TWI300608B - Semiconductor device and method for forming the same - Google Patents
Semiconductor device and method for forming the same Download PDFInfo
- Publication number
- TWI300608B TWI300608B TW095122791A TW95122791A TWI300608B TW I300608 B TWI300608 B TW I300608B TW 095122791 A TW095122791 A TW 095122791A TW 95122791 A TW95122791 A TW 95122791A TW I300608 B TWI300608 B TW I300608B
- Authority
- TW
- Taiwan
- Prior art keywords
- pattern
- gate
- layer
- transistor
- device isolation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 90
- 239000004065 semiconductor Substances 0.000 title claims description 35
- 239000010410 layer Substances 0.000 claims description 404
- 238000007667 floating Methods 0.000 claims description 168
- 238000002955 isolation Methods 0.000 claims description 141
- 230000015654 memory Effects 0.000 claims description 109
- 239000000758 substrate Substances 0.000 claims description 49
- 238000005530 etching Methods 0.000 claims description 29
- 239000011229 interlayer Substances 0.000 claims description 28
- 239000012535 impurity Substances 0.000 claims description 27
- 125000006850 spacer group Chemical group 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 230000000694 effects Effects 0.000 claims description 14
- 238000009413 insulation Methods 0.000 claims description 10
- 238000000059 patterning Methods 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 244000062793 Sorghum vulgare Species 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000007654 immersion Methods 0.000 claims 1
- 235000019713 millet Nutrition 0.000 claims 1
- 230000008569 process Effects 0.000 description 68
- 239000000463 material Substances 0.000 description 11
- 239000004575 stone Substances 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 150000004767 nitrides Chemical class 0.000 description 7
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 7
- 238000005468 ion implantation Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 230000005641 tunneling Effects 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000000427 thin-film deposition Methods 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- SCCCLDWUZODEKG-UHFFFAOYSA-N germanide Chemical compound [GeH3-] SCCCLDWUZODEKG-UHFFFAOYSA-N 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003304 ruthenium compounds Chemical class 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
- H10B41/35—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/30—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Description
1300608 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種半導體裝置及其製造方法,具體而 言,本發明係關於一種非揮發性記憶體裝置及其製造方 法。 【先前技術】 一般而言,半導體記憶體裝置係依據其是否需要供電以 保留所儲存之資料,而分類成揮發性記憶體裝置及非揮發 性記憶體裝置。揮發性記憶體裝置(諸如動態隨機存取記 憶體(DRAM)及靜態隨機存取記憶體(SRAM))具有迅速的 才呆作速度,但是具有需要供電以保留資料之限制。反之, 由於非揮發性記憶體裝置(諸如快閃記憶體裝置)不具有此 限制因而廣泛運用在近年來需求遽增的攜帶型電子裳 置。 、 牛,吕,快閃記憶體裝置包括一用於儲存資料的記檍 胞’以及-相關之裝置’諸如一選擇電晶體、一驅動電晶 體或類似物。快閃記憶體裝置的記憶胞主要採用相似於典 型電晶體的記憶體電晶體。 鲈槿万徜罢⑽體電曰曰體包括一閘極堆疊 忒閘極堆疊結構兩側之 堆疊結構係用相繼堆疊L上亥閘極 緣層、-浮編 通道區上的-隨穿絕 組能"’ ° ^極層間絕緣層及-控制閘極予以 、一。㈣記憶體電晶體的浮 一:主龢閂扣:〆, 1上立祁电絕緣,並且每 子動閘極係當作一記憶體 體電晶體的押制卩+ ]方向佈置之複數個記憶 制閑極破互相連接以當作-字線。按照具有 H2311.doc 1300608 前述結構之記憶體電晶體的佈罟古安 扪师置方案,可將快閃記憶體裝 置主要分類成-種NAND型快閃記憶體裝置及—種賺型 快閃記憶體裝置。對於NAND型快閃記憶體裂置,一選擇 電晶體被連接至該記憶體電晶體,並且舉例而言,往列方 向佈置之選擇電晶體的閘極被互相連接以藉此形成一選擇 線。 同時,為了降低半導體裝置之價格,需要提高整合程 度,這造成製造半導體裝置方面的數項技術困難。具體而 言、,隨著高度整合半導體裝置,介於相鄰字線之間的間隔 亦被縮短,這造成難以改良非揮發性記憶體裝置的結構及 特性:舉例而言,雖然為了有效率運作,具有控制閑極電 極及洋動閘極電極的非揮發性記憶體裝置應具有高耦合比 率,但是介於字線之間的間隔縮短造成難以確保此一高耦 合比率。 此外,由於字線寬度及介於相鄰字線之間的間隔小於選 擇線寬度及介於選擇線與字線之間的間隔,因而在將形成 選擇線之處的基板作用區可能歸因於負載效應(1〇ading effect)而受到蝕刻損壞。 隨著增加記憶體裝置整合程度,亦減小選擇電晶體的通 道長度,這造成短通道效應。舉例而言,因為通道區邊緣 W刀中的通道換雜濃度相對高於中心部分中的通道摻雜濃 度,所以易於發生衝穿(pUnchthrough)。另外,極有可能 在相鄰於選擇電晶體的記憶體電晶體處發生衝穿。 【發明内容】 1123H.doc 1300608 本發明㈣實施例提料導體裝置,其包括: Ϊ置:::於一基板之一作用區上,其中該作用區係藉由 第Η才ί圖案予以界定;—第一絕緣層’其係形成於該 f-閉極與該作用區之間;以及第一及第二雜質區 成^於㈣—閑極兩側的該作用區上,以相鄰於該第 :於該第二雜質區的該第-閘極之-第二部分的剖面: 在本發明之一也且體音 等裝置隔離層圖二;:中:交越該作用區與該 實質… 彳向時’該第一閘極之該第一部分 二:有-倒T形剖面’並且該第一開極之該第二部分 具有一相形剖面。 二ΓΓΓ具體實施例中’本發明提供_〇快閃記 1 m擇電晶體’其形成於-基板之-—上’其中該作用㈣藉由裝置隔離層圖案予以界 以及複數個記憶體電晶體,其形成於該作用區上,該 :::固記憶體電晶體係操作上串聯連接至該選擇電晶體: 二a選擇電晶體及該複數個記憶體電晶體之每—⑽體 堆疊間極結構,該堆疊閉極結構係用依二 區上的一第—絕緣層、一第—閘極、-第二絕 ”弟二問極予以組態,其中該記憶體電晶體的一第 今、=^1面形狀實質上相同於相鄰於該記憶體電晶體的 二電晶體的該第-開極之一第一部分的剖面形狀,並 。“己憶體電晶體對面之該選擇電晶體的該第一閘極之 112311.doc 1300608 一第二部分的剖面形狀不同於 之該第-部分的剖面形狀。、X 、日-的该第一閘極 在本發明進一步且濟為丨a 導體裝置之方法^ ^ ,,本發明提供一種製造半 成-第—絕緣層及|板之一作用區上形 由-梦番[ 導層圖案,其中該作用區传萨 由裝置隔離層圖宰予以只中·人 ρ用匕係猎 案之—部分,以形成:二下钱刻該裝置隔離層圖 隔離層圖荦t蓋兮篦/裝置隔離層圖案,該下部裝置 日q案覆盖该第-傳導圖案之一下部 面;餘刻該第-傳導層圖案之一 .一側表 成-縮窄之上㈣帛料 ㈣案之側表面,以形 口ρ圖案’該‘窄之卜立 -傳導Flh— 乍之上補案的寬度小於該第 該上部下部圖案的寬度,其中該第-傳導圖案之 化具^突出而高於該下部裝置隔離層圖案;圖案 、、“下部圖案及該縮窄之上部圖案的該第一傳導圖 案’以形成一具有一第一部八 刀及一第二部分之第-閘極, :弟“系仗5亥下部圖案及從該上部圖案予以圖案 :並且一第二部份係從相鄰該裝置隔離層圖案之該第一 =層予以圖案化;以及形成一第一雜質區及一第二雜質 …其分別相鄰於該第—閘極的該第一部份及該第二部 份0 在本發明其他具體實施例中,本發明提供一種製造 勵D快閃記憶體裝置之方法,該方法包括:在一基板之 :作用區上形成一第一絕緣層及一第一傳導層圖案,其中 該作:區係藉由一往一第—方向延伸之裝置隔離層圖案予 以界定;向下蝕刻該基板之形成一記憶體電晶體處之一第 112311 .doc 1300608 安斗 ^離層圖案,以形成一下部裝置隔離層圖 莱’该下部裝罢R5 t 、置隔離層圖案覆蓋該第一傳導圖案之一下部 圖案之一侧矣;^ . a 你 、,蝕刻該第一傳導層圖案之一上部圖案之 如也 一縮窄之上部圖案,該縮窄之上部圖案的 見度小於該第一值 他 寻導圖案之該下部圖案的寬度,其中該第 一傳導圖案之該 4圖案向上突出而高於該下部裝置隔離 曰圖案;在該裝置 ^ /置&離層圖案、該下部裝置隔離層圖案及 Φ ^第傳導層圖案上形成-第二絕緣層及-第二傳導層; 層及圖案化该第二傳導層、該第二絕緣層及該第一傳導 曰、在°亥第一區中從該第二傳導層形成該記憶體電晶體 之抆制閘極、從該第二絕緣層形成該記憶體電晶體之一 閘極層間絶緣層及從該第一傳導層形成該記憶體電晶體之 ’于動閘極’其中該記憶體電晶體之該控制閘極往一垂直 於4第方向之第二方向延伸並且交越於該作用區及該下 部裝置隔離層圖案上。 φ 【實施方式】 現在將詳細說明根據本發明之具體實施例,其實例繪示 於附圖。但是,本發明非限定於下文中描述之具體實施 例並且本文中引用具體實施例以使得輕易且完整瞭解本 發明之範疇及精神。在圖式中,基於清楚明白考量而绔大 層及區域的厚度。還應明白,當將一層聲稱係「位於另一 層或基板上」時,可能為直接在另一層上或可能有介於層 間的中間層。 θ 在圖式中,為了更明確闡釋本發明,元件大小或元件之 112311.doc 1300608 間的相對大小可能多少有些誇大。此外 中的夂插辨$ 饮…、I k製程 \、A,稍微修改®式巾所繪示之元件的形狀。因 一、月曰中所揭不之具體實施例不應視為限於圖式 繪示之形狀,而是應視為可在某些程度上予以修改, 成明書中特定提及除外。舉例而言,應明白 =元件形狀所使用的用詞(諸如「實質上」、「約」等曰中 W才曰在可允許之製程變更範疇内可修改該元件。 :明白,本文中使用用詞「列」及「行」來標 上的兩種不同方向,而非指示絕對的水平或垂直方向。= 或反之亦然。 千饤於x軸,且行係平行於y轴, 為了容易說明,來描述如圖所示之—元件或特徵相對於 八他凡件或特徵的關係’本文中會使用空間相對用詞,諸 如「下面」、「丁方」、「下部」、「上方」、「上部」等等廡 明―白^ 了圖中所描繪之定向以外,彼等空間相對用^ 預疋涵盖使用中或運作中之裝置的不同定向。例如, 圖式中的元件翻轉’則描述為在其他元件或特徵「下面 /或「下方」的元件或特徵,於是被定向成在其他元件或‘ 被「上方」。因此,示例柯田^^「 、 丁妁f生用3「下方」可涵蓋「上方 及「下方」兩種定向。可用其他方式來定向該裝韓 90度或以其他定向),並且據此解釋本文中使用的 對描述項。 二句祁 本文中使用的術語係僅用於描述特定具體實施例 途,並且非預定限制本發明。在本文令,單數形式「一 112311.doc 1300608 孩」預定也包括複數形式,除 表明。應進一步明白 #奋以其他方式明確 「包含」時,係用來明J 用用詞「包括」及/或 作、元件及/或組件之在 見體、y驟、操 特徵、實體、步驟、握从 次個以上其他 在或附加。 ㈣、元件、組件及/或其群組之存 本文中參考本發明之 概要圖解之μ _ ^ 例(及中間結構)的 ^ ° ®來描述本發明具體實施例。就1本身而 蝓,由於(舉例而言)製造 ,、身而 狀的變化係所預期;;1 ’來自於圖解之形 Λ PP ^ ^ ^ ^ 月之具體貫施例不應被視 f:所 不例之特定區域形狀,而是包括(舉例而言) >所致的形狀偏差。舉例而言,緣示為矩形的一植入之 區域將典型具有圓形或曲線特徵及/或位於其邊緣之植入 集切度’而非從植入之區域至非植入之區域的二進制變 更口此,圖式中所繪示之區域本質上係概要形式,並且 其形狀非預定用以繪示出一裝置之一區域的實質形狀,並 且非預定用以限制本發明之範4。除非以其他方式定義, 否則本文中使用的所有用詞(包括技術及科學用詞)具有相 同於热悉本發明所屬之技術的一般技術者所通常理解之意 義應進—步明白,用詞(諸如常用字典中所定義之用詞) 應被解釋為具有與相關技術背景中之意義一致的意義,並 且不應以理想化或過度形式意義予以解釋,惟本文中明確 定義除外。 本發明係關於一種半導體裝置及其製造方法,具體而 112311.doc -12- I3〇〇6〇8 言,基本上將闡述一種NAND快閃記憶體裝置,以作為本 發明具體實施例之實例。本發明之NAND快閃記憶體裝置 包括複數個記憶胞及其相關之選擇電晶體。當NAND快閃 記憶體裝置運作時,選擇電晶體之作用為施加一所要操作 電壓至一選擇電晶體或中斷該操作電壓。作為記憶胞,將 閣述一具有一堆疊閘極結構之記憶體電晶體作為實例。該 記憶體電晶體之該堆疊閘極結構包括··一浮動閘極,其藉 • 由一隧穿絕緣層而絕緣於一基板(一通道區);一控制閘 極’其藉由一閘極層間絕緣層而絕緣於該浮動閘極。當施 加一適當操作電壓至該基板、一源極、一汲極及該控制閘 極夺電荷從該基板移動穿過該隧穿絕緣層而至該浮動閘 " 或反之亦然。憑藉電荷移動,該記憶體電晶體具有 相對應於邏輯狀態的至少兩種可辨別的臨限電壓位準。 雖然因為選擇電晶體具有浮動閘極及控制閘極,所以選 擇=阳體的閘極結構相似於記憶體電晶體,但是因為選擇 _ “ 的浮動閘極及控制閘極係透過(例如)對接接觸而互 相電連接,所以選擇電晶體不同於記憶體電晶體。在闡述 ^ ^明具體實施例中,選擇電晶體的「浮動閘極」可稱為 々 ㊄極」,並且選擇電晶體的「控制閘極」可稱為 「第二閘極」。 …、 預先決定數目之記憶體電晶體(例如.,1 6、32..... ^。己隐體電晶體)被串聯連接以形成一記憶體串。一第一 ==晶體及—第二選擇電晶體分職連接至該記憶體串 弟-記憶體電晶體及最後記憶體電晶體。一位元線及— 112311.doc 13 1300608 共同源極線可分別連接至該第一選擇電晶體及該第二選擇 電晶體。 圖1緣示根據本發明-具體實施例之NAND_記憶體裝 置的概要平面圖。請參閱圖!,該NAND快閃記憶體裝置包 括一記憶體電晶體及一操作上耦合至該記憶體電晶體之選 擇電阳體。為了便於闡述,在下文闡述本發明具體實施例 中,在形成該記憶體電晶體處的區域10稱為「第一區」, ,以及在形成該選擇電晶體處的區域20稱為「第二區」。 在一半導體基板30上佈置往一第一方向(例如,列方向) I伸的複數個裝置隔離層圖案4〇。各別作用區5〇被界定在 該等隔離圖案40之間以使其往該第一方向延伸。該記憶體 電晶體被形成在該第一區1〇的作用區上,以及該選擇電晶 體被形成在該第二區20的作用區上。本文中,該第一區1〇 中在該第一方向延伸之每一作用區上的η個記憶體電晶體 被串聯連接,藉此形成一記憶體串。往一第二方向(例 | 如,行方向)佈置之該複數個記憶體電晶體的控制閘極被 互相連接,使得據此形成字線WL0〜WLn。替代做法為, 佈置在每一行中的該複數個記憶體電晶體的控制閘極被連 接至一字線。 5亥選擇電晶體被形成在該第二區2 0中,以使其連接至該 苐 & 1 0中的该$己彳思體電晶體。舉例而言,一第一選擇電 晶體(串選擇電晶體(string seiect transist〇r))被連接至每一 串聯之記憶體串的該第一記憶體電晶體,以及一第二選擇 電晶體(接地選擇電晶體(ground select transist〇r))被連接 112311.doc -14- 1300608 2每一串聯之記憶體串的最後記憶體電晶體。該第二區20 向佈置的該等第一選擇電晶體的第二閘極被互相 、接藉此形成一第一選擇線(或串選擇線ssl卜此外, 該第二區20中往列方向佈置的該等第二選擇電晶體的第二 1極破互相連接,藉此形成一第二選擇線(或接地選擇線 、)本文中,每一選擇電晶體的第一閘極及第二閘極係 透過對接接觸70而互相電連接。 在該半導體基板30上以鏡對稱且重複方式佈置一種用該 串,擇線SSL、該#地選擇線抓與佈置於其間之該複數 個字線WL0〜WLn所組態的複雜結構。一共同源極線CSL被 佈置在相鄰之第二選擇線GSL之間,並且依據第二選擇電 阳體疋否被開通或關斷,一施加至接地選擇線〇sL的操作 電壓(例如,〇 V)被轉遞至記憶體電晶體的源極/汲極。一 位凡線接觸DC被佈置在介於相鄰第一選擇線SSL之間的每 作用區中,並且位元線被電連接至每一位元線接觸 DC。依據第一選擇電晶體是否被開通或關斷,一施加至 位元線的操作電壓被施加至記憶體電晶體的源極/汲極。 圖1中以點虛線標示的一區域60具備該第一區10及該第 二區20中相鄰於該第一區1〇的一部分,其中下文將該區域 60稱為「倒T形閘極區」。形成於該倒τ形閘極區6〇中的選 擇電晶體之第一閘極及記憶體電晶體之浮動閘極分別具有 倒T形剖面。為了便於闡述,下文將該第二區2 〇中除該倒T 形閘極區60外的一區域80稱為「箱形閘極區」。 圖2繪示圖1之區域90的局部放大圖,該區域係介於形成 112311.doc -15 - 1300608 :己隱體電晶體之處的第一區1〇與形成選擇電晶體之處的第 區2〇之間的邊界區。請參閱圖2,選擇電晶體1〇〇包括一 閘極堆$結構及形成在該閘極堆疊結構兩側處之作用區上 的雜質區191S/D及193S/D ’其中該開極堆疊結構係用互相 電連接的第-閘極13〇與第二閘極17〇予以組態。同時,記 憶體電晶體200包括—閘極堆疊結構及形成在該閉極堆疊 ^構兩側處之作用區上的雜質區193S/D及291S/D,其中該 閑極堆疊結構係用一浮動閑極23〇及一藉由一閑極層間: 緣層而絕緣於該浮動閘極230的控制閘極270予以組態。1300608 IX. Description of the Invention: TECHNICAL FIELD The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a non-volatile memory device and a method of fabricating the same. [Prior Art] In general, a semiconductor memory device is classified into a volatile memory device and a nonvolatile memory device depending on whether or not it is required to supply power to retain the stored data. Volatile memory devices, such as Dynamic Random Access Memory (DRAM) and Static Random Access Memory (SRAM), have a fast speed of survival, but have the limitation of requiring power to retain data. Conversely, since non-volatile memory devices (such as flash memory devices) do not have this limitation, they are widely used in portable electronic devices where demand has increased in recent years. The ox, lyo, flash memory device includes a cell for storing data and a related device such as a selective transistor, a driving transistor or the like. The memory cells of the flash memory device mainly use a memory transistor similar to a typical transistor.鲈槿万徜 (10) The body of the electric body consists of a gate stack. The stacking structure on both sides of the gate stack structure is used to successively stack the upper edge of the L-gate layer and the floating-channel area. Can " ' ° ^ interlayer insulation layer and - control gate to give one. (4) The floating one of the memory transistor: the main and the latch: 〆, 1 is electrically insulated, and each of the sub-gates is a memory of the memory transistor + a plurality of memories arranged in the direction The idleness is broken and connected to each other as a word line. According to the layout of the memory transistor with the above structure of H2311.doc 1300608, the flash memory device can be mainly classified into a NAND type flash memory device and a type of earning flash memory. Body device. For NAND type flash memory cleaving, a selection transistor is connected to the memory transistor, and for example, the gates of the selection transistors arranged in the column direction are connected to each other to thereby form a selection line. At the same time, in order to reduce the price of semiconductor devices, it is necessary to increase the degree of integration, which causes several technical difficulties in manufacturing semiconductor devices. In particular, with highly integrated semiconductor devices, the spacing between adjacent word lines is also shortened, which makes it difficult to improve the structure and characteristics of non-volatile memory devices: for example, although operating efficiently The non-volatile memory device having the control of the idle electrode and the oceanic gate electrode should have a high coupling ratio, but the shortening of the interval between the word lines makes it difficult to ensure this high coupling ratio. In addition, since the word line width and the interval between adjacent word lines are smaller than the selection line width and the interval between the selection line and the word line, the substrate active area where the selection line is to be formed may be attributed to The load effect (1〇ading effect) is damaged by etching. As the degree of integration of the memory device is increased, the channel length of the selected transistor is also reduced, which causes a short channel effect. For example, since the channel exchange concentration in the edge of the channel region is relatively higher than the channel doping concentration in the central portion, pJnchthrough is apt to occur. In addition, it is highly probable that punch-through occurs at the memory transistor adjacent to the selected transistor. [Description of the Invention] 1123H.doc 1300608 In the fourth embodiment of the present invention, the apparatus for extracting conductors includes: Ϊ::: on an active area of a substrate, wherein the active area is defined by a second pattern; a first insulating layer formed between the f-closed electrode and the active region; and the first and second impurity regions are formed on the active region on both sides of the (four)-idal pole to be adjacent to the a cross section of the second portion of the first gate electrode in the second impurity region: in the device isolation layer of the present invention, and the like; The first portion of the first gate is two: an inverted-T-shaped profile and the second portion of the first opening has a phase profile. In a specific embodiment, the present invention provides a m flash flash 1 m electret crystal formed on a substrate - wherein the action (4) is bounded by a device isolation layer pattern and a plurality of memory transistors, Formed on the active area, the:::solid memory electro-optic system is operatively connected in series to the selective transistor: two a-selective transistor and each of the plurality of memory transistors - (10) body stack structure The stacked closed-pole structure is configured by a first-insulation layer, a first-gate, and a second-second two-pole on the second region, wherein the memory transistor is a first, The surface shape of the ^1 is substantially the same as the cross-sectional shape of the first portion of the first opening electrode of the two transistors adjacent to the memory transistor, and the "selective transistor of the opposite side of the memory cell" The first gate 112311.doc 1300608 has a second portion having a different cross-sectional shape than the first portion. The first gate of X, the day-day is in the method of the present invention, and the method of manufacturing the semi-inductive layer and the plate is formed on the active region of the device. -Meng Fan [Guide layer pattern, in which the action area is transmitted by the device isolation layer, and only the middle part of the person is used for the hunting case - to form: the second layer of the device isolating the isolation layer map of the device荦t 兮篦 兮篦 / device isolation layer pattern, the lower device day q case covers one of the lower surface of the first conductive pattern; the remaining one of the first conductive layer pattern. One side is formed - narrowed above (four) 帛The side surface of the material (4) is shaped by the shape of the shape ρ, which is narrower than the width of the upper lower pattern, wherein the width of the first upper pattern is smaller than the width of the first upper pattern. Protruding and higher than the lower device isolation layer pattern; the pattern, the "lower pattern and the first conductive pattern of the narrowed upper pattern" to form a first gate having a first portion of eight knives and a second portion Extremely, the younger brother "" 仗 5 Hai lower pattern and pattern from the upper pattern: and a second a portion is patterned from the first layer of the isolation layer pattern adjacent to the device; and a first impurity region and a second impurity are formed adjacent to the first portion of the first gate and In a second embodiment of the present invention, the present invention provides a method for fabricating a D-flash memory device, the method comprising: forming a first insulating layer and a region on a substrate: an active region a first conductive layer pattern, wherein the region is defined by a device isolation layer pattern extending in a first direction; the substrate is etched down to form a memory transistor portion 112311.doc 1300608A The layer is separated from the layer to form a lower device isolation layer. The lower portion of the first pattern is covered with one of the lower patterns of the first conductive pattern; ^. a, etch the The upper pattern of one of the first conductive layer patterns is also narrowed to the upper pattern, and the narrowed upper portion has a smaller visibility than the first value of the lower pattern of the first search pattern, wherein the first conductive pattern The pattern of the 4 Projecting a higher than the lower device isolation 曰 pattern; forming a second insulating layer and a second conductive layer on the device/disposing layer pattern, the lower device isolation layer pattern, and the Φ^ conductive layer pattern; Layering and patterning the second conductive layer, the second insulating layer, and the first conductive germanium, forming a gate of the memory transistor from the second conductive layer in the first region of the first phase, from the first The second insulating layer forms a gate interlayer insulating layer of the memory transistor and forms a 'moving gate' of the memory transistor from the first conductive layer, wherein the control gate of the memory transistor is vertical And extending in the second direction of the fourth direction and crossing the active area and the lower device isolation layer pattern. φ [Embodiment] Specific embodiments according to the present invention will now be described in detail, examples of which are illustrated in the accompanying drawings. However, the present invention is not limited to the specific embodiments described hereinafter and the specific embodiments are cited herein so that the scope and spirit of the invention can be easily and completely understood. In the drawings, the thickness of layers and regions is increased based on a clear understanding. It should also be understood that when a layer of claim is "located on another layer or substrate", it may be directly on the other layer or there may be intermediate layers between the layers. θ In the drawings, the relative sizes of the element sizes or components 112311.doc 1300608 may be somewhat exaggerated in order to more clearly illustrate the invention. In addition, the cuttings in the $, ..., I k process \, A, slightly modify the shape of the components depicted by the ® towel. 1. The specific examples that are not disclosed in the New Moons should not be considered as limited to the shape shown in the drawings, but should be considered to be modified to some extent, except in the specific references in the written book. For example, it should be understood that the terms used in the shape of the component (such as "substantially", "about", etc.) can be modified within the scope of allowable process changes. The words "column" and "row" are marked in two different directions, rather than indicating absolute horizontal or vertical direction. = or vice versa. Millennium is on the x-axis and the line is parallel to the y-axis. For ease of explanation, To describe the relationship between a component or feature relative to an eight component or feature as shown in the figure, space-relative terms such as "below", "square", "lower", "above", " In addition to the orientation depicted in the figure, the space above is used to cover different orientations of the device in use or in operation. For example, the component flip in the schema is described as Elements or features that are "below/or below" of other components or features are then oriented to be "above" other components or components. Therefore, the example Kodak ^^", Ding Yu fsheng 3 "below" can be Covers both "above and below" Orientation. The method can be used to orient the Han 90 or other orientations, and the pair of descriptions used herein are interpreted accordingly. The terminology used herein is for the purpose of describing particular embodiments, and is not intended to limit the invention. In this document, the singular form "a 112311.doc 1300608 child" is also intended to include the plural form, except as indicated. It should be further understood that when Fen is explicitly "contained" in other ways, it is used to describe the use of the words "including" and / or the components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components, components Grip from the next one or more in the other. (IV) </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; As far as 1 is concerned, since (for example) manufacturing, the change of body shape is expected;; 1 'from the shape of the diagram Λ PP ^ ^ ^ ^ The specific embodiment of the month should not be regarded as f: The specific area shape is not exemplified, but includes, for example, the shape deviation caused by >. For example, an implanted region with a rectangular shape will typically have a circular or curved feature and/or an implant set divergence at its edge rather than a binary from the implanted region to the non-implanted region. </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Unless otherwise defined, all terms used herein (including technical and scientific terms) have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Terms such as those defined in commonly used dictionaries are to be interpreted as having meaning consistent with the meaning in the relevant technical background, and should not be interpreted in an idealized or excessively formal sense, except as expressly defined herein. SUMMARY OF THE INVENTION The present invention is directed to a semiconductor device and a method of fabricating the same, and in particular, a NAND flash memory device will be described as an example of a specific embodiment of the present invention. The NAND flash memory device of the present invention includes a plurality of memory cells and associated selection transistors. When the NAND flash memory device is operating, the transistor is selected to apply a desired operating voltage to a select transistor or to interrupt the operating voltage. As a memory cell, a memory transistor having a stacked gate structure will be described as an example. The stacked gate structure of the memory transistor includes a floating gate insulated from a substrate (a channel region) by a tunneling insulating layer; and a gate is controlled by a gate An interlayer insulating layer is insulated from the floating gate. When a suitable operating voltage is applied to the substrate, a source, a drain, and the control gate is charged from the substrate through the tunneling insulating layer to the floating gate " or vice versa. By virtue of charge transfer, the memory transistor has at least two discernable threshold voltage levels corresponding to logic states. Although the gate structure of the select = male body is similar to the memory transistor because the selected transistor has a floating gate and a control gate, the floating gate and the control gate are selected to pass through, for example, butt contact. And electrically connected to each other, so the choice of the transistor is different from the memory transistor. In the specific embodiment, the "floating gate" of the transistor can be called the "five poles" and the control of the transistor is selected. The gate can be called the "second gate". ..., a predetermined number of memory transistors (for example, 16.6, 32..... ^. Hidden transistors) are connected in series to form a memory string. A first == crystal and a second selected transistor are connected to the memory string memory cell and the last memory cell. One bit line and — 112311.doc 13 1300608 The common source line can be respectively connected to the first selection transistor and the second selection transistor. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic plan view of a NAND_memory device in accordance with the present invention. Please see the picture! The NAND flash memory device includes a memory transistor and a selected electrical body operatively coupled to the memory transistor. For ease of explanation, in the following description of the specific embodiment of the present invention, the region 10 at which the memory transistor is formed is referred to as a "first region", and the region 20 at which the selective transistor is formed is referred to as a "second region". Area". A plurality of device isolation layer patterns 4A extending in a first direction (for example, column direction) I are disposed on a semiconductor substrate 30. The respective active areas 5〇 are defined between the isolation patterns 40 to extend in the first direction. The memory transistor is formed on the active region of the first region 1 , and the selective electro-optic body is formed on the active region of the second region 20. Herein, n memory transistors in each of the first regions 1 延伸 extending in the first direction are connected in series, thereby forming a memory string. The control gates of the plurality of memory transistors arranged in a second direction (e.g., the row direction) are connected to each other such that the word lines WL0 WL WLn are formed accordingly. Alternatively, the control gates of the plurality of memory transistors arranged in each row are connected to a word line. A 5 watt selection transistor is formed in the second region 20 to connect it to the 彳 彳 彳 transistor in the 苐 & For example, a first selection transistor (string seiect transist) is connected to the first memory transistor of each serial memory string, and a second selection transistor ( A ground select transist is connected to 112311.doc -14- 1300608 2 the last memory transistor of each series of memory strings. The second gates of the first selection transistors arranged in the second region 20 are connected to each other to form a first selection line (or string selection line ssl. Further, the second region 20 is in the direction of the column Arranging the second one poles of the second selection transistors to be interconnected, thereby forming a second selection line (or ground selection line), wherein the first gate and the second gate of each selection transistor are selected herein The poles are electrically connected to each other through the butt contact 70. A plurality of word lines WL0 are arranged on the semiconductor substrate 30 in a mirror symmetrical and repeating manner with the string, the line selection SSL, and the #地 selection line being disposed therebetween. ~ WLn configured complex structure. A common source line CSL is arranged between the adjacent second selection line GSL, and according to the second selection of the electrical anode is turned on or off, one applied to the ground selection The operating voltage of line 〇sL (eg, 〇V) is forwarded to the source/drain of the memory transistor. One of the lines of contact DC is placed between each adjacent first line of choice SSL. In the zone, and the bit line is electrically connected to each bit line contact DC. A selection transistor is turned on or off, and an operating voltage applied to the bit line is applied to the source/drain of the memory transistor. A region 60 indicated by a dashed dotted line in FIG. 1 has the first region. 10 and a portion of the second region 20 adjacent to the first region 1 ,, wherein the region 60 is hereinafter referred to as an "inverted T-shaped gate region". Formed in the inverted τ-shaped gate region 6〇 The first gate of the selected transistor and the floating gate of the memory transistor respectively have an inverted T-shaped cross section. For convenience of explanation, an area of the second region 2 除 except the inverted T-shaped gate region 60 is hereinafter described. 80 is referred to as a "box-shaped gate region". Figure 2 is a partial enlarged view of a region 90 of Figure 1, which is in the first region where 112311.doc -15 - 1300608: a hidden body transistor is formed. The boundary region between the first region and the second region where the selective transistor is formed. Referring to FIG. 2, the selection transistor 1 includes a gate stack structure and is formed on both sides of the gate stack structure. Impurity regions 191S/D and 193S/D' on the active region, wherein the open-pole stack structure is electrically connected to the first gate 13〇 and the second The gate electrode 17 is configured. Meanwhile, the memory transistor 200 includes a gate stack structure and impurity regions 193S/D and 291S/D formed on the active regions at both sides of the closed-pole stack structure, wherein The idler stack structure is configured with a floating idler 23 and a control gate 270 insulated from the floating gate 230 by a free interlayer: edge layer.
该記憶體電晶體200的該浮動閘極23〇之結構不同於該選 擇電晶體100的該第一閘極13〇之結構。詳言之,該選擇電 晶體1〇〇的該第—閘極13〇可被劃分成兩個部分,其中一: 分,-結構上相似於該記憶體電晶體之該浮動閘極㈣ 的弟一部分135,以及另一部分係一結構上不同於該浮動 閘極230的第二部分137。該第一閘極13()的該第一部分⑴ 被佈置成相鄰於該記憶體電晶體’即,相鄰於該雜質區 193S/D。反之’該第一閘極13〇的該第二部分m被佈置成 相鄰於該位元線接觸DC (其在該記憶體電晶體2〇〇的對 面)’即’相鄰於該雜質區1 9 1 S/D。 下文將參考圖3至9更詳盡地闡述根據本發明—具體實施 例之選擇電晶體及記憶體電晶體。 圖3所示之剖面圖係沿圖二之;^,線為例,即,行進通過 該第二區20之該箱形閘極請中的該裝置隔離層⑽及該作 用區的㈣決定方向,以展示出該選擇電晶體⑽之該 112311.doc -16- Ϊ300608 第-閘極13〇的該第二部分137之剖面圖。圖4所示之叫面 圖係沿圖2之Π-Π,線為例,即,行進通過該第二區2〇之該 倒T形閘極區6〇中的該裝置隔離層4()及該作用區π的預先 決定方向’以展示出該選擇電晶體1〇〇之該第一閘極13〇的 該第-部分135之剖面ffl。圖5所示之剖面圖係沿^之仙 仙線為例,即,行進通過該第:㈣之該對接接觸區7〇 中的該裝置隔離層40及該作用區5〇的預先決定方向,以展The structure of the floating gate 23A of the memory transistor 200 is different from the structure of the first gate 13A of the selective transistor 100. In detail, the first gate 13A of the selected transistor 1〇〇 can be divided into two parts, one of which: a minute, a structure similar to the floating gate of the memory transistor (four) A portion 135, and another portion, is a second portion 137 that is structurally distinct from the floating gate 230. The first portion (1) of the first gate 13() is disposed adjacent to the memory transistor 'i.e., adjacent to the impurity region 193S/D. Conversely, the second portion m of the first gate 13A is arranged adjacent to the bit line contact DC (which is opposite the memory transistor 2〇〇) 'that is' adjacent to the impurity region 1 9 1 S/D. The selection of the transistor and the memory transistor in accordance with the present invention - a specific embodiment will be explained in more detail below with reference to Figs. The cross-sectional view shown in FIG. 3 is taken along the line of FIG. 2; that is, the device isolation layer (10) in the box-shaped gate that travels through the second region 20 and the (four) direction of the active region To show a cross-sectional view of the second portion 137 of the 112311.doc-16-Ϊ300608 first-gate 13〇 of the selected transistor (10). Figure 4 is a cross-sectional view taken along line Π-Π of Figure 2, that is, the device isolation layer 4 () in the inverted T-shaped gate region 6〇 traveling through the second region 2〇 And a predetermined direction ′ of the active region π to exhibit a cross-section ff1 of the first portion 135 of the first gate 13A of the selected transistor 1〇〇. The cross-sectional view shown in FIG. 5 is taken along the line of the fairy line of the ^, that is, the predetermined direction of the device isolation layer 40 and the action area 5〇 in the butt contact area 7〇 of the (4th). Exhibition
示出介於該選擇電晶體⑽之該第—閘極13Q與該第二開極 Ϊ70之間的電連接。 請參閱圖3,該選擇電晶體1〇〇之該第一閑的該第 二部分137具有似箱形形狀。但是,請參閱圖4,該選擇電 晶體u)〇之該第一閘極130的該第一部分135實質上具有似 倒τ形形狀。舉例而言’該第一閘極13〇的該第一部分⑶ 可被劃分成一水平部分131及一垂直部分133 (其連接至該 水平部分131且相對於該基板3〇向上延伸),其中該垂直部 分133之寬度小於該水平部分131之寬度。一第一絕緣層 110被佈置於該選擇電晶體100之該第一閘極13〇與該作用 區5〇之間。請參閱圖5 ’該第一閉極13〇及該第二問㈣ 係透過第二絕緣層150之一預先決定區(即,對接接觸區7〇) 而互相電連接。 請參閱圖3至圖5,在該第二區2〇之該箱形閘極區⑼中, 相鄰於該第—閘極13G之該第二部分137的該裝置隔離層4〇 之頂部表面高度實質上等於該第一閘極13〇之該第二部分 137的頂部表面高度。即,在該第二區财,該裝置隔離 H2311.doc 1300608 層大部分地覆蓋該第一閉極13〇之該第二部分4的側表 面。但是’請參閱圖4',在該倒Τ形閘極區60中,相鄰於該 第-閘極13〇之該第-部分135的該裝置隔離層屬之頂部表 面高度實質上等於該第-部分135之該水平部分i3i的頂部 表面向度。在該箱形閘極區8〇中相對較高之裝置隔離層的 作用係,在閘極圖案化製程期間防止作用區因蝕員 壞。 、 圖6所示之剖面圖係沿圖2之^畏線為例,即,行進通 過該第一區H)中的該裝置隔離層4〇及該作用區卿預先決 定方向’以展示出該記憶體電晶體·之該浮動間極23〇的 剖面圖。請參閱圖6,該記憶體電晶體2〇〇的該浮動閘極 230具有倒T形剖面。舉例而言,讀浮動閘極230可被割分 成一水平部分231及—垂直部分M3 (其連接至該水平部分 23丨且相對於該基板3〇向上延伸),其中該垂直部分2%之 寬度小於該水平部分231之寬度。在本份說明書中,記憶 體電晶體之浮動閘極的水平部分231及垂直部分233可分^ 2為下部傳導圖案及上部傳導圖案。—隨穿絕緣層21〇被 ^㈣閘極230與該作用㈣之間。該浮動閘極23〇 與綱間極270係藉由一插入於其間的閉極層間絕緣層 〇而互相絕緣。相鄰於該浮動閘極23〇的該裝置隔離層40 之頂部表面高度實質上等於該浮動閘極230之該水平部分 231的頂部表面高度。 可根據具體實施例多方面地修改該裝置隔離層4 0之高 X同k使形成於該第二區2〇之該箱形閉極區上的該裝 U2311.doc 1300608 置隔離層40高於形成於該倒T形閘極區60中之該裝置隔離 層40。舉例而言,在該第一區10中形成該裝置隔離層4〇, 以使其可低於該作用區50,或可高於該浮動閘極230之該 水平部分231的頂部表面。 該選擇電晶體的該第一絕緣層110及該記憶體電晶體的 該隧穿絕緣層21 0可從同一層予以形成。舉例而言,該第 一絕緣層110及該隧穿絕緣層210可用一具有20埃至200埃 I 範圍内之厚度的氧化矽層予以形成。但是,非限定於上文 所述,所以亦可用一高介電常數之金屬絕緣層予以形成。 該選擇電晶體的該第一閘極130及該記憶體電晶體的該浮 動閘極230可從同一層予以形成。舉例而言,該第一閘極 13 0及该浮動閘極2 3 0可用石夕予以形成。同樣地,該選擇電 晶體的該第二閘極170及該記憶體電晶體的該控制閘極27〇 可從同一層予以形成。舉例而言,該第二閘極17〇及該控 制閘極270可用矽、矽化物、金屬材料或其組合予以形 _ 成。遠選擇電晶體的該第二絕緣層15 0及該記憶體電晶體 的遠閘極層間絕緣層250可從同一層予以形成。舉例而 言,該第二絕緣層150及該閘極層間絕緣層25〇可能係一種 用下列各層所組態的多層:一具有3〇埃至8〇埃範圍内之厚 度的氧化矽層;一具有50埃至15〇埃範圍内之厚度的氮化 矽層;及一具有30埃至100埃範圍内之厚度的氧化矽層。 圖7及8分別繪示以沿作用區5〇延伸方向(圖2之ν_ν,及νι_ vm)為例之記憶體電晶體及選擇電晶體的剖面圖。請參 閱圖7及圖8 ’該選擇電晶體1〇〇包括對稱形成的雜質區 112311.doc -19- 1300608 191S/D及193S/D。本文中,雜質區對稱性意的 摻雜濃度及/或相距於基板之表面的深度可能不同於另一 雜質區。相鄰於該第二部分137 (即,相鄰於該汲極接觸 DC)的該雜質區19蘭之摻雜濃度高於且接面深度深於相 鄰於該選擇電晶請之該第一閘極13〇之該第一部分135 (即,相鄰於該記憶體電晶體2〇〇)該雜質區193S/d之摻雜 濃度及接面深度。 由於相鄰於該記憶體電晶體2〇〇的該雜質區1938/〇具有 相對低摻雜濃度及淺接面深度,因而有可能減小記憶體裝 置運作中在該記憶體電晶體2〇〇下方之通道區中產生的通 道熱電子(channel hot electron)效應及/或閘極引發汲極漏 電流(gate induced drain leakage ; GIDL)效應。同時,由於 相鄰於該汲極接觸DC的該雜質區191S/D具有相對高摻雜 濃度及深接面深度,因而可最小化接面漏電流,以改良耐 壓特性。此外,可能在相鄰於該汲極接觸DC的該雜質區 191 S/D上形成一具有適用屬性的矽化物層。 另外,在该選擇電晶體100中,在該第一閘極13〇之該第 一部分135下方的一通道區之一第一部分的通道摻雜濃度 可不同於在該第一閘極13〇之該第二部分137下方的該通道 區之該第二部分的通道摻雜濃度。舉例而言,在該第一閘 極130之該第一部分135下方的通道摻雜濃度可高於在該第 二部分137下方的通道摻雜濃度。即,該第二部分137可被 厚厚地形成為箱形,反之,因為該第一部分135具有倒τ形 形狀’所以可被形成為相對薄於該第二部分丨3 7。因此, 112311.doc -20- Ϊ300608 有可能輕易地適當控制該第一部分丨3 5下方的通道區之摻 雜濃度。由於可控制通道摻雜濃度,所以有可能抑制因裝 置而度整合而造成選擇電晶體100衝穿。舉例而言,藉由 用離子植入製程,透過該水平部分m將雜質離子注入至 5亥通道區中’可增加在該薄水平部分13 1下方的通道區之 通道摻雜濃度。由於該記憶體電晶體2〇〇的該浮動閘極23〇 亦具有該水平部分23 1,所以有可能很容易地藉由用離子 植入製程透過該水平部分231來控制通道區之摻雜濃度。 下文將參考圖9A、9B及10更詳細闡述根據本發明一具 體實施例之記憶體電晶體。圖9A繪示沿行方向(沿控制閘 極延伸方向)為例之浮動閘極的概要剖面圖;以及圖吒繪 示該浮動閘極之佈置的透視圖。為了便於闡述,在圖9中 僅顯示出四個浮動閘極。 凊參閱圖9 A,根據本發明示範性具體實施例之浮動閘極 電極230包括該水平部分231及該垂直部分233。在此具體 貝她例中,该水平部分23丨及該垂直部分233係從同一層予 以形成。該垂直部分233係從該水平部分23丨之頂部表面的 一預先決定部分突出。該垂直部分233的寬度w2小於該水 平部分231的寬度Wl,並且該垂直部分233的厚度、大於該 水平部分23i的厚度hl。同時,該垂直部分233的剖面面積 S2大於該水平部分231的剖面面積&,其中Sf%a!及 S2 = W2Xh2。 ;為了體現高度整合之半導體裝置,希望形成儘可能窄的 »亥水平》23 1 °較佳方式為,該水平部分23 i的厚度^儘 112311.doc 1300608 可能小’以最小化介於而I古 、J方向互相相鄰之水平部分之間的 干擾,及/或最小化介於行方向互相相鄰之水平部分之間 的干擾才艮據本發明具體實施例,該水平部分Μ】的厚度 h可取決於薄膜沉積製程技術及㈣製程,因此該水平部 分231可破形成為非常薄。同時,該垂直部分加可被形成 為儘可能窄,以增加介於相鄰垂直部分之間的間隔。根據 此具體貫施例’藉㈣當㈣㈣條件(例如,敍刻時 間)’有可能控制該垂直部分加之寬度W2,使其具所要之 寬度。滿足如下條件:該垂直部分233的剖面面積心大於 »亥垂直。P刀233的剖面面積Si ;及該垂直部分的寬度% 小於該水平部分231的寬度w】,則有可能適當改變該垂直 部分加及該水平部分231的寬度及厚度,使得其適用於體 現具有咼耦合比率及高度整合程度的裝置。 下文將參考圖9B來詳細描述根據本發明具體實施例之浮 二間極電極的效果或優點。為了便於闊述,四個浮動閑極 別稱為第一浮動間極電極23〇上第二浮動閘極電 9^Λ ~2弟二斤動閘極電極230-3及第四浮動閘極電極 4 :該第一浮動閘極電極23〇—α該第二浮動閘極電極 ——係佈置在第一列中,該第三浮動閘極電極230_3及該 弟四浮動閉極電極230-4係佈置在第二列中。該第L浮動 1 Φ·電極23G—1及該第三浮動閘極電極23Q—3係佈置一 =中’該第二浮動閘極電極23〇 一 2及該第四浮動閉極電極 23〇〜4係佈置在第二行中。 首先’將提出介於列方向互相相鄰之浮動問極電極之間 112311.doc -22- 1300608 的干擾。根據此具體實施例,浮動閘極電極之剖面係用該 水平部分231及該垂直部分233予以組態。即,浮動閘極電 極具有倒τ形剖面。因此,介於該第一浮動閘極電極23(L1 之該垂直部分233-1與該第二浮動閘極電極23〇-2之該垂直 部分233—2之間的距離4大於介於該水平部分23 1 1與水平 部分231 一2之間的距離t,使得可減小介於相鄰浮動閘極 電極之間的干擾。 此外,由於該水平部分可被形成為儘可能薄,所以介於 列方向互相相鄰之兩個水平部分231 — 1與231—2之間的面對 面積S3非常小,所以即使介於水平部分2”^與231 2之間 的距離ch變短,仍然可以忽視干擾。同時,雖然列方向互 相相鄰之垂直部分233一 1與231—2為了高耦合比率而具有大 厚度^,以使介於該等垂直部分233一1與231—2之間的面對 面積S4變大,但是因為介於該等垂直部分233-1與231一2之 間的長度足夠長,所以不再使干擾增加。如上文所述,由 於垂直部分的寬度變小,所以介於該兩個垂直部分 233一 1與231 一 2之間的距離ds增加,這實現減小介於列方向 互相相鄰之該等垂直部分之間的干擾。 下文,將提出介於行方向互相相鄰之浮動閘極電極之間 的干擾。介於該第一浮動閘極電極230一1與該第三浮動閘 極電極230—3之間的干擾取決於總面對面積S^TAL,這是介 於忒等水平σ卩分之間的面對面積(s】=WiX h】)加介於該等垂 直p刀之間的面對面積d=W2X h)之總和。本文中,由於 垂直部分具有窄寬度W2,所以可減小介於列方向互相相鄰 112311.doc * 23 - 1300608 之浮動閘極之間的干擾。 請注意,圖9A及9B中的浮動閘極電極230係為了便於闡 述而繪示,並且因此可按照各種製造製程來稍微修改其形 狀。因此,應明白,具體實施例之浮動閘極電極的形狀非 限於圖9A及9B所示及上文所述的形狀,而是可在可允許 之製造製程變更範疇内予以修改。舉例而言,即使所闡述 之層或兀件具有柔表面,但是其可具有些許粗糙表面,而 _ 不疋柔表面。同樣地,即使所闡述之層或元件具有平坦表 面’但是其可具有些許柔及粗糙表面,而不是平坦表面。 此外’即使所闡述之層或元件具有垂直侧壁,但是其可具 有些許傾斜側壁。舉例而言,雖然圖从及9B中概要繪示 出浮動閘極電極具有平坦表面,即,水平部分及垂直部分 之表面係平坦,但是其可具有柔或些許粗糙表面。另外, 雖然圖9A及9B中繪示出浮動閘極電極的側表面(即,水平 部分及垂直部分之側表面)係垂直,但是其可被形成為稍 • 微傾斜。另外,垂直部分之寬度可隨著其相隔於基板愈來 愈遠而愈來愈增大。同樣地,水平部分之寬度可隨著其相 隔於基板愈來愈遠而愈來愈增大。 下文將參考圖10來闡述各種浮動閘極電極之實例。請參 閱圖10,浮動閘極電極230,之水平部分231,被形成而使其 頂部表面傾斜。此外,垂直部分233,被形成而亦使其側表 面傾斜。圖1 0之浮動閘極電極似乎係藉由磨擦圖9A及犯 中之淨動間極電極予以形成,但是其基本上仍然具有倒丁 形。可明白,圖10所示之浮動閘極電極23〇,之垂直部分 1123n.doc -24- 1300608 23 3的側表面被开》成為些許傾斜,使得垂直部分u3,的寬 度隨高度變化時,則圖9AA9B所示之垂直部分的寬度% 對應於垂直部分233,的最大寬度%,。同樣地,圖1〇所示之 浮動閘極電極230,之水平部分231,的頂部表面係傾斜,使 得水平部分231,的寬度隨高度變化時,則圖9A及9B所示之 水平部分的寬度%對應於水平部分231,的最大寬度%,。 如上文所述,該水平部分231,的最大寬度%,大於該垂直 • 部分233,的最大寬度W2,,並且該水平部分231,的剖面面積 8〗大於該垂直部分233,的剖面面積&。該水平部分231,的 最大寬度W!,可比該垂直部分233,的最大寬度w/大15〜25 倍。 ’ 參考圖9A、9B及1〇所述之記憶體電晶體之浮動閘極形 狀的各種修改,同樣亦適用於選擇電晶體之第一閘極之第 一部分。 下文,將參考圖11至18來詳細說明根據本發明具體實施 _ 例的製造NAND快閃記憶體裝置之方法。請參閱圖丨丨,實 行一裝置隔離製程,以在一基板300上形成一往列方向延 伸(即,y軸)之裝置隔離層圖案4〇〇。因此,憑藉該裝置隔 離層圖案400而界定若干作用區5 〇〇。在各自作用區$⑼上 形成一第一絕緣層600及一第一傳導圖案700。該第一傳導 圖案700在該作用區500上自行對準。詳言之,在該美板 300上形成該第一絕緣層6〇〇的一絕緣層及該第一傳導層图 案700的一傳導層。其後,該傳導層、該絕緣層及該基板 3〇〇之一部分被蝕刻至預先決定厚度,以界定一裳置隔離 112311 .doc -25- 1300608 區。因此,該作用區500被界定在該基板3〇〇中,並且該第 /緣層600及该第一傳導層圖案7〇〇在該作用區上自 行對準、纟巴緣材料被填入至該裝置隔離區中,其中藉由 :虫刻去除預先決定部分,藉此形成該裝置隔離層圖案 本文中,可達成形成該裝置隔離層圖4⑽ 為,在沉積該絕緣材料後,實行平坦化製程,諸如化學機 械研磨(CMP)或回蝕製程。 :例而言,該第一傳導圖案700 (其係用作選擇電晶體的 :閘極及記憶體電晶體的浮動閘極)可用矽予以形成。 該第一絕緣層_(其係用作選擇電晶體的閘極絕緣層及記 憶體電晶體的随穿絕緣層)可用一具有2〇埃至2⑼埃範圍内 之厚度的氧切層予以形成’但是非限定於上文所述,所 以該第-絕緣層_可用一高介電常數之金屬絕緣層予以 形成。 ^閱圖12’在該第一傳導層圖案彻及該裝置 圖案柳上形成-遮罩_,以曝露倒了形閘極③。即: _0同時曝露該第一區及該第二區中相鄰於該第一區 遮罩8〇〇可用具有相對於該第-傳導圖案7。。 ”以装置隔離層圖案4〇〇之蝕刻選擇性的材料 舉例而言,該遮罩800可用氮化矽予以 ^。 罩_曝露該第二區之該部分及該第一區成這=,、遮 該第二區中的該選擇電晶體之該第 ϋ成於 有倒Τ形體形。 之"亥弟一部分具 請參閱圖13,該裝置隔離層圖案彻(其未被該倒Τ形問 112311.doc -26- 1300608 ,以形成一下部裝 一傳導圖案700)。 一傳導層圖案700 =之該遮罩_所覆蓋)被局部去除 離層圖案410 (其頂部表面低於該第 二下部裝置隔離層圖案410局部曝露該第 的側表面。 請參閱圖14,該第一傳導 #刻m… 圖案700的該曝露之側表面被 I’、6亥第一傳導層圖案7〇〇的寬度。具有窄寬度 圖二乍:第一傳導層圖案710 (其相對於該下部裝置隔離: ^之頂部表面向上突出)係用作該倒T形閘極的垂直 ,同時,6亥下部裝置隔離層圖案41〇所圍繞的其餘第 傳V圖案730 (其佈置在該縮窄之第一傳導層圖案no下 方)係用作該倒丁形閘極的水平部分。舉例而言,可藉由 使用預先決定㈣溶液進行錢刻製程,來實行㈣該第 傳導層圖案7〇〇的該曝露之側表面。替代做法為,亦可 使用餘刻氣體來進行乾㈣製程。假使使用祕刻製程, 則蝕刻溶液含有NH4〇H。 请參閱圖15,該遮罩800被去除,以曝露該第二區之該 粕形閘極區中的該裝置隔離層圖案4〇〇及該第一傳導層圖 案 700。 請參閱圖16及圖17,形成一第二絕緣層9〇〇及一第二傳 導層⑼後’形成閘極遮罩1100a和11 00b以界定記憶體電 晶體之控制閘極及選擇電晶體之第二閘極,其中該等閘極 遮罩1100a和1100b係往列方向(即,X軸)延伸。 請參閱圖18,使用該等閘極遮罩uooa和ii〇〇b作為餘刻 遮罩,蝕刻該第二傳導層1〇〇〇、該第二絕緣層900及該第 112311.doc -27- 1300608 一傳導層圖案700,藉此形成記憶體電晶體之堆疊閘極結 構及選擇電晶體之堆疊閘極結構。記憶體電晶體之堆疊閘 極、纟。構包括·用該第一傳導層圖案形成之浮動閘極;用該 第二絕緣層形成之閘極層間絕緣層;及用該第二傳導層形 成之控制閘極。選擇電晶體之堆疊閘極結構包括:用該第 傳V層圖案形成之第一閘極;用該第二絕緣層形成之閉 極層間絕緣層;及用該第二傳導層形成之第二閘極。 根據本發明具體實施例,由於在形成該選擇電晶體之處 的該第二區之該裝置隔離層400的厚度相對厚於在形成該 =憶體電晶體之處的該第二區之該下部裝置隔離層的 厚度,因而在形成堆疊閘極結構之蝕刻製程期間,有可能 防止歸因於,亥第二區中之負載效應而使作用區受到钱刻損 裏蛑:例而5,如果該第一區及該第二區的裝置隔離層具 有幾乎相同之厚度,則在形成堆疊閘極結構之蝕刻製程期 可能歸因於負載效應而使該第二區之基板受到韻刻損 壞。原因係該等記憶體電晶體係緊密地形成於該第一區 而該4選擇電晶體係稀疏地形成於稀疏該第二區中, 匕孩第一區之基板終究可受到蝕刻損壞。然而, =發明具體實施例,由於該第二區的該裝置隔離層之 亥第-區的該裝置隔離層之厚度,因而有可能有效率 δ亥基板党到蝕刻損壞、換言之,根據本發明,該第一 區的厚裝置隔離層可當作一蝕刻停止層。 ^ 一 斤在選擇電晶體中,可透過對接接觸或類似項來實 弟間極與第二間極之間的電連接。舉例而言,在形成該 112311.doc -28- 1300608 第二絕緣層900之後,該第二絕緣層9〇〇被圖案化,使得曝 露出在該第二區中形成記憶體電晶體之處的—預先決—部 分中的該第-傳導層,或在從該第二區去除該第二絕緣層 之後形成該第二傳導層。據此’使第一閘極與第二閘極: 相電連接。An electrical connection between the first gate 13Q of the select transistor (10) and the second open gate 70 is shown. Referring to Fig. 3, the first portion 137 of the first free transistor of the selection transistor 1 has a box-like shape. However, referring to Fig. 4, the first portion 135 of the first gate 130 of the selection transistor u) has a substantially inverted τ shape. For example, the first portion (3) of the first gate 13A can be divided into a horizontal portion 131 and a vertical portion 133 (which is connected to the horizontal portion 131 and extends upward relative to the substrate 3), wherein the vertical The width of the portion 133 is less than the width of the horizontal portion 131. A first insulating layer 110 is disposed between the first gate 13A of the select transistor 100 and the active region 5A. Referring to FIG. 5, the first closed pole 13 and the second (four) are electrically connected to each other through a predetermined area (ie, the butted contact area 7A) of the second insulating layer 150. Referring to FIG. 3 to FIG. 5, in the box-shaped gate region (9) of the second region 2, the top surface of the device isolation layer 4 adjacent to the second portion 137 of the first gate 13G The height is substantially equal to the height of the top surface of the second portion 137 of the first gate 13A. That is, in the second zone, the device isolation H2311.doc 1300608 layer covers most of the side surface of the second portion 4 of the first closed pole 13A. However, 'Please refer to FIG. 4', in the inverted gate region 60, the top surface height of the device isolation layer adjacent to the first portion 135 of the first gate 13A is substantially equal to the first - the top surface dimension of the horizontal portion i3i of the portion 135. The relatively high device isolation layer in the box-shaped gate region 8〇 prevents the active region from being damaged by the etch during the gate patterning process. The cross-sectional view shown in FIG. 6 is taken along the line of the fear line of FIG. 2, that is, the device isolation layer 4 in the first region H) and the action region predetermine the direction 'to show the A cross-sectional view of the floating electrode 23 of the memory transistor. Referring to Figure 6, the floating gate 230 of the memory transistor 2A has an inverted T-shaped cross section. For example, the read floating gate 230 can be cut into a horizontal portion 231 and a vertical portion M3 (which is connected to the horizontal portion 23 and extends upward relative to the substrate 3), wherein the vertical portion is 2% wide Less than the width of the horizontal portion 231. In this specification, the horizontal portion 231 and the vertical portion 233 of the floating gate of the memory transistor can be divided into a lower conductive pattern and an upper conductive pattern. - Between the (4) gate 230 and the action (4) with the insulating layer 21 穿. The floating gate 23 〇 and the inter-pole 270 are insulated from each other by a closed-layer interlayer insulating layer interposed therebetween. The height of the top surface of the device isolation layer 40 adjacent to the floating gate 23A is substantially equal to the height of the top surface of the horizontal portion 231 of the floating gate 230. The height X and k of the device isolation layer 40 can be modified in various aspects according to a specific embodiment, so that the U2311.doc 1300608 is disposed on the box-shaped closed region of the second region 2〇, and the isolation layer 40 is higher than The device isolation layer 40 is formed in the inverted T-shaped gate region 60. For example, the device isolation layer 4 is formed in the first region 10 such that it can be lower than the active region 50 or can be higher than the top surface of the horizontal portion 231 of the floating gate 230. The first insulating layer 110 of the selection transistor and the tunneling insulating layer 210 of the memory transistor may be formed from the same layer. For example, the first insulating layer 110 and the tunneling insulating layer 210 may be formed of a yttrium oxide layer having a thickness in the range of 20 angstroms to 200 angstroms. However, it is not limited to the above, so it can also be formed by a metal dielectric layer having a high dielectric constant. The first gate 130 of the selection transistor and the floating gate 230 of the memory transistor can be formed from the same layer. For example, the first gate 13 0 and the floating gate 230 can be formed by using a stone eve. Similarly, the second gate 170 of the selection transistor and the control gate 27 of the memory transistor can be formed from the same layer. For example, the second gate 17A and the control gate 270 can be formed of germanium, germanide, a metal material, or a combination thereof. The second insulating layer 150 of the remote selection transistor and the far gate interlayer insulating layer 250 of the memory transistor can be formed from the same layer. For example, the second insulating layer 150 and the gate interlayer insulating layer 25 may be a plurality of layers configured by the following layers: a layer of yttrium oxide having a thickness ranging from 3 angstroms to 8 angstroms; a tantalum nitride layer having a thickness in the range of 50 angstroms to 15 angstroms; and a yttria layer having a thickness in the range of 30 angstroms to 100 angstroms. 7 and 8 are cross-sectional views of the memory transistor and the selective transistor, respectively, taken along the direction in which the active region 5 〇 extends (ν_ν, and νι_vm in FIG. 2). Referring to Figures 7 and 8', the selected transistor 1 includes symmetrically formed impurity regions 112311.doc -19-1300608 191S/D and 193S/D. Herein, the doping concentration of the impurity region symmetry and/or the depth from the surface of the substrate may be different from the other impurity region. The doping concentration of the impurity region 19 adjacent to the second portion 137 (ie, adjacent to the drain contact DC) is higher than the junction depth is deeper than the first adjacent to the selected transistor The doping concentration and junction depth of the impurity region 193S/d of the first portion 135 of the gate 13 (i.e., adjacent to the memory transistor 2A). Since the impurity region 1938/〇 adjacent to the memory transistor 2 has a relatively low doping concentration and a shallow junction depth, it is possible to reduce the memory device operation in the memory transistor 2〇〇 The channel hot electron effect and/or the gate induced drain leakage (GIDL) effect generated in the channel region below. At the same time, since the impurity region 191S/D adjacent to the drain contact DC has a relatively high doping concentration and a deep junction depth, the junction leakage current can be minimized to improve the withstand voltage characteristics. Further, it is possible to form a vaporized layer having a suitable property on the impurity region 191 S/D adjacent to the drain contact DC. In addition, in the selection transistor 100, a channel doping concentration of a first portion of a channel region under the first portion 135 of the first gate 13A may be different from that at the first gate 13 The channel doping concentration of the second portion of the channel region below the second portion 137. For example, the channel doping concentration below the first portion 135 of the first gate 130 can be higher than the channel doping concentration below the second portion 137. That is, the second portion 137 may be thickly formed into a box shape, and conversely, since the first portion 135 has an inverted τ shape, it may be formed to be relatively thinner than the second portion 丨37. Therefore, 112311.doc -20-Ϊ300608 makes it possible to easily and appropriately control the doping concentration of the channel region under the first portion 丨3 5 . Since the channel doping concentration can be controlled, it is possible to suppress the penetration of the selective transistor 100 due to the integration of the device. For example, by implanting impurity ions into the 5 channel region through the horizontal portion m by an ion implantation process, the channel doping concentration of the channel region under the thin horizontal portion 13 1 can be increased. Since the floating gate 23 of the memory transistor 2 has the horizontal portion 23 1, it is possible to easily control the doping concentration of the channel region by the ion implantation process through the horizontal portion 231. . A memory transistor according to a specific embodiment of the present invention will hereinafter be described in more detail with reference to Figs. 9A, 9B and 10. Fig. 9A is a schematic cross-sectional view showing a floating gate as an example in the row direction (in the direction in which the control gate extends); and a perspective view showing the arrangement of the floating gate. For ease of explanation, only four floating gates are shown in FIG. Referring to FIG. 9A, a floating gate electrode 230 according to an exemplary embodiment of the present invention includes the horizontal portion 231 and the vertical portion 233. In this specific example, the horizontal portion 23 and the vertical portion 233 are formed from the same layer. The vertical portion 233 protrudes from a predetermined portion of the top surface of the horizontal portion 23A. The width w2 of the vertical portion 233 is smaller than the width W1 of the horizontal portion 231, and the thickness of the vertical portion 233 is larger than the thickness hl of the horizontal portion 23i. Meanwhile, the sectional area S2 of the vertical portion 233 is larger than the sectional area &amp of the horizontal portion 231, where Sf%a! and S2 = W2Xh2. In order to embody a highly integrated semiconductor device, it is desirable to form a narrowest level of "Hai" 23 1 °. The preferred way is that the thickness of the horizontal portion 23 i is 112311.doc 1300608 may be small 'to minimize the difference between Interference between horizontal portions adjacent to each other in the ancient and J directions, and/or minimizing interference between horizontal portions adjacent to each other in the row direction, according to a specific embodiment of the present invention, the thickness of the horizontal portion h may depend on the thin film deposition process technology and (4) the process, so the horizontal portion 231 may be broken to be very thin. At the same time, the vertical portion plus can be formed as narrow as possible to increase the spacing between adjacent vertical portions. According to this specific embodiment, the condition (e.g., quotation time) is used to control the vertical portion plus the width W2 to have a desired width. The following condition is satisfied: the cross-sectional area of the vertical portion 233 is greater than the vertical axis. The cross-sectional area Si of the P-knife 233; and the width % of the vertical portion is smaller than the width w of the horizontal portion 231, it is possible to appropriately change the width and thickness of the vertical portion plus the horizontal portion 231 so that it is suitable for embodying A device with a coupling ratio and a high degree of integration. The effect or advantage of the floating interpole electrode in accordance with an embodiment of the present invention will be described in detail below with reference to FIG. 9B. For convenience of description, the four floating idle poles are not referred to as the first floating interpole electrode 23, the second floating gate electrode 9^Λ~2 brothers two kilograms of the gate electrode 230-3 and the fourth floating gate electrode 4 The first floating gate electrode 23〇—α the second floating gate electrode is disposed in the first column, and the third floating gate electrode 230_3 and the fourth floating gate electrode 230-4 are arranged. In the second column. The Lth floating 1 Φ·electrode 23G-1 and the third floating gate electrode 23Q-3 are arranged such that the second floating gate electrode 23〇2 and the fourth floating closed electrode 23〇 are disposed. The 4 series is arranged in the second row. First, the interference between 112331.doc -22- 1300608 will be proposed between the floating electrode electrodes adjacent to each other in the column direction. According to this embodiment, the profile of the floating gate electrode is configured with the horizontal portion 231 and the vertical portion 233. That is, the floating gate electrode has an inverted τ-shaped cross section. Therefore, the distance 4 between the vertical portion 231-3 of the first floating gate electrode 23 (L1 and the vertical portion 232-3 of the second floating gate electrode 23〇-2 is greater than the level The distance t between the portion 23 1 1 and the horizontal portion 231 - 2 makes it possible to reduce interference between adjacent floating gate electrodes. Further, since the horizontal portion can be formed as thin as possible, The facing area S3 between the two horizontal portions 231-1 and 231-2 adjacent to each other in the column direction is very small, so even if the distance ch between the horizontal portions 2"^ and 231 2 becomes short, it can be ignored. At the same time, although the vertical portions 233 - 1 and 231-2 adjacent to each other in the column direction have a large thickness ^ for a high coupling ratio, so as to face between the vertical portions 233 - 1 and 231-2 The area S4 becomes large, but since the length between the vertical portions 233-1 and 231-2 is sufficiently long, the interference is no longer increased. As described above, since the width of the vertical portion becomes small, The distance ds between the two vertical portions 233 - 1 and 231 - 2 is increased, which The interference between the vertical portions adjacent to each other in the column direction is now reduced. Hereinafter, interference between floating gate electrodes adjacent to each other in the row direction will be proposed. Between the first floating gate electrodes The interference between 230-1 and the third floating gate electrode 230-3 depends on the total facing area S^TAL, which is the facing area between the horizontal σ卩 points (s) = WiX h 】) plus the sum of the facing areas d=W2X h) between the vertical p-knife. In this paper, since the vertical portion has a narrow width W2, it can be reduced to be adjacent to each other in the column direction 112311.doc * 23 - 1300608 Interference between floating gates. Note that the floating gate electrodes 230 in Figures 9A and 9B are shown for ease of explanation, and thus the shape can be slightly modified in accordance with various manufacturing processes. It will be understood that the shape of the floating gate electrode of the specific embodiment is not limited to the shapes shown in FIGS. 9A and 9B and described above, but may be modified within the scope of allowable manufacturing process changes. For example, even if stated The layer or element has a soft surface, but it can have A little rough surface, and _ not a soft surface. Similarly, even if the layer or element is described as having a flat surface 'but it may have a somewhat soft and rough surface instead of a flat surface. Further 'even if the layer or element is described a vertical side wall, but which may have a slight sloping side wall. For example, although the figure schematically illustrates from 9B that the floating gate electrode has a flat surface, that is, the surface of the horizontal portion and the vertical portion are flat, it may have Soft or slightly rough surface. Further, although the side surfaces of the floating gate electrode (i.e., the side surfaces of the horizontal portion and the vertical portion) are depicted in Figs. 9A and 9B, they may be formed to be slightly tilted. In addition, the width of the vertical portion can be increased as it is further apart from the substrate. Similarly, the width of the horizontal portion can be increased as it is further apart from the substrate. Examples of various floating gate electrodes will be explained below with reference to FIG. Referring to Figure 10, the floating gate electrode 230, the horizontal portion 231, is formed such that its top surface is tilted. Further, the vertical portion 233 is formed to also have its side surface inclined. The floating gate electrode of Fig. 10 appears to be formed by rubbing Fig. 9A and the net moving electrode of the sinus, but it still has a substantially inverted shape. It can be understood that the floating gate electrode 23A shown in FIG. 10 has a side surface of the vertical portion 1123n.doc -24-1300608 23 3 which is opened so as to be slightly inclined so that the width of the vertical portion u3 varies with height. The width % of the vertical portion shown in Fig. 9AA9B corresponds to the maximum width % of the vertical portion 233. Similarly, the top surface of the horizontal portion 231 of the floating gate electrode 230 shown in FIG. 1A is inclined such that the width of the horizontal portion 231 varies with height, and the width of the horizontal portion shown in FIGS. 9A and 9B. % corresponds to the maximum width % of the horizontal portion 231. As described above, the maximum width % of the horizontal portion 231 is greater than the maximum width W2 of the vertical portion 233, and the cross-sectional area 8 of the horizontal portion 231 is larger than the cross-sectional area of the vertical portion 233 & . The maximum width W! of the horizontal portion 231 may be 15 to 25 times larger than the maximum width w/ of the vertical portion 233. The various modifications of the floating gate shape of the memory transistor described with reference to Figures 9A, 9B and 1B are equally applicable to the selection of the first portion of the first gate of the transistor. Hereinafter, a method of manufacturing a NAND flash memory device according to a specific embodiment of the present invention will be described in detail with reference to FIGS. 11 through 18. Referring to the figure, a device isolation process is implemented to form a device isolation layer pattern 4〇〇 extending in a column direction (i.e., the y-axis) on a substrate 300. Thus, a number of active areas 5 界定 are defined by the device isolation layer pattern 400. A first insulating layer 600 and a first conductive pattern 700 are formed on the respective active regions $(9). The first conductive pattern 700 is self aligned on the active area 500. In detail, an insulating layer of the first insulating layer 6 及 and a conductive layer of the first conductive layer pattern 700 are formed on the slab 300. Thereafter, the conductive layer, the insulating layer, and a portion of the substrate 3 are etched to a predetermined thickness to define a skirt isolation 112311 .doc -25- 1300608 region. Therefore, the active area 500 is defined in the substrate 3, and the edge/edge layer 600 and the first conductive layer pattern 7 are self-aligned on the active area, and the edge material is filled into In the device isolation region, wherein the predetermined portion is removed by insect etching, thereby forming the device isolation layer pattern. In this paper, the isolation layer of the device can be formed. FIG. 4(10) is: after depositing the insulating material, performing a planarization process , such as chemical mechanical polishing (CMP) or etchback processes. For example, the first conductive pattern 700 (which is used to select a transistor: a gate and a floating gate of a memory transistor) can be formed using germanium. The first insulating layer _ (which is used as a gate insulating layer for selecting a transistor and a compliant insulating layer of a memory transistor) can be formed by an oxygen etch layer having a thickness ranging from 2 Å to 2 (9) Å. However, it is not limited to the above, so the first insulating layer _ can be formed by a metal dielectric layer having a high dielectric constant. The Fig. 12' is formed with a mask _ on the first conductive layer pattern and the device pattern to expose the inverted gate 3. That is: _0 simultaneously exposing the first region and the second region adjacent to the first region mask 8 can be used with respect to the first conductive pattern 7. . For example, the material of the etch selectivity of the device isolation layer pattern 4 can be obtained by using tantalum nitride. The cover _ exposes the portion of the second region and the first region becomes this =, The third layer of the selective transistor in the second region is formed into a shape having a collapsed shape. The portion of the "Haidi is shown in Fig. 13, and the isolation layer pattern of the device is completely (they are not subjected to the inverted shape) 112311.doc -26- 1300608 to form a lower portion of a conductive pattern 700). A conductive layer pattern 700 = covered by the mask _ is partially removed from the layer pattern 410 (the top surface of which is lower than the second lower portion) The device isolation layer pattern 410 partially exposes the first side surface. Referring to FIG. 14, the exposed side surface of the first conductive pattern 100 is patterned by the width of the first conductive layer pattern 7'. Having a narrow width pattern: a first conductive layer pattern 710 (which is isolated from the lower device: the top surface of the ^ is protruded upward) is used as the vertical of the inverted T-shaped gate, and at the same time, the 6-th lower device isolation layer The remaining pass V pattern 730 surrounded by the pattern 41 is disposed in the narrowing A conductive layer pattern below is used as a horizontal portion of the inverted gate. For example, the fourth conductive layer pattern 7 can be implemented by using a predetermined (four) solution for the engraving process. The exposed side surface. Alternatively, the residual gas may be used for the dry (four) process. If the secret process is used, the etching solution contains NH4〇H. Referring to Figure 15, the mask 800 is removed to expose the The device isolation layer pattern 4 〇〇 and the first conductive layer pattern 700 in the 闸-shaped gate region of the second region. Referring to FIG. 16 and FIG. 17, a second insulating layer 9 〇〇 and a second portion are formed. After the conductive layer (9), a gate mask 1100a and 1 00b are formed to define a control gate of the memory transistor and a second gate of the selected transistor, wherein the gate masks 1100a and 1100b are in a column direction (ie, , X-axis) extension. Referring to FIG. 18, the second conductive layer 1 , the second insulating layer 900 and the first layer are etched by using the gate masks uooa and ii〇〇b as a mask. 112311.doc -27- 1300608 A conductive layer pattern 700, thereby forming a memory electron crystal a stacked gate structure of the body and a stacked gate structure of the selected transistor. The stacked gate and the gate of the memory transistor comprise: a floating gate formed by the first conductive layer pattern; formed by the second insulating layer a gate interlayer insulating layer; and a control gate formed by the second conductive layer. The stacked gate structure of the selected transistor includes: a first gate formed by the first V-layer pattern; and the second insulating layer a closed-cell interlayer insulating layer formed; and a second gate formed using the second conductive layer. According to a specific embodiment of the present invention, the device isolation layer 400 of the second region is formed at the place where the selective transistor is formed The thickness is relatively thicker than the thickness of the lower device isolation layer of the second region where the = memory cell is formed, and thus during the etching process for forming the stacked gate structure, it is possible to prevent attribution due to The loading effect in the region causes the active region to be damaged by the money: for example, if the device isolation layers of the first region and the second region have almost the same thickness, the etching process for forming the stacked gate structure is performed. May return Loading effect of the substrate in the second zone being damaged Yun moment. The reason is that the memory electro-crystal system is closely formed in the first region and the 4-selective electro-crystalline system is sparsely formed in the second region, and the substrate of the first region of the child can be damaged by etching. However, according to the specific embodiment of the invention, due to the thickness of the device isolation layer of the device isolation layer of the second region, it is possible to have an efficiency of etching damage, in other words, according to the present invention, The thick device isolation layer of the first region can be used as an etch stop layer. ^ One kilogram in the selection of the transistor, the electrical connection between the intermediate pole and the second pole can be achieved through a butt contact or the like. For example, after the 112311.doc -28-1300608 second insulating layer 900 is formed, the second insulating layer 9 is patterned so as to be exposed in the second region to form a memory transistor. And pre-determining the first conductive layer in the portion or forming the second conductive layer after removing the second insulating layer from the second region. Accordingly, the first gate and the second gate are electrically connected.
實行離子植入製程,以形成記憶體電晶體及選擇電晶體 的源極/汲極區。對相鄰於汲極接觸的選擇電晶體之源極/ 汲極區’選擇性實行-額外離子植人製程。用於該^極/ 汲極區的該額外離子植入製程可使用用於周邊電路區中之 電晶體之源極/汲極區的離子植入製程予以實行。 下文將詳細提出記憶體電晶體。圖19繪示根據本發明另 -具體實施狀快閃記憶體裝置之記憶冑電晶體的剖面 圖。請參閱圖19,在-半導體基板⑽上佈置複數個裝置 隔離層圖案120,以界定一作用區ι〇2 離層圖案120之間界定該作用區1〇2。 。即,於相鄰裝置隔 一閘極絕緣層14 〇係An ion implantation process is performed to form a memory transistor and a source/drain region of the selected transistor. The selective source/drain region of the selective transistor adjacent to the drain contact is selectively implemented - an additional ion implantation process. The additional ion implantation process for the gate/drain regions can be performed using an ion implantation process for the source/drain regions of the transistors in the peripheral circuitry. The memory transistor will be described in detail below. Figure 19 is a cross-sectional view showing a memory transistor of a flash memory device in accordance with another embodiment of the present invention. Referring to Fig. 19, a plurality of device isolation layer patterns 120 are disposed on the semiconductor substrate (10) to define an active region ι2 to define the active region 1〇2 between the layer patterns 120. . That is, the adjacent device is separated by a gate insulating layer 14
形成於該作用區1 〇2上,並且一 浮動閘極電極192被佈置在 該閘極絕緣層140上。該浮動閘極電極192包括一下部傳導 圖案155及-上部傳導圖案m。該下部傳導圖案155的寬 度%大於該上部傳導圖案17〇的寬度%。因此,浮動閘極 電極192具有倒τ形剖面。㈣浮動間極電極μ上,佈置 一閘極層間絕緣層丨9 4及一控制閘極電極丨9 6。該控制閘極 電極196交越於該作用區1〇2及該裝置隔離層圖案12〇上。 在δ亥控制閘極電極196、該閘極層間絕緣層圖案194及該浮 動閘極電極192構成该記憶體電晶體的堆疊閘極結構】9 〇。 112311.doc -29- 灣608 較佳方式為, 範圍内之产=μ甲蛋絕緣層140係用一具有20埃至200埃 電常教,A - 1化石夕層予以形A,但是亦可使用一高介 圖案155可用屬夕、邑曰緣層作為該閘極絕緣層140。該下部傳導 多曰於、夕晶矽予以形成,及該上部傳導圖案170可用 曰 石夕化物、金屬材料或JL έ且人+以γ少 間絕緣層可能係-種用下=所:=。該閘極層 埃至80埃範圍内^ / 層所組的多層:—具有30 範鬥内 内之尽度的氧化石夕層;一具有50埃至150埃 度的氮化”;及-具有3。埃至·矣範圍内 又、乳化石夕層。該控制閘極電極196可用多晶石夕、矽 、金屬材料或其組合予以形成。 «本發明’該下部傳導層圖案155的寬度%大於該作 “02的頂部表面寬度或該閘極絕緣層14〇的寬度。此 ’I於相邮下部傳導圖案155之間的職置隔離層圖案 120的頂部表面可低於該作用區⑽的頂部表面。據此,該 閘極層間絕緣層圖案i 9 4的底部表面或該控制閉極電極i 9 6 的底部表面亦可低於介於相鄰下部傳導圖案155之間的該 作用區102的頂部表面。如果該控制閘極電極196的頂部表 面低於該作用區1()2的頂部表面’則介於該控制間極電極 196與該浮動閘極電極192之間的面對面積增大。此外,該 控制閘極電極i96可防止介於列方向相鄰之浮動閘極電極 之間的干擾,例如,介於相鄰間極電極之間的電容搞合。 介於該控制閘極電極與該浮動閘極電極之間的面對面積 增大實現增大麵合比率(CR)’其中叙合比率表示經施加至 該控制閘極電極196的電壓被轉遞至該浮動閘極電極192的 112311.doc -30- 1300608 效率。此外’根據本發明具體實施例,不需要增大該浮動 閘極電極192的高度(例如,不需要增大剖面面積),仍有可 能增大介於該浮動閘極電極192與該控制間極電極196之間 的面對面積。如上文所述,此具體實施例之快閃記憶體裝 置可藉由裝置隔離層圖案120之頂部表面凹型結構而增大 面對面積。Formed on the active area 1 〇 2, and a floating gate electrode 192 is disposed on the gate insulating layer 140. The floating gate electrode 192 includes a lower conductive pattern 155 and an upper conductive pattern m. The width % of the lower conductive pattern 155 is greater than the width % of the upper conductive pattern 17A. Therefore, the floating gate electrode 192 has an inverted τ-shaped cross section. (4) On the floating interpole electrode μ, a gate interlayer insulating layer 丨94 and a control gate electrode 丨96 are disposed. The control gate electrode 196 crosses the active region 1〇2 and the device isolation layer pattern 12〇. The gate gate electrode 196, the gate interlayer insulating layer pattern 194, and the floating gate electrode 192 constitute a stacked gate structure of the memory transistor. 112311.doc -29- Bay 608 Preferably, the range of production = μ nail insulation layer 140 is used with a 20 angstroms to 200 angstroms of electricity, and the A - 1 fossil layer is shaped A, but A high dielectric pattern 155 can be used as the gate insulating layer 140. The lower conductive layer is formed by a plurality of germanium wafers, and the upper conductive pattern 170 may be made of a ruthenium compound, a metal material or a JL, and a human + γ may be used as a lower layer of insulation. The gate layer is up to 80 angstroms in the range of ^ / layer: - a layer of oxidized stone having an internal extent of 30; an nitridation of 50 angstroms to 150 angstroms; and - having 3. In the range of Å to 矣, the emulsified layer is emulsified. The gate electrode 196 can be formed by polycrystalline stone, bismuth, metal material or a combination thereof. «The invention Width % of the lower conductive layer pattern 155 It is larger than the width of the top surface of the "02" or the width of the gate insulating layer 14A. The top surface of the active spacer pattern 120 between the "I" and the lower conductive patterns 155 may be lower than the top surface of the active area (10). Accordingly, the bottom surface of the gate interlayer insulating layer pattern i 9 4 or the bottom surface of the control gate electrode i 9 6 may also be lower than the top surface of the active region 102 between the adjacent lower conductive patterns 155. . If the top surface of the control gate electrode 196 is lower than the top surface ' of the active region 1() 2, the facing area between the control interpole electrode 196 and the floating gate electrode 192 increases. In addition, the control gate electrode i96 prevents interference between floating gate electrodes adjacent in the column direction, for example, a capacitance between adjacent electrode electrodes. An increase in the area of the face between the control gate electrode and the floating gate electrode achieves an increase in the face ratio (CR) where the ratio of the ratio indicates that the voltage applied to the control gate electrode 196 is transferred 112311.doc -30-1300608 efficiency to the floating gate electrode 192. In addition, according to an embodiment of the present invention, it is not necessary to increase the height of the floating gate electrode 192 (for example, it is not necessary to increase the cross-sectional area), and it is still possible to increase the floating gate electrode 192 and the control electrode. The facing area between 196. As described above, the flash memory device of this embodiment can increase the facing area by the top surface concave structure of the device isolation layer pattern 120.
八另外’由於該浮動閘極192具有實質上倒τ形剖面,所以 介於行方向互相相鄰之浮動閘極電極之間的面對面積減 小:如圖所示,假設該下部傳導圖案155之寬度及厚度分 別,示為wjhl,且該上部傳導圖案17〇之寬度及厚度分 別標示為评2及1!2,則與箱形閘極電極相比,本發明之倒了 形浮動閘極電極192的剖面面積變成(Wi_ W2)x h2。減小浮 動閘極剖面面積使得介於行方向互相相鄰之浮動閉極電極 之間的干擾效應減小,結果是提供一項能夠增大浮動閑極 電極表面面積的製程裕度,且因此增大搞合比率。本發明 具體實施例之浮動閘極電極使增加表面面積 之最大剖面面積成為可實行,其中表面面積決定 孝馬口比率。 根據本發明具體實施例,該下部傳導圖案155的剖面面 (WlXhl)大於該上部傳導圖案Μ的剖面面積(W2Xh2)至少 Γ:傳Ϊ1Τ為’該下部傳導圖案155的寬度wi大於該 且體實^ η170的寬度W2°下文將詳盡聞述根據本發明 二體貫加例之非揮發性記憶體裝置之閘極結構的製造方 法0 H2311.doc 13006088. In addition, since the floating gate 192 has a substantially inverted τ-shaped cross section, the facing area between the floating gate electrodes adjacent to each other in the row direction is reduced: as shown, the lower conductive pattern 155 is assumed. The width and thickness are respectively shown as wjhl, and the width and thickness of the upper conductive pattern 17〇 are denoted as 2 and 1! 2, respectively, and the inverted floating gate of the present invention is compared with the box-shaped gate electrode. The cross-sectional area of the electrode 192 becomes (Wi_W2) x h2. Reducing the floating gate cross-sectional area reduces the interference effect between the floating closed-pole electrodes adjacent to each other in the row direction, and as a result, provides a process margin that increases the surface area of the floating idle electrode, and thus increases Make a big deal. The floating gate electrode of the embodiment of the present invention makes it possible to increase the maximum cross-sectional area of the surface area, wherein the surface area determines the filial mat ratio. According to a specific embodiment of the present invention, the cross-sectional area (WlXhl) of the lower conductive pattern 155 is larger than the cross-sectional area (W2Xh2) of the upper conductive pattern Γ, at least Ϊ: Ϊ1Τ is the width wi of the lower conductive pattern 155 is larger than the ^ Width of η170 W2° Hereinafter, a method of manufacturing a gate structure of a non-volatile memory device according to the present invention will be described in detail. 0 H2311.doc 1300608
圖20繪示根據本發明另一具體實施例之快閃記憶體裝置 的剖面圖。類似於圖19之浮動閘極電極,浮動閘極電極 192包括一下部傳導圖案155及一上部傳導圖案17〇,其中 該上部傳導圖案17〇的寬度小於該下部傳導圖案155的寬 度。舉例而言,浮動閘極電極192具有梯狀侧表面。在此 具體實施例之非揮發性記憶體裝置中,該浮動閘極電極 192係在該作用區1〇2上自行對準。舉例而言,該浮動閘極 電極192的該下部傳導圖案155的寬度實質上等於該作用區 102的頂部表面寬度。舉例而言’當藉由使用一個蝕刻遮 罩來相繼圖案化半導體製造製程期間所沉積的兩層時,用 該兩層所形成的兩個圖案可具有實f上相同寬度。此外, 該裝置隔離層圖案i 2 〇之頂部表面高度等於該浮動間極電 極m之該下部傳導圖案155的頂部表面高度。另外,在本 發明具體實施例中,該浮動閘極電極192被形成,使得該 上部傳導圖案170的剖面面積大於該下部傳導圖案⑸的剖 面面積。20 is a cross-sectional view of a flash memory device in accordance with another embodiment of the present invention. Similar to the floating gate electrode of Fig. 19, the floating gate electrode 192 includes a lower conductive pattern 155 and an upper conductive pattern 17A, wherein the width of the upper conductive pattern 17'' is smaller than the width of the lower conductive pattern 155. For example, the floating gate electrode 192 has a stepped side surface. In the non-volatile memory device of this embodiment, the floating gate electrode 192 is self-aligned on the active region 1〇2. For example, the width of the lower conductive pattern 155 of the floating gate electrode 192 is substantially equal to the width of the top surface of the active region 102. For example, when two layers deposited during a semiconductor fabrication process are successively patterned by using an etch mask, the two patterns formed using the two layers may have the same width on the real f. Further, the top surface height of the device isolation layer pattern i 2 〇 is equal to the top surface height of the lower conductive pattern 155 of the floating interpole electrode m. Additionally, in a particular embodiment of the invention, the floating gate electrode 192 is formed such that the cross-sectional area of the upper conductive pattern 170 is greater than the cross-sectional area of the lower conductive pattern (5).
圖2 1、纟會不根據本發明另一且辨香# > IL 力,、體實施例之快閃記憶體裝置 的剖面圖。在此具體實施例壯 一 巧心厌閃记憶體裝置中,該裝置 隔離層圖案120係以間隔形肤, 二 ⑽办狀形成在該下部傳導圖案155及 石亥閘極絕緣層14 〇兩者的側声 岡惻表面上,這不同於圖20所示之 快閃記憶體裝置。本文中,兮壯w 不文中泫裝置隔離層圖案120的頂部 表面相對低於該作用區! 〇2的頂部表面。 具體實施例之用於製造 。請參閱圖22A,在一 圖22A至22H繪示根據本發明一 NAND快閃記憶體之方法的剖面圖 H2311.doc -32- 1300608 半導體基板100上形成一渠溝遮罩圖案110。該渠溝遮罩圖 案110包括依序堆疊的一襯墊氧化物層圖案112及一遮罩氮 化物層圖案114。使用該渠溝遮罩圖案11〇作為一蝕刻遮罩 來蝕刻該半導體基板100,藉此形成一界定作用區102的渠 溝 105 〇 该渠溝遮罩圖案110可進一步包括··一堆疊在該遮罩氮 化物圖案114上的氧化矽層(例如,一中溫氧化物(MT〇))及 一抗反射層。此外,多方面地變更構成該渠溝遮罩圖案 no的該等層之種類、厚度及堆疊順序。形成該渠溝1〇5的 製程可包括:使用具有相對於該渠溝遮罩圖案u〇之蝕刻 選擇性的蝕刻製法,以各向異性方式蝕刻該半導體基板 1〇〇之製程。雖然圖中將該渠溝105之側壁繪示成傾斜,但 是按照製程,該渠溝1〇5之側壁具有垂直剖面。另外,該 渠溝105之側壁與底部的接合部分可具有平滑曲線。 請參閱圖22B,在形成一用於裝置隔離的絕緣層以裝填 該渠溝105後,蝕刻用於裝置隔離的絕緣材料,直到曝露 出該渠溝遮罩圖案U0的頂部表面,藉此形成裝填該渠溝 105且圍繞該渠溝遮罩圖案11〇的該裝置隔離層圖案wo。 根據本發明具體實施例,較佳方式為,用於裝置隔離的 絕緣材料係用氧化矽層予以形成,但是亦可用多晶石夕、石 晶石夕、多孔絕緣層等等予以形成。此外,在形成用於裝置 隔離的絕緣材料之前,可在該渠溝i 〇5之内辟 土上形成一熱 氧化物層(圖中未繪示),用於解決蝕刻該半導體基板丨⑽所 產生的蝕刻損壞。另外,可額外形成一襯層以防止雜質穿 112311.doc -33- 1300608 透。該襯層可能是氮化矽層。 車乂佳方式為’使用具有相對於該渠溝遮罩圖案1丨〇之钱 刻璲擇性的泥漿,藉由CMP製程來實行蝕刻用於裝置隔離 的絕緣材料。替代做法為,可使用乾式或濕式回蝕製程。 晴參閱圖22C,去除該渠溝遮罩圖案i i 〇,以形成一曝露 出該作用區102之頂部表面的間隙區13〇。詳言之,形成該 間隙區130包括:使用具有相對於該裝置隔離層圖案120之 φ 蝕刻選擇性的濕式蝕刻製法來去除該遮罩氮化物圖案 114 ;以及使用具有相對於該半導體基板1〇〇之蝕刻選擇性 的濕式钱刻製法來去除該襯墊氧化物層圖案丨12。 同時,在去除該襯墊氧化物層圖案丨12時,可將該裝置 隔離層圖案120的經曝露側壁蝕刻至一預先決定厚度。據 此,邊間隙區130的寬度變成大於該作用區i 〇2的寬度。根 據本發明具體實施例,由於該裝置隔離層圖案12〇及該襯 氧化物層圖案112係用相同材料(即,氧化石夕層)予以形 • f ’因而有可能擴大該間隙區13〇之寬度,而不需要補充 製程。此外,由於該間隙區130之寬度被擴大,所以非揮 她己憶體裝置的浮動閘極電極之寬度亦被擴大,並且進 厂f,在用於使該裝置隔離層圖案12〇之頂部表面凹進的 後、戈製程期間,有可能防止一閘極絕緣層受到損壞。下文 將參考圖20G予以說明。 一閘極絕緣層14〇被形成在該曝露之作用區1〇2上。較佳 方式為,該閘極絕緣層140係透過熱氧化製程用氧化^予 以形成,但是亦可使用一高介電常數之金屬絕緣層。該閘 112311.doc -34- 1300608 極絕緣層140之厚度可在2〇埃至2〇〇埃範圍内。 4參閱圖22D,形成一用於浮動閘極之下部傳導圖案的 傳導材料至該擴大之間隙區13〇中後,蝕刻該傳導材料直 到曝露出該裝置隔離層圖案120的頂部表面。結果,在該 作用區102上形成傳導填隙圖案15〇,以裝填該間隙區 130。此時,由於該間隙區13〇的寬度已被擴大,所以該傳 導填隙圖案15G的寬度亦大於該作用區⑽的寬度。然而從 以下闡述而更清楚明理解,該傳導填隙圖案15〇的寬度決 定該浮動閘極電極的寬度。因此,有可能形成該浮動閘極 電極,使得該浮動閘極電極的寬度大於該作用區的寬度。 車乂佳方式為,裝填該間隙區13〇的該傳導填隙圖案15〇係 透過CMP製程以多晶石夕所形成。形成該傳導填隙圖案 包括:使用具有相對於該裝置隔離層圖案12〇之蝕刻選擇 性的濕式蝕刻製法,來使該傳導填隙圖案150之頂部表面 平坦化。舉例而言,此平坦化製程可使用CMp製程予以實 灯。此時,較佳方式為,使用一預先決定材料作為該 製程"泥漿,其中該預m材料具有對多晶石夕之餘刻 速率局於對氧化矽之蝕刻速率的蝕刻特性(即,蝕刻選擇 性)。 請參閱圖22E,使用具有相對於該裝置隔離層圖案12〇之 ㈣選擇性的濕式餘刻製法,钱刻倒了形閘極區中之該傳 導填隙圖案15G’藉此形成—下部傳導圖案155 (其維持在 該間隙區130下方)。此時,將被钱刻之該傳導填隙圖案 的深度小於該間隙區13〇的深度。據此,在該間隙區 112311.doc -35- 1300608 no下方的該下部傳導圖案155維持完整無缺,並且該 隔離層圖案120的側壁被局部曝露。結果,該下部傳導s 案155的厚度(請參_9叫小於該間編3G的^導圖 ^後,於該下部傳導圖案155上等形地形成—模層刚。 该模層副係用具有相對於該下部傳導圖案⑸之姓刻 性的材料予以形成。舉例 私e 例而e ,该模層W0係用氮化矽 層、氧化石夕層或金屬氮化物層予以形成。然而從 而更清楚明理解,較佳方式為,精確控制該模層160的厚 度’原因係根據本發明,這是決定浮動閘極形狀的製程參 數。為此目的,可使用低壓CVD (LPCVD)或原子層沉積 :a:d)製程來形“模層16〇。此外’亦希望精確控制該 傳導填隙圖案15G的姓刻深度及該間隙區UG的高度,原因 係這兩項亦是影響浮動間極形狀的製程參數。 請參閱圖22F,以各向異性方式餘刻該模層⑽,直㈣ 露出下部傳導圖案155之頂部表面。據此,形成一模間隔 物165 ’其覆蓋該下部傳導圖案155之頂部表面邊緣。其 後,在其中已形成該模間隔物165的所得結構之整個表面 上形成-上部傳導層之後,姓刻該上部傳導層直到該裝置 隔離層圖案12〇的頂部表面。結果,於該等模間隔物165之 間形成一接觸於該下部傳導圖案155的上部傳導圖案17〇。 本文中,根據本發明,互相接觸之一對下部傳導圖案155 與上部傳導圖案170構件一浮動閘極圖案18〇。 該浮動閘極圖案18〇具有倒T形剖面,如圖22f所示。該 浮動閘極圖案1 8 0的剖面形狀係由該下部傳導圖案丨$ 5的高 H2311.doc -36- 1300608 度和寬度及該上部傳導圖案170的高度和寬度所決定。因 此’如上文所述,希望精確控制下列條件:丨)介於該裝置 隔離層®案120與該作用區1()2之頂部表面之間的高度差 異;2)該間隙區13〇之寬度;3)該模層16〇的堆疊厚度;及 该上部傳導層的蝕刻深度。Figure 2 is a cross-sectional view of a flash memory device of an embodiment, not according to the present invention. In the embodiment of the present invention, the device isolation layer pattern 120 is formed by a spacer film, and the second conductive pattern 155 and the shihai gate insulating layer 14 are formed in two (10) patterns. On the surface of the side acoustic ridge, this is different from the flash memory device shown in FIG. In this paper, the top surface of the device isolation layer pattern 120 is relatively lower than the active area! The top surface of 〇2. The specific embodiment is used for manufacturing. Referring to FIG. 22A, a cross-sectional view of a method of NAND flash memory according to the present invention is shown in FIGS. 22A to 22H. H2311.doc-32-1300608 A trench mask pattern 110 is formed on a semiconductor substrate 100. The trench mask pattern 110 includes a pad oxide layer pattern 112 and a mask nitride layer pattern 114 stacked in sequence. Etching the semiconductor substrate 100 using the trench mask pattern 11 as an etch mask, thereby forming a trench 105 defining the active region 102. The trench mask pattern 110 may further include a stack A ruthenium oxide layer (for example, a medium temperature oxide (MT〇)) and an anti-reflection layer on the nitride pattern 114 are masked. Further, the types, thicknesses, and stacking order of the layers constituting the trench mask pattern no are variously changed. The process of forming the trenches 1〇5 may include etching the semiconductor substrate 1A in an anisotropic manner using an etching process having an etching selectivity with respect to the trench mask pattern. Although the side wall of the trench 105 is shown as being inclined, the sidewall of the trench 1〇5 has a vertical cross section according to the manufacturing process. In addition, the joint portion of the side wall and the bottom of the groove 105 may have a smooth curve. Referring to FIG. 22B, after forming an insulating layer for device isolation to fill the trench 105, the insulating material for device isolation is etched until the top surface of the trench mask pattern U0 is exposed, thereby forming a filling. The trench 105 and the device isolation layer pattern wo surrounding the trench pattern 11〇. According to a specific embodiment of the present invention, it is preferable that the insulating material for device isolation is formed using a ruthenium oxide layer, but it may be formed by polycrystalline shi, feldspar, porous insulating layer or the like. In addition, before forming the insulating material for device isolation, a thermal oxide layer (not shown) may be formed on the soil within the trench 〇5 for solving the etching of the semiconductor substrate (10). The resulting etching is damaged. In addition, a liner may be additionally formed to prevent impurities from penetrating through 112311.doc -33-1300608. The liner may be a tantalum nitride layer. The ruthless method is to use an etch process to etch the insulating material for device isolation by using a slurry having a pH of 1 相对 relative to the trench mask pattern. Alternatively, a dry or wet etch back process can be used. Referring to Figure 22C, the trench mask pattern i i 去除 is removed to form a gap region 13 曝 exposed to the top surface of the active region 102. In detail, forming the gap region 130 includes: removing the mask nitride pattern 114 by using a wet etching method having a φ etch selectivity with respect to the device isolation layer pattern 120; and using the semiconductor substrate 1 with respect to the semiconductor substrate 1 The pad oxide layer pattern 丨12 is removed by an etch selective wet money engraving process. At the same time, the exposed sidewalls of the device isolation layer pattern 120 can be etched to a predetermined thickness when the pad oxide layer pattern 丨12 is removed. Accordingly, the width of the edge gap region 130 becomes larger than the width of the active region i 〇2. According to a specific embodiment of the present invention, since the device isolation layer pattern 12 and the liner oxide layer pattern 112 are formed by the same material (ie, the oxidized stone layer), it is possible to enlarge the gap region 13 Width without the need to replenish the process. In addition, since the width of the gap region 130 is enlarged, the width of the floating gate electrode of the non-volatile device is also enlarged, and the factory f is used to make the top surface of the device isolation layer pattern 12 During the recessed and post-process, it is possible to prevent damage to a gate insulating layer. This will be described below with reference to Fig. 20G. A gate insulating layer 14 is formed on the exposed active region 1〇2. Preferably, the gate insulating layer 140 is formed by oxidation through a thermal oxidation process, but a high dielectric constant metal insulating layer may also be used. The gate 112311.doc -34- 1300608 pole insulating layer 140 may have a thickness in the range of 2 〇 to 2 〇〇. Referring to Fig. 22D, after forming a conductive material for the conductive pattern under the floating gate into the enlarged gap region 13, the conductive material is etched until the top surface of the device isolation layer pattern 120 is exposed. As a result, a conductive gap pattern 15A is formed on the active region 102 to fill the gap region 130. At this time, since the width of the gap region 13A has been enlarged, the width of the conduction gap pattern 15G is also larger than the width of the active region (10). However, as will be more clearly understood from the following description, the width of the conductive interstitial pattern 15? determines the width of the floating gate electrode. Therefore, it is possible to form the floating gate electrode such that the width of the floating gate electrode is larger than the width of the active region. In a preferred manner, the conductive interstitial pattern 15 filled in the gap region 13 is formed by polysilicon in the CMP process. Forming the conductive interstitial pattern includes planarizing a top surface of the conductive interstitial pattern 150 using a wet etch process having an etch selectivity with respect to the device isolation layer pattern 12A. For example, this flattening process can be implemented using a CMp process. At this time, it is preferable to use a predetermined material as the process < mud, wherein the pre-m material has an etching characteristic for the etch rate of the yttrium oxide at the rate of the polycrystalline stone (ie, etching) Selective). Referring to FIG. 22E, the wet interstitial pattern having the (4) selectivity with respect to the device isolation layer pattern 12 is used, and the conductive interstitial pattern 15G' in the gate region is formed by the method to form a lower conduction. Pattern 155 (which is maintained below the gap region 130). At this time, the depth of the conductive interstitial pattern to be engraved is smaller than the depth of the gap region 13A. Accordingly, the lower conductive pattern 155 under the gap region 112311.doc - 35 - 1300608 no remains intact, and the sidewall of the spacer pattern 120 is partially exposed. As a result, the thickness of the lower conductive slab 155 (referred to as _9 is smaller than that of the intervening pattern 3G), and then formed on the lower conductive pattern 155 in an isomorphous manner. A material having a shape relative to the lower conductive pattern (5) is formed. For example, e, the mold layer W0 is formed by a tantalum nitride layer, a oxidized layer or a metal nitride layer. It is clearly understood that the preferred method is to precisely control the thickness of the mold layer 160. This is a process parameter that determines the shape of the floating gate in accordance with the present invention. For this purpose, low pressure CVD (LPCVD) or atomic layer deposition can be used. :a:d) The process is to form the "mold layer 16". In addition, it is also desirable to precisely control the depth of the conductive interstitial pattern 15G and the height of the gap region UG, because these two factors also affect the shape of the floating pole Referring to FIG. 22F, the mold layer (10) is left in an anisotropic manner, and the top surface of the lower conductive pattern 155 is exposed straight (four). Accordingly, a mold spacer 165' is formed to cover the lower conductive pattern 155. The top surface edge. Thereafter, at After the upper conductive layer is formed on the entire surface of the resultant structure in which the mold spacer 165 has been formed, the upper conductive layer is pasted until the top surface of the device isolation layer pattern 12A. As a result, the mold spacers 165 are An upper conductive pattern 17A is formed in contact with the lower conductive pattern 155. Here, in accordance with the present invention, one of the lower conductive patterns 155 and the upper conductive pattern 170 is in contact with each other to form a floating gate pattern 18''. The pole pattern 18 has an inverted T-shaped cross section, as shown in Fig. 22f. The cross-sectional shape of the floating gate pattern 180 is from the height H2311.doc -36-1300608 degrees and width of the lower conductive pattern 丨$5 and The height and width of the upper conductive pattern 170 are determined. Therefore, as described above, it is desirable to precisely control the following conditions: 丨) the height between the device isolation layer 120 and the top surface of the active region 1 () 2 The difference; 2) the width of the gap region 13〇; 3) the stack thickness of the mold layer 16〇; and the etching depth of the upper conductive layer.
如上文所述,因為該上部傳導圓案17〇係使用該模間隔 物165作為模具予以形成,所以該上部傳導圖案⑺自行對 準於該下部傳導圖案155的一中心部分中。此外,根據本 發明’該下部傳導圖案155的厚度^以在用於使浮動閑極 電極與控制閘極電極分開的蝕刻製期間防止該作用區1〇2 T曝露。舉例而言,較佳方式為,該下部傳導圖案155的 厚度至少大於該上部傳導圖案17〇的寬度。 同時,可使用CVD製程或蟲晶生長製程,用多晶石夕1 化物、金屬層或其組合來形成用於該上部傳導圖案⑺的 該上部傳導層。料,可使用⑽製程來實行#刻該上部 傳導層’ Λ中泥漿可具有相對於該裝置隔離層圖案120或 该模間隔物1 65之蝕刻選擇性。 請參閱圖22G’使用該上部傳導圖案17〇與該下部傳導圖 案155作為蝕刻遮罩’蝕刻該裝置隔離層圖案⑽的曝露之 頂部表面。根據本發明具體實施例,透過此餘刻製程純 刻该裝置隔離層圖案12〇的頂部表面,使得該頂部表面變 :低於介於相鄰下部傳導圖案155之間的該作用區⑽的頂 部表面,如圖22G所示。 根據本發明具體實施例 當使该裝置隔離層圖案12〇凹 Π231 l.doc -37- 1300608 進時,可去除該模間隔物165。因此,如圖22G所示,曝露 出該下部傳導圖案155的頂部表面,惟接觸於該上部傳導 圖案170之區域除外。或者,可透過額外製程來去除該模 間隔物165。 同時,由於該下部傳導圖案155之寬度寬於該下伏作用 區102,因而在使該裝置隔離層圖案12〇凹進期間,有可能 防止該作用區102及該閘極絕緣層14〇受到蝕刻損壞。如果 考慮貫行使該裝置隔離層圖案120凹進直到該裝置隔離声 圖案120的頂部表面變成低於該作用區1〇2的頂部表面,則 此防止效應顯而易見。如上文所述,需要擴大該間隙區 130之寬度以防止蝕刻損壞。 請參閱圖22H,在丨中該裝置隔離層圖案12〇的頂部表面 凹進的所得結構上形成一堆疊閘極結構19〇。該堆疊閘極 結構190係用依序堆疊的一浮動閘極電極192、一閘極層間 絕緣層194及一控制閘極電極196予以組態。 形成該堆疊閘極結構190包括:在其中該裝置隔離層圖 案⑽的頂部表面凹進的所得結構之整個表面i,相繼形 成-閘極層間絕緣層及—控制閘極傳導層;以及圖案化該 控制閘極傳導層、該閘極層間絕緣層及該浮動閘極圖案 180。結果’該控制閘極電極196被形成’以使其交越於相 鄰之作用區及該裝置隔離層圖案12〇上,並且該等浮動閘 極電極192係沿該作用區⑽延伸方向互相電絕緣。該閑極 層間絕緣層圖案194可能係—種用下列各層所組態的多声 圖案:一具有3〇埃至8〇埃範圍内之厚度的氧化石夕層圖案: 112311.doc -38- 1300608 -具有50埃至15〇埃範圍内之厚度的氮化矽層圖案丨及一 具有30埃至1〇〇埃範圍内之厚度的氧化矽層圖案。 在則文之具體實施例中,可去除該模間隔物165之-部 分⑽,將參考圖23錢2脚以詳細說明。“剩餘之模 間隔物1 6 5 r,使猎尤田"^加』、斗» :形成该堆豐閘極結構的蝕刻製程 期間該下部料圖案155幾乎未受㈣刻損壞。實行圖μ 至圖22F所tf之製程之後’使用該上部傳導圖案wo與該下 •部傳導圖案155作為钱刻遮罩,钱刻該裝置隔離層圖案120 的曝露之頂部表面。其後’去除該模間隔物165之一部 分,藉此在該下部傳導圖案155上形成該剩餘之模間隔物 他。請參閱圖23B,形成—閘極層間絕緣層及用於一控 制閘極電極的一傳導層之後,用於該控制閘極電極的該傳 導層、該間極層I絕緣層及該浮動閉極圖案⑽被圖案 化,以形成-字線190。此時,該剩餘之模間隔物之作用 為,防止該下部傳導圖案155受到蝕刻損壞。 _ 根據本毛明具體貫施例,該浮動閘極電極192係用個別 ^成的該下部傳導圖案155及該上部傳導圖案17〇予以組 態。但是,該上部傳導圖案170及該下部傳導圖案155可從 同一傳導層或相同構造之層予以形成,如圖24a及細所 示。 圖24 A及24B之具體實施例包括在圖22八至22d之前述具 體實施例中所述之該傳導填隙圖案(請參閱圖22d之參照數 子150)上形成一遮罩圖案2〇〇,而且不需要用於形成上部 傳導圖案的補充製程,其中該遮罩圖案界定該上部傳導圖 H2311.doc -39- 1300608 案170。此遮罩圖案2〇〇可形成在該倒τ形閘極區上。實行 圖22Α至22D之製程之後,在該傳導填隙圖案15〇上形成該 遮罩圖案20G。如圖24Α所示,使用該遮罩圖案删作為一 蝕刻遮罩,將該傳導填隙圖案150蝕刻至一預先決定深 度,藉此形成該下部傳導圖案155及該上部傳導圖案i7Q。 此具體實施例中的該上部傳導圖案17〇及該下部傳導圖案 155之結構相同於其他前述具體實施例之結構,惟其係從 單一層予以形成除外。 較佳方式為,該遮罩圖案2〇〇係藉由微影製程所形成, 但是其可用各種材料(諸如氮化石夕、氧化石夕、氮氧化石夕)予 以形成。其間,考慮到該遮罩圖案2〇〇界定該上部傳導圖 案170,因而該遮罩圖案2〇〇窄於該下部傳導圖案。為 了體現使該遮罩圖案具有窄寬纟,形成該遮罩圖案細 可包括在該填隙圖案150上形成一具有一預先決定寬度的 犧牲圖案,並且透過各向同性蝕刻製程來減小該寬度。 如圖24B所示,去除該遮罩圖案2〇〇,以曝露出該浮動閉 極圖案180之頂部表面。纟除該遮罩圖案2〇〇之後的製程完 全相同於前述具體實施例的製程,並且因此在本文中將省 略其說明。 根據如上文所述之具體實施例,該裝置隔離層圖案係在 該浮動閘極圖案之前予以形成。比較下文具體實施例與前 述具體實施例’不同之處在於’在形成裝置隔離層圖案之 前,預先形成浮動閉極圖案,將參考25A至25E及圖26a至 26B予以闡述。本文中,為了避免重複闡述,將省略前文 112311.doc -40- 1300608 所述之描述。 請參閱圖25A,在一半導體基板1〇〇之一預先決定區域上 相繼形成一閘極絕緣層140、一浮動閘極圖案2 1 〇及一渠溝 遮罩圖案110。使用該渠溝遮罩圖案11 〇作為一蝕刻遮罩來 餘刻δ亥半導體基板1 〇〇,以形成一界定作用區1 的渠溝 105。其後’在其中已形成一渠溝1 〇5的所得結構上,形成 一裝填該渠溝105的裝置隔離層119。 請夢閱圖25Β,蝕刻該裝置隔離層圖案119,直到曝露出 该渠溝遮罩圖案11〇之側壁,藉此形成一裝置隔離層圖案 120,以裝填該渠溝105。形成該裝置隔離層圖案12〇可包 括:平坦化該裝置隔離層119,直到曝露出該渠溝遮罩圖 案110 ;以及蝕刻該裝置隔離層圖案120之頂部表面,直到 其高度幾乎等於該浮動閘極電極2丨〇的頂部表面高度。 請參閱圖25C,以各向異性方式钱刻該渠溝遮罩圖案 no,以形成一窄於該浮動閘極圖案21〇之遮罩圖案ιΐ5。As described above, since the upper conductive circle 17 is formed using the mold spacer 165 as a mold, the upper conductive pattern (7) is self-aligned in a central portion of the lower conductive pattern 155. Further, the thickness of the lower conductive pattern 155 according to the present invention prevents the active region 1 2 2 T from being exposed during the etching process for separating the floating idle electrode from the control gate electrode. For example, preferably, the lower conductive pattern 155 has a thickness at least greater than a width of the upper conductive pattern 17A. Meanwhile, the upper conductive layer for the upper conductive pattern (7) may be formed using a CVD process or a worm growth process using a polycrystalline compound, a metal layer, or a combination thereof. Alternatively, the (10) process can be used to carry out the etching of the upper conductive layer. The mud can have an etch selectivity with respect to the device isolation layer pattern 120 or the mold spacer 1 65. Referring to Figure 22G', the upper conductive pattern 17 is used and the lower conductive pattern 155 is used as an etch mask to etch the exposed top surface of the device isolation layer pattern (10). According to a specific embodiment of the present invention, the top surface of the device isolation layer pattern 12A is purely engraved through the process of the engraving such that the top surface becomes lower than the top of the active region (10) between adjacent lower conductive patterns 155. The surface is as shown in Fig. 22G. In accordance with an embodiment of the present invention, the mold spacer 165 can be removed when the device isolation layer pattern 12 is recessed 231 l.doc - 37 - 1300608. Therefore, as shown in Fig. 22G, the top surface of the lower conductive pattern 155 is exposed except for the area in contact with the upper conductive pattern 170. Alternatively, the mold spacer 165 can be removed by an additional process. At the same time, since the width of the lower conductive pattern 155 is wider than the underlying active region 102, it is possible to prevent the active region 102 and the gate insulating layer 14 from being etched during recessing of the device isolation layer pattern 12 damage. This prevention effect is apparent if the device isolation layer pattern 120 is recessed until the top surface of the device isolation acoustic pattern 120 becomes lower than the top surface of the active region 1〇2. As described above, it is necessary to enlarge the width of the gap region 130 to prevent etching damage. Referring to Fig. 22H, a stacked gate structure 19 is formed on the resultant structure in which the top surface of the device isolation layer pattern 12A is recessed. The stacked gate structure 190 is configured by a floating gate electrode 192, a gate interlayer insulating layer 194 and a control gate electrode 196 which are sequentially stacked. Forming the stacked gate structure 190 includes: forming an entire surface i of the resultant structure in which a top surface of the device isolation layer pattern (10) is recessed, sequentially forming a gate interlayer insulating layer and a control gate conducting layer; and patterning the The gate conductive layer, the gate interlayer insulating layer, and the floating gate pattern 180 are controlled. As a result, the control gate electrode 196 is formed to cross the adjacent active region and the device isolation layer pattern 12A, and the floating gate electrodes 192 are electrically connected to each other along the extending direction of the active region (10). insulation. The idle interlayer insulating layer pattern 194 may be a multi-tone pattern configured with the following layers: a oxidized stone layer pattern having a thickness ranging from 3 Å to 8 Å: 112311.doc -38- 1300608 a tantalum nitride layer pattern having a thickness in the range of 50 angstroms to 15 angstroms and a yttrium oxide layer pattern having a thickness in the range of 30 angstroms to 1 angstrom. In the specific embodiment of the present invention, the portion (10) of the mold spacer 165 can be removed, as will be described in detail with reference to Figure 2, Figure 2. "The remaining mold spacers 1 6 5 r, so that the hunting of the field "quote", the bucket»: the formation of the stack of gate structure during the etching process, the lower material pattern 155 is almost not damaged by (four). After the process of tf of FIG. 22F, the upper conductive pattern wo and the lower conductive pattern 155 are used as a money mask to engrave the exposed top surface of the device isolation layer pattern 120. Thereafter, the mode interval is removed. a portion of the object 165, thereby forming the remaining mode spacer on the lower conductive pattern 155. Referring to FIG. 23B, after forming a gate interlayer insulating layer and a conductive layer for controlling the gate electrode, The conductive layer, the interpolar layer I insulating layer and the floating closed-pole pattern (10) of the control gate electrode are patterned to form a word line 190. At this time, the remaining mode spacer acts to prevent The lower conductive pattern 155 is damaged by etching. According to a specific embodiment of the present invention, the floating gate electrode 192 is configured by the lower conductive pattern 155 and the upper conductive pattern 17A. Upper conductive pattern 170 and the The portion conductive pattern 155 can be formed from the same conductive layer or a layer of the same configuration, as shown in Figure 24a and in detail. The specific embodiments of Figures 24A and 24B are included in the foregoing specific embodiments of Figures 22 through 22d. A mask pattern 2 is formed on the conductive interstitial pattern (see reference numeral 150 of FIG. 22d), and a complementary process for forming the upper conductive pattern is not required, wherein the mask pattern defines the upper conduction pattern H2311 .doc -39- 1300608 case 170. The mask pattern 2 can be formed on the inverted τ gate region. After the processes of Figs. 22A to 22D are performed, the mask is formed on the conductive gap pattern 15 The pattern 20G is formed as an etch mask using the mask pattern as shown in FIG. 24A, and the conductive gap pattern 150 is etched to a predetermined depth, thereby forming the lower conductive pattern 155 and the upper conductive pattern i7Q. The structure of the upper conductive pattern 17 and the lower conductive pattern 155 in this embodiment is the same as that of the other specific embodiments except that it is formed from a single layer. Preferably, the mask pattern 2〇 The lanthanide is formed by a lithography process, but it can be formed using various materials such as nitridox, oxidized stone, and oxynitride arsenal. Meanwhile, the mask pattern 2 考虑 defines the upper conductive pattern 170 Therefore, the mask pattern 2 is narrower than the lower conductive pattern. To form the mask pattern with a narrow width, forming the mask pattern may include forming a predetermined width on the gap pattern 150. The sacrificial pattern is reduced by the isotropic etching process. As shown in Fig. 24B, the mask pattern 2 is removed to expose the top surface of the floating closed pattern 180. The mask is removed. The process after the pattern 2 is completely the same as the process of the foregoing specific embodiment, and thus the description thereof will be omitted herein. According to a specific embodiment as described above, the device isolation layer pattern is formed prior to the floating gate pattern. The following specific embodiment differs from the foregoing embodiment in that 'the floating closed-pole pattern is formed in advance before forming the device isolation layer pattern, which will be explained with reference to Figs. 25A to 25E and Figs. 26a to 26B. In this document, the descriptions described in the previous paragraph 112311.doc -40-1300608 will be omitted to avoid repetition. Referring to Fig. 25A, a gate insulating layer 140, a floating gate pattern 2 1 〇 and a trench mask pattern 110 are successively formed on a predetermined area of a semiconductor substrate 1 . The trench mask pattern 11 is used as an etch mask to engrave the ΔH semiconductor substrate 1 以 to form a trench 105 defining the active region 1. Thereafter, a device isolation layer 119 for filling the trench 105 is formed on the resultant structure in which a trench 1 〇 5 has been formed. Referring to Figure 25, the device isolation layer pattern 119 is etched until the sidewalls of the trench mask pattern 11 are exposed, thereby forming a device isolation layer pattern 120 to fill the trenches 105. Forming the device isolation layer pattern 12 may include: planarizing the device isolation layer 119 until the trench mask pattern 110 is exposed; and etching the top surface of the device isolation layer pattern 120 until its height is almost equal to the floating gate The top surface height of the pole electrode 2丨〇. Referring to FIG. 25C, the trench mask pattern no is anisotropically patterned to form a mask pattern ΐ5 narrower than the floating gate pattern 21〇.
請參閱圖25D,使用一 一遮罩圖案11 5,蝕刻該浮動閘極圖Referring to FIG. 25D, the floating gate pattern is etched using a mask pattern 11 5 .
圖案180具有倒T形剖面, -頂无決疋、/未度,這完全相同於 (列。結果,該經|虫刻之浮動閘極 其中該上部傳導圖案170窄於該 H2311.doc 41 1300608 下部傳導圖案155。其後,使該裝置隔離層圖案12〇之頂部 表面凹進,直到其兩度相同於該閘極絕緣層14〇的頂部表 面高度。 請參閱圖25E,在該浮動閘極圖案上形成一閘極層間絕 緣層及一控制問極傳導層,使得彼等層覆蓋該浮動閘極圖 案1 80的頂部表面。其後,圖案化該閉極層間絕緣層及該 控制閘極傳導層,以形成一交越在該作用區1〇2上的字線 Φ 190。形成漆字線190相同於前文具體實施例。 在參考圖25A至25E所闡述的具體實施例中,在圖25B所 不之製程之後,可藉由在該渠溝遮罩圖案11〇之側壁上形 成一間隔物,以在該裝置隔離層圖案12〇之頂部表面上形 成一凹區。下大將參考圖26A及26B予以詳盡闡述。在此 情況中,自於該間隔物之形狀被轉印至裝置隔離層圖案 120上,因而有可能形成低於作用區1〇2之頂部表面的裝置 隔離層圖案120,而且不需要曝露閘極絕緣層14〇。 • 晴苓閱圖26A及圖26B,使該裝置隔離層圖案12〇凹進至 一預先決定深度,使得該閘極絕緣層14〇未被曝露。其 後,在所得結構上等形地形成一間隔絕緣層,以覆蓋 該㈣閘極圖案180,其且其後,以各向異性方式蝕刻: 間隔絕緣層220,直到曝露出該上部傳導圖案170之頂部表 面。此時,該間隔絕緣層220可能係選自氧化矽層、氮化 矽層、氮氧化矽層與金屬氮化物層所組成之群組的至+ 一 層。 y 、”口果’在該下部傳導圖案155上形成一緩衝、絕緣層圖案 112311.doc -42- 1300608 230,並且在該下部傳導圖案155之側壁上形成一緩衝間隔 物 ’、後’在已形成該緩衝絕緣層圖案23 0及該緩衝間 隔物240的所得結構上,形成一閘極層間絕緣層及一控制 閘極傳導層。本文中,該裝置隔離層圖案120的頂部表面 低於介於緩衝間隔物24〇之間的該浮動閘極圖案180的頂部 表面其後,實行圖案化製程,以形成一交越在該作用區 102上的字線19〇。形成該字線19〇相同於前文具體實施 _ 例。結果,該緩衝絕緣層圖案230被插入於該下部傳導圖 案155的頂部表面與該閘極層間絕緣層ι94的底部表面之 間。 圖27A至27E繪示根據本發明另一具體實施例之用於製 造NAND快閃記憶體之浮動閘極之方法的剖面圖。請參閱 圖27A ’在一半導體基板1〇〇上形成一閘極絕緣層140、一 浮動閘極圖案210及一遮罩圖案11〇,並且接著形成一用於 裝置隔離的渠溝105。在該浮動閘極圖案21〇下方之該半導 鑄 體基板100變成一作用區102。詳言之,在該半導體基板 100上實行一薄膜沉積製程,以形成用於浮動閘極的一閘 極絕緣層及一傳導層,其厚度在約50埃至100埃範圍内。 之後’在用於浮動閘極的該傳導層上形成該遮罩圖案 11 0,以界定該渠溝105。之後,使用該遮罩圖案11 〇作為 飯刻遮罩’钱刻用於浮動閘極之該傳導層、該絕緣層及該 半導體基板100之一部分,藉此形成該該浮動閘極圖案 210、該閘極絕緣層圖案140及該作用區102。即,該問極 絕緣層圖案140及該浮動閘極圖案210係在該作用區1〇2上 112311.doc -43 - 1300608 自行對準。本文中,兮、;巨、、甚,s μ木溝1 05曝鉻出該浮動閘極圖案 21〇、該閘極絕緣層圖案刚及該作用區iG2之各自側壁。 舉例而言,該浮動閘極圖案210可用多晶矽予以形成。 因為該浮動閘極圖案210之厚度決定該浮動閘極電極之高 度,所以該浮動閑極圖案應具有適當厚度,以考慮到搞合 比率、干擾效應等等。該遮罩圖案11〇可用具有相對於石夕 及乳化物層之姓刻選擇性的材料予以形成。舉例而言,該 遮罩圖案110可用氮化矽予以形成。 請參閱圖27B,在所得結構上形成—用於裝置隔離的絕 緣層,以覆蓋該作用區、該閑極絕緣層圖案14〇及該浮動 閘極圖案2H)之各自側壁以使其裝填用於裝置隔離的該渠 溝1〇5後,韻刻用於裝置隔離的該絕緣層,直到曝露出該 遮罩圖案u?藉此形成一裝置隔離層115。可藉由cMp或 回蝕製程來貫行該用於襞置隔離之絕緣層的蝕刻製程。 參考圖27C’去除該曝露之遮罩圖案ιι〇,以曝露出該 淨動間極圖案21 〇之頂都主工 , ," 頂°卩表面。由於該遮罩圖案110係用具 :對於省子動閘極圖案210與該襞置隔離層出之蝕刻選 擇性的材料予以开彡4、 110。 形成,所以可選擇性去除該遮罩圖案 :參考圖27D ’去除該裝置隔離層115之在該倒了形閘極 口〇0之口 P刀,使得曝露出該浮動閉極圖案^ 面。因此,一疮屮+壯如 ^ ^ / 、置隔離層圖案120的頂部表面低於 案21G的頂部表面。本文中,料動閉極圖 ” ? ^刀成—破該裝置隔離層圖案120覆蓋之區域 112311.doc -44 - 1300608 155 (下文中稱為 帝从 〇丨圖案)及一未被該裝置隔離層圖案120 復盖之區域1 3 〇 (下 、 — 文中稱為上部圖案)。在該浮動閘極圖The pattern 180 has an inverted T-shaped profile, - the top is unresolved, / is not, which is exactly the same as (column. As a result, the floating gate of the worm is wherein the upper conductive pattern 170 is narrower than the H2311.doc 41 1300608 The lower conductive pattern 155. Thereafter, the top surface of the device isolation layer pattern 12 is recessed until it is twice the same as the top surface height of the gate insulating layer 14A. Referring to FIG. 25E, the floating gate Forming a gate interlayer insulating layer and a gate electrode conductive layer on the pattern such that the layers cover the top surface of the floating gate pattern 180. Thereafter, the closed interlayer insulating layer and the control gate are patterned The layer is formed to form a word line Φ 190 crossing the active area 1 〇 2. The formation of the lacquer word line 190 is identical to the previous embodiment. In the specific embodiment illustrated with reference to Figures 25A to 25E, in Figure 25B After the process is not completed, a spacer may be formed on the sidewall of the trench mask pattern 11 to form a recess on the top surface of the device isolation layer pattern 12A. And 26B are elaborated. In this case Since the shape of the spacer is transferred onto the device isolation layer pattern 120, it is possible to form the device isolation layer pattern 120 lower than the top surface of the active region 1〇2, and it is not necessary to expose the gate insulating layer 14A. • Referring to Figures 26A and 26B, the device isolation layer pattern 12 is recessed to a predetermined depth such that the gate insulating layer 14 is not exposed. Thereafter, an isomorphous formation is formed on the resulting structure. The insulating layer is spaced apart to cover the (four) gate pattern 180, and thereafter, is anisotropically etched: the insulating layer 220 is spaced apart until the top surface of the upper conductive pattern 170 is exposed. At this time, the spacer insulating layer 220 It may be selected from the group consisting of a ruthenium oxide layer, a tantalum nitride layer, a ruthenium oxynitride layer and a metal nitride layer to the + layer. y, "gogogo" forms a buffer and insulation on the lower conductive pattern 155. a layer pattern 112311.doc -42- 1300608 230, and a buffer spacer ', a 'after' on the sidewall of the lower conductive pattern 155, on the resulting structure in which the buffer insulating layer pattern 230 and the buffer spacer 240 have been formed ,form a gate interlayer insulating layer and a control gate conductive layer. Here, the top surface of the device isolation layer pattern 120 is lower than the top surface of the floating gate pattern 180 between the buffer spacers 24? The patterning process is performed to form a word line 19〇 crossing the active area 102. The word line 19 is formed in the same manner as in the previous embodiment. As a result, the buffer insulating layer pattern 230 is inserted into the lower conductive pattern. Between the top surface of 155 and the bottom surface of the gate interlayer insulating layer ι 94. Figures 27A through 27E are cross-sectional views showing a method for fabricating a floating gate of a NAND flash memory in accordance with another embodiment of the present invention. . Referring to Fig. 27A', a gate insulating layer 140, a floating gate pattern 210, and a mask pattern 11 are formed on a semiconductor substrate 1b, and then a trench 105 for device isolation is formed. The semiconductive substrate 100 below the floating gate pattern 21 turns into an active region 102. In detail, a thin film deposition process is performed on the semiconductor substrate 100 to form a gate insulating layer and a conductive layer for the floating gate, the thickness of which is in the range of about 50 angstroms to 100 angstroms. The mask pattern 110 is then formed on the conductive layer for the floating gate to define the trench 105. Thereafter, the mask pattern 11 使用 is used as a rice mask, the conductive layer for the floating gate, the insulating layer, and a portion of the semiconductor substrate 100, thereby forming the floating gate pattern 210, The gate insulating layer pattern 140 and the active region 102. That is, the polarity insulating layer pattern 140 and the floating gate pattern 210 are self-aligned on the active area 1〇2, 112311.doc -43 - 1300608. In this paper, the 兮, 巨, 、, 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 For example, the floating gate pattern 210 can be formed with a polysilicon. Since the thickness of the floating gate pattern 210 determines the height of the floating gate electrode, the floating idle pattern should have an appropriate thickness to take into account the ratio, the interference effect, and the like. The mask pattern 11 can be formed of a material having a selectivity with respect to the stone and the layer of the emulsion. For example, the mask pattern 110 can be formed using tantalum nitride. Referring to FIG. 27B, an insulating layer for device isolation is formed on the resultant structure to cover respective sidewalls of the active region, the dummy insulating layer pattern 14 and the floating gate pattern 2H to be filled for After the trenches 1〇5 of the device are isolated, the insulating layer for device isolation is engraved until the mask pattern u is exposed, thereby forming a device isolation layer 115. The etching process for disposing the isolation insulating layer can be performed by a cMp or an etch back process. The exposed mask pattern ιι〇 is removed with reference to Fig. 27C' to expose the top of the net moving pole pattern 21, and the top surface. Since the mask pattern 110 is provided, the material for etching the gate pattern 210 and the spacer isolation layer is etched 4, 110. Formed, the mask pattern can be selectively removed: the P-knife at the inverted gate 〇0 of the device isolation layer 115 is removed with reference to Figure 27D', such that the floating closed-pole pattern is exposed. Therefore, the top surface of the spacer pattern 120 is lower than the top surface of the case 21G. In this paper, the feed closed-pole diagram is formed by breaking the area covered by the device isolation layer pattern 112311.doc -44 - 1300608 155 (hereinafter referred to as the emperor 〇丨 pattern) and is not isolated by the device. The layer pattern 120 covers the area 1 3 〇 (below, - referred to as the upper pattern in the text). In the floating gate diagram
累2 1 0中,与Γ祐里rr- -V 隔離層圖案120所覆蓋之下部圖案變成一 下部傳導圖案155,& ^ ” 而该上部圖案130係用於該浮動閘極電 極的一上部傳導圖案。 貝仃去除該遮罩圖案110之製程,或先實行 去=該裝置隔離層115之部分之製程,非屬重要事項。、 哨乡考圖27E ’蝕刻該浮動閘極圖案21〇之該上部圖案 130 (其高於該裝置隔離層圖案120),以形成該浮動閘極圖 案的上^傳導圖案170。本文中,該上部傳導圖案170的 寬度(w2)窄於該上部圖案13〇的寬度(%)。換言之,該上部 傳導圖案170的寬度(W2)小於該下部傳導圖案155的寬度 (Wl)結果,形成用該下部傳導圖案155與該上部傳導圖 案17〇 (其寬度小於該下部傳導圖案155的寬度)所組態的該 浮動閘極㈣18〇。舉例而言’可藉由使用關溶液進^ 濕餞刻製程,來實行#刻該上部圖案130。替代做法為, 亦可使用钱刻氣體來進行乾餘刻製冑,來餘刻該上部圖案 130。假使使用濕蝕刻製程,則蝕刻溶液含有NH4〇H。其 間,由於在使用蝕刻溶液情況下可能蝕刻該上部圖案GO 的頂部表面及側壁,所以應考慮到該上部圖案13〇的頂部 表面被蝕除,來決定原始浮動閘極圖案2 2 〇的厚度。 其間,雖然因為該下部傳導圖案! 55之側表面被該襞置 隔離層圖案12 0所覆蓋而受到保護,所以按照製程條件, 頂部表面之邊緣可被蝕刻至某種程度。此外,按照製程條 112311.doc -45- 1300608 件,該上部傳導圖案170之側表面可具有垂直、傾斜、平 坦或稍微粗綠之表面。另外,介於該上部傳導圖案17〇與 該下部傳導圖案155之間的接合部分可具有平滑曲線。 形成用該閘極層間絕緣層的絕緣層及用於該控制間極電 極的傳導層之後’詩該控㈣極的該傳導層、該閉極層 間絕緣層及該浮動閘極圖案182被圖案化, 後’形成該控制閘極電極196,制閘極電極i96被形 成’以使其交騎該作龍1G2上,並且料浮動間極電 極192被形成於該控制閘極電極196與該作用區Μ〕之每一 交叉處。 根據參考圖27A至咖所述之方法,該浮_極電極係 在該作用區上自行對準。舉例而t,該浮動開極電極被形 成’使得該浮動閘極電極的該下部傳導圖案的寬度實質上 等於該作用區的寬度。 、在前文參考圖27A至27E所閣述的方法中,在形成該渠 溝|〇5之後’在該裝置隔離層之形成製程之前,可實行一 熱氧化’以解決於形成該渠溝之钱刻製程㈣所產生的兹 刻損壞。在此情況中’對該作用區1〇2的邊緣實行轨氧 化,使得在該作用區1〇2的該等邊緣處所形成的閑極絕緣 層之厚度相對厚於區1〇2的其他區域。 在參考圖27A至27E所述之方法中,該浮動閘極圖案可 防止5亥上部圖案130之頂部表面被蝕刻。為此目的,可押 制介於該遮罩圖案UG之去除製程與該裝置隔離層115之: 112311.doc -46- 1300608 刻製程之間的製程順序。舉例而t,可在未從該浮動閘極 圖案210之頂部表面去除該遮|圖案11〇的狀態+,對該浮 動閘極圖案210的該上部圖案13〇實行蝕刻製程。將參考圖 28A至28C予以說明。 首先,κ行圖27A及27B之製程,以形成一浮動閘極圖 案210、一閘極絕緣層14〇、一遮罩圖案ιι〇及一裝置隔離 層115。請參閱圖28A,蝕刻該裝置隔離層115之在該倒丁形 閘極區中之一部分,使得曝露出該浮動閘極圖案210的側 表面,藉此一形成之裝置隔離層圖案12〇的頂部表面低於 該浮動閘極圖案210的頂部表面。本文中,該浮動閘極圖 案210之頂部表面被該遮罩圖案11〇所覆蓋。 請參閱圖28B,該曝露之浮動閘極圖案21〇之該上部圖案 130之側表面被蝕刻以減小其寬度,藉此形成該上部傳導 曰圖案在本發明具體實施例中,不蝕刻該上部圖案13 〇 之頂部表面,這不同於在參考圖27A至27E所述之方法。 其後,去除該遮罩圖案110,如圖28C所示。對於圖27A 至之具體實施例,該上部圖案的頂部表面可被蝕刻, 使传该上部傳導圖案的頂部表面邊緣可被形成為平滑曲線 /狀反之,與圖27A至27E之具體實施例相比,在圖28八 至28C之具體實施例中,由於該遮罩圖案而使該上部圖案 的頂部表面未被钱刻,所以該上部傳導圖案的頂部表面邊 緣可被形成為有角度形狀。 根據本發明’選擇電晶體之閘極的一區域中具有箱形剖 面且在其另一區域中具有倒τ形剖面。因&,有可能體現 H2311.doc -47· 1300608 具有增強衝穿特性及$㈣性的㈣t μ e 根據本發明,因為當記憶體電 倒T形時,選擇電于動閘極破形成為 擇電曰曰體的閘極之部分被 當圖案控制閉極時,有可能防止形成選擇電曰^,所以 的作用區受到钮刻損壞。4選擇電曰曰體之區域中 广據本發明,浮動閉極電極具有倒τ :::::::電極之剖面面積,使得有可能最:二: =::17 閑極電極表面面積的製程裕度,因而 效應。結果,本發明之非揮發:二動=極的干擾 声隐體裝置可克服裳置高 5戶“成的問題,諸如電干擾及耦合比率降級。 /艮據本發明’由於該浮動問極具有倒T形剖面,所以可 增,介於浮動閘極電極之上部傳導圖案之間的距離,其中 ,等浮_極電極往控制極延伸方向互相相鄰。料, 適有可能減小介於往控制閘極延伸方向互相相鄰之浮動閘 極電極之間的干擾。 y從附圖及其相關闡述理解其他特性、優點或效應。 '、、、悉此項技術者應明自,可對本發明進行各種修改及變 b本t明思欲涵蓋屬隨附申請專利範圍及其同等 項之範疇内的本發明之修改及變化。 【圖式簡單說明】 作為本發明具體實施例圖解的附圖(為提供本發明進一 //、解而、、’内入,並且被併入及建構說明書的一部份)及說 112311.doc -48- 1300608 明書係用來解說本發明原理。圖式中: 圖1繪示根據本發明一具體實施例之NAND快閃記憶體裝 置的概要平面圖; 圖2綠示圖}之參照數字9〇之區域的局部放大圖,該區域 係J於一形成一記憶體電晶體之處的第一區1 0與一形成一 選擇電晶體之處的第二區20之間的邊界區; 圖3至8分別繪示沿圖2之1-1,、ΙΙ-ΙΓ、πι-in,、IV IV,、 V-V及VI-VI’線為例的剖面圖; 圖9A緣示根據本發明—具體實施例之沿—控制閘極之延 伸方向為例之浮動閘極電極的概要剖面圖; «不根據本發明-具體實施例之浮動閑極電極的佈 置之透視圖; 概::::根據本發…具雜實施例之泮動閘極電極的 圖11至18繪示根據本發明一具體實施 N娜快閃記憶體裝置之方法的圖式; 用… 圖19緣示根據本發一 .另具體貫施例之快閃記憶體裝置 之5己憶體電晶體的剖面圖; 圖20繪示根據本發明 的剖面圖; 為軛例之快閃記憶體裝置 囷21、、、日示根據本發明另一且 的剖面圖; /、體貫靶例之快閃記憶體裝置 圖22A至22H緣示根據本發明—且體實施 NAND快閃記憶體裝 彳之用於製造 直之方法的剖面圖; 112311.doc •49- j3〇〇6〇8 圖23 A至23B繪示根據本發明另—且 造NAND快閃記憶體裝置 具體貫施例之用於製 圖2 4 A至2 4 B繪示根據本發明另一且 造NAND快閃記憶體裝置之方法的剖^體實施例之用於製 圖25A至25E繪示根據本發明另一具=二 造NAND快閃記憶體裝置之方法的八_貫施例之用於製 nD面圖; 圖26Α至26Β繪示根據本發明另— 具體實;^ μ ^ 造NAND快閃記憶體裝置之方 汽她例之用於製 Μ面圖; 圖27Α至27Ε繪示根據本發明 #體貫施例> m 造NAND快閃記憶體裝置之浮動 之用於製 τ勒閘極之方 以及 方去的剖面圖; 圖28 A至28C繪示根據本發明另一且 貫施例 > 困 造N A N D快閃記憶體裝置之浮動閘 < 用於製 【主要元件符號說明】 z的剖面圖。 圖1至圖1 8元件符號說明 10 =一區(形成記憶體電晶體之處) 20 第二區(形成選擇電晶體之處) 30 半導體基板 40 裝置隔離層圖案(裝置隔離層) 50 作用區 60 倒τ形閘極區 70 對接接觸(對接接觸區) 80 箱形閘極區 90 區域(介於形成記憶體電晶體之 112311.doc -50- 1300608In the case of the TiO 2 , the lower pattern covered by the rr 里 rr--V isolation layer pattern 120 becomes the lower conduction pattern 155, & ^ ” and the upper pattern 130 is used for an upper conduction of the floating gate electrode. The process of removing the mask pattern 110 by the shellfish, or the process of first performing the part of the device isolation layer 115 is not an important matter. The whistle map 27E 'etches the floating gate pattern 21〇 An upper pattern 130 (which is higher than the device isolation layer pattern 120) to form an upper conductive pattern 170 of the floating gate pattern. Here, the width (w2) of the upper conductive pattern 170 is narrower than the upper pattern 13〇 Width (%). In other words, the width (W2) of the upper conductive pattern 170 is smaller than the width (Wl) of the lower conductive pattern 155, and the lower conductive pattern 155 and the upper conductive pattern 17 are formed (the width of which is smaller than the lower portion) The width of the conductive pattern 155 is configured to be the floating gate (four) 18 〇. For example, the upper pattern 130 can be inscribed by using a wet etching process. Alternatively, it can be used. Money is carved into the gas The upper pattern 130 is left to be engraved, and if the wet etching process is used, the etching solution contains NH4〇H. Meanwhile, since the top surface and the sidewall of the upper pattern GO may be etched using an etching solution, It should be considered that the top surface of the upper pattern 13A is etched to determine the thickness of the original floating gate pattern 2 2 。. Meanwhile, although the side surface of the lower conductive pattern ! 55 is the isolation layer pattern 12 0 Covered and protected, so according to the process conditions, the edge of the top surface can be etched to some extent. In addition, according to the process strip 112311.doc -45-1300608, the side surface of the upper conductive pattern 170 can have vertical, tilt a flat or slightly thick green surface. In addition, the joint portion between the upper conductive pattern 17A and the lower conductive pattern 155 may have a smooth curve. An insulating layer for forming the gate interlayer insulating layer is used for After the conductive layer of the interelectrode electrode is controlled, the conductive layer of the control (four) electrode, the closed interlayer insulating layer and the floating gate pattern 182 are patterned, and then 'The control gate electrode 196 is formed, the gate electrode i96 is formed 'to be placed on the dragon 1G2, and the floating interpole electrode 192 is formed on the control gate electrode 196 and the active region Μ] Each of the intersections. According to the method described with reference to Figures 27A to 559, the floating-electrode electrode is self-aligned on the active region. For example, t, the floating open electrode is formed 'to make the floating gate electrode The width of the lower conductive pattern is substantially equal to the width of the active region. In the method described above with reference to FIGS. 27A to 27E, after forming the trench |〇5, before the formation process of the device isolation layer , a thermal oxidation can be carried out to solve the damage caused by the engraving process (4) of forming the trench. In this case, the edge of the active region 1〇2 is subjected to orbital oxidation such that the thickness of the dummy insulating layer formed at the edges of the active region 1〇2 is relatively thicker than the other regions of the region 1〇2. In the method described with reference to Figs. 27A to 27E, the floating gate pattern can prevent the top surface of the upper pattern 130 from being etched. For this purpose, the removal process between the mask pattern UG and the device isolation layer 115 can be imposed: 112311.doc -46- 1300608 The process sequence between the engraving processes. For example, t can be performed in the state in which the mask pattern 11 is not removed from the top surface of the floating gate pattern 210, and the upper pattern 13 of the floating gate pattern 210 is subjected to an etching process. Description will be made with reference to Figs. 28A to 28C. First, the processes of Figs. 27A and 27B are performed to form a floating gate pattern 210, a gate insulating layer 14A, a mask pattern ιι, and a device isolation layer 115. Referring to FIG. 28A, a portion of the device isolation layer 115 in the inverted gate region is etched such that a side surface of the floating gate pattern 210 is exposed, thereby forming a top portion of the device isolation layer pattern 12 The surface is lower than the top surface of the floating gate pattern 210. Herein, the top surface of the floating gate pattern 210 is covered by the mask pattern 11A. Referring to FIG. 28B, the side surface of the exposed floating gate pattern 21 of the upper pattern 130 is etched to reduce its width, thereby forming the upper conductive germanium pattern. In the embodiment of the present invention, the upper portion is not etched. The top surface of the pattern 13 is different from the method described with reference to Figures 27A to 27E. Thereafter, the mask pattern 110 is removed as shown in FIG. 28C. For the embodiment of Figures 27A through, the top surface of the upper pattern can be etched such that the top surface edge of the upper conductive pattern can be formed as a smooth curve/shape, as opposed to the embodiment of Figures 27A through 27E. In the specific embodiment of FIGS. 28-8 to 28C, the top surface of the upper pattern is not engraved due to the mask pattern, so the top surface edge of the upper conductive pattern may be formed into an angular shape. According to the invention, the gate of the selective transistor has a box-shaped cross section and in another region has an inverted τ-shaped cross section. Since &, it is possible to embody H2311.doc -47· 1300608 (4) t μ e with enhanced punch-through characteristics and $(4). According to the present invention, since the memory is electrically inverted, the selection of the electric gate is broken into When the gate portion of the electrified body is controlled to be closed by the pattern, it is possible to prevent the formation of the selection electrode, so that the action area is damaged by the button. 4 Selecting the region of the electrode body According to the invention, the floating closed electrode has a cross-sectional area of the inverted τ ::::::: electrode, making it possible to most: two: =::17 surface area of the idle electrode Process margin, and thus the effect. As a result, the non-volatile: two-motion=pole interference acoustic concealment device of the present invention can overcome the problem of high placement of 5 households, such as electrical interference and coupling ratio degradation. Inverted T-shaped profile, so it can be increased, the distance between the conductive patterns above the floating gate electrode, wherein the floating-electrode electrodes are adjacent to each other in the direction in which the control electrode extends. Controlling interference between floating gate electrodes adjacent to each other in the direction in which the gates extend. y Other characteristics, advantages, or effects are understood from the drawings and related descriptions. It is to be understood by those skilled in the art that the present invention may be Modifications and variations of the present invention within the scope of the appended claims and equivalents thereof are intended to cover various modifications and variations. The present invention is used to explain the principles of the present invention in order to provide the present invention, which is a part of the specification, and is incorporated in and incorporated by reference. : Figure 1 shows according to this 1 is a schematic plan view of a NAND flash memory device of a specific embodiment; FIG. 2 is a partially enlarged view of a region of reference numeral 9 绿 in a green diagram, the region J is in a portion where a memory transistor is formed A boundary region between a region 10 and a second region 20 where a selective transistor is formed; FIGS. 3 to 8 respectively show 1-1, ΙΙ-ΙΓ, πι-in, and IV along FIG. A cross-sectional view of the IV, VV, and VI-VI' lines; FIG. 9A is a schematic cross-sectional view of the floating gate electrode as an example of the direction of extension of the control gate according to the present invention; A perspective view of the arrangement of the floating idle electrode according to the present invention - a typical embodiment of the present invention is shown in FIGS. 11 to 18 of the present invention. FIG. 19 is a cross-sectional view of a 5 memory cell of a flash memory device according to the present invention. FIG. 20 is a schematic view of the memory device of the N flash memory device; A cross-sectional view according to the present invention; a flash memory device 轭21 of the yoke example, a day according to another aspect of the present invention FIG. 22A to 22H illustrate a cross-sectional view of a method for fabricating a straight body according to the present invention—and implementing a NAND flash memory device; 112311.doc •49 - j3〇〇6〇8 FIGS. 23A to 23B illustrate another embodiment of the NAND flash memory device according to the present invention for use in the drawing of FIG. 2 4 to 2 4 B, which is illustrated in accordance with the present invention. FIG. 25A to FIG. 25E are diagrams for illustrating a method for fabricating a NAND flash memory device according to another embodiment of the present invention. FIG. 26A to FIG. 26B show another embodiment of the NAND flash memory device according to the present invention; FIG. 27Α to 27Ε illustrate according to the present invention; Invention#Body Example> m is a cross-sectional view of a floating NAND flash memory device for making a τ gate and a square; FIGS. 28A to 28C illustrate another embodiment according to the present invention. Example > A floating gate of a NAND flash memory device is used to make a sectional view of the main component symbol description z. Figure 1 to Figure 18 Symbol Description 10 = One area (where the memory transistor is formed) 20 Second area (where the selected transistor is formed) 30 Semiconductor substrate 40 Device isolation layer pattern (device isolation layer) 50 Action area 60 inverted τ-shaped gate region 70 butt contact (butt contact area) 80 box-shaped gate region 90 region (between 112311.doc -50- 1300608 forming a memory transistor)
一區10與形成選擇電晶體之處的第 二區20之間的邊界區) 100 選擇電晶體 110 第一絕緣層 130 第一閘極 131 第閘極130的第一部分135之水平部分 133 第一閘極130的第一部分135之垂直部分 135 選擇電晶體100的第一閘極130之第一 部分 137 選擇電晶體1〇〇的第一閘極13〇之第二 部分 150 第二絕緣層 170 第二閘極 191S/D,193S/D, 雜質區 291S/D 200 記憶體電晶體 210 隧穿絕緣層 2305 230? 浮動閘極(浮動閘極電極) 231,231’ 浮動閘極230之水平部分 233, 233* 浮動閘極2 3 0之垂直部分 250 閘極層間絕緣層 270 控制閘極 300 基板 400 展置隔離層圖案 112311.doc 51 1300608a boundary region between a region 10 and a second region 20 where a selective transistor is formed) 100 selects a transistor 110 a first insulating layer 130 a first gate 131 a horizontal portion 133 of the first portion 135 of the first gate 130 The vertical portion 135 of the first portion 135 of the gate 130 selects the first portion 137 of the first gate 130 of the transistor 100. The second portion of the first gate 13 of the transistor 1 is selected. Gate 191S/D, 193S/D, impurity region 291S/D 200 memory transistor 210 tunneling insulation layer 2305 230? floating gate (floating gate electrode) 231, 231' horizontal portion 233 of floating gate 230, 233* floating gate 2 3 0 vertical portion 250 gate interlayer insulating layer 270 control gate 300 substrate 400 spread isolation layer pattern 112311.doc 51 1300608
410 下部裝置隔離層圖案 500 作用區 600 第一絕緣層 700 第一傳導圖案(第一傳導層圖案) 710 縮窄之第一傳導圖案 730 其餘第一傳導圖案 800 遮罩 900 第二絕緣層 1000 第二傳導層 1100a, 1100b 閘極遮罩 CSL 共同源極線 DC 位元線接觸(汲極接觸) GSL 接地選擇線(第二選擇線) SSL 串選擇線(第一選擇線) WLO 〜WLn 字線 d2 水平部分的之間的距離 d3 垂直部分的之間的距離 hi 水平部分的厚度 h2 垂直部分的厚度 Si 水平部分的剖面面積 S2 垂直部分的剖面面積 S3 面對面積 Stotal 總面對面積 W1? W]* 水平部分的寬度 112311.doc -52- 1300608 w2, w2’ 垂直部分的寬度 圖19至圖28元件符號說明 100 半導體基板 102 作用區 105 渠溝 110 渠溝遮罩圖案(遮罩圖案) 112 襯墊氧化物層圖案410 lower device isolation layer pattern 500 active region 600 first insulating layer 700 first conductive pattern (first conductive layer pattern) 710 narrowed first conductive pattern 730 remaining first conductive pattern 800 mask 900 second insulating layer 1000 Two conductive layers 1100a, 1100b gate mask CSL common source line DC bit line contact (drain contact) GSL ground select line (second select line) SSL string select line (first select line) WLO ~ WLn word line D2 Distance between horizontal parts d3 Distance between vertical parts hi Thickness of horizontal part h2 Thickness of vertical part Si Cross-sectional area of horizontal part S2 Cross-sectional area of vertical part S3 Face area Stotal Total facing area W1? W ]* The width of the horizontal portion 112311.doc -52- 1300608 w2, w2' The width of the vertical portion FIG. 19 to FIG. 28 The symbol description 100 The semiconductor substrate 102 The active region 105 The trench 110 The trench mask pattern (mask pattern) 112 Pad oxide layer pattern
114 遮罩氮化物層圖案(遮罩氮化物圖案) 115 遮罩圖案(圖25) 115 裝置隔離層(圖27) 119 裝置隔離層(裝置隔離層圖案) 120 裝置隔離層圖案 130 間隙區 130 上部圖案(圖27) 140 閘極絕緣層 150 傳導填隙圖案 155 下部傳導圖案 160 模層 165 模間隔物 165r 剩餘之模間隔物 170 上部傳導圖案 180 浮動閘極圖案 190 堆疊閘極結構(字線) 192 浮動閘極電極 112311.doc -53 - 1300608 194 閘極層間絕緣層 196 控制閘極電極 200 遮罩圖案 210 浮動閘極圖案 220 間隔絕緣層 230 緩衝絕緣層圖案 240 緩衝間隔物 W] 下部傳導圖案155的寬度 W2 上部傳導圖案170的寬度 112311.doc -54-114 Mask nitride layer pattern (mask nitride pattern) 115 Mask pattern (Fig. 25) 115 Device isolation layer (Fig. 27) 119 Device isolation layer (device isolation layer pattern) 120 Device isolation layer pattern 130 Clearance region 130 Upper portion Pattern (Fig. 27) 140 Gate insulating layer 150 Conductive interstitial pattern 155 Lower conductive pattern 160 Mold layer 165 Mode spacer 165r Remaining mold spacer 170 Upper conductive pattern 180 Floating gate pattern 190 Stacked gate structure (word line) 192 floating gate electrode 112311.doc -53 - 1300608 194 gate interlayer insulating layer 196 control gate electrode 200 mask pattern 210 floating gate pattern 220 spacer insulating layer 230 buffer insulating layer pattern 240 buffer spacer W] lower conductive pattern Width W 155 width of upper conductive pattern 170 112311.doc -54-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20050055227 | 2005-06-24 | ||
KR1020060021439A KR100784868B1 (en) | 2005-06-24 | 2006-03-07 | A Semiconductor Device and Method for Forming Thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200707652A TW200707652A (en) | 2007-02-16 |
TWI300608B true TWI300608B (en) | 2008-09-01 |
Family
ID=37583613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095122791A TWI300608B (en) | 2005-06-24 | 2006-06-23 | Semiconductor device and method for forming the same |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR100784868B1 (en) |
CN (1) | CN1885559B (en) |
TW (1) | TWI300608B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7785963B2 (en) | 2008-02-22 | 2010-08-31 | Macronix International Co., Ltd. | Method for fabricating inverted T-shaped floating gate memory |
CN104217946A (en) * | 2013-05-30 | 2014-12-17 | 中芯国际集成电路制造(上海)有限公司 | Fabrication method of FinFET (Fin Field Effect Transistor) |
CN104916640B (en) * | 2014-03-13 | 2018-07-20 | 中芯国际集成电路制造(上海)有限公司 | A kind of half floating-gate memory structure |
TWI565035B (en) * | 2014-04-11 | 2017-01-01 | 旺宏電子股份有限公司 | Memory cell and fabricating method thereof |
KR102468776B1 (en) * | 2015-09-21 | 2022-11-22 | 삼성전자주식회사 | Composition for wet Etching of polysilicon and method for manufacturing semiconductor device using the same |
TWI622133B (en) * | 2017-05-17 | 2018-04-21 | Powerchip Technology Corporation | Memory structure and manufacturing method thereof |
US12063776B2 (en) | 2022-04-06 | 2024-08-13 | Taiwan Semiconductor Manufacturing Company., Ltd. | Flash memory layout to eliminate floating gate bridge |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100360495B1 (en) * | 2000-03-16 | 2002-11-13 | 삼성전자 주식회사 | Split gate type flash memory |
KR20040037327A (en) * | 2002-10-28 | 2004-05-07 | 삼성전자주식회사 | Nonvolatile memory device having asymmetric source/drain region and fabricating method thereof |
JP2004214510A (en) | 2003-01-07 | 2004-07-29 | Toshiba Corp | Nonvolatile semiconductor memory and its manufacturing method |
KR100559523B1 (en) * | 2003-07-23 | 2006-03-10 | 동부아남반도체 주식회사 | Method for manufacturing flash memory cell |
-
2006
- 2006-03-07 KR KR1020060021439A patent/KR100784868B1/en active IP Right Grant
- 2006-06-23 TW TW095122791A patent/TWI300608B/en active
- 2006-06-26 CN CN2006100908318A patent/CN1885559B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN1885559A (en) | 2006-12-27 |
KR20060135486A (en) | 2006-12-29 |
TW200707652A (en) | 2007-02-16 |
CN1885559B (en) | 2010-11-10 |
KR100784868B1 (en) | 2007-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI300608B (en) | Semiconductor device and method for forming the same | |
EP3613079B1 (en) | Three-dimensional memory device having contact via structures in overlapped terrace region and method of making thereof | |
CN108431957B (en) | Three-dimensional NAND memory device with common bit lines for multiple NAND strings in each memory block | |
US7687860B2 (en) | Semiconductor device including impurity regions having different cross-sectional shapes | |
TWI295506B (en) | Semiconductor device having transistor with vertical gate electrode and method of fabricating the same | |
TWI249241B (en) | Nonvolatile memory cell with multiple floating gates formed after the select gate | |
TWI409854B (en) | Split gate storage device including a horizontal first gate and a vertical second gate in a trench | |
TWI359461B (en) | Recess channel flash architecture for reduced shor | |
TWI333242B (en) | Field effect transistors with vertically oriented gate electrodes and methods for fabricating the same | |
KR101168338B1 (en) | Semiconductor memory device and method of manufacturing the same | |
CN108140645A (en) | The 3D semicircle vertical nand strings in the inactive semiconductor channel section with recess | |
TWI356493B (en) | Semiconductor device and method for fabricating th | |
KR100695498B1 (en) | Semiconductor device with vertical channel and method for manufacturing the same | |
TW201234494A (en) | Vertical transistor having buried junction and method for manufacturing the same | |
TWI309472B (en) | Memory device having highly integrated cell structure and method of its fabrication | |
TW514994B (en) | Self aligned method of forming a semiconductor memory array of floating gate memory cells with control gate spacers, and a memory array made thereby | |
TW201036146A (en) | Semiconductor device with vertical transistor and method for fabricating the same | |
TW200822296A (en) | Self-aligned method of forming a semiconductor memory array of floating gate memory cells with source side erase, and a memory array made thereby | |
TWI362722B (en) | Transistor surround gate structure with silicon-on-insulator isolation for memory cells, memory arrays, memory devices and systems and methods of forming same | |
JP2019516245A (en) | Method of forming a pair of 3-gate non-volatile flash memory cells using two polysilicon deposition steps | |
TW200941713A (en) | Flash memory having insulating liners between source/drain lines and channels | |
TWI259468B (en) | Nonvolatile memory cells with buried channel transistors | |
JP2004104107A (en) | Nonvolatile memory element and method of forming the same | |
TWI355046B (en) | Two bit memory structure and method of making the | |
CN108109656A (en) | The production method and flash array of flash array |