TW200302539A - Predictive, adaptive power supply for an integrated circuit under test - Google Patents

Predictive, adaptive power supply for an integrated circuit under test Download PDF

Info

Publication number
TW200302539A
TW200302539A TW092102299A TW92102299A TW200302539A TW 200302539 A TW200302539 A TW 200302539A TW 092102299 A TW092102299 A TW 092102299A TW 92102299 A TW92102299 A TW 92102299A TW 200302539 A TW200302539 A TW 200302539A
Authority
TW
Taiwan
Prior art keywords
signal
current
input terminal
magnitude
power input
Prior art date
Application number
TW092102299A
Other languages
Chinese (zh)
Other versions
TWI298918B (en
Inventor
Benjamin N Eldridge
Charles A Miller
Original Assignee
Formfactor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/062,999 external-priority patent/US7342405B2/en
Priority claimed from US10/206,276 external-priority patent/US6657455B2/en
Application filed by Formfactor Inc filed Critical Formfactor Inc
Publication of TW200302539A publication Critical patent/TW200302539A/en
Application granted granted Critical
Publication of TWI298918B publication Critical patent/TWI298918B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31721Power aspects, e.g. power supplies for test circuits, power saving during test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31924Voltage or current aspects, e.g. driver, receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31903Tester hardware, i.e. output processing circuits tester configuration
    • G01R31/31905Interface with the device under test [DUT], e.g. arrangements between the test head and the DUT, mechanical aspects, fixture

Abstract

A main power source supplies current through path impedance to a power terminal of an integrated circuit device under test (DUT). The DUT's demand for current at the power input terminal temporarily increases following edges of a clock signal applied to the DUT during a test as transistors within the IC switch in response to the clock signal edges. To limit variation (noise) in voltage at the power input terminal, an auxiliary power supply supplies an additional current pulse to the power input terminal to meet the increased demand during each cycle of the clock signal. The magnitude of the current pulse is a function of a predicted increase in current demand during that clock cycle, and of the magnitude of an adaption signal controlled by a feedback circuit provided to limit variation in voltage developed at the DUT's power input terminal.

Description

200302539 (1) 玖、發明說明 【發明所屬之技術領域】 大致地,本發明有關測試積體電路,且特別地有關用 於降低積體電路測試中會造成其實行之邏輯狀態轉變之電 源雜訊的裝置。 【先前技術】 積體電路(1C )測試器可同時測試半導體晶圓上以晶 粒形式之一組ICs。第1圖係方塊圖,描繪一透過探針卡 1 2連接於可形成於半導體晶圓上之一組相同的測試中J c 裝置(DUTs ) 14之典型1C測試器1 〇,測試器1 〇利用彈 簧接腳1 5或其他裝置連接不同的輸入及輸出端子於探針 卡1 2上之一組接點1 6。探針卡12包含一組用於接觸各 DUT 14表面上之輸入/輸出(I/O)墊19的探針18,且提 供連結接點1 6於探針1 8之導電路徑20,穿過探針卡1 2 之路徑允許測試器1 0傳輸測試信號至D U T 1 4以及監視該 DUT 14所產生之輸出信號。因爲數位積體電路常包含定 時脈以響應於週期主時脈信號(CLOCK)之同步邏輯閘, 故探針卡1 2亦提供一路徑22,透過該路徑該測試器1 〇 可供應CLOCK信號到各DUT14。該測試系統亦包含一電 源供應器24,用於當測試DUTs 14時供應功率於它們, 而探針卡1 2則透過探針1 8連接電源供應器24於各DUT 14之功率輸入墊26。 在DUT 1 4內之各開關電晶體具有固有之輸入電容, (2) (2)200302539 而爲了開啓或關閉電晶體,該電晶體之驅動器必須充電或 放電該電晶體之輸入電容。當驅動器充電電晶體之輸入電 容時,其將從電源供應器24獲得充電電流。一旦該電晶 體之輸入電容完全地充電時,其驅動器僅需供應一保持該 電晶體之輸入電容充電所需之相當小量的漏電流’使得該 電晶體保持開啓或關閉。在實行同步邏輯之DUTs中’大 多數電晶體之開關會立即地發生於各CLOCK信號脈波之 邊緣之後,所以立即在各脈波之CLOCK信號之後會在輸 入至各DUT 1 4的電源供應電流11中存在暫時性的增加, 而提供了改變該DUT內不同電晶體開關狀態所需之充電 電流,然後在CLOCK信號循環中,在該等電晶體已改變 狀態之後,供應電流11之需求會成爲 > 靜態〃之穩定狀 態位準且維持於該處,直到下一個CLOCK信號循環開始 爲止。 透過其,該探針卡12可連接電源供應器24於各DUT 14之信號路徑28具有第1圖中藉電阻R1所表示之固有 阻抗。因爲在電源供應器24之輸出與DUT 14之功率輸入 26間存在有電壓降,故DUT 14之供應電壓輸入VB多少 會比電源供應器24之輸出電壓VA少,且雖VA可較佳地 調整,但VB會隨著電流11之大小而變化。在各CLOCK 信號循環啓動之後,充電開關電晶體之輸入電容所需之11 中之暫時增加會增加R1上之電壓降,因而暫時性地降低 VB。由於發生於各CLOCK信號脈波邊緣之後的供應電壓 V B中之傾斜係一能夠不利地影響DUTs 1 4性能之雜訊形 (3) (3)200302539 式,故企望於限制其大小及期間。吾人可藉降低電源供應 器24與DUTs 14間之該等路徑28的電抗來限制該雜訊, 例如藉增加導體大小或藉使路徑28之長度最小化。然而 ,藉其,吾人降低該電抗之數量將有實用上的限制。 吾人亦可藉設置電容器C1於該探針卡12上靠近各 DUT 14之功率輸入26處來降低電源雜訊。第2圖描繪當 電容器C1並不十分大時,IC14之功率輸入26處之供應 電壓VB及電流II響應輸入於1C 14之CLOCK信號脈波的 行爲。須注意的是,在時間T1之CLOCK信號邊緣之後, 在11中於其靜態位準IQ上方之暫時上升會產生暫時的增 加於R1上的壓降中,其依序地會在供應電壓VC中產生 暫時性傾斜於其靜態位準VQ之下。 第3圖描繪當電容器C1十分大時,VB及II的行爲 。在CLOCK信號脈波之間,當DUT 14爲靜態時,電容器 C1會充電至VB的靜態位準。在時間T1處之CLOCK信號 上升緣(或下降緣)之後,當DUT 14暫時地需要更多的 電流時,電容器C1會供應若干其所儲存之電荷至DUT 14 ,因而降低額外電流之量,所以電源供應器24必須提供 以配合所增加之需求。例如可在第3圖中發現,電容器 C 1的存在會降低R1暫時性電壓降的大小且因此降低了輸 入至DUT 14之供應電壓VB中之傾斜的大小。 對於足敷限制VB中之變化的電容器而言,該電容器 必須足夠大,以便供應所需之電荷至DUT 14,且必須定 位靠近DUT 14,使得C1與DUT 14間之路徑阻抗極低。 (4) (4)200302539 不幸地,並非總是便利地或可行地安裝大的電容器於接近 各DUT 14之電源輸入端26的探針卡12之上。第4圖係 典型探針卡1 2的簡化平面視圖,1C測試器10位於該探 針卡上方而含DUTs 14之晶圓則保持於該探針卡下方。因 爲第1圖之1C測試器10的I/O端子相較於所測試晶圓之 表面區域係分佈於相當大的區域上,所以探針卡1 2提供 相當大的上方表面25以用於保持測試器接達之接點1 6。 另一方面,在接觸晶圓上之DUTs 14之探針卡12下方面 上的探針1 8 (未圖示)則集中在探針卡1 2之相當小的中 心區域27下方。 在探針卡12上方表面25上之接點與區域27下方之 探針1 8間的路徑阻抗係各接點1 6與其對應探針間之距離 的函數。爲使電容器C1與DUTs間之距離最小化,該等 電容器應安裝於探針卡1 2上接近(或在上方)該小的中 心區域27處。然而,當晶圓含有大量欲測試之ICs或具 有大量密集封裝端子之1C時,並沒有足夠空間來安裝所 需數目之充分接近中心區域27之足夠大小的電容器C 1 〇 【發明內容】 在採用同步邏輯之測試中的積體電路裝置(DUT )之 測試期間,在輸入至DUT之時脈信號的各連續前緣或後 緣之後,DUT會經歷暫時性之對於電源供應電流之增加白勺 需求,當形成邏輯裝置之電晶體遭受狀態轉變以響應於日寺 脈信號邊緣時,該DUT會需要額外的電流來充電該等_ (5) (5)200302539 晶體的輸入電容。本發明將限制各時脈信號脈波之後在電 源供應電流中之暫態增加所造成之DUT功率輸入端之電 源供應電壓中之變化’因此’本發明可降低DUT之功率 輸入端的電源供應雜訊。 根據本發明,充電電流脈波係在各時脈信號邊緣之後 供應至DUT的功率輸入端,而在測試期間補充主電源供 應器所持續供應之電流’適當地由輔助電源供應器所供電 之充電電流脈波可降低主電源供應器增加其輸出電流以配 合DUTs所增加之需求的需要。儘管DUT之對於電流所增 的需求,具有實質保持恆常之主電源供應器之輸出電流, 則在主電源供應器與DUT間之路徑阻抗上的壓降會實質 地保持恆常,所以在DUT之功率輸入端的供應電壓亦將 實質地保持恆常。 在各時脈信號邊緣之後,DUT所需之額外充電電流量 將根據其內部邏輯裝置遭受之狀態轉變的數目及性質而變 化以響應該時脈信號邊緣。因爲1C的測試需要1C執行預 定順序的狀態改變,故測試期間之1C行爲,含其在各時 脈信號邊緣期間對於電流之需求係可預測的。因此,在各 時脈信號邊緣之後所供應之電流脈波大小可予以調整,以 適合各時脈信號脈波之後DUT所需之額外充電電流的預 測量,而對於各時脈信號邊緣之後由DUT所引起之電流 中增加之預測,則可依據例如在相同測試條件下藉相同之 DUT所引起之電流的測量,或依據模擬DUT遭受類似的 測試。 -10- (6) (6)200302539 雖然在任一測試循環可以以相當高的準確性來預測一 特定形式1C可引起之充電電流量,但任一該形式之既定 DUT所引起的額外充電電流之實際量則或多或少地會比所 預測量更高或更低。尤其,相對於該等電晶體在狀態改變 期間所需之充電電流量,在ICs製造中之隨機過程的變化 會使所有之ICs表現稍有不同的行爲。爲補償DUTs間之 此等不同,可配置回授電路以監看DUT之電源供應端之 電壓以及適當地計量所預測之電流脈波大小,以便使該電 壓中之變化最小。 因此,在各時脈信號循環之後供應至DUT之電源輸 入端的電流脈波大小係在該時脈信號循環期間由該形式之 DUT所引起之額外電流的所預測大小之函數,但所預測之 脈波大小係由回授所計量,以便使該預測能適應以調節所 測試的各特定DUT之充電電流要求中的變化。 此規格之結論部分特定地指出及明確地主張本發明之 標的物。然而,該等熟習於本項技術之人士藉硏讀本規格 之其餘部分且以其中相同參考符號表示相同元件之附®作 參考,將可更佳地暸解本發明之組織及操作方法’以及其 進一步之優點及目的。 【實施方式】 <系統架構〉 第5圖以方塊圖形式描繪一透過探針卡32連結於一 組在半導體晶圓上以晶粒形式之相同的測試中1C裝置( -11 - (7) (7)200302539 DIJTs ) 34之積體電路(IC )測試器30 〇探針卡32包含一 組探針37,用於接達DUTs 34表面上之輸入/輸出端子墊 39 ;且亦包含信號路徑46,連結測試器30於探針37以允 許1C測試器30傳送時脈信號(CLOCK )及其他測試信號 至DUTs 34,以及傳遞DUT輸出信號回到測試器,使該測 試器能監看該等DUTs之行爲。 探針卡32亦經由穿過該探針卡而引線至探針37且延 伸至端子41的導體而連結主電源供應器至各DUT 34之功 率輸入端4 1,電源供應器3 6產生一良好調整的輸出電壓 VA且持續地供應電流12至DUT 34。爲描繪之目的,第5 圖表示穿過探針卡32在主電源供應器36與各DUT之間 的路徑43之固有阻抗爲電阻器R1。由於在各電阻器R1 上之壓降,各DUT34之輸入的供應電壓VB總是稍爲小於 VA 〇 根據本發明,安裝於探針卡32上之第一電晶體開關 SW1連結一輔助電源供應器38於一組安裝於探針卡32中 之電容器C2 ; —組亦安裝於探針卡32上之第二電晶體開 關SW2連結各電容器C2至相對應之DUT 34的功率輸入 端。第5圖中所示之電阻器R2代表當開關SW2關閉時在 各電容器C1與DUT 34之功率輸入端子41間之探針卡32 內的固有信號路徑阻抗。1C測試器30提供一用於SW1之 輸出控制信號CN1 ’ 一用於控制開關SW2之控制信號 CNT2,及用於控制輔助電源供應器38之輸出電壓VC大 小之CNT3。如下文所詳細描述地’輔助電源供應器3 8、 -12- (8) 200302539 開關SW1及SW2,以及電容器C2扮演一輔助電 需要配合DUT所需供應電流中之任何期待性增 在1C測試器30之控制下注入電流脈波13於各 率輸入端41內。 <電源供應雜訊> DUTs 34實行同步邏輯,其中形成邏輯閘之 體會導通及關閉以響應測試器30所提供之週 CLOCK信號的脈波,各開關電晶體具有固有的 ,且爲了導通或關閉該電晶體,其驅動器必須充 該電晶體之輸入電容,當DUTs 34內之驅動器充 之輸入電容時,將增加必須供應至各DUT之功 4 1的電流11量。當電晶體之輸入電容充滿電荷 動器僅需供應保持該電晶體之輸入電容充電所需 的漏電流量,使得該電晶體維持導通或關閉即可 在CLOCK信號之各脈波之後,輸入各DUT 34之 電流Π中會有暫時性的增加,而提供改變不同 之開關狀態所需之充電電流。在CLOCK信號循 後,於該等電晶體已改變狀態之後,電源供應電 會產生 > 靜態〃之穩定狀態位準且維持於該處直 CLOCK信號循環之開始爲止。 因爲在各CLOCK信號循環之起始處DUT 34 外電流II量將依據該特定CLOCK信號循環期間 關閉之電晶體的數目及性質而變,故充電電流之 流源,當 加時,即 DUT之功 開關電晶 期性之主 輸入電容 電或放電 電電晶P ππ πϋ 率輸入端 時,其驅 之相當小 。所以, 電源供應 的電晶體 環中之稍 流之需求 到下一個 所需之額 所導通或 需求可變 -13- 200302539 Ο) 化於循環之間。 若測試器30 —直保持開關SW1及SW2開啓,則主電 源供應器36將一直提供所有的電流輸入II至各DUT 34 。在此例中,由於在各CLOCK信號脈波之後各DUT 34內 所增加的開關動作,在供應電流11中之暫特性的增加將 造成主電源供應器36與DUT 34間信號路徑43之固有阻 抗R 1上之壓降中的暫時性增加,此隨後將造成DUT之功 率輸入端41之電壓VB中的暫時性傾斜,第2圖代表當 SW2開啓時之VB及II的行爲。因爲在各CLOCK信號脈 波邊緣之後所發生之供應電壓VB中之傾斜係可不利地影 響DUTs 34性能的雜訊形式,故企望於限制電壓傾斜的大 小0 <預測性電流補償> 根據本發明一實施例,1C測試器30控制輔助電源供 應器38以及開關SW1及SW2的狀態,使得電容器C2可 在各測試循環之起始時供應額外的充電電流13至DUT 34 。僅在各CLOCK信號循環之初始部分期間流動之充電電 流13會結合主電源供應器之電流12,而提供電流輸入II 至DUT 34。當充電電流13提供大約相同於DUT 34內之 開關電晶體之電容在CLOCK信號脈波之後所取得之電荷 量時,則在該CLOCK信號脈波之後僅存在相當小的改變 於主電源供應器3 6所產生之電流12中,因而在供應電壓 VB中僅存在很小的變化。 -14- (10) (10)200302539 因此,在各CLOCK信號邊緣之前,測試器30會供應 資料CNT3至輔助電源供應器38而指示所企望之輔助供 應電壓VC之大小且接著關閉開關SW1。接著,電源供應 器38充電所有電容器C2,電容器C2所儲存之電荷量係 成比例於VC的大小。當電容器C2已具有時間充滿電荷 時,測試器30開啓開關SW1 ;之後,在下一 CLOCK信號 循環起始之後,測試器30會關閉所有開關SW2,使得儲 存於電容器C2中之電荷可當作流入DUTs 34內的電流13 ;接著,當認爲需要暫態充電電流時,測試器3 0將開啓 開關SW2,使得在該CLOCK信號循環之剩餘部分之期間 僅主電源供應器36供應電流於DUTs 34。此過程將在該 CLOCK信號之各循環期間重複於測試器川,而經由控制 資料CNT3調整VC之大小以用於各時脈循環,以便提供 一定大小之電流脈波1C來滿足該特定時脈信號循環期間 所預測之充電電流的需求。所以該1C電流脈波之大小可 變化於循環之間。 第6圖描繪CLOCK信號循環之初始部分期間,供應 電壓 VB,及電流II、12及13的彳了爲。電流II顯本在 CLOCK脈波邊緣之後,在時間T1處,於其靜態位準IQ1 上方之大的暫時性增加,以充電DUT 34內之電容。電流 13快速地上升而實質地提供所有額外的充電電流。主電源 供應器3 8之輸出電流12僅顯示一相當小的擾動於其靜態 値IQ2,而產生小的失配於13與12的暫態成分之間。因 爲12中之變化小,故 VB中之變化亦小。所以,由於 -15- (11) (11)200302539 DUTs 34中之開關暫態’本發明可實質地限制電源供應雜 訊0 <測試器之程式規劃> 如上述,各DUT 34在CLOCK信號循環之起始時所產 生之額外充電電流量會依據該CLOCK信號循環期間所導 通或關閉之電晶體數目而定’且充電電流會變化於循環之 間。爲提供適當之電壓調整於DUT端子41,測試器30必 須預測出究竟DUT 34將在各CLOCK信號邊緣之後儲存多 少電荷,因爲測試器必須調整輔助電源供應器輸出VC之 大小,使得電容器C2在各CLOCK信號循環之前儲存適當 的電荷量。 第7圖描繪一建立以允許測試器30實驗性地確定各 測試循環期間其所應設定之VC位準的測試系統。熟知之 適合操作且相似於欲測試之ICs的參考DUT 40係經由探 針32以大致相同於DUTs 34欲連接之方式連接於測試器 30,使得測試器30可執行相同的測試於參考IC40之上, 而且探針卡32亦連結參考IC40之電源供應端子於測試器 30之輸入端子,使得測試器30可監看電源供應電壓VB 。測試器30接著利用 VC之最小値僅執行測試之第一 CLOCK循環而觀察VB,若在該CLOCK信號循環期間VB 落在所企望下限之下方時,測試器30利用VC之較高値 來重複該測試的第一 CLOCK信號循環,此過程將重複直 到建立該第一 CLOCK信號循環之VC的適當値爲止。然 -16- (12) (12)200302539 後’該測試器重複地執行該測試之首先的兩CL0CK信號 循環而在第二CLOCK信號循環期間監看Vb且按此調整 VC,使用相同的程序來建立該測試之各接續的CLOCK信 號循環之VC適當値,而當測試DUTs 34時則可使用該等 VC値。 典型地’在ICs製造之前,設計者會使用電路模擬器 來模擬ICs ’當電路模擬器執行相同於ic測試器將執行於 其真實配對物之測試於模擬ICs上之時,該電路模擬器可 以以相似方式使用以確定該真實1C之測試期間將使用之 VC値序列。 <探針卡> 第4圖描繪一典型之先前技術的探針卡1 2,該探針 卡連接電壓調整電容器C1之DUTs之功率輸入端以限制 電源供應雜訊,此等探針卡必須使電壓調整電容器與DUT 間之距離最小化以使該等電容器與DUTs間之阻抗最小化 。因此,該等電容器較佳地安裝於探針卡之中或靠近該等 接達DUTs的探針上方的小區域27處。因爲在靠近探針 之探針卡上僅存在小的空間,所以會限制可佈署於探針卡 12上之調整電容器C1的大小及數目,此種在電容器安裝 空間上的限制可限制能同時測試之DUTs的數目。 第8圖係根據本發明第5圖之探針卡3 2的簡化平面 視圖,由第7圖之1C測試器30所接達之接觸點45係分 佈於探針卡32上方表面43之相當大的區域上,而接觸 -17- (13) (13)200302539 DUTs 34之探針37 (未圖示)則同心於該探針卡相當小的 中心區域47下方。因爲充電於電容器C2的電壓VC可調 整以適應任一開關SW2與DUT 34端子41間之有效路徑 阻抗R2(第5圖),故電容器C2可在DUT探針上方距 中心區域47比第4圖之電容器c 1更大的距離處安裝於探 針卡32上;而且因爲電容器C2係充電至比電容器C1更 高的電壓,故電容器C2可以比電容器C1更小,因爲第8 圖探針卡32之電容器C2可以比第4圖習知技術探針卡 1 2之電容器C1更小及更遠離於探針卡的中心,故大量的 電容器C2可安裝於探針卡32之上。因此,根據本發明之 採用探針卡32之測試系統可以比第4圖之採用習知技術 探針卡1 2之測試系統同時測試更多的DUTs。 <具有圖案產生器於板上之探針卡> 第9圖描繪本發明一選擇性實施例,含一大致相似於 弟7圖探針卡32之探針卡50,除了其已在其上安裝一、、 功率控制1C 〃 52之外。該功率控制IC52包含一圖案產生 器54 ’該圖案產生器執行第7圖ic測試器30相對於產生 控制信號及資料CNT1、CNT2及CNT3以用於控制開關 S W 1及S W 2以及輔助電源供應器3 8之圖案產生功能。該 功率控制IC52包含一習知之圖案產生器54,在測試起始 之前’藉經由習知電腦匯流排56所提供之外部所產生之 程式規劃資料予以程式規劃,該圖案產生器54開始產生 其輸出之資料圖案以響應來自1C測試器5 8之使測試起始 -18- (14) (14)200302539 之START信號,以及產生其輸出之CNT1、CNT2、CNT3 資料圖案以響應相同於測試器58之操作時脈的系統時脈 (SYSCLK )。 如第9圖中所示地,當所需之電容器C2足夠小之時 ,開關SW1及SW2以及電容器C2可實現於功率控制 IC52之內,IC52應安裝於探針卡上盡可能靠近於DUT探 針之處。倂合開關SW1及SW2以及電容器C2及測試器 30之圖案產生功能於單一之IC52之內可降低探針卡32之 成本及複雜性,以及減少測試器30輸出頻道之所需數目 ,而且視需要地,可藉分立組件而實現電容器C2於功率 控制IC52之外部。 <脈波寬度調變之電荷流動> 第1 〇圖描繪本發明一實施例,其大致地相似於第5 圖之實施例。然而,在第10圖中係從探針卡60省略掉開 關SW1,使得輔助電源供應器38之VC輸出係直接連接 於電容器C2,而且該輸出電壓VC固定且不受1C測試器 30調整,使得C2在各CLOCK信號脈波之前充電至相同 値。在此組態中,1C測器器30將藉脈波寬度調變開關 SW2經由控制信號CNT2來控制在各CLOCK脈波之起始 時傳遞至DUTs 34之電容器C2充電量,在CLOCK信號脈 波前緣之後測試器3 0關閉SW2之時間量將確定傳遞至 DUTs 34之電容C2充電量。選擇性地,當測試器30快速 地增加且接著減少CNT2信號之責務循環,如第11圖中 -19- (15) (15)200302539 所描繪時,則可更密切地近似於第6圖中所描繪之13電 流流動形狀。 <類比調變之電荷流動> 第1 2圖描繪本發明一實施例,其大致地相似於第1 〇 圖之實施例。然而,在第12圖中,電晶體開關SW2係以 當DUTs 34係遭受狀態改變且需要額外電流Π時操作於 其主動區之電晶體Q2予以置換。在此組態中,1C測試器 3◦之CNT2輸出係施加爲輸入至安裝於探針卡61上之類 比至數位(A/D )轉換器 63之資料序列,該資料序列 CNT2代表各CLOCK信號循環之期間所預測之用於充電電 流13的需求。A/D轉換器63藉產生一變化於各CLOCK信 號循環期間之類比信號CNT4,輸入至電晶體Q2的基極而 響應於該CNT2資料序列,如第13圖中所描繪。類比信 號CNT4控制各電晶體Q2而允許流出電容器C2之電流13 量,使其實質地匹配於DUT34所需求之電流II的預測之 暫態成分。A/D轉換器63可實行於1C測試器30之內以 取代安裝於探針卡6 1之上。 <利用參考DUT之電荷預測> 第14圖描會本發明一實施例,其中相似DUTs 34之 參考DUT60係以相似方式測試,除了測試器%測試該參 考DUT60係藉由使施加於該參考DUT60之CLOCK及其他 fe入丨g 5虎超則而稍爲超則於其他D U T s之外。主電源供應 -20- (16) (16)200302539 器62供電所有的DUTs 34而輔助電源供應器64則供電參 考DUT60 ’安裝於探針卡66上靠近參考DUT60之電容器 C4以習知方式調整電壓VREF於其功率輸入端68處,使 其停留於其所允e午之操作軺圍內,電容器C5連結VREF 於一組放大器A1 ’以及電容器C6連結各放大器a 1之輸 出於各DUT34之功率輸入端70。 由於參考DUT之暫態充電電流的需求,透過良好的 調整,在參考DUT60之輸入端68處的供應電壓VREF會 在各CLOCK信號循環的起始之後,掉落於其靜態位準之 下方一小量,在VREF中之電壓傾斜量係成比例於參考 DUT所產生之暫態充電電流量。因爲參考DUT係相似於 DUTs 34且測試稍爲超前於DUTs 34,故在VREF中之傾 斜可預測短時間後之各DUT 34的暫態充電電流量。 透過電容器C5及C6動作之放大器A1可放大VREF 之AC成分以產生可增加主電源供應器62之電流輸出12 之輸出電流13,而提供電流輸入II至各DUT 34。測試器 30超前參考DUT60測試之時間量係設定相等於參考電壓 VREF中之變化與電流13中之相對應變化間之延遲。具有 藉外部所產生信號(GAIN)所適當調整之各放大器A1之 (負)增益,電流13將實質地匹配DUTs 34所要求之暫 態充電電流。 <在非測試環境中之電荷預測) 除了當測試積體電路時有效於降低電源供應雜訊之外 -21 - (17) (17)200302539 ,本發明之實施例亦可在其中積體電路通過一系列之可預 測狀態之應用中採用來降低電源供應雜訊。 第15圖描繪本發明一實例,其中積體電路80通過一 可預測系列之狀態以響應於供應至該處當作輸入之外部所 產生CLOCK信號的邊緣,IC80接受來自主電源供應器82 之功率,輔助電源供應器84於當開關SW1閉合時經由開 關SW1充電電容器C2,當開關SW2閉合時電容器C2供 應其電荷當作輸入至IC80之額外電流。'電荷預測器〃 電路80在其中IC80係非正在改變狀態之各CLOCK信號 之一部分的期間,藉要求信號CNT1來閉合開關SW1及不 要求控制信號CNT2而開啓開關來響應CLOCK信號,此 允許輔助電源供應器84在狀態改變間充電電容器C2,電 荷預測電路86可要求控制信號CNT2來閉合開關SW2及 不要求控制信號CNT1而開啓開關SW1於其中1C80非正 在改變狀態之各CLOCK信號循環之一部分的期間,藉此 使電容器C2循環電流至IC80的功率輸入而提供其所需之 暫態電流。電荷預測器電路86亦提供控制資料CNT2至 輔助電源供應器84以調整其輸出電壓VC,使其充電電容 器C2至一根據下一狀態改變期間預期1C 80所產生之電流 量而確定的位準。電荷預測器8 6係適合藉一習知圖案產 生器或任何其他可產生適用於IC80之暫態電流要求以用 於其預期之狀態序列的輸出資料序列CNT1、CNT2及 CNT3之裝置予以實現。開關SW1及SW2可如第15圖中 所描繪地實行於1C80之外部,或可實行於ic80之內部。 -22- (18) (18)200302539 <電荷平均法> 第1 6圖描繪本發明一簡便的形式,適用於其中預期 IC80在各CLOCK·信號循環之起始時所產生之充電電流量 位於一相當受限之可預測範圍內的應用中。如第1 6圖中 所示,反相器90反相該CLOCK信號以提供CNT1控制信 號輸入於一耦合輔助電源供應器至電容器C2的開關SW1 ,該CLOCK信號直接提供CNT2控制信號輸入於一連接 電容器C2於一般藉主電源供應器82所驅動之IC80功率 輸入的開關SW2。如第17圖中所示,該CLOCK信號在各 CLOCK信號循環之第一半部期間驅動該CNT2信號高而閉 合開關SW2,以及在各CLOCK信號循環之第二半部期間 驅動CNT1信號高而閉合開關SW1。 輔助電源供應器84之輸出電壓VC設定於一恆常値 ,使其在各CLOCK信號循環起始之前充電電容器C2至相 同位準。VC之準位係設定以適當地定出當1C 80正產生額 外的充電電流於各CLOCK信號循環起始時電源供應輸入 電壓VB所擺動之範圍,例如當吾人欲使VB之靜態位準 位於其範圍之中間時,吾人可調整VC使得電容器C2可 供應一在預期IC80將產生之充電電流範圍中間的電流量 ,另一方面,若吾人欲防止VB免於掉落於其靜態位準之 極下方但情願使VB上升至其靜態値上方時,吾人可調整 VC使得電容器C2可供應一預期IC80將產生之充電電流 的最大量。雖然電容器C2可在若干CLOCK信號循環期間 -23- (19) (19)200302539 供應極小的充電電流以及在其他CLOCK信號循環期間供 應極大的充電電流,但在許多應用中,第1 6圖中所描繪 的系統可在當合適地調整VC時保持VB擺動於可接受範 圍之內。須注意的是,第5、9、14及15圖之系統可藉設 定每一 CLOCK信號循環之控制資料CNT3爲相同値予以 程式規劃,而以相似的方式操作。 <適應性之電流補償> 第1 8圖描繪本發明另一代表性之實施例。如第1 8圖 中所示,電源供應器36透過探針卡50供應功率至測試中 的半導體裝置(DUT ) 34上的功率輸入端子1 806,在探 針卡5 0上穿過功率線1 8 1 2之固有阻抗的表示係於第18 圖中描繪爲R1,而且如第1 8圖中所示地,1C測試器5 8 會透過探針卡提供時脈及其他信號到DUT34,在代表性 ϋϋΤ34上之時脈輸入端子係描繪爲端子1 808,該1C測試 器58亦透過探針卡50接收來自DUT 34之信號,在第18 圖中之DUT 34上顯示一輸入/輸出(1/〇)子1810,然而 ,DUT 34可具有額外的I/O端子1810或可具有僅專用於 輸入之輸子或僅專用於輸出之其他端子,或僅專用於輸入 或輸出之端子與其他功能爲輸入及輸出端子的組合。明顯 地,探針卡50可如第18圖中所示地連接於一 DUT或如 第14圖中所示地連接於複數個DUTs。 如第1 8圖中所示地,電流感測裝置1 804 (例如電流 感測耦合器或電流變換器)可透過旁路電容器C 1感測電 -24- (20) (20)200302539 流’較佳地係反相放大器(例如該放大器具有負1之增益 )之放大器1 802可透過電容器C7提供電流進入傳輸線 1812之內,輔助電源供應器38提供功率至放大器1 802, 當然可藉其他裝置來供應功率至放大器1802,包含來自 電源供應器36,1C測試器58,位於探針卡50上之電源供 應器,或除了該電源供應器3 6,1C測試器5 8,或探針卡 50之外所設置之電源供應器。 在操作上,如上述地,功率端子1 806典型地會產生 小的電流(假設DUT 34主要包含場效電晶體),而僅在 若干情況下,功率端子1 806會產生大量電流。如上述地 ,最平常之該等情況產生於當DUT 34中至少一電晶體改 變狀態之時,其典型地相對於時脈端子1 808處之時脈的 上升或下降緣之關係而發生。 當DUT 34並未正在改變狀態時,產生於功率端子 1 806處之小的電流量僅會透過旁路電容器C1而典型地造 成小的及主要靜態之直流(DC )流動或沒有電流流動’ 此產生電流感測裝置1 804所感測之小至零電流且因此來 自反相放大器1 802之電流會小至零。 然而,當DUT 34正改變狀態時,如上述地,功率端 子1 806會暫時性地產生大量電流,此將如上述地透過旁 路電容器C 1而產生暫時性之大量及改變流動之電流’該 電流係藉電流感測裝置1 804予以感測且藉反相放大器 1 8 0 2予以反相及放大,而最終地透過隔離電容器C 7提供 至功率線1 8 1 2之內。如上述地,藉放大器1 8 〇 2提供於功 -25- (21) (21)200302539 率線1 8 1 2之此額外的電流會降低功率端子1 8 〇 $處之電壓 中的變化。 第1 9圖描繪第1 8圖中所示之代表性實施例的變化例 。如圖示地,第1 9圖大致地相似於第丨8圖且亦包含一電 流感測元件1 804及一反相放大器18〇2,建構以提供電流 至探針卡50上之功率線1 812。然而,在第19圖中,該電 流感測元件1 804將感測流過該功率線1 8 1 2之電流而非流 過旁路電容器C 1之電流。 第19圖之實施例之操作相似於第1 8圖之操作。當 DUT34並未正在改變狀態時,經由線1 804產生於功率端 子1 806之典型小的,主要靜態之直流(DC )係藉電流感 測裝置1 804予以感測,因此,反相放大器1 802提供小的 或無充電電流。然而,當DUT 34正改變狀態時,電流感 測裝置1 8 0 4會感測到功率端子1 8 0 6處透過功率線1 8 0 4 所產生之大的電流變化,反相放大器1 8 0 2會放大及反相 所感測之電流而透過隔離電容器C7提供額外的充電電流 至功率線1 8 1 2之內。如上述地,該額外之充電電流會降 低功率端子1 8 0 6處之電壓中的變化。 <互連系統〉 在上述用於提供信號路徑於積體電路測試器,電源供 應器及DUTs間之任一實施例中所描繪之探針卡係代表性 的,本發明可結合具有§午多其他設計之互連系統予以實施 ,例如第2 0 A圖描繪一相當簡單的探針卡,其包含一基板 -26- (22) (22)200302539 2002,具有端子2004用於連接至1C測試器(未圖示於第 20A圖中)及具有探針元件2008用於電性連接於DUT( 未圖示於第20A圖中)。如圖示地,端子2004係藉互連 接元件2006而電性連接於探針卡元件2008。 例如基板可爲一單層或多層印刷電路板或陶質物或其 他材料。明顯地,該基板之材料組成對於本發明並非重要 的。探針元件2008可爲任何形式之能電性連接於DUT之 探針,包含但未受限於針狀探針,COBRA型探針,隆塊 ,柱,桿,彈簧接點等。適用之彈簧接點的未受限實例係 揭示於美國專利第54762 1 1號,1 997年2月18日所申請 之對應於PCT公告第W097/44676號之美國專利申請案第 08/802054號,美國專利第6268015 B1號,以及1999年6 月30日所申請之對應於PCT公告第W〇01/09952號之美 國專利申請案第09/3 6485 5號中,其將引用於此處供參考 。該等彈簧接點可視爲亦將引用於此處供參考之美國專利 第6 1 5 0 1 8 6號或200 1年12月21日所申請之美國專利申 請案第1 0/027476號中之所描述者。選擇性地,該等〜探 針〃可爲用於與DUT上之諸如形成於DUT上之彈簧接點 的升高元件接觸之墊或端子。互連路徑2006之未受限實 例包含通孔及/或通孔與位在基板2002表面上或基板2002 內之導電性蹤跡之組合。 第20B圖描繪另一可使用於本發明之探針卡的未受限 實例。如圖示地,第20B圖中所示之代表性探針卡包含基 板2018,插入器2012,及探針頭2032。端子2022接觸於 -27- (23) (23)200302539 1C測試器(未顯示於第20B圖中),以及可相似於上述 探針元件2008之探針元件2034接觸於DUT (未顯示於第 20B圖中)。互連路徑2020,彈性連接元件2016,互連 路徑2014,彈性連接元件2010,及互連路徑203 6提供了 從端子2022到探針元件2034之導電路徑。 基板2018,插入器2012,及探針頭2032可由相似於 上述有關2002之該等材枓所製成。確實地,基板2018, 插入器2012,及探針頭2032之材料組成物對於本發明並 非主要的,而是可使用任一組成物。互連路徑2020,2014 ,2036可相似於如上述之互連路徑2006。彈性連接元件 2016及2010較佳地爲細長的彈性元件,該等元件之未受 限實例係描繪於美國專利第54762 1 1號;1 997年2月18 曰所申請之美國專利申請案第08/802054號,其對應於 PCT公告第WO 97/44676號;美國專利第6268015B1號; 及1 999年7月30日所申請之對應於PCT公告第W〇 0 1 /0995 2號之美國專利申請案第09/364855號中,所有均 引用於本文供參考。包含複數個諸如第20B圖中所示之基 板的代表性探針卡的更詳細說明係發現於美國專利第 5 9746 62號中,其亦引用於本文供參考。第20B圖中所示 代表性設計的許多變化係可行的,例如僅就一實例而言, 互連路徑2014可置換以一孔及一個或更多個固定於該孔 內且延伸至該孔之外的彈性元件20 1 6及/或20 1 0,而接觸 基板2018及探針卡2032。 然而,應理解的是,互連系統之架構或設計對於本發 -28- (24) (24)200302539 明並非主要的,而是可使用任何架構或設計。如本文中所 述之該等實施例中所示地,用於降低DUT上之功率端子 處電壓中的變化之電路較佳地係配置於探針卡之上,若使 用多重基板探針卡,諸如第20B圖中所示之代表性探針, 則該電路可位於任一該等基板之上,或可分佈於兩個或更 多個該等基板之中。所以,例如該電路可位於第2 0 B圖中 所描繪之探針頭2032,插入器2012,或基板2018之一上 ’或該電路可位於該探針頭,插入器,及/或基板之兩個 或更多個的組合之上。應理解的是,該電路可整體地由互 連之分立電路元件形成,可整體地形成於一積體電路之上 ,或可由一部分分立電路元件與一部分形成於積體電路上 之元件所組成。 <預測性/適應性之電路補償> 如上述,用於控制DUT之功率輸入端子處之供應電 壓中變化的預測性系統可預測各時脈信號循環期間DUT 將要求的充電電流量,且接著根據該預測在該時脈信號循 環期間定出施加於DUT之功率輸入端子的補充電流脈波 之大小;另一方面,適應性系統可監視施加於該DUT之 端子的功率信號及利用回授來調整補充之電流脈波的大小 ,而維持功率信號之電壓恆常。 第21圖描繪本發明一實施例,其中在DUT 34之功率 輸入端子2 6處所需之額外的充電電流量係藉預測及適應 之組合予以確定。輔助電源供應器3 8供應功率VC至電 -29- (25) (25)200302539 流脈波產生器2102,當需要增加來自主電源供應器36之 正常供應電流時,電流脈波產生器2 1 02將供應電流脈波 13至DUT之功率輸入端子26。在各測試循環之起始時, 1C測試器58會供應信號CNT5至電流脈波產生器2102而 指示該電流脈波之預測大小,且在各測試循環期間,1C 測試器5 8會要求控制信號CNT6指示電流脈波產生器 2102何時產生電流脈波。 1C測試器58係程式規劃以測試特定形式之DUT 34, 且相對於各測試循環期間所需之電流脈波13的大小及時 間週期所完成之預測可如上述地根據該形式之DUT所產 生之電流的測量或DUT行爲之模擬。然而,由於DUTs之 製造中的過程變化以及其他因素,在各測試循環期間該形 式之各DUT會要求的額外充電電流之大小可變化於預測 的充電電流。用於任一既定之DUT,所產生之實際充電電 流對預測之充電電流之比例以循環間之基礎而言傾向於相 當地一致,例如一 DUT可在各測試循環期間一致地產生 比預測之充電電流多5 %的充電電流,而相同時間之另一 DUT則在各測試循環期間一致地產生比預測之充電電流少 5 %的充電電流。 回授控制器2104藉供應一適應性增益(或 > 適應〃 )信號G至電流脈波產生器2 1 02而補償充電電流要求與 預測値中之此等變化,其適當地增加或減少電流脈波13 之大小以使該電流脈波適合於目前測試中的特定DUT 34 之要求。所以,預測信號CNT5表示正在測試之該形式 -30- (26) (26)200302539 DUT所要求之充電電流的預測大小,而增益(a適應〃) 信號大小則表示正在測試之該DUT的特定情況之預測誤 差。 在測試DUT34之前,1C測試器58執行一可相似於欲 執行之測試的預測試程序,其中其傳送測試及CLOCK信 號脈波到DUT34,使DUT34之行爲大致地相同於其在測 試期間之行爲。在預測試程序之期間,回授控制電路 2104會監視DUT之功率輸入端子26處之電壓VB及調整 增益信號G之大小,而使發生於當13之大小太大或太小 時之 VB中之變化最小化。該預測試程序使回授控制器 2 1 04適時調整增益信號G之大小以適應將測試之特定 Dim4之充電電流需求,之後,在該測試之期間,該回授 控制器2104會持續地監視VB以及調整增益信號,但其 所進行之調整很小。因此,雖然在各測試循環期間所供應 之充電電流13之大小主要係DUT之預測充電電流需求的 函數,但由控制器2 1 04所提供之增益控制回授最後將調 整電流脈波大小,以使適應於該DUT之實際充電電流需 求之任何一致性之傾向,而變化於所預測之需求。 該等熟習於本項技術之人士將理解的是,第21圖之 回授控制器2 1 04可爲許多能產生輸出增益控制信號G而 使VB中之變化最小的設計之任一,該等熟習於本項技術 之人士亦將理解的是,電流脈波產生器可爲許多能產生電 流脈波13之設計之任一,其中13之時序係由輸入信號 CNT6所控制,且其中13之大小爲控制信號CNT5所表示 -31 - (27) (27)200302539 之電流脈波大小及適應性增益信號G大小的函數。 第22圖描繪回授控制器2 1 04之非限定實例,其集成 VB之AC成分而產生增益控制信號G,隔直流(DC)電 容器C10通過VB之AC成分至一積分器2106,該積分器 2106係由一運算放大器A1並聯連接電容器C8及電阻器 R5且具有串聯連接於其輸入之電阻器R4所形成。 第23圖描繪第21圖之電流脈波產生器2106之非限 定實例。在此實例中,控制信號CNT5傳送代表所需電流 脈波13之預測大小的資料,數位至類比轉換器(DAC ) 2 1 1 2轉換電流測試循環之預測資料爲成比例於該預測資 料之大小的類比信號P。當1C測試器58要求CNT6信號 而指示何時將產生電流脈波13時,開關2 1 1 0會閉合以施 加信號P至第21圖之輔助電源供應器3 8之VC輸出所供 能之可變增益放大器2 1 1 2的輸入。第2 1圖之回授控制器 2104之增益控制信號輸出將控制放大器2112之增益,放 大器2 11 2會產生成比例於P與G乘積之大小的輸出電流 脈波13,電容器C7則通過13信號脈波至第21圖之探針 卡50內傳送功率至DUT34之信號路徑。 第24圖描繪第21圖之電流脈波產生器2106之另一 非限定實例。在此實例中,第21圖之1C測試器58要求 CNT5控制信號之時間長度係成比例於下一 CLOCK信號循 環期間所需之電流脈波13之所預測的大小,在電流脈波 產生器2102產生13信號之各脈波之後,1C測試器58會 要求CNT5信號閉合一耦合經由電阻器之輔助電源供應輸 -32- (28) (28)200302539 出信號VC至電容器C8的開關2116,1C測試器58持續要 求該CNT5信號一時間量,該時間量會隨著下一 13信號脈 波之預測大小而增加,所以第2 1圖之輔助電源供應器3 8 充電電容器C8至一成比例於下一 13信號脈波之所預測大 小之電壓。之後,當1C測試器58要求CNT6信號以指示 下一 13信號脈波將產生時,開關2117會連接電容器C8 至一具有由第2 1圖之回授控制器2 1 04的增益控制信號輸 出G所控制之增益的放大器2 11 8之輸入。耦合電容器C9 傳遞所產生之13信號到第21圖之傳遞功率至DUT35的探 針卡導體2114,而在電容器C8已適時地實質放電之後, 控制信號CNT6會開啓開關2117。因爲當C8放電時13電 流脈波之大小會快速地上升且接著傾斜,故13脈波之時 間變化的行爲易於與DUT之時間變化的充電電流需求相 第25圖描繪第21圖之電流脈波產生器2106之又一 非限定實例,其中由CNT5信號所傳送之資料表示13信號 脈波之所預測大小,增益控制信號G扮演轉換CNT5所傳 送之資料爲類比信號P之DAC2120的參考電壓,增益控 制信號G之電壓尺度將界定DAC輸出信號P的範圍,使 得P成比例於G與CNT5之乘積。開關2122會暫時性地 傳遞P信號至放大器2124以響應於控制信號CNT6之脈 波,藉此使放大器2125經由耦合電容器C5傳送13信號 脈波到功率導體2 1 1 4,該13信號脈波大小會成比例於G 與P大小之乘積。 -33- (29) (29)200302539 第26圖描繪根據本發明之預測性/適應性系統的仍一 未限定之實例,其中輔助電源供應器3 8供應功率至可變 增益放大器2126,且無論何時1C測試器58預測DUT34 之功率輸入端子26處將需要額外的充電電流時,其將供 應控制信號脈波CNT6至放大器2126。電容器C11傳遞13 信號脈波至探針卡50內連結至電源供應器36至DUT功 率輸入端子26之功率信號路徑2 11 4,回授控制電路2 1 04 會監視出現在端子26處之電壓VB且調整放大器2126之 增益以使VB中的變化最小。在各CLOCK循環之起始處 ,1C測試器58會供應控制信號CNT5當作輔助電源供應 器38之輸入,用於根據該CNT5控制信號所傳送之資料 大小來設定其輸出電壓VC。因此,13之大小爲增益控制 信號G與輔助電源供應電壓VC之大小乘積的函數。 因此,第 21至 26圖描繪根據本發明之用於在 CLOCK信號之各邊緣之後提供額外的充電電流至DUT之 功率輸入端子26,以配合由於該CLOCK信號邊緣所初始 之開關所需之暫時性電流的增加,而調整施加於DUT34 之功率信號VB的電壓之預測性/適應性控制系統之不同的 代表性實施例。該控制系統係v'預測性〃,其預測DUT 在測試之各循環期間將要求之額外電流量;該控制系統亦 爲a適應性〃,其採用回授而定出所產生之響應於該預測 之電流脈波的大小,以適應將測試之個別DUTs所實際產 生之電流大小中所觀測的變化。 雖然本發明在此處係描繪爲降低採用僅一單一主電源 -34- (30) (30)200302539 供應器之系統中的雜訊,但將理解的是,本發明可採用於 其中超過一主電源供應器提供功率於DUTs之環境中。 雖然本發明係描繪爲結合具有一單一功率輸入之 DUTs操作,但將理解的是,該裝置可適應於結合具有多 重功率輸入之DUTs操作。 雖然本發明係描述爲,在CLOCK信號脈波之前緣之 後提供額外的充電電流,但其亦可在該CLOCK信號脈波 之後緣之後提供額外的充電電流,以使用於在CLOCK信 號後緣開關之DUTs。 雖然已描繪本發明使用於結合採用探針卡來接達形成 於半導體晶圓上之ICs端子之1C測試器的不同形式,但 熟習於本項技藝之人士將理解的是,本發明可採用結合 1C測試器而使用其他形式之界面裝備來提供接達於仍在 晶圓位準的ICs之DUT端子,或其可分離於其所形成之 晶圓上的ICs之DUT端子;以及其可或不會在其測試之 時結合於封裝ICs的DUT端子。該等界面裝備包含,但 未受限於負荷板,預燒板,及最後的測試板。本發明在其 最廣義的形態中並未意圖受限於涉及任何特定形式之1C 測試器,任何特定形式之測試器至DUT的互連系統,或 任何特定形式之IC DUT的應用。該等熟習於本項技藝之 人士亦將理解的是,雖然本發明在上文所述的爲採用結合 於積體電路之測試,但其亦可使用於當測試任何種類之電 子裝置時,例如含正反器組合,電路板及類似物,或無論 何時企望於測試期間精確地調整裝置之功率輸入端子處的 -35- (31) (31)200302539 電壓時。 因此’雖然上述規格已描述本發明之較佳實施例,但 熟習於本項技術之人士可完成許多修正於該等實施例,而 不會在本發明之較廣義的形態中背離本發明。因此,附錄 之申請專利範圍係意圖涵蓋所有該等修正爲包含在本發明 之真正範疇及精神之內。 【圖式簡單說明】 第1圖係方塊圖,描繪包含一透過探針卡連接於一組 測試中的積體電路裝置(DUTs )之積體電路測試器的典 型習知技術測試系統; 第2及3圖係時序圖,描繪第1圖之習知技術內之信 號行爲; 第4圖係第1圖之習知技術探針卡的簡化平面視圖; 第5圖係一方塊圖,描繪根據本發明第一實施例之測 試系統,其中實行一用於降低一組DUTs之電源供應輸入 中之雜訊的系統; 第6圖係時序圖,描繪第5圖之測試系統內的信號行 爲; 第7圖係方塊圖,描繪第5圖之測試系統在校準程序 之期間的操作; 第8圖係第6圖探針卡的簡化平面視圖; 第9及10圖係方塊圖,描繪實行本發明第二及第三 實施例的測試系統; -36- (32) (32)200302539 第11圖係時序圖’描繪第丨〇圖測試系統內的信號行 爲, 第1 2圖係方塊圖’描繪實行本發明第四實施例之測 試系統; 第1 3圖係時序圖’描繪第1 2圖測試系統內的信號行 爲, 第1 4圖係方塊圖,描繪本發明之第五實施例; 第1 5圖係方塊圖,描繪本發明之第六實施例; 第1 6圖係方塊圖,描繪本發明之第七實施例; 第1 7圖係時序圖’描繪第1 6圖之電路內的信號行爲 , 第1 8圖係方塊圖,描繪本發明之第八實施例; 第1 9圖係方塊圖,描繪本發明之第九實施例; 第20A圖描繪一代表性之探針卡; 第2 0 B圖描繪另一代表性之探針卡; 第2 1圖係方塊圖,描繪本發明之第十實施例; 第22圖係方塊圖,描繪第2 1圖之回授控制電路的代 表性實施例; 第23至第25圖係方塊圖,描繪第21圖之電流脈波 產生器之選擇代表性的實施例;以及 桌26圖係方塊圖,描繪本發明之第十一實施例。 【主要元件對照表】 10、30、38 1C 測試器 -37- (33) (33)200302539 12、32、50、60、61、66 探針卡 14、34、35 測試中的裝置(DUTs ) 15 彈簧接腳 16 接點 1 8、3 7 探針 19、39、1810、1 808 輸入 /輸出(I/O )墊 20 導電路徑 22、43 路徑阻抗 24、36、62、82 主電源供應器 26、 41、68、1806 功率輸入端子 28、46 信號路徑 25 上表面 27、 47 中心區域 38、84 輔助電源供應器 40 參考DUT (參考1C ) 45 接觸點200302539 (1) 发明. Description of the invention [Technical field to which the invention belongs] In general, the present invention relates to testing integrated circuits, and in particular, relates to power supply noise for reducing logic state transitions that would cause the integrated circuits to perform during the testing of integrated circuits installation. [Previous Technology] The integrated circuit (1C) tester can simultaneously test a group of ICs in the form of grains on a semiconductor wafer. Figure 1 is a block diagram depicting a typical 1C tester 1 〇, tester 1 〇, connected to a set of identical tests J c devices (DUTs) 14 through a probe card 12 connected to a semiconductor wafer. Use spring pins 15 or other devices to connect different input and output terminals to a group of contacts 16 on the probe card 12. The probe card 12 includes a set of probes 18 for contacting the input / output (I / O) pads 19 on the surface of each DUT 14 and provides a conductive path 20 connecting the contacts 16 to the probes 18 through The path of the probe card 12 allows the tester 10 to transmit a test signal to the DUT 14 and monitor the output signal generated by the DUT 14. Because the digital integrated circuit often includes timing pulses in response to the synchronous logic gate of the periodic main clock signal (CLOCK), the probe card 12 also provides a path 22 through which the tester 1 can supply the CLOCK signal to Each DUT14. The test system also includes a power supply 24 for supplying power to the DUTs 14 when they are tested, and the probe card 12 is connected to the power input pad 26 of each DUT 14 via the probe 18. Each switching transistor in DUT 14 has an inherent input capacitance. (2) (2) 200302539. In order to turn the transistor on or off, the driver of the transistor must charge or discharge the input capacitance of the transistor. When the driver charges the input capacitance of the transistor, it will get the charging current from the power supply 24. Once the input capacitance of the transistor is fully charged, its driver only needs to supply a relatively small amount of leakage current 'required to keep the input capacitance of the transistor charged to keep the transistor on or off. In the DUTs implementing synchronous logic, most of the switching of the transistors will occur immediately after the edge of each CLOCK signal pulse, so immediately after the CLOCK signal of each pulse, the power supply current input to each DUT 1 4 There is a temporary increase in 11, and the charging current required to change the switching state of different transistors in the DUT is provided. Then in the CLOCK signal cycle, after the transistors have changed state, the demand for the supply current 11 will become > The steady state level of the static chirp is maintained there until the next CLOCK signal cycle begins. Through this, the probe card 12 can be connected to the power supply 24 in the signal path 28 of each DUT 14 and has the inherent impedance represented by the resistor R1 in the first figure. Because there is a voltage drop between the output of the power supply 24 and the power input 26 of the DUT 14, the supply voltage input VB of the DUT 14 will be somewhat less than the output voltage VA of the power supply 24, and although VA can be better adjusted , But VB will change with the magnitude of the current 11. After the start of each CLOCK signal cycle, a temporary increase in 11 required by the input capacitance of the charging switch transistor will increase the voltage drop across R1, thus temporarily reducing VB. Since the slope in the supply voltage V B that occurs after the edge of each CLOCK signal is a noise pattern that can adversely affect the performance of the DUTs 14 (3) (3) 200302539, it is hoped to limit its size and duration. We can limit the noise by reducing the reactance of these paths 28 between the power supply 24 and the DUTs 14, such as by increasing the size of the conductor or by minimizing the length of the path 28. However, by this, we will have practical restrictions on reducing the amount of this reactance. We can also reduce power noise by setting capacitor C1 on the probe card 12 near the power input 26 of each DUT 14. Figure 2 depicts the behavior of the supply voltage VB and current II at the power input 26 of IC14 in response to the pulse of the CLOCK signal input to 1C 14 when capacitor C1 is not very large. It should be noted that, after the edge of the CLOCK signal at time T1, a temporary rise above its static level IQ in 11 will produce a temporary increase in the voltage drop on R1, which will sequentially be in the supply voltage VC Produces a temporary tilt below its static level VQ. Figure 3 depicts the behavior of VB and II when capacitor C1 is very large. Between the CLOCK signal pulses, when DUT 14 is static, capacitor C1 is charged to the static level of VB. After the rising (or falling) edge of the CLOCK signal at time T1, when DUT 14 temporarily needs more current, capacitor C1 will supply some of its stored charge to DUT 14, thereby reducing the amount of additional current, so The power supply 24 must be provided to meet the increased demand. For example, it can be found in FIG. 3 that the presence of the capacitor C 1 reduces the magnitude of the temporary voltage drop of R 1 and thus reduces the magnitude of the slope in the supply voltage VB input to the DUT 14. For a capacitor to sufficiently limit the change in VB, the capacitor must be large enough to supply the required charge to DUT 14 and must be positioned close to DUT 14 such that the path impedance between C1 and DUT 14 is extremely low. (4) (4) 200302539 Unfortunately, it is not always convenient or feasible to install a large capacitor above the probe card 12 near the power input terminal 26 of each DUT 14. Figure 4 is a simplified plan view of a typical probe card 12, with the 1C tester 10 located above the probe card and wafers containing DUTs 14 held below the probe card. Because the I / O terminals of the 1C tester 10 of FIG. 1 are distributed over a relatively large area compared to the surface area of the wafer under test, the probe card 12 provides a relatively large upper surface 25 for holding Tester access point 16. On the other hand, the probes 18 (not shown) under the probe card 12 that contact the DUTs 14 on the wafer are concentrated under the relatively small center area 27 of the probe card 12. The path impedance between the contacts on the upper surface 25 of the probe card 12 and the probes 18 below the area 27 is a function of the distance between each contact 16 and its corresponding probe. In order to minimize the distance between the capacitors C1 and DUTs, these capacitors should be mounted on the probe card 12 near (or above) the small central area 27. However, when the wafer contains a large number of ICs to be tested or 1C with a large number of densely packed terminals, there is not enough space to install the required number of capacitors C 1 sized sufficiently close to the central area 27. [Summary of the Invention] During the test of the integrated circuit device (DUT) in the test of synchronous logic, after each successive leading or trailing edge of the clock signal input to the DUT, the DUT will experience a temporary increase in power supply current demand When the transistor forming the logic device undergoes a state transition in response to the edge of the Risi pulse signal, the DUT will need additional current to charge the input capacitance of the crystal. (5) (5) 200302539 The present invention will limit the change in the power supply voltage of the DUT power input terminal caused by the transient increase in the power supply current after each clock signal pulse wave. Therefore, the present invention can reduce the power supply noise of the DUT power input terminal. . According to the present invention, the charging current pulse is supplied to the power input of the DUT after the edge of each clock signal, and during the test, the current continuously supplied by the main power supply is supplemented by the charging properly supplied by the auxiliary power supply The current pulse reduces the need for the main power supply to increase its output current to match the increased demand of the DUTs. Although the DUT's demand for increased current has a substantially constant output current from the main power supply, the voltage drop across the path impedance between the main power supply and the DUT will be substantially constant, so the DUT The supply voltage at the power input terminal will also remain substantially constant. After each clock signal edge, the amount of additional charging current required by the DUT will change based on the number and nature of state transitions experienced by its internal logic device to respond to the clock signal edge. Because the 1C test requires the 1C to perform a predetermined sequence of state changes, the behavior of the 1C during the test, including its current demand during the edges of each clock signal, is predictable. Therefore, the magnitude of the current pulse supplied after each clock signal edge can be adjusted to fit the predicted amount of additional charging current required by the DUT after each clock signal edge, and for each clock signal edge by the DUT The prediction of the increase in the induced current can be based on, for example, the measurement of the current caused by borrowing the same DUT under the same test conditions, or subjecting the analog DUT to similar tests. -10- (6) (6) 200302539 Although the amount of charging current that can be caused by a particular form of 1C can be predicted with considerable accuracy in any test cycle, the amount of additional charging current caused by a given DUT in that form The actual amount will be more or less than the predicted amount. In particular, changes in the random process in the manufacture of ICs will cause all ICs to behave slightly differently relative to the amount of charge current required by the transistors during the state change. To compensate for these differences between DUTs, a feedback circuit can be configured to monitor the voltage at the power supply terminal of the DUT and appropriately measure the predicted current pulse size in order to minimize the change in the voltage. Therefore, the magnitude of the current pulse supplied to the power input of the DUT after each clock signal cycle is a function of the predicted magnitude of the extra current caused by the form of DUT during the clock signal cycle, but the predicted pulse The wave size is measured by feedback so that the prediction can be adapted to adjust for changes in the charging current requirements of each particular DUT tested. The conclusion section of this specification specifically points out and explicitly claims the subject matter of the present invention. However, those who are familiar with this technology will better understand the organization and operation method of the present invention by reading the rest of the specification and attaching the same reference symbols with the same reference symbols. Advantages and purpose. [Embodiment] < System Architecture> Figure 5 depicts a block diagram of a 1C device connected to a group of semiconductor wafers in the same test through a probe card 32 in the form of a block diagram (-11-(7) (7) 200302539 DIJTs) 34 integrated circuit (IC) tester 30. The probe card 32 includes a set of probes 37 for accessing the input / output terminal pads 39 on the surface of the DUTs 34; and also includes a signal path 46 for connection testing. The detector 30 is at the probe 37 to allow the 1C tester 30 to transmit clock signals (CLOCK) and other test signals to the DUTs 34, and to pass the DUT output signals back to the tester, so that the tester can monitor the behavior of the DUTs. The probe card 32 also connects the main power supply to the power input terminal 41 of each DUT 34 via a conductor that is passed through the probe card to the probe 37 and extends to the terminal 41, and the power supply 36 produces a good The adjusted output voltage VA continuously supplies the current 12 to the DUT 34. For the purpose of illustration, Fig. 5 shows that the inherent impedance of the path 43 through the probe card 32 between the main power supply 36 and each DUT is the resistor R1. Due to the voltage drop across each resistor R1, the input supply voltage VB of each DUT34 is always slightly less than VA. According to the present invention, the first transistor switch SW1 mounted on the probe card 32 is connected to an auxiliary power supply 38 in a group of capacitors C2 installed in the probe card 32;-a second transistor switch SW2 also installed in the probe card 32 connects each capacitor C2 to the power input terminal of the corresponding DUT 34. The resistor R2 shown in FIG. 5 represents the inherent signal path impedance in the probe card 32 between each capacitor C1 and the power input terminal 41 of the DUT 34 when the switch SW2 is turned off. The 1C tester 30 provides an output control signal CN1 for SW1, a control signal CNT2 for controlling the switch SW2, and CNT3 for controlling the output voltage VC of the auxiliary power supply 38. As described in detail below, 'Auxiliary power supply 3 8, 8, -12- (8) 200302539 Switches SW1 and SW2, and capacitor C2 play an auxiliary power need to cooperate with any expected increase in the supply current required by the DUT in the 1C tester A current pulse 13 is injected into each rate input terminal 41 under the control of 30. < Power supply noise > DUTs 34 implement synchronous logic, in which the logic gates are turned on and off in response to the pulse of the weekly CLOCK signal provided by the tester 30. Each switching transistor is inherent and is designed to turn on or off. When the transistor is turned off, its driver must be charged with the input capacitance of the transistor. When the driver in DUTs 34 is charged with the input capacitance, it will increase the amount of current 11 that must be supplied to each DUT. When the input capacitance of the transistor is full, the charger only needs to supply the amount of leakage current required to keep the input capacitance of the transistor charged, so that the transistor remains on or off. After each pulse of the CLOCK signal, each DUT 34 is input. There will be a temporary increase in the current Π to provide the charging current required to change the different switching states. After the CLOCK signal is cycled, after the transistors have changed state, the power supply will generate a steady state level of static electricity and remain there until the beginning of the CLOCK signal cycle. Because the amount of DUT 34 external current II at the beginning of each CLOCK signal cycle will vary depending on the number and nature of the transistors that were turned off during that particular CLOCK signal cycle, the source of the charging current, when added, is the power of the DUT. When the main input capacitance of the switching transistor or the discharge transistor P ππ πϋ rate input terminal, its drive is quite small. Therefore, the slight current demand in the power supply transistor loop to the next required amount is turned on or the demand is variable -13- 200302539 〇) between cycles. If the tester 30-the straight holding switches SW1 and SW2 are turned on, the main power supply 36 will always provide all the current inputs II to each DUT 34. In this example, due to the increased switching action in each DUT 34 after each CLOCK signal pulse, the temporary increase in the supply current 11 will cause the inherent impedance of the signal path 43 between the main power supply 36 and the DUT 34 The temporary increase in the voltage drop across R 1 will then cause a temporary tilt in the voltage VB of the power input 41 of the DUT. Figure 2 represents the behavior of VB and II when SW2 is turned on. Because the slope in the supply voltage VB that occurs after the edge of each CLOCK signal pulse can adversely affect the noise form of the performance of the DUTs 34, it is desirable to limit the magnitude of the voltage slope. < Predictive current compensation > According to an embodiment of the present invention, the 1C tester 30 controls the states of the auxiliary power supply 38 and the switches SW1 and SW2, so that the capacitor C2 can supply additional charging current at the beginning of each test cycle. 13 to DUT 34. The charging current 13 flowing only during the initial part of each CLOCK signal cycle will combine the current 12 of the main power supply to provide a current input II to the DUT 34. When the charging current 13 provides approximately the same amount of charge as the capacitance of the switching transistor in the DUT 34 obtained after the CLOCK signal pulse, there is only a small change in the main power supply 3 after the CLOCK signal pulse. In the current 12 generated by 6, there is only a small change in the supply voltage VB. -14- (10) (10) 200302539 Therefore, before each CLOCK signal edge, the tester 30 will supply the data CNT3 to the auxiliary power supply 38 to indicate the desired auxiliary supply voltage VC and then close the switch SW1. Next, the power supply 38 charges all capacitors C2, and the amount of charge stored in the capacitor C2 is proportional to the magnitude of VC. When capacitor C2 has time to fully charge, tester 30 turns on switch SW1; after that, after the start of the next CLOCK signal cycle, tester 30 turns off all switches SW2, so that the charge stored in capacitor C2 can be regarded as flowing into DUTs The current 13 in 34; then, when it is considered that a transient charging current is needed, the tester 30 will turn on the switch SW2 so that only the main power supply 36 supplies current to the DUTs 34 during the remainder of the CLOCK signal cycle. This process will be repeated in the tester during each cycle of the CLOCK signal, and the size of VC is adjusted for each clock cycle via the control data CNT3 in order to provide a certain size current pulse wave 1C to satisfy the specific clock signal The predicted charge current demand during the cycle. Therefore, the magnitude of the 1C current pulse can vary between cycles. Figure 6 depicts the supply voltage VB and current II, 12 and 13 during the initial part of the CLOCK signal cycle. The current II is apparently behind the edge of the CLOCK pulse, and at time T1, a large temporary increase above its static level IQ1 to charge the capacitance in the DUT 34. The current 13 rises rapidly while providing substantially all additional charging current. The output current 12 of the main power supply 38 only shows a relatively small disturbance in its static 値 IQ2, and produces a small mismatch between the transient components of 13 and 12. Because the change in 12 is small, the change in VB is also small. Therefore, due to the switching transients in -15- (11) (11) 200302539 DUTs 34, the present invention can substantially limit the noise of the power supply. < Programming of the tester > As mentioned above, the amount of additional charging current generated by each DUT 34 at the beginning of the CLOCK signal cycle will depend on the number of transistors that are turned on or off during the CLOCK signal cycle. The current will change between cycles. In order to provide proper voltage adjustment at the DUT terminal 41, the tester 30 must predict how much charge DUT 34 will store after the edge of each CLOCK signal, because the tester must adjust the output VC of the auxiliary power supply so that capacitor C2 is at each The appropriate amount of charge is stored before the CLOCK signal is cycled. Figure 7 depicts a test system built to allow tester 30 to experimentally determine the VC level it should set during each test cycle. The well-known reference DUT 40 suitable for operation and similar to the ICs to be tested is connected to the tester 30 via the probe 32 in substantially the same manner as the DUTs 34 to be connected, so that the tester 30 can perform the same test on the reference IC 40 Moreover, the probe card 32 is also connected to the power supply terminal of the reference IC 40 to the input terminal of the tester 30, so that the tester 30 can monitor the power supply voltage VB. The tester 30 then uses the minimum VC to perform only the first CLOCK cycle of the test and observes VB. If VB falls below the desired lower limit during the CLOCK signal cycle, the tester 30 uses the higher VC of the VC to repeat the test The first CLOCK signal cycle is repeated, and this process is repeated until the proper VC of the first CLOCK signal cycle is established. Then -16- (12) (12) 200302539 after 'the tester repeatedly performed the first two CL0CK signal cycles of the test and monitored Vb during the second CLOCK signal cycle and adjusted VC accordingly, using the same procedure to The VCs that establish each successive CLOCK signal loop for this test are appropriate, and these VCs can be used when testing DUTs 34. Typically 'Designers will use circuit simulators to simulate ICs before ICs are manufactured.' When a circuit simulator performs the same tests as an ic tester would perform on its real counterparts on analog ICs, the circuit simulator can Used in a similar manner to determine the VC 値 sequence to be used during the test of this true 1C. < Probe Card > Figure 4 depicts a typical prior art probe card 12 which is connected to the power input terminals of the DUTs of the voltage adjustment capacitor C1 to limit power supply noise. These probe cards The distance between the voltage adjustment capacitors and the DUT must be minimized to minimize the impedance between these capacitors and the DUTs. Therefore, the capacitors are preferably installed in a probe card or near a small area 27 above the probes that access the DUTs. Because there is only a small space on the probe card near the probe, the size and number of adjustment capacitors C1 that can be deployed on the probe card 12 are limited. This limitation on the capacitor installation space can limit The number of DUTs tested. Fig. 8 is a simplified plan view of the probe card 32 according to Fig. 5 of the present invention. The contact points 45 reached by the 1C tester 30 of Fig. 7 are distributed on a relatively large surface 43 of the probe card 32. The probe 37 (not shown) that touches -17- (13) (13) 200302539 DUTs 34 is concentric below the relatively small central area 47 of the probe card. Because the voltage VC charged in the capacitor C2 can be adjusted to fit the effective path impedance R2 (Figure 5) between any switch SW2 and the DUT 34 terminal 41, the capacitor C2 can be located at a distance from the center area 47 above the DUT probe than in Figure 4 The capacitor c 1 is mounted on the probe card 32 at a greater distance; and because the capacitor C2 is charged to a higher voltage than the capacitor C1, the capacitor C2 can be smaller than the capacitor C1 because the probe card 32 in FIG. 8 The capacitor C2 can be smaller and further away from the center of the probe card than the capacitor C1 of the conventional probe card 12 of FIG. 4, so a large number of capacitors C2 can be installed on the probe card 32. Therefore, the test system using the probe card 32 according to the present invention can test more DUTs simultaneously than the test system using the conventional technique probe card 12 of FIG. 4. < Probe card with pattern generator on board > Figure 9 depicts an alternative embodiment of the present invention, including a probe card 50 that is substantially similar to the probe card 32 of Figure 7 except that it is already in its place. Installation on the outside, power control 1C 〃 52. The power control IC 52 includes a pattern generator 54. The pattern generator executes FIG. 7. The IC tester 30 generates control signals and data CNT1, CNT2, and CNT3 for controlling the switches SW1 and SW2 and the auxiliary power supply. 3 8 pattern generation function. The power control IC 52 includes a conventional pattern generator 54. Before the start of the test, the program planning is performed by using externally generated program planning data provided by the conventional computer bus 56. The pattern generator 54 begins to generate its output The data pattern responds to the START signal from the 1C tester 5 8 -18- (14) (14) 200302539 START signal, and the CNT1, CNT2, CNT3 data pattern that generates its output in response to the same as the tester 58 System clock (SYSCLK) operating the clock. As shown in Figure 9, when the required capacitor C2 is small enough, the switches SW1 and SW2 and the capacitor C2 can be implemented in the power control IC52. The IC52 should be installed on the probe card as close to the DUT probe as possible. Needle place. The pattern generation function of the coupling switches SW1 and SW2, the capacitor C2, and the tester 30 within a single IC52 can reduce the cost and complexity of the probe card 32, and reduce the required number of output channels of the tester 30, and as needed The capacitor C2 can be implemented outside the power control IC 52 by using discrete components. < Charge flow of pulse width modulation > Fig. 10 depicts an embodiment of the present invention, which is substantially similar to the embodiment of Fig. 5. However, in FIG. 10, the switch SW1 is omitted from the probe card 60, so that the VC output of the auxiliary power supply 38 is directly connected to the capacitor C2, and the output voltage VC is fixed and not adjusted by the 1C tester 30, so that C2 charges to the same level before each CLOCK signal pulse. In this configuration, the 1C detector 30 will use the pulse width modulation switch SW2 via the control signal CNT2 to control the charge amount of the capacitor C2 that is passed to the DUTs 34 at the beginning of each CLOCK pulse, and during the CLOCK signal pulse The amount of time after which the tester 30 turns off SW2 after the leading edge will determine the amount of charge on capacitor C2 passed to DUTs 34. Alternatively, when the tester 30 rapidly increases and then decreases the duty cycle of the CNT2 signal, as depicted by -19- (15) (15) 200302539 in Figure 11, it can be more closely approximated in Figure 6. Depicted 13 current flowing shapes. < Charge flow of analog modulation > Fig. 12 depicts an embodiment of the present invention, which is roughly similar to the embodiment of Fig. 10. However, in Figure 12, the transistor switch SW2 is replaced with a transistor Q2 operating in its active region when the DUTs 34 series undergo a state change and require additional current Π. In this configuration, the CNT2 output of the 1C tester 3◦ is applied as a data sequence input to the analog-to-digital (A / D) converter 63 installed on the probe card 61, and the data sequence CNT2 represents each CLOCK signal The demand for the charging current 13 is predicted during the cycle. The A / D converter 63 responds to the CNT2 data sequence by generating an analog signal CNT4 which varies during each CLOCK signal cycle and inputs it to the base of transistor Q2, as depicted in FIG. The analog signal CNT4 controls each transistor Q2 and allows the amount of current 13 flowing out of capacitor C2 to substantially match the predicted transient component of current II required by DUT34. The A / D converter 63 may be implemented in the 1C tester 30 instead of being mounted on the probe card 61. < Charge prediction using a reference DUT > Figure 14 depicts an embodiment of the present invention, in which a reference DUT60 of similar DUTs 34 is tested in a similar manner, except that the tester% tests the reference DUT60 by applying it to the reference. DUT60's CLOCK and other features enter the g5 Tiger Super while others are slightly beyond the other DUTs. Main power supply -20- (16) (16) 200302539 Device 62 supplies all DUTs 34 and auxiliary power supply 64 supplies reference DUT60 'Installed on probe card 66 Capacitor C4 near reference DUT60 Adjust voltage in a conventional manner VREF is at its power input 68, so that it stays within its permitted operating range. Capacitor C5 connects VREF to a group of amplifiers A1 'and capacitor C6 connects the output of each amplifier a1 to the power input of each DUT34. End 70. Due to the requirements of the reference DUT's transient charging current, through good adjustment, the supply voltage VREF at the input 68 of the reference DUT60 will fall below its static level after the start of each CLOCK signal cycle. The amount of voltage ramp in VREF is proportional to the amount of transient charging current generated by the reference DUT. Because the reference DUT is similar to DUTs 34 and the test is slightly ahead of DUTs 34, the slope in VREF can predict the amount of transient charging current of each DUT 34 after a short time. The amplifier A1 operated through the capacitors C5 and C6 can amplify the AC component of VREF to generate an output current 13 which can increase the current output 12 of the main power supply 62, and provide a current input II to each DUT 34. The amount of time that the tester 30 leads the reference DUT60 test is set equal to the delay between a change in the reference voltage VREF and a corresponding change in the current 13. With the (negative) gain of each amplifier A1 appropriately adjusted by the externally generated signal (GAIN), the current 13 will substantially match the transient charging current required by DUTs 34. < Charge prediction in a non-test environment) In addition to being effective in reducing power supply noise when testing integrated circuits-21-(17) (17) 200302539, embodiments of the present invention may also be used in integrated circuits Adopted in a series of applications with predictable status to reduce power supply noise. FIG. 15 depicts an example of the present invention, in which the integrated circuit 80 passes a predictable series of states in response to the edge of a CLOCK signal generated externally supplied there as an input, and the IC 80 receives power from the main power supply 82 The auxiliary power supply 84 charges the capacitor C2 via the switch SW1 when the switch SW1 is closed, and the capacitor C2 supplies its charge as an additional current input to the IC80 when the switch SW2 is closed. 'Charge predictor' During the period in which IC80 is a part of each CLOCK signal that is not changing state, the switch SW1 is closed by the request signal CNT1 and the switch is opened in response to the CLOCK signal without the control signal CNT2. This allows the auxiliary power supply The supplier 84 charges the capacitor C2 between state changes, and the charge prediction circuit 86 may request the control signal CNT2 to close the switch SW2 and open the switch SW1 without the control signal CNT1 during one of the 1C80 non-changing state of each of the CLOCK signal cycles In this way, the capacitor C2 circulates the current to the power input of the IC80 to provide its required transient current. The charge predictor circuit 86 also provides control data CNT2 to the auxiliary power supply 84 to adjust its output voltage VC so that it charges the capacitor C2 to a level determined based on the amount of current expected to be generated by 1C 80 during the next state change. The charge predictor 86 is suitable to be realized by a conventional pattern generator or any other device that can generate the transient current requirements applicable to IC80 for the output data sequences CNT1, CNT2 and CNT3 for its expected state sequence. The switches SW1 and SW2 can be implemented outside the 1C80 as depicted in Figure 15 or can be implemented inside the ic80. -22- (18) (18) 200302539 < Charge averaging method > Fig. 16 depicts a simple form of the present invention, which is applicable in which the amount of charging current generated by the IC80 at the beginning of each CLOCK · signal cycle is within a fairly limited and predictable range Application. As shown in FIG. 16, the inverter 90 inverts the CLOCK signal to provide a CNT1 control signal input to a switch SW1 that couples the auxiliary power supply to the capacitor C2. The CLOCK signal directly provides the CNT2 control signal input to a connection. The capacitor C2 is connected to the switch SW2 of the IC 80 power input generally driven by the main power supply 82. As shown in Figure 17, the CLOCK signal drives the CNT2 signal high during the first half of each CLOCK signal cycle to close the switch SW2, and drives the CNT1 signal high to close during the second half of each CLOCK signal cycle. Switch SW1. The output voltage VC of the auxiliary power supply 84 is set to a constant value, so that it charges the capacitor C2 to the same level before the start of each CLOCK signal cycle. The VC level is set to properly determine the range within which the power supply input voltage VB swings when 1C 80 is generating additional charging current at the beginning of each CLOCK signal cycle. For example, when we want to make the static level of VB at its In the middle of the range, we can adjust VC so that capacitor C2 can supply a current in the middle of the range of charging current expected by IC80. On the other hand, if we want to prevent VB from falling below the extreme level of its static level However, when it is willing to make VB rise above its static level, we can adjust VC so that capacitor C2 can supply a maximum amount of charging current that IC80 will be expected to generate. Although capacitor C2 can supply a very small charging current during several CLOCK signal cycles and (-23) (19) (19) 200302539, and a large charging current during other CLOCK signal cycles, in many applications, as shown in Figure 16 The system depicted can keep the VB swinging within an acceptable range when the VC is properly adjusted. It should be noted that the systems in Figures 5, 9, 14 and 15 can be programmed in the same way by setting the control data CNT3 of each CLOCK signal cycle to be the same. < Adaptive current compensation > Fig. 18 depicts another representative embodiment of the present invention. As shown in FIG. 18, the power supply 36 supplies power to the power input terminal 1 806 on the semiconductor device (DUT) 34 under test through the probe card 50, and passes through the power line 1 on the probe card 50. The inherent impedance of 8 1 2 is shown as R1 in Figure 18, and as shown in Figure 18, 1C tester 5 8 will provide the clock and other signals to DUT34 through the probe card. The clock input terminal on the ϋϋ34 is depicted as terminal 1 808. The 1C tester 58 also receives the signal from the DUT 34 through the probe card 50, and an input / output (1/1 / 〇) Sub 1810, however, DUT 34 may have additional I / O terminals 1810 or may have inputs dedicated to input only or other terminals dedicated to output only, or terminals dedicated only to input or output and other functions are Combination of input and output terminals. Obviously, the probe card 50 may be connected to a DUT as shown in FIG. 18 or a plurality of DUTs as shown in FIG. 14. As shown in FIG. 18, the current sensing device 1 804 (such as a current sensing coupler or a current transformer) can sense electricity through a bypass capacitor C 1 -24- (20) (20) 200302539 current ' The amplifier 1 802, which is preferably an inverting amplifier (for example, the amplifier has a negative gain of 1), can supply current into the transmission line 1812 through the capacitor C7, and the auxiliary power supply 38 provides power to the amplifier 1 802. Of course, other devices can be borrowed To supply power to the amplifier 1802, including power supply 36, 1C tester 58, power supply located on probe card 50, or in addition to the power supply 36, 1C tester 5 8 or probe card 50 Power supply set outside. In operation, as described above, the power terminal 1 806 typically generates a small current (assuming that the DUT 34 mainly contains a field effect transistor), and only in a few cases, the power terminal 1 806 generates a large amount of current. As described above, the most common cases occur when at least one transistor in the DUT 34 changes state, which typically occurs relative to the rising or falling edge of the clock at clock terminal 1 808. When the DUT 34 is not changing state, a small amount of current generated at power terminal 1 806 will only pass through the bypass capacitor C1 and will typically cause a small and mostly static direct current (DC) flow or no current flow. A small to zero current sensed by the current sensing device 1 804 is generated and thus the current from the inverting amplifier 1 802 will be small to zero. However, when the DUT 34 is changing state, as described above, the power terminal 1 806 will temporarily generate a large amount of current, which will generate a temporary large amount and change the flowing current through the bypass capacitor C 1 as described above. The current is sensed by the current sensing device 1 804 and inverted and amplified by the inverting amplifier 1 8 2, and is finally provided into the power line 1 8 1 2 through the isolation capacitor C 7. As described above, the additional current provided by the amplifier 1 8 02 to the power -25- (21) (21) 200302539 rate line 1 8 1 2 will reduce the change in voltage at the power terminal 1 8 0 $. FIG. 19 depicts a variation of the representative embodiment shown in FIG. 18. As shown in the figure, FIG. 19 is roughly similar to FIG. 8 and also includes a current sensing element 1 804 and an inverting amplifier 1802, configured to provide a current to the power line 1 on the probe card 50. 812. However, in FIG. 19, the electric current sensing element 1 804 will sense the current flowing through the power line 1 8 1 2 instead of the current flowing through the bypass capacitor C 1. The operation of the embodiment of Fig. 19 is similar to that of Fig. 18. When the DUT 34 is not changing state, the typical small static direct current (DC) generated by the power terminal 1 806 via the line 1 804 is sensed by the current sensing device 1 804. Therefore, the inverting amplifier 1 802 Provides small or no charge current. However, when the DUT 34 is changing state, the current sensing device 1 0 0 4 will sense a large current change through the power line 1 8 0 4 at the power terminal 1 8 0. The inverting amplifier 1 8 0 2 will amplify and reverse the sensed current and provide additional charging current to the power line 1 8 1 2 through the isolation capacitor C7. As mentioned above, this additional charging current will reduce the change in voltage at the power terminal 186. < Interconnection system> The probe card described in any one of the embodiments for providing a signal path between an integrated circuit tester, a power supply, and a DUT is representative. The present invention may be combined with Many other designs of interconnect systems are implemented. For example, Figure 20A depicts a fairly simple probe card, which contains a base plate-26- (22) (22) 200302539 2002, with a terminal 2004 for connection to a 1C test. Device (not shown in FIG. 20A) and a probe element 2008 for electrical connection to a DUT (not shown in FIG. 20A). As shown in the figure, the terminal 2004 is electrically connected to the probe card component 2008 through the interconnection component 2006. For example, the substrate may be a single or multilayer printed circuit board or ceramic or other material. Obviously, the material composition of the substrate is not important to the present invention. The probe element 2008 can be any type of probe that can be electrically connected to the DUT, including but not limited to needle probes, COBRA probes, bumps, columns, rods, spring contacts, and the like. An unrestricted example of a suitable spring contact is disclosed in U.S. Patent No. 54762 111, U.S. Patent Application No. 08/802054, filed February 18, 997, corresponding to PCT Publication No. W097 / 44676 , US Patent No. 6268015 B1, and US Patent Application No. 09/3 6485 5 corresponding to PCT Publication No. WO01 / 09952, filed on June 30, 1999, which will be incorporated herein by reference reference. These spring contacts can be considered as those in U.S. Patent No. 6 1 50 0 8 6 or 200 U.S. Patent Application No. 10/027476, filed December 21, 2001, which are also incorporated herein by reference. Described by. Alternatively, these ~ probes may be pads or terminals for contacting a raised element on the DUT such as a spring contact formed on the DUT. An unrestricted example of the interconnection path 2006 includes a combination of vias and / or vias and conductive traces on or within the substrate 2002. Figure 20B depicts another unrestricted example of a probe card that can be used in the present invention. As shown, a representative probe card shown in FIG. 20B includes a base plate 2018, an inserter 2012, and a probe head 2032. Terminal 2022 is in contact with -27- (23) (23) 200302539 1C tester (not shown in Figure 20B), and probe element 2034, which may be similar to the above-mentioned probe element 2008, is in contact with DUT (not shown in 20B Figure). The interconnection path 2020, the elastic connection element 2016, the interconnection path 2014, the elastic connection element 2010, and the interconnection path 2036 provide a conductive path from the terminal 2022 to the probe element 2034. The base plate 2018, the interposer 2012, and the probe head 2032 can be made of these materials similar to the above-mentioned related 2002. Indeed, the material composition of the substrate 2018, the interposer 2012, and the probe head 2032 is not essential to the present invention, and any composition may be used. The interconnection paths 2020, 2014, 2036 may be similar to the interconnection paths 2006 described above. The elastic connecting elements 2016 and 2010 are preferably elongated elastic elements, and unrestricted examples of these elements are depicted in US Patent No. 54762 111; US Patent Application No. 08 filed on February 18, 997 / 802054, which corresponds to PCT Publication No. WO 97/44676; U.S. Patent No. 6268015B1; and U.S. Patent Application No. WO 1/0995 2 filed on July 30, 1999 No. 09/364855, all of which are incorporated herein by reference. A more detailed description of a representative probe card including a plurality of substrates, such as the substrate shown in Figure 20B, is found in U.S. Patent No. 5,979,62, which is also incorporated herein by reference. Many variations of the representative design shown in FIG. 20B are possible. For example, for only one example, the interconnection path 2014 may be replaced with a hole and one or more fixed in the hole and extending to the hole. The outer elastic element 20 1 6 and / or 20 1 0 is in contact with the substrate 2018 and the probe card 2032. However, it should be understood that the architecture or design of the interconnected system is not essential to the present invention and any architecture or design may be used. As shown in the embodiments described herein, the circuit for reducing the change in voltage at the power terminals on the DUT is preferably configured on a probe card. If a multi-substrate probe card is used, Such as the representative probe shown in Figure 20B, the circuit can be located on any of these substrates, or it can be distributed among two or more of these substrates. So, for example, the circuit may be located on one of the probe head 2032, the interposer 2012, or the substrate 2018 depicted in FIG. 20B or the circuit may be located on the probe head, the interposer, and / or the substrate. A combination of two or more. It should be understood that the circuit may be integrally formed of interconnected discrete circuit elements, may be integrally formed on an integrated circuit, or may be composed of a part of the discrete circuit elements and a part of the integrated circuit. < Predictive / adaptive circuit compensation > As mentioned above, the predictive system for controlling changes in the supply voltage at the power input terminals of the DUT can predict the amount of charging current that the DUT will require during each clock signal cycle, and Then, based on the prediction, the magnitude of the supplementary current pulse applied to the power input terminal of the DUT is determined during the clock signal cycle; on the other hand, the adaptive system can monitor the power signal applied to the terminal of the DUT and utilize feedback. To adjust the size of the supplementary current pulse while maintaining the constant voltage of the power signal. Fig. 21 depicts an embodiment of the present invention in which the amount of additional charging current required at the power input terminal 26 of the DUT 34 is determined by a combination of prediction and adaptation. Auxiliary power supply 3 8 Supply power VC to electricity -29- (25) (25) 200302539 Current pulse generator 2102. When it is necessary to increase the normal supply current from the main power supply 36, the current pulse generator 2 1 02 will supply the current pulse 13 to the power input terminal 26 of the DUT. At the beginning of each test cycle, the 1C tester 58 will supply the signal CNT5 to the current pulse generator 2102 to indicate the predicted size of the current pulse, and during each test cycle, the 1C tester 58 will request a control signal CNT6 indicates when the current pulse wave generator 2102 generates a current pulse wave. The 1C tester 58 is a program designed to test a specific form of DUT 34, and the predictions made relative to the size and time period of the current pulse 13 during each test cycle can be generated as described above based on the form of the DUT. Measurement of current or simulation of DUT behavior. However, due to process variations in the manufacture of DUTs and other factors, the magnitude of the additional charging current required by each DUT of this type during each test cycle may vary from the predicted charging current. For any given DUT, the ratio of the actual charge current to the predicted charge current tends to be fairly consistent on a cycle-by-cycle basis. For example, a DUT can consistently produce a more than predicted charge during each test cycle. The charging current is 5% more, and another DUT at the same time consistently generates a charging current 5% less than the predicted charging current during each test cycle. The feedback controller 2104 compensates for these changes in the charging current requirement and prediction by supplying an adaptive gain (or > adaptive signal) signal G to the current pulse generator 2 102, which appropriately increases or decreases the current The size of the pulse 13 is such that the current pulse is suitable for the requirements of the particular DUT 34 in the current test. Therefore, the predicted signal CNT5 indicates the predicted size of the charging current required by the form -30- (26) (26) 200302539 DUT, and the gain (a adapted 〃) signal size indicates the specific situation of the DUT being tested Prediction error. Prior to testing the DUT 34, the 1C tester 58 performs a pre-test procedure that can be similar to the test to be performed, in which it transmits the test and CLOCK signal pulses to the DUT 34, making the DUT 34 behave substantially the same as it did during the test. During the pre-test procedure, the feedback control circuit 2104 monitors the voltage VB at the power input terminal 26 of the DUT and adjusts the magnitude of the gain signal G, so that changes occur in VB when the magnitude of 13 is too large or too small minimize. The pre-test procedure enables the feedback controller 2 104 to adjust the size of the gain signal G in a timely manner to meet the charging current demand of the specific Dim4 to be tested. After that, during the test, the feedback controller 2104 will continuously monitor VB And adjusting the gain signal, but the adjustments made are small. Therefore, although the size of the charging current 13 supplied during each test cycle is mainly a function of the predicted charging current demand of the DUT, the gain control feedback provided by the controller 2 04 will eventually adjust the current pulse size to The tendency to adapt to any consistency of the actual charging current demand of the DUT varies from the predicted demand. Those skilled in the art will understand that the feedback controller 2 1 04 in FIG. 21 can be any of many designs that can generate an output gain control signal G and minimize changes in VB. Those familiar with this technology will also understand that the current pulse generator can be any of many designs that can generate the current pulse 13, where the timing of 13 is controlled by the input signal CNT6, and the size of 13 is It is a function of the magnitude of the current pulse wave and the size of the adaptive gain signal G, which are represented by the control signal CNT5, -31-(27) (27) 200302539. FIG. 22 depicts a non-limiting example of the feedback controller 2 1 04, which integrates the AC component of VB to generate a gain control signal G. A DC blocking capacitor C10 passes the AC component of VB to an integrator 2106, which is an integrator. 2106 is formed by an operational amplifier A1 connected in parallel with a capacitor C8 and a resistor R5 and having a resistor R4 connected in series to its input. Fig. 23 depicts a non-limiting example of the current pulse generator 2106 of Fig. 21. In this example, the control signal CNT5 transmits data representing the predicted size of the required current pulse 13 and the digital-to-analog converter (DAC) 2 1 1 2 converts the predicted data of the current test cycle to be proportional to the size of the predicted data Analog signal P. When the 1C tester 58 requests the CNT6 signal and indicates when the current pulse 13 will be generated, the switch 2 1 1 0 will be closed to apply the signal P to the variable power supplied by the VC output of the auxiliary power supply 38 of FIG. 21 Gain amplifier 2 1 1 2 Input. The gain control signal output of the feedback controller 2104 in Figure 21 will control the gain of the amplifier 2112. The amplifier 2 11 2 will generate an output current pulse 13 that is proportional to the product of P and G. The capacitor C7 passes the 13 signal. The pulse wave transmits the signal path from the probe card 50 in FIG. 21 to the DUT 34. Fig. 24 depicts another non-limiting example of the current pulse generator 2106 of Fig. 21. In this example, the 1C tester 58 in FIG. 21 requires that the time length of the CNT5 control signal is proportional to the predicted size of the current pulse 13 required during the next CLOCK signal cycle, in the current pulse generator 2102. After each pulse of 13 signals is generated, the 1C tester 58 will request the CNT5 signal to be closed and coupled to the auxiliary power supply via the resistor. -32- (28) (28) 200302539 Output signal VC to switch 2116 of capacitor C8, 1C test The device 58 continuously requires the CNT5 signal for an amount of time. The amount of time will increase with the predicted size of the next 13 signal pulses. Therefore, the auxiliary power supply 3 in FIG. 21 3 The charging capacitor C8 is proportional to one A voltage of the predicted magnitude of a 13-signal pulse. After that, when the 1C tester 58 requests the CNT6 signal to indicate that the next 13 signal pulse will be generated, the switch 2117 will connect the capacitor C8 to a gain control signal output G having a feedback controller 2 1 04 as shown in FIG. 21 Input of the controlled gain amplifier 2 11 8. Coupling capacitor C9 transmits the 13 signal generated to the probe card conductor 2114 of DUT35 in Figure 21, and after capacitor C8 has been substantially discharged in time, the control signal CNT6 turns on switch 2117. Because the magnitude of the 13 current pulse rises rapidly and then tilts when C8 is discharged, the time-varying behavior of the 13 pulse is easy to match the charge current demand of the DUT time. Figure 25 depicts the current pulse in Figure 21. Another non-limiting example of the generator 2106, in which the data transmitted by the CNT5 signal represents the predicted size of the 13-signal pulse wave, and the gain control signal G acts as a reference voltage for the DAC 2120 that converts the data transmitted by the CNT5 into an analog signal P, gain The voltage scale of the control signal G will define the range of the DAC output signal P such that P is proportional to the product of G and CNT5. The switch 2122 will temporarily pass the P signal to the amplifier 2124 in response to the pulse of the control signal CNT6, thereby causing the amplifier 2125 to transmit a 13-signal pulse to the power conductor 2 1 1 4 via the coupling capacitor C5. The size of the 13-signal pulse is Will be proportional to the product of G and P sizes. -33- (29) (29) 200302539 Figure 26 depicts a still undefined example of a predictive / adaptive system according to the present invention, in which an auxiliary power supply 38 supplies power to a variable gain amplifier 2126, regardless of When the 1C tester 58 predicts that additional charging current will be required at the power input terminal 26 of the DUT 34, it will supply the control signal pulse wave CNT6 to the amplifier 2126. The capacitor C11 transmits 13 signal pulses to the power signal path 2 11 4 in the probe card 50 connected to the power supply 36 to the DUT power input terminal 26, and the feedback control circuit 2 1 04 will monitor the voltage VB appearing at the terminal 26 And adjust the gain of the amplifier 2126 to minimize the change in VB. At the beginning of each CLOCK cycle, the 1C tester 58 will supply the control signal CNT5 as an input to the auxiliary power supply 38 to set its output voltage VC according to the size of the data transmitted by the CNT5 control signal. Therefore, the magnitude of 13 is a function of the product of the gain control signal G and the magnitude of the auxiliary power supply voltage VC. Therefore, Figures 21 to 26 depict the power input terminal 26 for providing additional charging current to the DUT after each edge of the CLOCK signal in accordance with the present invention to match the temporaryness required by the initial switch due to the edge of the CLOCK signal A different representative embodiment of a predictive / adaptive control system that adjusts the voltage of the power signal VB applied to the DUT 34 with an increase in current. The control system is v 'predictive chirp, which predicts the amount of additional current that the DUT will require during each cycle of the test; the control system is also an adaptive chirp, which uses feedback to determine the resulting response to the forecast. The magnitude of the current pulse is adapted to the observed changes in the magnitude of the current actually produced by the individual DUTs to be tested. Although the present invention is depicted herein as reducing noise in a system employing only a single main power supply -34- (30) (30) 200302539, it will be understood that the present invention can be applied to more than one main The power supply provides power in the environment of DUTs. Although the present invention is depicted as operating in conjunction with DUTs having a single power input, it will be understood that the device may be adapted to operate in conjunction with DUTs having multiple power inputs. Although the present invention is described as providing additional charging current after the leading edge of the CLOCK signal pulse, it can also provide additional charging current after the trailing edge of the CLOCK signal pulse for use in the switch of the trailing edge of the CLOCK signal. DUTs. Although the present invention has been described as being used in combination with a 1C tester that uses probe cards to access ICs terminals formed on a semiconductor wafer, those skilled in the art will understand that the present invention can be used in combination 1C tester uses other forms of interface equipment to provide DUT terminals for ICs that are still at wafer level, or DUT terminals that can be separated from ICs on the wafers they form; Will be combined with DUT terminals of packaged ICs at the time of its test. Such interface equipment includes, but is not limited to, load boards, burn-in boards, and final test boards. The invention in its broadest form is not intended to be limited to applications involving any particular form of 1C tester, any particular form of tester-to-DUT interconnect system, or any particular form of IC DUT. Those skilled in the art will also understand that although the invention described above uses the test integrated with integrated circuits, it can also be used when testing any kind of electronic device, such as Including flip-flop combinations, circuit boards and the like, or whenever you want to precisely adjust the -35- (31) (31) 200302539 voltage at the power input terminal of the device during the test. Therefore, although the above-mentioned specifications have described the preferred embodiments of the present invention, those skilled in the art can accomplish many modifications to these embodiments without departing from the present invention in its broader form. Therefore, the appended patent application scope is intended to cover all such amendments as included within the true scope and spirit of the invention. [Brief description of the drawings] Figure 1 is a block diagram depicting a typical conventional technology testing system for a integrated circuit tester including a integrated circuit device (DUTs) under test connected to a set of probes through a probe card; Figure 3 is a timing diagram depicting the signal behavior in the conventional technology of Figure 1; Figure 4 is a simplified plan view of the conventional technology probe card of Figure 1; Figure 5 is a block diagram depicting The test system of the first embodiment of the invention, wherein a system for reducing noise in the power supply input of a group of DUTs is implemented; FIG. 6 is a timing chart depicting signal behavior in the test system of FIG. 5; Figure 8 is a block diagram depicting the operation of the test system of Figure 5 during the calibration procedure; Figure 8 is a simplified plan view of the probe card of Figure 6; Figures 9 and 10 are block diagrams depicting the second implementation of the invention And the third embodiment of the test system; -36- (32) (32) 200302539 Fig. 11 is a timing chart depicting signal behavior in the test system of Fig. 10, and Fig. 12 is a block diagram depicting implementing the present invention The test system of the fourth embodiment; Sequence diagram 'depicts the signal behavior in the test system shown in Figures 12 and 12. Figure 14 is a block diagram depicting a fifth embodiment of the present invention; Figure 15 is a block diagram depicting a sixth embodiment of the present invention; Figure 16 is a block diagram depicting a seventh embodiment of the present invention; Figure 17 is a timing diagram depicting signal behavior within the circuit of Figure 16; Figure 18 is a block diagram depicting an eighth embodiment of the present invention; Example; Figure 19 is a block diagram depicting a ninth embodiment of the present invention; Figure 20A depicts a representative probe card; Figure 20B depicts another representative probe card; Figure 2 1 Figure 22 is a block diagram depicting a tenth embodiment of the present invention; Figure 22 is a block diagram depicting a representative embodiment of the feedback control circuit of Figure 21; Figures 23 to 25 are block diagrams depicting a 21st embodiment The representative representative embodiment of the current pulse generator is shown in the figure; and the table 26 is a block diagram depicting the eleventh embodiment of the present invention. [Comparison Table of Main Components] 10, 30, 38 1C Tester-37- (33) (33) 200302539 12, 32, 50, 60, 61, 66 Probe Cards 14, 34, 35 Devices under Test (DUTs) 15 Spring pins 16 Contacts 1 8, 3 7 Probes 19, 39, 1810, 1 808 Input / output (I / O) pads 20 Conductive paths 22, 43 Path impedances 24, 36, 62, 82 Main power supply 26, 41, 68, 1806 Power input terminals 28, 46 Signal path 25 Upper surface 27, 47 Center area 38, 84 Auxiliary power supply 40 Reference DUT (reference 1C) 45 Contact point

5 2 功率控制1C 54 圖案產生器 56 電腦匯流排 63 類比至數位(A/D )轉換器 80 積體電路 86 充電預測器電路 90 反相器 1812 傳輸線 -38- (34) (34)200302539 1 804 電流感測裝置 1802、 2112、 2118、 2124、 2125、 2126 放大器 2002、2018 基板 2008 探針 2004、2022 端子 2006、2020 互連路徑 2 012 插入器 203 2 探針頭 2034 探針元件 2010、2016 彈性連接元件 2014、2036 互連路徑 2102 電流脈波產生器 2104 回授控制器 2114 功率信號路徑 2 1 1 6、2 1 1 7、2 1 1 0 開關 2120 DAC (數位至類比轉換器) G 增益控制信號 CNT1〜CNT6 控制信號 210 6 積分器 -39-5 2 Power control 1C 54 Pattern generator 56 Computer bus 63 Analog to digital (A / D) converter 80 Integrated circuit 86 Charge predictor circuit 90 Inverter 1812 Transmission line -38- (34) (34) 200302539 1 804 Current sensing device 1802, 2112, 2118, 2124, 2125, 2126 Amplifier 2002, 2018 Substrate 2008 Probe 2004, 2022 Terminal 2006, 2020 Interconnect path 2 012 Inserter 203 2 Probe head 2034 Probe element 2010, 2016 Flexible connection element 2014, 2036 Interconnection path 2102 Current pulse generator 2104 Feedback controller 2114 Power signal path 2 1 1 6, 2 1 1 7, 2 1 1 0 Switch 2120 DAC (digital to analog converter) G gain Control signal CNT1 ~ CNT6 Control signal 210 6 Integrator-39-

Claims (1)

(1) (1)200302539 拾、申請專利範圍 1. 一種在半導體裝置測試期間藉積體電路測試器供應 電流至半導體裝置之裝置,該積體電路測試器經由介面裝 置接達該半導體裝置之輸入/輸出(I/O )端子,該介面裝 置提供信號路徑於該等I/O端子與該積體電路測試器之間 ,其中該半導體裝置包含一功率輸入端子,用於經由該介 面裝置所提供之一功率導體接受供應電流,及其中該半導 體裝置在施加爲該半導體裝置之輸入的一時脈信號之一組 邊緣的各邊緣之後,暫時地增加其對於供應電流之需求, 該供應電流至半導體裝置之裝置之特徵爲: 第一裝置,用於在該測試期間供應一第一電流到該功 率輸入端子; 第二裝置,用於在該時脈信號之各該等邊緣之後供應 一補充該第一電流之電流脈波到該功率輸入端子,其中該 電流脈波之大小係一預測信號及一適應信號所表示之大小 的函數;以及 第三裝置,用於調整該適應信號所表示之該大小以響 應呈現於該功率輸入端子處之電壓, 其中該預測信號所表示之該大小係設定成比例於一預 測量,藉該預測量該半導體裝置可在下一個該等時脈邊緣 之後增加其功率輸入端子處之電流需求。 2. 如申請專利範圍第1項之供應電流至半導體裝置之 裝置,其中該積體電路測試器產生該預測信號。 3 ·如申請專利範圍第1項之供應電流至半導體裝置之 -40 - (2) (2)200302539 裝置,其中該電流脈波之大小成比例於該預測信號及該適 應信號所表示之該等大小的乘積。 4. 如申請專利範圍第1項之供應電流至半導體裝置之 裝置,其中該適應信號所表示之該大小係呈現在該功率輸 入端子處所時間積分之時間變化部分之電壓的函數。 5. 如申請專利範圍第4項之供應電流至半導體裝置之 裝置,其中該第三裝置包含: 用於濾波之裝置,濾波呈現於該功率輸入端子處之電 壓而產生一成比例於呈現在該功率輸入端子處之電壓大小 中之變化的大小之濾波電壓;以及 用於積分之裝置,積分該濾波電壓而產生該適應信號 〇 6. 如申請專利範圍第1項之供應電流至半導體裝置之 裝置,其中該第二裝置包含: 一數位至類比轉換器,用於接收該預測信號及用於產 生一成比例於該預測信號所表示之大小的類比信號; 一放大器,具有由該適應信號所控制之增益; 用於在各該等時脈信號邊緣之後暫時施加該類比信號 爲該放大器之輸入的裝置,使得該放大器在各該等時脈信 號邊緣之後產生一電流脈波,其中該電流脈波之大小係該 類比信號之大小及該適應信號所表示之該大小的函數。 7. 如申請專利範圍第1項之供應電流至半導體裝置之 裝置,其中該第二裝置包含: 一放大器; -41 - (3) (3)200302539 響應於該預測信號及該適應信號以用於產生一類比信 號之裝置,該類比信號具有一大小,該大小係該預測信號 及該適應信號所表示之該等大小的函數;以及 用於在各該等時脈信號邊緣之後暫時施加該類比信號 爲該放大器之輸入的裝置,使得該放大器在各該等時脈信 號邊緣之後產生一電流脈波,其中該電流脈波之大小係該 類比信號之大小的函數。 8. 如申請專利範圍第1項之供應電流至半導體裝置之 裝置,其中該第二裝置包含: 一放大器,具有由該適應信號所控制之增益; 一電容器; 響應於該預測信號以用於在各該等時脈信號邊緣之前 充電該電容器至一電容器電壓之裝置,該電容器電壓係該 預測信號所表示之該大小的函數;以及 用於在各該等時脈信號邊緣之後暫時連接該電容器爲 該放大器之輸入的裝置,使得該放大器在各該等時脈信號 邊緣之後產生一電流脈波,其中該電流脈波之大小係該電 容器電壓之大小及該適應信號所表示之該大小的函數。 9. 如申請專利範圍第1項之供應電流至半導體裝置之 裝置,其中該第二裝置包含: 一電源供應器,產生一爲該預測信號所表示之大小的 函數的電壓輸出信號; 一放大器,由該電源供應器之該輸出信號所供能且具 有一由該適應信號所控制之增益;以及 -42 - (4) (4)200302539 用於在各該等時脈信號邊緣之後暫時施加一類比信號 爲該放大器之輸入的裝置,使得該放大器在各該等時脈信 號之後產生一電流脈波,其中該電流脈波之大小係該電源 供應器之輸出信號之電壓及該適應信號所表示之該大小的 函數。 1 〇 ·如申請專利範圍第1項之供應電流至半導體裝置 之裝置,其中該介面裝置包含一探針板,以及其中該第二 裝置係安裝於該探針板之上。 1 1 ·如申請專利範圍第1項之供應電流至半導體裝置 之裝置,其中該介面裝置包含一探針板,以及其中該第三 裝置係安裝於該探針板之上。 12.如申請專利範圍第1項之供應電流至半導體裝置 之裝置,其中由該第三裝置所提供之回授可調整該適應信 號所表示之大小,以使呈現在該功率輸入端子處之電壓中 的變化最小化。 1 3 ·如申請專利範圍第1項之供應電流至半導體裝置 之裝置,其中該積體電路測試器產生該預測信號, 其中該電流脈波之大小係成比例於該預測信號及該適 應信號所表示之該等大小的乘積,以及 其中由該第三裝置所提供之回授可調整該適應信號所 表示之大小,以使呈現在該功率輸入端子處之電壓中的變 化最小化。 14·如申請專利範圍第13項之供應電流至半導體裝置 之裝置,其中該介面裝置包含一探針板,以及其中該第二 (5) (5)200302539 及第三裝置係安裝於該探針板之上。 1 5· —種在半導體裝置測試期間藉積體電路測試供應 電流至半導體裝置之方法,該積體電路測試器經由介面裝 置接達該半導體裝置之輸入/輸出(I/O )端子,該介面裝 置提供信號路徑於該等I/O端子與該積體電路測試之間, 其中該半導體裝置包含一功率輸入端子,用於經由該介面 裝置所提供之一功率導體接受供應電流,及其中該半導體 裝置在施加爲該半導體裝置之輸入的一時脈信號之一組邊 緣的各邊緣之後,暫時地增加其對於供應電流之需求,該 方法包含下列步驟: (a )在該測試期間供應一第一電流到該功率輸入端子 b) 產生一預測信號表示成比例於一預測量的大小, 藉該預測量該半導體裝置可在該等時脈信號邊緣之一之後· 接著增加其功率輸入端子處之電流需求; c) 產生一適應信號表示一響應於呈現在該功率輸入 端子處之電壓所確定的大小;以及 d )在該等時脈信號邊緣之各邊緣之後供應一電流脈 波於該功率輸入端子以補充該第一電流,其中該電流脈波 之大小係預測信號及適應信號所表示之大小的函數。 1 6.如申請專利範圍第1 5項之方法,其中該積體電路 測試器執行步驟b。 17·如申請專利範圍第15項之方法,其中該電流脈波 之大小成比例於該預測信號及該適應信號所表示之該等大 -44 - (6) (6)200302539 小的乘積。 1 8.如申請專利範圍第丨5項之方法,其中該適應信號 所表示之該大小係呈現在該功率輸入端子處所時間積分之 時間變化部分之電壓的函數。 1 9 ·如申請專利範圍第1 8項之方法,其中步驟c包含 下列附屬步驟: c 1 )濾波呈現於該功率輸入端子處之電壓而產生一成 比例於呈現在該功率輸入端子處之電壓大小中之變化的大 小的濾波電壓;以及 c2 )積分該濾波電壓而產生該適應信號。 20.如申請專利範圍第15項之方法,其中步驟d包含 下列附屬步驟: dl )產生一類比信號以響應於該預測信號,該類比信 號之大小成比例於該預測信號所表示之該大小;以及 d2 )在各該等時脈信號邊緣之後暫時施加該類比信號 爲一放大器之輸入,使得該放大器在各該等時脈信號邊緣 之後產生一電流脈波,其中該電流脈波之大小係該類比信 號之大小及該適應信號所表示之該大小的函數。 2 1.如申請專利範圍第1 5項之方法,其中步驟d包含 下列附屬步驟: d 1 )產生一類比信號以響應於該預測信號及該適應信 號,該類比信號具有一大小,該大小係該預測信號及該適 應信號所表示之該等大小的函數;以及 d2 )在各該等時脈信號邊緣之後暫時施加該類比信號 (7) (7)200302539 爲該放大器之輸入,使得該放大器在各該等時脈信號邊緣 之後產生一電流波脈,其中該電流脈波之大小係該類比信 號之大小的函數。 2 2.如申請專利範圍第15項之方法,其中步驟d包含 下列附屬步驟: dl )在各該等時脈信號邊緣之前藉充電一電容器至一 電容器電壓以響應於該預測信號,該電容器電壓係該預測 信號所表示之該大小的函數;以及 d2 )在各該等時脈信號邊緣之後暫時連接該電容器爲 該放大器之輸入,使得該放大器在各該等時脈信號邊緣之 後產生一電流脈波,其中該電流脈波之大小係該電容器電 壓之大小及該適應信號所表示之該大小的函數。 23. 如申請專利範圍第15項之方法,其中步驟d包含 下列附屬步驟: dl )藉產生一電壓輸出信號來響應於該預測信號,該 電壓輸出信號係該預測信號所表示之大小的函數; d2 )藉調整一由步驟d 1所產生之該輸出信號所供能 之放大器的增益而響應於該適應信號;以及 d3 )在各該等時脈信號邊緣之後暫時施加一信號脈波 爲該放大器之輸入,使得該放大器產生一電流脈波以響應 於各信號脈波,其中該電流脈波之大小係該輸出信號之電 壓及該適應信號所表示之該大小的函數。 24. 如申請專利範圍第1 5項之方法,其中由該適應信 號所表示之大小係藉回授予以調整,以便使呈現於該功率 -46 - (8) (8)200302539 輸入端子處之該電壓中之變化最小。 25 · —種降低供應至測試中半導體裝置功率輸入端子 之電壓中變化的方法,使用於一包含探針卡及補充電流源 之半導體測試系統中,該方法包含下列步驟: 透過該探針卡提供功率至該測試中半導體裝置之該功 率輸入端子; 提供一輸入信號至該補充電流源,該輸入信號響應於 該半導體裝置之該輸入端子所產生之電流中的暫時改變; 以及 從該補充電流源提供補充電流至該輸入端子以響應於 該輸入信號。 26.如申請專利範圍第25項之方法,進一步包含改變 該半導體裝置之狀態,其造成該半導體裝置之該輸入端子 所產生之電流中的該暫時改變。 27·如申請專利範圍第25項之方法,進一步包含感測 該半導體裝置之該輸入端子所產生之電流中的改變。 28·如申請專利範圍第27項之方法,其中該感測該輸 入端子所產生之電流中的改變包含透過一旁路電容器電性 連接於該功率輸入端子來感測電流中之改變。 29.如申請專利範圍第27項之方法,其中該感測該輸 入端子所產生之電流中的改變包含透路一在該探針卡上電 性連接於該功率輸入端子的導電路徑來感測電流中之改變 〇 30·如申請專利範圍第25項之方法,其中該補充電流 -47 - 200302539 Ο) 量對應於該輸入端子所產生之電流量。 3 1.如申請專利範圍第25項之方法,其中該補充電流 源包含一放大器。 32.如申請專利範圍第25項之方法,其中該補充電流 係透過一電容器提供於該輸入端子。 3 3 .如申請專利範圍第25項之方法,其中該補充電流 源係配置於該探針卡之上。 34.如申請專利範圍第25項之方法,其中該探針卡包 含複數個互連之基板。 3 5.如申請專利範圍第34項之方法,其中該複數個互 連之基板包含一探針頭。 3 6.如申請專利範圍第3 5項之方法,其中該補充電流 源係配置於該探針頭之上。 37.如申請專利範圍第25項之方法,進一步包含配置 至少一超前之信號於一參考裝置。 3 8.如申請專利範圍第3 7項之方法,其中該補充電流 源之該輸入信號對應於該參考裝置所產生之電流量’以響 應於該至少一超前之信號。 39.如申請專利範圍第25項之方法,其中 該提供功率進一步包含透過該探針卡提供功率至各該 複數個測試中之半導體裝置的功率輸λ端子; 該提供輸入信號至該補充電流源進一步包含提供一輸 入信號至各該複數個補充電流源’各該輸入信號對應於該 等半導體裝置之一之輸入端子所產生的電流;以及 -48 - (10) (10)200302539 該提供補充電流進一步包含從各該等補充電流源&供 補充電流至該等輸入端子以響應該等輸入信號。 40.—種半導體裝置之測試裝置,包含一功率輸入端 子及信號端子,該測試裝置包含: 一探針卡,包含導電連接結構,用於接觸該功率輸A 端子及該等信號端子;以及 一補充電流源,具有一輸出,電性連接於該連接結構 ,用於接觸該功率輸入端子,該補充電流源之一輸Λ電性 連接於一信號,該信號對應於該等信號端子之一上之信號 中改變所造成之該功率輸入端子所產生的電流中之改變’ 其中該補充電流源提供補充電流至該功率輸入端子以響應 該功率輸入端子所產生之電流中的改變。 4 1 ·如申請專利範圍第40項之測試裝置,進一步包含 一電流感測裝置,配置以感測該功率輸入端子所產生的電 流中之改變,該電流感測裝置提供一對應之信號至該補充 電流源之該輸入。 42·如申請專利範圍第41項之測試裝置,其中該電流 感測裝置包含一電流感測耦合器。 4 3 ·如申請專利範圍第41項之測試裝置’其中該電流 感測裝置包含一電流變換器。 4 4.如申請專利範圍第4 1項之測I式裝置’其中於電^ 感測裝置係配置透過一電性連接於該功率輸入端子之旁路 電容器而感測電流中之改變。 4 5 ·如申請專利範圍第4 1項之測§式裝置’其中狀電 -49 - (11) (11)200302539 感測裝置係配置透過一在該探針卡上電性連接於該功率輸 入端子之導電路徑而感測電流中之改變。 46. 如申請專利範圍第40項之測試裝置,其中該補充 電流源包含一放大器。 47. 如申請專利範圍第40項之測試裝置,其中該補充 電流源之該輸出係透過一電容器而電性連接於該功率輸入 端子。 48·如申請專利範圍第40項之測試裝置,其中該補充 電流源係配置於該探針卡之上。 49. 如申請專利範圍第48項之測試裝置,其中該探針 卡包含複數個互連的基板。 50. 如申請專利範圍第49項之測試裝置,其中該複數 個互連的基板包含一探針頭。 5 1 ·如申請專利範圍第50項之測試裝置,其中該補充 電流源係配置於該探針頭之上。 52. 如申請專利範圍第4〇項之測試裝置,進一步包含 一參考裝置’該參考裝置之一功率輸入端子電性連接於該 補充電源裝置之該輸入。 53. 如申請專利範圍第52項之測試裝置,進一步包含 一測試器’電性連接於該探針卡,該測試器建構以改變一 提供至該參考裝置之信號且之後改變一提供至該半導體裝 置之相似信號。 54·如申請專利範圍第40項之測試裝置,其中該測試 裝置測試複數個半導體裝置。 -50 - (12) (12)200302539 5 5.如申請專利範圍第54項之測試裝置’其中該探針 卡提供功率至各該複數個半導體裝置之輸入端子。 56. 一種半導體裝置之測試裝置,包含一功率輸入端 子及信號端子,該測試裝置包含: 探針裝置,用於提供功率至該輸入端子及提供信號至 該等信號端子之至少之一;以及 補充電流裝置,用於提供補充電流至該功率輸入端子 以響應該等信號端子之一上之信號中改變所造成之該功率 輸入端子所產生的電流中之改變,該補充電流裝置具有一 輸入及一輸出,該輸入電性連接於一對應於該功率輸入端 子所產生之該電流中改變的信號,該輸出電性連接於該功 率輸入端子。 57. 如申請專利範圍第56項之測試裝置,進一步包含 電流感測裝置,用於感測該功率輸入端子所產生之電流中 之改變,該電流感測裝置提供一對應信號於該補充電流裝 置之該輸入。 58. 如申請專利範圍第56項之測試裝置,其中該補充 電流裝置包含一放大器。 59·如申請專利範圍第56項之測試裝置,其中該補充 電流裝置之該輸出透過一電容器而電性連接於該功率輸入 端子。 60.如申請專利範圍第56項之測試裝置,其中該補充 電流裝置係配置於該探針裝置之上。 61·如申請專利範圍第56項之測試裝置,其中該測試 -51 - (13) 200302539 裝置測試複數個半導體裝置。 62.如申請專利範圍第61項之測試裝置,其中該探針 裝置提供功率至各該複數個半導體裝置之輸入端子。 -52 -(1) (1) 200302539 Patent application scope 1. A device for supplying current to a semiconductor device by using an integrated circuit tester during a semiconductor device test. The integrated circuit tester accesses the input of the semiconductor device through an interface device / Output (I / O) terminal, the interface device provides a signal path between the I / O terminals and the integrated circuit tester, wherein the semiconductor device includes a power input terminal for providing through the interface device A power conductor receives a supply current, and the semiconductor device temporarily increases its demand for a supply current after applying the edges of a group of edges of a clock signal input to the semiconductor device, the supply current to the semiconductor device The device is characterized by: a first device for supplying a first current to the power input terminal during the test; a second device for supplying a supplementary first after the edges of the clock signal The current pulse wave of the current reaches the power input terminal. The magnitude of the current pulse wave is shown by a predicted signal and an adaptive signal. A function of the size shown; and a third device for adjusting the size represented by the adaptive signal in response to the voltage presented at the power input terminal, where the size represented by the predicted signal is set proportional to a predicted With this predicted amount, the semiconductor device can increase the current demand at its power input terminal after the next such clock edge. 2. For a device that supplies current to a semiconductor device as described in the first patent application, wherein the integrated circuit tester generates the predicted signal. 3 · If the current in the scope of the patent application is 1 to supply the current to the -40 of the semiconductor device-(2) (2) 200302539 device, wherein the magnitude of the current pulse is proportional to the predicted signal and the signal indicated by the adaptation signal. Product of sizes. 4. For a device that supplies current to a semiconductor device as described in item 1 of the patent application range, wherein the magnitude represented by the adaptation signal is a function of the voltage of the time-varying portion of the time integral at the power input terminal location. 5. The device for supplying current to a semiconductor device, such as the item 4 of the scope of patent application, wherein the third device includes: a device for filtering, filtering the voltage presented at the power input terminal to produce a proportion proportional to that presented in the A filtering voltage of varying magnitude in the magnitude of the voltage at the power input terminal; and a device for integration that integrates the filtered voltage to generate the adaptation signal. 6. A device that supplies a current to a semiconductor device as described in the first patent application range. Wherein the second device comprises: a digital-to-analog converter for receiving the prediction signal and for generating an analog signal proportional to the size represented by the prediction signal; an amplifier having a control by the adaptation signal A gain; a device for temporarily applying the analog signal as an input to the amplifier after each of the clock signal edges, so that the amplifier generates a current pulse wave after each of the clock signal edges, wherein the current pulse wave The magnitude is a function of the magnitude of the analog signal and the magnitude represented by the adaptation signal. 7. The device for supplying electric current to the semiconductor device as described in the first patent application scope, wherein the second device includes: an amplifier; -41-(3) (3) 200302539 in response to the prediction signal and the adaptation signal for Means for generating an analog signal having a magnitude that is a function of the magnitudes represented by the predicted signal and the adaptive signal; and for temporarily applying the analog signal after the edges of the clock signals The input device of the amplifier makes the amplifier generate a current pulse wave after each edge of the clock signal, wherein the magnitude of the current pulse wave is a function of the magnitude of the analog signal. 8. The device for supplying current to a semiconductor device as claimed in item 1 of the patent application scope, wherein the second device includes: an amplifier having a gain controlled by the adaptation signal; a capacitor; Means for charging the capacitor to a capacitor voltage before each of the clock signal edges, the capacitor voltage being a function of the magnitude represented by the predicted signal; and for temporarily connecting the capacitor after each of the clock signal edges is The input device of the amplifier causes the amplifier to generate a current pulse wave after each edge of the clock signals, wherein the magnitude of the current pulse wave is a function of the magnitude of the capacitor voltage and the magnitude represented by the adaptive signal. 9. The device for supplying a current to a semiconductor device as described in the first patent application scope, wherein the second device includes: a power supply that generates a voltage output signal as a function of the magnitude represented by the predicted signal; an amplifier, Powered by the output signal of the power supply and having a gain controlled by the adaptation signal; and -42-(4) (4) 200302539 for temporarily applying an analogy after each of these clock signal edges The signal is an input device of the amplifier, so that the amplifier generates a current pulse wave after each of the clock signals, wherein the magnitude of the current pulse wave is the voltage of the output signal of the power supply and the adaptation signal A function of that size. 10. The device for supplying electric current to a semiconductor device according to item 1 of the patent application scope, wherein the interface device includes a probe card, and wherein the second device is mounted on the probe card. 1 1 · The device for supplying electric current to a semiconductor device according to item 1 of the patent application range, wherein the interface device includes a probe card, and wherein the third device is mounted on the probe card. 12. The device for supplying current to a semiconductor device according to item 1 of the scope of the patent application, wherein the feedback provided by the third device can adjust the size indicated by the adaptation signal so that the voltage presented at the power input terminal Minimize changes. 1 3 · If the device for supplying current to a semiconductor device according to item 1 of the patent application scope, wherein the integrated circuit tester generates the predicted signal, wherein the magnitude of the current pulse is proportional to the predicted signal and the adaptive signal. The product of the sizes indicated, and the feedback provided by the third device can adjust the size represented by the adaptation signal to minimize variations in the voltage presented at the power input terminal. 14. The device for supplying electric current to a semiconductor device according to item 13 of the scope of patent application, wherein the interface device includes a probe card, and wherein the second (5) (5) 200302539 and the third device are mounted on the probe Above the board. 1 5 · —A method for testing a supply current to a semiconductor device by using an integrated circuit during a semiconductor device test. The integrated circuit tester accesses an input / output (I / O) terminal of the semiconductor device through an interface device. The interface The device provides a signal path between the I / O terminals and the integrated circuit test. The semiconductor device includes a power input terminal for receiving a supply current through a power conductor provided by the interface device, and the semiconductor. The device temporarily increases its demand for supply current after applying the edges of a set of edges of a clock signal input to the semiconductor device. The method includes the following steps: (a) supplying a first current during the test To the power input terminal b) to generate a predicted signal that is proportional to the magnitude of a predicted amount, by which the semiconductor device can be behind one of the edges of the clock signal, and then increase the current demand at its power input terminal C) generating an adaptation signal representing a magnitude determined in response to the voltage present at the power input terminal And d) supplying a current pulse to the power input terminal after each edge of the edges of the clock signals to supplement the first current, wherein the magnitude of the current pulse is a function of the magnitude represented by the predicted signal and the adaptive signal . 16. The method according to item 15 of the scope of patent application, wherein the integrated circuit tester performs step b. 17. The method according to item 15 of the scope of patent application, wherein the magnitude of the current pulse is proportional to the product of the large -44-(6) (6) 200302539 represented by the predicted signal and the adaptive signal. 1 8. The method according to item 5 of the scope of the patent application, wherein the magnitude represented by the adaptation signal is a function of the voltage of the time-varying portion of the time integral at the power input terminal location. 19 · The method according to item 18 of the scope of patent application, wherein step c includes the following ancillary steps: c 1) Filtering the voltage presented at the power input terminal to generate a proportion proportional to the voltage presented at the power input terminal A filtered voltage of varying magnitude; and c2) integrating the filtered voltage to generate the adaptation signal. 20. The method according to item 15 of the patent application scope, wherein step d comprises the following subsidiary steps: dl) generating an analog signal in response to the prediction signal, the size of the analog signal being proportional to the size represented by the prediction signal; And d2) temporarily applying the analog signal as an input of an amplifier after each of the clock signal edges, so that the amplifier generates a current pulse wave after each of the clock signal edges, wherein the magnitude of the current pulse wave is A function of the magnitude of the analog signal and the magnitude represented by the adaptation signal. 2 1. The method according to item 15 of the patent application scope, wherein step d includes the following auxiliary steps: d 1) generating an analog signal in response to the predicted signal and the adaptation signal, the analog signal has a size, the size is The predicted signal and the functions of the magnitudes represented by the adaptation signal; and d2) temporarily applying the analog signal (7) (7) 200302539 as the input of the amplifier after each of the clock signal edges, so that the amplifier is in A current pulse is generated after each of the clock signal edges, where the magnitude of the current pulse is a function of the magnitude of the analog signal. 2 2. The method according to item 15 of the patent application scope, wherein step d includes the following ancillary steps: dl) charging a capacitor to a capacitor voltage before responding to each of the clock signal edges in response to the predicted signal, the capacitor voltage Is a function of the magnitude represented by the predicted signal; and d2) the capacitor is temporarily connected as an input of the amplifier after each of the clock signal edges, so that the amplifier generates a current pulse after each of the clock signal edges The magnitude of the current pulse is a function of the magnitude of the capacitor voltage and the magnitude represented by the adaptation signal. 23. The method according to item 15 of the patent application, wherein step d includes the following auxiliary steps: dl) responding to the prediction signal by generating a voltage output signal, the voltage output signal being a function of the magnitude represented by the prediction signal; d2) responding to the adaptation signal by adjusting the gain of an amplifier powered by the output signal generated in step d1; and d3) temporarily applying a signal pulse to the amplifier after each of the clock signal edges The input causes the amplifier to generate a current pulse wave in response to each signal pulse wave, wherein the magnitude of the current pulse wave is a function of the voltage of the output signal and the magnitude represented by the adaptation signal. 24. The method as described in item 15 of the scope of patent application, wherein the size represented by the adaptation signal is borrowed for adjustment so that the power present at the input terminal of the power -46-(8) (8) 200302539 The change in voltage is minimal. 25 · —A method for reducing the change in the voltage supplied to the power input terminals of the semiconductor device under test, used in a semiconductor test system including a probe card and a supplemental current source, the method includes the following steps: provided through the probe card Power to the power input terminal of the semiconductor device under test; providing an input signal to the supplementary current source, the input signal being responsive to a temporary change in current generated by the input terminal of the semiconductor device; and from the supplementary current source A supplementary current is provided to the input terminal in response to the input signal. 26. The method of claim 25, further comprising changing the state of the semiconductor device, which causes the temporary change in the current generated by the input terminal of the semiconductor device. 27. The method of claim 25, further comprising sensing a change in a current generated by the input terminal of the semiconductor device. 28. The method of claim 27, wherein the sensing a change in the current generated by the input terminal includes sensing a change in the current through a bypass capacitor electrically connected to the power input terminal. 29. The method of claim 27 in the scope of patent application, wherein the sensing of a change in the current generated by the input terminal includes transmitting a conductive path electrically connected to the power input terminal on the probe card for sensing The change in current 〇30. The method of item 25 of the patent application range, wherein the amount of the supplementary current -47-200302539 0) corresponds to the amount of current generated by the input terminal. 3 1. The method of claim 25, wherein the supplementary current source includes an amplifier. 32. The method of claim 25, wherein the supplementary current is provided to the input terminal through a capacitor. 33. The method of claim 25, wherein the supplementary current source is disposed on the probe card. 34. The method of claim 25, wherein the probe card includes a plurality of interconnected substrates. 35. The method of claim 34, wherein the plurality of interconnected substrates include a probe head. 36. The method of claim 35, wherein the supplementary current source is disposed on the probe head. 37. The method of claim 25, further comprising allocating at least one leading signal to a reference device. 38. The method according to item 37 of the scope of patent application, wherein the input signal of the supplemental current source corresponds to the amount of current generated by the reference device 'in response to the at least one leading signal. 39. The method of claim 25, wherein the providing power further comprises providing power through the probe card to a power input λ terminal of each of the plurality of semiconductor devices under test; providing an input signal to the supplementary current source The method further includes providing an input signal to each of the plurality of supplementary current sources. Each of the input signals corresponds to a current generated by an input terminal of one of the semiconductor devices; and -48-(10) (10) 200302539. It further includes supplying supplementary current from each of the supplementary current sources & to the input terminals in response to the input signals. 40. A test device for a semiconductor device, including a power input terminal and a signal terminal, the test device includes: a probe card including a conductive connection structure for contacting the power input A terminal and the signal terminals; and The supplementary current source has an output and is electrically connected to the connection structure for contacting the power input terminal. One of the supplementary current sources is electrically connected to a signal corresponding to one of the signal terminals. A change in the current generated by the power input terminal caused by a change in the signal ', wherein the supplementary current source provides supplemental current to the power input terminal in response to a change in the current generated by the power input terminal. 4 1 · If the testing device under item 40 of the patent application scope further includes a current sensing device configured to sense a change in the current generated by the power input terminal, the current sensing device provides a corresponding signal to the This input supplements the current source. 42. The testing device of claim 41, wherein the current sensing device comprises a current sensing coupler. 4 3 · The test device according to item 41 of the scope of patent application, wherein the current sensing device includes a current converter. 4 4. The test type I device according to item 41 of the scope of patent application, wherein the electric sensing device is configured to sense a change in current through a bypass capacitor electrically connected to the power input terminal. 4 5 · If the test § type device of the scope of patent application No. 41, 'where the electric power -49-(11) (11) 200302539, the sensing device is configured to be electrically connected to the power input through a probe card The conductive path of the terminal senses a change in current. 46. The testing device of claim 40, wherein the supplementary current source includes an amplifier. 47. The testing device of claim 40, wherein the output of the supplemental current source is electrically connected to the power input terminal through a capacitor. 48. The testing device according to claim 40, wherein the supplementary current source is arranged on the probe card. 49. The testing device of claim 48, wherein the probe card includes a plurality of interconnected substrates. 50. The testing device of claim 49, wherein the plurality of interconnected substrates include a probe head. 5 1 · The test device according to item 50 of the scope of patent application, wherein the supplementary current source is arranged on the probe head. 52. If the test device under the scope of patent application No. 40 further includes a reference device, a power input terminal of the reference device is electrically connected to the input of the supplementary power supply device. 53. If the test device of the scope of application for a patent No. 52, further includes a tester 'electrically connected to the probe card, the tester is configured to change a signal provided to the reference device and then change a supply to the semiconductor Similar signals for devices. 54. The test device of claim 40, wherein the test device tests a plurality of semiconductor devices. -50-(12) (12) 200302539 5 5. The test device according to item 54 of the patent application scope, wherein the probe card provides power to the input terminals of each of the plurality of semiconductor devices. 56. A test device for a semiconductor device, comprising a power input terminal and a signal terminal, the test device comprising: a probe device for supplying power to the input terminal and providing a signal to at least one of the signal terminals; and a supplement A current device for supplying supplementary current to the power input terminal in response to a change in the current generated by the power input terminal caused by a change in a signal on one of the signal terminals. The supplementary current device has an input and a The output is electrically connected to a signal corresponding to a change in the current generated by the power input terminal, and the output is electrically connected to the power input terminal. 57. If the testing device under the scope of patent application No. 56 further includes a current sensing device for sensing a change in the current generated by the power input terminal, the current sensing device provides a corresponding signal to the supplemental current device That input. 58. The testing device of claim 56 in which the supplementary current device includes an amplifier. 59. The testing device according to item 56 of the application, wherein the output of the supplementary current device is electrically connected to the power input terminal through a capacitor. 60. The testing device of claim 56 in which the supplementary current device is disposed on the probe device. 61. The test device according to item 56 of the patent application scope, wherein the test -51-(13) 200302539 device tests a plurality of semiconductor devices. 62. The test device of claim 61, wherein the probe device provides power to input terminals of each of the plurality of semiconductor devices. -52-
TW092102299A 2002-01-30 2003-01-30 Predictive, adaptive power supply for an integrated circuit under test TWI298918B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/062,999 US7342405B2 (en) 2000-01-18 2002-01-30 Apparatus for reducing power supply noise in an integrated circuit
US10/206,276 US6657455B2 (en) 2000-01-18 2002-07-25 Predictive, adaptive power supply for an integrated circuit under test

Publications (2)

Publication Number Publication Date
TW200302539A true TW200302539A (en) 2003-08-01
TWI298918B TWI298918B (en) 2008-07-11

Family

ID=39035686

Family Applications (3)

Application Number Title Priority Date Filing Date
TW096105257A TWI298923B (en) 2002-01-30 2003-01-30 Predictive, adaptive power supply for an integrated circuit under test
TW096105256A TWI298922B (en) 2002-01-30 2003-01-30 Predictive, adaptive power supply for an integrated circuit under test
TW092102299A TWI298918B (en) 2002-01-30 2003-01-30 Predictive, adaptive power supply for an integrated circuit under test

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW096105257A TWI298923B (en) 2002-01-30 2003-01-30 Predictive, adaptive power supply for an integrated circuit under test
TW096105256A TWI298922B (en) 2002-01-30 2003-01-30 Predictive, adaptive power supply for an integrated circuit under test

Country Status (3)

Country Link
CN (1) CN101101313A (en)
DE (1) DE60317876T2 (en)
TW (3) TWI298923B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582435B (en) * 2011-11-04 2017-05-11 吉時利儀器公司 Dc-ac probe card topology

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7924113B2 (en) * 2008-02-15 2011-04-12 Realtek Semiconductor Corp. Integrated front-end passive equalizer and method thereof
WO2010029597A1 (en) 2008-09-10 2010-03-18 株式会社アドバンテスト Tester and circuit system
CN103312550A (en) * 2012-03-06 2013-09-18 英华达(上海)科技有限公司 Dual-power communication test equipment and communication test method thereof
KR102637795B1 (en) * 2017-02-10 2024-02-19 에스케이하이닉스 주식회사 Semiconductor device
CN110308338B (en) * 2018-03-20 2021-09-24 明泰科技股份有限公司 Online voltage self-adaptive measuring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582435B (en) * 2011-11-04 2017-05-11 吉時利儀器公司 Dc-ac probe card topology

Also Published As

Publication number Publication date
TW200732685A (en) 2007-09-01
TW200729377A (en) 2007-08-01
TWI298923B (en) 2008-07-11
DE60317876D1 (en) 2008-01-17
TWI298922B (en) 2008-07-11
DE60317876T2 (en) 2008-10-23
TWI298918B (en) 2008-07-11
CN101101313A (en) 2008-01-09

Similar Documents

Publication Publication Date Title
KR101024872B1 (en) Predictive, adaptive power supply for an integrated circuit under test
US7342405B2 (en) Apparatus for reducing power supply noise in an integrated circuit
US6456103B1 (en) Apparatus for reducing power supply noise in an integrated circuit
TWI287095B (en) Compensation for test signal degradation due to DUT fault
US7521948B2 (en) Integrated circuit load board and method having on-board test circuit
US6885213B2 (en) Circuit and method for accurately applying a voltage to a node of an integrated circuit
TW200302539A (en) Predictive, adaptive power supply for an integrated circuit under test
KR20110043708A (en) Test apparatus and manufacturing method
US7129712B1 (en) Attofarad capacitance measurement
Singh et al. Power gate resistance and its effect on loadline: Measurement and analysis on Intel® Core™ SoCs
US20080022166A1 (en) Method and system for testing memory modules
KR100916763B1 (en) semiconductor device test system
JP2978845B2 (en) Electromigration evaluation circuit
JPH0980118A (en) Ic tester

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees