TW201017134A - Step-counting processing system and method thereof - Google Patents

Step-counting processing system and method thereof Download PDF

Info

Publication number
TW201017134A
TW201017134A TW97139849A TW97139849A TW201017134A TW 201017134 A TW201017134 A TW 201017134A TW 97139849 A TW97139849 A TW 97139849A TW 97139849 A TW97139849 A TW 97139849A TW 201017134 A TW201017134 A TW 201017134A
Authority
TW
Taiwan
Prior art keywords
acceleration signal
vertical direction
unit
waveform
time interval
Prior art date
Application number
TW97139849A
Other languages
Chinese (zh)
Inventor
Cheng-Zhen Ye
xiao-lie Liu
hong-xiang Chen
zhi-wei Yi
yu-qi Ceng
Yi-Ting Chen
Hou-Heng Ye
xiang-bo Wang
Original Assignee
Mitac Int Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitac Int Corp filed Critical Mitac Int Corp
Priority to TW97139849A priority Critical patent/TW201017134A/en
Publication of TW201017134A publication Critical patent/TW201017134A/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A step-counting processing system and its method are disclosed, wherein the step-counting processing system includes an acceleration detection unit, an identification unit, a computing unit, an analysis unit, and a step-counting unit. The step-counting processing system is used to detect the acceleration signal resulting from up-and-down oscillation of the human body during walking, and a projection of the detected acceleration signal in the direction of gravity is calculated so as to obtain the waveform of the vertical vector component of the acceleration signal as the human body is walking, and carry out analysis on whether the waveform features of the vertical vector component of the acceleration signal are continuous peaks and troughs, and use the analysis result as a basis for determining whether to carry out cumulative addition of steps, thereby achieving the goal of accurate calculation of a human body walking steps.

Description

201017134 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種個人計步處理技術,更詳而言 之,係關於一種結合有三軸加速感測器之計步處理技術。 -1先前技術】 由於現代社會工業化的忙碌以及人們對於適當運動 ^曰漸重視’使得各項運動器材應運而生。而在運動之同 呀’運動者A了要準確掌握運動量及瞭解運動I本身之身 魯體狀況,故亦有么錄;^ π功丨 罾 啕谷種不同型怨之人體信號感應器被研發出 來。 在各類型運動信號感應器中,計步器由於配戴方便、 操作簡單、可測詈并^ — 、^仃或跑步之步數,故目前已被廣泛地 二t不同的計步器產品設計中,有設計成可貼附結合 〇 鞋子上、配掛於使用者腰際、腕錶型等不同產品 ❿腕替十步器為例’其係配戴於使用者手腕處,該 臂㈣#動:中#'㈣機械式鐘擺傳感器,故使用者之手 父::時,可由該計步器感測出其擺動之狀況,而達 如’耳朵處)而没有擺動手臂的::固使二位走: 沒有擺動,…戴有計步器的手臂 步數進行;wt,Ί動不能對行走 y u ’ a影㈣步料步的精確性。 因此,如何提出-種新的計步處理技術’以克服上述 1106]6 5 201017134 習知技術之種種缺失,實已成爲目前業界亟待克服之課 題。 【發明内容】 餐於上述習知技術之缺點’本發明之一目的在於提供 二種計步處理系統及方法,以便在人體行走過程中感測人 體行走時產生的加速度信號,並以此作爲計算人體行走步 數之依據。 為達上述及其他目的,本發明提供一種計步處理系 ©統’係包括:加速度感測單元,用以感測當前時間間隔内 人體於行走過程中因人體上下振盪而產生的加速度信號 匕(X’ y,Z ) ·’測量單元,用以測量出該加速度信號^ (x,y,z)與地心引力向量G。之間之夾角;運算單元,用 乂依據。亥加速度k號Gi ( X,y,z )與地心引力向量&之間 之夾角’對該加速度信號Gi(x,y z)進行地心引力向量 之方向之投影運算,以運算出該加速度信號G (x y z)201017134 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a personal pedometer processing technique, and more particularly to a pedometer processing technique incorporating a three-axis acceleration sensor. -1 Prior Art Due to the busyness of industrialization in modern society and the increasing emphasis on appropriate sports, various sports equipment has emerged. In the same movement, the athlete A has to accurately grasp the amount of exercise and understand the body of the sport I itself, so there are also records; ^ π gongs and valleys of different types of complaints of the human body signal sensor was developed come out. Among the various types of motion signal sensors, the pedometer has been widely used in two different pedometer products due to its convenient wearing, simple operation, and the number of steps that can be measured and controlled. In the case, there are different products designed to be attached to the 〇 shoes, attached to the user's waist, watch type, etc. For example, the wrist is worn on the user's wrist, the arm (four)# Movement: Medium #'(4) mechanical pendulum sensor, so when the user's hand father::, the pedometer can sense the state of its swing, and reach the position like 'the ear' without swinging the arm:: Two places to go: no swing, ... the number of arm steps with a pedometer; wt, sway can not be accurate on walking yu ' a shadow (four) step. Therefore, how to propose a new step-by-step processing technique to overcome the various shortcomings of the above-mentioned conventional techniques of 1106] 6 5 201017134 has become an urgent problem to be overcome in the industry. SUMMARY OF THE INVENTION One of the objects of the present invention is to provide two kinds of step processing systems and methods for sensing an acceleration signal generated when a human body walks during walking of a human body, and using this as a calculation. The basis of the number of walking steps of the human body. To achieve the above and other objects, the present invention provides a step-by-step processing system comprising: an acceleration sensing unit for sensing an acceleration signal generated by a human body oscillating up and down during walking in a current time interval ( X' y, Z ) · 'Measurement unit for measuring the acceleration signal ^ (x, y, z) and the gravity vector G. The angle between the two; the arithmetic unit, based on 乂. The angle between the Hai acceleration k (i, y, z) and the gravity vector & 'the acceleration signal Gi (x, yz) is projected in the direction of the gravity vector to calculate the acceleration Signal G (xyz)

•於垂直方向之分里’亚予以輪出;分析單元用以分析該 運算單元輸出的當前時間間隔内之對加速度信號L (X,y,z)於垂直方向之公县认、上,丄 刀置的波形特徵是否為連續的波 峰與波谷;以及計步單元,田 a^ /早兀用以依據該分析單元之分析結 果為該運算單元輸出的當前 田則時間間隔内之加速度信號Gi x:yZ)於垂直方向之分量的波形特徵 波 波奋時對人體行走之步數進行累加作業。 §亥運具單元復計算前一 . 、 4間間隔内該加速度信號Gi 、x’y,z)於垂直方向之公旦 乃π之刀置之平均值、最大值、以及最 110616 201017134 小值,並依據所運算得的平均值、最大值、以及最小值運 算出當前時間間隔内該加速度信號Gi ( x, y,z)於垂直方 向之分量波形之波峰參數與波谷參數,並以運算出的波峰 參數與波谷參數更新當前時間間隔内的波峰參數與波谷 -參數,以及更新當前該加速度信號Gi (x,y,z)於垂直方 询之分量最大值、以及最小值。 該分析單元係對當前預定時間内的加速度信號匕 (x,y,z)於垂直方向之波形分爲數個波段進行檢測,以 ❹確定一個振幅足夠大的正弦波形。 該計步處理系統復包括顯示單元,該顯示單元用以對 該計部單元之累計結果進行顯示。 該加速度感測單元係為三軸加速度感測器。 本發明亦提供一種計步處理方法,係包括:於當前時 間間隔内感測人體於行走過程中因人體上下振盪而產生 的加速度信號Gi ( X,y,z );測量該加速度信號Gi ( x,y,z ) 與地心引力向量Go之間之夾角;依據該加速度信號Gi (x,y,z)與地心引力向量Gd之方向之間之夾角,對該加 速度信號Gi (x,y,z)進行地心引力方向之投影運算,以 運异出该加速度信號Gi (x,y,z)於垂直方向之分量;依 據前一時間間隔内加速度信號Gi ( X,y,Z )於垂直方向之 分量運算出前一時間間隔内加速度信號Gi ( X,y,z )於垂 直方向之分量之平均值、最大值、以及最小值;依據前一 時間間隔内該加速度信號Gi ( χ, y,Z )於垂直方向之分量 之平均值、最大值、以及最小值運算當前時間間隔内加速 7 110616 201017134 度信號(^(X,y,z)於垂直方向之分量之波峰參數與波谷 參數;更新當前時間間隔内的加速度信號G] (x,y,z)於 垂直方向之分量之波峰參數、波谷參數、最大值、以及最 '小值;分析當前時間間隔内加速度信號Gi (X,y,z)於垂 -直方向之分量的波形特徵是否為連續的波峰與波谷;以及 當分析結果為當前時間間隔内之加速度信號仏(x,y,Z) 於垂直方向之分量的波形特徵為連續的波峰與波谷時對 人體行走之步數進行累加作業。 於分析當前時間間隔内加速度信號匕(x,y,Z)於垂 直方向之分垔的波形特徵之步驟中,係對當前預定時間内 的加速度信號G】(X,y,z)於垂直方向之波形分爲數個波 段進行檢測,以確定一個振幅足夠大的正弦波形。 該計步處理方法復包括將人體步行之步數之累加結 果進行顯示之步驟。 相較於習知技術,本發明之計步處理系統及方法,主 要係透過對人體行走過程中因人體上下振盪而產生的加 速度彳5號進行感測,並將所感測到的加速度信號對地心引 力方向作投影運算,以取得人體行走時於垂直方向所產生 的加速度信號之分量之波形,並對該加速度信號之於垂直 方向的分量之波形特徵是否為連續的波峰與波谷進行分 析且以分析結果作爲時否進行步數累加之依據。由於本 案係採用分析人體行走過程中因人體上下振盪而產生的 加速度k號於垂直方向之分量的波形特徵,作爲計部之依 據,俾可精確計步,避免習知腕錄型中係採用機械式鐘擺 Π0616 8 201017134 傳感器,需使用者之手劈白妙、栖& + _丄 Ψ ,χ #自W敘動,方可由該計步器感測 出其擺動之狀況,而读至丨f亡士半 €幻&十步之功能所引起的缺失。 【實施方式】 . 以下係藉由特定的具體實例說明本發明之實施方 -悉此技藝之人士可由本說明書所揭示之内容輕易地 戈、解本發明之其他優點與功效。本發明亦可藉由其他不同 的具體實例加以施行或應用,本說明書中的各項細節亦可 基於不同觀點與應用’在不择離本發明之精神下進行各種 ❹修飾與變更。 如第1圖所示者,係顯示本發明之計步處理系統] 之基本架構方塊示意圖,本發明之計步處理系統丨可配備 於人體之例如腰間、手持、所穿著衣物上或所攜帶的包袋 内等。如圖所示,計步處理系統1係包括:加速度减測單 兀1。1、測量單元〗2、運算單元13、分析單元14、以及計 步單元15。以下即對本發明之計步處理系統1進行詳% 説明。 β 加速度感測單元u係例如為三轴加速度感測器用 以感測當前時間間隔T1内人體於行走過程中因人體上下 振動而產生的加速度信號Gi(x,y,z),並將所感測到的 加速度信號Gi ( X,y,Z )予以輸出。 測量單元12係用以測量該加速度信號Gi (x,y z) 與地心引力向量G。之間之夾角α,並將其測量結果輸出。 運算單元13係依據加速度感測單元u輸出的加速度 信號G,(x,y,z)以及測量單元12輪出的加速度信號& 110616 9 201017134 (χ,y,z)與地心引力向量 信號Gi ( χ,y,z)進行地心 以運算出該加速度信號Gl( 並予以輸出。 。之間之夹角α,對該加速度 引力向量之方向之投影運算, x,y,z)於垂直方向之分量gz, ' 需特別説明的是,由於本發μ / 十步處理系統1配戴 於,體的情況不同’使得運算單元13輸出的加速度信號 二X’y’z)於垂直方向之分量&的波形的振幅會產生相 虽大的差異,加以移動過程中可能遇到的雜訊和餘波干 ©擾,需動態調整相關判斷波峰與波谷的參數。 為此,本案之運算單元13復計算上一時間間隔TO (Τ〇=Τ1)内加速度信號Gi (x,y z)於垂直方向之分量 Gz之平均值(Gavg)、最大值()、以及最小值(Gwy)。 = 之後,運异單元13依據所運算得的平均值(Gavg)、 最大值(GPeak)、以及最小值(Gvally)運算出當前時間間 隔T1内該加速度信號Gi (x,y,z)於垂直方向之分量Gz /皮七之波峰參數Up_bound與波谷參數Low_bound,具體 運算等式如下式(1 ) 、( 2 )所示:• In the vertical direction, the sub-area is taken out; the analysis unit is used to analyze the acceleration signal L (X, y, z) in the vertical direction of the current time interval of the output of the arithmetic unit. Whether the waveform characteristic of the knife is a continuous peak and a trough; and the step counter unit, the field a ^ / early 兀 is used to calculate the acceleration signal Gi x in the current field interval according to the analysis result of the analysis unit :yZ) The waveform characteristic of the component in the vertical direction accumulates the number of steps of the human body walking. § The haulage unit recalculates the previous one. The acceleration signal Gi, x'y, z) in the interval between the four is the average value of the π knife, the maximum value, and the maximum value of 110616 201017134. And calculating a peak parameter and a valley parameter of the component waveform of the acceleration signal Gi (x, y, z) in the vertical direction in the current time interval according to the calculated average value, the maximum value, and the minimum value, and calculating The peak parameter and the valley parameter update the peak parameter and the valley-parameter in the current time interval, and update the current maximum value and the minimum value of the acceleration signal Gi (x, y, z) in the vertical query. The analysis unit detects the waveform of the acceleration signal 匕 (x, y, z) in the vertical direction within a predetermined time period into a plurality of wavelength bands to determine a sinusoidal waveform having a sufficiently large amplitude. The step processing system further includes a display unit for displaying the accumulated result of the meter unit. The acceleration sensing unit is a three-axis acceleration sensor. The invention also provides a step counting processing method, which comprises: sensing an acceleration signal Gi (X, y, z) generated by the human body oscillating up and down during walking in the current time interval; measuring the acceleration signal Gi (x , y, z ) and the angle between the gravitational vector Go; according to the angle between the acceleration signal Gi (x, y, z) and the direction of the gravitational vector Gd, the acceleration signal Gi (x, y) , z) performing a projection operation of the gravity direction to transmit the component of the acceleration signal Gi (x, y, z) in the vertical direction; according to the acceleration signal Gi (X, y, Z) in the previous time interval The component in the vertical direction calculates the average value, the maximum value, and the minimum value of the component of the acceleration signal Gi (X, y, z) in the vertical direction in the previous time interval; the acceleration signal Gi ( χ, y according to the previous time interval) , Z) the average value, the maximum value, and the minimum value of the component in the vertical direction. The peak parameter and the valley parameter of the acceleration component of the signal (^(X, y, z) in the vertical direction are accelerated in the current time interval; Update current time interval The acceleration signal G] (x, y, z) is the peak parameter, the valley parameter, the maximum value, and the most 'small value' of the component in the vertical direction; the acceleration signal Gi (X, y, z) is analyzed in the current time interval. - Whether the waveform characteristics of the component in the straight direction are continuous peaks and troughs; and when the analysis result is the acceleration signal 仏(x, y, Z) in the current time interval, the waveform characteristic of the component in the vertical direction is continuous peak and trough The step of accumulating the number of walking steps of the human body. In the step of analyzing the waveform characteristics of the bifurcation of the acceleration signal 匕(x, y, Z) in the vertical direction in the current time interval, the acceleration signal G for the current predetermined time is The waveform of (X, y, z) in the vertical direction is divided into several bands for detection to determine a sinusoidal waveform with a sufficiently large amplitude. The step-by-step processing method includes displaying the cumulative result of the walking steps of the human body. Compared with the prior art, the step counter processing system and method of the present invention mainly senses the acceleration 彳5 generated by the up and down oscillation of the human body during walking of the human body. Measuring, and the sensed acceleration signal is projected to the direction of gravity, to obtain the waveform of the component of the acceleration signal generated in the vertical direction when the human body walks, and the waveform of the component of the acceleration signal in the vertical direction Whether the feature is a continuous peak and trough analysis and the analysis result is used as the basis for accumulating the number of steps. Since this case is a waveform analyzing the component of the acceleration k in the vertical direction caused by the up and down oscillation of the human body during walking. Features, as the basis of the meter department, can accurately count steps, to avoid the use of mechanical pendulum Π 0616 8 201017134 sensor in the wristwatch type, the user's hand must be white, habitat & + _丄Ψ, χ #自W narration, the pedometer can sense the state of its swing, and read the missing caused by the function of the singer. [Embodiment] The following describes the embodiments of the present invention by way of specific examples, and those skilled in the art can readily clarify other advantages and effects of the present invention from the disclosure herein. The present invention may be embodied or applied in various other specific embodiments, and the details of the present invention can be modified and changed without departing from the spirit and scope of the invention. As shown in Fig. 1, a schematic diagram of a basic architecture of the step counter processing system of the present invention is shown. The step counter processing system of the present invention can be equipped on a human body such as a waist, a hand, a worn item, or carried. Inside the bag. As shown in the figure, the pedometer processing system 1 includes an acceleration subtraction unit 。1, a measuring unit ii2, an arithmetic unit 13, an analyzing unit 14, and a grading unit 15. The following is a detailed description of the step processing system 1 of the present invention. The beta acceleration sensing unit u is, for example, a three-axis acceleration sensor for sensing an acceleration signal Gi(x, y, z) generated by the human body during up and down vibration during the current time interval T1, and sensing The obtained acceleration signal Gi (X, y, Z) is output. The measuring unit 12 is for measuring the acceleration signal Gi (x, y z) and the gravity vector G. The angle α between them is output and the measurement result is output. The arithmetic unit 13 is based on the acceleration signal G, (x, y, z) output by the acceleration sensing unit u, and the acceleration signal & 110616 9 201017134 (χ, y, z) and the gravity vector signal which are rotated by the measuring unit 12 Gi ( χ, y, z) performs the center of the earth to calculate the acceleration signal G1 (and outputs the angle α between the projections of the direction of the acceleration gravitational vector, x, y, z) in the vertical direction The component gz of the direction, 'specially, because the present invention μ / ten-step processing system 1 is worn, the body condition is different 'so that the acceleration signal output from the arithmetic unit 13 is two X'y'z) in the vertical direction The amplitude of the component & amplitude will produce a large difference, and the noise and residual interference that may be encountered during the movement process need to be dynamically adjusted to determine the parameters of the relevant peaks and troughs. To this end, the arithmetic unit 13 of the present invention calculates the average value (Gavg), the maximum value (), and the minimum of the component Gz of the acceleration signal Gi (x, yz) in the vertical direction in the last time interval TO (Τ〇=Τ1). Value (Gwy). After that, the differentiating unit 13 calculates the acceleration signal Gi (x, y, z) in the current time interval T1 according to the calculated average value (Gavg), maximum value (GPeak), and minimum value (Gvally). The component of the direction Gz / Pi7 peak parameter Up_bound and the valley parameter Low_bound, the specific operation equation is as shown in the following equations (1), (2):

Up—bound: ( Gpeak- Gavg ) /4+ Gavg ( 1 )Up-bound: ( Gpeak- Gavg ) /4+ Gavg ( 1 )

Low—bound: ( Gvaiiy- GaVg) /10+ Gavg (2) 並以運算出的波峰參數與波谷參數作爲當前時間間 h内的波峰參數與波谷參數’藉以達成動態調整波峰與波 奋的參數,以及以上一時間間隔T 0内加速度信號g i (x’y,z)於垂直方向之分量Gz之最大值、以及最小值分 別作爲當前該加速度信號G, ( X, y, z )於垂直方向之分量 10 110616 201017134 最大值、以及最小值。 運二:!別説明的是,當藉由上述等式⑴、(2) =:::的波峰參數Up_bound與波谷參數L(b_d太 _,則以^νε+/·~0.08來代替等式(1) 、(2)中 -的 Gavg。 ❹ 參 /刀析早7L 14係分析該運算單元13輸出的當前時間間 内之加速度信號G“x,y,z)於垂直方向之分量Gz $波形特徵是否為連續的波峰與波谷。於本發明中,分析 單元14係對輪入其中的波形為數個波段進行檢測以確定 該輸入的波形是否為一完整的正弦波形。其中’輸入波形 需依序通過從state=0開始至state=4共5次檢測。 State=〇為波形判斷的起始狀態,當波形上升 式(1)計算所得之^bound之大小,進入state=i,表 不波形已符合正弦波Sin上升階段之振幅要求,·波形反轉 為下降,進入stated,表示波形已過波峰,進入正弦波 Sin下降階段;當波形下降超過上述等式(2)計算所得 之L〇w_b〇Und之大小,進入state=3,表示波形已符合正 弦波Sin下降階段之振幅要求;當波形反轉為上升,進入 state=4,表示波形已過波谷,進入正弦波Sin波升最後 上升階段,當波形上升超過上述Gavg時,即可判斷輸入分 析單元13的波形為一完整的正弦波形◊此時分析單元j 4 促使計步單元15的計步數加1。 此外’本發明之計步處理系統1復包括顯示單元(未 圖示)以顯示計步單元15的計步數。 ]] Π0616 201017134 透過本發明之計步處理系統〗輪本發明之計步處 私係如第2圖所示。該計步處理方法係包括以 下貝把步驟,於步驟S21中,感測當前時間間隔了 .體於行走過程中因人體上下振蘆而產生的加速度信號匕 (x’ y,ζ),並將所感測到的加速度信號^ ( 輸出。接著進至步驟522。 y’ )予以 於步,S22中’測量該加速度信號。(x,y,z)與地 二力向量G。之間之夾角α,並將其測量結果輸出 ❹者進至步驟S23。 於步驟S23中,依據該加速度信號Gi (x,y,z)座地 ^引力向量k方向之間之夾^ ’對該加速度信號匕 X’ y’ z)進行地心引力方向之投影運算,以運算出該加 速度信號G, (x,y,z)於垂直方向之分量G" 驟 S24 〇 於步驟S24中,計算上一時間間隔T〇 (T〇 = T1)内加 速度信號Gi (x,y,z)於垂直方向之分量Gz之平均值 ’(‘)、最大值(Gpeak)、以及最小值(Gaiiy 進至步驟S25。 於步驟S25中,依據步驟S24運算所得的平均值 (Gw)、最大值(Gpeak)、以及最小值(G…運算出當 前時間間隔T1内該加速度信號Gl(x,y,z)於垂直=向二 分量匕波形之波峰參數Up—b0und與波谷參數 L〇w_b〇und,具體運算等式如上所述等式(丨)、(u所 示。接著進至步驟S26。 110616 12 201017134 於步驟S26中,動態調整本前拄 波谷參數、當前該加速度㈣之波峰參數與 八曰”丄 又1〇唬匕(x,y,z)於垂直方向之 ^ 值、以及最小值。即以步驟S25 *算所得的波 • =:P:b广與波谷參數一。_作爲當前時間= 波夸参數與波谷參數,以㈣S24 it算所得的時 :内加速度信號Gi(x,y,z)於垂直方向之分量G; 大值、以及最小值分別作爲當前該加速度信1 〇=直方向之分量最大值、以及最小值。接著進至步驟 於步驟S27中,分析當前時間間隔n内之加速度信 \ ^ ( X,y,z )於垂直方向之分量Q的波形特 至步驟S28。 進 於步驟S28巾’判斷當前時間間隔T1内之加速产俨 ,(χ,γ’ζ)於垂直方向之分量匕的波形特徵是否:連 、·的波峰與波谷,若是,則進至步驟S29,若否,則返回 該步驟S21以感測下-時間間隔T2 (T2=T1=T〇)内於行 走過程中因人體上下振盪而產生的加速度信號& (x,y,z)。 …, 須提出說明的是,於步驟27中,係對當前時間間隔 Ή内之加速度信號Gi(x,y,z)於垂直方向之分量Gz的波 形為數個波段進行檢測以確定該輸入的波形是否為一完 整的正弦波形。其中,輸入波形需依序通過從state=〇 開始至State=4共5次檢測。State=0為波形判斷的起始 狀態,當波形上升超過上述等式(1)計算所得之Up_b〇un°d Π0616 13 201017134 之大小,進入state=l,表示波形已符合正弦波Sin上升 階段之振幅要求;波形反轉為下降,進入伽㈣,表示 波形已匕波峰,進入正弦波Sin下降階段;當波形下降超 過上述等式(2 )計异所得之L〇w—b〇und之大小,進入 state 3表不波形已符合正弦波Sin下降階段之振幅要 ,,虽波形反轉為上升,進入state=4,表示波形已過波 合、,進入正弦波Sin波升最後上升階段,當波形上升超過 上述Gavg時,即可判斷當前時間間隔τι内之加速度信號 ❹Q (x,y,z)於垂直方向之分量^的波形為一完整的正弦 波形。 於步驟S29中,人體行走之步數加j。 此外於步驟S29之後復包括將人體步行之步數之 加結果進行顯示之步驟。 … 相較於習知技術,本發明之計步處理系統及方法,主 要係透過對人體行走過程中因人體上下㈣而產生的加 速度信號進行感測’並將所感測到的加速度信號對地心引 力方向作投影運算,以取得人體行走時於垂直方向所產生 的加速度信號之分量之波形,並對該加速度信號之於垂直 方向的分量之波形特徵是否為連續的波峰與波谷進行分 析,且以分析結果作爲時否進行步數累加之依據。由於本 發明係採用分析人體行走過程中因人體上下振盪而產生 的加速度k號於垂直方向之分量的波形特徵,作爲計部之 、據俾可精確步,避免習知腕錶型中係採用機械式鐘 擺傳感器,需使用者之手臂自然擺動,方可由該計步器感 ]】06】6 14 201017134 測出其擺動之狀況,而達到 運幻冲步之功能所引起的缺失。Low-bound: ( Gvaiiy- GaVg) /10+ Gavg (2) and use the calculated peak parameters and valley parameters as the peak parameters and valley parameters in the current time h to achieve dynamic adjustment of the peak and wave parameters. And the maximum value and the minimum value of the component Gz of the acceleration signal gi (x'y, z) in the vertical direction in the above time interval T 0 are respectively the current acceleration signal G, (X, y, z) in the vertical direction. Component 10 110616 201017134 Maximum, and minimum. Yun 2:! In addition, when the peak parameter Up_bound and the valley parameter L (b_d are too _ by the above equations (1), (2) =:::, the equation (1) is replaced by ^νε+/·~0.08, (2) Gavg of the middle - ❹ / / knife analysis 7L 14 series analysis of the acceleration signal G "x, y, z) of the current time output by the arithmetic unit 13 in the vertical direction component Gz $ waveform feature is Continuous peaks and troughs. In the present invention, the analyzing unit 14 detects the waveforms that are wheeled into a plurality of bands to determine whether the waveform of the input is a complete sinusoidal waveform. The 'input waveforms need to pass through the state sequentially. =0 start to state=4 for 5 detections. State=〇 is the initial state of waveform judgment. When the waveform rises (1), the size of ^bound is calculated. Enter state=i, and the waveform is sinusoidal. The amplitude requirement of the rising phase of Sin, the waveform is inverted to fall, and enters the state, indicating that the waveform has passed the peak and enters the falling phase of the sine wave Sin; when the waveform falls more than the size of L〇w_b〇Und calculated by the above equation (2) , enter state=3, indicating that the waveform has been compliant with the sine wave Sin The amplitude requirement of the falling phase; when the waveform is inverted to rise, entering state=4, indicating that the waveform has passed the trough, entering the final rising phase of the sine wave Sin wave rise, when the waveform rises above the above Gavg, the input analysis unit 13 can be judged. The waveform is a complete sinusoidal waveform. At this time, the analyzing unit j 4 causes the counting step number of the counting unit 15 to increase by 1. Further, the step counting processing system 1 of the present invention includes a display unit (not shown) to display the counting unit. The number of steps of 15] ]] Π 0616 201017134 The step counter processing system of the present invention is the same as the step of the present invention as shown in Fig. 2. The step processing method includes the following steps, in step S21 The current time interval is sensed. The acceleration signal 匕(x' y, ζ) generated by the up and down vibration of the human body during walking, and the sensed acceleration signal ^ (output.) proceeds to step 522. y') is performed in step S22, 'measure the angle α between the acceleration signal (x, y, z) and the ground force vector G, and output the measurement result to step S23. In step S23, according to the The speed signal Gi (x, y, z) is placed between the gravitational force vector k direction and the projection signal of the acceleration signal 匕X' y' z) is calculated to calculate the acceleration signal G. , (x, y, z) in the vertical direction component G " S S 〇 in step S24, calculate the acceleration signal Gi (x, y, z) in the vertical direction in the last time interval T 〇 (T 〇 = T1) The average value '('), the maximum value (Gpeak), and the minimum value of the component Gz (Gaiiy proceeds to step S25. In step S25, the average value (Gw), the maximum value (Gpeak), and the minimum value (G... calculated in step S24 are calculated as the acceleration signal G1(x, y, z) in the current time interval T1. The peak parameter Up_b0und and the valley parameter L〇w_b〇und of the two-component 匕 waveform, the specific operation equation is as shown in the above equation (丨), (u. Then proceeds to step S26. 110616 12 201017134 at step S26 Medium, dynamically adjusting the current cavitation valley parameter, the current peak parameter of the acceleration (4), and the value of the gossip and 〇唬匕1〇唬匕(x, y, z) in the vertical direction, and the minimum value, that is, in step S25* Calculated wave = =: P: b wide and trough parameter one. _ as current time = wave quart parameter and trough parameter, calculated by (4) S24 it: internal acceleration signal Gi(x, y, z) in vertical The component of the direction G; the large value and the minimum value respectively represent the maximum value and the minimum value of the current acceleration signal 1 〇 = straight direction. Then, the process proceeds to step S27 to analyze the acceleration signal in the current time interval n. ^ ( X, y, z ) The waveform of the component Q in the vertical direction Step S28. In step S28, the towel 'determines the accelerated calving in the current time interval T1, and the waveform characteristic of the component 匕 in the vertical direction (χ, γ'ζ) is: the peak and the trough of the connected, if yes, then Go to step S29, if no, return to step S21 to sense the acceleration signal & (x, y, z) generated by the up and down oscillation of the human body during the walking-time interval T2 (T2=T1=T〇) It should be noted that, in step 27, the waveform of the component Gz of the acceleration signal Gi(x, y, z) in the vertical direction within the current time interval 为 is detected in several bands to determine the input. Whether the waveform is a complete sinusoidal waveform, wherein the input waveform needs to be detected 5 times from state=〇 to State=4. State=0 is the initial state of waveform judgment, when the waveform rises above the above equation (1) Calculate the size of Up_b〇un°d Π0616 13 201017134 and enter state=l, indicating that the waveform has met the amplitude requirement of the sine wave Sin rising phase; the waveform is inverted to fall, and the gamma (four) is entered, indicating that the waveform has a peak , entering the sine wave Sin falling phase When the waveform falls more than the magnitude of L〇w-b〇und obtained by the above equation (2), entering the state 3 indicates that the waveform has met the amplitude of the sine wave Sin falling phase, and although the waveform is inverted, Enter state=4, indicating that the waveform has crossed, and enter the final rising phase of the sine wave Sin wave. When the waveform rises above the above Gavg, the acceleration signal ❹Q (x, y, z) in the current time interval τι can be judged. The waveform of the component ^ in the vertical direction is a complete sinusoidal waveform. In step S29, the number of steps taken by the human body is increased by j. Further, after the step S29, the step of displaying the result of the step of walking the human body is included. Compared with the prior art, the step counter processing system and method of the present invention mainly senses an acceleration signal generated by the human body up and down (4) during walking of the human body and transmits the sensed acceleration signal to the center of the earth. The gravitational direction is used as a projection operation to obtain a waveform of a component of the acceleration signal generated in the vertical direction when the human body walks, and analyze whether the waveform characteristic of the component of the acceleration signal in the vertical direction is a continuous peak and a trough, and The result of the analysis is used as the basis for accumulating the number of steps. Since the invention adopts the waveform characteristic of analyzing the component of the acceleration k in the vertical direction caused by the up and down oscillation of the human body during the walking process of the human body, it can be accurately stepped as a metering unit, and the mechanical system of the conventional wristwatch type is avoided. The pendulum sensor needs the user's arm to naturally swing, and the pedometer can be sensed by the pedometer.] 06] 6 14 201017134 The state of the swing is measured, and the function caused by the function of the illusion is achieved.

本卷明之计步處理系統及方法可整合於且右I 阳士兮^ 備先该電子設備中設定步伐距離, 口此’ 5亥电子裝置藉由本發明之 -出斷步後,再藉由已知的步代轉;;及方法識別 伐的移動方向,且將每步:;::=== === 亍走執跡,,藉由本發明之= 系..先及方法更可提供—種個人步行軌跡描繪技術。 ©心上述實施例僅例示性說明本發明之原理及其功效,而 此女從nn 熟項技勢之人士均可在不違 二本毛月之精神及範訂,對上述實施例進行修飾盘改 此,本發明之權利保護範圍,應如後述之中請專利 犯圍所列。 〜 【圖式簡單說明】 一第1圖係顯示本發明之計步處理系統之基本架 塊示意圖;以及 第2圖係顯示本發明之計步處理方法之流程圖。 ®【主要元件符號說明】 1 計步處理系統 11 加速度感測單元 12 測量單元 13 運算單元 14 分析單元 15 計步單元 S21- -S29 步驟 110616 15The step-by-step processing system and method of the present invention can be integrated and the right I yangshi 兮 ^ is set in the electronic device to set the step distance, and the '5 hai electronic device by the present invention - after the step, and then by And the method of recognizing the moving direction of the cutting, and each step:;::====== 执 执 , , , , , , , , , , , , , , , , , , , , , , , , , , , A personal walking trajectory depiction technique. The above embodiments are merely illustrative of the principles and effects of the present invention, and the person skilled in the art can modify the above embodiments without departing from the spirit and scope of the two months. In this case, the scope of protection of the present invention should be as listed in the following patents. ~ [Simple Description of the Drawings] Fig. 1 is a schematic diagram showing the basic structure of the pedometer processing system of the present invention; and Fig. 2 is a flow chart showing the grading processing method of the present invention. ® [Key Symbol Description] 1 Step Processing System 11 Acceleration Sensing Unit 12 Measurement Unit 13 Operation Unit 14 Analysis Unit 15 Step Unit S21- -S29 Step 110616 15

Claims (1)

201017134 十、申請專利範圍: 1. 一種計步處理系統,係包括: 加速度感測單元,用以感測當前時間間隔内人體 於行走過程中因人體上下振盪而產生的加速度信號匕 * ( X,y,z); 測置單元,用以測量出該加速度信號Gi ( X,y,z ) 與地心引力向量Go之間之夾角; 運异單元’用以依據該加速度信號Gi ( x, y,z ) ❹ 與地心引力向量Gg之間之夾角,對該加速度信號Gi (X,y,z)進行地心引力向量之方向之投影運算,以 運异出该加速度信號Gi (x,y,z)於垂直方向之分量, 並予以輸出; 分析單元’用以分析該運算單元輸出的當前時間 間隔内之加速度信號Gi (x,y z)於垂直方向之分量 的波形特徵;以及 ❹ °十步單元’用以依據該分析單元之分析結果對人 體行走之步數進行累加作業。 2. =申請專利範圍第丨項之計步處理系統,其中,該運 算單元復計算前一時間間隔内該加速度信號匕 (x’y,z)於垂直方向之分量之平均值、最大值以 及最小值,並依據所運算得的平均值、最大值、以及 最小值運算出當前時間間隔内該加速度信號Gi (X,y,z)於垂直方向之分量波形之波峰參數與波谷 參數,並以運算出的波峰參數與波谷參數更新當前時 16 110616 201017134 間間隔内的波峰參數與波谷參數,以及更新當前該加 速度信號Gi (X,y,z)於垂直方向之分量最大值、以 及最小值。 '3· 請專利範圍帛1項之計步處理系、统,其巾,該分 •:析單元係對當前預定時間内的加速度信號Gi (X,y,z) ;*直方向之波形分爲數個波段進行檢測以讀定一 個振幅足夠大的正弦波形。 4.如申口請專利範圍帛卜員之計步處理系、统,復包括一顯 β 不皁元’該顯示單元用以顯示該計步單元之累計結 果0 .如申清專利範圍帛i項之計步處理系统其中該加 速度感測單元係為三軸加速度感測器。 6.如申請專利範圍第1項之計步處理^統,其整合於具 有導航技術的電子設備中,預先於該電子設備中設定 步伐距離,以在該計步單元進行累加作業後,藉由已 Q 知的步代距離以及該導航技術確定該步伐的移動方 向,以將每步之間的相對位移累計起來,而得到 行走軌跡。 〃201017134 X. Patent application scope: 1. A pedometer processing system, comprising: an acceleration sensing unit for sensing an acceleration signal generated by a human body oscillating up and down during walking in a current time interval (* (X, y, z); a measuring unit for measuring an angle between the acceleration signal Gi (X, y, z) and the gravity vector Go; the different unit 'for the acceleration signal Gi (x, y) , z ) 夹 and the gravitational vector Gg, the acceleration signal Gi (X, y, z) is projected in the direction of the gravity vector to transport the acceleration signal Gi (x, y , z) the component in the vertical direction, and output; the analysis unit 'is used to analyze the waveform characteristics of the component of the acceleration signal Gi (x, yz) in the vertical direction in the current time interval output by the arithmetic unit; The step unit 'is used to accumulate the number of steps taken by the human body according to the analysis result of the analysis unit. 2. = the pedometer processing system of the third paragraph of the patent application, wherein the computing unit complex calculates the average value and the maximum value of the component of the acceleration signal 匕(x'y,z) in the vertical direction in the previous time interval. a minimum value, and calculating a peak parameter and a valley parameter of the component waveform of the acceleration signal Gi (X, y, z) in the vertical direction in the current time interval according to the calculated average value, the maximum value, and the minimum value, and The calculated peak parameter and the valley parameter update the peak parameter and the valley parameter in the interval between the current time 16 110616 201017134, and update the maximum value and the minimum value of the current acceleration signal Gi (X, y, z) in the vertical direction. '3· Please request the patent range 帛1 of the step-by-step processing system, system, its towel, the point: the analysis unit is the acceleration signal Gi (X, y, z) for the current predetermined time; * the direction of the waveform A number of bands are detected to read a sinusoidal waveform of sufficient amplitude. 4. If the application for the patent scope requires the step-by-step processing system of the patentee, the system includes a display of the β-saponin element. The display unit is used to display the cumulative result of the step-by-step unit. The step counter processing system wherein the acceleration sensing unit is a three-axis acceleration sensor. 6. The step-by-step processing system of claim 1 is integrated in an electronic device having navigation technology, and a step distance is set in advance in the electronic device to perform an accumulation operation in the grading unit by The step distance that has been known and the navigation technique determine the direction of movement of the step to accumulate the relative displacement between each step to obtain the walking trajectory. 〃 一種計步處理方法,係包括以下步驟:A step-by-step processing method includes the following steps: 向 於當前時間間隔内感測人體於行走過程中因 體上下振盪而產生的加速度信號( X,丫 z ); 量速度…(…)與地, 依據該加速度信號 (X’ y,z)與地心引力向量 1]06]6 17 201017134 Go之方向之間之夾角,對該加速度信號Gi ( χ,y,z ) 進行地心引力方向之投影運算,以運算出該加速度信 號Gi (x,y,z)於垂直方向之分量; ' 依據前一時間間隔内加速度信號Gi ( X,y, z )於 * '垂直方向之分量運算出前一時間間隔内加速度信號Gi • (x,y,z)於垂直方向之分量之平均值、最大值、以 及最小值; 依據刖一時間間隔内該加速度信號(Ji ( X,y, z ) ❹ 於垂直方向之分量之平均值、最大值、以及最小值運 异當前時間間隔内加速度信號Gi ( X,y,z )於垂直方 向之分量之波峰參數與波谷參數; 更新當前時間間隔内的加速度信號Gi ( χ,y,z ) 於垂直方向之分量之波峰參數、波谷參數、最大值、 以及最小值; ❹ 8. 分析當前時間間隔内加速度信號Gi ( X, y,Z )於 垂直方向之分量的波形特徵;以及 依據分析結果對人體行走之步數進行累加作業。 如申請專利範圍第7項之計步處理方法,其中,分析 當前時間間隔内加速度信號Gi (x y z)於垂直方向 之分量的波形特徵之步驟中’係對當前預定時間内的 加速度信號Gi (X,y,z)於垂直方向之波形分爲數個 波段進行檢測,以確定—個振幅足夠大的正弦波形。 如申:專利範圍第7項之計步處理方法,復包括將人 體v行之步數之累加結果進行顯示之步驟。 Π0616 18 201017134 10.如申請專利範圍第7項之計步處 士 、隹 万去,其應用於且 有¥航技術的電子設備中’預先於該電子設備中設二 t伐距離,以在依據分析結果對人體行走之步數進二 2加作業後’藉由已知的步代距離以及該導航技術確 疋咳步伐的移動方向,以將每步之間的相對位移累計 起來,而得到一條行走軌跡。 ❹Acceleration signal (X, 丫z) generated by the body up and down oscillation during walking during the current time interval; volume velocity... (...) and ground, according to the acceleration signal (X' y, z) Gravity vector 1] 06] 6 17 201017134 The angle between the directions of Go, the acceleration signal Gi ( χ, y, z ) is projected in the direction of gravity, to calculate the acceleration signal Gi (x, y, z) the component in the vertical direction; 'According to the component of the *' vertical direction of the acceleration signal Gi ( X, y, z ) in the previous time interval, the acceleration signal Gi is calculated in the previous time interval • (x, y, z The average value, the maximum value, and the minimum value of the components in the vertical direction; the average value, the maximum value, and the minimum of the acceleration signal (Ji ( X, y, z ) ❹ in the vertical direction according to the first time interval) The value is different from the peak parameter and the valley parameter of the component of the acceleration signal Gi ( X, y, z ) in the vertical direction during the current time interval; the component of the acceleration signal Gi ( χ, y, z ) in the vertical direction is updated. Peak parameter The valley parameter, the maximum value, and the minimum value; ❹ 8. Analyze the waveform characteristics of the component of the acceleration signal Gi (X, y, Z) in the vertical direction in the current time interval; and accumulate the number of steps of the human body walking according to the analysis result The step-by-step processing method of claim 7, wherein the step of analyzing the waveform characteristic of the component of the acceleration signal Gi (xyz) in the vertical direction in the current time interval is 'according to the acceleration signal Gi for the current predetermined time ( X, y, z) The waveform in the vertical direction is divided into several bands for detection to determine a sinusoidal waveform with a sufficiently large amplitude. For example, the method of calculating the step of the patent scope is to include the human body v line. Steps of accumulating the results of the steps are displayed. Π0616 18 201017134 10. If the stipend of the patent application scope item 7 is 处 隹 隹 , , , , , , , , , , , , , , , , , , , , , There are two t-cut distances in the middle, in order to increase the number of steps taken by the human body according to the analysis results, after the two-step operation, 'by the known step distance and the navigation technology The direction of movement of the coughing step is to accumulate the relative displacement between each step to obtain a walking trajectory. 19 11061619 110616
TW97139849A 2008-10-17 2008-10-17 Step-counting processing system and method thereof TW201017134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97139849A TW201017134A (en) 2008-10-17 2008-10-17 Step-counting processing system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97139849A TW201017134A (en) 2008-10-17 2008-10-17 Step-counting processing system and method thereof

Publications (1)

Publication Number Publication Date
TW201017134A true TW201017134A (en) 2010-05-01

Family

ID=44830696

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97139849A TW201017134A (en) 2008-10-17 2008-10-17 Step-counting processing system and method thereof

Country Status (1)

Country Link
TW (1) TW201017134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8538723B2 (en) 2010-09-20 2013-09-17 Industrial Technology Research Institute Exercise mode automatic identification method
TWI489087B (en) * 2014-07-03 2015-06-21 Globalsat Worldcom Corp The step - by - step detection method of electronic device
US9320068B2 (en) 2012-04-20 2016-04-19 Wistron Corporation Information exchange method and information exchange system
TWI579530B (en) * 2015-11-30 2017-04-21 逢甲大學 Mobile device pedometer system and gait analysis method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8538723B2 (en) 2010-09-20 2013-09-17 Industrial Technology Research Institute Exercise mode automatic identification method
TWI486880B (en) * 2010-09-20 2015-06-01 Ind Tech Res Inst Automatic identifying method for exercise mode
US9320068B2 (en) 2012-04-20 2016-04-19 Wistron Corporation Information exchange method and information exchange system
TWI547808B (en) * 2012-04-20 2016-09-01 緯創資通股份有限公司 Information exchange method and information exchange system
TWI489087B (en) * 2014-07-03 2015-06-21 Globalsat Worldcom Corp The step - by - step detection method of electronic device
TWI579530B (en) * 2015-11-30 2017-04-21 逢甲大學 Mobile device pedometer system and gait analysis method thereof

Similar Documents

Publication Publication Date Title
US11511154B1 (en) Athletic performance and technique monitoring
US10314520B2 (en) System and method for characterizing biomechanical activity
EP2910901B1 (en) Method for determining an instant velocity of a user and for improving estimation of heart rate
JP6183906B2 (en) Gait estimation device and program, fall risk calculation device and program
US11054279B2 (en) Adaptive step detection
Tumkur et al. Modeling human walking for step detection and stride determination by 3-axis accelerometer readings in pedometer
JP2005309691A (en) Electronic pedometer
JP6134872B1 (en) Device, method and system for counting the number of cycles of periodic motion of a subject
CN101750096A (en) Step-counting processing system and method
JP6024134B2 (en) Status detection device, electronic device, measurement system, and program
US20160058373A1 (en) Running Energy Efficiency
JP2010240158A (en) Energy consumption calculator
TW201017134A (en) Step-counting processing system and method thereof
JP2008054768A (en) Pedometer device and pedometer measuring method
JP2013022090A (en) Energy consumption amount presentation device and energy consumption amount estimation method
CN104864886B (en) The motion monitoring method and system of 3-axis acceleration sensor based on micro/nano level
KR20090039124A (en) Apparatus and method of measuring exercise quantity
JP2018007979A5 (en)
JP5144128B2 (en) Speedometer
US20090063088A1 (en) Wristwatch type acceleration detection module
JPH04105667A (en) Motion detector
JP2012118724A (en) Electronic apparatus, pedometer, and program
CA2758710A1 (en) Cadence detection
TWI579530B (en) Mobile device pedometer system and gait analysis method thereof
JP4939962B2 (en) Pedometer