JP2003093566A - Method for discriminating movement and movement sensing module - Google Patents

Method for discriminating movement and movement sensing module

Info

Publication number
JP2003093566A
JP2003093566A JP2001333496A JP2001333496A JP2003093566A JP 2003093566 A JP2003093566 A JP 2003093566A JP 2001333496 A JP2001333496 A JP 2001333496A JP 2001333496 A JP2001333496 A JP 2001333496A JP 2003093566 A JP2003093566 A JP 2003093566A
Authority
JP
Japan
Prior art keywords
acceleration
sensing module
motion
acceleration sensor
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001333496A
Other languages
Japanese (ja)
Inventor
Yuji Izawa
裕司 井澤
Kazutoyo Ichikawa
和豊 市川
Norihiko Shiratori
典彦 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microstone Corp
Original Assignee
Microstone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microstone Corp filed Critical Microstone Corp
Priority to JP2001333496A priority Critical patent/JP2003093566A/en
Priority to PCT/JP2002/001998 priority patent/WO2002069803A1/en
Priority to TW091103982A priority patent/TW516949B/en
Priority to EP02703913A priority patent/EP1366712A4/en
Priority to US10/468,850 priority patent/US7028547B2/en
Priority to CNB028005163A priority patent/CN1287733C/en
Priority to KR1020027014811A priority patent/KR20030004387A/en
Publication of JP2003093566A publication Critical patent/JP2003093566A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Abstract

PROBLEM TO BE SOLVED: To provide a method for discriminating movements and gestures of a body by using only acceleration data detected by means of a triaxial acceleration sensor which an instrument mounted on the wrist possesses and to provide a movement sensing module miniaturized by this method and with less burden of mounting and with a low cost and a low consumption of electric power. SOLUTION: The method for discriminating the movement in which the acceleration data (low frequency components are eliminated) measured by means of the triaxial acceleration sensor mounted on the wrist part are integrated twice to obtain positional information and an average size and a direction of a positional vector within a specified time are calculated and kind of the movement performed is discriminated based on the calculated data and the movement sensing module in which the triaxial acceleration sensor and a discriminating circuit are built are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、身体が行う運動の
種類やその強度を自動的に識別する方法あるいは装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method or apparatus for automatically identifying the type of exercise performed by a body and its intensity.

【0002】[0002]

【従来の技術】近年健康や医療への関心がますます高ま
り、健康と身体の運動機能との関係が一層強く意識され
ている。そこで例えば、身体の運動量を使用者が負担に
感じないような手軽な機器(運動センサを内蔵し身体の
一部に取り付ける)で検出し、健康管理に役立てようと
いう提案は数多い。また一方では言語を用いないコミュ
ニケーションの一手段として、使用者の身振り動作を判
断し、その結果を他者に通信等で知らせようとする提案
もある。
2. Description of the Related Art In recent years, interest in health and medical treatment has been increasing, and the relationship between health and the motor function of the body has been strongly recognized. Therefore, for example, there are many proposals to detect the amount of exercise of the body with a handy device (with a built-in motion sensor and attached to a part of the body) so that the user does not feel burdened, and to utilize it for health management. On the other hand, there is also a proposal as a means of communication that does not use language, in which the gesture of the user is determined and the result is notified to others by communication or the like.

【0003】[0003]

【発明が解決しようとする課題】身体の諸提案におい
て、身体の複数箇所に運動センサを常時装着することは
なるべくは避けたい。装着を1か所とした場合、身体の
重心に近い腰の部分が選択されることもあるが、身体全
体の運動と相関性の高い運動をすると考えられるし身振
り検出も可能で、腕時計が普及しているため違和感もな
い腕部がよく用いられる。しかし人体の特定の1か所で
ある腕部の運動センス結果によって人体の行っている運
動を識別しあるいは運動量を推定することは必ずしも容
易ではなく、そのための簡便かつ最適な方法は、従来提
案されていなかった。
In various body proposals, it is desirable to avoid wearing motion sensors at multiple points on the body at all times. When wearing it in one place, the waist part close to the center of gravity of the body may be selected, but it is considered that the body part performs a movement highly correlated with the movement of the whole body, and gestures can be detected. Because of this, the arm that does not feel uncomfortable is often used. However, it is not always easy to identify the motion performed by the human body or to estimate the amount of exercise based on the result of the motion sense of the arm, which is one specific part of the human body, and a simple and optimal method for that is conventionally proposed. Didn't.

【0004】また腕部の運動にしても、完全を期すには
3軸方向の加速度と3軸方向の角速度の6つの運動要素
を測定せねばならない。殊に角速度の計測は振動ジャイ
ロスコープが必要であるが、ジャイロセンサは加速度セ
ンサと異なりセンサ用振動体を励振せねばならず、計測
項目の増加もさることながら、センサ自体の構造も計測
回路も複雑になるので、完全な計測を行おうとすると機
器も大型且つ高価になり、消費電力も大きくなることは
避けがたい。
Further, even if the movement of the arm portion is completed, it is necessary to measure six motion elements of acceleration in the three axis directions and angular velocity in the three axis directions in order to complete the movement. In particular, measurement of angular velocity requires a vibration gyroscope, but unlike an acceleration sensor, a gyro sensor has to excite a vibrating body for a sensor, which increases the number of measurement items as well as the structure of the sensor itself and the measurement circuit. Since it becomes complicated, it is unavoidable that the equipment will be large and expensive and power consumption will increase when trying to perform a complete measurement.

【0005】本発明は、腕部分に装着される機器に3軸
方向の加速度を計測できる加速度センサを内蔵させ、こ
のセンサで検出された加速度データを用いて身体の運動
や身振りを識別することができる方法を提供することで
あり、またそのことによって小型化されて装着の負担が
少なく、低コスト化、低消費電力化が可能な運動センシ
ングモジュールを提供することを目的とする。
According to the present invention, a device mounted on an arm is provided with an acceleration sensor capable of measuring acceleration in three axial directions, and the acceleration data detected by this sensor can be used to identify body movements and gestures. It is an object of the present invention to provide a motion sensing module that can be downsized, thereby reducing the burden of mounting, reducing the cost, and reducing the power consumption.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明の運動識別方法は次の特徴を備える。 (1)身体の所定の部位に装着された3軸の加速度セン
サによって計測された加速度データを2回積分して位置
情報とし、所定の時間内における位置ベクトルの平均的
な大きさおよび方向を算出し、算出されたデータに基づ
いて行われた運動の種類を識別すること。
In order to achieve the above object, the motion identification method of the present invention has the following features. (1) Acceleration data measured by a triaxial acceleration sensor attached to a predetermined part of the body is integrated twice to obtain position information, and the average size and direction of the position vector within a predetermined time is calculated. Then, identify the type of exercise performed based on the calculated data.

【0007】本発明の運動識別方法は更に以下の特徴の
いずれかを備えることがある。 (2)前記加速度データは所定の周波数以下の低周波成
分をカットされていること。 (3)前記身体の所定の部位は手首であること。
The motion identification method of the present invention may further include any of the following features. (2) The acceleration data has low frequency components below a predetermined frequency cut. (3) The predetermined part of the body is the wrist.

【0008】上記目的を達成するため本発明の運動セン
シングモジュールは次の特徴を備える。 (4)3軸の加速度センサと、該加速度センサによって
計測された加速度データに所定の時間演算を加える演算
装置とを内蔵し、身体の所定の部位に装着される携帯可
能な機器であって、前記演算装置は、加速度データを2
回積分して位置情報とし、前記所定の時間内における位
置ベクトルの平均的な大きさおよび方向を算出し、算出
されたデータに基づいて、行われた運動の種類を識別す
ること。
To achieve the above object, the motion sensing module of the present invention has the following features. (4) A portable device that includes a three-axis acceleration sensor and a calculation device that adds a predetermined time calculation to acceleration data measured by the acceleration sensor, and is a portable device that is mounted on a predetermined part of the body, The arithmetic unit outputs acceleration data of 2
Integrating times to obtain position information, calculating the average size and direction of the position vector within the predetermined time, and identifying the type of exercise performed based on the calculated data.

【0009】本発明の運動センシングモジュールは更に
以下の特徴のいずれかを備えることがある。 (5)前記加速度データは所定の周波数以下の低周波成
分をカットされていること。 (6)前記身体の所定の部位は手首であること。
The motion sensing module of the present invention may further include any of the following features. (5) The acceleration data has low frequency components below a predetermined frequency cut. (6) The predetermined part of the body is the wrist.

【0010】(7)前記3軸の加速度センサは、板の面
より重心が離れた負荷質量を固着し、該負荷質量に作用
する加速度による前記板の変形を圧電的に検出する構成
を有すること。
(7) The triaxial acceleration sensor has a structure in which a load mass whose center of gravity is separated from the plane of the plate is fixed, and the deformation of the plate due to acceleration acting on the load mass is piezoelectrically detected. .

【0011】[0011]

【発明の実施の形態】図1は本発明の方法および装置の
実施の形態の一例および座標軸の方向を示す正面図であ
る。運動センシングモジュール1は腕時計に近い大き
さ、似た外観の装置で、3軸加速度センサ、加速度デー
タの演算装置、必要なデータの記憶装置、演算結果の液
晶表示装置、外部機器との無線通信装置(必要に応じ
て)、操作部材、電源等を内蔵し、腕時計と同様腕巻き
バンド2によって、例えば左手首3の手の甲側に装着さ
れる。X、Y、Zは運動センシングモジュール1に固定
された直交座標軸である。即ち図示したXはほぼ腕軸の
方向、Yはほぼ掌の幅方向、Zは指を伸ばした手の甲に
ほぼ垂直な方向となる。
1 is a front view showing an example of an embodiment of a method and an apparatus according to the present invention and directions of coordinate axes. The motion sensing module 1 has a size similar to a wristwatch and a similar appearance, and is a triaxial acceleration sensor, a device for calculating acceleration data, a storage device for necessary data, a liquid crystal display device for calculation results, and a wireless communication device with external equipment. (In case of necessity), it includes an operating member, a power source, etc., and is attached to the back of the left wrist 3, for example, by the wristband 2 as in a wristwatch. X, Y, and Z are orthogonal coordinate axes fixed to the motion sensing module 1. That is, X shown in the drawing is the direction of the arm axis, Y is the width direction of the palm, and Z is the direction substantially perpendicular to the back of the hand with the finger extended.

【0012】3軸加速度センサは既に採用可能な多数の
提案があるので形態を特定する必要はないが、基本的に
は圧電性を有する材料を含んで作られ、作用する加速度
により生じる慣性力よって撓みうる部分を有し、かつ慣
性力の方向によって異なる撓みと異なる圧電作用を呈
し、それを検出する電極を有するものが小型に構成でき
消費電力も小さいので優れている。
Since there are many proposals that can be already adopted for the three-axis acceleration sensor, it is not necessary to specify the form, but basically, the three-axis acceleration sensor is made of a material having a piezoelectric property, and the inertial force generated by the acting acceleration causes An element having a bendable portion, exhibiting different bending and different piezoelectric action depending on the direction of the inertial force, and having an electrode for detecting the bending is small in size and consumes less power, which is excellent.

【0013】図5は本発明に用いるのに好適な金属円板
を用いた3軸加速度センサの具体的な1例を示し、
(a)は平面図、(b)はA−A断面図である。金属の
本体部分は7mm×7mm×2mmの燐青銅のブロック
材を加工して、中心軸22と直径6mm、厚さ0.2m
mの金属円板21とを削り出し、周囲の削り残した枠状
の部分を金属円板21と一体化したその支持体20と
し、その下面はセンサの容器に固定される。中心軸22
にはリング状の負荷質量23が圧入されている。故に負
荷質量23の重心は金属円板21の面から下方に離れた
位置に偏心している。また図中にXYZ座標軸の方向や
負荷質量23の重心に作用する各軸方向の加速度Gx、
Gy、Gzを記している。
FIG. 5 shows a concrete example of a three-axis acceleration sensor using a metal disk suitable for use in the present invention.
(A) is a top view and (b) is an AA sectional view. The metal body is made of 7 mm x 7 mm x 2 mm phosphor bronze block material, and has a central shaft 22 with a diameter of 6 mm and a thickness of 0.2 m.
The metal disk 21 of m is carved out, and the surrounding frame-shaped part left unmachined is the support 20 integrated with the metal disk 21, and the lower surface thereof is fixed to the sensor container. Central axis 22
A ring-shaped load mass 23 is press-fitted into this. Therefore, the center of gravity of the load mass 23 is eccentric to a position spaced downward from the surface of the metal disk 21. Also, in the figure, the acceleration Gx in the directions of the XYZ coordinate axes and the respective axial directions acting on the center of gravity of the load mass 23
Gy and Gz are shown.

【0014】圧電板24は7mm×7mm×0.12m
mの薄板状で板厚方向に分極したPZT等の圧電性磁器
材料より成り、上面側にに8枚の軸対称に配置された扇
状の電極膜(それぞれ等形のX電極膜25、26、Y電
極膜27、28、およびそれらの約半分の面積を有する
Z電極膜29、30、31、32)が形成され、下面は
金属円板21の上面に接着されており、金属円板21は
圧電板24の共通電極(参照用電極)を兼ねている。な
おセンサ全体は通常気密容器に収用され、また各電極膜
25〜32や金属円板21はそれぞれ柔軟なリード線と
絶縁端子を介して加速度検出回路に接続されるが、容器
や結線の構造、および回路は図示を省略した。
The piezoelectric plate 24 is 7 mm × 7 mm × 0.12 m
m is a thin plate and is made of a piezoelectric porcelain material such as PZT that is polarized in the plate thickness direction, and eight axially symmetrical fan-shaped electrode films (the X electrode films 25 and 26 having the same shape, respectively) are arranged on the upper surface side. Y electrode films 27, 28 and Z electrode films 29, 30, 31, 32) having an area about half of those are formed, the lower surface is adhered to the upper surface of the metal disk 21, and the metal disk 21 is It also serves as a common electrode (reference electrode) of the piezoelectric plate 24. The entire sensor is normally housed in an airtight container, and the electrode films 25 to 32 and the metal disk 21 are connected to the acceleration detection circuit via flexible lead wires and insulating terminals, respectively. The illustration of the circuit is omitted.

【0015】図5(c)、(d)は加速度による変形状
態を示す略図である。図示方位は図5(b)の断面図と
同じである。加速度Gxが作用すると、(c)のように
負荷質量23の重心には逆方向に慣性力Fxが発生し、
負荷質量23が力の方向に変位し、金属円板21(特に
その中央部)は波形に変形する。金属円板21の上側に
貼付した圧電板24(以下図示せず)においては、X電
極膜25に覆われた部位の圧電材料は凸側なので伸び、
X電極膜26に覆われた部位の圧電材料は凹型になるの
で縮み、各電極膜には逆極性で撓み量に比例する電圧
(参照電極の電位に対して)が発生する。なお慣性力F
xによるY電極膜27、28に覆われた部位の変形は凹
凸等量であるから電圧の発生はない。(図示しないが、
加速度Gyも板面に平行な方向に作用するので、向きは
垂直だが同様の現象を生じ、Y電極膜27、28に逆電
圧が発生する。)
5 (c) and 5 (d) are schematic diagrams showing a state of deformation due to acceleration. The illustrated orientation is the same as the sectional view of FIG. When the acceleration Gx acts, an inertial force Fx is generated in the opposite direction at the center of gravity of the load mass 23 as shown in (c),
The load mass 23 is displaced in the direction of the force, and the metal disk 21 (particularly the central portion thereof) is deformed into a wave shape. In the piezoelectric plate 24 (not shown below) attached to the upper side of the metal disk 21, the piezoelectric material in the portion covered with the X electrode film 25 is a convex side, and therefore extends.
The piezoelectric material in the portion covered by the X electrode film 26 is concave, so that the piezoelectric material shrinks, and a voltage (with respect to the potential of the reference electrode) having a reverse polarity and proportional to the amount of bending is generated in each electrode film. Inertial force F
Since the deformation of the portion covered with the Y electrode films 27 and 28 due to x is equal to the unevenness, no voltage is generated. (Not shown,
Since the acceleration Gy also acts in the direction parallel to the plate surface, the same phenomenon occurs even though the direction is vertical, and a reverse voltage is generated in the Y electrode films 27 and 28. )

【0016】また加速度Gzが作用すると、図5(d)
のように負荷質量23の重心には慣性力Fzが発生し、
金属円板21を上に凹型に変形させる。この場合は圧電
板24は全ての部位で等しく縮むことになるので、Z電
極膜29〜32には同極性かつ等量の電圧が発生する。
以上のような作用があるから、X電極膜25、26およ
びY電極膜27、28の出力をそれぞれ2つの差動増幅
器の入力部に接続し、Z電極膜29〜32をまとめて増
幅器の入力部に接続して、それらの出力の変化を計測す
ることにより、加速度の各方向成分の大きさを知ること
ができる。このように、本例の加速度センサは小型で簡
単な構造でありながら3軸の加速度計測が可能であり、
腕時計型の機器に内蔵するのに適している。
When the acceleration Gz acts, FIG. 5 (d)
An inertial force Fz is generated at the center of gravity of the load mass 23 as
The metal disk 21 is deformed upward into a concave shape. In this case, the piezoelectric plate 24 contracts equally at all parts, so that voltages of the same polarity and the same amount are generated in the Z electrode films 29 to 32.
Because of the above-described actions, the outputs of the X electrode films 25 and 26 and the Y electrode films 27 and 28 are connected to the input parts of the two differential amplifiers, respectively, and the Z electrode films 29 to 32 are collectively input to the amplifier. It is possible to know the magnitude of each direction component of the acceleration by connecting to the section and measuring the change in the output thereof. As described above, the acceleration sensor of this example is small and has a simple structure, and is capable of measuring triaxial acceleration.
Suitable for incorporation in wristwatch-type devices.

【0017】本発明の実施の形態の一例において使用さ
れた加速度センサ(検出回路を含む)はマイクロストー
ン社製で、その特性は以下のようである。 検出範囲:±40m/squaresec、検出感度:
+50mV/m/squaresec、外形寸法:W2
0mm×D12.5mm×H5mm。
The acceleration sensor (including the detection circuit) used in the example of the embodiment of the present invention is manufactured by Microstone Co., Ltd., and its characteristics are as follows. Detection range: ± 40 m / squaresec, detection sensitivity:
+50 mV / m / squaresec, external dimensions: W2
0 mm x D12.5 mm x H5 mm.

【0018】図2(a)はこのようにして得られた各軸
方向の加速度Gx、Gy、Gzの波形(横軸は時間、縦
軸は検出電圧である)の一例を示す波形図で、歩行運動
における腕振りの場合である。加速度データは例えば5
0Hzでサンプリングされデジタルデータとして所定の
時間(任意であるが例えば数秒ないし数分間とする・そ
の期間内で運動の反復回数が多い方が識別精度が向上す
ると考えられる)記憶される。また図2(b)は各加速
度データを2回積分して得られた刻々のセンサの位置情
報を3次元座標上に再合成した、推定された軌跡の斜視
図であり、手首が体側に沿って主にY方向に往復する状
態が示されている。4は1回の計測の始点、5は終点で
ある。(厳密に正確なものではなく概念的な図であ
る。)
FIG. 2A is a waveform diagram showing an example of the waveforms of the accelerations Gx, Gy, Gz in the respective axial directions thus obtained (the horizontal axis is time, and the vertical axis is the detected voltage). This is the case of arm swing in a walking motion. Acceleration data is 5
The data is sampled at 0 Hz and stored as digital data for a predetermined time (it is arbitrary, for example, several seconds to several minutes. It is considered that the identification accuracy improves as the number of repetitions of the exercise increases during the period). Further, FIG. 2B is a perspective view of an estimated trajectory obtained by recombining the position information of the sensor obtained by integrating each acceleration data twice on three-dimensional coordinates, and the wrist is along the body side. Mainly in the Y direction. 4 is the start point of one measurement and 5 is the end point. (It is not a precise figure but a conceptual diagram.)

【0019】なお、本発明では最終的に腕の反復動作に
よって運動の解析を行うので、積分する際に発生するオ
フセット成分は位置の積算誤差となる。そのため各加速
度波形から低周波成分(例えば約1Hz以下)を除かね
ばならない。加速度センサ自体にも電荷のリークがある
ので直流成分や超低周波成分は自動的に除かれるが、目
的周波数以下の周波数成分を確実にカットするため、セ
ンサ回路内に高域通過フィルタを挿入してある。
In the present invention, since the motion is finally analyzed by the repetitive motion of the arm, the offset component generated at the time of integration becomes a position integration error. Therefore, low frequency components (for example, about 1 Hz or less) must be removed from each acceleration waveform. Since the acceleration sensor itself also has a charge leak, DC components and ultra-low frequency components are automatically removed, but a high-pass filter is inserted in the sensor circuit to reliably cut frequency components below the target frequency. There is.

【0020】図3は位置ベクトルの大きさおよび方向を
定義する斜視図である。Vは加速度を2回積分した結果
により求められた、ある時点の位置ベクトルで、ベクト
ルの始点は積分期間内における位置の軌跡の重心(全位
置ベクトルの平均の位置)であり、これを座標の原点と
する。位置ベクトルVの先端はその瞬間におけるセンサ
(運動センシングモジュール)の変位の大きさと変位の
方位を表わす。〔故に図2(b)は位置ベクトルVの先
端の軌跡となる。〕変位の方位は位置ベクトルVのX−
Z面からの傾角θと位置ベクトルVのX−Z面への射影
がZ軸となす角φをもって表わす。但しθ、φは位置ベ
クトルVの向きにかかわらず、−90°<θ≦+90
°、−180°<φ≦+180°の範囲で定めることと
する。
FIG. 3 is a perspective view defining the magnitude and direction of the position vector. V is a position vector at a certain time point obtained by integrating the acceleration twice, and the starting point of the vector is the center of gravity of the locus of positions within the integration period (the average position of all position vectors). Set as the origin. The tip of the position vector V represents the magnitude of displacement and the direction of displacement of the sensor (motion sensing module) at that moment. [Therefore, FIG. 2B shows the locus of the tip of the position vector V]. ] The azimuth of displacement is X− of the position vector V
The inclination angle θ from the Z plane and the projection of the position vector V on the XZ plane are represented by the angle φ formed with the Z axis. However, θ and φ are −90 ° <θ ≦ + 90 regardless of the direction of the position vector V.
, -180 ° <φ ≤ + 180 °.

【0021】多数の加速度データを数値積分して所定期
間内に多数の位置ベクトルを得て、これらから運動セン
シングモジュールの使用者の運動を識別する。まず多数
の位置ベクトルの大きさの平均値は腕(手首)の反復的
運動のいわば振幅に関係し、運動の強度を表わすと共
に、その値の程度は運動の種類によっても異なるので運
動の識別にも用い得る。また多数の位置ベクトルの平均
的な方向(方位角θ、φ)はかなりの程度運動の種類に
より固有なものと考えられる。(例えば肘を伸ばして、
あるいは曲げて腕を振った場合を比較すれば、当然セン
サの運動方向が変化し、位置ベクトルの方向も異なって
来る。)
A large number of position vectors are obtained within a predetermined period by numerically integrating a large number of acceleration data, and the motion of the user of the motion sensing module is identified from them. First, the average value of the magnitudes of many position vectors is related to the so-called amplitude of repetitive movements of the arm (wrist), and represents the strength of the movements. Can also be used. The average directions (azimuth angles θ, φ) of a large number of position vectors are considered to be peculiar to some extent depending on the type of motion. (For example, extend your elbow,
Or comparing the case of bending and shaking the arm, the direction of movement of the sensor naturally changes and the direction of the position vector also differs. )

【0022】図4は本発明の方法によって識別された各
種の運動をヒストグラムとして示したもので、1種類の
運動を行っている期間の位置ベクトルの平均的な大きさ
と平均的な方位角θおよびφをグラフ化した。基準面に
は方位角のφ軸、θ軸を直交させてとり、グラフの高さ
として位置ベクトルの平均的な大きさをとった。被験者
として40歳男性の健常者を選び、左手首に加速度セン
サを内蔵した運動センシングモジュールを巻き、運動靴
を着用させた。サンプリング周波数は50Hz、A/D
変換精度は10bitとした。
FIG. 4 is a histogram showing various motions identified by the method of the present invention. The average magnitude of the position vector and the average azimuth θ and the position vector during one type of motion are shown. φ was graphed. The φ axis and the θ axis of the azimuth angle were set orthogonal to each other on the reference plane, and the average size of the position vector was taken as the height of the graph. A 40-year-old male healthy person was selected as a test subject, and a motion sensing module having a built-in acceleration sensor was wrapped around his left wrist and wearing athletic shoes. Sampling frequency is 50Hz, A / D
The conversion accuracy was 10 bits.

【0023】運動としては合計9種類とし、全身的運動
とほぼ腕のみの身振り的運動の双方をとりあげた。11
はウォーキング(手を振ることを意識して歩く)、12
は走行(ランニング)、13はジョギング、14は拍
手、15はバイバイ(手を振る身振り)、16は遅い歩
行、17は普通の歩行、18は速い歩行、19はポケッ
ト(両手をポケットに入れた状態での歩行)である。
There were a total of nine types of exercises, and both general exercises and gesturing exercises of almost only the arms were taken up. 11
Is walking (walking while conscious of waving), 12
Is running (running), 13 is jogging, 14 is clapping, 15 is bye-bye (waving gesture), 16 is slow walking, 17 is normal walking, 18 is fast walking, 19 is pocket (both hands in pockets) Walking in the state).

【0024】図4の各種の運動パターンの特徴について
若干考察する。歩行については、速度を増すにつれて腕
の振りが大きくなり、平均のθも立ってきてY方向成分
が増している。ウォーキング、走行、ジョギングは歩行
(普通)に比べ肘を曲げた動作になるのでX軸方向の成
分が増す(平均のφが90°に近づく)。ウォーキング
は腕の振りを意識するため走行やジョギングよりも強度
が大きい。また拍手は加速度情報中にインパルス性の高
調波成分が多く含まれるので、従来よく行われた加速度
情報から直接運動パターンを抽出する手法ではバラツキ
が大きくなり識別精度が低下していた。加速度波形の相
互相関を用いた手法でも同様であった。本発明の2回積
分を用いる手法の方が識別精度が勝っていることがわか
った。
The characteristics of the various motion patterns shown in FIG. 4 will be considered a little. Regarding walking, as the speed increases, the swing of the arm increases, the average θ also rises, and the Y-direction component increases. Walking, running, and jogging are actions in which the elbow is bent compared to walking (normal), so the component in the X-axis direction increases (the average φ approaches 90 °). Walking is stronger than running or jogging because it is conscious of swinging arms. In addition, since a large amount of impulsive harmonic components are included in the acceleration information of the clap, the method of directly extracting the motion pattern from the acceleration information, which has been often used, has a large variation and the identification accuracy is deteriorated. The same applies to the method using cross-correlation of acceleration waveforms. It was found that the method of using the double integration of the present invention is superior in the identification accuracy.

【0025】図4より、各種の運動はそれぞれ固有の強
度と方向性を持ち、多種類の運動を行ったにもかかわら
ず、加速度から計算された運動軌跡の強度、方向のパタ
ーンの特徴によりそれらが明瞭に区別できることが明白
である。故に少なくともある個人については、彼のデー
タを記憶しておいて比較することにより、再度同種の運
動のいずれかを行った場合にはその運動の種類を識別す
ることが十分に可能であることがわかる。更には、個人
的特徴を登録しなくても識別できる運動の種類もあるこ
とが期待される。また本発明の手法は、手話のようなコ
ミュニケーションを便利に行う(例えば通訳を可能にす
る)補助ツールへの応用発展もなされる可能性が大き
い。
From FIG. 4, each type of motion has its own strength and directionality, and despite the fact that many types of motion are performed, the strength and direction pattern of the motion trajectory calculated from the acceleration causes the motion It is clear that can be clearly distinguished. Therefore, at least for some individuals, it is well possible to remember his data and compare them to identify the type of exercise if he does any of the same types of exercise again. Recognize. Furthermore, it is expected that there are some types of exercise that can be identified without registering personal characteristics. Further, the method of the present invention is likely to be applied and developed to an auxiliary tool that conveniently performs communication such as sign language (for example, enables interpretation).

【0026】次に、本発明の実施の形態におけるいくつ
かの変形例について言及しておく。まず位置ベクトルの
データ(大きさ、方位角)の平均の取り方であるが、普
通に用いられる相加平均に限定されるものではない。多
種類の運動の識別精度向上を目的とする限り、相乗平均
や何らかの重み付けを伴う加重平均、調和平均、あるい
は中央値の採用、異常値の排除後の処理や、その他デー
タをある関数に変換してから平均操作する一般化された
手法を用いることができる。また演算結果に適宜補正を
加えることも許される。
Next, some modifications of the embodiment of the present invention will be described. First, how to take the average of the position vector data (size, azimuth angle) is not limited to the commonly used arithmetic average. As long as the aim is to improve the identification accuracy of various types of movements, a geometric mean, a weighted average with some weighting, a harmonic mean, or the adoption of a median, the processing after removal of outliers, and other data conversion to a function A generalized method of averaging afterwards can be used. It is also permissible to appropriately correct the calculation result.

【0027】また運動センシングモジュールを装着する
身体部位は、手首、特に左手首がまず検討されるべきで
あるが、使用者の状況等の条件や、識別すべき運動の種
類によっては他の部位も用いられ得る。また装置の複雑
化を厭わず、身体の複数部位にそれぞれセンサを装着
し、相互に通信を行って、異なる部位の異なる運動デー
タを総合して更に多種類あるいは高度の運動識別を行う
こともあり得る。
The wrist, especially the left wrist, should be considered first as the body part to which the motion sensing module is attached, but other parts may also be considered depending on the conditions of the user and the type of motion to be identified. Can be used. In addition, there is a case where sensors are attached to multiple parts of the body and communicate with each other, and various motion data of different parts are integrated to identify more various or advanced motions without compromising the complexity of the device. obtain.

【0028】[0028]

【発明の効果】本発明の運動識別方法および運動センシ
ングモジュールにおいては、3軸の加速度データを2回
積分して得た位置ベクトルを用いて運動の識別を行うよ
うにしたので、容易かつ確実に多種類の運動を識別し、
またその強度も知ることができるようになった。また簡
単な構造の加速度センサおよび検出回路のみを使用する
ことができるので、識別方法も容易であり、運動センシ
ングモジュールの小型化、低廉化、低消費電力化に寄与
することができた。
In the motion identifying method and motion sensing module of the present invention, the motion is identified using the position vector obtained by integrating the acceleration data of three axes twice, so that the motion can be easily and reliably obtained. Identifies many types of exercise,
Moreover, it became possible to know the strength. Further, since only the acceleration sensor and the detection circuit having a simple structure can be used, the identification method is easy, and it is possible to contribute to downsizing, cost reduction, and power consumption reduction of the motion sensing module.

【0029】また加速度データから低周波成分を除去し
た場合には、積算誤差を減らして反復性の運動の識別精
度を向上させることができた。また加速度センサを手首
に装着することにより、運動を妨げずかつ違和感なく識
別測定を行うことができた。また偏心錘つきの板状の圧
電センサを用いると、1個のコンパクトな振動体で3軸
加速度センサであるから、運動センシングモジュールの
簡素化、小型化が実現できて好ましい。
Further, when the low frequency component is removed from the acceleration data, the integration error can be reduced and the repetitive motion identification accuracy can be improved. Moreover, by attaching the acceleration sensor to the wrist, it was possible to carry out the identification measurement without disturbing the movement and without any discomfort. Further, it is preferable to use a plate-shaped piezoelectric sensor with an eccentric weight because a single compact vibrating body is a triaxial acceleration sensor, so that the motion sensing module can be simplified and downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法および装置の実施の形態の一例お
よび座標軸の方向を示す正面図である。
FIG. 1 is a front view showing an example of an embodiment of a method and an apparatus of the present invention and directions of coordinate axes.

【図2】(a)は加速度波形の一例を示す波形図、
(b)は加速度を2回積分して得られた位置情報を示す
斜視図である。
FIG. 2A is a waveform diagram showing an example of an acceleration waveform,
(B) is a perspective view showing position information obtained by integrating the acceleration twice.

【図3】位置ベクトルの大きさおよび方向を定義する斜
視図である。
FIG. 3 is a perspective view that defines the magnitude and direction of a position vector.

【図4】本発明の方法によって識別された各種の運動を
示すヒストグラムである。
FIG. 4 is a histogram showing various movements identified by the method of the present invention.

【図5】本発明に用いられる3軸加速度センサの具体例
を示し、(a)は平面図、(b)はA−A断面図、
(c)、(d)は加速度による変形状態を示した断面の
略図である。
FIG. 5 shows a specific example of a triaxial acceleration sensor used in the present invention, (a) is a plan view, (b) is a sectional view taken along line AA,
(C) and (d) are schematic views of a cross section showing a deformed state due to acceleration.

【符号の説明】 1 運動センシングモジュール 2 腕巻きバンド 3 左手首 4 始点 5 終点 11 ウォーキング 12 走行 13 ジョギング 14 拍手 15 バイバイ 16 歩行(遅い) 17 歩行(普通) 18 歩行(速い) 19 ポケット 20 支持体 21 金属円板 22 中心軸 23 負荷質量 24 圧電板 25、26 X電極膜 27、28 Y電極膜 29、30、31、32 Z電極膜 Fx X方向の慣性力 Fz Z方向の慣性力 Gx X方向の加速度 Gy Y方向の加速度 Gz Z方向の加速度 V 位置ベクトル X、Y、Z 座標軸 φ、θ 位置ベクトルの方位角[Explanation of symbols] 1 Motion sensing module 2 armband 3 left wrist 4 starting point 5 end point 11 walking 12 run 13 Jogging 14 applause 15 bye 16 walking (slow) 17 walking (normal) 18 walking (fast) 19 pockets 20 Support 21 metal disk 22 central axis 23 Load mass 24 Piezoelectric plate 25, 26 X electrode film 27, 28 Y electrode film 29, 30, 31, 32 Z electrode film Fx X inertial force Fz Z inertial force Gx X direction acceleration Gy Y direction acceleration Gz Z acceleration V position vector X, Y, Z coordinate axes φ, θ Position vector azimuth

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 身体の所定の部位に装着された3軸の加
速度センサによって計測された加速度データを2回積分
して位置情報とし、所定の時間内における位置ベクトル
の平均的な大きさおよび方向を算出し、算出されたデー
タに基づいて行われた運動の種類を識別することを特徴
とする運動識別方法。
1. An average magnitude and direction of a position vector within a predetermined time by integrating acceleration data measured by a triaxial acceleration sensor attached to a predetermined part of the body twice to obtain position information. And identifying the type of exercise performed based on the calculated data.
【請求項2】 前記加速度データは所定の周波数以下の
低周波成分をカットされていることを特徴とする請求項
1の運動識別方法。
2. The motion identification method according to claim 1, wherein the acceleration data has low-frequency components below a predetermined frequency cut.
【請求項3】 前記身体の所定の部位は手首であること
を特徴とする請求項1または2の運動識別方法。
3. The movement identifying method according to claim 1, wherein the predetermined part of the body is a wrist.
【請求項4】 3軸の加速度センサと、該加速度センサ
によって計測された加速度データに所定の時間演算を加
える演算装置とを内蔵し、身体の所定の部位に装着され
る携帯可能な機器であって、前記演算装置は、加速度デ
ータを2回積分して位置情報とし、前記所定の時間内に
おける位置ベクトルの平均的な大きさおよび方向を算出
し、算出されたデータに基づいて、行われた運動の種類
を識別することを特徴とする運動センシングモジュー
ル。
4. A portable device that is equipped with a triaxial acceleration sensor and an arithmetic unit that adds a predetermined time to the acceleration data measured by the acceleration sensor and is worn on a predetermined part of the body. Then, the arithmetic device integrates the acceleration data twice to obtain position information, calculates the average magnitude and direction of the position vector within the predetermined time, and the calculation is performed based on the calculated data. A motion sensing module characterized by identifying the type of motion.
【請求項5】 前記加速度データは所定の周波数以下の
低周波成分をカットされていることを特徴とする請求項
4の運動センシングモジュール。
5. The motion sensing module according to claim 4, wherein the acceleration data has low-frequency components below a predetermined frequency cut.
【請求項6】 前記身体の所定の部位は手首であること
を特徴とする請求項4または5の運動センシングモジュ
ール。
6. The motion sensing module according to claim 4, wherein the predetermined part of the body is a wrist.
【請求項7】 前記3軸の加速度センサは、板の面より
重心が離れた負荷質量を固着し、該負荷質量に作用する
加速度による前記板の変形を圧電的に検出する構成を有
することを特徴とする請求項4、5または6の運動セン
シングモジュール。
7. The triaxial acceleration sensor has a configuration in which a load mass whose center of gravity is far from the plane of the plate is fixed, and a deformation of the plate due to acceleration acting on the load mass is piezoelectrically detected. 7. A motion sensing module according to claim 4, 5 or 6.
JP2001333496A 2001-03-06 2001-09-26 Method for discriminating movement and movement sensing module Pending JP2003093566A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001333496A JP2003093566A (en) 2001-09-26 2001-09-26 Method for discriminating movement and movement sensing module
PCT/JP2002/001998 WO2002069803A1 (en) 2001-03-06 2002-03-05 Body motion detector
TW091103982A TW516949B (en) 2001-03-06 2002-03-05 A device for detecting movement of human body
EP02703913A EP1366712A4 (en) 2001-03-06 2002-03-05 Body motion detector
US10/468,850 US7028547B2 (en) 2001-03-06 2002-03-05 Body motion detector
CNB028005163A CN1287733C (en) 2001-03-06 2002-03-05 Body motion detector
KR1020027014811A KR20030004387A (en) 2001-03-06 2002-03-05 Body motion detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333496A JP2003093566A (en) 2001-09-26 2001-09-26 Method for discriminating movement and movement sensing module

Publications (1)

Publication Number Publication Date
JP2003093566A true JP2003093566A (en) 2003-04-02

Family

ID=19148745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333496A Pending JP2003093566A (en) 2001-03-06 2001-09-26 Method for discriminating movement and movement sensing module

Country Status (1)

Country Link
JP (1) JP2003093566A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046803A (en) * 2002-11-28 2004-06-05 이원진 mobile type walking characteristic analysis system using an accelerometer
WO2005004719A1 (en) * 2003-07-09 2005-01-20 Newtest Oy Method and apparatus for detecting types of exercise
JP2005034364A (en) * 2003-07-14 2005-02-10 Hosiden Corp Body motion detecting apparatus
JP2006177749A (en) * 2004-12-22 2006-07-06 Ritsumeikan Movement trace calculating method and apparatus of periodic moving body
JP2007325702A (en) * 2006-06-07 2007-12-20 Keitekku System:Kk Device for measuring standing posture balance
JP2009053911A (en) * 2007-08-27 2009-03-12 Seiko Instruments Inc Pedometer
JP2009279019A (en) * 2008-05-19 2009-12-03 Wakasawan Energ Kenkyu Center Body motion monitoring system in radiotherapy
JP2011110419A (en) * 2009-11-27 2011-06-09 Jiaotong Univ Palm pad device for basketball training and basketball training system
JP2013046811A (en) * 2008-06-02 2013-03-07 Nike Internatl Ltd System and method for creating avatar
JP2013248642A (en) * 2012-05-31 2013-12-12 Amada Co Ltd Operation control method and operation control system of bending device, and training system and training method of bending work
KR101461464B1 (en) * 2014-06-18 2014-11-18 김경태 Smart band and biometric authentication method thereof
JP2015008443A (en) * 2013-06-26 2015-01-15 セイコーエプソン株式会社 Input device, information processing apparatus and input method
JP2015195906A (en) * 2014-03-31 2015-11-09 株式会社菊池製作所 wrist brace
WO2015194879A1 (en) * 2014-06-18 2015-12-23 (주)직토 Method and apparatus for measuring body balance by wearable device
US9288556B2 (en) 2014-06-18 2016-03-15 Zikto Method and apparatus for measuring body balance of wearable device
JP2016221130A (en) * 2015-06-03 2016-12-28 株式会社ユピテル Device and program
US9610908B2 (en) 2011-09-02 2017-04-04 Audi Ag Device for setting at least one operating parameter of at least one vehicle system in a motor vehicle
JP2019534062A (en) * 2016-08-31 2019-11-28 グリーンコム カンパニー リミテッドGreencomm Co.,Ltd. Fitness monitoring system
JP2020124389A (en) * 2019-02-05 2020-08-20 トッパン・フォームズ株式会社 Discrimination device, information provision system, discrimination method, and information provision method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07219703A (en) * 1994-02-03 1995-08-18 Canon Inc Gesture input method and its device
JPH10185570A (en) * 1996-12-26 1998-07-14 Kaijo Corp Oscillation measuring instrument
JPH1131047A (en) * 1997-07-10 1999-02-02 Rikagaku Kenkyusho Symbol signal generation device
JP2000213967A (en) * 1999-01-22 2000-08-04 Amutekkusu:Kk Human body movement determination device
JP2000338129A (en) * 1999-03-19 2000-12-08 Ngk Insulators Ltd Sensitivity calibration method for acceleration sensor element
JP2001101547A (en) * 1999-10-01 2001-04-13 Matsushita Electric Ind Co Ltd Abnormality discriminating device and program recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07219703A (en) * 1994-02-03 1995-08-18 Canon Inc Gesture input method and its device
JPH10185570A (en) * 1996-12-26 1998-07-14 Kaijo Corp Oscillation measuring instrument
JPH1131047A (en) * 1997-07-10 1999-02-02 Rikagaku Kenkyusho Symbol signal generation device
JP2000213967A (en) * 1999-01-22 2000-08-04 Amutekkusu:Kk Human body movement determination device
JP2000338129A (en) * 1999-03-19 2000-12-08 Ngk Insulators Ltd Sensitivity calibration method for acceleration sensor element
JP2001101547A (en) * 1999-10-01 2001-04-13 Matsushita Electric Ind Co Ltd Abnormality discriminating device and program recording medium

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046803A (en) * 2002-11-28 2004-06-05 이원진 mobile type walking characteristic analysis system using an accelerometer
WO2005004719A1 (en) * 2003-07-09 2005-01-20 Newtest Oy Method and apparatus for detecting types of exercise
US7328612B2 (en) 2003-07-09 2008-02-12 Newtest Oy Method and apparatus for detecting types of exercise
JP2005034364A (en) * 2003-07-14 2005-02-10 Hosiden Corp Body motion detecting apparatus
JP2006177749A (en) * 2004-12-22 2006-07-06 Ritsumeikan Movement trace calculating method and apparatus of periodic moving body
JP2007325702A (en) * 2006-06-07 2007-12-20 Keitekku System:Kk Device for measuring standing posture balance
JP2009053911A (en) * 2007-08-27 2009-03-12 Seiko Instruments Inc Pedometer
JP2009279019A (en) * 2008-05-19 2009-12-03 Wakasawan Energ Kenkyu Center Body motion monitoring system in radiotherapy
JP2013046811A (en) * 2008-06-02 2013-03-07 Nike Internatl Ltd System and method for creating avatar
US11896906B2 (en) 2008-06-02 2024-02-13 Nike, Inc. System and method for creating an avatar
JP2011110419A (en) * 2009-11-27 2011-06-09 Jiaotong Univ Palm pad device for basketball training and basketball training system
US9610908B2 (en) 2011-09-02 2017-04-04 Audi Ag Device for setting at least one operating parameter of at least one vehicle system in a motor vehicle
JP2013248642A (en) * 2012-05-31 2013-12-12 Amada Co Ltd Operation control method and operation control system of bending device, and training system and training method of bending work
JP2015008443A (en) * 2013-06-26 2015-01-15 セイコーエプソン株式会社 Input device, information processing apparatus and input method
JP2015195906A (en) * 2014-03-31 2015-11-09 株式会社菊池製作所 wrist brace
WO2015194879A1 (en) * 2014-06-18 2015-12-23 (주)직토 Method and apparatus for measuring body balance by wearable device
US9288556B2 (en) 2014-06-18 2016-03-15 Zikto Method and apparatus for measuring body balance of wearable device
US9495528B2 (en) 2014-06-18 2016-11-15 Zikto Method and apparatus for measuring body balance of wearable device
US9495529B2 (en) 2014-06-18 2016-11-15 Zikto Method and apparatus for measuring body balance of wearable device
KR101461464B1 (en) * 2014-06-18 2014-11-18 김경태 Smart band and biometric authentication method thereof
JP2016221130A (en) * 2015-06-03 2016-12-28 株式会社ユピテル Device and program
JP2019534062A (en) * 2016-08-31 2019-11-28 グリーンコム カンパニー リミテッドGreencomm Co.,Ltd. Fitness monitoring system
JP2020124389A (en) * 2019-02-05 2020-08-20 トッパン・フォームズ株式会社 Discrimination device, information provision system, discrimination method, and information provision method
JP7164456B2 (en) 2019-02-05 2022-11-01 トッパン・フォームズ株式会社 Discrimination device, information provision system, discrimination method, and information provision method

Similar Documents

Publication Publication Date Title
JP2003093566A (en) Method for discriminating movement and movement sensing module
US7028547B2 (en) Body motion detector
JP4673342B2 (en) Exercise information determination method and wristwatch type device
JP3801163B2 (en) Body motion detection device, pitch meter, pedometer, wristwatch type information processing device, control method, and control program
Hyde et al. Estimation of upper-limb orientation based on accelerometer and gyroscope measurements
JP3936833B2 (en) Body motion sensing device and body motion sensing system
CN100518639C (en) Device and method for determining physical activity level of human being
JP3984253B2 (en) Health care equipment
US7401495B2 (en) Activity monitoring
Liu et al. A wearable human motion tracking device using micro flow sensor incorporating a micro accelerometer
Ribeiro et al. Inertial measurement units: A brief state of the art on gait analysis
JP2002191580A (en) Unit for detecting body motion
JP4021137B2 (en) Body motion sensing device
US7325453B2 (en) Activity monitoring
Tamura Wearable inertial sensors and their applications
JP2002263086A (en) Motion measuring instrument
WO2019061513A1 (en) Attitude matrix calculating method and device
US20070049836A1 (en) Electronic wristwatch-type exercise signal detecting apparatus
WO2017179423A1 (en) Movement measurement device, information processing device, and movement measurement method
CN110101388A (en) A kind of portable backbone measuring instrument and method based on MIMU
JP3772887B2 (en) Body motion detection device
US10912510B2 (en) Index deriving device, wearable device, and mobile device
Ambar et al. Arduino based arm rehabilitation assistive device
JP2018007979A (en) Exercise support apparatus, exercise support method, and exercise support program
US20060122521A1 (en) Electronic wristwatch-type exercise signal detecting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308