板上,以及一聚砒硌薄膜固定於上述固態導 電離子感測薄膜上;以及一導線,連接上述金氧半場效電 晶體與上述感測元件。 本發明之另一型態提供一種酸鹼度對照之感測器的製 參備方法,上述感測器係一延伸式閘極場效電晶體結構。上 述方法包括以下步驟:於一基板上形成一層固態導電離子 - 感測膜以形成一感測元件;以一導線連接上述固態導電離 ; 子感測膜與一金氧半場效電晶體;以一絕緣層封裝上述感 測兀件與該金氧半場效電晶體;以電聚合法於上述感測元 件之固態導電離子感測膜上形成一層聚砒硌感測層,由此 得到上述延伸式閘極場效電晶體結構之感測器。 上述電聚合法係以如下步驟進行:將上述感測元件浸 入一電聚合液中,並連接至一電源供應器之正極;將一白 1302197 , 金電極連接至上述電源供應器之負極;以及由上述電源供 應器提供固定電位以進行電聚合。 本發明之又一型態提供一種測量一溶液中酸驗值之系 統。上述系統包括:一生物感測器,其係一延伸式閘極場 效電晶體結構;一如上述酸鹼度對照之感測器作為參考電 極以提供穩定電位;一半導體特性量測儀,其分別與上述 生物感測器及上述參考電極連接;一溫度控制器以控制感. 測元件之溫度,其具有一溫度控制中樞、一熱耦合器、及 φ 一加熱器,其中上述熱麵合器與上述加熱器分別與上述控 制中樞連接;以及一光隔絕容器以避免感測元件受到光敏 效應影響。上述生物感測器包括··一金氧半場效電晶體, … 位於一半導體基底上;一感測元件,其包括一基板,一固 - 態導電離子感測薄膜位於上述基板上,,以及一導線,連接 上述金氧半場效電晶體與上述感測元件。於測量一溶液中 之酸鹼值時,將上述溶液置於上述光隔絕容器中,將生物 感測器、參考電極及熱搞合器浸入上述溶液中,且於熱_馬 • 合器測得溶液溫度變化時由溫度控制中樞控制加熱器調節 該溶液之溫度,上述生物感測器與參考電極之感測值可傳 送至上述半導體特性量測儀,由此讀出上述感測元件之電 流-電壓(Ι-V)值以得到上述溶液中之酸驗值。 【實施方式】 本發明提供一種酸鹼度對照之感測器,其製造方法, 以及其應用。 傳統酸鹼值離子感測場效電晶體(pH-ISFET)感測元件 0619-A20704TWF(N2);chiumeow 12 1302197 係如第1圖所示,包括一 P型矽基底(p_Si)1〇8,其上有一 閘,’閘極包括一二氧化梦⑼⑹薄膜1〇6,上述薄膜上再 固足一感測薄膜104,係此場效電晶體結構中唯一可直接 與緩衝液102接觸| ”元件皆包覆在如環氧樹脂所構成的 絕緣區103之内。上述感測薄膜1〇4可為三氧化二鋁 (Ah〇3)、氮化矽、五氧化二鈕(τ々〇5)、非晶形三氧 化,(W〇3)、非晶形;^氫(a_Si:H)、二氧化錫伽⑹、非晶 形碳氫(a-C:H)等,其靈敏度範圍介於5〇〜58mV/pH,且= 有高感測線性度。在二氧切薄膜服兩侧之基底係n型 重摻雜區(亦即是汲極無極)1G7,整個電晶體結構經由導 線1〇5如銘導線與外界相通,可將感測薄膜刚制緩衝 液、1, 〇 2後,場效電晶體之没極/源極所得到之電訊號經由傳 輸送出。另外,此種結構亦必須包括一參考電極ι〇ι,以 提供穩定餘,避錄訊預。±賴驗值料感測場效· 電晶體感測元件之動作原理為元件操作時,係將感_區 域浸泡於雜巾,由__與半導體表面間僅隔一層極 薄之介電層’因而感測膜與溶液間之介面勢將影響半&體 的表面,使表面反轉層中之载子電荷密度發生變化, 制流過離子感測場效電晶體⑽Ετ)之通道電流。感測膜盘 溶液間介面勢又與紐憎子活財目,故可離子^ 測場效電晶體卿T)於不同氫離子活度之溶液中形成; 同的介面勢,導致通道電流之不同以檢測溶液中的氯離子 活度,此即為氫離子感測場效電晶體之基本工作原理。 發明係以射誠鍍法製備氧⑽感_膜作域測電極, 0619~A20704TWF(N2);chiumeow 13 讀等氧化釘4 、 敏’尤其於駿感測場致電晶體於溶液中非常靈 電晶體之硪娜戶1 /之。上述氧化釕延伸式離子感測場效 常適合谓_d/mv/pH,且具有高度線性 ,因此非 上述氣化羞 法製锴氣化了延伸式離子感測場效電晶體係以射頻濺鍍 與氣氣所紐釕溥膜。射頻濺鍍氧化釕層之反應物係由氬氣 极,並比点成。以所製備之氧化釕薄膜組成感測元件之閘 PH值_車又感測薄膜於水溶液中之感測度,其係隨著不同 的線声交化,證明其於水溶液中之感測度是具有相當良好 >為了製造本發明之新型平面固態參考電極,其感測元 采用平面離子感測器,此感測器係以結合半導體製程與 聚砒硌聚合製程所發展出來的。本發明之製造程序係以聚 砒硌製作低感測度的pH感測器。而聚砒硌之特性可藉由 聚合環境調整及控制,故可製造不同特性之感測元件。故 φ 當其應用於平面固態參考電極之製造時,可實現控制此平 面固態參考電極之特性。其感測電極與準電極係由氣化釘 - 所製成的,二者皆是半導體薄膜材料,故可製備本發明之 • 固態平面架構。依此結果,本發明之感測器可表現出不同 的優點,諸如固態元件、平面架構、乾燥儲存及易製造。 此製造平面固態參考電極之程序,以半導體塗層技術 可達到前述之沈積一固態感測膜於基底上,及以電化學聚 合技術將聚砒硌聚合與固定於導電固態薄膜之上。本發明 之製程’如第6圖所示,包括以下步驟。步驟6〇ι,準備 14 1302197 提供—固態基板,可選擇石夕基板、玻璃基板、 陶竞基板或㈣基板,㈣為祕板,於上
=電離子__’例如錢鍍方法沈積如氧化舒薄 、主取出兀件’利用環氧樹脂封裝感測面積。步驟602, 清洗上述基板。步驟6G3,準備電聚合液,其係由填酸鹽 溶^氯化钾料,及財單韻組成,可㈣調整上述 電聚口液之組成’以控制聚砒硌(p〇lyrr〇le)感測器之感測 度乂驟604 ’將元件浸入電聚合液,並將上述基板連接 至電源供應③之正極,連接自金電極至電源供應器之負 極,提供固定電位以在導電基板上形成-聚料薄膜。步 ,605 ’將聚石比路/氧化舒感測器自溶液中取出,乾燥,即 完成上述感測器之製造。 _ 口此,本發明之一型態係提供一種酸鹼度對照之感測 二系L伸式閘極場效電晶體結構。上述感測器包括: 金氧半場效電晶體,位於一半導體基底上;一感測元件, 其包括基板’一固態導電離子感測薄膜位於該基板上, ^此路薄膜固定於上述固態導電離子感測薄膜上; 以及一導線,連接上述金氧半場效電晶體與上述感測元件。 本發明之另一型態提供一種酸鹼度對照之感測器的製 備方法,該感測器係一延伸式閘極場效電晶體結構。上述 方法包括以下步驟:於一基板上形成一層固態導電離子感 測膜以开y成一感測元件;以一導線連接上述固態導電離子 感測膜與一金氧半場效電晶體;以一絕緣層封裝上述感測 一 /、 I金氧半場效電晶體;以電聚合法於上述感測元 ‘1302197 ==電離子感測膜上形成一層 由此 传到一延伸式閘極場效電晶體結構之感測器。
型場效之,施例中,上述金氧半場效電晶體係N 之且上係連接上述金氧半場效電晶體 璃°轉’上述基板係一石夕基板、破 璃基板、陶s基板’或_基板,較 =態導電離子感測薄膜可為任何導電二= ==Τ)Γ。並且’上述酸驗度對照之感測 :::Γ 氣_,包覆於感測元件之外。 於本發明之另一實施例中, 驟進行:將上述感測元件浸入一電聚法係以如下步 電源供應器之正極;將-白金電極連::上、 人广及由上述電源供應器提供固定電位以進行電聚 :單磷酸鹽溶液,氯— 早:所:成且其二之组成份比為•鹽:氯化卸:碗 。早體為 0.1Μ:0.01Μ:0.15〜05Μ 0.1Μ:0.01Μ:0^0.5Μ,0.1Μ:0.01Μ:0.3Μ(Μ A 上述電聚合過程所提供之固^電位為4V。、 车轉树明之又一型態係提供一種測量—溶液中酸驗值之 ::、、、述糸統包括:-生物感測器,其係一延伸式 5電晶體結構;—如上述之酸驗度對照感測器作= 電極以提供穩定電位;一半導體特性量測儀,立分2考 生物感測器及該參考電極連接;—溫度控制器;;= 元件之溫度’其具有一溫度控制中樞、一熱耗合器: 1302197 於本發明之一實施例中,上述生物 閑::效電晶體結構,包括:-金氧半場效;曰曰、體延伸式 -半導體基底上…感測元件,其包括 ^體,位於 電離子感測薄膜位於上述基板上,以及一導】::固態導 金乳半場效電晶體與上述感測元件。上述金氧p接上述 體係Ν型場效電晶體,上述基板係石夕基板= 電離子感測薄膜係氧化尊吨)薄膜。此外 ^導 件包覆有-絕緣層,如環氧樹脂。 34感測兀 以上述系統測量-溶液中之酸驗值時,將待測溶 =述光隔絕容器中,將生物感測器、參考電極及熱柄合 器浸入待測溶液中,且於餘合器測得溶液溫度變化時: /m度控制中樞控制加熱器調節待測溶液之溫度,上述生物 感測斋與簽考電極之感測值可傳送至上述半導體特性量測 儀,由此讀出上述感測元件之電流-電壓屮V)值,以得到上 述待測溶液中之酸鹼值。上述半導體特性量測儀為 Keithley 236。另上述光隔絕容器係一暗箱。 以本發明之新平面積體化參考電極不僅可消除製造微 型化電極過程中,於微型孔洞注入參考電解液之注入液體 的問題,且 < 取代Ag/AgCl參考電極。如上述,製備聚石比 硌薄膜之聚合溶液係由鱗酸鹽溶液、氯化鉀溶液、础硌單 體所組成的’若改變聚合液之組成,可控制聚础硌感測器 17 1302197 之感測度,可將此技術應用於製造具有相近感測度之對應 感測電極及利用差動對感測元件達成感測度的控制。 為使本發明之上述和其他目的、特徵、及優點能更明 顯易it,下文特舉一較佳實施例,並配合所附圖示,作詳 細說明如下: 實施例 本較佳貫施例係依照本發明所設計之新型平面固態參 考電極的製造及量測過程為例,詳細說明如何實施本發 明。於後述量測條件之實驗參數乃至於量測裝置均僅用以 舉例說明,但並非用以限定本發明。 貫施例1 :氧化舒感測薄膜之製備 > “ t具體化實施例係以濺鍍法備製氧化釕延伸式閘極場 效電ΒΘ體之元件及其元件的封裝、量測、讀出電路之方法, 但並非用以限定本發明。 氧化釕延伸式閘極場效電晶體製備之步驟如下所述: 本貫施例採用氧化釕薄膜作為pH感測薄膜,其係以 射頻,鍍法自直徑2in、厚度3mm、純度99.99%之釕乾材, 戶、,貝氧化舒薄膜於單晶石夕晶圓上。其具體之製造步驟如下 =述二首先,準備矽基板並以1C製程中用來清洗矽基板之 二衝氧化石夕钕刻液(buffer oxide etch, BOE)液清洗,清除 又,之污染物,並以氮氣吹乾矽基板上之水份。於開始沈 ^氧化舒之前,維持腔體内之壓力必須低於ΙΟμίοητ。接
打開Ar/〇2之控制閥,並將其控制於混合氣體中之總 操作慝士 A mt〇rr(氣體流量 Ar=40 seem、〇2=15 seem)。打 18 1302197 開射頻濺鍍機(R.F·),並將功率控制於100W。先預濺鍍ι〇 分鐘以清除釕(Ru)靶材之表面氧化物,之後再沈積氧化旬 薄膜30分鐘。於濺鍍過程使裝載臺(holder)旋轉,保持旋 轉以得均勻沈積之結構。經以上步驟獲得含有經射頻濺鏡 之氧化釕薄膜的離子感測場效電晶體之延伸部分。 本實施例之延伸式離子感測場效電晶體(EGFET)元件 須以環氧樹脂封裝以達防水與絕緣功能,而在此係利用環
氧樹脂(EPO — TEK H77 lid sealing epoxy)封裝感測膜,其 步驟如下所述:首先,將導線切成約1〇⑶j長度,並將感 測臈部分切割為約1.5 cm X 1.5 Cm大小之正方形。將上 述材料置於超音波振盪器中以去離子水清洗乾淨。以銀膠 將導線固定於薄膜上,利用120¾烤箱烘烤10分鐘。再利 用環氧樹脂將銀膠之部分再加以固定,利丛 ^0分鐘。接著,將導線穿入毛細孔管中,制用環^樹 =其整個封裝’留下約2醜χ 2麵大小之感測窗, ,其置於mrc烤箱烘肖20錢,使縣樹脂烤乾。若有 小孔產生則需以環氧樹脂將孔洞填平,再以12〇c>c烘烤, 止水溶液由小孔中滲入使得量測結果不正確。 貫施例2:平面固態參考電極之製備 本發明之參考電極係制平_子感測器,結合半導 哭聚财聚合製程,而製備出低感測度之酸驗感測 二衣傷過程如第6圖之流程圖。先以如實_丄之方 程如 1魏㈣膜,接著於該薄膜上聚合聚财,詳細過 19 1302197 義首先’準備導電基板(步驟601),如上述之氧化舒/石夕 =反’其中導電材料之表面導電性是選擇基板材料之主 6〇里。接著,清洗基板(步驟602)。準備電聚合液(步驟 酸3職),其中包含有缓衝液、電解液、導電聚合單體,如磷 ,氯化鉀,聚砒硌。以如第5圖所示之系統架構進行 端,b硌的電聚合,連接基板503至電源供應器之正電極 板與迷接白金電極502至電源供應器之負電極端,並將基 1固ft電極浸人於電聚合液5G1巾,其電源供應器提供 聚母比聚砒硌氧化電位高之固定電位504,例如以4V進行 石th々^之歎合,以進行電聚合3〇分鐘,應用此方法可將聚 硌二聚合於此導電基板上(步驟6〇4)。隨後將已完成之聚砒 人於去離子(D·1·)水中1G分鐘,以清洗聚础路感 將"Γ驟605)。最後,將聚石比路感測器自溶液中取出,並 之乾燥(步驟606),如此即完成聚砒硌感測器之製造。 槿戶f传到之聚础路感測器如第7圖所示,此為延伸式結 之翏考電極感測膜示意圖。於矽基板7〇8上有一層氧化 704,上述感測膜係以導線7〇5,如鋁導線,與金氧半 $效電晶體連結,其外再以環氧樹脂7〇3封裝。 貫施例3 :感測度之量測 一本發明所使用之電流-電壓(Ι-V)量測系統如第2圖所 不’將本發明之延伸式閘極場效電晶體的感測元件2〇4浸 入緩衝液210中,而緩衝溶液21〇係置於一暗箱2ιι中, 因温度及光線皆會對感顏造成影響,故於相過程中皆 20 1302197 於暗箱211中進行,而該感測元件204係經導線,例如鋁 導線,將商品化IC(CD4007UB)之源極(source)207、汲極 (drain)206與參考電極208接至受測端202,再連接至 Keithley 236 源極量測單元(Source Measure Unit)201,以進 • 一步將電晶體所測得之電訊號做數據處理。另商品化 . IC(CD4007UB)之閘極(gate)端則接至感測膜。共使用三台
Keithley 236,且將 pH_ISFET 視為 N 通道 MOSFET,再以 Metrics軟體加以控制。第一台Keithley 236連接元件之汲 鲁 源極,提供適當偏壓,使元件工作於線性區或飽和區;第 二台Keithley 236連接至閘極,即pH-ISFET之參考電極; 弟二台Keithley 236連接至源極。此外,另備有一參考電 極209,連接至閘極208,且以PID温度控制器205固定緩 衝液210之温度。 此外’所使用之恒壓恒流(Constant Voltage-Constant Current,簡稱CVCC)量測系統如第3圖所示,將本發明之 φ 延伸式閘極場效電晶體的感測元件304浸入缓衝液310 中’而缓衝溶液310係置於一暗箱311中,如同以上,置 • 於暗箱係因温度及光線皆會對感測膜造成影響。上述感測 元件304係經導線,例如鋁導線,將商品化IC(CD4007UB) 之源極(source)307、汲極(drain)306與閘極308接至悝壓恒 流電路302,上述恆壓恆流電路係由電壓表與電流表3〇1 所控制’且連接到電壓·時間記錄器313以進一步將電晶體 所測得之電訊號做數據處理。另商品化IC(CD4〇〇7UB)之 閘極(gate)端則接至感測膜。此外,另備有一參考電極3〇9, 1302197 連接至閘極308,且以PID温度控制器305固定緩衝液3l〇 之温度。上述恆壓恆流量測系統之電路示意圖如第4圖所 示0 以上述系統進行氧化舒閘極酸驗離子感測場效電晶雜 之感測度的量測,其步驟如下所示:
Keithley 236電流-電壓(I-V)量測系統量測單元之設定 如下所示:VDS =0.2V,閘極電壓開始於vG=〇.5v,每次增 加0.2V,並於VG=5V結束。 為了保持元件與待測液間之溫度平衡,將感測膜部分 置入待測溶液中,等待1·5分鐘使其温度達平衡。 以Keithley 236源極量測單元量測其於待測液pH 142 之汲源電流對閘極電壓(Ids-Vg)特性曲線,結果如第8圖戶斤 示0 味簽閱弟9圖,其係氧化釕_延伸式閘極場效電晶; (RuOx-EGFET)感測益之感測度校正曲、線,由該圖之結果^ 得知此感測元件具有良好及穩定之感測度,其感測^可a 55.3 mV/pH,故可符合當成主要之阳感測元件。 =參閱第H)圖’其係聚_氧化脚(ρρ_〇χ/δ j感測ϋ之制度校正曲線。由該圖之量測結果可㈣ 此感件具有較低及穩定之相度,其 mV/PH’故可當成ρΗ感測元件 違 式PH感測器之架構。 、、,以達成差鸯 由以上結果可得知本發明 ^▲ 延伸式閘極場效電晶體_器 ^冑極相較於氧化袁 具有較低及穩定之感測度 1302197 又具有平面架構,因此具有可容易乾燥儲存且 發明雖賴紐,嶽翻以限定本 ^ 减自 蟄者,在不脫離本發明之精神和範圍内,卷 利動與潤飾’故本發明之保護範圍當視後附之申請; 利乾圍所界定者為準。 τ月寻
23 1302197 【圖式簡單說明】 第1圖顯示本發明實施例之酸鹼離子感測場效電晶體 元件結構圖。 第2圖顯示本發明實施例中電流-電壓(ΙΛ〇量測系統 - 之不意圖。 • 第3圖顯示本發明實施例中恆壓恆流(CVCC)量測系 統之示意圖。 第4圖顯示本發明實施例中恆壓恆流(CVCC)電路示 *意圖。 第5圖顯示本發明實施例之參考電極中,聚砒硌之電 聚合系統架構圖。 第6圖顯示本發明實施例之參考電極中,聚砒硌感測 器之製造流程圖。 第7圖顯示本發明實施例之參考電極中,延伸式結構 之感測膜的示意圖。 _ 第8圖顯示本發明實施例之氧化釕延伸式閘極場效電 晶體没源極電流"閘極電壓關係曲線圖。 . 第9圖顯示本發明實施例之氧化釕延伸式閘極場效電 晶體之感測度校正曲線。 第10圖顯示本發明實施例之聚砒硌/氧化釕延伸式閘 極場效電晶體之感測度校正曲線。 【主要元件符號說明】 第1圖: 101〜參考電極; 24 1302197 102〜缓衝液; 103〜環氧樹脂; 104〜感測薄膜; 10 5〜金屬在呂, 106〜二氧化矽薄膜; 107〜N型掺雜之汲極與源極區; 108〜P型矽基板; 109〜金屬銘。 第2圖: 201〜Keithley 236電流_電壓量測單元; 202〜測試固定器8006 ; 203〜溫度計; 204〜感測元件; 205〜PID溫控器; 206〜汲極; 207〜源極; 208〜閘極; 209〜參考電極; 210〜缓衝液; 211〜暗箱; 212〜加熱器。 第3圖: 301〜電壓表與電流表; 302〜恆壓恆流電路; 25 1302197 303〜熱電耦; 304〜感測元件; 305〜PID溫度控制器; 306〜汲極; 307〜源極; 3 08〜閘極; 309〜參考電極; 310〜緩衝液; ’ 311〜暗箱; 312〜加熱器; 313〜電壓-時間記錄器。 第5圖: 501〜電聚合液; 5 02〜白金電極; 503〜氧化釕(RuOx)感測膜; I 504〜4V定電壓電源供應器。 第6圖: 步驟601〜準備導電基板; 步驟602〜清洗基板; 步驟603〜準備電聚合液; 步驟604〜連接基板與白金電極至電源供應器之正、負 電極端; 步驟605〜將已完成之聚砒硌元件浸入於去離子(D.I·) 水清洗; 26 .1302197 步驟606〜將聚砒硌感測器自溶液中取出,並將之乾 燥,完成聚砒硌感測器之研製。 第7圖: 703〜環氧樹脂; 704〜聚砒硌感測膜; 705〜導線; 706〜氧化釕感測膜; 708〜砍基板。

Claims (1)

  1. 修正日期 I 13 02 00302號申請專利範圍修正本 日修正太 十、申請專利範圍: 1·-種酸聽触之❹化, 體結構,包括: 、呷叭「甲 一金氧半場效電晶體’位於—半導體基底上; 於該基一固態導電離子感測薄膜位 •眩>At、广石比路薄膜固定於該固態導電離子感測薄 、’八該固態導電離子感測薄膜係氧化娜叫薄膜;以 及 一導線’連類錢半場效電晶體與誠測元件。 ^中請專利範圍第丨項所述之酸鹼度對照之感測器,其 中該金乳半場效電晶體係N型場效電晶體。 、酋如u利範㈣丨項所述之酸驗度對照之感測器,其 該導線係連接該金氧半場效電晶體之閘極與該感測元件。 如ΐ^專利範㈣1項所述之酸驗度對照之感測器,其 中該基板係-錄板、_基板、喊基板,或娜基板/、 5.如申請專利範圍第1項所述之酸驗度對照之感測器,其 中該基板係一石夕基板。 圍第1項所述之舰度聰之感測器,其 更包括-絕緣層包覆於感測元件之外。 如申明專利範圍第6項所述之酸鹼度對照之感測器,其 中該絕緣層係環氧樹脂。 、8·一種酸驗度對照之感測器的製備方法,該感測器係一延 伸式閘極場效電晶體結構,其包括以下步驟: 於基板上形成一層固態導電離子感測膜以形成一感測 28 ,1302197 以一 以雷^層封裝該感測元件與該金氧半場效電晶體; -層聚該勤^件離子❹彳膜上形成 感^。4 9 ’由此得到該延伸式閘極場效電晶體結構之
    9·如^專難圍第8項所述之酸驗度對照之感測器的製 備方法,其中該基板係1基板、玻璃基板、 膠基板。 10·如申料利範圍第9項所述之酸驗度對照之感測器的 製備方法,其中該基板為一矽基板。 ,11·如申請專利範圍第8項所述之酸鹼度對照之感測器的 製備方法,其中該電聚合法係以如下步驟進行: 將該感測元件浸入一電聚合液中,並連接至一電源供應器 之正極; 將一白金電極連接至該電源供應器之負極;以及 由該電源供應器提供固定電位以進行電聚合。 12·如申請專利範圍第11項所述之酸鹼度對照之感測器的 製備方法’其中該電聚合液係由磷酸鹽溶液,氣化鉀溶液,以 及石比硌單體所組成。 13·如申請專利範圍第12項所述之酸鹼度對照之感測器的 製備方法,其中該電聚合液之組成份比為磷酸鹽··氯化鉀··砒 硌單體為 0·1Μ:0·〇ΐΜ··〇.ΐ5〜〇.5M。 29 1302197 l4.如申請專利範圍第13項所述之酸鹼度對照之感測器的 •Mf方法,其中該電聚合液之組成份比為磷酸鹽:氯化鉀:础 軍艘為 0·1Μ:0·01Μ:0·3〜0.5M。 口丨5.如申請專利範圍第13項所述之酸鹼度對照之感測器的 方法,其中該電聚合液之組成份比為磷酸鹽:氯化鉀:砒 :單艨為 0·1Μ:〇·〇1Μ:〇·3Μ° 16.如申請專利範圍第11項所述之酸鹼度對照之感測器的 制儀方法,其中所提供之固定電位為4V。 ^ 17.如申請專利範圍第8項所述之酸鹼度對照之感測器的 梦儀方法,其中該金氧半場效電晶體係Ν型場效電晶體。 18·如申請專利範圍第8項所述之酸鹼度對照之感測器的 咖備方法,其中該絕緣層係環氧樹脂。 於 種測量一溶液中酸鹼值之系統,其包括: 〆生物感測器,其係一延伸式閘極場效電晶體結構,包括: /第〆金氧半場效電晶體,位於一第一半導體基底上; /第〆感測7〇件’其包括_第_基板,_第—固態導電離 • 子感測薄艨位於第一基板上,以及 4^導線’連接第-金氧半場效電晶體與第一感測元 件 -參考電極以提供穩定電位,其中該參考電極包括: 一第二金氧半場效電晶體,位於一第二半 -第二感測元件,其包括—第二基板,、=上; 子感測薄膜位於第二基板上,以及一聚祉路二二電: 態導電離子❹']_上,其中鄕-鮮二n料電離 30 .1302197 薄膜係氧化釕(RuOx)薄膜;以及 -第二導線,連接第二金氧半場效電晶體與第二感測元 件; -半導體特性量測儀,其分別與該生物感測器及該參考 一溫度控制器以控制感測元件之溫度,其具有一溫度控制
    中樞、一熱耦合器、及一加熱器,其中該熱耦合器與該加熱器 分別與該控制中樞連接;以及 一光隔絕容器以避免感測元件受到光敏效應影響; 其中測量一溶液中之酸鹼值時,將該溶液置於該光隔絕容 w中將生物感測器、參考電極及熱耗合器浸入該溶液中,且 於熱耦合裔測得溶液溫度變化時由溫度控制中樞控制加熱器 周節該/谷液之溫度’該生物感測器與參考電極之感測值可傳送 至該半導體特性量測儀,由此讀出該感測元件之電流_電壓(I_V) 值以得到該溶液中之酸鹼值。 ,2〇·如申請專利範圍第19項所述之測量一溶液中酸鹼值之 系統’其中第一與第二金氧半場效電晶體係N型場效電晶體。 ^ 21·如申請專利範圍第19項所述之測量一溶液中酸鹼值之 ’其中第—與第二基板係石夕基板。 ^ 22·如申請專利範圍第19項所述之測量一溶液中酸鹼值之 系統’其中第―與第二感測it件包覆有-絕緣層。 ^ 23·如申請專利範圍第22項所述之測量一溶液中酸鹼值之 系統,其中該絕緣層係環氧樹脂。 24·如申請專利範圍第19項所述之測量一溶液中酸鹼值的 31 •1302197 系統,其中該半導體特性量測儀為Keithley 236。 25.如申請專利範圍第19項所述之測量一溶液中酸鹼值的 系統,其中該光隔絕容器係一暗箱。
    32 13 021關003()2號圖式修正頁 修正曰期:珲·6淨替換頁
    601 602 603 604 605 606 第6圖
TW095100302A 2006-01-04 2006-01-04 Reference ph sensor, the preparation and application thereof TWI302197B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW095100302A TWI302197B (en) 2006-01-04 2006-01-04 Reference ph sensor, the preparation and application thereof
US11/448,478 US7582500B2 (en) 2006-01-04 2006-06-07 Reference pH sensor, preparation and application thereof
US12/397,231 US7727370B2 (en) 2006-01-04 2009-03-03 Reference pH sensor, preparation and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095100302A TWI302197B (en) 2006-01-04 2006-01-04 Reference ph sensor, the preparation and application thereof

Publications (2)

Publication Number Publication Date
TW200726972A TW200726972A (en) 2007-07-16
TWI302197B true TWI302197B (en) 2008-10-21

Family

ID=38224953

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095100302A TWI302197B (en) 2006-01-04 2006-01-04 Reference ph sensor, the preparation and application thereof

Country Status (2)

Country Link
US (2) US7582500B2 (zh)
TW (1) TWI302197B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI279539B (en) * 2005-11-01 2007-04-21 Univ Nat Yunlin Sci & Tech Biosensor containing ruthenium, and measurement using the same and the application thereof
TW200742851A (en) * 2006-05-09 2007-11-16 Univ Nat Yunlin Sci & Tech Penicillin G biosensors and fabrication method thereof and sensing systems comprising the same
DE102007063119A1 (de) * 2007-12-22 2009-06-25 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Differenzsensor zur pH-Messung
US20090229995A1 (en) * 2008-03-14 2009-09-17 Eci Technology, Inc. Analysis of fluoride at low concentrations in acidic processing solutions
TWI414785B (zh) * 2009-11-04 2013-11-11 Univ Nat Yunlin Sci & Tech 酸鹼值測量系統
EP2357468B1 (en) * 2010-01-21 2017-09-20 Nxp B.V. Sensor and measurement method
US8859316B2 (en) * 2010-06-29 2014-10-14 International Business Machines Corporation Schottky junction si nanowire field-effect bio-sensor/molecule detector
TWI432724B (zh) 2010-10-18 2014-04-01 Ind Tech Res Inst 血液分析微系統
CN102466652A (zh) * 2010-11-19 2012-05-23 财团法人工业技术研究院 血液分析微系统
US10670555B2 (en) 2011-09-22 2020-06-02 Sentient Technologies, Inc. Static equilibrium path for measurements of dynamic flows
US10060896B2 (en) * 2011-09-22 2018-08-28 Sentient Technologies, Inc. Static equilibrium path for measurements of dynamic flows
US10338025B2 (en) 2011-09-22 2019-07-02 Sentient Technologies, Inc Static equilibrium path for measurements of dynamic flows
DE102012210183B4 (de) * 2012-06-18 2017-03-23 Siemens Healthcare Gmbh Anordnung und Verfahren zur Analyse von Nukleinsäuresequenzen
US9746442B2 (en) 2014-03-30 2017-08-29 International Business Machines Corporation Switched-capacitor biosensor device
DE102015204311A1 (de) 2015-03-11 2016-09-15 Robert Bosch Gmbh Herstellungsverfahren für einen Gassensor und entsprechender Gassensor
JP2018515792A (ja) * 2015-04-30 2018-06-14 伊勒伯科技股▲分▼有限公司Winnoz Technology, Inc イオン流体中における検測用のシステム及び方法
CN106170191B (zh) * 2015-05-20 2019-04-12 苹果公司 用于联结电子设备的一个或多个结构的技术
US10032550B1 (en) * 2017-03-30 2018-07-24 Apple Inc. Moving-coil haptic actuator for electronic devices
TWI642171B (zh) * 2017-11-09 2018-11-21 友達光電股份有限公司 感測裝置
WO2020174540A1 (ja) * 2019-02-25 2020-09-03 株式会社ニコン 半導体装置、pHセンサ及びバイオセンサ並びに半導体装置の製造方法
CN110646490A (zh) * 2019-09-30 2020-01-03 深圳大学 一种基于二硒化钨的离子敏场效应晶体管传感器及其制备方法
US11567026B2 (en) * 2020-05-26 2023-01-31 Texas Instruments Incorporated PH sensor

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US631762A (en) * 1898-04-16 1899-08-22 Boehringer & Soehne Process of making oxymethylene-uric acid.
JPS60128345A (ja) * 1983-12-15 1985-07-09 Olympus Optical Co Ltd イオン濃度測定装置
NL8602242A (nl) * 1986-09-05 1988-04-05 Stichting Ct Voor Micro Elektr Werkwijze voor het vervaardigen van een refet of een chemfet, en de vervaardigde refet of chemfet.
EP0390692A3 (en) * 1989-03-29 1991-10-02 Terumo Kabushiki Kaisha Method of forming thin film, apparatus for forming thin film and sensor
KR930002824B1 (ko) * 1990-08-21 1993-04-10 손병기 감이온 전계효과 트랜지스터를 이용한 바이오 센서용 측정회로
JP2541081B2 (ja) * 1992-08-28 1996-10-09 日本電気株式会社 バイオセンサ及びバイオセンサの製造・使用方法
DE4228609C1 (de) * 1992-08-28 1994-01-20 Fraunhofer Ges Forschung Vorrichtung zur Messung von Ionenkonzentrationen in Lösungen
US5804049A (en) * 1993-09-15 1998-09-08 Chiron Diagnostics Corporation Material for establishing solid state contact for ion selective electrodes
US5684619A (en) * 1993-11-02 1997-11-04 The Dow Chemical Company Ruthenium oxide counterelectrode for electrochromic devices
CH692120A5 (de) * 1997-01-14 2002-02-15 Schweizerische Eidgenossenschaft Technische Hochschule Eth Multidimensionale modulare Sensorvorrichtung für die Prozess-Messtechnik.
US5911873A (en) * 1997-05-02 1999-06-15 Rosemount Analytical Inc. Apparatus and method for operating an ISFET at multiple drain currents and gate-source voltages allowing for diagnostics and control of isopotential points
US6060327A (en) * 1997-05-14 2000-05-09 Keensense, Inc. Molecular wire injection sensors
US6393304B1 (en) * 1998-05-01 2002-05-21 Nokia Mobile Phones Limited Method for supporting numeric voice dialing
DE59902946D1 (de) * 1998-05-11 2002-11-07 Siemens Ag Verfahren und anordnung zur einführung zeitlicher abhängigkeit in hidden-markov-modellen für die spracherkennung
US6487530B1 (en) * 1999-03-30 2002-11-26 Nortel Networks Limited Method for recognizing non-standard and standard speech by speaker independent and speaker dependent word models
US6218208B1 (en) * 1999-07-02 2001-04-17 National Science Council Fabrication of a multi-structure ion sensitive field effect transistor with a pH sensing layer of a tin oxide thin film
US7006828B1 (en) * 2001-02-12 2006-02-28 Via Telecom Co. Ltd. Method and apparatus for performing cell selection handoffs in a wireless communication system
US6928409B2 (en) * 2001-05-31 2005-08-09 Freescale Semiconductor, Inc. Speech recognition using polynomial expansion and hidden markov models
US6897954B2 (en) * 2002-12-20 2005-05-24 Becton, Dickinson And Company Instrument setup system for a fluorescence analyzer
US20050147736A1 (en) * 2003-12-31 2005-07-07 Chung Yuan Christian University Using polypyrrole as the contrast pH detector to fabricate a whole solid-state pH sensing device
TWI279539B (en) * 2005-11-01 2007-04-21 Univ Nat Yunlin Sci & Tech Biosensor containing ruthenium, and measurement using the same and the application thereof
TW200742851A (en) * 2006-05-09 2007-11-16 Univ Nat Yunlin Sci & Tech Penicillin G biosensors and fabrication method thereof and sensing systems comprising the same
TW201000638A (en) * 2008-06-30 2010-01-01 Univ Nat Yunlin Sci & Tech Separative extended gate field effect transistor based vitamin C sensor and the forming method thereof

Also Published As

Publication number Publication date
TW200726972A (en) 2007-07-16
US7727370B2 (en) 2010-06-01
US20090170207A1 (en) 2009-07-02
US7582500B2 (en) 2009-09-01
US20070155037A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
TWI302197B (en) Reference ph sensor, the preparation and application thereof
Das et al. Highly sensitive palladium oxide thin film extended gate FETs as pH sensor
Milgrew et al. A 16× 16 CMOS proton camera array for direct extracellular imaging of hydrogen-ion activity
US6521109B1 (en) Device for detecting an analyte in a sample based on organic materials
TWI279539B (en) Biosensor containing ruthenium, and measurement using the same and the application thereof
TW200946904A (en) Method for forming an extended gate field effect transistor (EGFET) based sensor and the sensor formed thereby
Kao et al. Multi-analyte biosensors on a CF4 plasma treated Nb2O5-based membrane with an extended gate field effect transistor structure
TW201124719A (en) Hydrogen ion sensitive field effect transistor and manufacturing method thereof
Milgrew et al. A proton camera array technology for direct extracellular ion imaging
Poghossian Method of fabrication of ISFET-based biosensors on an Si–SiO2–Si structure
Li et al. Stable thin-film reference electrode on plastic substrate for all-solid-state ion-sensitive field-effect transistor sensing system
Sinha et al. A comprehensive review of FET‐based pH sensors: materials, fabrication technologies, and modeling
EP1085319B1 (en) A device for detecting an analyte in a sample based on organic materials
Wu et al. Structural properties and sensing performance of high-k Sm2O3 membrane-based electrolyte–insulator–semiconductor for pH and urea detection
Lai et al. Body effect minimization using single layer structure for pH-ISFET applications
US20040035699A1 (en) Method and fabrication of the potentiometric chemical sensor and biosensor based on an uninsulated solid material
Chou et al. Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs
TWI223707B (en) Drug sensor for the alkaloid measurement, the preparation thereof, and measuring systems comprising the same
TWI244702B (en) Titanium oxide thin film for extended gate field effect transistor using reactive sputtering
Khanna et al. Design and development of a novel high-transconductance pH-ISFET (ion-sensitive field-effect transistor)-based glucose biosensor
US8148756B2 (en) Separative extended gate field effect transistor based uric acid sensing device, system and method for forming thereof
TWI326894B (en) Ion sensing devices, reference electrodes and fabrication methods thereof
Ma et al. A review of electrochemical electrodes and readout interface designs for biosensors
US8410530B2 (en) Sensitive field effect transistor apparatus
Dutta Modeling ion sensitive field effect transistors for biosensor applications

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees