1298922 (1) 九、發明說明 【發明所屬之技術領域】 用 電 晶 卡 1C 彈 針 各 提 12 該 定 可 源 而 14 大致地,本發明有關測試積體電路,且特別地有關 於降低積體電路測試中會造成其實行之邏輯狀態轉變之 源雜訊的裝置。 【先前技術】1298922 (1) IX. Description of the invention [Technical field to which the invention pertains] The use of a crystal card 1C for each of the pins 12 is a source of the device 14 and, in general, the invention relates to testing an integrated circuit, and in particular to reducing the integrated body A device that causes source noise of a logic state transition in its circuit test. [Prior Art]
積體電路(1C )測試器可同時測試半導體晶圓上以 粒形式之一組ICs。第1圖係方塊圖,描繪一透過探針 1 2連接於可形成於半導體晶圓上之一組相同的測試中 裝置(DUTs) 14之典型1C測試器10,測試器10利用 簧接腳1 5或其他裝置連接不同的輸入及輸出端子於探 卡1 2上之一組接點1 6。探針卡1 2包含一組用於接觸 DUT 14表面上之輸入/輸出(I/O )墊1 9的探針1 8,且 供連結接點1 6於探針1 8之導電路徑20,穿過探針卡 之路徑允許測試器1 〇傳輸測試信號至DUT 1 4以及監視 DUT 14所產生之輸出信號。因爲數位積體電路常包含 時脈以響應於週期主時脈信號(CLOCK)之同步邏輯閘 故探針卡1 2亦提供一路徑22,透過該路徑該測試器1 0 供應CLOCK信號到各DUT14。該測試系統亦包含一電 供應器24,用於當測試DUTs 14時供應功率於它們, 探針卡12則透過探針18連接電源供應器24於各DUT 之功率輸入墊26。 在DUT 14內之各開關電晶體具有固有之輸入電容, (2) 1298922 而爲了開啓或關閉電晶體,該電晶體之驅動器必須充電或 放電該電晶體之輸入電容。當驅動器充電電晶體之輸入電 容時,其將從電源供應器24獲得充電電流。一旦該電晶 體之輸入電容完全地充電時,其驅動器僅需供應一保持該 電晶體之輸入電容充電所需之相當小量的漏電流,使得該 電晶體保持開啓或關閉。在實行同步邏輯之DUTs中,大 多數電晶體之開關會立即地發生於各CLOCK信號脈波之 邊緣之後,所以立即在各脈波之CLOCK信號之後會在輸 入至各DUT 1 4的電源供應電流1 1中存在暫時性的增加, 而提供了改變該DUT內不同電晶體開關狀態所需之充電 電流,然後在CLOCK信號循環中,在該等電晶體已改變 狀態之後,供應電流1 1之需求會成爲 > 靜態〃之穩定狀 態位準且維持於該處,直到下一個CLOCK信號循環開始 爲止。 透過其,該探針卡12可連接電源供應器24於各DUT 14之信號路徑28具有第1圖中藉電阻R1所表示之固有 阻抗。因爲在電源供應器24之輸出與DUT 14之功率輸入 26間存在有電壓降,故DUT 14之供應電壓輸入VB多少 會比電源供應器24之輸出電壓VA少,且雖VA可較佳地 調整,但VB會隨著電流1 1之大小而變化。在各CLOCK 信號循環啓動之後,充電開關電晶體之輸入電容所需之11 中之暫時增加會增加R1上之電壓降,因而暫時性地降低 VB。由於發生於各CLOCK信號脈波邊緣之後的供應電壓 VB中之傾斜係一能夠不利地影響DUTs 1 4性能之雜訊形 (3) 1298922 式’故企望於限制其大小及期間。吾人可藉降低電源供應 器24與DUTs 14間之該等路徑28的電抗來限制該雜訊, 例如藉增加導體大小或藉使路徑2 8之長度最小化。然而 ’藉其,吾人降低該電抗之數量將有實用上的限制。 吾人亦可藉設置電容器C1於該探針卡12上靠近各 DUT 14之功率輸入26處來降低電源雜訊。第2圖描繪當 電容器C1並不十分大時,IC14之功率輸入26處之供應 電壓VB及電流II響應輸入於1C 14之CLOCK信號脈波的 行爲。須注意的是,在時間T1之CLOCK信號邊緣之後, 在II中於其靜態位準IQ上方之暫時上升會產生暫時的增 加於R1上的壓降中,其依序地會在供應電壓VC中產生 暫時性傾斜於其靜態位準VQ之下。 第3圖描繪當電容器C1十分大時,VB及II的行爲 。在CLOCK信號脈波之間,當DUT 14爲靜態時,電容 器C1會充電至VB的靜態位準。在時間T1處之CLOCK 信號上升緣(或下降緣)之後,當DUT 14暫時地需要更 多的電流時,電容器C1會供應若干其所儲存之電荷至 DUT 14,因而降低額外電流之量,所以電源供應器24必 須提供以配合所增加之需求。例如可在第3圖中發現,電 容器C 1的存在會降低R 1暫時性電壓降的大小且因此降低 了輸入至DUT 14之供應電壓VB中之傾斜的大小。 對於足敷限制VB中之變化的電容器而言,該電容器 必須足夠大,以便供應所需之電荷至DUT 1 4,且必須定 位靠近DUT 14,使得C1與DUT 14間之路徑阻抗極低。 (4) 1298922 不幸地,並非總是便利地或可行地安裝大的電容器於接近 各DUT 14之電源輸入端26的探針卡12之上。第4圖係 典型探針卡1 2的簡化平面視圖,1C測試器1 〇位於該探針 卡上方而含DUTs 14之晶圓則保持於該探針卡下方。因爲 第1圖之1C測試器1 0的I/O端子相較於所測試晶圓之表 面區域係分佈於相當大的區域上,所以探針卡1 2提供相 當大的上方表面25以用於保持測試器接達之接點1 6。另 > 一方面,在接觸晶圓上之DUTs 14之探針卡12下方面上 的探針1 8 (未圖示)則集中在探針卡1 2之相當小的中心 區域27下方。 在探針卡12上方表面25上之接點與區域27下方之 探針1 8間的路徑阻抗係各接點1 6與其對應探針間之距離 的函數。爲使電容器C1與DUTs間之距離最小化,該等 電容器應安裝於探針卡12上接近(或在上方)該小的中 心區域27處。然而,當晶圓含有大量欲測試之ICs或具 > 有大量密集封裝端子之1C時,並沒有足夠空間來安裝所 需數目之充分接近中心區域27之足夠大小的電容器C1。 【發明內容】 在採用同步邏輯之測試中的積體電路裝置(DUT )之 測試期間,在輸入至DUT之時脈信號的各連續前緣或後 緣之後,DUT會經歷暫時性之對於電源供應電流之增加的 需求,當形成邏輯裝置之電晶體遭受狀態轉變以響應於時 脈信號邊緣時,該DUT會需要額外的電流來充電該等電 (5) 1298922 晶體的輸入電容。本發明將限制各時脈信號脈波之後在電 源供應電流中之暫態增加所造成之D U T功率輸入端之電 源供應電壓中之變化,因此’本發明可降低DUT之功率 輸入端的電源供應雜訊。 根據本發明,充電電流脈波係在各時脈信號邊緣之後 供應至DUT的功率輸入端,而在測試期間補充主電源供 應器所持續供應之電流,適當地由輔助電源供應器所供電 之充電電流脈波可降低主電源供應器增加其輸出電流以配 合DUTs所增加之需求的需要。儘管DUT之對於電流所增 的需求,具有實質保持恆常之主電源供應器之輸出電流, 則在主電源供應器與DUT間之路徑阻抗上的壓降會實質 地保持恆常,所以在DUT之功率輸入端的供應電壓亦將 實質地保持恆常。 在各時脈信號邊緣之後,DUT所需之額外充電電流量 將根據其內部邏輯裝置遭受之狀態轉變的數目及性質而變 化以響應該時脈信號邊緣。因爲1C的測試需要1C執行預 定順序的狀態改變,故測試期間之1C行爲,含其在各時 脈信號邊緣期間對於電流之需求係可預測的。因此,在各 時脈信號邊緣之後所供應之電流脈波大小可予以調整,以 適合各時脈信號脈波之後DUT所需之額外充電電流的預 測量,而對於各時脈信號邊緣之後由DUT所引起之電流 中增加之預測,則可依據例如在相同測試條件下藉相同之 DUT所引起之電流的測量,或依據模擬DUT遭受類似的 測試。 -8 - (6) 1298922 雖然在任一測試循環可以以相當高的準確性來預測一 特定形式1C可引起之充電電流量,但任一該形式之既定 DUT所引起的額外充電電流之實際量則或多或少地會比所 預測量更高或更低。尤其,相對於該等電晶體在狀態改變 期間所需之充電電流量,在ICs製造中之隨機過程的變化 會使所有之ICs表現稍有不同的行爲。爲補償DUTs間之 此等不同,可配置回授電路以監看DUT之電源供應端之 電壓以及適當地計量所預測之電流脈波大小,以便使該電 壓中之變化最小。 因此,在各時脈信號循環之後供應至DUT之電源輸 入端的電流脈波大小係在該時脈信號循環期間由該形式之 DUT所引起之額外電流的所預測大小之函數,但所預測之 脈波大小係由回授所計量,以便使該預測能適應以調節所 測試的各特定DUT之充電電流要求中的變化。 此規格之結論部分特定地指出及明確地主張本發明之 標的物。然而,該等熟習於本項技術之人士藉硏讀本規格 之其餘部分且以其中相同參考符號表示相同元件之附圖作 參考,將可更佳地瞭解本發明之組織及操作方法’以及其 進一步之優點及目的。 【實施方式】 <系統架構> 第5圖以方塊圖形式描繪一透過探針卡32連結於一 組在半導體晶圓上以晶粒形式之相同的測試中1C裝S ( -9 - (7) 1298922 DUTs) 34之積體電路(IC)測試器30。探針卡32包含 一組探針37,用於接達DUTs 34表面上之輸入/輸出端子 墊3 9 ;且亦包含信號路徑46,連結測試器3 0於探針3 7 以允許1C測試器30傳送時脈信號(CLOCK)及其他測試 信號至DUTs 34,以及傳遞DUT輸出信號回到測試器,使 該測試器能監看該等DUTs之行爲。 探針卡3 2亦經由穿過該探針卡而引線至探針3 7且延 伸至端子41的導體而連結主電源供應器至各DUT 34之功 率輸入端41,電源供應器36產生一良好調整的輸出電壓 VA且持續地供應電流12至DUT 34。爲描繪之目的,第5 圖表示穿過探針卡32在主電源供應器36與各DUT之間 的路徑43之固有阻抗爲電阻器R1。由於在各電阻器R1 上之壓降,各DUT3 4之輸入的供應電壓VB總是稍爲小於 VA。 根據本發明,安裝於探針卡3 2上之第一電晶體開關 SW1連結一輔助電源供應器38於一組安裝於探針卡32中 之電容器C2 ; —組亦安裝於探針卡3 2上之第二電晶體開 關SW2連結各電容器C2至相對應之DUT 34的功率輸入 端。第5圖中所示之電阻器R2代表當開關SW2關閉時在 各電容器C1與DUT 34之功率輸入端子41間之探針卡32 內的固有信號路徑阻抗。1C測試器3 0提供一用於SW 1之 輸出控制信號CN1,一用於控制開關SW2之控制信號 CNT2,及用於控制輔助電源供應器38之輸出電壓VC大 小之CNT3。如下文所詳細描述地,輔助電源供應器38、 -10- (8) 1298922 開關SW1及SW2,以及電容器C2扮演一輔助電流源,當 需要配合DUT所需供應電流中之任何期待性增加時’即 在1C測試器30之控制下注入電流脈波13於各DUT之功 率輸入端41內。 <電源供應雜訊> DUTs 34實行同步邏輯,其中形成邏輯閘之開關電晶 體會導通及關閉以響應測試器3 0所提供之週期性之主 CLOCK信號的脈波,各開關電晶體具有固有的輸入電容 ,且爲了導通或關閉該電晶體,其驅動器必須充電或放電 該電晶體之輸入電容,當DUTs 34內之驅動器充電電晶體 之輸入電容時,將增加必須供應至各DUT之功率輸入端 4 1的電流11量。當電晶體之輸入電容充滿電荷時,其驅 動器僅需供應保持該電晶體之輸入電容充電所需之相當小 的漏電流量,使得該電晶體維持導通或關閉即可。所以, 在CLOCK信號之各脈波之後,輸入各DUT 34之電源供 應電流11中會有暫時性的增加,而提供改變不同的電晶 體之開關狀態所需之充電電流。在CLOCK信號循環中之 稍後,於該等電晶體已改變狀態之後,電源供應電流之需 求會產生''靜態〃之穩定狀態位準且維持於該處直到下一 個CLOCK信號循環之開始爲止。 因爲在各CLOCK信號循環之起始處DUT 34所需之 額外電流II量將依據該特定CLOCK信號循環期間所導通 或關閉之電晶體的數目及性質而變,故充電電流之需求可 -11 - (9) 1298922 變化於循環之間。 若測試器30 —直保持開關SW1及SW2開啓,則主電 源供應器36將一直提供所有的電流輸入Π至各DUT 34 。在此例中,由於在各CLOCK信號脈波之後各DUT 34 內所增加的開關動作,在供應電流11中之暫特性的增加 將造成主電源供應器36與DUT 34間信號路徑43之固有 阻抗R 1上之壓降中的暫時性增加,此隨後將造成DUT之 功率輸入端4 1之電壓VB中的暫時性傾斜,第2圖代表當 SW2開啓時之VB及II的行爲。因爲在各CLOCK信號脈 波邊緣之後所發生之供應電壓VB中之傾斜係可不利地影 響DUTs 3 4性能的雜訊形式,故企望於限制電壓傾斜的大 小。 <預測性電流補償> 根據本發明一實施例,1C測試器3 0控制輔助電源供 應器38以及開關SW1及SW2的狀態,使得電容器C2可 在各測試循環之起始時供應額外的充電電流13至DUT 34 。僅在各CLOCK信號循環之初始部分期間流動之充電電 流13會結合主電源供應器之電流12,而提供電流輸入II 至DUT 34。當充電電流13提供大約相同於DUT 34內之 開關電晶體之電容在CLOCK信號脈波之後所取得之電荷 量時,則在該CLOCK信號脈波之後僅存在相當小的改變 於主電源供應器3 6所產生之電流12中,因而在供應電壓 VB中僅存在很小的變化。 -12- (10) 1298922 因此,在各CLOCK信號邊緣之前,測試器30會供應 資料CNT3至輔助電源供應器38而指示所企望之輔助供 應電壓VC之大小且接著關閉開關SW1。接著,電源供應 器38充電所有電容器C2,電容器C2所儲存之電荷量係 成比例於VC的大小。當電容器C2已具有時間充滿電荷 時,測試器30開啓開關SW1 ;之後,在下一 CLOCK信號 循環起始之後,測試器30會關閉所有開關SW2,使得儲 存於電容器C2中之電荷可當作流入DUTs 34內的電流13 ;接著,當認爲需要暫態充電電流時,測試器3 0將開啓 開關SW2,使得在該CLOCK信號循環之剩餘部分之期間 僅主電源供應器36供應電流於DUTs 34。此過程將在該 CLOCK信號之各循環期間重複於測試器30,而經由控制 資料CNT3調整VC之大小以用於各時脈循環,以便提供 一定大小之電流脈波1C來滿足該特定時脈信號循環期間 所預測之充電電流的需求。所以該1C電流脈波之大小可 變化於循環之間。 第6圖描繪CLOCK信號循環之初始部分期間,供應 電壓VB,及電流II、12及13的行爲。電流II顯示在 CLOCK脈波邊緣之後,在時間T1處,於其靜態位準IQ1 上方之大的暫時性增加,以充電DUT 34內之電容。電流 13快速地上升而實質地提供所有額外的充電電流。主電源 供應器3 8之輸出電流12僅顯示一相當小的擾動於其靜態 値IQ2,而產生小的失配於13與12的暫態成分之間。因 爲12中之變化小,故 VB中之變化亦小。所以,由於 -13- (11) 1298922 DU Ts 34中之開關暫態,本發明可實質地限制電源供應雜 訊。 <測試器之程式規劃> 如上述,各DUT 34在CLOCK信號循環之起始時所 產生之額外充電電流量會依據該CLOCK信號循環期間所 導通或關閉之電晶體數目而定,且充電電流會變化於循環 之間。爲提供適當之電壓調整於DUT端子41,測試器30 必須預測出究竟DUT 34將在各CLOCK信號邊緣之後儲 存多少電荷,因爲測試器必須調整輔助電源供應器輸出 VC之大小,使得電容器C2在各CLOCK信號循環之前儲 存適當的電荷量。 第7圖描繪一建立以允許測試器3 0實驗性地確定各 測試循環期間其所應設定之VC位準的測試系統。熟知之 適合操作且相似於欲測試之ICs的參考DUT 40係經由探 針32以大致相同於DUTs 34欲連接之方式連接於測試器 3 〇,使得測試器3 0可執行相同的測試於參考1C40之上, 而且探針卡32亦連結參考IC40之電源供應端子於測試器 3 〇之輸入端子,使得測試器3 0可監看電源供應電壓VB。 測試器30接著利用VC之最小値僅執行測試之第一 CLOCK循環而觀察VB,若在該CLOCK信號循環期間VB 落在所企望下限之下方時,測試器3 0利用VC之較高値來 重複該測試的第一 CLOCK信號循環,此過程將重複直到 建立該第一 CLOCK信號循環之vc的適當値爲止。然後 14- (12) 1298922 ,該測試器重複地執行該測試之首先的兩CLOCK信號循 環而在第二CLOCK信號循環期間監看VB且按此調整VC ,使用相同的程序來建立該測試之各接續的C L Ο C K信號 循環之VC適當値,而當測試DUTs 34時則可使用該等 VC値。 典型地’在ICs製造之前,設計者會使用電路模擬器 來模擬ICs,當電路模擬器執行相同於1C測試器將執行於 其真實配對物之測試於模擬ICs上之時,該電路模擬器可 以以相似方式使用以確定該真實1C之測試期間將使用之 VC値序列。 <探針卡> 第4圖描繪一典型之先前技術的探針卡1 2,該探針卡 連接電壓調整電容器C1之DUTs之功率輸入端以限制電 源供應雑訊’此寺探針卡必須使電壓調整電容器與DUT 間之距離最小化以使該等電容器與DUTs間之阻抗最小化 。因此,該等電容器較佳地安裝於探針卡之中或靠近該等 接達DUTs的探針上方的小區域27處。因爲在靠近探針 之探針卡上僅存在小的空間,所以會限制可佈署於探針卡 12上之調整電容器C1的大小及數目,此種在電容器安裝 空間上的限制可限制能同時測試之DUTs的數目。 第8圖係根據本發明第5圖之探針卡32的簡化平面 視圖’由第7圖之1C測試器30所接達之接觸點45係分 佈於探針卡32上方表面43之相當大的區域上,而接觸 -15- (13) (13)1298922 D U T s 3 4之探針3 7 (未圖示)則同心於該探針卡相當小的 中心區域47下方。因爲充電於電容器C2的電壓VC可調 整以適應任一開關SW2與DUT 34端子41間之有效路徑 阻抗R2 (第5圖),故電容器C2可在DUT探針上方距 中心區域47比第4圖之電容器C1更大的距離處安裝於探 針卡32上;而且因爲電容器C2係充電至比電容器C1更 高的電壓,故電容器C2可以比電容器C1更小,因爲第8 圖探針卡32之電容器C2可以比第4圖習知技術探針卡 1 2之電容器C 1更小及更遠離於探針卡的中心,故大量的 電容器C2可安裝於探針卡32之上。因此,根據本發明之 採用探針卡3 2之測試系統可以比第4圖之採用習知技術 探針卡12之測試系統同時測試更多的DUTs。 <具有圖案產生器於板上之探針卡> 第9圖描繪本發明一選擇性實施例,含一大致相似於 第7圖探針卡32之探針卡50,除了其已在其上安裝一、 功率控制1C 〃 52之外。該功率控制IC52包含一圖案產生 器54,該圖案產生器執行第7圖1C測試器3〇相對於產生 控制信號及資料CNT1、CNT2及CNT3以用於控制開關 SW1及SW2以及輔助電源供應器38之圖案產生功能。該 功率控制1C 52包含一習知之圖案產生器54,在測試起始 之前’藉經由習知電腦匯流排56所提供之外部所產生之 程式規劃資料予以程式規劃,該圖案產生器54開始產生 其輸出之資料圖案以響應來自1C測試器5 8之使測試起始 16- (14) 1298922 之START信號,以及產生其輸出之CNT1、CNT2、CNT3 資料圖案以響應相同於測試器5 8之操作時脈的系統時脈 (SYSCLK)。 如第9圖中所示地,當所需之電容器C2足夠小之時 ,開關SW1及SW2以及電容器C2可實現於功率控制 IC52之內,IC52應安裝於探針卡上盡可能靠近於DUT探 針之處。倂合開關SW1及SW2以及電容器C2及測試器 30之圖案產生功能於單一之IC52之內可降低探針卡32之 成本及複雜性,以及減少測試器3 0輸出頻道之所需數目 ,而且視需要地,可藉分立組件而實現電容器C2於功率 控制IC52之外部。 <脈波寬度調變之電荷流動〉 第1 〇圖描繪本發明一實施例,其大致地相似於第5 圖之實施例。然而,在第1 0圖中係從探針卡60省略掉開 關SW1,使得輔助電源供應器38之VC輸出係直接連接 於電容器C2,而且該輸出電壓VC固定且不受ic測試器 30調整,使得C2在各CLOCK信號脈波之前充電至相同 値。在此組態中,1C測器器3 0將藉脈波寬度調變開關 SW2經由控制信號CNT2來控制在各CLOCK脈波之起始 時傳遞至DUTs 34之電容器C2充電量,在CLOCK信號 脈波前緣之後測試器3 0關閉S W2之時間量將確定傳遞至 DUTs 34之電容C2充電量。選擇性地,當測試器30快速 地增加且接著減少CNT2信號之責務循環,如第n圖中 17- (15) 1298922 所描繪時,則可更密切地近似於第6圖中所描繪之13電 流流動形狀。 <類比調變之電荷流動> 第1 2圖描繪本發明一實施例,其大致地相似於第1 〇 圖之實施例。然而,在第12圖中,電晶體開關SW2係以 當DUTs 34係遭受狀態改變且需要額外電流13時操作於 其主動區之電晶體Q2予以置換。在此組態中,1C測試器 30之CNT2輸出係施加爲輸入至安裝於探針卡61上之類 比至數位(A/D )轉換器63之資料序列,該資料序列 CNT2代表各CLOCK信號循環之期間所預測之用於充電電 流13的需求。A/D轉換器63藉產生一變化於各CLOCK 信號循環期間之類比信號CNT4,輸入至電晶體Q2的基極 而響應於該CNT2資料序列,如第1 3圖中所描繪。類比 信號CNT4控制各電晶體Q2而允許流出電容器C2之電流 13量,使其實質地匹配於DUT34所需求之電流II的預測 之暫態成分。A/D轉換器63可實行於1C測試器30之內 以取代安裝於探針卡6 1之上。 <利用參考DUT之電荷預測> 第14圖描會本發明一實施例,其中相似DUTs 34之 參考DUT60係以相似方式測試,除了測試器3 0測試該參 考DUT60係藉由使施加於該參考DUT60之CLOCK及其 他輸入信號超前而稍爲超前於其他DUTs之外。主電源供 -18- (16) 1298922 應器62供電所有的DUTs 34而輔助電源供應器64則供電 參考DUT60,安裝於探針卡66上靠近參考DUT60之電容 器C4以習知方式調整電壓VREF於其功率輸入端68處, 使其停留於其所允許之操作範圍內,電容器C5連結VREF 於一組放大器A1,以及電容器C6連結各放大器A1之輸 出於各DUT34之功率輸入端70。 由於參考DUT之暫態充電電流的需求,透過良好的 調整,在參考DUT60之輸入端68處的供應電壓VREF會 在各CLOCK信號循環的起始之後,掉落於其靜態位準之 下方一小量,在 VREF中之電壓傾斜量係成比例於參考 DUT所產生之暫態充電電流量。因爲參考DUT係相似於 DUTs 34且測試稍爲超前於DUTs 34,故在VREF中之傾 斜可預測短時間後之各DUT 34的暫態充電電流量。 透過電容器C5及C6動作之放大器A1可放大VREF 之AC成分以產生可增加主電源供應器62之電流輸出12 之輸出電流13,而提供電流輸入II至各DUT 34。測試器 30超前參考DUT60測試之時間量係設定相等於參考電壓 VREF中之變化與電流13中之相對應變化間之延遲。具有 藉外部所產生信號(GAIN)所適當調整之各放大器A1之 (負)增益,電流13將實質地匹配DUTs 34所要求之暫 態充電電流。 <在非測試環境中之電荷預測) 除了當測試積體電路時有效於降低電源供應雜訊之外 -19- (17) 1298922 ,本發明之實施例亦可在其中積體電路通過一系列之可 測狀態之應用中採用來降低電源供應雜訊。 第15圖描繪本發明一實例,其中積體電路80通過 可預測系列之狀態以響應於供應至該處當作輸入之外部 產生CLOCK信號的邊緣,IC80接受來自主電源供應器 之功率,輔助電源供應器84於當開關SW1閉合時經由 關SW1充電電容器C2,當開關SW2閉合時電容器C2 應其電荷當作輸入至IC 8 0之額外電流。、電荷預測器 電路80在其中IC80係非正在改變狀態之各CLOCK信 之一部分的期間,藉要求信號CNT1來閉合開關SW1及 要求控制信號CNT2而開啓開關來響應CLOCK信號, 允許輔助電源供應器8 4在狀態改變間充電電容器C2, 荷預測電路86可要求控制信號CNT2來閉合開關SW2 不要求控制信號CNT1而開啓開關SW1於其中IC80非 在改變狀態之各CLOCK信號循環之一部分的期間,藉 使電容器C2循環電流至IC80的功率輸入而提供其所需 暫態電流。電荷預測器電路86亦提供控制資料CNT2 輔助電源供應器84以調整其輸出電壓VC,使其充電電 器C2至一根據下一狀態改變期間預期IC80所產生之電 量而確定的位準。電荷預測器8 6係適合藉一習知圖案 生器或任何其他可產生適用於IC80之暫態電流要求以 於其預期之狀態序列的輸出資料序列 CNT1、CNT2 CNT3之裝置予以實現。開關SW1及SW2可如第15圖 所描繪地實行於IC80之外部,或可實行於IC80之內部 預 所 82 開 供 // 號 不 此 電 及 正 此 之 至 容 流 產 用 及 中 -20- (18) 1298922 <電荷平均法> 第1 6圖描繪本發明一簡便的形式,適用於其中 IC80在各CLOCK信號循環之起始時所產生之充電電 位於一相當受限之可預測範圍內的應用中。如第16 所示,反相器90反相該CLOCK信號以提供CNT1控 號輸入於一耦合輔助電源供應器至電容器C2的開關 ,該CLOCK信號直接提供CNT2控制信號輸入於一 電容器C2於一般藉主電源供應器82所驅動之IC80 輸入的開關SW2。如第17圖中所示,該CLOCK信號 CLOCK信號循環之第一半部期間驅動該CNT2信號高 合開關SW2,以及在各CLOCK信號循環之第二半部 驅動CNT1信號高而閉合開關SW1。 輔助電源供應器84之輸出電壓VC設定於一恆常 使其在各CLOCK信號循環起始之前充電電容器C2至 位準。VC之準位係設定以適當地定出當IC80正產生 的充電電流於各CLOCK信號循環起始時電源供應輸 壓VB所擺動之範圍,例如當吾人欲使VB之靜態位 於其範圍之中間時,吾人可調整VC使得電容器C2 應一在預期IC80將產生之充電電流範圍中間的電流 另一方面,若吾人欲防止VB免於掉落於其靜態位準 下方但情願使VB上升至其靜態値上方時,吾人可調凄 使得電容器C2可供應一預期1C 80將產生之充電電流 大量。雖然電容器C2可在若干CLOCK信號循環期間 預期 流量 圖中 制信 SW1 連接 功率 在各 而閉 期間 値, 相同 額外 入電 準位 可供 量, 之極 | VC 的最 供應 -21 - (19) 1298922 極小的充電電流以及在其他CLOCK信號循環期間供應極 大的充電電流,但在許多應用中,第1 6圖中所描繪的系 統可在當合適地調整VC時保持VB擺動於可接受範圍之 內。須注意的是,第5、9、1 4及1 5圖之系統可藉設定每 一 CLOCK信號循環之控制資料CNT3爲相同値予以程式 規劃,而以相似的方式操作。 <適應性之電流補償> 第1 8圖描繪本發明另一代表性之實施例。如第1 8圖 中所示,電源供應器36透過探針卡50供應功率至測試中 的半導體裝置(DUT) 34上的功率輸入端子1 806,在探 針卡50上穿過功率線1812之固有阻抗的表示係於第18 圖中描繪爲R1,而且如第1 8圖中所示地,1C測試器5 8 會透過探針卡提供時脈及其他信號到DUT34,在代表性 DUT34上之時脈輸入端子係描繪爲端子1808,該1C測試 器58亦透過探針卡50接收來自DUT 34之信號,在第18 圖中之DUT 34上顯示一輸入/輸出(I/O)子1810,然而 ,DUT 34可具有額外的I/O端子1810或可具有僅專用於 輸入之輸子或僅專用於輸出之其他端子,或僅專用於輸入 或輸出之端子與其他功能爲輸入及輸出端子的組合。明顯 地,探針卡50可如第18圖中所示地連接於一 DUT或如 第14圖中所示地連接於複數個DUTs。 如第1 8圖中所示地,電流感測裝置1 8 0 4 (例如電流 感測耦合器或電流變換器)可透過旁路電容器c 1感測電 -22- (20) 1298922 流,較佳地係反相放大器(例如該放大器具有負1之增 )之放大器1 8 02可透過電容器C7提供電流進入傳輸 1812之內,輔助電源供應器38提供功率至放大器1802 當然可藉其他裝置來供應功率至放大器18 02,包含來自 源供應器3 6,IC測試器5 8,位於探針卡5 0上之電源供 器,或除了該電源供應器3 6,1C測試器5 8,或探針卡 之外所設置之電源供應器。 在操作上,如上述地,功率端子 1 8 0 6典型地會產 小的電流(假設DUT 34主要包含場效電晶體),而僅 若干情況下,功率端子1 8 06會產生大量電流。如上述 ,最平常之該等情況產生於當DUT 34中至少一電晶體 變狀態之時,其典型地相對於時脈端子1 8 08處之時脈 上升或下降緣之關係而發生。 當DUT 34並未正在改變狀態時,產生於功率端 1 8 06處之小的電流量僅會透過旁路電容器C1而典型地 成小的及主要靜態之直流(DC )流動或沒有電流流動, 產生電流感測裝置1 8 04所感測之小至零電流且因此來 反相放大器1 8 02之電流會小至零。 然而,當DUT 34正改變狀態時,如上述地,功率 子1 8 06會暫時性地產生大量電流,此將如上述地透過 路電容器C 1而產生暫時性之大量及改變流動之電流, 電流係藉電流感測裝置1 8 04予以感測且藉反相放大 1802予以反相及放大,而最終地透過隔離電容器C7提 至功率線1 8 1 2之內。如上述地,藉放大器1 8 0 2提供於 益 線 電 應 50 生 在 地 改 的 子 造 此 白 端 旁 該 器 供 功 -23- (21) 1298922 率線18 12之此額外的電流會降低功率端子1 806處之電壓 中的變化。 第1 9圖描繪第1 8圖中所示之代表性實施例的變化例 。如圖示地,第1 9圖大致地相似於第1 8圖且亦包含一電 流感測元件1 804及一反相放大器1 802,建構以提供電流 至探針卡50上之功率線1812。然而,在第19圖中,該電 流感測元件1 8 04將感測流過該功率線1 8 1 2之電流而非流 過旁路電容器C 1之電流。 第1 9圖之實施例之操作相似於第1 8圖之操作。當 DUT34並未正在改變狀態時,經由線1 804產生於功率端 子1 806之典型小的,主要靜態之直流(DC)係藉電流感 測裝置1 8 04予以感測,因此,反相放大器1 8 02提供小的 或無充電電流。然而,當DUT 34正改變狀態時,電流感 測裝置1 8 0 4會感測到功率端子1 8 0 6處透過功率線1 8 0 4 所產生之大的電流變化,反相放大器1 802會放大及反相 所感測之電流而透過隔離電容器C7提供額外的充電電流 至功率線1 8 1 2之內。如上述地,該額外之充電電流會降 低功率端子1 8 06處之電壓中的變化。 <互連系統> 在上述用於提供信號路徑於積體電路測試器,電源供 應器及DUTs間之任一實施例中所描繪之探針卡係代表性 的,本發明可結合具有許多其他設計之互連系統予以實施 ,例如第20A圖描繪一相當簡單的探針卡,其包含一基板 -24· (22) (22)1298922 2 0 02,具有端子2004用於連接至1C測試器(未圖示於第 20A圖中)及具有探針元件2008用於電性連接於DUT ( 未圖示於第20A圖中)。如圖示地,端子2004係藉互連 接元件2006而電性連接於探針卡元件2008。 例如基板可爲一單層或多層印刷電路板或陶質物或其 他材料。明顯地,該基板之材料組成對於本發明並非重要 的。探針元件2008可爲任何形式之能電性連接於DUT之 探針,包含但未受限於針狀探針,COBRA型探針,隆塊 ,柱,桿,彈簧接點等。適用之彈簧接點的未受限實例係 揭示於美國專利第5476211號,1997年2月18日所申請 之對應於PCT公告第WO 9 7/44676號之美國專利申請案第 08/802054號,美國專利第62680 1 5 B1號,以及1 999年 6月30日所申請之對應於PCT公告第WO 01/0 9952號之 美國專利申請案第09/3 648 5 5號中,其將引用於此處供參 考。該等彈簧接點可視爲亦將引用於此處供參考之美國專 利第6150186號或2001年12月21日所申請之美國專利 申請案第1 0/027476號中之所描述者。選擇性地,該等、 探針〃可爲用於與DUT上之諸如形成於DUT上之彈簧接 點的升高元件接觸之墊或端子。互連路徑2006之未受限 實例包含通孔及/或通孔與位在基板2002表面上或基板 2〇〇2內之導電性蹤跡之組合。 第20B圖描繪另一可使用於本發明之探針卡的未受限 實例。如圖示地,第20B圖中所示之代表性探針卡包含基 板2018,插入器2012,及探針頭2032。端子2022接觸於 -25- (23) 1298922 1C測試器(未顯示於第20B圖中),以及可相似於上述 探針元件2008之探針元件2034接觸於DUT (未顯示於第 20B圖中)。互連路徑2020,彈性連接元件2016,互連 路徑2014,彈性連接元件2010,及互連路徑203 6提供了 從端子2022到探針元件2034之導電路徑。 基板2018,插入器2012,及探針頭2032可由相似於 上述有關20 02之該等材枓所製成。確實地,基板2018, 插入器2012,及探針頭2032之材料組成物對於本發明並 非主要的,而是可使用任一組成物。互連路徑2020,2014 ,2 03 6可相似於如上述之互連路徑2006。彈性連接元件 2016及2010較佳地爲細長的彈性元件,該等元件之未受 限實例係描繪於美國專利第54762 1 1號;1 997年2月18 日所申請之美國專利申請案第08/8 02054號,其對應於 PCT公告第WO 97/44676號;美國專利第626 80 1 5B1號; 及1999年7月30日所申請之對應於PCT公告第WO 0 1/09952號之美國專利申請案第09/364855號中,所有均 引用於本文供參考。包含複數個諸如第20B圖中所示之基 板的代表性探針卡的更詳細說明係發現於美國專利第 597 4 6 62號中,其亦引用於本文供參考。第20B圖中所示 代表性設計的許多變化係可行的,例如僅就一實例而言, 互連路徑2014可置換以一孔及一個或更多個固定於該孔 內且延伸至該孔之外的彈性元件2016及/或2010,而接觸 基板2018及探針卡2032。 然而,應理解的是’互連系統之架構或設計對於本發 -26- (24) 1298922 明並非主要的,而是可使用任何架構或設計。如本文中所 述之該等實施例中所示地,用於降低D U T上之功率端子 處電壓中的變化之電路較佳地係配置於探針卡之上,若使 用多重基板探針卡,諸如第20B圖中所示之代表性探針, 則該電路可位於任一該等基板之上,或可分佈於兩個或更 多個該等基板之中。所以,例如該電路可位於第20B圖中 所描繪之探針頭2032,插入器2012,或基板2018之一上 ,或該電路可位於該探針頭,插入器,及/或基板之兩個 或更多個的組合之上。應理解的是,該電路可整體地由互 連之分立電路元件形成,可整體地形成於一積體電路之上 ,或可由一部分分立電路元件與一部分形成於積體電路上 之元件所組成。 <預測性/適應性之電路補償> 如上述,用於控制DUT之功率輸入端子處之供應電 壓中變化的預測性系統可預測各時脈信號循環期間DUT 將要求的充電電流量,且接著根據該預測在該時脈信號循 環期間定出施加於DUT之功率輸入端子的補充電流脈波 之大小;另一方面,適應性系統可監視施加於該DUT之 端子的功率信號及利用回授來調整補充之電流脈波的大小 ,而維持功率信號之電壓恆常。 第21圖描繪本發明一實施例,其中在DUT 34之功率 輸入端子26處所需之額外的充電電流量係藉預測及適應 之組合予以確定。輔助電源供應器3 8供應功率VC至電流 -27- (25) 1298922 脈波產生器2102,當需要增加來自主電源供應器36之正 常供應電流時,電流脈波產生器2102將供應電流脈波13 至DUT之功率輸入端子26。在各測試循環之起始時,1C 測試器58會供應信號CNT5至電流脈波產生器2102而指 示該電流脈波之預測大小,且在各測試循環期間’ 1C測試 器58會要求控制信號CNT6指示電流脈波產生器2102何 時產生電流脈波。 1C測試器58係程式規劃以測試特定形式之DUT 34, 且相對於各測試循環期間所需之電流脈波13的大小及時 間週期所完成之預測可如上述地根據該形式之DUT所產 生之電流的測量或DUT行爲之模擬。然而,由於DUTs之 製造中的過程變化以及其他因素,在各測試循環期間該形 式之各DUT會要求的額外充電電流之大小可變化於預測 的充電電流。用於任一既定之DUT,所產生之實際充電電 流對預測之充電電流之比例以循環間之基礎而言傾向於相 當地一致,例如一 DUT可在各測試循環期間一致地產生 比預測之充電電流多5%的充電電流,而相同時間之另一 DUT則在各測試循環期間一致地產生比預測之充電電流少 5 %的充電電流。 回授控制器2104藉供應一適應性增益(或A適應〃 )信號G至電流脈波產生器2 1 02而補償充電電流要求與 預測値中之此等變化,其適當地增加或減少電流脈波13 之大小以使該電流脈波適合於目前測試中的特定DUT 3 4 之要求。所以,預測信號CNT5表示正在測試之該形式 -28- (26) (26)1298922 DUT所要求之充電電流的預測大小,而增益( 適應〃) 信號大小則表示正在測試之該DUT的特定情況之預測誤 差。 在測試DUT34之前,1C測試器58執行一可相似於欲 執行之測試的預測試程序,其中其傳送測試及CLOCK信 號脈波到DUT34,使DUT34之行爲大致地相同於其在測 試期間之行爲。在預測試程序之期間,回授控制電路2 1 04 會監視DUT之功率輸入端子26處之電壓VB及調整增益 信號G之大小,而使發生於當13之大小太大或太小時之 VB中之變化最小化。該預測試程序使回授控制器2 1 04適 時調整增益信號G之大小以適應將測試之特定DUT3 4之 充電電流需求,之後,在該測試之期間,該回授控制器 2 1 04會持續地監視VB以及調整增益信號,但其所進行之 調整很小。因此,雖然在各測試循環期間所供應之充電電 流13之大小主要係DUT之預測充電電流需求的函數,但 由控制器2 1 04所提供之增益控制回授最後將調整電流脈 波大小,以使適應於該DUT之實際充電電流需求之任何 一致性之傾向,而變化於所預測之需求。 該等熟習於本項技術之人士將理解的是,第2 1圖之 回授控制器2 1 04可爲許多能產生輸出增益控制信號G而 使VB中之變化最小的設計之任一,該等熟習於本項技術 之人士亦將理解的是,電流脈波產生器可爲許多能產生電 流脈波13之設計之任一,其中13之時序係由輸入信號 CNT6所控制,且其中13之大小爲控制信號CNT5所表示 -29 - (27) 1298922 之電流脈波大小及適應性增益信號G大小 第22圖描繪回授控制器2 1 04之非限 VB之AC成分而產生增益控制信號G, 容器C10通過VB之AC成分至一積分器 2 106係由一運算放大器A1並聯連接電容 R5且具有串聯連接於其輸入之電阻器R4 > 第23圖描繪第21圖之電流脈波產注 定實例。在此實例中,控制信號CNT 5傳 脈波13之預測大小的資料,數位至類比 2 1 1 2轉換電流測試循環之預測資料爲成比 之大小的類比信號P。當1C測試器5 8要 指示何時將產生電流脈波13時,開關2 1 : 信號P至第21圖之輔助電源供應器38之 之可變增益放大器2112的輸入。第21 2 104之增益控制信號輸出將控制放大器: 大器2112會產生成比例於P與G乘積之 脈波13,電容器C7則通過13信號脈波3 卡50內傳送功率至DUT34之信號路徑。 第24圖描繪第21圖之電流脈波產生 非限定實例。在此實例中,第21圖之1C CNT5控制信號之時間長度係成比例於下-環期間所需之電流脈波13之所預測的大 產生器2102產生13信號之各脈波之後, 要求CNT5信號閉合一耦合經由電阻器之 的函數。 定實例,其集成 隔直流(DC )電 2106,該積分器 器C8及電阻器 所形成。 L器2106之非限 送代表所需電流 轉換器(DAC ) 例於該預測資料 求CNT6信號而 1 〇會閉合以施加 VC輸出所供能 圖之回授控制器 Π 1 2之增益,放 大小的輸出電流 1第2 1圖之探針 :器2106之另一 測試器5 8要求 -CLOCK信號循 小,在電流脈波 1C測試器58會 輔助電源供應輸 -30- (28) 1298922 出信號VC至電容器C 8的開關2 1 1 6,1C測試器5 8持續 要求該CNT5信號一時間量,該時間量會隨著下一 13信號 脈波之預測大小而增加,所以第2 1圖之輔助電源供應器 3 8充電電容器C 8至一成比例於下一 13信號脈波之所預測 大小之電壓。之後,當1C測試器58要求CNT6信號以指 示下一 13信號脈波將產生時,開關21 17會連接電容器C8 至一具有由第21圖之回授控制器2104的增益控制信號輸 出G所控制之增益的放大器2118之輸入。耦合電容器C9 傳遞所產生之13信號到第21圖之傳遞功率至DUT35的探 針卡導體2114,而在電容器C8已適時地實質放電之後, 控制信號CNT6會開啓開關21 17。因爲當C8放電時13電 流脈波之大小會快速地上升且接著傾斜,故13脈波之時 間變化的行爲易於與DUT之時間變化的充電電流需求相 似。 第25圖描繪第21圖之電流脈波產生器2106之又一 非限定實例,其中由CNT5信號所傳送之資料表示13信號 脈波之所預測大小,增益控制信號G扮演轉換CNT5所傳 送之資料爲類比信號P之DAC2 120的參考電壓,增益控 制信號G之電壓尺度將界定DAC輸出信號P的範圍,使 得P成比例於G與CNT5之乘積。開關2122會暫時性地 傳遞P信號至放大器2124以響應於控制信號CNT6之脈 波,藉此使放大器2125經由耦合電容器C5傳送13信號 脈波到功率導體2 1 1 4,該13信號脈波大小會成比例於G 與P大小之乘積。 -31 - (29) 1298922 第26圖描繪根據本發明之預測性/適應性系統的仍一 未限定之實例,其中輔助電源供應器3 8供應功率至可變 增益放大器2126,且無論何時1C測試器58預測DUT3 4 之功率輸入端子2 6處將需要額外的充電電流時,其將供 應控制信號脈波CNT6至放大器2126。電容器C11傳遞 13信號脈波至探針卡50內連結至電源供應器36至DUT 功率輸入端子26之功率信號路徑2114,回授控制電路 2104會監視出現在端子26處之電壓 VB且調整放大器 2 126之增益以使VB中的變化最小。在各CLOCK循環之 起始處,1C測試器58會供應控制信號CNT5當作輔助電 源供應器38之輸入,用於根據該CNT5控制信號所傳送 之資料大小來設定其輸出電壓VC。因此,13之大小爲增 益控制信號G與輔助電源供應電壓VC之大小乘積的函數 〇 因此,第 2 1至 26圖描繪根據本發明之用於在 CLOCK信號之各邊緣之後提供額外的充電電流至DUT之 功率輸入端子26,以配合由於該CLOCK信號邊緣所初始 之開關所需之暫時性電流的增加,而調整施加於DUT34 之功率信號VB的電壓之預測性/適應性控制系統之不同的 代表性實施例。該控制系統係'v預測性〃,其預測DUT 在測試之各循環期間將要求之額外電流量;該控制系統亦 爲' 適應性〃,其採用回授而定出所產生之響應於該預測 之電流脈波的大小,以適應將測試之個別DUTs所實際產 生之電流大小中所觀測的變化。 -32- (30) 1298922 雖然本發明在此處係描繪爲降低採用僅一單一主電源 供應器之系統中的雜訊,但將理解的是,本發明可採用於 其中超過一主電源供應器提供功率於DUTs之環境中。 雖然本發明係描繪爲結合具有一單一功率輸入之 DUTs操作,但將理解的是,該裝置可適應於結合具有多 重功率輸入之DUTs操作。 雖然本發明係描述爲,在CLOCK信號脈波之前緣之 後提供額外的充電電流,但其亦可在該CLOCK信號脈波 之後緣之後提供額外的充電電流,以使用於在CLOCK信 號後緣開關之DUTs。 雖然已描繪本發明使用於結合採用探針卡來接達形成 於半導體晶圓上之ICs端子之1C測試器的不同形式,但 熟習於本項技藝之人士將理解的是,本發明可採用結合1C 測試器而使用其他形式之界面裝備來提供接達於仍在晶圓 位準的ICs之DUT端子,或其可分離於其所形成之晶圓 上的ICs之DUT端子;以及其可或不會在其測試之時結 合於封裝ICs的DUT端子。該等界面裝備包含,但未受 限於負荷板,預燒板,及最後的測試板。本發明在其最廣 義的形態中並未意圖受限於涉及任何特定形式之1C測試 器,任何特定形式之測試器至DUT的互連系統,或任何 特定形式之IC DUT的應用。該等熟習於本項技藝之人士 亦將理解的是,雖然本發明在上文所述的爲採用結合於積 體電路之測試,但其亦可使用於當測試任何種類之電子裝 置時,例如含正反器組合,電路板及類似物,或無論何時 -33- (31) 1298922 企望於測試期間精確地調整裝置之功率輸入端子處的電壓 時。 因此,雖然上述規格已描述本發明之較佳實施例,但 、 熟習於本項技術之人士可完成許多修正於該等實施例,而 不會在本發明之較廣義的形態中背離本發明。因此,附錄 之申請專利範圍係意圖涵蓋所有該等修正爲包含在本發明 之真正範疇及精神之內。 【圖式簡單說明】 第1圖係方塊圖,描繪包含一透過探針卡連接於一組 測試中的積體電路裝置(DUTs )之積體電路測試器的典 型習知技術測試系統; 第2及3圖係時序圖,描繪第1圖之習知技術內之信 號行爲; 第4圖係第1圖之習知技術探針卡的簡化平面視圖; • 第5圖係一方塊圖,描繪根據本發明第一實施例之測 試系統,其中實行一用於降低一組DUTs之電源供應輸入 ^ 中之雜訊的系統; 第6圖係時序圖,描繪第5圖之測試系統內的信號行 二 爲, ' 第7圖係方塊圖,描繪第5圖之測試系統在校準程序 之期間的操作; 第8圖係第6圖探針卡的簡化平面視圖; 第9及10圖係方塊圖,描繪實行本發明第二及第三 -34- (32) 1298922 實施例的測試系統; 第1 1圖係時序圖’描繪第1 〇圖測試系統內的信號行 爲; . 第1 2圖係方塊圖,描繪實行本發明第四實施例之測 試系統; 第1 3圖係時序圖,描繪第1 2圖測試系統內的信號行 爲, 第1 4圖係方塊圖,描繪本發明之第五實施例; 第1 5圖係方塊圖,描繪本發明之第六實施例; 第16圖係方塊圖,描繪本發明之第七實施例; 第17圖係時序圖,描繪第16圖之電路內的信號行爲 第1 8圖係方塊圖,描繪本發明之第八實施例; 第19圖係方塊圖,描繪本發明之第九實施例; 第2 Ο A圖描繪一代表性之探針卡; 第2 Ο B圖描繪另一代表性之探針卡; 第2 1圖係方塊圖’描繪本發明之第十實施例; 第2 2圖係方塊圖,描繪第2 1圖之回授控制電路的代 表性實施例; 一 第23至第25圖係方塊圖,描繪第21圖之電流脈波 " 產生器之選擇代表性的實施例;以及 弟26圖係方塊圖’描繪本發明之第--'實施例。 【主要元件對照表】 -35- (33) (33)1298922 10、30、38: 1C 測試器 12、 32、 50、 60、 61、 66:探針卡 14、34、35 ··測試中的裝置(DUTs ) 1 5 :彈簧接腳 1 6 :接點 1 8、3 7 :探針 19、39、1810、1 8 08 :輸入 / 輸出(I/O)墊 2 〇 :導電路徑 22、43 :路徑阻抗 24、36、62、82 :主電源供應器 26、41、68、1806:功率輸入端子 28、46 :信號路徑 25 :上表面 2 7、4 7 ·•中心區域 38、84 :輔助電源供應器 40 :參考DUT (參考1C ) 45 :接觸點 5 2 :功率控制IC 54 :圖案產生器 56 :電腦匯流排 63 :類比至數位(A/D)轉換器 80 :積體電路 86 :充電預測器電路 90 :反相器 -36- (34) (34)The integrated circuit (1C) tester can simultaneously test a set of ICs in a granular form on a semiconductor wafer. 1 is a block diagram depicting a typical 1C tester 10 connected to a set of identical test devices (DUTs) 14 that can be formed on a semiconductor wafer via a probe 12, the tester 10 utilizing a spring pin 1 5 or other devices connect different input and output terminals to a set of contacts 16 on the probe card 12. The probe card 12 includes a set of probes 1 8 for contacting the input/output (I/O) pads 19 on the surface of the DUT 14 and for connecting the contacts 16 to the conductive path 20 of the probes 18. The path through the probe card allows the tester 1 to transmit test signals to the DUT 14 and monitor the output signals produced by the DUT 14. Since the digital integrated circuit often includes a clock in response to the synchronous logic gate of the periodic main clock signal (CLOCK), the probe card 12 also provides a path 22 through which the tester 10 supplies a CLOCK signal to each DUT 14 . The test system also includes an electrical supply 24 for supplying power to the DUTs 14 when tested, and the probe card 12 is coupled to the power supply pads 24 of the respective DUTs via the probes 18. Each switching transistor in the DUT 14 has an inherent input capacitance, (2) 1298922. To turn the transistor on or off, the driver of the transistor must charge or discharge the input capacitance of the transistor. When the driver charges the input capacitance of the transistor, it will obtain a charging current from the power supply 24. Once the input capacitance of the transistor is fully charged, its driver only needs to supply a relatively small amount of leakage current required to maintain the input capacitance of the transistor, so that the transistor remains on or off. In DUTs that implement synchronous logic, most of the transistors' switches will immediately occur after the edge of each CLOCK signal pulse, so immediately after the CLOCK signal of each pulse, the power supply current is input to each DUT 14. There is a temporary increase in 1 1 , which provides the charging current required to change the state of the different transistor switches in the DUT, and then in the CLOCK signal cycle, after the transistors have changed state, the demand for current 1 1 is supplied. It will become a steady state level of > static 且 and remain there until the next CLOCK signal cycle begins. Through this, the probe card 12 can be connected to the power supply 24 and the signal path 28 of each DUT 14 has the inherent impedance represented by the resistor R1 in FIG. Because there is a voltage drop between the output of the power supply 24 and the power input 26 of the DUT 14, the supply voltage input VB of the DUT 14 is somewhat less than the output voltage VA of the power supply 24, and although the VA can be better adjusted However, VB will vary with the magnitude of current 11. After each CLOCK signal cycle is initiated, a temporary increase in 11 required for the input capacitance of the charge switch transistor increases the voltage drop across R1, thus temporarily reducing VB. Since the tilt in the supply voltage VB occurring after the edge of the pulse wave of each CLOCK signal is a noise pattern which can adversely affect the performance of the DUTs 14 (3) 1298922, it is expected to limit its size and period. The noise can be limited by reducing the reactance of the paths 28 between the power supply 24 and the DUTs 14, for example by increasing the conductor size or by minimizing the length of the path 28. However, by virtue of this, we will have practical restrictions on reducing the number of reactances. We can also reduce the power supply noise by placing capacitor C1 on the probe card 12 near the power input 26 of each DUT 14. Figure 2 depicts the behavior of supply voltage VB and current II at power input 26 of IC 14 in response to a CLOCK signal pulse input to 1C 14 when capacitor C1 is not very large. It should be noted that after the edge of the CLOCK signal at time T1, the temporary rise above II in its static level IQ will result in a temporary increase in the voltage drop across R1, which will be sequentially in the supply voltage VC. Produces a temporary tilt below its static level VQ. Figure 3 depicts the behavior of VB and II when capacitor C1 is very large. Between the CLOCK signal pulses, when the DUT 14 is static, the capacitor C1 is charged to the static level of VB. After the rising edge (or falling edge) of the CLOCK signal at time T1, when the DUT 14 temporarily needs more current, the capacitor C1 supplies some of its stored charge to the DUT 14, thus reducing the amount of extra current, so The power supply 24 must be provided to match the increased demand. For example, it can be seen in Fig. 3 that the presence of capacitor C1 reduces the magnitude of the temporary voltage drop of R1 and thus reduces the magnitude of the tilt in the supply voltage VB input to DUT 14. For capacitors that limit variation in VB, the capacitor must be large enough to supply the required charge to DUT 14 and must be positioned close to DUT 14 such that the path impedance between C1 and DUT 14 is extremely low. (4) 1298922 Unfortunately, it is not always convenient or feasible to install large capacitors on the probe card 12 near the power input 26 of each DUT 14. Figure 4 is a simplified plan view of a typical probe card 12 with the 1C tester 1 located above the probe card and the wafer containing the DUTs 14 held under the probe card. Since the I/O terminals of the 1C tester 10 of FIG. 1 are distributed over a relatively large area compared to the surface area of the wafer under test, the probe card 12 provides a relatively large upper surface 25 for Keep the contact point of the tester access to 16. In addition, on the one hand, the probes 18 (not shown) on the lower surface of the probe card 12 of the DUTs 14 on the contact wafer are concentrated below the relatively small central region 27 of the probe card 12. The path impedance between the contacts on the upper surface 25 of the probe card 12 and the probes 18 below the region 27 is a function of the distance between the contacts 16 and their corresponding probes. In order to minimize the distance between the capacitor C1 and the DUTs, the capacitors should be mounted on the probe card 12 near (or above) the small central region 27. However, when the wafer contains a large number of ICs to be tested or 1C with a large number of densely packed terminals, there is not enough space to install a required number of capacitors C1 of sufficient size sufficiently close to the central region 27. SUMMARY OF THE INVENTION During testing of an integrated circuit device (DUT) in a test using synchronous logic, the DUT experiences a temporary power supply after each successive leading or trailing edge of the clock signal input to the DUT The need for increased current, when the transistor forming the logic device experiences a state transition in response to the edge of the clock signal, the DUT may require additional current to charge the input capacitance of the isoelectric (5) 1298922 crystal. The present invention limits the variation in the power supply voltage of the DUT power input caused by the transient increase in the power supply current after the pulse signal of each clock signal, so the present invention can reduce the power supply noise of the power input of the DUT. . According to the invention, the charging current pulse wave is supplied to the power input of the DUT after the edge of each clock signal, and during the test period, the current supplied by the main power supply is supplemented, and the charging is appropriately supplied by the auxiliary power supply. Current pulses reduce the need for the main power supply to increase its output current to match the increased demand of DUTs. Despite the increased current demand of the DUT, with the output current of the main power supply that remains substantially constant, the voltage drop across the path impedance between the main power supply and the DUT will remain substantially constant, so in the DUT The supply voltage at the power input will also remain substantially constant. After each clock signal edge, the amount of additional charge current required by the DUT will vary in response to the edge of the clock signal depending on the number and nature of state transitions experienced by its internal logic device. Since the 1C test requires 1C to perform a predetermined sequence of state changes, the 1C behavior during the test, including its demand for current during the edge of each clock signal, is predictable. Therefore, the magnitude of the current pulse wave supplied after the edge of each clock signal can be adjusted to suit the predicted amount of additional charging current required by the DUT after each pulse signal pulse, and for each clock signal edge followed by the DUT The prediction of the increase in the resulting current may be subject to similar tests, for example, by the measurement of the current caused by the same DUT under the same test conditions, or by analog DUT. -8 - (6) 1298922 Although the amount of charge current that can be induced by a particular form 1C can be predicted with relatively high accuracy at any test cycle, the actual amount of additional charge current caused by a given DUT of any such form is More or less will be higher or lower than the predicted amount. In particular, variations in the random process in the manufacture of ICs relative to the amount of charge current required during the state change of the transistors will cause all ICs to behave slightly differently. To compensate for these differences between DUTs, a feedback circuit can be configured to monitor the voltage at the power supply of the DUT and properly meter the predicted current pulse size to minimize variations in the voltage. Thus, the magnitude of the current pulse supplied to the power supply input of the DUT after each clock signal cycle is a function of the predicted magnitude of the additional current caused by the DUT of the form during the clock signal cycle, but the predicted pulse The wave size is measured by the feedback so that the prediction can be adapted to adjust for changes in the charging current requirements of each particular DUT being tested. The conclusions of this specification particularly point out and explicitly claim the subject matter of the present invention. However, those skilled in the art will be able to better understand the organization and method of operation of the present invention and the further embodiments of the present invention. The advantages and objectives. [Embodiment] <System Architecture> Fig. 5 depicts, in block diagram form, a through probe card 32 coupled to a set of identically tested 1C mounted S (-9 - (7) 1298922 DUTs on a semiconductor wafer in the form of a die. 34 integrated circuit (IC) tester 30. The probe card 32 includes a set of probes 37 for accessing the input/output terminal pads 39 on the surface of the DUTs 34; and also includes a signal path 46 that couples the tester 30 to the probes 3 7 to allow the 1C tester 30 transmits a clock signal (CLOCK) and other test signals to the DUTs 34, and passes the DUT output signals back to the tester to enable the tester to monitor the behavior of the DUTs. The probe card 32 also connects the main power supply to the power input 41 of each DUT 34 via a conductor that is routed through the probe card to the probe 37 and extends to the terminal 41. The power supply 36 produces a good The adjusted output voltage VA and continuously supplies current 12 to the DUT 34. For purposes of depiction, Figure 5 shows the inherent impedance of the path 43 through the probe card 32 between the main power supply 36 and each DUT as resistor R1. Due to the voltage drop across resistor R1, the supply voltage VB of each DUT 34 input is always slightly less than VA. According to the present invention, the first transistor switch SW1 mounted on the probe card 32 is coupled to an auxiliary power supply 38 to a set of capacitors C2 mounted in the probe card 32; the group is also mounted to the probe card 3 2 The second transistor switch SW2 connects the capacitors C2 to the power input terminals of the corresponding DUTs 34. The resistor R2 shown in Fig. 5 represents the inherent signal path impedance in the probe card 32 between the capacitor C1 and the power input terminal 41 of the DUT 34 when the switch SW2 is turned off. The 1C tester 30 provides an output control signal CN1 for SW 1, a control signal CNT2 for controlling the switch SW2, and CNT3 for controlling the output voltage VC of the auxiliary power supply 38. As described in more detail below, the auxiliary power supply 38, -10- (8) 1298922 switches SW1 and SW2, and capacitor C2 act as an auxiliary current source when any desired increase in the required supply current to the DUT is required' That is, the current pulse 13 is injected into the power input terminal 41 of each DUT under the control of the 1C tester 30. <Power Supply Noise> The DUTs 34 implement synchronization logic in which the switching transistor forming the logic gate is turned on and off in response to the pulse of the periodic main CLOCK signal provided by the tester 30, each switching transistor having The inherent input capacitance, and in order to turn the transistor on or off, its driver must charge or discharge the input capacitance of the transistor. When the driver in the DUTs 34 charges the input capacitance of the transistor, it will increase the power that must be supplied to each DUT. The amount of current 11 at input terminal 41. When the input capacitance of the transistor is full of charge, its driver only needs to supply a relatively small amount of leakage current required to maintain the input capacitance of the transistor, so that the transistor remains on or off. Therefore, after each pulse of the CLOCK signal, there is a temporary increase in the power supply current 11 input to each of the DUTs 34, and a charging current required to change the switching states of the different transistors is provided. Later in the CLOCK signal cycle, after the transistors have changed state, the power supply current demand will produce a ''static' steady state level and remain there until the start of the next CLOCK signal cycle. Since the amount of additional current II required by the DUT 34 at the beginning of each CLOCK signal cycle will vary depending on the number and nature of the transistors that are turned on or off during the cycle of the particular CLOCK signal, the charge current requirement can be -11 - (9) 1298922 changes between cycles. If tester 30 - keeps switches SW1 and SW2 open, then main power supply 36 will always provide all current inputs to each DUT 34 . In this example, the increase in the temporary characteristic in the supply current 11 will cause the inherent impedance of the signal path 43 between the main power supply 36 and the DUT 34 due to the increased switching action in each DUT 34 after the pulse of each CLOCK signal. A temporary increase in voltage drop across R1, which in turn will cause a temporary tilt in voltage VB at power input terminal 4 of the DUT, and Figure 2 represents the behavior of VB and II when SW2 is on. Since the tilt in the supply voltage VB occurring after the edge of the pulse of each CLOCK signal can adversely affect the noise form of the DUTs 34 performance, it is desirable to limit the magnitude of the voltage tilt. <Predictive Current Compensation> According to an embodiment of the present invention, the 1C tester 30 controls the states of the auxiliary power supply 38 and the switches SW1 and SW2 so that the capacitor C2 can supply additional charging at the beginning of each test cycle. Current 13 to DUT 34. The charging current 13 flowing only during the initial portion of each CLOCK signal cycle combines the current 12 of the main power supply to provide current input II to DUT 34. When the charging current 13 provides approximately the same amount of charge as the capacitance of the switching transistor in the DUT 34 after the CLOCK signal pulse, there is only a relatively small change in the main power supply 3 after the CLOCK signal pulse. 6 of the generated current 12, and thus there is only a small change in the supply voltage VB. -12- (10) 1298922 Therefore, before the edge of each CLOCK signal, the tester 30 supplies the data CNT3 to the auxiliary power supply 38 to indicate the magnitude of the desired auxiliary supply voltage VC and then turns off the switch SW1. Next, the power supply 38 charges all of the capacitors C2, and the amount of charge stored by the capacitor C2 is proportional to the size of the VC. When the capacitor C2 has time full charge, the tester 30 turns on the switch SW1; after that, after the start of the next CLOCK signal cycle, the tester 30 turns off all the switches SW2, so that the charge stored in the capacitor C2 can be regarded as flowing into the DUTs. Current 13 in 34; Next, when it is deemed that a transient charging current is required, tester 30 will turn on switch SW2 such that only main power supply 36 supplies current to DUTs 34 during the remainder of the CLOCK signal cycle. This process will be repeated to the tester 30 during each cycle of the CLOCK signal, and the size of the VC is adjusted via the control data CNT3 for each clock cycle to provide a certain magnitude of current pulse 1C to satisfy the particular clock signal. The demand for the charge current predicted during the cycle. Therefore, the magnitude of the 1C current pulse can vary between cycles. Figure 6 depicts the behavior of supply voltage VB and currents II, 12 and 13 during the initial portion of the CLOCK signal cycle. Current II shows a large temporary increase above its static level IQ1 at time T1 after the CLOCK pulse edge to charge the capacitance within DUT 34. Current 13 rises rapidly to substantially provide all of the additional charging current. The output current 12 of the main power supply 38 shows only a relatively small disturbance to its static 値IQ2, resulting in a small mismatch between the transient components of 13 and 12. Since the change in 12 is small, the change in VB is also small. Therefore, the present invention can substantially limit power supply noise due to the switching transients in -13-(11) 1298922 DU Ts 34. <Programming Program Program> As described above, the amount of additional charging current generated by each DUT 34 at the beginning of the CLOCK signal cycle depends on the number of transistors turned on or off during the CLOCK signal cycle, and is charged. The current will vary between cycles. To provide the appropriate voltage adjustment to the DUT terminal 41, the tester 30 must predict how much charge the DUT 34 will store after each CLOCK signal edge because the tester must adjust the size of the auxiliary power supply output VC such that the capacitor C2 is Store the appropriate amount of charge before the CLOCK signal cycles. Figure 7 depicts a test system established to allow the tester 30 to experimentally determine the VC level it should set during each test cycle. A well-known reference DUT 40 that is suitable for operation and similar to the ICs to be tested is connected to the tester 3 via probe 32 in a manner substantially similar to that of the DUTs 34, such that the tester 30 can perform the same test with reference to 1C40. Above, the probe card 32 also connects the power supply terminal of the reference IC 40 to the input terminal of the tester 3, so that the tester 30 can monitor the power supply voltage VB. The tester 30 then observes VB using only the minimum C of the VC to perform the first CLOCK cycle of the test. If VB falls below the lower expected limit during the CLOCK signal cycle, the tester 30 repeats the higher of the VC. The first CLOCK signal loop is tested and this process will repeat until the appropriate vc of the vc of the first CLOCK signal loop is established. Then 14-(12) 1298922, the tester repeatedly performs the first two CLOCK signal cycles of the test and monitors the VB during the second CLOCK signal cycle and adjusts the VC accordingly, using the same procedure to establish the test. The VC of the successive CL CK CK signal loop is appropriate, and the VC 可 can be used when testing the DUTs 34. Typically, before the ICs are manufactured, the designer will use a circuit simulator to simulate the ICs. When the circuit simulator performs the same test that the 1C tester will perform on its real counterparts on the analog ICs, the circuit simulator can Used in a similar manner to determine the VC値 sequence to be used during the test of the real 1C. <Probe Card> Figure 4 depicts a typical prior art probe card 12 that is connected to the power input of the DUTs of the voltage regulating capacitor C1 to limit the power supply to the 'this temple probe card The distance between the voltage regulating capacitor and the DUT must be minimized to minimize the impedance between the capacitors and the DUTs. Accordingly, the capacitors are preferably mounted in the probe card or near a small area 27 above the probes that access the DUTs. Since there is only a small space on the probe card close to the probe, the size and number of the adjustment capacitor C1 that can be deployed on the probe card 12 are limited, and the limitation on the capacitor installation space can be limited simultaneously. The number of DUTs tested. Figure 8 is a simplified plan view of the probe card 32 according to Figure 5 of the present invention. The contact points 45 accessed by the 1C tester 30 of Figure 7 are distributed over a relatively large portion of the upper surface 43 of the probe card 32. In the area, the probe 3 7 (not shown) contacting -15-(13)(13)1298922 DUT s 3 4 is concentric under the central area 47 of the probe card which is relatively small. Since the voltage VC charged to the capacitor C2 can be adjusted to accommodate the effective path impedance R2 between any of the switches SW2 and the DUT 34 terminal 41 (Fig. 5), the capacitor C2 can be spaced from the center region 47 above the DUT probe. The capacitor C1 is mounted on the probe card 32 at a greater distance; and since the capacitor C2 is charged to a higher voltage than the capacitor C1, the capacitor C2 can be smaller than the capacitor C1 because the probe card 32 of FIG. The capacitor C2 can be smaller and further away from the center of the probe card than the capacitor C1 of the conventional probe card 12 of FIG. 4, so that a large number of capacitors C2 can be mounted on the probe card 32. Therefore, the test system using the probe card 32 according to the present invention can simultaneously test more DUTs than the test system of the conventional probe card 12 of Fig. 4. <Probe Card with Pattern Generator on Board> Figure 9 depicts an alternative embodiment of the present invention comprising a probe card 50 substantially similar to probe card 32 of Figure 7, except that it is already in it Install one, power control 1C 〃 52. The power control IC 52 includes a pattern generator 54 that performs the tester 3 of FIG. 1C with respect to generating control signals and data CNT1, CNT2, and CNT3 for controlling the switches SW1 and SW2 and the auxiliary power supply 38. The pattern produces a function. The power control 1C 52 includes a conventional pattern generator 54 that is programmed by the programming information generated by the external computer provided by the conventional computer bus 56 before the test is started. The pattern generator 54 begins to generate it. The output data pattern is responsive to the START signal from the 1C tester 5 8 to enable the test start 16-(14) 1298922, and the CNT1, CNT2, CNT3 data pattern that produces its output in response to the same operation as the tester 58 Pulse system clock (SYSCLK). As shown in Figure 9, when the required capacitor C2 is small enough, the switches SW1 and SW2 and the capacitor C2 can be implemented within the power control IC 52, and the IC 52 should be mounted on the probe card as close as possible to the DUT. Needle. The patterning of the switch SW1 and SW2 and the capacitor C2 and the tester 30 can be reduced within the single IC 52 to reduce the cost and complexity of the probe card 32, as well as to reduce the required number of tester 30 output channels, and Desirably, capacitor C2 can be implemented external to power control IC 52 by means of discrete components. <Charge Flow Modulation of Pulse Width Modulation> FIG. 1 depicts an embodiment of the present invention which is substantially similar to the embodiment of FIG. However, in FIG. 10, the switch SW1 is omitted from the probe card 60, so that the VC output of the auxiliary power supply 38 is directly connected to the capacitor C2, and the output voltage VC is fixed and is not adjusted by the ic tester 30. Let C2 charge to the same 之前 before the pulse of each CLOCK signal. In this configuration, the 1C detector 30 will control the amount of charge of the capacitor C2 delivered to the DUTs 34 at the beginning of each CLOCK pulse via the control signal CNT2 via the pulse width modulation switch SW2, at the CLOCK signal pulse. The amount of time that tester 30 turns off S W2 after the wave front will determine the amount of capacitance C2 delivered to DUTs 34. Alternatively, when the tester 30 rapidly increases and then reduces the duty cycle of the CNT2 signal, as depicted by 17-(15) 1298922 in Figure n, it can more closely approximate the 13 depicted in Figure 6. Current flow shape. <Analog-Modulated Charge Flow> Figure 12 depicts an embodiment of the present invention which is substantially similar to the embodiment of Figure 1. However, in Fig. 12, the transistor switch SW2 is replaced by the transistor Q2 operating in its active region when the DUTs 34 system is subjected to a state change and an additional current 13 is required. In this configuration, the CNT2 output of the 1C tester 30 is applied as a data sequence input to an analog-to-digital (A/D) converter 63 mounted on the probe card 61, which represents the cycle of each CLOCK signal. The demand for charging current 13 is predicted during this period. The A/D converter 63 is input to the base of the transistor Q2 in response to the CNT2 data sequence by generating an analog signal CNT4 that varies during the cycle of each CLOCK signal, as depicted in FIG. The analog signal CNT4 controls each transistor Q2 to allow the amount of current 13 flowing out of capacitor C2 to substantially match the predicted transient component of current II required by DUT 34. The A/D converter 63 can be implemented within the 1C tester 30 instead of being mounted on the probe card 61. <Charge Prediction Using Reference DUT> Figure 14 depicts an embodiment of the present invention in which a reference DUT 60 of similar DUTs 34 is tested in a similar manner except that the tester 30 tests the reference DUT 60 by applying it to Refer to the DUT60's CLOCK and other input signals ahead of the other slightly ahead of other DUTs. The main power supply is -18-(16) 1298922. The unit 62 supplies all the DUTs 34 and the auxiliary power supply 64 supplies the reference DUT 60. The capacitor C4 mounted on the probe card 66 near the reference DUT 60 adjusts the voltage VREF in a conventional manner. At its power input 68, it is allowed to stay within its allowed operating range, capacitor C5 is coupled to VREF to a set of amplifiers A1, and capacitor C6 is coupled to the output of each amplifier A1 to the power input 70 of each DUT 34. Due to the requirement of the transient charging current of the reference DUT, the supply voltage VREF at the input 68 of the reference DUT 60 will fall below its static level after the start of each CLOCK signal cycle by good adjustment. The amount of voltage tilt in VREF is proportional to the amount of transient charging current generated by the reference DUT. Since the reference DUT is similar to the DUTs 34 and the test is slightly ahead of the DUTs 34, the tilt in VREF predicts the amount of transient charging current for each DUT 34 after a short time. Amplifier A1, which operates through capacitors C5 and C6, amplifies the AC component of VREF to produce an output current 13 that increases the current output 12 of mains supply 62, and provides current input II to each DUT 34. The amount of time that the tester 30 leads the DUT 60 test is set to be equal to the delay between the change in the reference voltage VREF and the corresponding change in the current 13. With the (negative) gain of each amplifier A1 suitably adjusted by an externally generated signal (GAIN), current 13 will substantially match the transient charging current required by DUTs 34. <Charge prediction in a non-test environment) In addition to being effective in reducing power supply noise when testing integrated circuits, -19-(17) 1298922, embodiments of the present invention may also pass through a series of integrated circuits therein. The measurable state is used in applications to reduce power supply noise. Figure 15 depicts an example of the present invention in which the integrated circuit 80 passes the state of the predictable series in response to the edge of the externally generated CLOCK signal supplied as an input thereto, and the IC 80 accepts power from the main power supply, the auxiliary power supply. The supplier 84 charges the capacitor C2 via the OFF SW1 when the switch SW1 is closed, and the capacitor C2 takes its charge as an additional current input to the IC 80 when the switch SW2 is closed. The charge predictor circuit 80 allows the auxiliary power supply 8 4 to be turned on in response to the CLOCK signal by the request signal CNT1 to close the switch SW1 and the request control signal CNT2 while the IC 80 is in a portion of each of the CLOCK letters that are not changing states. During the state change charging capacitor C2, the charge prediction circuit 86 may request the control signal CNT2 to close the switch SW2 without requiring the control signal CNT1 to turn on the switch SW1 during a portion of each CLOCK signal cycle in which the IC 80 is not changing state, by the capacitor C2 circulates current to the power input of IC80 to provide its desired transient current. The charge predictor circuit 86 also provides a control data CNT2 auxiliary power supply 84 to adjust its output voltage VC to a level determined by the charging device C2 to an amount of power expected by the IC 80 during the next state change. The charge predictor 86 is suitably implemented by a conventional pattern generator or any other device that produces an output data sequence CNT1, CNT2 CNT3 suitable for the transient current requirements of the IC 80 for its intended state sequence. The switches SW1 and SW2 can be implemented outside the IC 80 as depicted in Fig. 15, or can be implemented in the internal 80 of the IC80. / No. This is not the power and the current capacity and medium -20- ( 18) 1298922 <Charge Averaging Method> Figure 16 depicts a simplified form of the present invention suitable for use in applications where IC 80 is charged within a fairly limited predictable range at the beginning of each CLOCK signal cycle. . As shown in FIG. 16, the inverter 90 inverts the CLOCK signal to provide a CNT1 control input to a switch that couples the auxiliary power supply to the capacitor C2. The CLOCK signal directly supplies the CNT2 control signal to a capacitor C2 for general borrowing. The switch SW2 of the IC80 input driven by the main power supply 82. As shown in Fig. 17, the CLOCK signal CLOCK signal drives the CNT2 signal boost switch SW2 during the first half of the cycle, and drives the CNT1 signal high in the second half of each CLOCK signal cycle to close the switch SW1. The output voltage VC of the auxiliary power supply 84 is set to a constant level to charge the capacitor C2 to the level before the start of each CLOCK signal cycle. The level of VC is set to appropriately determine the range in which the power supply voltage VB swings when the charging current being generated by the IC 80 is started at the start of each CLOCK signal cycle, for example, when we want to make the static of VB in the middle of its range. We can adjust VC so that capacitor C2 should be in the middle of the range of charging current expected to be generated by IC80. On the other hand, if we want to prevent VB from falling below its static level, we prefer VB to rise to its static state. Above, we can adjust so that capacitor C2 can supply a large amount of charging current that is expected to be generated by 1C 80. Although capacitor C2 can predict the SW1 connection power in the flow diagram during each CLOCK signal cycle during each closed period, the same additional input level is available, the pole | VC of the most supply - 21 - (19) 1298922 is extremely small The charging current and the large charging current are supplied during other CLOCK signal cycles, but in many applications, the system depicted in Figure 16 can keep the VB swing within an acceptable range when VC is properly adjusted. It should be noted that the systems of Figures 5, 9, 14 and 15 can be programmed in a similar manner by setting the control data CNT3 for each CLOCK signal cycle to be the same. <Adaptability Current Compensation> Figure 18 depicts another representative embodiment of the present invention. As shown in FIG. 18, the power supply 36 supplies power through the probe card 50 to the power input terminal 1 806 on the semiconductor device (DUT) 34 under test, through the power line 1812 on the probe card 50. The representation of the intrinsic impedance is depicted as R1 in Figure 18, and as shown in Figure 18, the 1C tester 58 provides clock and other signals to the DUT 34 via the probe card, on the representative DUT 34. The clock input terminal is depicted as terminal 1808. The 1C tester 58 also receives signals from the DUT 34 via the probe card 50, and displays an input/output (I/O) sub-1810 on the DUT 34 in FIG. However, the DUT 34 may have additional I/O terminals 1810 or may have outputs dedicated only to the input or other terminals dedicated only to the output, or terminals dedicated only to the input or output and other functions being input and output terminals. combination. Significantly, the probe card 50 can be coupled to a DUT as shown in Figure 18 or to a plurality of DUTs as shown in Figure 14. As shown in FIG. 18, the current sensing device 1804 (eg, a current sensing coupler or current converter) can sense the current of the -22-(20) 1298922 flow through the bypass capacitor c1. The amplifier 1 8 02, which is preferably an inverting amplifier (for example, the amplifier has a negative one), can provide current through the capacitor C7 into the transmission 1812, and the auxiliary power supply 38 supplies power to the amplifier 1802. Of course, it can be supplied by other devices. Power to amplifier 18 02, comprising a power supply from source supply 36, IC tester 5 8, located on probe card 50, or in addition to the power supply 3 6, 1C tester 5 8, or probe The power supply provided outside the card. In operation, as described above, the power terminal 180 6 typically produces a small current (assuming the DUT 34 primarily contains a field effect transistor), and in only a few cases, the power terminal 108 generates a large amount of current. As noted above, the most common occurrences arise when at least one of the transistors in the DUT 34 is in a state that typically occurs with respect to the relationship of the rising or falling edges of the clock at the clock terminal 108. When the DUT 34 is not changing state, the amount of current generated at the power terminal 1 8 06 will only pass through the bypass capacitor C1 and typically be small and mainly static DC (DC) flow or no current flow, The small to zero current sensed by the current sensing device 108 is generated and thus the current to the inverting amplifier 108 is as small as zero. However, when the DUT 34 is changing state, as described above, the power sub-186 will temporarily generate a large amount of current, which will generate a temporary large amount and change the flow current, current through the path capacitor C1 as described above. It is sensed by the current sensing device 10804 and inverted and amplified by the inverting amplification 1802, and finally lifted into the power line 1 8 1 2 through the isolation capacitor C7. As mentioned above, the additional current is reduced by the amplifier 1 8 0 2 provided in the benefit line of the sub-construction of the sub-construction of the white end of the current supply -23- (21) 1298922 rate line 18 12 A change in the voltage at power terminal 1 806. Figure 19 depicts a variation of the representative embodiment shown in Figure 18. As shown, Figure 19 is generally similar to Figure 18 and also includes an electrical influenza component 1 804 and an inverting amplifier 1 802 constructed to provide current to the power line 1812 on the probe card 50. However, in Fig. 19, the electrical influenza measuring component 108 will sense the current flowing through the power line 1 8 1 2 instead of the current flowing through the bypass capacitor C 1 . The operation of the embodiment of Figure 19 is similar to the operation of Figure 18. When the DUT 34 is not changing state, a typical small, primary static DC (DC) generated by the power terminal 1 806 via line 1 804 is sensed by the current sensing device 108, and thus, the inverting amplifier 1 8 02 provides little or no charging current. However, when the DUT 34 is changing state, the current sensing device 1 800 will sense a large current change generated by the power terminal 1 8 0 6 at the power terminal 1 800, and the inverting amplifier 1 802 will The sensed current is amplified and inverted to provide additional charging current through the isolation capacitor C7 to within the power line 1 8 1 2 . As mentioned above, this additional charging current will reduce the variation in the voltage at the power terminal 186. <Interconnect System> In the above-described probe card for providing a signal path in any of the embodiments between the integrated circuit tester, the power supply and the DUTs, the present invention can be combined with many Other designs of interconnect systems are implemented, for example, Figure 20A depicts a relatively simple probe card that includes a substrate -24 (22) (22) 1298922 2 0 02 with terminal 2004 for connection to a 1C tester (not shown in Fig. 20A) and having the probe element 2008 for electrical connection to the DUT (not shown in Fig. 20A). As shown, terminal 2004 is electrically coupled to probe card component 2008 by interconnecting component 2006. For example, the substrate can be a single or multi-layer printed circuit board or ceramic or other material. Obviously, the material composition of the substrate is not critical to the invention. The probe element 2008 can be any type of probe that can be electrically coupled to the DUT, including but not limited to needle probes, COBRA type probes, bumps, posts, rods, spring contacts, and the like. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; US Patent No. 62680 1 5 B1, and U.S. Patent Application Serial No. 09/3,648, assigned to PCT Publication No. WO 01/0 9952, filed on Jun. For reference here. Such spring contacts can be considered as described in U.S. Patent No. 6,150,186, the disclosure of which is incorporated herein by reference in its entirety in its entirety in its entirety in the the the the the the the the the the Optionally, the probes may be pads or terminals for contacting the riser elements on the DUT, such as spring contacts formed on the DUT. An unrestricted example of interconnect path 2006 includes a combination of vias and/or vias with conductive traces on the surface of substrate 2002 or within substrate 2〇〇2. Figure 20B depicts another unrestricted example of a probe card that can be used in the present invention. As shown, the representative probe card shown in Fig. 20B includes a substrate 2018, an interposer 2012, and a probe head 2032. Terminal 2022 is in contact with a -25-(23) 1298922 1C tester (not shown in Figure 20B), and probe element 2034, which may be similar to probe element 2008 described above, is in contact with the DUT (not shown in Figure 20B) . The interconnect path 2020, the resilient connection element 2016, the interconnect path 2014, the resilient connection element 2010, and the interconnect path 203 6 provide a conductive path from the terminal 2022 to the probe element 2034. The substrate 2018, the interposer 2012, and the probe head 2032 can be made of the same material as described above in relation to 20 02. Indeed, the material composition of substrate 2018, interposer 2012, and probe tip 2032 is not essential to the invention, but any composition can be used. Interconnect paths 2020, 2014, 2 03 6 may be similar to interconnect path 2006 as described above. The elastic connecting members 2016 and 2010 are preferably elongate elastic members, and an unrestricted example of such elements is depicted in U.S. Patent No. 5,472,621; U.S. Patent Application Serial No. 08, filed on Feb. /8 02054, which corresponds to PCT Publication No. WO 97/44676; U.S. Patent No. 626 80 1 5B1; and U.S. Patent No. PCT Publication No. WO 0 1/09952, filed on July 30, 1999 In the application No. 09/364,855, all of which are incorporated herein by reference. A more detailed description of a plurality of representative probe cards, such as those shown in Figure 20B, is found in U.S. Patent No. 5,976,626, the disclosure of which is incorporated herein by reference. Many variations of the representative design shown in FIG. 20B are possible, for example, as just one example, the interconnect path 2014 can be replaced with a hole and one or more fixed in the hole and extending to the hole. The outer elastic members 2016 and/or 2010 contact the substrate 2018 and the probe card 2032. However, it should be understood that the architecture or design of the 'interconnect system is not essential to the present invention, but any architecture or design may be used. As shown in the embodiments described herein, the circuitry for reducing variations in the voltage at the power terminals on the DUT is preferably disposed on the probe card. If multiple substrate probe cards are used, Such a representative probe, such as shown in Figure 20B, may be located on any of the substrates or may be distributed among two or more of the substrates. Thus, for example, the circuit can be located on one of the probe head 2032, the interposer 2012, or the substrate 2018 depicted in FIG. 20B, or the circuit can be located in the probe head, the interposer, and/or the substrate. Above or more combinations. It should be understood that the circuit may be integrally formed of interconnected discrete circuit components, may be integrally formed on an integrated circuit, or may be comprised of a portion of discrete circuit components and a portion of the components formed on the integrated circuit. <Predictive/adaptive circuit compensation> As described above, a predictive system for controlling a change in the supply voltage at the power input terminal of the DUT can predict the amount of charging current that the DUT will require during each clock signal cycle, and Then, according to the prediction, the magnitude of the supplemental current pulse applied to the power input terminal of the DUT is determined during the clock signal cycle; on the other hand, the adaptive system can monitor the power signal applied to the terminal of the DUT and utilize feedback To adjust the size of the supplemental current pulse, while maintaining the voltage of the power signal is constant. Figure 21 depicts an embodiment of the invention in which the amount of additional charge current required at the power input terminal 26 of the DUT 34 is determined by a combination of prediction and adaptation. The auxiliary power supply 38 supplies power VC to current -27-(25) 1298922 pulse generator 2102, when it is necessary to increase the normal supply current from the main power supply 36, the current pulse generator 2102 will supply current pulse 13 to the power input terminal 26 of the DUT. At the beginning of each test cycle, the 1C tester 58 will supply the signal CNT5 to the current pulse generator 2102 to indicate the predicted magnitude of the current pulse, and during each test cycle the '1C tester 58 will request the control signal CNT6. A current pulse generator 2102 is instructed when a current pulse is generated. The 1C tester 58 is programmed to test a particular form of DUT 34, and the predictions made with respect to the magnitude and time period of the current pulse 13 required during each test cycle can be generated as described above for the DUT of the form. Current measurement or simulation of DUT behavior. However, due to process variations in the manufacture of DUTs and other factors, the amount of additional charging current that each DUT of the form will require during each test cycle can vary from the predicted charging current. For any given DUT, the ratio of the actual charging current produced to the predicted charging current tends to be fairly uniform on a cyclic basis, such as a DUT that consistently produces a predicted charge during each test cycle. The current is more than 5% of the charging current, while the other DUT at the same time consistently produces a charging current that is 5% less than the predicted charging current during each test cycle. The feedback controller 2104 compensates for such changes in the charging current requirement and the prediction 借 by supplying an adaptive gain (or A adaptation 〃) signal G to the current pulse generator 2 1 02, which appropriately increases or decreases the current pulse Wave 13 is sized to adapt the current pulse to the requirements of the particular DUT 3 4 currently in the test. Therefore, the prediction signal CNT5 indicates the predicted magnitude of the charging current required by the form -28-(26)(26)1298922 DUT being tested, and the gain (adaptation 信号) signal size indicates the specific condition of the DUT being tested. Prediction error. Prior to testing the DUT 34, the 1C tester 58 performs a pre-test procedure similar to the test to be performed, where it transmits the test and CLOCK signal pulses to the DUT 34, causing the DUT 34 to behave substantially the same as its behavior during the test. During the pre-test procedure, the feedback control circuit 2 10 04 monitors the voltage VB at the power input terminal 26 of the DUT and adjusts the magnitude of the gain signal G, so that it occurs in VB when the size of 13 is too large or too small. The change is minimized. The pre-test procedure causes the feedback controller 2 10 04 to adjust the magnitude of the gain signal G to accommodate the charging current demand of the particular DUT 3 4 to be tested, after which the feedback controller 2 1 04 continues during the test. The VB is monitored and the gain signal is adjusted, but the adjustments made are small. Therefore, although the magnitude of the charge current 13 supplied during each test cycle is primarily a function of the predicted charge current demand of the DUT, the gain control feedback provided by the controller 2 104 will eventually adjust the current pulse magnitude to The tendency to adapt to any consistency in the actual charging current demand of the DUT varies with the predicted demand. Those skilled in the art will appreciate that the feedback controller 2 10 04 of Figure 21 can be any of a number of designs that produce an output gain control signal G that minimizes variations in VB. Those skilled in the art will also appreciate that the current pulse generator can be any of a number of designs capable of generating a current pulse 13, wherein the timing of 13 is controlled by the input signal CNT6, and wherein 13 The size is the current pulse wave size of the -29 - (27) 1298922 and the adaptive gain signal G size represented by the control signal CNT5. FIG. 22 depicts the feedback of the AC component of the non-limiting VB of the controller 2 1 04 to generate the gain control signal G. The container C10 passes through the AC component of the VB to an integrator 2 106. The capacitor R5 is connected in parallel by an operational amplifier A1 and has a resistor R4 > connected in series to its input; Fig. 23 depicts the current pulse wave of Fig. 21 Example. In this example, the data of the predicted magnitude of the pulse 13 of the control signal CNT 5 is digital to analog. The predicted data of the analog current test cycle is an analog signal P of a proportional magnitude. When the 1C tester 58 is to indicate when the current pulse 13 will be generated, the switch 2 1 : the signal P to the input of the variable gain amplifier 2112 of the auxiliary power supply 38 of Fig. 21. The gain control signal output of 21 2 104 will control the amplifier: the amplifier 2112 will generate a pulse 13 proportional to the product of P and G, and the capacitor C7 will transmit power to the signal path of the DUT 34 through the 13 signal pulse 3 card 50. Figure 24 depicts a non-limiting example of current pulse generation in Figure 21. In this example, the time length of the 1C CNT5 control signal of FIG. 21 is proportional to the predicted maximum pulse wave 13 of the current pulse wave 13 generated during the lower-loop period, and the CNT5 is required after the pulse generator 13 of each of the 13 signals is generated. The signal is closed by a function of coupling through the resistor. A fixed example is formed by integrating DC (DC) power 2106, which is formed by the integrator C8 and the resistor. The non-restricted output of the L device 2106 represents the required current converter (DAC). For example, the CNT6 signal is obtained in the prediction data, and the CNT is closed to apply the gain of the feedback controller Π 1 2 of the energy supply diagram of the VC output, and the amplification is small. The output current 1 of the probe of Figure 2: another tester of the device 2106 5 8 requires -CLOCK signal to follow the small, the current pulse 1C tester 58 will assist the power supply to send -30- (28) 1298922 out signal VC to capacitor C 8 switch 2 1 1 6 , 1C tester 58 continues to request the CNT5 signal for a period of time, the amount of time will increase with the predicted size of the next 13 signal pulse, so Figure 2 The auxiliary power supply 38 charges the capacitor C 8 to a voltage proportional to the predicted magnitude of the next 13 signal pulses. Thereafter, when the 1C tester 58 requests the CNT6 signal to indicate that the next 13 signal pulse will be generated, the switch 21 17 connects the capacitor C8 to a gain control signal output G having the feedback controller 2104 of FIG. The gain of the amplifier 2118 is input. The coupling capacitor C9 transfers the generated 13 signal to the probe power of the 21st picture to the probe card conductor 2114 of the DUT 35, and after the capacitor C8 has been substantially discharged in a timely manner, the control signal CNT6 turns on the switch 21 17 . Since the magnitude of the 13-current pulse wave rises rapidly and then tilts when C8 is discharged, the behavior of the time variation of the 13-pulse wave tends to be similar to the time-varying charging current requirement of the DUT. Figure 25 depicts yet another non-limiting example of the current pulse generator 2106 of Figure 21, wherein the data transmitted by the CNT5 signal represents the predicted magnitude of the 13 signal pulse, and the gain control signal G acts as the data transmitted by the converted CNT5. To reference the reference voltage of DAC2 120 of signal P, the voltage scale of gain control signal G will define the range of DAC output signal P such that P is proportional to the product of G and CNT5. The switch 2122 temporarily transmits a P signal to the amplifier 2124 in response to the pulse of the control signal CNT6, thereby causing the amplifier 2125 to transmit 13 signal pulses to the power conductor 2 1 1 4 via the coupling capacitor C5, the 13 signal pulse size Will be proportional to the product of G and P size. -31 - (29) 1298922 Figure 26 depicts an still undefined example of a predictive/adaptive system in accordance with the present invention in which auxiliary power supply 38 supplies power to variable gain amplifier 2126 and whenever 1C is tested When the 58 predicts that additional charging current will be required at the power input terminal 26 of the DUT 3 4, it will supply the control signal pulse CNT6 to the amplifier 2126. Capacitor C11 delivers a 13 signal pulse to power signal path 2114 in probe card 50 that is coupled to power supply 36 to DUT power input terminal 26, and feedback control circuit 2104 monitors voltage VB present at terminal 26 and adjusts amplifier 2 The gain of 126 is to minimize the variation in VB. At the beginning of each CLOCK cycle, the 1C tester 58 supplies a control signal CNT5 as an input to the auxiliary power supply 38 for setting its output voltage VC based on the size of the data transmitted by the CNT5 control signal. Thus, the size of 13 is a function of the product of the gain control signal G and the auxiliary power supply voltage VC. Thus, Figures 21 to 26 depict additional charging currents provided after the edges of the CLOCK signal in accordance with the present invention. To the power input terminal 26 of the DUT to accommodate the difference in the predictive/adaptive control system of the voltage applied to the power signal VB of the DUT 34 due to the increase in the temporary current required for the initial switching of the edge of the CLOCK signal Representative examples. The control system is 'v predictive 〃, which predicts the amount of additional current that the DUT will require during each cycle of the test; the control system is also 'adaptive 〃, which uses feedback to determine the resulting response to the prediction. The magnitude of the current pulse is adapted to the observed change in the amount of current actually generated by the individual DUTs to be tested. -32- (30) 1298922 Although the invention is depicted herein as reducing noise in a system employing only a single primary power supply, it will be understood that the invention may be employed in which more than one primary power supply is provided Provide power in the environment of DUTs. Although the present invention is depicted as operating in conjunction with DUTs having a single power input, it will be appreciated that the apparatus can be adapted to operate in conjunction with DUTs having multiple power inputs. Although the present invention is described as providing an additional charging current after the leading edge of the CLOCK signal pulse, it may also provide an additional charging current after the trailing edge of the CLOCK signal pulse for use in the trailing edge switch of the CLOCK signal. DUTs. Although the present invention has been described for use in conjunction with a different form of a 1C tester that uses a probe card to access ICs terminals formed on a semiconductor wafer, those skilled in the art will appreciate that the present invention may employ a combination. 1C tester using other forms of interface equipment to provide DUT terminals that are connected to ICs that are still at the wafer level, or DUT terminals of ICs that can be separated from the wafers they form; and their availability or not It will be incorporated into the DUT terminals of the packaged ICs at the time of its testing. These interface devices include, but are not limited to, load plates, burn-in boards, and final test boards. The invention in its broadest form is not intended to be limited to any particular form of 1C tester, any particular form of tester to DUT interconnect system, or any particular form of IC DUT application. It will also be understood by those skilled in the art that although the invention described above is incorporated in a test coupled to an integrated circuit, it can also be used when testing any type of electronic device, such as Includes a combination of flip-flops, boards and the like, or whenever -33- (31) 1298922 is expected to accurately adjust the voltage at the power input terminals of the device during testing. Having thus described the preferred embodiments of the present invention, it will be understood by those skilled in the art that many modifications may be made to the embodiments without departing from the invention. Therefore, the scope of the appendices of the appendix is intended to cover all such modifications as being included in the true scope and spirit of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram depicting a typical prior art test system including an integrated circuit tester connected to a set of integrated circuit devices (DUTs) through a probe card; And FIG. 3 are timing diagrams depicting signal behavior within the prior art of FIG. 1; FIG. 4 is a simplified plan view of a conventional probe card of FIG. 1; • FIG. 5 is a block diagram depicting A test system according to a first embodiment of the present invention, wherein a system for reducing noise in a power supply input of a group of DUTs is implemented; FIG. 6 is a timing chart depicting signal line 2 in the test system of FIG. For example, 'Figure 7 is a block diagram depicting the operation of the test system of Figure 5 during the calibration procedure; Figure 8 is a simplified plan view of the probe card of Figure 6; Figures 9 and 10 are block diagrams depicting The test system of the second and third-34-(32) 1298922 embodiments of the present invention is implemented; FIG. 1 is a timing diagram depicting the signal behavior in the test system of the first diagram; Depicting a test system embodying a fourth embodiment of the present invention; a timing diagram depicting signal behavior in the test system of FIG. 2, a block diagram of a first embodiment of the present invention; and a fifth block diagram depicting a sixth embodiment of the present invention; Figure 16 is a block diagram showing a seventh embodiment of the present invention; Figure 17 is a timing chart showing a signal behavior in the circuit of Figure 16 showing a eighth embodiment of the present invention; Figure 19 is a block diagram depicting a ninth embodiment of the present invention; Figure 2A depicts a representative probe card; Figure 2B depicts another representative probe card; Figure 4 is a block diagram depicting a tenth embodiment of the present invention; Figure 2 is a block diagram depicting a representative embodiment of the feedback control circuit of Figure 21; a block diagram of Figures 23 through 25 depicting the 21st A representative embodiment of the selection of the current pulse wave " generator of the figure; and a block diagram of the drawing of the second embodiment of the present invention. [Main component comparison table] -35- (33) (33) 1298922 10, 30, 38: 1C Tester 12, 32, 50, 60, 61, 66: Probe card 14, 34, 35 · · Tested Devices (DUTs) 1 5 : Spring pins 1 6 : Contacts 1 8 , 3 7 : Probes 19, 39, 1810, 1 8 08 : Input / Output (I/O) pads 2 〇: Conductive paths 22, 43 : path impedance 24, 36, 62, 82: main power supply 26, 41, 68, 1806: power input terminals 28, 46: signal path 25: upper surface 2 7, 4 7 · center area 38, 84: auxiliary Power Supply 40: Reference DUT (Reference 1C) 45: Contact Point 5 2: Power Control IC 54: Pattern Generator 56: Computer Bus 63: Analog to Digital (A/D) Converter 80: Integrated Circuit 86: Charge Predictor Circuit 90: Inverter-36- (34) (34)
1298922 18 12 :傳輸線 1 804 :電流感測裝置 1802、 2112、 2118、 2124、 2125、 2126 :放大器 2002、 2018 :基板 2 0 0 8 :探針 2004、 2022 :端子 2006、2020 :互連路徑 2 0 1 2 :插入器 203 2 :探針頭 2034 :探針元件 2 0 1 0、2 0 1 6 :彈性連接元件 2014、203 6 :互連路徑 2 102 :電流脈波產生器 2 104 :回授控制器 2 1 1 4 :功率信號路徑 2116 、 2117 、 2110:開關 2 120 : DAC (數位至類比轉換器) G :增益控制信號 CNT1〜CNT6 :控制信號 2106 :積分器 -37-1298922 18 12 : Transmission line 1 804 : Current sensing devices 1802, 2112, 2118, 2124, 2125, 2126 : Amplifiers 2002, 2018 : Substrate 2 0 0 8 : Probes 2004, 2022: Terminals 2006, 2020: Interconnect path 2 0 1 2 : interposer 203 2 : probe head 2034 : probe element 2 0 1 0, 2 0 1 6 : elastic connection element 2014, 203 6 : interconnection path 2 102 : current pulse generator 2 104 : back Controller 2 1 1 4 : Power signal path 2116, 2117, 2110: Switch 2 120 : DAC (digital to analog converter) G : gain control signal CNT1 ~ CNT6 : control signal 2106 : integrator -37-