TWI293200B - Method of forming flash cell array having reduced word line pitch - Google Patents

Method of forming flash cell array having reduced word line pitch Download PDF

Info

Publication number
TWI293200B
TWI293200B TW95101685A TW95101685A TWI293200B TW I293200 B TWI293200 B TW I293200B TW 95101685 A TW95101685 A TW 95101685A TW 95101685 A TW95101685 A TW 95101685A TW I293200 B TWI293200 B TW I293200B
Authority
TW
Taiwan
Prior art keywords
layer
forming
mask
oxide
flash memory
Prior art date
Application number
TW95101685A
Other languages
Chinese (zh)
Other versions
TW200729415A (en
Inventor
Chung Zen Chen
Original Assignee
Elite Semiconductor Esmt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elite Semiconductor Esmt filed Critical Elite Semiconductor Esmt
Priority to TW95101685A priority Critical patent/TWI293200B/en
Publication of TW200729415A publication Critical patent/TW200729415A/en
Application granted granted Critical
Publication of TWI293200B publication Critical patent/TWI293200B/en

Links

Description

1293200 18424twf.d〇c/y 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種快閃記憶體裝置和製造所述裝置 的方法。 【先前技術】 # NAND (反及)型·R〇M (紙可抹除可程式化唯 ^記憶體)或㈣記憶體已被開發以用於可攜式音樂播放 器、行動電話、數位相機等的固態大量儲存應用,且其已 被認為是硬碟驅動器(HDD)的替代品。因此,希望這些 裝置具有更大的容量、更低的成本和用於小型化、增加^ 理速度的縮小的晶胞大小。1293200 18424twf.d〇c/y IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a flash memory device and a method of fabricating the same. [Prior Art] # NAND (reverse) type · R〇M (paper erasable programmable memory) or (4) memory has been developed for portable music players, mobile phones, digital cameras Solid state mass storage applications, etc., and have been considered as replacements for hard disk drives (HDDs). Therefore, it is desirable for these devices to have greater capacity, lower cost, and reduced cell size for miniaturization and increased processing speed.

通常設計NAND裝置結構使得:(1)每一記憶體晶 胞利用-個具有-浮動閘極和—控制閘極的電晶體;和⑵ 在配置於一基底上的記憶體晶胞陣列與相應的位元線之間 提供單-的接觸窗(contact)。因此,如與傳統的EEpR〇M 相比’儘管晶胞間隔通常由選定的光微影 (photolithography)製程所限制,但縮小了記憶體晶胞所 佔據的面積,並可提高積集密度。 美國專利第5,050,125 「間枬專利)揭示 了-種非揮發性半導體記憶體’其中每—位元線包含一串 快閃記憶體晶胞陣列(如‘125專利的圖4的橫截面圖所 示)。晶胞大小或面積由浮動間極和相鄰的絕緣區域的寬 度(圖4中的X方向)及相_的控制閘極和相鄰的絕緣 區域的寬度(Y方向)所界定,即由浮動閘極與控制問極 1293200 18424twf.doc/y 所;ΐ重疊面積?界定。‘125專利的每-晶胞的晶胞大小 以下,其中“f”為光微影成像的最 {,', 125專利的製造製程中使用的光微影 二辟*)技術獲得的最小特徵尺寸 )或線兔。目前所知最小特徵尺寸約為9〇nm。结論假 =,閘㈣最小寬度為約1F,且浮_極陣列中相鄰的 :最間隔的最小寬度也為㈣’同時控制’ =二且相鄰的控制閘極之間的最小間隔為 八古Γ未者母一晶胞在x方向至少佔據最小值2F,且 在方向至少佔據最小值2F到2.5F。The NAND device structure is typically designed such that: (1) each memory cell utilizes a transistor having a floating gate and a control gate; and (2) a memory cell array disposed on a substrate and corresponding A single-contact is provided between the bit lines. Therefore, as compared with the conventional EEpR 〇 M, although the cell spacing is usually limited by the selected photolithography process, the area occupied by the memory cell is reduced, and the accumulation density can be increased. U.S. Patent No. 5,050,125, the entire disclosure of which is incorporated herein by reference in its entirety the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all The cell size or area is defined by the width of the floating interpole and the adjacent insulating region (X direction in Figure 4) and the width of the control gate of the phase and the adjacent insulating region (Y direction). , that is, by the floating gate and the control pole 1293200 18424twf.doc / y; ΐ overlap area? Defined. '125 patent per unit cell below the unit cell size, where "f" is the most optical imaging ', the minimum feature size obtained by the technology used in the manufacturing process of the '125 patent, or the wire rabbit. The minimum feature size is currently known to be about 9 〇 nm. Conclusion false =, the minimum width of the gate (four) is Approximately 1F, and adjacent in the floating-pole array: the minimum width of the most spaced is also (four) 'simultaneous control' = two and the minimum spacing between adjacent control gates is eight-year-old. The x direction occupies at least a minimum of 2F and at least a minimum of 2F to 2.5F in the direction.

Haspeslagh的美國專利第6,58〇12〇號提出了一種具 trt的字元線間距的裝置,但利用了複雜的多組字元線 形成製程。 加快閃記憶 因此,希望利用可容易地積集的製程來增 體陣列的積集密度。 曰 【發明内容】 一種形成NAND快閃記憶體裝置的方法包含··在一基 底上形成-控制閘極多晶⑦層;在所述控制閘極多晶石夕層 2成-遮罩層,所述遮罩層包括界定快閃記憶體裝置二 =數個間隔的字元線的遮罩圖案,所述字元線彼此間隔一 段小於最小特徵尺寸的距離,所述最小特徵尺寸可於 2至少-部分所述遮罩層圖案的—選擇的光微影製程所 成像’和通過遮罩層蝕刻控制閘極多晶矽層。 1293200 18424twf.doc/y /讓本發明之上述和其他目的、特徵和優 易懂,下文特舉較佳實施例,並配合 〜 明如τ。 〜賴_ ’作詳細說 【實施方式】 參看圖1,所繪示係-電性可抹除可 ,R0⑷’包含-形成於晶片基底上的記 陣歹丨卜如所屬領域的技術人員將認朗,圖 =閃記憶體陣列的-部分的電路圖。譬如行和列解 ==路和其他控制電路的各種元件均未顯示,以^ 示變得模糊不清。然而,這些組件 的技術人貝所熟知的。 、义 謂、體_紐魏_制記紐 的位元線则、犯、…、BLm^t ^ =中晶胞位置的列數’且“m”表示其行數。平行的字= 便二0、、WU、…、WLn絕緣形成於基底上,以 2形成於母-晶胞位置上的快閃記憶體晶胞‘形成押 =閘極。選擇電晶體SLG、SL1等和gslq、gsu等^ 於位元線BL的各端。 —將一示範性記憶體陣列劃分為很多記憶體“區塊”。 區塊具有若干“頁’,。―頁具有很多記憶體“晶 二。例如’ 1 Gb的記憶體具有聰個區塊,且一個區 ,具有64頁。每一頁具有2K位元組(即16κ位元)。 —子兀線含有—頁❹頁。在位⑽方向上每-區塊提供 晶胞串或兩個晶胞串。一晶胞串具有16位元、U位元 1293200 18424twf.doc/y Ϊ⑷?;。譬如以下所討論_職記紐晶胞的情況 下’ 存—個位元’或儲存兩個位元。 在Λ知例中,私式化、抹除和讀取操作條件如下: 抹除 _程式化 讀取 ονU.S. Patent No. 6,58,12, to Hasssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss Accelerating Flash Memory Therefore, it is desirable to use an easily accumulable process to increase the density of the array. BRIEF SUMMARY OF THE INVENTION A method of forming a NAND flash memory device includes: forming a gate polycrystalline 7 layer on a substrate; and forming a gate layer on the control gate polysilicon layer The mask layer includes a mask pattern defining two or more spaced word lines of the flash memory device, the word lines being spaced apart from each other by a distance less than a minimum feature size, the minimum feature size being at least 2 - part of the mask layer pattern - selected by the photolithography process - and controlling the gate polysilicon layer by mask layer etching. The above and other objects, features and advantages of the present invention are set forth in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; 〜 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Lang, figure = circuit diagram of the - part of the flash memory array. For example, the row and column solutions == the various components of the circuit and other control circuits are not displayed, and the display becomes blurred. However, the technical personnel of these components are well known. , meaning, body _ New Wei _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Parallel words = 2, 0, WU, ..., WLn are formed on the substrate, and the flash memory cell formed at the mother-cell position is formed as a gate. The transistors SLG, SL1, etc. and gslq, gsu, etc. are selected at the respective ends of the bit line BL. - Divide an exemplary memory array into a number of memory "tiles". A block has a number of "pages". The page has a lot of memory "crystal two." For example, a 1 Gb memory has a Cong block and a zone with 64 pages. Each page has 2K bytes (ie 16 kbits). — The sub-line contains a page. A cell string or two cell strings are provided per block in the bit (10) direction. A cell string has 16 bits, U bit 1293200 18424twf.doc/y Ϊ(4)?;. For example, in the case of the _ in the case of the New Zealand cell, the 'storage-bits' or two bits are stored. In this example, the conditions for private, erase, and read operations are as follows: Erase _ Stylized Read ον

選擇的WL 未選擇的WL 0 V 20 V&lt; 0V 4.5 VSelected WL Unselected WL 0 V 20 V&lt; 0V 4.5 V

程式化1) 浮動 本體〔bulk) 20 V VCC ον Ν/Α Ν/Α 在這一程式化/抹除方法中,將Fowler-Nordheim ( FN ) 穿隧用於NMOS NAND快閃記憶體晶胞的程式化和抹 除。在程式化期間,將一較高的正電壓施加於選擇的晶胞 的字元線上。將一中電壓施加到未選擇的字元線上以打開 這些晶胞。將接地電壓或0 V施加到位元線以寫入資料 “〇”,而施加VCC以寫入資料“Γ。將0V傳送到選擇 的晶胞的通道,執行FN穿随以將電子從通道注入到浮動 閘極。當資料為“Γ時,字元線電壓將通道耦接起來,且 存在可忽略的FN穿隧電流,因此晶胞未被程式化。對於 抹除而言,以高電壓偏壓所述晶胞的P型井,並將一選擇 1293200 18424twf.doc/y 區塊中的所有字元線接地。電子從浮動閘極FN穿隧到p 型井基底。 圖2繪不為一晶胞串的側橫截面圖。所述晶胞串包括 選擇電晶體20a、20b,其中複數個NM〇s浮動閘極快閃 晶胞電晶體18形成於選擇電晶體2〇a、2〇b之間。儘管選 擇電晶體20a、20b顯示為雙閘電晶體,担也可如圖1 = 使用單閘電晶體。 μ 在-貫施例中,基底10包含—ρ型換雜石夕基底, 型摻雜矽基底具肴形成於其中晶胞陣列區域中的三 (Wdl)區域12。所述三井包括一圍繞一 ρ型井:η 型井。例如’替代實施例可仙_雜的絲和替 配置。儘官本文已結合NMQS快閃記憶體晶胞進行了描 述,但所述記紐晶胞也可包含形成於—P型基底上 PMOS晶胞。閘極介電層16熱生長於基底1()上,且 在約70〜u〇A之間的Si〇2。源極_ Ϊ = +植入區域14,其形成於晶胞18之 間且形成於晶胞18與選擇電晶體施、施之間一 實施例中,N+植入區域14包含濃度為約ω atoms/cm3的砷或磷之摻質。 每-晶胞18包含一形成於閘極介 電 動,22,較佳地包含—具有厚度約3(ΚΜ_Γ=的 夕曰曰石夕層,且更佳地約· Α的多晶料 成 於浮動閘極22上並包含一埶氧化 ’冤層24形成 110〜140Α的⑽^目士 譬如形成為厚度約 的⑽,或具有約110〜刚Α之間的有效氧化 1293200 18424twf.doc/y 物厚度的ONO(氧化物/氮化物/氧化物)層。可使用lpcvD (低壓化學氣相沉積)製程沉積所述ΟΝΟ層,其具有一 從Sil^CLVO2氣體沉積約20 Α厚度的頂部氧化層,具有 一從SiHeh/O2氣體沉積約40 A厚度的底部氧化層,且 具有一從Sil^CIVN2氣體沉積約80 A厚度的SiN層。控 制閘極26形成自若干平行晶胞串共用的字元線,且控制閘 極26形成於介電層24上,且較佳地包含一具有約 700〜1000 A之間厚度的多晶石夕層28。石夕化物層28較佳地 包含一鎢(W)矽彳匕物層,可視情況形成於控制閘極/字元 線26上。 平坦化絕緣層32形成於所述晶胞串上,其可包含一個 或一嗰•以上個別介電層。通過介電層32形成連接開口 (hole)並以多晶矽插塞3〇填充,以與選擇電晶體2〇電 連接。導電位元線36,例如包含鎢,其形成於第二 絶緣層34上,並通過導電介層窗(via) 38耦接到多晶矽 插塞30。 所屬領域的技術人員將顯而易見,當控制閘極26和矽 化物層28 (當有其存在時)形成如@ i中所示橫過若干晶 胞事的字元線時,每一晶胞的浮動閘極22和介電層以由 -絕緣層圍繞,而此絕緣層將個別晶胞串中的晶胞;此分 離並與相鄰的晶胞串的晶胞分離。 如圖2所示,每一電晶體晶胞18具有一通道長度f, 其由用於形成兄憶體陣列圖案的光微影製程所能成像的最 小尺寸界定。每-選擇電晶體2〇a與勘車交佳地具有一長 1293200 18424twf.doc/y 度2F(以避免擊穿問題、最小化源極到汲極的漏電流等), 並與各自的插基30間隔距離;p。每一插塞具有一間距2F。 重要的是’每-浮動閘極晶胞18與相鄰的浮動閘極晶胞 18間隔-段小於F的距離“x”,並與相鄰的選擇電晶 體20 (對於末端晶胞18而言)間隔此距離。總的晶胞串 長度等於,8F+mF+(m+l)X,其巾“ m”為晶胞_中晶胞的 總數,通常為16、32或64。在一實施例中,χ等於〇 〇3μπ1 且F等於〇·〇9 μιη並存在16個晶胞,故總的晶胞串長度僅 為24F+(17/3)F^7F。如在現有技術中,如果χ等於F, 那麼總的a曰胞串長度將為41F。另外,再假設χ等於i/sf, 所述晶胞大小約為(F+X)2F (或約(2.66F2))而非4-5F2。 參淆圖3A〜3F描述了一種形成圖2的緊密間隔的字元 線^構的不範性方法。圖3A〜3F說明用於創造記憶體結構 的剷4又(front-end-of-lme ’ FEOL)製程步驟。在這裡沒有 討論用於形成定址個別記憶體晶胞所需的内連線電路的製 程步驟,即形成諸如接觸窗、介層窗、金屬線和相應的絕 緣層的後段(back&gt;end_of-line,BE0L)製程。 參看圖3A,首先在閘極介電層16上形成一用於形成 個別記憶體晶胞電晶體的材料堆疊。具體地說,將一浮動 ,極多晶矽層m沉積為厚度在約30Θ〜1000 A之間。接 著,在多晶矽層122上形成ΟΝΟ介電層124。接著,將控 ,間極多晶秒層126沉積為厚度在約7GG〜10()() Α之間。 最後”儿積或形成一鎢石夕化物層128於控制閘極 126上’使其厚度為約300 A。 曰 1293200 18424twf.doc/y 參看圖3 B,沉積第一氧化層或將其形成於矽化物記憶 體晶胞堆疊(即,層122、124、126、128)上,並將其^ 案化和蝕刻以形成被間隔以界定第一組間隔字 體晶胞的第-組氧化物遮罩13G。在—實施二、如氧= f^130的厚度在約_〜1 A之間,且更佳地為約顧 。氧化物鮮13G由-使用光微料城所成像的光阻遮 ,來圖案化和_的氧化層形成,其中“F” #可成像的 =、尺寸。每一遮罩m具有—寬度F。接著,將一腿 沉積於所述結構上,即沉積於氧化物料⑽和石夕 2層128上。譬如通過低壓化學氣相沉積(LPCVD)製 3:0 AS ΪΪ!3 2沉積為厚度小於F,且在一實施例中為約 F+2X。Ϊ貫施例中’氧化物料13G區彼此間隔—段距離Stylized 1) Floating body [bulk] 20 V VCC ον Ν/Α Ν/Α In this stylization/erasing method, Fowler-Nordheim (FN) is tunneled for NMOS NAND flash memory cells. Stylized and erased. During the stylization, a higher positive voltage is applied to the word line of the selected unit cell. A medium voltage is applied to the unselected word lines to turn on these cells. Apply a ground voltage or 0 V to the bit line to write the data "〇", and apply VCC to write the data "Γ. Transfer 0V to the channel of the selected cell, perform FN pass to inject electrons from the channel Floating gate. When the data is “Γ, the word line voltage couples the channel and there is a negligible FN tunneling current, so the unit cell is not programmed. For erasing, the P-well of the unit cell is biased at a high voltage and all of the word lines in a 1293200 18424 twf.doc/y block are grounded. Electrons tunnel from the floating gate FN to the p-type well substrate. Figure 2 depicts a side cross-sectional view of a cell string. The cell string includes select transistors 20a, 20b, wherein a plurality of NM 〇s floating gate flash cell transistors 18 are formed between the select transistors 2A, 2B. Although the selected transistors 20a, 20b are shown as double-gate transistors, the load can be as shown in Figure 1 = using a single-gate transistor. In the embodiment, the substrate 10 comprises a p-type yttrium substrate, and the doped yttrium substrate is formed in a three (Wdl) region 12 in the cell array region. The three wells include a well surrounding a p-type well: an n-type well. For example, the 'alternative embodiment' can be used in a silky and alternate configuration. This article has been described in connection with the NMQS flash memory cell, but the cell can also include a PMOS cell formed on a P-type substrate. The gate dielectric layer 16 is thermally grown on the substrate 1() and is between about 70 and about 〇A. Source _ Ϊ = + implant region 14, formed between unit cells 18 and formed between unit cell 18 and selective transistor application, N+ implant region 14 comprising a concentration of about ω atoms /cm3 arsenic or phosphorus dopant. Each of the unit cells 18 includes a gate dielectric, 22, preferably comprising - a polycrystalline material having a thickness of about 3 (ΚΜ_Γ =, and more preferably about Α The gate 22 includes a tantalum oxide layer 24 to form 110 to 140 Å (10) ^ mesh, for example, formed to a thickness of about (10), or has an effective oxidation between about 110 and gangue 1293200 18424 twf. doc / y thickness An ONO (oxide/nitride/oxide) layer. The ruthenium layer can be deposited using an lpcvD (low pressure chemical vapor deposition) process having a top oxide layer deposited from a Sil^CLVO2 gas of about 20 Å thick. A bottom oxide layer having a thickness of about 40 A is deposited from the SiHeh/O2 gas, and has a SiN layer deposited from a Sil^CIVN2 gas to a thickness of about 80 A. The control gate 26 is formed from a word line common to a plurality of parallel unit strings. The control gate 26 is formed on the dielectric layer 24, and preferably comprises a polycrystalline layer 28 having a thickness between about 700 and 1000 A. The lithiation layer 28 preferably comprises a tungsten (W) A layer of germanium, optionally formed on the control gate/word line 26. Flattening the insulating layer 32 On the cell string, it may comprise one or more individual dielectric layers. The connection hole is formed through the dielectric layer 32 and filled with the polysilicon plug 3〇 to select the transistor 2 The conductive bit line 36, for example comprising tungsten, is formed over the second insulating layer 34 and coupled to the polysilicon plug 30 via a conductive via 38. It will be apparent to those skilled in the art that when controlling Gate 26 and germanide layer 28 (when present) form a word line across several cell events as shown in @i, floating gate 22 and dielectric layer of each cell by - The insulating layer surrounds the insulating layer to separate the unit cells in the individual cell strings; this separates and separates from the unit cells of adjacent cell strings. As shown in Figure 2, each transistor cell 18 has a channel length f, which is defined by the minimum size that can be imaged by the photolithography process used to form the pattern of the syllabic body array. Each-selective transistor 2〇a has a length of 1293200 18424twf.doc/y degrees 2F with the survey vehicle. (to avoid breakdown problems, minimize source-to-drain leakage current, etc.), and with their respective interposers 30 Separation distance; p. Each plug has a pitch of 2F. It is important that 'every-floating gate cell 18 is spaced from adjacent floating gate cell 18--the distance "x" is less than F, and phase The adjacent selection transistor 20 (for the terminal cell 18) is spaced apart by this distance. The total cell string length is equal to, 8F + mF + (m + l) X, and the towel "m" is the unit cell_medium cell The total number is usually 16, 32 or 64. In one embodiment, χ is equal to 〇〇3μπ1 and F is equal to 〇·〇9 μιη and there are 16 unit cells, so the total unit string length is only 24F+ (17/3) ) F^7F. As in the prior art, if χ is equal to F, then the total a cell string length will be 41F. In addition, assuming that χ is equal to i/sf, the unit cell size is approximately (F + X) 2F (or approximately (2.66 F2)) instead of 4-5F2. 3A to 3F describe an exemplary method of forming the closely spaced word lines of Fig. 2. 3A to 3F illustrate a process step for creating a front-end-of-lme ' FEOL process for a memory structure. The process steps for forming the interconnect circuitry required to address the individual memory cells are not discussed herein, i.e., forming the back segments such as contact windows, vias, metal lines, and corresponding insulating layers (back&gt;end_of-line, BE0L) Process. Referring to Figure 3A, a stack of materials for forming individual memory cell transistors is first formed on gate dielectric layer 16. Specifically, a floating, very polycrystalline layer m is deposited to a thickness of between about 30 Å and 1000 Å. Next, a tantalum dielectric layer 124 is formed over the polysilicon layer 122. Next, the controlled, interpolar polycrystalline layer 126 is deposited to a thickness between about 7 GG and 10 () () Α. Finally, "or a tungsten-lithium layer 128 is formed on the control gate 126" to a thickness of about 300 A. 曰 1293200 18424 twf.doc/y Referring to Figure 3B, a first oxide layer is deposited or formed The telluride memory cell stacks (i.e., layers 122, 124, 126, 128) are patterned and etched to form a first set of oxide masks that are spaced apart to define a first set of spaced font cells. 13G. In the implementation of two, such as oxygen = f ^ 130 thickness between about _ ~ 1 A, and more preferably about. Oxide fresh 13G by - using the light micro-material imaging of the photoresist, To form a patterned oxide layer, where "F" #imageable =, size. Each mask m has a width F. Next, a leg is deposited on the structure, ie deposited on the oxide material (10) And on the 2nd layer 128 of the Shixi. For example, 3:0 AS ΪΪ!3 2 is deposited by low pressure chemical vapor deposition (LPCVD) to a thickness less than F, and in one embodiment is about F+2X. 'Oxide material 13G area is separated from each other - segment distance

F 離輕γΓ x顧2中所示衫線之_距離。所述距 離確U絲㈣程界定,且討將舰尺寸狀為小至 所述餘刻製程。在-示範端點檢測可用於以 反應氣體的各向異性酬 檢測到氧介爲卩士产j衣杈用於蝕刻SiN層132。1 厚於形成於;間的;==程。因為所述綱 鄰的所述氧化物部分的s二―】,測到 間隙壁132,具有一等於“γ 2就僅剩餘一部分。Si] 隔,而約與層132的沉積厚度::度,其係字元線間之&amp; 12 1293200 18424twf.doc/y 參看圖3D,接著將一第二氧化層(未顯示)沉積於圖 :3C的結^構上填充間隙壁132,之間的開口間隔,並將其回蝕 以保留第二組間隔氧化物遮罩134。氧化物遮罩13〇繼續 存在,但將其指定為13〇’,因為在通過第二氧化層曝露間 隙壁132’期間其可被稍微蝕刻。每一氧化物部分130,、134 具有一等於F的寬度,並通過一寬度等於χ的間隙壁132, 與一相鄰的氧化物部分間隔開,其中X小於F。層13〇,和 &gt; 134共同形成一氧化物遮罩,以用於形成間隔的字元線和 記憶體晶胞。儘管只顯示了 U個氧化物遮罩部分,但應瞭 解可提供16、32或64個部分來用於形成晶胞串中的字元 線數’且可提供額外氧化物部分來用於形成選擇電晶體(未 顯示% 在替代實施例中,遮罩130、134由SiN形成,且層 132 (且因此間隙壁132,)由一氧化物形成。 曰 參看圖3E,移除SiN間隙壁132,,並將圖3D的氧化 物遮罩層用於蝕刻穿透層122、124、126和128,以形成 圖2的間隔記憶體晶胞i8,其具有寬度f且彼此間隔一段 距離X。可將一使用Ar/CF4反應溶液的乾蝕刻製程用於移 除SiN間隙壁132’。可將一使用Cb/HBr溶液的乾蝕刻製 程用於蝕刻控制閘極多晶矽層126,且可將相同的溶液用 於蝕刻矽化物層128。可將一使用CHFVCHFVHe溶液的乾 蝕刻製程用於蝕刻ΟΝΟ介電層124。最後,可將一使用F is the distance from the line of the γΓ x Gu 2 shown in 2. The distance is defined by the U-wire (four) process, and the size of the ship is as small as the remaining process. The in-experimental endpoint detection can be used to detect the oxygen in the anisotropy of the reaction gas for the etching of the SiN layer 132. 1 thicker than the formation; Because of the s ii of the oxide portion of the scheme, the spacer 132 is detected to have a thickness equal to "γ 2 and only a portion of the Si." spacer, and the deposition thickness of the layer 132 is: Between the lines of the word lines &amp; 12 1293200 18424twf.doc / y Referring to Figure 3D, a second oxide layer (not shown) is deposited on the structure of Figure 3C to fill the gap 132, the opening between Spaced and etched back to retain a second set of spaced oxide masks 134. Oxide mask 13 〇 continues to exist, but is designated 13 〇 ' because during the exposure of the spacers 132 ′ through the second oxide layer It may be slightly etched. Each oxide portion 130, 134 has a width equal to F and is spaced apart from an adjacent oxide portion by a spacer 132 having a width equal to χ, where X is less than F. 13〇, and &gt; 134 together form an oxide mask for forming spaced word lines and memory cells. Although only U oxide mask portions are shown, it should be understood that 16, 32 may be provided. Or 64 parts to form the number of word lines in the cell string' and provide additional oxidation Partially used to form the selective transistor (not shown in the alternative embodiment, the masks 130, 134 are formed of SiN, and the layer 132 (and thus the spacers 132,) is formed of an oxide. 曰 See Figure 3E, shift In addition to the SiN spacers 132, the oxide mask layer of FIG. 3D is used to etch the transmissive layers 122, 124, 126, and 128 to form the spacer memory cells i8 of FIG. 2 having a width f and spaced apart from each other. A distance X. A dry etching process using an Ar/CF4 reaction solution can be used to remove the SiN spacer 132'. A dry etching process using a Cb/HBr solution can be used to etch the gate polysilicon layer 126, and The same solution can be used to etch the vaporized layer 128. A dry etching process using a CHFVCHFVHe solution can be used to etch the germanium dielectric layer 124. Finally, one can be used

Ch/HBr溶液的乾蝕刻製程用於蝕刻浮動閘極多晶矽層 122 〇 θ 13 1293200 18424twf.doc/y 如圖3F所示’如以一蝕刻製程 134,並將植入區域14形成於美 乙皁口丨刀1州和 個別辦體晶胞18。基底1G中相鄰的且在其間的 也可將-替代程式化/抹除方法用 胞陣列,所述方法通過BTBT (食匕〕己U體日日 Q月匕贡間牙隧)利用熱電洞 &gt;入以在程式化顧移除所儲存的電子/穿紐生在源極/ 沒極(S/D)接面與穿隨氧化物的交叉點。對n+s/D縣 ,接面反偏壓至-定程度,使得發生軟料或齊納⑶二 崩潰。當電子在S/D和交叉點從價帶穿隨到導帶時,所述 pn接面具有電流。電洞產生於價帶巾,且浮㈣極通過在 控制閘極上施加負電壓而吸引電洞。所述控制閘極上的負 電壓也•增強了 BTBT電流。如果沒有程式化所存取的晶 胞,那麼以0V偏壓位元線,且不反偏壓S/D接面。在: 條件下沒有BTBT穿隧電流。通過使一選擇區塊中的所有 晶胞具有一更高的臨界值來執行抹除。在抹除期間,電子 通過FN穿隧從通道穿隧到浮動閘極。以下表格中總結了 程式化、抹除和讀取條件。The dry etching process of the Ch/HBr solution is used to etch the floating gate polysilicon layer 122 〇 θ 13 1293200 18424 twf.doc / y as shown in FIG. 3F 'as an etching process 134 , and the implanted region 14 is formed in the US Scythe 1 state and individual cell unit 18. Adjacent and interposed in the substrate 1G, a cell array can also be used instead of the stylization/erasing method, which utilizes a thermoelectric hole through the BTBT (food 匕) U body day Q 匕 匕 间 牙 tooth tunnel &gt; Into the intersection of the stored/exposed (S/D) junction and the wear-through oxide in the program. For n+s/D counties, the junction is reverse biased to a certain degree, causing the soft material or Zener (3) to collapse. The pn junction has current when electrons pass from the valence band to the conduction band at the S/D and the intersection. The hole is generated by the valence band, and the floating (four) pole attracts the hole by applying a negative voltage to the control gate. The negative voltage on the control gate also enhances the BTBT current. If the accessed cell is not programmed, the bit line is biased at 0V and the S/D junction is not reverse biased. Under: conditions there is no BTBT tunneling current. Erasing is performed by having all of the cells in a selected block have a higher critical value. During erasing, electrons tunnel from the channel to the floating gate through FN tunneling. Stylized, erased, and read conditions are summarized in the following table.

抹除 程式化 讀取 選擇的WL 20 V -5 V 0 V 未選擇的WL 20 V 10 V , V/ V 4 5 V SSL VCC 10 V 4.5 V GSL 0 V 浮動 4.5 V BL(程式化〇) 0 V 7 V 14 1293200 18424tw£d〇c/yErase the programmed read selection of WL 20 V -5 V 0 V Unselected WL 20 V 10 V , V/ V 4 5 V SSL VCC 10 V 4.5 V GSL 0 V Floating 4.5 V BL (stylized 〇) 0 V 7 V 14 1293200 18424tw£d〇c/y

熱電洞注入產生陷入穿隧氧化声 式化·抹除耐久特性。電二=’並可降低程 其影響用於程式制通道熱電子注二m邊緣附近, 將降低汲極附近的電場,並使得熱電子效=洞, 因為所述抹除於整個穿隧氧化物 :而’ 二方法中這一機制=低因 _uN0R快閃記憶體中可引起干 壓來自位元線。假設例如選擇WL2並程式化一晶胞。WL〇 和WL1是在選擇的字元線與位元線之間未選擇的字元 線。將WLO、WL1和SSL拉到10 V。將WL2設定為—5 V。 體中不會弓丨起干擾。未選擇的字元線= 元線電壓通過。未轉时辑上的晶胞 不具有謂了干擾。未獅的區塊也具有-選擇電晶體以 保護所述晶胞。所述位元線電壓不能傳送到所述晶胞。為 確保S/D接面被反偏壓,因此S/D需要一正偏壓。所述偏 位元線上的7 V偏壓將通過到WL1與WL2之間的S/D區 域。所述S/D區域將具有BTBT穿隧電流。經負偏壓的 WL2將電洞吸引到這一晶胞的浮動閘極。由於WL2被負 偏壓且偏壓低於抹除狀態的Vth,因此所述晶胞關閉。因 此,所述7 V偏壓將不通過到WL3和其他字元線。 15 1293200 18424twf.doc/y 圖4A〜4D說明以上結合圖3A〜3F而描述的製程,其 適用於例如Haspeslagh的美國專利第6,580,120號中所描 述的§ONOS (矽/ΟΝΟ/矽)記憶體晶胞的形成,所述專利 以引用的方式全文併入本文中。在圖4Α〜4D中,與圖 3Α〜3F中類似的元件符號指的是類似的結構。 如圖4Α中所示,一 ΟΝΟ層200形成於基底10上。 ΟΝΟ層200較佳地具有一有效氧化物厚度,其約在 110〜140 Α之間。層200包含一第一絕緣層202、一儲存 層204和一第二絶:緣層206。可使用LPCVD (低壓化學氣 相沉積)製程沉積所述ΟΝΟ層,其具有一從SiH2CL2/02 氣體沉積約20 A厚度的頂部氧化層206,具有一從 SiH2eLV〇2氣體沉積約40 A厚度的底部氧化層202,且具 有一從SiHfl^/N2氣體沉積約80 A厚度的SiN儲存層 204 〇 剩餘製程與以上結合圖3A〜3F所描述的基本上相 同。將一控制閘極多晶矽層126形成於層200上。視情況 形成矽化物層128,之後形成第一組間隔的氧化物遮罩13〇 和 SiN 層 132。 參看圖4B,蝕刻SiN層132以形成siN間隙壁132,。 在圖4C中,沉積並蝕刻一第二氧化層以曝露SiN間隙壁 132’,留下第二組間隔的氧化物遮罩134。如圖4D中所示, 移除所述SiN間隙壁132’,並接著將所述遮罩組用於= 穿透矽化物層128和頂部多晶矽層126。 人 1293200 18424twf.doc/y 在貫施例中,圖4D表示最終的晶胞結構,儘管所示 的遮罩部分130’和134被移除。在替代實施例中,從〇N〇 層20Q到基底10繼續蝕刻製程。在此替代實施例中,形成 植入區域(如以上圖3F中所示)並將FN穿隧用於進行程 式化/,除。以下表格中顯示了用於植入實施例的程式化/ 抹除/讀取條件以用於NMOS晶胞。&lt;The hot hole injection produces a trapping tunneling oxidation and erasing durability. The electric two = 'and can reduce the effect of the process on the edge of the thermoelectric injection of the second channel, which will lower the electric field near the drain and make the hot electron effect = hole because the erase is over the entire tunnel oxide : And 'two methods in this mechanism = low due to _uN0R flash memory can cause dry pressure from the bit line. Suppose, for example, that WL2 is selected and a unit cell is programmed. WL 〇 and WL1 are unselected word lines between the selected word line and the bit line. Pull WLO, WL1, and SSL to 10 V. Set WL2 to -5 V. There is no interference in the body. Unselected word line = Yuan line voltage passed. The unit cell on the set when it is not transferred does not have the interference. The lion-free block also has a -selective transistor to protect the unit cell. The bit line voltage cannot be transferred to the unit cell. To ensure that the S/D junction is reverse biased, the S/D requires a positive bias. The 7 V bias on the bias line will pass through the S/D region between WL1 and WL2. The S/D region will have a BTBT tunneling current. The negatively biased WL2 attracts the hole to the floating gate of this unit cell. Since WL2 is negatively biased and the bias voltage is lower than the Vth of the erased state, the cell is turned off. Therefore, the 7 V bias will not pass to WL3 and other word lines. 15 1293200 18424 twf.doc/y Figures 4A to 4D illustrate the process described above in connection with Figures 3A to 3F, which are applicable to § ONOS (矽/ΟΝΟ/矽) memories as described in U.S. Patent No. 6,580,120 to Haspeslagh. Formation of bulk unit cells, which is herein incorporated by reference in its entirety. In FIGS. 4A to 4D, similar component symbols as in FIGS. 3A to 3F refer to a similar structure. As shown in FIG. 4A, a tantalum layer 200 is formed on the substrate 10. The tantalum layer 200 preferably has an effective oxide thickness of between about 110 and 140 Torr. Layer 200 includes a first insulating layer 202, a storage layer 204, and a second insulating layer 206. The tantalum layer may be deposited using a LPCVD (Low Pressure Chemical Vapor Deposition) process having a top oxide layer 206 deposited from SiH2CL2/02 gas to a thickness of about 20 A, having a bottom deposited from SiH2eLV(R) 2 gas to a thickness of about 40 A. Oxide layer 202, and having a SiN storage layer 204 deposited from SiHfl^/N2 gas to a thickness of about 80 A, is substantially the same as described above in connection with Figures 3A-3F. A control gate polysilicon layer 126 is formed over layer 200. A vaporized layer 128 is formed as appropriate, after which a first set of spaced oxide masks 13 and SiN layers 132 are formed. Referring to FIG. 4B, the SiN layer 132 is etched to form the SiN spacers 132. In Figure 4C, a second oxide layer is deposited and etched to expose the SiN spacers 132' leaving a second set of spaced oxide masks 134. As shown in Figure 4D, the SiN spacers 132' are removed and then the mask set is used for = penetrating vaporization layer 128 and top polysilicon layer 126. Person 1293200 18424twf.doc/y In the example, Figure 4D shows the final unit cell structure, although the illustrated mask portions 130' and 134 are removed. In an alternate embodiment, the etch process continues from 〇N 层 layer 20Q to substrate 10. In this alternative embodiment, an implanted region (as shown in Figure 3F above) is formed and FN is tunneled for programming/dividing. Stylized/erase/read conditions for implant embodiments are shown in the table below for NMOS cells. &lt;

ί^___ 程式化 讀取 浮動 浮動ί^___ stylized read floating float

12〜15 V 6〜9 V 6〜9 V 0 V 0 V 4.5 V 4.5 V 4.5 V12~15 V 6~9 V 6~9 V 0 V 0 V 4.5 V 4.5 V 4.5 V

選擇的WL 未選擇的WL SSL GSL… BL (程式化〇) BL (程式化1 本體 果不存在植入區域’那麼將源極侧注入(8〇瓜^以如 injection)用於進行程式化,並將FN穿随用於抹除。以引 用的方式全部併人本文巾的美國專利帛6,58(),12()號中描 述了所述程式化/抹除方法。‘ 12〇專利中也描述了一示範性 讀取條件。 良T、上所述’在本發明提出一種形成具有縮小的間隔的 字元線及其形成晶胞的方法,此方法具有—較佳積集的製 17 1293200 18424twf.doc/y 程。^小的晶胞間隔改善積集密度,借此縮小裝置大小和/ 或容量。 雖然本發明已以較佳實施例揭露如上,然其 限疋本發明,任何熟習此技藝者,在不脫The selected WL unselected WL SSL GSL... BL (stylized 〇) BL (the stylized 1 ontology does not exist in the implanted area' then the source side is injected (8 〇 ^ ^ as injection) for stylization, And the use of the FN is used for erasing. The stylized/erasing method is described in U.S. Patent No. 6,58(), 12(), the entire disclosure of which is incorporated by reference. An exemplary reading condition is also described. A good T, described above, in the present invention, a method of forming a word line having a reduced interval and forming a unit cell thereof, the method having a preferred accumulation system 1293200 18424twf.doc/y. The small cell spacing improves the accumulation density, thereby reducing the size and/or capacity of the device. Although the invention has been disclosed above in the preferred embodiment, it is limited to the invention, any familiarity This artist is not taking off

1σ範圍内’當可作些許之更動與潤飾,因此本發日 fe圍當視後附之申請專利範圍所界定料準。 ” X 【圖式簡單說明】Within the scope of 1σ, when a few changes and refinements can be made, the date of this application is defined by the scope of the patent application. ” X [Simple description]

圖1為-具有複數個NAND記憶體晶胞的 的一部分電路圖。. 「〜、體 一圖2為-示範性記憶體裝置的晶胞串的橫截面圖,1 顯不出子元線間隔。 霄3A〜3F說明-製造圖2的結構的示範性方法。 圖4A〜4D言兒明一製造S0N0S記憶體晶胞結構的步 聚0 【主要元件符號說明】Figure 1 is a partial circuit diagram of a plurality of NAND memory cells. "~, Figure 2 is a cross-sectional view of a cell string of an exemplary memory device, and 1 shows a sub-line spacing. 霄3A~3F illustrate - an exemplary method of fabricating the structure of Figure 2. 4A~4D 言 明 明 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一

BL0、BL1 :位元線 WL0、WL卜WL2、…、WLn :字元線 SSL、GSL :選擇線 Mnm :記憶體晶胞 SL0、SL1、GSL0、GSL1 :選擇電晶體 10 :基底 12 :三井區域 14 :植入區域 16 :閘極介電層 1293200 18424twf.doc/y 1 8 :記憶體晶胞 20a、20b :選擇電晶體 22、122 :浮動閘極 24、32、34、124 ··絕緣層 26、126 :控制閘極 28、128 :矽化物層 30 :插塞 36 :導電位元線 38 :介層窗_ 130、130,、134 ··氧化物遮罩 132 ·· SiN 層 η3Τ2, ··間隙壁 200 ·· ΟΝΟ 層 202、206 ··絕緣層 204 :儲存層 F、X ··尺寸BL0, BL1: bit line WL0, WL WL2, ..., WLn: word line SSL, GSL: selection line Mnm: memory cell SL0, SL1, GSL0, GSL1: selection transistor 10: substrate 12: Mitsui region 14: implanted region 16: gate dielectric layer 1293200 18424twf.doc/y 1 8 : memory cell 20a, 20b: selective transistor 22, 122: floating gate 24, 32, 34, 124 · · insulating layer 26, 126: control gate 28, 128: germanide layer 30: plug 36: conductive bit line 38: via _ 130, 130, 134 · oxide mask 132 · SiN layer η3 Τ 2, · Clearance wall 200 ·· ΟΝΟ Layer 202, 206 ··Insulation layer 204: Storage layer F, X ·· Dimensions

Claims (1)

1293200 18424twf.doc/y 十、申請專利範圍: 1· 一種形成反及(NAND)快閃記憶體裝置的方法, 包含只下步驟: 在一基底上形成一控制閘極多晶矽層; 在所述控制閘極多晶矽層上形成一遮罩層,其中所述 遮罩層包括-界定所述反及㈣記憶财置的複數個間隔 的字兀線的鮮圖案,所述字元線彼此_—距離且所述 距離小於-最小特徵尺寸,所述最小特徵尺寸由用於形成 至少-部分所述翁圖案的—選擇的光微影製程所成像,· 和 通過所述遮罩層蝕刻所述控制閘極多晶矽層。 壯如申請專利範圍第1項所述之形成反及快閃記憶體 衣置的方法,其中所述遮罩層形成步驟包含以下步驟·· 在所述控制閘極多晶石夕層上形成一第一層,並使用所 罩^^,案化所述第一層以形成一第一組間隔的遮 &amp;二刀,所述第一組間隔的遮罩部界定一第一組間 子元線; 在所述第一組間隔的遮罩部分的側璧邊緣上形成間隙 _層 &gt; 所述弟二層界定 ^在所述間隙壁之間形成一第 第一組間隔的字元線;和 =除所述間隙壁,借此形 述複數個間隔的 凡線的所述遮罩圖案。 1293200 18424twf.doc/y 3· 裝置的=請圍第2項所述之形成反及快閃記憶體 第壁包含氮化嫩)且所述 化石夕(snsn曰匕3、氧化物’或所述第—和第二層包含氮 夕(N)且所述間隙壁包含一氧化物。 裝置4的=請ίΓ範圍第3項所述之形成反及快閃記憶體 述__成步歡包含以下步驟: 的遮罩部分之間;和 《層上和所述弟-組間隔 Jk所述第—層上及所述第—組間隔的 刻所述間隙壁層以形成所述間隙壁。 丨刀之門姓 果置二二Γ μ專利,圍第2項所述之形成反及快閃記憶體 衣置的方法’所述第二層形成步驟包含以下步驟·· 將所述第二層沉積於所述基底上,包 所述間隙壁上;和 蝕刻所述第二層以曝露所述間隙壁。 梦署μ專利乾圍第5項所述之形成反及快閃記憶體 裳置的方法,其巾所述第—層具有-約1_ Α的厚卢,且 所述間隙壁具有一約300 A的厚度。 又 7.如申請專利範圍第i項所述之形成反及快閃記憶體 虞置的方法,在所述侧步驟之後更包含在所述間隔的字 π線之間的所述基底中形成植入區域的步驟。 士 8.如申請專利範圍第i項所述之形成反及快閃記憶體 1置的方法,其中所述控制閘極多晶梦層形成於_氧化物/ 氮化物/氧化物(ΟΝΟ)層上。 21 1293200 18424twf.doc/y 9·如申w專她’ 7項所述之形成反及快閃記憶體 裝置的方法,其中所述氧化物/氮化物/氧化物(〇n〇)層 具有-約在11G〜14G A之間的有效氧化物厚度。 10·如中W專利feu第丨項所述之形成反及快閃記憶 體裝置的方法,更包含在所述控制閘極多㈣層上形成一 矽化物層的步驟。 u.如申請專利範圍第1項所述之形成反及快閃記憶 體裝置的方法,更包含以下步驟: 在所述基底申、的-活性區域上形成一浮動間極多晶石夕 層;和 在所述浮動閘極多晶石夕層上形成一介電層,其中所述 蝕刻物包含蝕刻所述浮動間極多晶 步驟。 曰j 體裝置:方所述之形成反及快閃記 在所述基底上形成一第一絕緣層·, 在所述第一絕緣層上形成一儲存層; 在所述儲存層上形成-第二絕緣層,其中在所述 絕緣層上形成所述控制閘極多晶矽層。 一 1顧狀軸反及快閃記憶 體裝置的方法,所述遮罩層包含一氧化物。 14. -種形成反及快閃記憶體|置的方法其包含以 下步驟: 在一基底上形成一介電層; 22 1293200 18424twf.doc/y 在所述&quot;電層上形成一多晶矽控制閘極層; : 在所述多晶矽控制閘極層上沉積一第一遮罩層; 鈞所述第一遮罩層以形成一第一組間隔的遮單部分 且所,第一組間隔的遮罩部分界定一第一組間隔的字元 線/每-遮罩部分具有一寬度且所述寬度取決於由選擇的 光‘程所成像的最小特徵尺寸,相鄭的 分間隔 -距離且所述轉大於所述最小雜尺寸並从所述最小 特徵尺寸的兩倍; 形成一第一組·間隔的遮罩部分且所述第二組間隔的遮 罩部分界定一第二組間隔的字元線,所述第二組間隔的遮 罩部分中個別的遮罩部分配置在所述第一組遮罩部分相鄰 的遮罩部分之間,其中所述第二組間隔的遮罩部分中個別 的遮罩部分配置為與所述第一組遮罩部分相鄰的遮罩部分 相距一距離且所述距離小於所述最小特徵尺寸;和 通過所述第一和第二組間隔的遮罩部分蝕刻所述多晶 矽控制閘極層。 15·如申請專利範圍第14項所述之形成反及快閃記憶 體裝置的方法’更包含以下步驟: 在所述第一組間隔的遮罩部分上形成一犧牲層; 餘刻所述犧牲層以在所述第一組間隔的遮罩部分的侧 壁上形成間隙壁; 在所述第一組間隔的遮罩部分和間隙壁上形成一遮罩 材料層; 23 1293200 18424twf.doc/y 八蝕刻所述遮罩材料層以曝露所述第一組間隔的遮罩部 刀,其中所述遮罩材料層的部分剩餘以形成所述第二組間 隔的竭罩部分;和 移除所述間隙壁。 一壯16·如申請專利範圍第14項所述之形成反及快閃記憶 體I置的方法,其中所述第一和第二組冏隔的遮罩部分包 含一氧化物或氮化矽(SiN)。 一丨7·如申請專利範圍第14項所述之形成反及快閃記憶 體裝置的方法,其中所述介電層包含-氧化物/氮化物/氧 化物(ΟΝΟ)層。 18·如申請專利範圍第17項所述之形成反及快閃記憶 :裝置的方法’其中將所述氧化物/氮化物/氧化物(〇Ν〇) 層幵/成於所述基底上,則所述之形成反及快閃記憶體裝置 ,方法更包含移除所述遮罩部分的步驟,其中所述氧化物/ 氮化物/氧化物(〇Ν〇)層實質上保持未被姓刻。 19·如申請專利範圍第17項所述之形成反及快閃記憶 -、置的方法,其中將所述介電層形成於—浮動閘極多晶 夕層上貝ij所述姓刻步驟更包含通過所述第一和第二組間 隔的遮罩部分_所述介電層和浮動問極多晶石夕層。 20.-種形成反及快閃記憶體裝置的方法,纟包含 步驟: 在-基底上形成-控制閘極多晶石夕層; 在所述控制閘⑽晶傾上形成—遮罩層 ,所述遮罩 b包括界定所述反及快閃記憶體裝置的複數個間隔的字元 24 1293200 18424twf.doc/y 線的複數個間隔的遮罩部分,每―遮罩 寬度,其情親罩部分__罩部分射目_遮= 分間陴一小於所述界定寬度的距離;和 遮罩部 通過所述遮罩層餘刻所述控制_多。 2L如申請專利範圍第20項所述之形成反^閃奸 體裝置的方法’其中所述遮罩層包含7氧化物或氮化石^ (SiN) 〇1293200 18424twf.doc/y X. Patent Application Range: 1. A method of forming a reverse (NAND) flash memory device comprising the steps of: forming a gated polysilicon layer on a substrate; Forming a mask layer on the gate polysilicon layer, wherein the mask layer includes a fresh pattern defining a plurality of spaced word lines of the opposite (4) memory, the word lines being _-distance from each other The distance is less than a minimum feature size, the minimum feature size being imaged by a selective photolithography process for forming at least a portion of the pattern, and etching the control gate through the mask layer Polycrystalline germanium layer. The method for forming a reverse flash memory device according to the first aspect of the invention, wherein the mask layer forming step comprises the following steps: forming a layer on the control gate polycrystalline layer a first layer, and using the mask, to form the first layer to form a first set of spaced masks and two knives, the first set of spaced mask portions defining a first group of sub-elements a line forming a gap _ layer on the side edge of the first group of spaced mask portions; the second layer defining a first set of spaced word lines between the gap walls; And = dividing the spacer, thereby patterning the mask pattern of a plurality of spaced lines. 1293200 18424twf.doc/y 3 · device = please refer to the formation of item 2 and the flash memory wall contains nitriding) and the fossil eve (snsn 曰匕 3, oxide 'or The first and second layers comprise nitrogen (N) and the spacers comprise an oxide. The device 4 of the device 4, the range of the third embodiment of the formation of the anti-flash memory description __成步欢 includes the following Step: between the mask portions; and the spacer layer on the layer and the first layer and the first group spaced apart to form the spacer layer. The second name forming step includes the following steps: · depositing the second layer on the method of forming the anti-flash memory coating described in item 2 The substrate is coated on the spacer; and the second layer is etched to expose the spacer. The method of forming the anti-flash memory on the fifth aspect of the patent application is disclosed. The first layer of the towel has a thickness of about -1 Α, and the spacer has a thickness of about 300 A. Further, as in the patent application The method of forming a reverse flash memory device as described in item i, further comprising the step of forming an implant region in the substrate between the spaced word lines π after the side step. 8. The method of forming a reverse flash memory 1 according to claim i, wherein the control gate polycrystal layer is formed on an _ oxide/nitride/oxide layer 21 1293200 18424twf.doc/y 9. The method of forming a reverse flash memory device according to the above-mentioned item 7, wherein the oxide/nitride/oxide (〇n〇) layer has - an effective oxide thickness between about 11 G and 14 G A. 10. A method of forming a counter-flash memory device as described in the above-mentioned U-Patent Feu, further including a plurality of (four) layers of the control gate The method of forming a vaporization layer on the substrate, wherein the method of forming the anti-flash memory device according to claim 1 further comprises the steps of: forming a layer on the active region of the substrate a very polycrystalline layer in the floating region; and a layer formed on the floating gate polycrystalline layer a layer, wherein the etchant comprises etching the floating interpolar polycrystal step. 曰j body device: forming a reverse and flashing on the substrate to form a first insulating layer, at the first Forming a storage layer on the insulating layer; forming a second insulating layer on the storage layer, wherein the control gate polysilicon layer is formed on the insulating layer. Method, the mask layer comprises an oxide. 14. A method for forming a reverse flash memory. The method comprises the steps of: forming a dielectric layer on a substrate; 22 1293200 18424twf.doc/y Forming a polysilicon control gate layer on the electrical layer; depositing a first mask layer on the polysilicon control gate layer; and forming the first mask layer to form a first group of spaced masks Single-part, and the first set of spaced mask portions define a first set of spaced word lines/per-mask portions having a width and the width is dependent on a minimum feature size imaged by the selected light path Separate intervals - distance and said Greater than the minimum impurity size and from twice the minimum feature size; forming a first set of spaced mask portions and the second set of spaced mask portions defining a second set of spaced word lines, Individual mask portions of the second set of spaced apart mask portions are disposed between adjacent mask portions of the first set of mask portions, wherein the second set of spaced mask portions are individually covered The cover portion is configured to be spaced apart from the mask portion adjacent the first set of mask portions and the distance is less than the minimum feature size; and the mask portion is etched by the first and second groups of spacers The polysilicon control gate layer. 15. The method of forming a reverse flash memory device according to claim 14, further comprising the steps of: forming a sacrificial layer on the mask portion of the first set of intervals; a layer forming a spacer on a sidewall of the first set of spaced mask portions; forming a mask material layer on the first set of spaced mask portions and spacers; 23 1293200 18424twf.doc/y Eight etching the layer of masking material to expose the first set of spaced masking knives, wherein portions of the layer of masking material remain to form the second set of spaced apart mask portions; and removing the Clearance wall. A method for forming a reverse flash memory I according to claim 14 wherein the mask portions of the first and second sets of spacers comprise an oxide or tantalum nitride ( SiN). A method of forming a reverse flash memory device according to claim 14, wherein the dielectric layer comprises an oxide/nitride/oxide (germanium) layer. 18. The method of forming a reverse flash memory as described in claim 17, wherein the oxide/nitride/oxide layer is formed/formed on the substrate, The method further comprises forming a reverse flash memory device, the method further comprising the step of removing the mask portion, wherein the oxide/nitride/oxide layer is substantially unsaved . 19. The method of forming a reverse flash memory-disposing method according to claim 17, wherein the dielectric layer is formed on the floating gate polycrystalline layer. A mask portion through the first and second sets of spacers _ the dielectric layer and a floating interposer polycrystalline layer are included. 20. A method of forming a reverse flash memory device, the method comprising: forming a gate polysilicon layer on a substrate; forming a mask layer on the gate of the control gate (10) The mask b includes a plurality of spaced mask portions defining a plurality of spaced characters 24 1293200 18424 twf.doc/y lines of the flash memory device, each mask width, and a mask portion thereof _ 罩 罩 罩 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2L. The method of forming an anti-flash device according to claim 20, wherein the mask layer comprises 7 oxide or nitride (^N) 〇 22·如申睛專利範圍第21項所述之形成反及快閃記憶 體裝置的方法,更包含在所述基底上形成一氧化物/氮化物 /氧化物(ΟΝΟ)層並在所述氧化物/氮化物/氧化物(〇N〇) 層上形成所述控制閘極多晶矽層的步驟。The method of forming a reverse flash memory device according to claim 21, further comprising forming an oxide/nitride/oxide layer on the substrate and performing the oxidation The step of forming the gate polysilicon layer on the layer of material/nitride/oxide (〇N〇). 2525
TW95101685A 2006-01-17 2006-01-17 Method of forming flash cell array having reduced word line pitch TWI293200B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95101685A TWI293200B (en) 2006-01-17 2006-01-17 Method of forming flash cell array having reduced word line pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95101685A TWI293200B (en) 2006-01-17 2006-01-17 Method of forming flash cell array having reduced word line pitch

Publications (2)

Publication Number Publication Date
TW200729415A TW200729415A (en) 2007-08-01
TWI293200B true TWI293200B (en) 2008-02-01

Family

ID=45067764

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95101685A TWI293200B (en) 2006-01-17 2006-01-17 Method of forming flash cell array having reduced word line pitch

Country Status (1)

Country Link
TW (1) TWI293200B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI469269B (en) * 2011-11-18 2015-01-11 Winbond Electronics Corp Method of forming word line of embedded flash memory
KR102323251B1 (en) 2015-01-21 2021-11-09 삼성전자주식회사 Semiconductor device and method for manufacturing semiconductor device
TWI734530B (en) * 2020-06-17 2021-07-21 華邦電子股份有限公司 Semiconductor structure and method for forming the same

Also Published As

Publication number Publication date
TW200729415A (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP5350589B2 (en) Transistor with individual gate structure
US7271063B2 (en) Method of forming FLASH cell array having reduced word line pitch
TW512495B (en) Nonvolatile semiconductor memory device, process of manufacturing the same and method of operating the same
TWI595631B (en) A semiconductor device and a manufacturing method thereof
US10957703B2 (en) Method of reducing charge loss in non-volatile memories
TWI355715B (en) Semiconductor device having non-volatile memory an
KR101136140B1 (en) Bitline implant utilizing dual poly
WO2009084206A1 (en) Semiconductor memory device and method for manufacturing same
TW200908234A (en) Semiconductor memory device
WO2002067320A1 (en) Semiconductor storage device and semiconductor integrated circuit
TW201232705A (en) Semiconductor structure and manufacturing method and operating method for the same
JP2010027835A (en) Nonvolatile memory device and manufacturing method thereof
US8710573B2 (en) Nonvolatile semiconductor memory device and method for manufacturing the same
JP2007273859A (en) Semiconductor device and manufacturing method therefor
TWI293200B (en) Method of forming flash cell array having reduced word line pitch
JP2002368140A (en) Non-volatile semiconductor memory device
JP2989760B2 (en) Flash memory cell and method of manufacturing the same
JP6474349B2 (en) High voltage gate formation
JP3173907B2 (en) Nonvolatile memory element and method of manufacturing the same
JP2003332472A (en) Nonvolatile semiconductor memory and its manufacturing method
JP3198682B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP2005116582A (en) Semiconductor device and its manufacturing method
US20170338237A1 (en) Method of fabricating non-volatile memory device array
JP2004193598A (en) Nonvolatile semiconductor memory device and its manufacturing method
JP2004342720A (en) Semiconductor device including nonvolatile memory