TWI291883B - - Google Patents

Download PDF

Info

Publication number
TWI291883B
TWI291883B TW94128825A TW94128825A TWI291883B TW I291883 B TWI291883 B TW I291883B TW 94128825 A TW94128825 A TW 94128825A TW 94128825 A TW94128825 A TW 94128825A TW I291883 B TWI291883 B TW I291883B
Authority
TW
Taiwan
Prior art keywords
sensing
signal
swing arm
sensor
vibration
Prior art date
Application number
TW94128825A
Other languages
Chinese (zh)
Other versions
TW200708319A (en
Inventor
You-Yu Chen
Original Assignee
You-Yu Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by You-Yu Chen filed Critical You-Yu Chen
Priority to TW094128825A priority Critical patent/TW200708319A/en
Publication of TW200708319A publication Critical patent/TW200708319A/en
Application granted granted Critical
Publication of TWI291883B publication Critical patent/TWI291883B/zh

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Distances Traversed On The Ground (AREA)

Description

1291883 , 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種擺臂式運動量感測裝置,特別是關 於一種可黏扣於運動者之手臂上之運動量感測裝置。 【先前技術】 由於現代工商業社會的忙碌以及人們對於適當運動之 曰漸重視,使得各項運動器材應運而生。而在運動之同時, 運動者為了要準確掌握運動量及瞭解運動者本身之身體狀 況,故亦有各種不同型態之人體信號感應器被研發出來。 在各類型運動信號感應器中,計步器(Ped〇meter)由於 佩掛方便、操作簡易、可量測步行或跑步之步數,故目前 已被廣泛地使用。在不同的計步器產品設計中,有設計成 可貼附結合在使用者鞋子上、佩掛於使用者腰際、腕表型 等不同產品型態。 在目前習用之計步器產品中,其主要係採用機械式之 振動感測元件,其動作原理是利用一擺動元件碰觸一感應 檢知器用以傳輸訊號並將步數顯示於顯示器上。另有些傳 統的振動感測元件採用磁簧開關之結構,其是利用擺臂具 有磁性元件且與感應檢知器不接觸的方式計數步數。 在先前專利技術中,可以發現有各種不同的機械式振 動感測單元之設計,例如美國發明專利第4460823號專利 案中,其揭露了一種可用來感測使用者走路或跑步之步數, 5 1291883 , 在其计步結構中,使用了擺錘、彈性元件、 計步結構’以使使用者走路或跑步時,能由—計=< 不其步數值。又例如美國發明專利第斗漏脱號專利案中項 其揭露了-種细擺錘及彈性元件等構件所 ^ ’ =出使用者在運動時之計步值。又例如美國i、; :利第5m物號專利案中’其揭露了一種利用擺錘、: 心、磁黃開關等構件馳叙計步結構,亦可 使用者在運動時之計步值。 川出 【發明内容】 本發明所欲解決之技術問題: 在各類型之計步器設財’概可分為絲型及佩掛型 :種,,、中腕表型可供使用者戴於手腕處,故使用者之手 #擺動時’可由該計步器感_其擺動之狀況,而達到計 步之功能。而在佩掛型之計步器結構設計中,是可供使用 者戴於腰際,使用者在走路或跑步時,可㈣計步器感測 出其動作狀況,而達到計步之功能。 如果能以簡單的結構設計達成可提供使用者於上臂使 用計步、計速器,則當可提供運動者更多之選擇及用途。 然而,請參閱美國發明專利第6285314號專利案中, 係為一種可用來接收GPS定位信號之GPS接收裝置,其 可配帶於手臂上,當全球定位衛星持續發送磁性信號時, 使用者所配戴之GPS接收裝置可依照手臂擺動的位置,於 ,r 1291883 各定位點接收到該磁性信號,藉以利用GPS定位系統偵測 到使用者所配戴之GPS接收裝置之位置,而GPS定位信 號則是利用使用者所配戴之GPS接收裝置於手臂擺幅位置 做多點取樣,並於一段的時間取得使用者在各定位點之GPS 接收裝置距離,進而可得知其擺幅速度,以此供使用者得 知手臂擺幅於各定位點之距離、時間及速度,但此種方法 卻有若干缺失,如GPS接收裝置需接收全球定位衛星所發 送之磁性信號,雖可求出距離、時間及速度,但過程較為 冗長、且所測得之位置及轉換後之數值並不是非常精確;, 再者,GPS接收裝置的購置成本較一般的運動量測量裝 置高,需讓使用者額外付出多餘金錢購置。 因此,本發明之主要目的即是提供一種可戴於運動者 上臂的擺臂式運動量感測裝置,以克服傳統腕表型計步器 只能限定戴於手腕之限制。 本發明之另一目的即是提供一種可感測使用者於在運 動時位在手臂的擺臂動作信號,據以計算出使用者運動量 及速度之裝置。 本發明為解決習知技術之問題所採用之技術手段: 本發明在運動者之上臂部分配置有一運動量感測裝 置,用以檢測出該運動者於運動時之運動量,該運動量感 測裝置包括有一第一軸向運動信號感測器及一第二軸向運 動信號感測器。至少一感測檢知器,用以檢知該第一軸向 運動信號感測器及所產生之第一軸向位置信號及第二軸向 7 1291883 運動信號感測器及所產生之第二軸向位置信號。一减:則广 號處理電路,接收該感測檢知器所接收之第—車由白運動广 號感測器及第二軸向運動信號感測器所感測出之作號,並 對該信號進行處理。一微處理器,讀取該第—軸向達動俨 號感測器、第二軸向運動信號感測器所感測之信號,據以 計算出該使用者之運動速度及步數。 本發明對照先前技術之功效: 藉由本發明擺臂式運動量感測裝置設計,本發明有效 突破了傳統腕表型計步器只能限定戴於手腕之限制,讓使 用者在使用擺臂式運動量感測裝置時更為便利。再者,透 過本發明之擺臂式運動量感測裝置,不論使用者將本發明 之計步器戴於左上臂或右上臂,由於擺臂的自由重力的關 係’故當感測檢知器感應到其中一個擺臂之作動時,另一 個擺臂動作為可同時感測信號。 本發明所採用的具體實施例,將藉由以下之實施例及 附呈圖式作進一步之說明。 【實施方式】 請參閱第一 A、一 B、一 C圖所示,其係顯示本發明 毛b #式運動量感測裝置之計步器、振動感測電路及加速度 感測器外觀示意圖。本發明之擺臂式運動量感測裝置1〇〇 係在一殼體1之兩對應侧結合有黏扣帶Ua、llb ,可供使 1291883 用者相互黏扣於左上臂或右上臂。在該殼體丨之頂面配置 有一顯不單元2,用以顯示計步值或經感測後經換算過之 速度值、步數或距離數值。 請參閱第二A圖所示,係顯示本發明擺臂式運動量感 測裝置計步器之内部構件配置示意圖。其顯示在該殼體i 中形成有一内部空間12,並設立兩個對應之第一擺臂定位 點13及第二擺臂定位點14。在該殼體丨之内部空間中, 馨 财-感測檢知H 3,錢沿著殼體i中之一預設基準線ι 而配置,且該預設基準線〗係垂直於該殼體丨黏扣於使用 者上臂時之重力方向II。 一第一擺臂4配置在該殼體丨中之預設基準線丨之一 侧邊,該第一擺臂4之一端係定位在該殼體i之第一擺臂 定位點13,而另一端係呈自由端,可隨使用者上臂之擺幅 而擺動一角度。該第-擺臂4之自由端可結合一第一感測 檢知:41。该第一擺臂4之自由端之適當位置處,可連接 φ 復位雜件42 復轉性件42之另-端則定位在 彳位點15 ’故該復位彈性件42可提供該第—擺臂*之 自由端在擺動時之復位彈性力。 第一擺臂5配置在該殼體丨中之預設基準線z之另 后,邊.亥第一擺臂5之一端係定位在該殼體i之第二擺 #定位點14’而另—端係呈自由端,可隨使用者上臂之擺 、 内又4第一擺臂5之自由端可結合一第二感 測檢知器51。該第二擺臂5之自由端之適當位置處,可連 接有-復位彈性件52,而復位彈性件W之另—端亦定位 1291883 2位點15,故該復位彈性件52可提供該第二擺臂$之 自由端在擺料之復轉性力。 本發0第杬是4、感應單元41、復位彈性件42乃構成 W 一之第軸向運動信號感測器。該第二擺臂5、感應 ^疋51、復位彈性件52乃構成本發明之第二軸向運動信 號感測器。 ▲本务明之實施例中,該感測檢知器3係一磁簧開關, 而&第-感測檢知器41、第二感測檢知器51係為具有磁 性之元件。 ^而,明參閱第二B圖,其係顯示振動感測電路内部 構件配置示思圖,係顯示在該殼體1中形成有一内部空間 12,並设立三個對應之第一振動感測器16、第二振動感測 器Π及第三振動感測器18 ,其係沿著殼體i中之一預設 基準線I而配置,且該預設基準線〗係垂直於該殼體丨黏 扣於使用者上臂時之重力方向Η,及於預設基準線、重力 方向II之間往殼體外方向延伸有一第三擺臂ΙΠ,當第一振 動感測器16、第二振動感測器17偵測到信號時,分別差 生第一軸向(X軸向)、第二軸向(Υ軸向)之信號,來計算其 運動量,而當第三軸向(Ζ軸向)偵測到手臂擺動的誤動 作時(如未遵循X、Υ軸向方向運動時),即無法偵測到運 動量,直到運動者手臂擺動回歸到X、Υ軸向方向運動再 開始計量,使第三軸向可以修正第一軸向運動量及第二軸 向運動量的誤差。 請參閱二C圖所示,係顯示加速度感測電路内部構件 r 1291883 示思圖’咸加速度感測電路係可以加速度感測的方式來感 測’係顯示在該殼體1中形成有一内部空間12,並設立三 個對應之第一加速度感測器19a、第二加速度感測器19b 及第三加速度感測器19c,而第一加速度感測器i9a、第二 加速度感測器19b及第三加速度感測器19c為可設置於一 1C内,其係沿著殼體1中之一預設基準線j而配置,且該 預設基準線I係垂直於該殼體1黏扣於使用者上臂時之重 力方向II ’及於預設基準線、重力方向Η之間延設有一第 三擺臂III,當第一加速度感測器19a、第二加速度感測器 19b及第三加速度感測器19C偵測到信號時,分別產生第 一軸向(X軸向)、第二軸向(γ軸向)及第三軸向(Z軸向) 信號,來計算其運動量,進而得出使用者之速度、步數與 距離。 忒第二擺臂III加上第三振動感測器18或第三加速度 感測器19c來構成本發明之第三軸向運動信號感測器。 第三A圖係顯示本發明擺臂式運動量感測裝置之計步 器電路功能方塊圖,其顯示一計步器控制電路6中包括有 一感測信號處理電路61,可用以接收該感測檢知器3所感 應到之感應#號s 1。該感測信號處理電路61可包括有習 知之濾波電路及波形整形電路。感測信號處理電路61連接 至一微控器62,以將處理過之感應信號送至該微控器 中,作為計步之信號。微控器62並可依據計步值而^算出 速度、步數及距離,並顯示於該顯示單元2上。 當该第-擺臂4或第二擺臂5因使用者手臂之運動擺 1291883 幅而擺動至鄰近於該感測檢知器3之有效動作距離之内 時,由該感測檢知器3感應到該第一擺臂4或第二擺臂$ 之第-感測檢知器41或第二感測檢知器51之擺^況, 而可產生感應信號Si。 然而,該計步器控制電路6係可使用單軸(χ軸向) 用以測走路或跑步的步伐,或可使用雙軸(χ軸向)、(γ 軸向)用以測量擺臂振幅大小及速度快慢來計算速度、步 數及距離’此外,ϋ可利用無線發射計步信號到接收器上。 此外,該計步器控制電路6為可利用無線發射計步信 號到接收器上。 再者,該計步器控制電路6中包括有一顯示單元2, 用以顯示該計步器控制電路6所送出之計步值。 然而,該第一感測檢知器41及第二感測檢知器51所 設之感測檢知器係為具有磁性之元件。 而第二Β圖係顯示出本發明擺臂式運動量感測裝置之 振動感測電路功能方塊圖,係為一振動感測電路7中包括 有一感測信號處理電路71,可用以接收一感應信號s2,該 感應信號s2處理電路71可包括有習知之濾波電路及波形 整形電路,該感測信號處理電路71連接至一微控器72, 以將處理過之感應信號送至該微控器72中,作為振動感測 之信號。微控器72並可依據振動量而計算出速度、步數及 距離,並顯示於該顯示單元2上;而當該第一振動感測器 16、第二振動感測器17因使用者手臂之運動擺幅而擺動至 有效動作距離之内時,由該第一振動感測器16、第二振動 12 -1291883 感測器17或第三振動感測器1 8所經過放大器、遽波器之 擺動狀況傳入感測信號處理電路71做一處理,再藉由第三 振動感測器18做一修正,即可產生一振動感應信號s2。 然而,該振動感測電路7係可使用單軸(X軸向)用 以測走路或跑步的步伐,或可使用雙軸(X軸向)、(γ軸 向)用以測量擺臂振幅大小及速度快慢來計算速度點及步 長,此外,並可利用無線發射振動感測信號到接收器上。 此外,該振動感測電路7為可利用無線發射振動感測 信號到接收器上。 再者,5玄振動感測電路7中包括有一顯示單元2,用 以顯示該振動感測電路7所送出之振動感測值。 然而,該第一振動感測器16及第二振動感測器17及 第三振動感測器18係為振動感測器。 此外,該振動感測電路使用三軸或以上(X軸向)、(γ 軸向)、(Ζ軸向)感測器,除了可以測量擺臂振幅大小, 亦可測量走路或跑步時的步伐高低,而得出使用者之速度、 步數與距離。 另外,第三C圖係顯示出本發明擺臂式運動量感測裝 置之加速度感測電路功能方塊圖,係為一加速度感測電路 8中包括有一感測#號處理電路§ 1,該感應信號處理電路 81可包括有習知之濾波電路及波形整形電路,該加速度感 測信號處理電路81連接至一微控器82,以將處理過之感 應“號S3送至該微控器82中,作為振動感測之信號。微 控器82並可依據使用者擺臂之加速度而計算出速度、步數 13 1291883 及距離’得出一感應信號S3,並顯示於該顯示單元2上。 而當該第一加速度感測器19a、第二加速度感測器i9b 因使用者手臂之運動擺動速度擺動至有效動作距離之内 時,由該第一加速度感測器19a、第二加速度感測器i9b 及第二加速度感測器19c所經過放大器、濾波器之擺動狀 況,即可產生一加速度感應信號S3。 此外,該加速度感測電路8為可利用無線發射加速度 感測信號到接收器上。 再者,該加速度感測電路8中包括有一顯示單元2, 用以顯示該加速度感測電路8所送出之速度感測值。 然而,該第一加速度感測器19a及第二加速度感測器 19b及第三加速度感測器19c係為加速度感測器。 此外,該加速度感測電路使用三軸或以上(X軸向)、 (Y轴向)、(Z軸向)感測器,除了可以測量擺臂的加速 度,亦可測量走路或跑步時的步伐高低,而得出使用者之 速度、步數與距離。 第四A圖係顯示本發明之擺臂式運動量感測裝置之計 步器黏扣於使用者之上臂時之示意圖,其顯示當使用者之 上臂向後方搖動擺幅至重力方向約45度角時,此時感測檢 知器3會感應到該第一擺臂4、第二擺臂5之第一感測檢 知器41及第二感測檢知器51之擺動狀況,而可產生感測 信號。 而第四B圖係顯示振動感測電路黏扣於使用者之上臂 時之示意圖,其顯示當使用者之上臂向後方搖動擺幅至重 1291883 力方向約45度角時,該振動感測電路7之感測信號處理電 路71為可接收控制第一振動感測器16及第二振動感測器 17之擺動狀況(請參閱第三B圖),而產生感測信號,另 於第三振動感測器18為可將使用者上臂之錯誤擺幅動作做 一修正。 再請參閱四C圖所示,係顯示加速度感測器黏扣於使 用者之上臂時之示意圖,其顯示當使用者之上臂向後方搖 動擺幅至重力方向約45度角時,該加速度感測電路8之感 測信號處理電路81為可接收控制第一加速度感測器19a及 第二加速度感測器19b及第三加速度感測器19c之擺動狀 況(請參閱第三C圖),而產生感測信號。 然而’該加速度感測電路8亦可測量三軸向的加速度, 亦可達到測量使用者之速度值、步數或距離數值 由於擺臂的自由重力的關係,故當感測檢知器3感應 到其中一個擺臂之作動時,另一個擺臂動作不會被感應到, 故可有效避免誤動作之發生。 請參閱第五A圖所示,其係顯示使用者之上臂黏扣有 杬漳式運動罝感測裝置1〇〇於擺動時,該擺臂式運動量感 測裝置之計步器在每隔2〇度不同角度位置時之示意圖。 請參閱第五B圖所示,其係顯示出(χ軸向)、(γ軸 向)及(ζ軸向)所代表擺臂式運動量感測裝置之振動感測電 路X軸向與γ軸向在不同振幅速度所對應不同步長大小之 波形圖。 吻參閱第五C圖所示,其係顯示出(χ軸向)、(γ軸 15 1291883 向)及(z軸向)所代表擺臂式運動量感測裝置之振動感測電 路z軸向在不同擺臂速度所對應不同步長大小之波形圖。 第五D圖係顯示出(X軸向)、(γ軸向)及(z軸向)所 代表擺臂式運動量感測裝置之加速度感測電路在不同擺臂 速度所對應不同步長大小之波形圖。 請參閱第五E圖所示,其係該使用者配戴有可測量三 軸式k號之測篁器於跑步時之動作示意圖,由圖中可清楚 知知’當使用者由A點跑到B點、再由6點跑到(^點時, 可測量二軸式信號之測量器為可依據使用者手臂擺幅的角 度、方向、振動量及加速度,來測量出使用者跑步速度、 步數及距離長度。 明參閱第五F圖所示,其係該使用者配戴有可測量三 軸式信號之測量器於走路時之動作示意圖,由圖中可清楚 得知,當使用者由A點走到B點時、再由B點走到c點 時,即使手臂擺幅較跑步動作小,亦可利用可測量三軸式 信號之測量器來測得走路速度、步數與距離。 明參閱第六圖所示,其係顯示在各種不同角度時,本 發明之擺臂式運動量感測裝置之角度位置變化並形成一運 動執跡cl之不意圖,係顯示與第五a 感測裝置之計步器在每隔20度不同角度位置(=: (γ軸向)之角度。 月多閱第七A、七B、七C圖所示,其係顯示本發明 二t度位置時’本發明之擺臂式運動量感測裝置所感 、Y-z及z-x信號波形示意圖,該三軸式擺臂 -1291883 式運動量感測裝置100包括有第一軸向(X軸向)、第二軸 向(Y軸向)及第三轴向(Z軸向)之振動感測器(Shock Sensor )或加速度感測器(Acceleration Sensor)。 該波形圖顯示當使用者在運動時,該擺臂式運動量感 測裝置100會隨著使用者擺動上臂之運動軌跡而往X軸方 向及(Y軸方向位移(請參閱第七A、七B及七C圖所示)。 若擺臂式運動量感測裝置往X軸方向位移,則其所感測之 X轴向信號Vx之波寬會越來越大。而Y軸信號Vy之波寬 會越來越小。而若擺臂式運動量感測裝置往Y軸方向位移, 則其所感測之X轴向信號Vx之波寬會越來越小。而Y軸 信號Vy之波寬會越來越大,而z軸使可以偵測Vx、Vy的 波寬是有異常的現象(如運動者未遵循X、Y轴向方向運 動等),及停止其Vx、Vy波寬的進行。 藉由上述之本發明實施例可知,本發明確具產業上之 利用價值。惟以上之實施例說明,僅為本發明之較佳實施 例說明,凡習於此項技術者當可依據本發明之上述實施例 說明而作其它種種之改良及變化。然而這些依據本發明實 施例所作的種種改良及變化,當仍屬於本發明之發明精神 及界定之專利範圍内。 【圖式簡單說明】 第一 A圖係本發明擺臂式運動量感測裝置之計步器外觀示 意圖。 17 1291883 之振動感測電路 第一 B圖係本發明擺臂式運動量感測裝置 外觀示意圖。 第- C圖係本發明擺臂式運動量感測裝置之加速度感測電 路外觀示意圖。 之計步器内部構 第二A圖係本發明擺臂式運動量感測裝置 件配置不意圖。 第二B圖係本發明擺臂式運動量感測裝置之振動感測電路 内部構件配置示意圖。1291883, IX. Description of the Invention: [Technical Field] The present invention relates to a swing arm type motion sensing device, and more particularly to a motion sensing device that can be attached to an athlete's arm. [Prior Art] Due to the busyness of the modern industrial and commercial society and the increasing emphasis on appropriate sports, various sports equipment has emerged. At the same time of exercise, in order to accurately grasp the amount of exercise and understand the physical condition of the athletes themselves, various types of human body signal sensors have been developed. Among the various types of motion signal sensors, the pedometer (Ped〇meter) has been widely used because of its convenient operation, easy operation, and the number of steps that can be measured for walking or running. In the design of different pedometer products, it is designed to be attached to the user's shoes, attached to the user's waist, watch type and other different product types. In the current pedometer products, the main purpose is to use a mechanical vibration sensing component. The principle of operation is to use a oscillating component to touch an inductive detector for transmitting signals and displaying the number of steps on the display. Other conventional vibration sensing components employ a reed switch configuration in which the number of steps is counted in such a manner that the swing arm has a magnetic element and is not in contact with the inductive detector. In the prior patent art, a variety of different mechanical vibration sensing unit designs can be found, for example, in U.S. Patent No. 4,460,823, which discloses a number of steps that can be used to sense a user's walking or running, 5 1291883, in its step-by-step structure, the pendulum, the elastic element, and the step-by-step structure are used to enable the user to walk or run, and the value can be determined by < For example, in the U.S. invention patent, the article of the patent application discloses that a member such as a fine pendulum and an elastic member is the step value of the user during exercise. For example, in the US i,;: Li 5th article patent case, which discloses a step-by-step structure using a pendulum, a heart, a magnetic yellow switch, etc., and a user's step value during exercise.川出【Contents of the Invention】 The technical problem to be solved by the present invention: In each type of pedometer, it can be divided into a silk type and a hanging type: a type, a middle watch type can be worn by a user. At the wrist, the user's hand #wobbles can be sensed by the pedometer. In the design of the pedometer structure, it is available for the user to wear on the waist. When the user walks or runs, the pedometer can sense its action status and achieve the function of step counting. If the user can provide a step-by-step, speedometer for the upper arm with a simple structural design, it can provide more choices and uses for the athlete. However, please refer to U.S. Patent No. 6,285,314, which is a GPS receiving device that can be used to receive GPS positioning signals, which can be carried on the arm. When the global positioning satellite continuously transmits the magnetic signal, the user is equipped with The GPS receiving device can receive the magnetic signal according to the position of the arm swinging at r 1291883, so that the GPS positioning system can detect the position of the GPS receiving device worn by the user, and the GPS positioning signal is The GPS receiving device worn by the user is used for multi-point sampling at the arm swing position, and the distance of the GPS receiving device of the user at each positioning point is obtained for a period of time, and then the swing speed can be known. The user can know the distance, time and speed of the arm swing at each positioning point, but there are some defects in this method. For example, the GPS receiving device needs to receive the magnetic signal transmitted by the global positioning satellite, although the distance and time can be obtained. And speed, but the process is rather lengthy, and the measured position and converted value are not very accurate; in addition, the acquisition cost of the GPS receiving device It is higher than the average exercise measuring device and requires the user to purchase extra money. SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a swing arm type motion sensing device that can be worn on an upper arm of an athlete to overcome the limitations of the conventional wristwatch type pedometer that can only be limited to the wrist. Another object of the present invention is to provide a device for sensing the swinging motion signal of a user in the arm during exercise, thereby calculating the amount and speed of movement of the user. The technical means adopted by the present invention for solving the problems of the prior art: The present invention is provided with a motion amount sensing device for detecting the amount of movement of the athlete during exercise in the upper arm portion of the athlete, the motion amount sensing device including a first axial motion signal sensor and a second axial motion signal sensor. At least one sensing detector for detecting the first axial motion signal sensor and the generated first axial position signal and the second axial 7 1291883 motion signal sensor and the generated second Axial position signal. a subtraction: the wide-number processing circuit receives the number sensed by the first motion-receiving device and the second axial motion signal sensor received by the sensing detector, and The signal is processed. A microprocessor reads the signal sensed by the first axial sense sensor and the second axial motion signal sensor to calculate the motion speed and the number of steps of the user. The present invention compares the effects of the prior art: With the design of the swing arm type motion sensing device of the present invention, the present invention effectively breaks through the limitation that the traditional watch type pedometer can only be limited to the wrist, so that the user can use the swing arm type of exercise. It is more convenient to sense the device. Furthermore, with the swing arm type motion sensing device of the present invention, regardless of whether the user wears the pedometer of the present invention on the left upper arm or the upper right arm due to the free gravity of the swing arm, the sensing detector senses When one of the swing arms is actuated, the other swing arm acts to simultaneously sense the signal. The specific embodiments of the present invention will be further described by the following examples and the accompanying drawings. [Embodiment] Please refer to the first A, B, and C diagrams, which are schematic diagrams showing the appearance of the pedometer, the vibration sensing circuit, and the acceleration sensor of the hair b type motion sensing device of the present invention. The swing arm type motion sensing device 1 of the present invention is coupled to the two corresponding sides of a casing 1 with a fastening tape Ua, 11b for allowing the users of 1291883 to stick to each other to the left upper arm or the upper right arm. A display unit 2 is disposed on the top surface of the casing to display the step value or the converted speed value, the number of steps or the distance value after being sensed. Referring to Fig. 2A, there is shown a schematic diagram showing the internal components of the pedometer of the swing arm type motion sensing device of the present invention. It is shown that an inner space 12 is formed in the casing i, and two corresponding first swing arm positioning points 13 and second swing arm positioning points 14 are provided. In the inner space of the casing, the Xincai-sensing detection H3 is arranged along a preset reference line ι in the casing i, and the predetermined reference line is perpendicular to the casing.重力 The direction of gravity II when the user is attached to the upper arm of the user. a first swing arm 4 is disposed on one side of a predetermined reference line 丨 in the housing ,, one end of the first swing arm 4 is positioned at the first swing arm positioning point 13 of the housing i, and the other One end is a free end that swings at an angle with the swing of the user's upper arm. The free end of the first-swing arm 4 can be combined with a first sensing detection: 41. At the appropriate position of the free end of the first swing arm 4, the φ reset miscellaneous member 42 can be connected to the other end of the reversal member 42 and positioned at the squat point 15'. Therefore, the reset elastic member 42 can provide the first pendulum The free end of the arm* resets the elastic force while swinging. After the first swing arm 5 is disposed on the preset reference line z in the casing ,, one end of the first swing arm 5 is positioned at the second swing point 14 of the casing i and the other The end is a free end, and a second sensing detector 51 can be coupled to the free end of the user's upper arm and the fourth first swing arm 5. The appropriate position of the free end of the second swing arm 5 can be connected with the -reset elastic member 52, and the other end of the return elastic member W is also positioned at the position 1291883 2, so the reset elastic member 52 can provide the first The free end of the second swing arm is in the reversal force of the swing. The second embodiment of the present invention is that the sensing unit 41 and the returning elastic member 42 constitute a first axial motion signal sensor of W1. The second swing arm 5, the sensing member 51, and the return elastic member 52 constitute the second axial motion signal sensor of the present invention. In the embodiment of the present invention, the sensing detector 3 is a reed switch, and the & first sensing detector 41 and the second sensing detector 51 are magnetic components. For example, referring to FIG. 2B, which is a schematic diagram showing the internal component arrangement of the vibration sensing circuit, it is shown that an internal space 12 is formed in the housing 1 and three corresponding first vibration sensors are set up. 16. The second vibration sensor and the third vibration sensor 18 are disposed along a predetermined reference line I in the housing i, and the predetermined reference line is perpendicular to the housing 丨a third swing arm 延伸 extends between the preset reference line and the gravity direction II toward the outside of the housing, and the first vibration sensor 16 and the second vibration sensor are respectively attached to the upper arm of the user. When the signal is detected by the device 17, the signals of the first axial direction (X axial direction) and the second axial direction (Υ axial direction) are respectively calculated to calculate the amount of motion, and when the third axial direction (Ζ axial direction) is detected. When the arm swings incorrectly (if X or Υ is not moved in the axial direction), the amount of exercise cannot be detected until the arm swings back to the X, Υ axial direction and then starts to measure, so that the third axis The error of the first axial movement amount and the second axial movement amount can be corrected. Please refer to FIG. 2C, showing the internal components of the acceleration sensing circuit r 1291883. The schematic diagram of the salty acceleration sensing circuit can sense the acceleration sensing method. The system shows that an internal space is formed in the housing 1. 12, and set up three corresponding first acceleration sensors 19a, second acceleration sensors 19b and third acceleration sensors 19c, and the first acceleration sensor i9a, the second acceleration sensor 19b and the The three-acceleration sensor 19c is disposed in a 1C, and is disposed along a preset reference line j in the housing 1, and the preset reference line I is fixed to the housing 1 for use. a gravity direction II' of the upper arm and a third swing arm III extending between the preset reference line and the gravity direction, when the first acceleration sensor 19a, the second acceleration sensor 19b, and the third acceleration sense When the detector 19C detects the signal, it generates a first axial (X-axis), a second axial (γ-axis), and a third axial (Z-axis) signal to calculate the amount of motion, and then obtains User speed, number of steps and distance. The second swing arm III is coupled to the third vibration sensor 18 or the third acceleration sensor 19c to constitute the third axial motion signal sensor of the present invention. 3A is a functional block diagram showing the pedometer circuit of the swing arm type motion sensing device of the present invention, which shows that a pedometer control circuit 6 includes a sensing signal processing circuit 61 for receiving the sensing test. The sensor #3 senses the induction ##s1. The sensing signal processing circuit 61 can include a conventional filtering circuit and a waveform shaping circuit. The sense signal processing circuit 61 is coupled to a microcontroller 62 for delivering the processed sense signal to the microcontroller as a step signal. The microcontroller 62 can calculate the speed, the number of steps and the distance based on the step value and display it on the display unit 2. When the first swing arm 4 or the second swing arm 5 swings to the effective working distance adjacent to the sensing detector 3 due to the motion of the user's arm swinging 1291883, the sensing detector 3 is used. The sensing signal Si can be generated by sensing the swing of the first-sensing detector 41 or the second sensing detector 51 of the first swing arm 4 or the second swing arm $. However, the pedometer control circuit 6 can use a single axis (χ axis) to measure the walking or running pace, or can use two axes (χ axis), (γ axis) to measure the swing arm amplitude. The size and speed of the speed to calculate the speed, the number of steps and distance 'In addition, you can use the wireless transmit step signal to the receiver. In addition, the pedometer control circuit 6 can utilize the wireless transmit pedometer signal to the receiver. Furthermore, the pedometer control circuit 6 includes a display unit 2 for displaying the step value sent by the pedometer control circuit 6. However, the sensing detectors provided by the first sensing detector 41 and the second sensing detector 51 are magnetic elements. The second diagram shows a functional block diagram of the vibration sensing circuit of the swing arm type motion sensing device of the present invention. The vibration sensing circuit 7 includes a sensing signal processing circuit 71 for receiving an inductive signal. S2, the sensing signal s2 processing circuit 71 may include a conventional filtering circuit and a waveform shaping circuit. The sensing signal processing circuit 71 is coupled to a microcontroller 72 for sending the processed sensing signal to the microcontroller 72. Medium, as a signal for vibration sensing. The controller 72 can calculate the speed, the number of steps and the distance according to the amount of vibration, and display it on the display unit 2; and when the first vibration sensor 16 and the second vibration sensor 17 are due to the user's arm When the motion swings and swings within the effective working distance, the first vibration sensor 16, the second vibration 12 -1291883 sensor 17 or the third vibration sensor 18 pass through the amplifier and the chopper The oscillating condition is transmitted to the sensing signal processing circuit 71 for a process, and then a third vibration sensor 18 is modified to generate a vibration sensing signal s2. However, the vibration sensing circuit 7 can use a single axis (X axis) to measure the walking or running pace, or can use two axes (X axis), (γ axis) to measure the swing arm amplitude. And the speed is used to calculate the speed point and the step size. In addition, the wireless vibration sensing signal can be transmitted to the receiver. Further, the vibration sensing circuit 7 can wirelessly transmit a vibration sensing signal to the receiver. Furthermore, the 5 sinusoidal vibration sensing circuit 7 includes a display unit 2 for displaying the vibration sensing value sent by the vibration sensing circuit 7. However, the first vibration sensor 16 and the second vibration sensor 17 and the third vibration sensor 18 are vibration sensors. In addition, the vibration sensing circuit uses three-axis or more (X-axis), (γ-axis), (Ζ-axis) sensors, in addition to measuring the amplitude of the swing arm, it can also measure the pace of walking or running. High and low, and the user's speed, steps and distance. In addition, the third C diagram shows a functional block diagram of the acceleration sensing circuit of the swing arm type motion sensing device of the present invention, wherein the acceleration sensing circuit 8 includes a sensing ## processing circuit §1, the sensing signal The processing circuit 81 can include a conventional filtering circuit and a waveform shaping circuit. The acceleration sensing signal processing circuit 81 is coupled to a microcontroller 82 for sending the processed sensing "S3" to the microcontroller 82 as The vibration sensing signal. The micro controller 82 can calculate the speed, the step number 13 1291883 and the distance 'according to the acceleration of the user's swing arm to obtain a sensing signal S3, and display it on the display unit 2. When the first acceleration sensor 19a and the second acceleration sensor i9b are swung within the effective operating distance due to the motion swing speed of the user's arm, the first acceleration sensor 19a and the second acceleration sensor i9b and The acceleration sensor S3 can generate an acceleration sensing signal S3 through the swinging state of the amplifier and the filter. The acceleration sensing circuit 8 can use the wireless transmitting acceleration sensing signal. Further, the acceleration sensing circuit 8 includes a display unit 2 for displaying the speed sensing value sent by the acceleration sensing circuit 8. However, the first acceleration sensor 19a and the first The two acceleration sensor 19b and the third acceleration sensor 19c are acceleration sensors. In addition, the acceleration sensing circuit uses three axes or more (X axis), (Y axis), (Z axis) The sensor, in addition to measuring the acceleration of the swing arm, can also measure the pace of walking or running, and obtain the speed, the number of steps and the distance of the user. The fourth A figure shows the sense of swing arm movement of the present invention. The schematic diagram of the pedometer of the measuring device is attached to the upper arm of the user, and the sensing detector 3 senses when the upper arm of the user swings the swinging rearward to the angle of gravity by about 45 degrees. The first swing arm 4, the first sensing detector 41 of the second swing arm 5 and the second sensing detector 51 can generate a sensing signal, and the fourth B image shows the vibration sensing. A schematic diagram of the circuit when it is attached to the upper arm of the user, which is displayed as When the upper arm swings the swing rearward to an angle of about 45 degrees in the direction of the force 1291883, the sensing signal processing circuit 71 of the vibration sensing circuit 7 can receive and control the first vibration sensor 16 and the second vibration sensing. The swinging state of the device 17 (please refer to the third B diagram) generates a sensing signal, and the third vibration sensor 18 can correct the wrong swing motion of the user's upper arm. Please refer to the fourth C diagram. Shown is a schematic diagram showing the acceleration sensor sticking to the upper arm of the user, which shows the sensing of the acceleration sensing circuit 8 when the upper arm of the user swings the swing rearward to an angle of about 45 degrees in the direction of gravity. The signal processing circuit 81 is configured to receive and control the swing conditions of the first acceleration sensor 19a and the second acceleration sensor 19b and the third acceleration sensor 19c (refer to FIG. 3C) to generate a sensing signal. However, the acceleration sensing circuit 8 can also measure the acceleration of the three axes, and can also measure the speed value, the number of steps or the distance value of the user due to the free gravity of the swing arm, so when the sensing detector 3 senses When one of the swing arms is actuated, the other swing arm action will not be sensed, so that the occurrence of malfunction can be effectively avoided. Please refer to FIG. 5A, which shows that the upper arm of the user has a squat motion 罝 sensing device 1 when the oscillating device is oscillating, the pedometer of the swing arm type motion sensing device is every 2 Schematic diagram of the degree of twist at different angular positions. Please refer to the fifth B diagram, which shows the vibration sensing circuit X axis and γ axis of the swing arm type motion sensing device (χ axis), (γ axis) and (ζ axis). Waveforms that are not synchronized to different lengths at different amplitude velocities. The kiss is shown in the fifth C diagram, which shows the vibration sensing circuit z axial direction of the swing arm type motion sensing device represented by (χ axis), (γ axis 15 1291883 direction), and (z axis) Waveforms of different swing lengths corresponding to different lengths of the swing arm. The fifth D-picture shows that the acceleration sensing circuit of the swing arm type motion sensing device represented by (X-axis), (γ-axis) and (z-axis) is not synchronized at different swing arm speeds. Waveform diagram. Please refer to the fifth E diagram, which is a schematic diagram of the action of the user wearing a measurable three-axis k-number measuring instrument during running. It can be clearly seen from the figure that when the user runs from point A When it reaches point B and then runs from 6 o'clock (at ^ point, the measurer that can measure the two-axis signal is to measure the running speed of the user according to the angle, direction, vibration amount and acceleration of the user's arm swing. The number of steps and the length of the distance. As shown in the fifth F diagram, it is a schematic diagram of the action of the user wearing a measurable three-axis signal measuring device when walking, as can be clearly seen from the figure, when the user When walking from point A to point B and then point B to point c, even if the arm swing is smaller than the running motion, the measuring speed, the number of steps and the distance can be measured by a measuring device capable of measuring the three-axis signal. Referring to the sixth figure, it is shown that at various angles, the angular position of the swing arm type motion sensing device of the present invention changes and forms a motion indication cl, which is a display and a fifth sense. The pedometer of the measuring device is at different angular positions every 20 degrees (=: (γ axis) The angle is shown in the seventh A, seventh B, and seventh C charts, which shows the waveforms of the sense, Yz, and zx signals of the swing arm type motion sensing device of the present invention when the second t-degree position of the present invention is displayed. The three-axis swing arm -1291883 type motion sensing device 100 includes a first axial (X-axis), a second axial (Y-axis), and a third axial (Z-axis) vibration sensor ( Shock Sensor) or Acceleration Sensor. The waveform diagram shows that when the user is in motion, the swing arm type motion sensing device 100 will follow the movement trajectory of the upper arm of the user to the X-axis direction ( Displacement in the Y-axis direction (please refer to Figures 7A, 7B, and 7C). If the swing arm type motion sensing device is displaced in the X-axis direction, the more the width of the X-axis signal Vx sensed by it will be. The larger the Y-axis signal Vy, the smaller the wave width will be. If the swing arm-type motion sensing device is displaced in the Y-axis direction, the X-axis signal Vx will be more and more wide. Small. The width of the Y-axis signal Vy will be larger and larger, and the z-axis can detect the Vw, Vy wave width is abnormal. The image (such as the athlete does not follow the X, Y axial direction movement, etc.), and stops the Vx, Vy wave width. By the above embodiments of the present invention, the present invention has industrial use value. The embodiments are merely illustrative of the preferred embodiments of the present invention, and those skilled in the art can make various other modifications and changes in accordance with the embodiments of the present invention. Various modifications and changes are still within the scope of the invention and the patents defined by the invention. [Simplified illustration of the drawings] The first A is a schematic diagram of the appearance of the pedometer of the swing arm type motion sensing device of the present invention. 17 1291883 The first B diagram of the vibration sensing circuit is a schematic diagram of the appearance of the swing arm type motion sensing device of the present invention. Fig. C is a schematic view showing the appearance of the acceleration sensing circuit of the swing arm type motion sensing device of the present invention. The internal structure of the pedometer is the intention of the swing arm type motion sensing device of the present invention. The second B diagram is a schematic diagram of the internal components of the vibration sensing circuit of the swing arm type motion sensing device of the present invention.

之加速度感測器 第二C圖係本發明擺臂式運動量感測裝置 内部構件配置示意圖。 之計步器電路功 第三A圖係本發明擺臂式運動量感測裝置 能方塊圖。 第三B ®係本發明擺臂式運動量感龍置之振動感測電路 功能方塊圖。 第三C圖係本發明擺臂式運動量感測裝置之加速度感測電 路功能方塊圖。 第四A圖係本發明之擺臂式運動量感測骏置之計步器黏扣 於使用者左上臂時之示意圖。 第四B圖係本發明之擺臂式運動量感測裝置之 測電 路黏扣於使用者左上臂時之示意圖。 & 第四C圖係本發明之擺臂式運動量感測骏置之加速度感測 益黏扣於使用者左上臂時之示意圖。 第五A圖係該擺臂式運動量感測裝置之計步器在每隔2〇 度不同角度位置時之示意圖。 1291883 第五B圖係該擺臂式運動量感測裝置之X軸向與Y軸向振 動感測電路在不同振幅速度所對應不同步長大小之 波形圖。 第五C圖係該擺臂式運動量感測裝置之Ζ軸向振動感測電 路在不同振幅速度所對應不同步長大小之波形圖。 第五D圖係該擺臂式運動量感測裝置之加速度感測電路在 不同擺臂速度所對應不同步長大小之波形圖。 第五Ε圖係該使用者配戴有可測量三軸式信號之測量器於 跑步時之動作示意圖。 第五F圖係該使用者配戴有可測量三軸式信號之測量器於 走路時之動作示意圖。 第六圖係本發明之擺臂式運動量感測裝置之角度位置變化 並形成一運動軌跡c 1之示意圖。 第七Α圖係本發明之擺臂式運動量感測裝置所感測到的X-Y信號波形示意圖。 第七B圖係本發明之擺臂式運動量感測裝置所感測到的Y-Z信號波形示意圖。 第七C圖係本發明之擺臂式運動量感測裝置所感測到的Z-X信號波形示意圖。 【主要元件符號說明】 100 擺臂式運動量感測裝置 1291883Acceleration sensor The second C diagram is a schematic diagram of the internal components of the swing arm type motion sensing device of the present invention. The pedometer circuit function is the block diagram of the swing arm type motion sensing device of the present invention. The third B® is a functional block diagram of the vibration sensing circuit of the swing arm type motion sensing device of the present invention. The third C diagram is a functional block diagram of the acceleration sensing circuit of the swing arm type motion sensing device of the present invention. The fourth A figure is a schematic diagram of the pedometer of the swing arm type motion sensing sensation of the present invention when it is attached to the left upper arm of the user. The fourth B is a schematic view of the measuring circuit of the swing arm type motion sensing device of the present invention when the measuring circuit is stuck to the left upper arm of the user. & The fourth C picture is a schematic diagram of the acceleration sensor of the swing arm type motion sensing sensor of the present invention when it is attached to the left upper arm of the user. Fig. 5A is a schematic view showing the pedometer of the swing arm type motion amount sensing device at different angular positions every 2 degrees. 1291883 The fifth B diagram is a waveform diagram of the X-axis and Y-axis vibration sensing circuits of the swing arm type motion sensing device corresponding to the asynchronous length of different amplitude speeds. The fifth C diagram is a waveform diagram of the unsynchronized length of the Ζ-axis vibration sensing circuit of the swing arm type motion sensing device at different amplitude velocities. The fifth D diagram is a waveform diagram of the unsynchronized length of the acceleration sensing circuit of the swing arm type motion sensing device at different swing arm speeds. The fifth diagram is a schematic diagram of the action of the user wearing a measurable triaxial signal measuring device during running. The fifth F diagram is a schematic diagram of the action of the user wearing a measurable triaxial signal measuring device while walking. The sixth figure is a schematic diagram showing the angular position change of the swing arm type motion sensing device of the present invention and forming a motion track c1. The seventh diagram is a schematic diagram of the X-Y signal waveform sensed by the swing arm type motion amount sensing device of the present invention. The seventh B is a schematic diagram of the waveform of the Y-Z signal sensed by the swing arm type motion sensing device of the present invention. The seventh C is a schematic diagram of the Z-X signal waveform sensed by the swing arm type motion amount sensing device of the present invention. [Main component symbol description] 100 swing arm type motion sensing device 1291883

lla 、 lib 黏扣帶 12 内部空間 13 第一擺臂定位點 14 第二擺臂定位點 15 定位點 16 第一振動感測器 17 第二振動感測器 18 第三振動感測器 19a 第一加速度感測器 19b 第二加速度感測器 19c 第三加速度感測器 2 顯示單元 3 感測檢知器 4 第一擺臂 41 第一感測檢知器 42 復位彈性件 5 第二擺臂 51 第二感測檢知器 52 復位彈性件 6 計步器控制電路 61 感測信號處理電路 62 微控器 7 振動感測電路 71 感測信號處理電路 1291883 72 微控器 8 加速度感測電路 81 感測信號處理電路 82 微控器 I 預設基準線 II 重力方向 III 第三擺臂 SI 感應信號 S2 感應信號 S3 感應信號 21LLa, lib Velcro strip 12 Internal space 13 First swing arm positioning point 14 Second swing arm positioning point 15 Positioning point 16 First vibration sensor 17 Second vibration sensor 18 Third vibration sensor 19a First Acceleration sensor 19b Second acceleration sensor 19c Third acceleration sensor 2 Display unit 3 Sensing detector 4 First swing arm 41 First sensing detector 42 Reset elastic member 5 Second swing arm 51 Second sensing detector 52 reset elastic member 6 pedometer control circuit 61 sensing signal processing circuit 62 micro controller 7 vibration sensing circuit 71 sensing signal processing circuit 1291883 72 micro controller 8 acceleration sensing circuit 81 sense Signal Processing Circuit 82 Microcontroller I Preset Reference Line II Gravity Direction III Third Swing Arm SI Induction Signal S2 Induction Signal S3 Induction Signal 21

Claims (1)

1291883 十、申請專利範圍: 1· 一 種擺臂式運動量感測裝置,係於運動者之上臂部 感測裝置’用以檢測出該運動者於運:時 之運動該運動量❹讀置包括有: W 一设體,其為具有一内部空間· 一第一軸向運動信號感測器,心感測出使用者於運動 時’於上臂擺動時’偵測出該上臂擺動時之第—軸向位 置信號; 第-軸向運動k 5虎感測器,用以感測出使用者於運動 時,於上臂擺動時,偵測出該上臂擺動時之第二軸向位 置信號; ,少-感測檢知器,用以檢知該第—軸向運動信號感測 器及所產生之第一軸向位置信號及第二軸向運動信號感 測器及所產生之第二軸向位置信號; 一感測信號處理電路,接收該感測檢知器所接收之第一 軸向運動信號感測器及第二軸向運動信號感測器所感測 出之信號,並對該信號進行處理; 一微處理器,讀取該第一軸向運動信號感測器、第二軸 向運動信號感測器所感測之信號,據以計算出該使用者 之運動量。 2·如申請專利範圍第1項所述之擺臂式運動量感測裝置, 其中 22 -1291883 該第一軸向運動信號感測器係由第一擺臂、感應單元、 復位彈性件所構成,而該第二軸向運動信號感測器係由 第二擺臂、感應單元、復位彈性件所構成,而苐一擺臂 及第二擺臂所設之感測檢知器係為加速度感測器。 3·如申請專利範圍第1項所述之擺臂式運動量感測裝置, 其中,遠设體中配置有一計步器控制電路,其經由一感 測信號連接線連接於該感測檢知器,當該感測檢知器產 生感測信號時,該感測信號經由該感測信號連接線送至 該計步器控制電路中,作為計步之信號。 4·如申請專利範圍第3項所述之擺臂式運動量感測裝置, 其中’該計步器控制電路係使用單軸(X軸向)用以測 走路或跑步的步伐。 5·如申請專利範圍第3項所述之擺臂式運動量感測裝置, 其中’該計步器控制電路係使用雙轴(X軸向)、(γ軸 向)用以測1擺臂振幅大小及速度快慢來計算步長。 6·如申請專利範圍第3項所述之擺臂式運動量感測裝置, #中’該計步器控制電路為利用無線發射振動感測信號 到接收器上。 7·如申請專利範圍第3項所述之擺臂式運動量感測裝置, 231291883 X. Patent application scope: 1. A swing arm type motion sensing device is used in the upper arm sensing device of the athlete to detect the movement of the athlete: the movement amount of the movement includes: W is a body having an internal space and a first axial motion signal sensor. The heart sense detects the first axial direction of the user when the upper arm swings when the user swings. Position signal; a first-axis motion k 5 tiger sensor for sensing the second axial position signal of the upper arm when the user swings when the upper arm swings; Detecting the detector for detecting the first-axis motion signal sensor and the generated first axial position signal and the second axial motion signal sensor and the generated second axial position signal; a sensing signal processing circuit receives the signal sensed by the first axial motion signal sensor and the second axial motion signal sensor received by the sensing detector, and processes the signal; a microprocessor that reads the first axial motion No. sensor, the measured signal of the second shaft sensed motion signal to the sensor, is calculated according to the amount of movement of the user. 2. The swing arm type motion sensing device according to claim 1, wherein the first axial motion signal sensor is composed of a first swing arm, a sensing unit, and a reset elastic member. The second axial motion signal sensor is composed of a second swing arm, a sensing unit and a reset elastic member, and the sensing detector provided by the first swing arm and the second swing arm is an acceleration sensing. Device. 3. The swing arm type motion sensing device according to claim 1, wherein the remote device is provided with a pedometer control circuit connected to the sensing detector via a sensing signal connection line. When the sensing detector generates the sensing signal, the sensing signal is sent to the pedometer control circuit via the sensing signal connection line as a signal of the step counting. 4. The swing arm type motion sensing device according to claim 3, wherein the pedometer control circuit uses a single axis (X axis) for measuring the pace of walking or running. 5. The swing arm type motion sensing device according to claim 3, wherein the pedometer control circuit uses two axes (X axis) and (γ axis) to measure the swing arm amplitude. The size and speed are used to calculate the step size. 6. The swing arm type motion sensing device of claim 3, wherein the pedometer control circuit is configured to wirelessly transmit a vibration sensing signal to the receiver. 7. The swing arm type motion sensing device according to item 3 of the patent application scope, 23 Ϊ291883 其中,該計步器控制電路中 不該計步器控制電路所送出 4不早兀,用以顯 St步值、料及距離。 種擺臂式運動量感測裝置,係於運 辟 置有-運動量感測裝置,用以檢測上是部分配 之運動量,該運動量感測裝置包括有广運動者於運動時 一殼體,其為具有一内部处門· :第二振動感測器,用以感測出使用者於運動、。:於 Γ=則出該上臂擺動時之第二振動感測信號: 第二振動感測器,用以感測出使用者於運動時,於上 臂擺動時’ _出該上臂擺動時之第三振動感測信號; 至少-感測檢知器,用以檢知該第一振動感測器及所產 生之第-振動感測信號、第二振動感測器及所產生之第 二振動感測信號及第三振動感測器所產生4第三振動感 測信號; ~ 感測彳3號處理電路,接收該感測檢知器所接收之第一 振動感測器、第二振動感測器及第三感測器所感測出之 信號,並對該信號進行處理; 一微處理器,讀取該第一振動感測器、第二振動感測器 所感測之信號,據以計算出該使用者之速度、步數及距 離。 24 !291883 9·如申請專利範圍第8項所述之擺臂式運動量感測裝置, 其中該第一振動感測器及第二振動感測器及第三感測器 所設之感測檢知器係為加速度感測器。 10·如申請專利範圍第8項所述之擺臂式運動量感測裝置, 其中該殼體中配置有一振動感測電路,其經由一感測信 號連接線連接於該感測檢知器,當該感測檢知器產生感 I 測信號時,該感測信號經由該感測信號連接線送至該振 動感測電路中,作為振動感測之信號。 U·如申請專利範圍第10項所述之擺臂式運動量感測裝置, 其中,該振動感測電路為可利用無線發射振動感測信號 到接收器上。 儿Ϊ 291883, wherein the pedometer control circuit does not send the pedometer control circuit 4 early, to display the St step value, material and distance. The swing arm type motion sensing device is provided with a motion amount sensing device for detecting a partial amount of motion, and the motion amount sensing device includes a housing having a wide movement during movement, which is There is an internal door: a second vibration sensor for sensing the user's movement. : Γ 则 = the second vibration sensing signal when the upper arm swings: the second vibration sensor is used to sense the third time when the upper arm swings when the user swings when the upper arm swings a vibration sensing signal; at least a sensing detector for detecting the first vibration sensor and the generated first-vibration sensing signal, the second vibration sensor, and the generated second vibration sensing The signal and the third vibration sensor generate 4 third vibration sensing signals; ~ sensing the 彳3 processing circuit, receiving the first vibration sensor and the second vibration sensor received by the sensing detector And a signal sensed by the third sensor, and processing the signal; a microprocessor reading the signal sensed by the first vibration sensor and the second vibration sensor, thereby calculating the User speed, number of steps and distance. 24:291883. The swing arm type motion sensing device according to claim 8, wherein the first vibration sensor, the second vibration sensor and the third sensor are provided with a sensing test. The device is an acceleration sensor. The swing arm type motion sensing device according to claim 8, wherein the housing is provided with a vibration sensing circuit connected to the sensing detector via a sensing signal connection line. When the sensing detector generates the sensing signal, the sensing signal is sent to the vibration sensing circuit via the sensing signal connection line as a signal for vibration sensing. U. The swing arm type motion sensing device according to claim 10, wherein the vibration sensing circuit is configured to wirelessly transmit a vibration sensing signal to the receiver. child 12·如申請專利範圍第1〇項所述之擺臂式運動量感測裝 置,其中,該振動感測電路中包括有一顯示單元,用以 顯示該振動感測電路所送出之振動感測值。 13.如申請專利範圍第1G項所述之擺臂式運動量感測裝 置,其中,該振動感測電路係可使用單軸CX軸向) 以測量走路或跑步的步伐。 用 14^中請專利範圍s 1G項所述之擺f式運動量感 置,其中,該振動感測電路使用雙軸(x軸向)、(γ 、 車由 ^ !291883 向)用以測量擺臂振幅大小及速度快慢來計算步長。 15·如申請專利範圍第10項所述之擺臂式運動量感測裝 置’其中,該振動感測電路使用三軸或以上(X軸向)、 (γ軸向)、(Ζ軸向)感測器,除了可以測量擺臂振幅 大小’亦可測量走路或跑步時的步伐高低,而得出正確 之速度、步數與距離。 •如申晴專利範圍第15項所述之擺臂式運動量感測裝 置,其中,該三軸感測器係用於振動式感測器。 17 •如申請專利範圍第15項所述之擺臂式運動量感測裝 置’其中,該三轴感測器係用於加速度感測器。 2612. The swing arm type motion sensing device of claim 1, wherein the vibration sensing circuit includes a display unit for displaying a vibration sensing value sent by the vibration sensing circuit. 13. The swing arm type motion sensing device of claim 1G, wherein the vibration sensing circuit can use a single axis CX axial) to measure the pace of walking or running. The swing type motion sense sense described in the patent scope s 1G item of 14^ is used, wherein the vibration sensing circuit uses two axes (x-axis), (γ, vehicle by ^!291883 direction) for measuring the pendulum The arm amplitude and speed are used to calculate the step size. 15. The swing arm type motion amount sensing device according to claim 10, wherein the vibration sensing circuit uses three axes or more (X axis), (γ axis), (Ζ axis) feeling The detector, in addition to measuring the swing arm amplitude, can also measure the pace of walking or running, and get the correct speed, number of steps and distance. The swing arm type motion amount sensing device according to claim 15, wherein the three-axis sensor is used for a vibrating sensor. 17: The swing arm type motion amount sensing device according to claim 15 wherein the three-axis sensor is used for an acceleration sensor. 26
TW094128825A 2005-08-23 2005-08-23 Arm-swinging type exercise quantity sensing apparatus TW200708319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW094128825A TW200708319A (en) 2005-08-23 2005-08-23 Arm-swinging type exercise quantity sensing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094128825A TW200708319A (en) 2005-08-23 2005-08-23 Arm-swinging type exercise quantity sensing apparatus

Publications (2)

Publication Number Publication Date
TW200708319A TW200708319A (en) 2007-03-01
TWI291883B true TWI291883B (en) 2008-01-01

Family

ID=45067359

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094128825A TW200708319A (en) 2005-08-23 2005-08-23 Arm-swinging type exercise quantity sensing apparatus

Country Status (1)

Country Link
TW (1) TW200708319A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416927B (en) * 2008-11-28 2013-11-21 Inventec Corp Portable electric device using calories calculation
CN108404394A (en) * 2018-02-09 2018-08-17 上海康斐信息技术有限公司 The computational methods and system, wearable device of a kind of running distance for wearable device

Also Published As

Publication number Publication date
TW200708319A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
US11511154B1 (en) Athletic performance and technique monitoring
JP4673342B2 (en) Exercise information determination method and wristwatch type device
JP4845345B2 (en) Electronic pedometer
JP6772276B2 (en) Motion recognition device and motion recognition method
US20020151810A1 (en) Wrist-based fitness monitoring devices
WO2011108372A1 (en) Body motion detection device and display control method of body motion detection device
JP6565369B2 (en) Exercise support device, exercise support method, and exercise support program
US20110077904A1 (en) Motion recognition system using footwear for motion recognition
JPH03126477A (en) Swing analyzing device
JP2015058096A (en) Exercise support device, exercise support method, and exercise support program
CN205540575U (en) A motion capture gloves and virtual reality system for virtual reality system
JP2014180483A5 (en)
US20070049836A1 (en) Electronic wristwatch-type exercise signal detecting apparatus
WO2018132999A1 (en) Human body step length measuring method for use in wearable device and measuring device of the method
JP2003093566A (en) Method for discriminating movement and movement sensing module
TWI291883B (en)
CN101294979A (en) Wrist watch type acceleration sensing module for measuring amount of exercise
JP5071822B2 (en) Physical state detection device, detection method thereof, and detection program
US20150150491A1 (en) Movement estimation device, and activity tracker
JP4954792B2 (en) Speedometer
US20090063088A1 (en) Wristwatch type acceleration detection module
Kumar et al. A wearable inertial sensing device for fall detection and motion tracking
US20060122521A1 (en) Electronic wristwatch-type exercise signal detecting apparatus
JP5144128B2 (en) Speedometer
TW201017134A (en) Step-counting processing system and method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees