TWI288787B - A metal-oxide and the preparation method of the same - Google Patents

A metal-oxide and the preparation method of the same Download PDF

Info

Publication number
TWI288787B
TWI288787B TW92137757A TW92137757A TWI288787B TW I288787 B TWI288787 B TW I288787B TW 92137757 A TW92137757 A TW 92137757A TW 92137757 A TW92137757 A TW 92137757A TW I288787 B TWI288787 B TW I288787B
Authority
TW
Taiwan
Prior art keywords
metal oxide
solution
film
group
precursor
Prior art date
Application number
TW92137757A
Other languages
Chinese (zh)
Other versions
TW200521276A (en
Inventor
Chuan-Ya Hung
Chao-Jen Wang
Te-Kuei Chou
Li-Mei Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW92137757A priority Critical patent/TWI288787B/en
Publication of TW200521276A publication Critical patent/TW200521276A/en
Application granted granted Critical
Publication of TWI288787B publication Critical patent/TWI288787B/en

Links

Abstract

A metal-oxide of formula (I): M11-xM2xM31-yM4yO3, and the preparation method thereof is disclosed, wherein M1, M2, M3, M4 are independently selected from a group consisting of: calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium; 0 < x < 1 and 0 <= y <= 1.

Description

1288787 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種可調介電常數及低介電損耗之多 元金屬氧化物及其製備方法,尤指一種適用於可調介電常 5數薄膜之多元金屬氧化物及其製備方法。 【先前技術】 鈣鈦礦鐵電材料具有在電場下調變介電係數的能力 (調變能力(Tmiability): T=(C〇 - CE) / C〇 *100〇/〇,其中 c〇 10代表施予電壓為〇之介電常數;仏代表施予某一固定電壓 下之介電常數),在高電場下(100&gt;kv/cm)時會有顯著的介 電係數變化,變化幅度可高達數十%。因此可用來作為可 變電谷调谐電路的諧振頻率,且無頻率上限的限制。目前 可變電容多採用PIN二極體或GaAs_MMIC等來製作,屬於 15主動το件的製法,具有缺點如微波信號的衰減、頻寬窄、 製程整合成本高等;若以鈣鈦礦鐵電薄膜製備可變電容, 除了提高元件性能外(半導體可變電容可調比例通常小於 30%,而Q值僅1〇左右),更因其僅為被動元件製法而具低 價格且低功率損耗之優勢。在微波元件的應用方面,相移 20器的功能是利用電容變化的線性特性,而其他如混合器與 參數放大器則是利用非線性變化的特性。此種利用電壓調 變頻率與相位的應用還有帶通/帶拒濾波器和Q諧振器。 由於鈣鈦礦鐵電薄膜的介電特性和可調性與組成相 關,如何使成分最適化是最基礎也最關鍵的課題。文獻中 1288787 提及的成膜方式包括脈衝雷射沉積(PLD),射頻磁控濺 鍍,有機金屬氣相沉積(MOCVD),與溶-凝膠或化學溶液 法。其中化學溶液法於近三年來引起廣泛注意,由於其具 有較佳的成分控制與成分均勻度,結晶溫度低,可大面積 5塗佈,製程控制容易且成本低,介電位移隨組成變化多樣, 在元件開發上有極大發揮空間。此外,在材料成膜過程中, 除了成分控制與均勻度必須考量外,晶體結構本身的取向 對於電性影響也相當重大。 以溶液法製備鈣鈦礦鐵電材料之最終應用形態可分 10為奈米粉體、塊材、薄膜;目前許多此一方面的專利主要 為粉體和陶瓷塊材,作為電容的應用發展屬於較成熟的領 域;近來在高頻元件的應用也逐漸受到重視,尤其是以 AB〇3鈣鈦礦鐵電陶瓷為主的高頻元件如相移器等,内容包 括陶瓷粉體顆粒大小和組成控制及陶瓷塊材成型技術,甚 15至以陶竟塊材為基礎的高頻元件設計。但是以陶究塊材為 基礎的高頻元件最大的缺點在於鐵電效應無法有效運用, 且塊材體積過大需要較高的操作電M,所以不㈣同時兼 顧縮小元件和降低成本的趨勢;因此為因應行動通訊元件 局功能化和微小化的需求,薄膜化為必然的走向。由於溶 2〇液法製_鈦礦鐵電薄膜先驅體所用的原料,為金屬鹽類, ^類的g &amp;基與反·應條件將影響複雜成份的偶合與後續 ^時的薄膜微結構與取向;同時,具有特定結構功能 :金,物薄膜通常需要相當高的製備溫度,故限制了 ”目刖半導體矽製程相容的程度。 1288787 美國專利第6,096,127號揭露了 一種具有低損耗介電 薄膜的製備方法,藉由增加晶粒的尺寸以降低損耗,因而 降低由晶界和點缺陷所造成晶粒間的訊號散射。然而其對 於化學溶液法並無詳細提及。 5 美國專利第6,071,555號揭露由BSTO(barium strontium titanate)與添加物 MgO(magnesium oxide)所構成 的鐵電複合材料。其製作方式是採用有機金屬分解。然對 於化學溶液法反應亦無詳細討論。 10 美國專利第6,210,752號中揭露製作含strontium金屬 氧化物陶瓷的方法,其先驅體是由溶於amine溶劑中的 strontium neo-pentoxide與至少一種溶於溶劑中的金屬醇 鹽混合而得,該專利屬於原料完全用醇鹽的反應系統。 15 美國專利第5,468,679號揭露多步驟溶-膠(sol-gel)製 程以製備含魏金屬氧化物作為層狀superlattices,使用的先 驅體為titanium 2-methoxyethoxide。該專利中揭示短鏈金 屬醇鹽,如ethoxides,propoxides通常水解太快導致反應難 以控制且產品不易儲存,長鏈醇鹽不易溶於水且含有太多 20 的有機物不易獲得高品質的薄膜。因此唯有具有中等鏈長 的醇鹽如2-methoxyethoxides可以兼顧所需的要求。 【發明内容】 1288787 本發明之主要目的係在提供一種多元金屬氧化物,俾 能以該多元金屬氧化物製造可調介電常數及低介電損耗之 電容。 本發明之另一目的係在提供一種多元金屬氧化物溶 5液之製備方法,俾能提供具備結晶溫度低、良好鍍膜品質 之多元金屬氧化物溶液。 本發明之又一目的係在提供一種介電薄膜之製造方 法,使得該種介電薄膜具有可調變介電常數以及低介電損 耗等特性。 10 為連成上述目的,本發明之多元金屬氧化物,其係具 有如式(I)之化學式:1288787 玖, the invention description: [Technical field of the invention] The present invention relates to a multi-component metal oxide with adjustable dielectric constant and low dielectric loss and a preparation method thereof, in particular, a method suitable for adjustable dielectric constant 5 Thin film multi-metal oxide and preparation method thereof. [Prior Art] Perovskite ferroelectric materials have the ability to modulate the dielectric constant under electric field (Tmiability): T = (C〇- CE) / C〇 * 100 〇 / 〇, where c 〇 10 represents The applied voltage is the dielectric constant of 〇; 仏 represents the dielectric constant at a given fixed voltage), and there is a significant change in the dielectric constant under high electric field (100 &gt; kv/cm). Dozens of percent. It can therefore be used as the resonant frequency of a variable valley tuned circuit without the upper limit of the frequency. At present, the variable capacitor is mostly made of PIN diode or GaAs_MMIC, and belongs to the method of 15 active τ, which has disadvantages such as attenuation of microwave signal, narrow bandwidth, high process integration cost, etc.; if prepared by perovskite ferroelectric film Variable capacitance, in addition to improving component performance (semiconductor variable capacitor adjustable ratio is usually less than 30%, and Q value is only about 1 )), but also because of its passive component manufacturing method with low price and low power loss. In the application of microwave components, the function of the phase shifter is to take advantage of the linearity of the change in capacitance, while others such as mixers and parametric amplifiers take advantage of the nonlinearity. Such applications utilizing voltage modulation frequency and phase are also bandpass/band rejection filters and Q resonators. Since the dielectric properties and adjustability of the perovskite ferroelectric thin film are related to the composition, how to optimize the composition is the most fundamental and critical issue. The film formation methods mentioned in 1288787 include pulsed laser deposition (PLD), radio frequency magnetron sputtering, organic metal vapor deposition (MOCVD), and sol-gel or chemical solution methods. Among them, the chemical solution method has attracted extensive attention in the past three years. Because of its better composition control and composition uniformity, the crystallization temperature is low, it can be coated in a large area of 5, the process control is easy and the cost is low, and the dielectric displacement varies with composition. , there is a lot of room for component development. In addition, in the material film formation process, in addition to compositional control and uniformity must be considered, the orientation of the crystal structure itself is also significant for electrical influence. The final application form of the preparation of perovskite ferroelectric materials by solution method can be divided into 10 nanometer powders, bulk materials and thin films; many of the patents in this aspect are mainly powder and ceramic bulk materials, and the application development of capacitors is relatively high. Mature field; recently, the application of high-frequency components has gradually received attention, especially high-frequency components such as phase shifters mainly composed of AB〇3 perovskite ferroelectric ceramics, including ceramic powder particle size and composition control. And ceramic block forming technology, even 15 to high-frequency components based on ceramic blocks. However, the biggest disadvantage of high-frequency components based on ceramic blocks is that the ferroelectric effect cannot be effectively used, and the bulk of the bulk material requires a high operating power M, so it does not (4) simultaneously reduce the trend of reducing components and reducing costs; In response to the need for functionalization and miniaturization of the mobile communication component office, thin filming is an inevitable trend. Because the raw materials used in the precursor of the titanium dioxide ferroelectric thin film are metal salts, the g &amp; base and anti-conditions of the ^ class will affect the coupling of the complex components and the subsequent microstructure of the film. Orientation; at the same time, having a specific structural function: gold, the film usually requires a relatively high preparation temperature, thus limiting the degree of compatibility of the semiconductor semiconductor process. 1288787 U.S. Patent No. 6,096,127 discloses a low loss dielectric. The preparation method of the electric film reduces the loss of the grain caused by the grain boundary and the point defect by increasing the size of the crystal grain, but it does not mention the chemical solution method in detail. 6,071,555 discloses a ferroelectric composite material composed of BSTO (barium strontium titanate) and additive MgO (magnesium oxide), which is produced by decomposition of an organic metal. However, the chemical solution reaction is not discussed in detail. A method for producing a strontium-containing metal oxide ceramic is disclosed in Patent No. 6,210,752, the precursor of which is a strontium neo-pentoxid dissolved in an amine solvent. e is admixed with at least one metal alkoxide dissolved in a solvent which is a reaction system in which the starting material is completely alkoxide. 15 U.S. Patent No. 5,468,679 discloses a multi-step sol-gel process for preparing a Wei-gel process. Metal oxides are used as layered superlattices, and the precursor used is titanium 2-methoxyethoxide. This patent discloses short-chain metal alkoxides, such as ethoxides. Propoxides usually hydrolyze too quickly, making the reaction difficult to control and products difficult to store. Long-chain alkoxides are difficult. Water-soluble and containing too much organic matter is not easy to obtain a high-quality film. Therefore, only a medium chain length alkoxide such as 2-methoxyethoxides can meet the required requirements. [1] The main purpose of the present invention is Providing a multi-metal oxide capable of producing a capacitor having a variable dielectric constant and a low dielectric loss from the multi-metal oxide. Another object of the present invention is to provide a method for preparing a multi-metal oxide solution 5 liquid,俾 can provide a multi-metal oxide solution having a low crystallization temperature and good coating quality. Provided is a method for fabricating a dielectric film, such that the dielectric film has characteristics such as a variable dielectric constant and a low dielectric loss. 10 For the above purpose, the multi-metal oxide of the present invention has a formula (I) Chemical formula:

MlUxM\M3UyM\〇3 (I) 15 其中,Μ1,M2係選自一群組包括:妈(calcium)、鋇 (barium)、錯(strontium)、麵(bismuth)及鉛(lead); M3,M4係選自一群組包括:鈦(titanium)、祕(bismuth)、 編(cadmium)、鉛(lead)、组(tantalum)、給(hafnium)、 20 鶴(tungsten)、鈮(niobium)、錯(zirconium)、錫(tin)、 猛(manganese)、鐵(iron)、镱(yttrium)、鑭(lanthanum)、 銻(antimony)、鉻(chromium)、及銘(thallium) ; 0&lt;χ&lt;1 ; 且OS 1。同時,本發明之多元金屬氧化物溶液之 製備方法,包括··將M3、M4之醇鹽溶解於一有機溶劑 1288787 中,形成一先驅液,以及將Ml、Μ2溶解於該先驅液 中’形成一多元金屬氧化物溶液。 另外,本發明之介電薄膜之製造方法,包括: 提供一多元金屬氧化物醋酸鹽溶液;提供一多元金屬氧化 5物醇胺溶液;提供一基材,該基材係由石夕、二氧切、欽 或始所構成;塗佈並加熱至少一層多元金屬氧化物醋酸鹽 薄膜於該基材之表面,其中該多元金屬氧化物醋酸鹽薄膜 係由該多元機屬氧化物醋酸鹽溶液所構成;以及塗佈並加 熱至少一層該多元金屬氧化物醇胺薄膜於該多元金 10 物醋酸鹽薄膜之上,豆中兮客开冬厘备ν Λ ;^ 、 /、中該夕兀金屬氧化物醇胺薄膜係由 該多元金屬氧化物醇胺溶液所構成。 本發明所提供之多元金屬氧化物,其具有低結晶溫 度★、可調介電常數以及低介電損耗等特質,尤其為可調介 15電薄膜用先驅體。所得之介電材料組成物適用於高頻元件 用可變電容等應用,或其他高階微波元件的應用方面,如 ,移器、混合器、參數放大器、帶通/帶拒遽波器和9譜振 器。本發明之介電材料組成物在應用時主要以薄膜方式應 用2。本發明主採用胺醇類溶劑搭配μ3、μ4金屬醇鹽與Μ/、 20 Μ;孟屬原料,著眼點在於胺醇類溶劑兩端官能基可分別與 Μ Μ金屬醇鹽及Μ1、Μ2原子鍵結,故非傳統螯合劑類 的各劑的作用機制。傳統螯合劑類溶劑作用 賴3、心屬醇鹽,以便與其他金屬鹽類混·合均勾,增力: 溶解度。此一新穎反應機制可兼顧不同元素間的反應、溶 解度進而達成成分均勻、降低製程溫度、減少副反應、 1288787 結構取向優化。若進一步搭配增進鍍膜品質的溶劑添加劑 與利用成膜性較佳的先驅體系統作為緩衝層來促進結構取 向優化,可進一步增進成膜品質提升介電特性。MlUxM\M3UyM\〇3 (I) 15 where Μ1, M2 is selected from the group consisting of: calcium, barium, strontium, bismuth and lead; M3, The M4 line is selected from the group consisting of: titanium, bismuth, cadmium, lead, tantalum, hafnium, 20 tungsten, niobium, Zirconium, tin, manganese, iron, yttrium, lanthanum, antimony, chromium, and thallium; 0 &lt;χ&lt;1; and OS 1. Meanwhile, the preparation method of the multi-metal oxide solution of the present invention comprises: dissolving the alkoxide of M3 and M4 in an organic solvent 1288787 to form a precursor liquid, and dissolving M1 and Μ2 in the precursor liquid to form A multi-metal oxide solution. In addition, the method for manufacturing a dielectric film of the present invention comprises: providing a multi-metal oxide acetate solution; providing a multi-metal oxide 5-alcoholamine solution; providing a substrate, the substrate is by Shi Xi, Forming and heating at least one layer of a multi-metal oxide acetate film on the surface of the substrate, wherein the multi-metal oxide acetate film is composed of the multi-component oxide acetate solution And coating and heating at least one layer of the multi-element metal oxide alcohol amine film on the multi-gold 10 acetate film, the Beans in the Beans open for the winter to prepare ν Λ; ^, /, the 兀 兀 metal The oxide alcohol amine film is composed of the multicomponent metal oxide alcohol amine solution. The multi-metal oxide provided by the invention has the characteristics of low crystallization temperature ★, adjustable dielectric constant and low dielectric loss, and is especially a precursor for an adjustable dielectric film. The resulting dielectric material composition is suitable for applications such as variable capacitance for high frequency components, or applications of other high order microwave components such as shifters, mixers, parametric amplifiers, bandpass/band rejection choppers, and 9 spectra. Vibrator. The dielectric material composition of the present invention is mainly applied as a film in application 2 . The invention mainly adopts an amine alcohol solvent with μ3, μ4 metal alkoxide and Μ/, 20 Μ; Meng gen raw materials, the focus is on the amine alcohol solvent two-end functional groups can be respectively associated with ruthenium metal alkoxide and Μ 1, Μ 2 atom Bonding, so the mechanism of action of various agents other than traditional chelating agents. The traditional chelating agent solvent acts on Lai 3, the heart alkoxide, in order to mix and combine with other metal salts, to increase the force: solubility. This novel reaction mechanism can take into account the reaction and solubility between different elements to achieve uniform composition, reduce process temperature, reduce side reactions, and optimize the structural orientation of 1288787. Further, it is possible to further improve the film forming quality and improve the dielectric properties by further matching with a solvent additive for improving the coating quality and a precursor system using a film forming property as a buffer layer to promote structural orientation optimization.

Barium Strontium Titanate(BST)薄膜具有許多潛在的 5應用如DRAM,焦電感測器,氫氣偵測器,可調式微波元 件等。文獻中提及的製備方法包括M〇c VD、pulsed丨⑽以 deposition、sputtering與化學溶液(或s〇1_gel)法。其中化學 洛液法具有低成本且絕佳的組成控制;然而,大多數的化 學溶液法生成的多晶結構將會形成中間相與細小的晶粒, 10過小的晶粒有較差的結構取向,會使介電常數變小,而中 間相的形成容易抑制鈣鈦礦結構的生成,因此鈣鈦礦結構 的形成往往必需靠後續的熱處理。此種現象的主要成因°是 各成份起始物的化學結構僅僅扮演螯合與混合均勻的角 色,若能夠增加不同元素間的反應同時兼顧溶解度與鍍膜 15溶液的表面張力,則可得到低結晶溫度、良好鍍膜品^、、 結構取向優化且具有可調介電常數及低介電損耗先驅體板Barium Strontium Titanate (BST) films have many potential applications such as DRAM, pyroelectric detectors, hydrogen detectors, and adjustable microwave components. The preparation methods mentioned in the literature include M〇c VD, pulsed(10) by deposition, sputtering and chemical solution (or s〇1_gel). Among them, the chemical liquid method has low cost and excellent composition control; however, most of the chemical solution method produces a polycrystalline structure which will form a mesophase with fine grains, and 10 too small grains have a poor structural orientation. The dielectric constant is made smaller, and the formation of the mesophase tends to inhibit the formation of the perovskite structure, so the formation of the perovskite structure often requires subsequent heat treatment. The main cause of this phenomenon is that the chemical structure of the starting materials of each component only plays a role of chelation and mixing. If the reaction between different elements can be increased while taking into account the solubility and the surface tension of the coating 15 solution, low crystallization can be obtained. Temperature, good coating quality, optimized structural orientation and precursor dielectric plate with adjustable dielectric constant and low dielectric loss

1本發明採用胺醇類溶劑搭配鈦(M3)金屬醇鹽與鋇 (M1)、離2)金屬原料,著眼點在於胺醇類溶劑兩:;能 2(V土可分別與鈦(M3)金屬醇鹽及鋇(M1)、銷(M2)原子鍵社’ 類的溶劑的作用機制。傳統整合劑類:劑 _、θ人在於穩定鈦(Μ3)金屬醇鹽,以便與其他金屬鹽 元^均句,增加溶解度。此一新穎反應機制可兼顧不同 、的反應、溶解度’進而達成成分均句、降低製程溫 11 1288787 度、減少副反應、使結構取向優化等。如實施例一所揭露, 採用此一新穎反應機制之鍍膜先驅體組成物於鍍膜後經過 熱處理,與傳統acetate-based先驅體系統(比較例)相較之 下’在相同的厚度下具有較佳的介電特性,且結晶溫度有 5降低的趨勢。本發明採取之胺醇溶劑系統屬於反應型先驅 體,與傳統非反應型先驅體有所區隔。其作用於BST躬敛 礦鐵電材料系統得到說明,然而此一原理可普適地應用於 廣泛的鐵電材料,這些材料包括AB〇3鈣鈦礦材料,層狀鈣 鈦礦材料,鎢青銅鐵電材料,ΥΜη〇3結構之鐵電材料。在 10由三成分金屬氧化物拓展為四成分金屬氧化物時,以反應 型先驅體製備方法所得之BanSrxTi^yTayC^組成物較以非 反應型或反應型先驅體製備的三成分Bai xSrxTii yTay〇3* 驅體有較佳的電氣特性,而以非反應型方式製備而得的四 成分先驅體由於第四元素的混合破壞原有系統之鍍膜特 15性,無.法得到良好的鍍膜,此一結果亦間接證明反應型先 驅體系統可有效促進金屬成分鍵結,產生定向的作用,如 實施例四所揭露。 另外,文獻指出介電特性如介電常數、損耗、漏電流 20等與成膜方式、組成、摻雜、電極、微結構(晶粒大小、晶 粒形狀、内應力)、應變、先驅體濃度、回火條件與厚度等 有相當大的依存性。其中又以薄膜中的形變佔最大因素, 因為成膜過程中的形變會影響結構取向。薄膜生長過程若 選擇晶格匹配的基材則容易獲得與基材結晶類似的多晶会士 25 構。由於化學溶液法的先驅體多為成分均勻,因此若基材 12 1288787 有晶格不匹配的情形則容易因為均相成核而生成細小的晶 粒0 由製程改善薄膜特性的方—、七 ^ ^ ^ ^ ^ 式匕括以極稀的先驅體溶 液旋鍍數十層;以多層鍍膜方式 乂 母層溥膜所用的先驅體 T度不同,為漸變式濃度梯度;或者以相同成分或不同成 分稀釋之先驅體先鑛上一層薄膜作為緩衝層。上述每一層 的處理溫度可低於或高達結晶溫度,且不同濃度或不㈣ 分的先驅體均屬於相同的先驅體反應系統·非反應型先驅 ίο 體組成物。此種處理方式的目的主要有二··促進非均相結 晶與弛豫因晶格不匹配所造成的應力。對於化學溶液法製 傷的薄膜,因應所需的厚度,多必需以多層錢膜的方式來 達成,而採用極稀的先驅體溶液進行數十層鍍膜確可得到 緻密性良好的薄膜,因為化學溶液法已經無擴散引起的局 15 部組成不均的問題,剩下所需克服的為反應後結構取向的 問題。以非常稀薄的先驅體溶液進行鍍膜是仿氣相或液相 磊晶方式,使結構取向優化。儘管如此,高達數十層鍍膜 之製程十分不易,喪失原有化學溶液法低成本的優勢。此 乃因熱處理後薄膜内部或表面易有微孔產生造成表面平整 度不佳,且多次高溫處理累積的薄膜殘餘應力容易造成薄 20膜裂隙,又過多的介面代表介面缺陷的增加等,對於後續 的鍍膜將難以控制。因此採用過多次數的旋塗反而有製程 繁複、良率低等負面作用;另外,鍍膜層數與先軀體本質 間必須取得最佳化,逕行數十層極稀先軀體溶液鍍膜並無 法確保所得薄膜的品質。 13 1288787 由於鑛膜品質與先驅體溶液和基材表面的作用有 關,在鍍膜過程中先驅體系統除了必需與基材(在此為pt 金屬電極)有良好的附著力外,尚必需與後續每一層經過熱 處理後的薄膜也具有良好的親和力,缺一不可。倘若先驅 5體溶液與電極基材或介電薄膜的鍍膜特性不佳,採用上述 多層鍍膜方式將導致薄膜品質的大幅降低。 本發明中之比較例為傳統醋酸鹽類非反應型先驅體 系統,其特色為鍍膜特性良好,對於電極基材或介電薄膜 均有良好的附著力,此乃因為各金屬成分間僅是以混合均 10勻的型態存在,不會影響先驅體中分子與基材或介電薄膜 間的鍵結,但也就因為各成分間僅以均勻混合型態存在, 因此無法避免過度相的存在,使得結晶溫度較高,而所得 之薄膜性質較差。反之,本發明中之實施例一則由於金屬 成分間具有鍵結存在,因之影響先驅體中分子與基材的鍵 15結,故鍍膜品質可加入增進鍍膜品質的溶劑添加劑改善, 然而先驅體中分子與介電薄膜間的聯結較傳統醋酸鹽類非 反應型先驅體系統為佳,因此結晶溫度可為較低且介電特 性較好。利用此種觀念,可以比較例中傳統醋酸鹽類非反 應型先驅體系統作為緩衝層,取其鍍膜特性良好之優點, 20侯第:層介電薄膜生成後,以實施例一之鹼性醇胺系統作 為後續鍍膜之先驅體並添加改善鍍膜之溶劑,取复 分間具有鍵結之優點,產生定向的功能,促進非㈣目結^ 與⑽因晶格不匹配所造成的應力,使結構取向優化,可 望進-步增進薄膜之介電性質,如實施例二所揭露。如進 1288787 一步利用非反應型先驅體與反應型先驅體之本質差異,採 用交錯式鍍膜,可進一步促進結構取向優化,使電性表現 提升,見實施例三。 5【實施方式】 需注意的是,本發明所使用之多元金屬氧化物 1^11_#2^\431-7]\4%03中,]\41,]^2,]\43,]\44並無限制,其中, Μ,M2係選自一群組包括·弼(calcium)、鎖(barium)、錄 (strontium)、鉍(bismuth)及鉛(lead) ; M3,M4係選自一群 10 組包括··鈦(titanium)、鉍(bismuth)、鎘(cadmium)、鉛 (lead)、钽(tantalum)、鈴(hafnium)、鎢(tungsten)、鈮 (niobium)、錄(zirconium)、錫(tin)、鈒(manganese)、 鐵(iron)、钂(yttrium)、鑭(lanthanum)、銻(antimony)、 鉻(chromium)、及鉈(thallium) ; 0&lt;χ&lt;1 ;且 i。四 15成分金屬氧化物中較佳係為BakSrxTi^yTayO; ; χ及y 之範圍較佳係為0·3$χ$0·7,且〇.〇i&lt;y&lt;(K()5; 本發明多元金屬氧化物溶液的製備方法中,m3,m4 之醇胺鹽溶液中.,Μ3、Μ,4之莫耳數比較佳係為 99:1〜9:1 ; Μ1、Μ2之莫耳數比較佳係為7:3〜3 :7 ; 20所添加之溶劑添加劑係為了增加該溶液之濕潤度 及其改善塗佈性質,此溶劑添加劑較佳係選自一 群組包括:2-甲氧基乙醇及3-甲氧基-1β丁醇;製 備M3,M4醇胺鹽溶液之有機溶劑較佳係選自一群組包 括:N,N-二甲基乙醇胺、乙醇胺、甲基乙醇胺、 15 1288787 異丙醇胺、3-氨基-2-丁醇及· 2-氨基-2 -甲基丙醇。 本發明所提供之介電薄膜製造方法中,介電薄膜 之厚度並無限制,較佳係介於2〇〇〇_4〇〇〇埃(Angstr〇m) 之間。 5 為能讓貴審查委員能更瞭解本發明之技術内容,特 舉四較佳具體實施例及一比較例說明如下。 實施例一、製備BST薄膜,其成分比為BaQ5Sr()5Ti〇3。 10 1.先驅體製備 先將異丙醇鈦(9.1 g)溶於n,N_二甲基乙醇胺(30g), 以形成鈦先驅體溶液。而後將金屬鋇(2·2 g )及金屬鳃(i ·4 g)加入至鈦先驅體溶液,待鋇、锶溶解後,加入N,N_二甲 基乙醇胺,以形成〇·1 M鈦酸鋰鋇溶膠_凝膠溶液。隨之加 15入2-曱氧基乙醇(32〇 g)至鈦酸勰鋇溶膠-凝膠溶液以改善 溶膠-凝膠溶液之旋轉塗佈特性並增加濕潤度。 2·薄膜製備 ^ 使用旋轉塗佈機,旋轉速率為500-3000 rpm,將溶膠_ 凝膠溶液塗佈在具有Si/Si02/Ti/Pt結構基材上。當塗佈機 20旋轉時,易揮發的溶劑將藉由蒸發而損失。待塗佈完成, 薄膜藉由加熱板加熱至120-350°C,時間為5_10分鐘,完成 乾蚝程序,然後藉由快速昇溫裝置,溫度在500-700。〇,時 為刀鐘’並在氧氣氣氛下完成鍛燒程序。結晶溫度 經DTA量測為58〇它 16 1288787 第一層至第十層薄膜遵循上述之方法,並使總厚度達到 2000〜4000 A之厚度。 當完成最後一層之薄膜後,經由快速昇溫裝置,在流 動之氧氣氣氛下’溫度範圍為6〇〇-800°C,時間為10-20分 5 鐘,完成回火程序。 3_電性量測 回火完成之BST薄膜,經由蔽蔭遮罩蒸鍍白金,鍍上 固定面積之上電極,使其成為MIM結構。 使用量測儀HP 4284A,量測頻率為1〇〇 kHz,電壓範 10 圍為-15V 〜15V。 I測結果介電常數為320(白金)〜415(金)。 量測結果介電損耗為0.03-0.05。 量測結果調變能力為24〜26 %。 15比較例一、製備BST薄膜,其成分比為Ba〇5Sr()5Ti〇3。 1. 先驅體製備 將正丁醇鈦( 27.23 g)溶於2_甲氧基乙醇(4〇 g), 以形成鈦先驅體溶液。再將醋酸鋇(1〇·22 g)及醋酸勰(8·23 g )混合後,加入丙酸(160 g ),形成鋇-鳃先驅體溶液。 20 將鋇-鳃先驅體溶液慢慢加入至鈦先驅體溶液,混合均 勻後’及元成欽酸銷鎖溶膠_凝膠溶液。 2. 薄膜製備 使用旋轉塗佈機,旋轉速率為5〇〇_3〇〇〇rpm,將溶膠一 凝膠溶液塗佈在具有Si/Si〇2/Ti/Pt結構基材上。當塗佈機旋 25轉時,易揮發的溶劑將藉由蒸發而損失。待塗佈完成,薄 17 1288787 膜藉由加熱板加熱至120-35(TC,時間為5-10分鐘,完成乾 燥程序;然後藉由快速昇溫裝置,溫度在500-700°C,時間 為5-10分鐘^並在氧氣氣氛下完成鍛燒程序。結晶溫度經 DTA量測為624°C。 5 第二層至第五層薄膜遵循上述之方法,並使總厚度達 到2000〜4000 A之厚度。 當完成最後一層之薄膜後,經由快速昇溫裝置,在流 動之氧氣氣氛下,溫度範圍為600-800°C,時間為10-20分 鐘,完成回火程序。 10 3.電性量測 回火完成之BST薄膜,經由蔽蔭遮罩蒸鍍白金,鍍上 固定面積之上電極,使其成為MIM結構。 使用量測儀HP 4284A,量測頻率為100 kHz,電壓範 圍為-15V〜15V。 15 量測結果介電常數為270(白金),330(金)。 量測結果介電損耗為0.02(白金),0.015(金)。 量測結果調變能力為26〜33 %。 20 實施例二、製備BST薄膜,其成分比為Ba〇.5Sr〇.5Ti03。 1.薄膜製備 使用旋轉塗佈機,旋轉速率為500-3000 rpm,將溶膠-凝膠溶液塗佈在具有Si/Si02/Ti/Pt結構基材上。當塗佈機 25 旋轉時,易揮發的溶劑將藉由蒸發而損失。 18 1288787 第一層先以丙酸/2-甲氧基乙醇系統鍍製薄膜;第二 層以N,N-二甲基乙醇胺/2_甲氧基乙醇系統產生薄膜。 每一層塗佈完成,薄膜藉由加熱板加熱至12〇-35(rc, 時間為5-10分鐘,完成乾燥程序;然後藉由快速昇溫裝 置,溫度在500-700°C,時間為5_1〇分鐘,並在氧氣氣氛下 完成锻燒程序。 第三層至第十層薄膜遵循上述之方法,並使用N,N_:1 The invention adopts an amine alcohol solvent with titanium (M3) metal alkoxide and strontium (M1), and 2) metal raw materials, focusing on two kinds of amine alcohol solvents:; energy 2 (V soil can be separately combined with titanium (M3) Mechanism of action of metal alkoxides and strontium (M1) and pin (M2) atomic bonds. Traditional integrators: agents _, θ people are stable titanium (Μ3) metal alkoxides, in order to interact with other metal salts ^Homogeneous sentence, increase solubility. This novel reaction mechanism can take into account different reactions, solubility 'to achieve the composition of the sentence, reduce the process temperature 11 1288787 degrees, reduce side reactions, optimize structural orientation, etc. As disclosed in the first embodiment The coating precursor composition using this novel reaction mechanism is heat-treated after coating, and has better dielectric properties at the same thickness as compared with the conventional acetate-based precursor system (comparative example). The crystallization temperature has a tendency to decrease by 5. The amine alcohol solvent system adopted in the present invention belongs to a reactive precursor and is distinguished from the conventional non-reactive precursor. The effect is explained in the BST 躬 矿 矿 铁 铁 铁 , , , , , , , One principle Appropriately applied to a wide range of ferroelectric materials, including AB〇3 perovskite materials, layered perovskite materials, tungsten bronze ferroelectric materials, and ferroelectric materials of ΥΜη〇3 structure. Oxidized by three-component metal at 10 When the material is expanded into a four-component metal oxide, the BanSrxTi^yTayC^ composition obtained by the reactive precursor preparation method is better than the three-component Bai xSrxTii yTay〇3* body prepared by the non-reactive or reactive precursor. The electrical characteristics, and the four-component precursor prepared by the non-reactive method destroys the coating of the original system due to the mixing of the fourth element, and the good coating is obtained by the method. This result also proves the reaction type indirectly. The precursor system can effectively promote the bonding of metal components and produce orientation effects, as disclosed in Example 4. In addition, the literature indicates dielectric properties such as dielectric constant, loss, leakage current 20, etc. and film formation, composition, and doping. , electrodes, microstructure (grain size, grain shape, internal stress), strain, precursor concentration, tempering conditions and thickness, etc. have considerable dependence. The biggest factor is because the deformation during film formation affects the structural orientation. If a lattice-matched substrate is selected for the film growth process, it is easy to obtain a polycrystalline structure similar to that of the substrate. The bulk of the body is uniform in composition. Therefore, if the substrate 12 1288787 has a lattice mismatch, it is easy to form fine crystal grains due to homogeneous nucleation. The process of improving the film properties by the process—7^^^^^ It consists of spin coating of dozens of layers with a very rare precursor solution; the precursors used in the multilayer coating are different in T-degrees, which are gradient concentration gradients; or precursors with the same composition or different components. The upper layer of the film serves as a buffer layer. The processing temperature of each of the above layers may be lower than or higher than the crystallization temperature, and the precursors of different concentrations or not (four) points belong to the same precursor reaction system and non-reactive precursor ίο body composition. The purpose of this treatment is mainly to promote the stress caused by the mismatch between the heterogeneous crystal and the relaxation due to the lattice. For the film damaged by the chemical solution method, it is necessary to achieve a multi-layered film in accordance with the required thickness, and a thin film with a very rare precursor solution can obtain a film with good compactness because the chemical solution There is no problem of uneven composition of the 15 parts of the bureau caused by the law, and the remaining problem to be overcome is the problem of structural orientation after the reaction. Coating with a very thin precursor solution is a gas phase or liquid phase epitaxy method that optimizes the structural orientation. Despite this, the process of up to dozens of coatings is very difficult, and the advantages of the original chemical solution method are lost. This is because the surface of the film or the surface is prone to micropores after heat treatment, resulting in poor surface flatness, and the residual stress of the film accumulated by multiple high-temperature treatments is likely to cause thin film cracks, and too many interfaces represent an increase in interface defects. Subsequent coatings will be difficult to control. Therefore, the use of excessive number of spin coatings has the negative effects of complicated process and low yield; in addition, the number of coating layers and the essence of the precursor must be optimized, and dozens of extremely rare body solution coatings are not able to ensure the obtained film. Quality. 13 1288787 Since the quality of the film is related to the effect of the precursor solution and the surface of the substrate, the precursor system must have a good adhesion to the substrate (here, the pt metal electrode) in the coating process. A layer of heat treated film also has good affinity and is indispensable. If the coating properties of the precursor 5-body solution and the electrode substrate or dielectric film are not good, the above-mentioned multilayer coating method will result in a significant reduction in film quality. The comparative example in the present invention is a conventional acetate non-reactive precursor system, which is characterized in that the coating property is good, and the electrode substrate or the dielectric film has good adhesion, because the metal components are only The existence of a mixture of 10 uniform forms does not affect the bond between the molecules in the precursor and the substrate or the dielectric film, but because the components are only in a homogeneous mixed state, the existence of excessive phases cannot be avoided. The crystallization temperature is higher and the resulting film is inferior in properties. On the contrary, in the first embodiment of the present invention, since there is a bond between the metal components, the bond between the molecules and the substrate in the precursor is affected, so that the coating quality can be improved by adding a solvent additive for improving the quality of the coating, but in the precursor. The bonding between the molecule and the dielectric film is better than the conventional acetate non-reactive precursor system, so the crystallization temperature can be lower and the dielectric properties are better. Using this concept, the traditional acetate non-reactive precursor system can be used as a buffer layer in the comparative example, and the coating property is good. After the formation of the dielectric film, the basic alcohol of the first embodiment is used. As the precursor of the subsequent coating, the amine system adds solvent to improve the coating, and has the advantage of bonding between the complexes to produce the orientation function, which promotes the stress caused by the mismatch between the non-fourth and the (10) lattice mismatch. Optimization, it is expected to further improve the dielectric properties of the film, as disclosed in the second embodiment. For example, in 1288787, the essential difference between the non-reactive precursor and the reactive precursor is utilized, and the staggered coating can be used to further optimize the structural orientation and improve the electrical performance. See Example 3. 5 [Embodiment] It should be noted that the multi-metal oxide 1^11_#2^\431-7]\4%03 used in the present invention,]\41,]^2,]\43,]\ 44 is not limited, wherein, Μ, M2 is selected from the group consisting of: calcium, barium, strontium, bismuth and lead; M3, M4 is selected from a group The 10 groups include titanium, bismuth, cadmium, lead, tantalum, hafnium, tungsten (tungsten), niobium, zirconium, Tin, manganese, iron, yttrium, lanthanum, antimony, chromium, and thallium; 0 &lt; χ &lt;1; and i. Preferably, the tetra 15 component metal oxide is BakSrxTi^yTayO; χ and y are preferably in the range of 0·3$χ$0·7, and 〇.〇i&lt;y&lt;(K()5; the present invention In the preparation method of the multi-metal oxide solution, in the alcohol amine salt solution of m3, m4, the molar number of Μ3, Μ, 4 is preferably 99:1~9:1; the molar number of Μ1, Μ2 is compared Preferably, the solvent additive is added in order to increase the wettability of the solution and to improve the coating property. The solvent additive is preferably selected from the group consisting of: 2-methoxyl. Ethanol and 3-methoxy-1β-butanol; the organic solvent for preparing the M3, M4 alcoholamine salt solution is preferably selected from the group consisting of: N,N-dimethylethanolamine, ethanolamine, methylethanolamine, 15 1288787 Isopropanolamine, 3-amino-2-butanol, and 2-amino-2-methylpropanol. In the method for producing a dielectric film provided by the present invention, the thickness of the dielectric film is not limited, and is preferably Between 2〇〇〇_4〇〇〇(Angstr〇m) 5 In order to enable the reviewing committee to better understand the technical content of the present invention, the fourth preferred embodiment and a comparative example are described as follows . Example 1 Preparation of a BST film having a composition ratio of BaQ5Sr()5Ti〇3. 10 1. Preparation of a precursor First, titanium isopropoxide (9.1 g) was dissolved in n,N-dimethylethanolamine (30 g) to Forming a titanium precursor solution, and then adding metal ruthenium (2·2 g) and metal ruthenium (i · 4 g) to the titanium precursor solution, and after the ruthenium and osmium are dissolved, adding N,N-dimethylethanolamine to Form a 〇·1 M lithium titanate sol-gel solution, and then add 15-methoxyethanol (32 〇g) to the barium titanate sol-gel solution to improve the rotation of the sol-gel solution. Coating characteristics and increasing wettability 2. Film preparation ^ The sol-gel solution was coated on a Si/SiO 2 /Ti/Pt structure substrate using a spin coater at a rotation rate of 500-3000 rpm. When the coater 20 rotates, the volatile solvent will be lost by evaporation. After the coating is completed, the film is heated to 120-350 ° C by a heating plate for 5-10 minutes to complete the drying process, and then by fast The temperature rising device has a temperature of 500-700. When it is a knife-knife' and the calcination process is completed under an oxygen atmosphere. The crystallization temperature is measured by DTA to be 58 〇 1 6 1288787 The first to tenth layers of film follow the above method and have a total thickness of 2000 to 4000 A. When the film of the last layer is completed, the temperature range is in the flowing oxygen atmosphere via a rapid temperature riser. 6〇〇-800°C, time is 10-20 minutes and 5 minutes, complete the tempering process. 3_Electrical measurement of tempered BST film, deposited by shadow masking white gold, plated on a fixed area The electrode makes it a MIM structure. Using the measuring instrument HP 4284A, the measuring frequency is 1 〇〇 kHz, and the voltage range is -15V ~15V. The dielectric constant of the I measurement is 320 (platinum) ~ 415 (gold). The measurement results have a dielectric loss of 0.03-0.05. The measurement result has a modulation capacity of 24 to 26%. 15 Comparative Example 1 A BST film was prepared, the composition ratio of which was Ba〇5Sr()5Ti〇3. 1. Precursor preparation Titanium n-butoxide (27.23 g) was dissolved in 2-methoxyethanol (4 〇 g) to form a titanium precursor solution. Further, cerium acetate (1 〇·22 g) and cerium acetate (8·23 g) were mixed, and propionic acid (160 g) was added to form a cerium-strontium precursor solution. 20 Add the 钡-鳃 precursor solution slowly to the titanium precursor solution, mix well and then add the sol-gel solution. 2. Film preparation A sol-gel solution was coated on a substrate having a Si/Si〇2/Ti/Pt structure using a spin coater at a rotation rate of 5 〇〇 3 rpm. When the coater is rotated 25 turns, the volatile solvent will be lost by evaporation. To be coated, thin 17 1288787 film is heated to 120-35 (TC, time 5-10 minutes, complete the drying process; then by rapid heating device, temperature is 500-700 ° C, time is 5 -10 minutes ^ and the calcination procedure was completed under an oxygen atmosphere. The crystallization temperature was measured by DTA to be 624 ° C. 5 The second to fifth layers of the film were subjected to the above method and the total thickness was 2000 to 4000 A. After the film of the last layer is completed, the tempering process is completed by a rapid temperature rising device under a flowing oxygen atmosphere at a temperature ranging from 600 to 800 ° C for 10-20 minutes. The fire-completed BST film is vapor-deposited with white gold through a shadow mask, and the upper surface of the fixed area is plated to make it a MIM structure. Using the measuring instrument HP 4284A, the measuring frequency is 100 kHz, and the voltage range is -15V~15V. 15 The measurement results have a dielectric constant of 270 (platinum) and 330 (gold). The dielectric loss of the measurement is 0.02 (platinum) and 0.015 (gold). The measurement results have a modulation capacity of 26 to 33%. Example 2: Preparation of BST film, the composition ratio of which is Ba〇.5Sr〇.5Ti03. Preparation The sol-gel solution is coated on a substrate having a Si/SiO 2 /Ti/Pt structure using a spin coater at a rotation rate of 500-3000 rpm. When the coater 25 is rotated, the volatile solvent will be Loss by evaporation. 18 1288787 The first layer was first coated with a propionic acid/2-methoxyethanol system; the second layer was filmed with an N,N-dimethylethanolamine/2-methoxyethanol system. After each layer is coated, the film is heated to 12〇-35 (rc, time 5-10 minutes by the heating plate to complete the drying process; then by the rapid temperature riser, the temperature is 500-700 ° C, the time is 5_1〇 Minutes, and the calcination process is completed under an oxygen atmosphere. The third to tenth layers of the film follow the above method and use N, N_:

甲基乙醇胺/2-甲氧基乙醇溶劑系統,使總厚度達到2〇〇〇〜 4000 A之厚度。 當完成最後一層之薄膜後,經由快速昇溫裝置,在流 動之氧氣氣氛下,溫度範圍為6〇〇-8〇〇它,時間為1〇_2〇分 鐘,完成回火程序。 2 ·電性量測 回火完成之BST薄膜,經由蔽蔭遮罩蒸鍍白金,鍍上 15固定面積之上電極,使其成為MIM結構。 使用量測儀HP 4284A,量測頻率為100 kHz,電壓範 圍為-15V〜15V。The methylethanolamine/2-methoxyethanol solvent system has a total thickness of 2 〇〇〇 to 4000 Å. After the film of the last layer is completed, the temperature is in the range of 6 〇〇 8 经由 in a flowing oxygen atmosphere via a rapid temperature rising device for 1 〇 2 〇 minutes to complete the tempering process. 2·Electrical measurement The tempered BST film was vapor-deposited with white gold through a shadow mask and plated with 15 fixed-area electrodes to make it a MIM structure. Using the measuring instrument HP 4284A, the measuring frequency is 100 kHz and the voltage range is -15V~15V.

量測結果介電常數為525 量測結果介電損耗為〇.〇7。 20 量測結果調變能力為45 %。 實施例三、製備BST薄膜,其成分比為BaQ5Sr()5Ti〇3。 25 1.薄膜製備 19 Ϊ288787 使用方疋轉塗佈機,旋轉速率為5〇〇-3刪啊,將溶膠_ 赫膠溶液塗佈在具有Si/Si(VTi/Pt結構基材上。#塗佈機旋 轉時,易揮發的溶劑將藉由蒸發而損失。 第—層先以丙酸/2_甲氧基乙醇系統鍍製薄膜;第二 -以:’N-一甲基乙醇胺/3_甲氧基丁醇系統產生薄膜。The measured dielectric constant is 525. The dielectric loss is 〇.〇7. 20 The measurement results have a modulation capacity of 45%. Example 3, a BST film was prepared, and its composition ratio was BaQ5Sr()5Ti〇3. 25 1. Film preparation 19 Ϊ288787 Using a square twist coater, the rotation rate is 5〇〇-3, and the sol_heg solution is coated on a substrate with Si/Si (VTi/Pt structure. #涂涂When the cloth machine rotates, the volatile solvent will be lost by evaporation. The first layer is first coated with propionic acid/2-methoxyethanol system; the second-by: 'N-methylethanolamine/3_ The methoxybutanol system produces a film.

士母層塗佈凡成,薄膜藉由加熱板加熱至12〇_350。〇, :間為5-10分鐘’完成乾燥程序;然後藉由快速昇溫裝 〜’溫度在500-70(TC,時間為5_1〇分鐘,並在氧氣氣氛下 70成鍛燒程序。 10 15 第二層至第十層薄膜遵循上述之方法,重複交錯使用 丙酉文/2-甲氧基乙醇系統與N,N_二甲基乙醇胺/3_甲氧基丁 醇溶劑系統,使總厚度達到2〇〇〇〜4〇〇〇人之厚度。 當完成最後一層之薄膜後,經由快速昇溫裝置,在流 t之氧氣氣氛下,溫度範圍為600-800〇c,時間為1〇_2〇分 鐘,完成回火程序。 2 ·電性量測The mother layer is coated and the film is heated to 12 〇 _350 by a heating plate. 〇, : between 5-10 minutes 'complete the drying procedure; then by rapid heating to install ~ 'temperature at 500-70 (TC, time is 5_1 〇 minutes, and 70% calcination in an oxygen atmosphere. 10 15 The second to tenth layers of the film follow the above method, and the interstitial use of the Cyanwen/2-methoxyethanol system and the N,N-dimethylethanolamine/3_methoxybutanol solvent system are repeated to achieve a total thickness of The thickness of 2〇〇〇~4〇〇〇. When the film of the last layer is completed, the temperature range is 600-800〇c and the time is 1〇_2〇 under the oxygen atmosphere of the flow t through the rapid heating device. Minutes, complete the tempering process. 2 · Electrical measurement

回火完成之BST薄膜,經由蔽蔭遮罩蒸鍍白金,鍍上 固定面積之上電極,使其成為MIM結構。 使用量測儀HP 4284A,量測頻率為100 kHz,電壓範 量測結果介電常數為567。 量測結果介電損耗為0.004。 量測結果調變能力為50%。 20 25 1288787 實施例四、製備BSTT薄..膜,並使其成分比為The tempered BST film is vapor-deposited with white gold through a shadow mask, and the upper surface of the fixed area is plated to make it a MIM structure. Using the measuring instrument HP 4284A, the measuring frequency is 100 kHz, and the dielectric constant is 567. The measured dielectric loss was 0.004. The measurement result has a modulation capacity of 50%. 20 25 1288787 Example 4, preparation of BSTT thin film, and its composition ratio is

Ba〇.5Sr〇.5Ti0.98Ta〇.〇2〇3 〇 1·先驅體製備 將氣化组(5 g)溶於異丙醇,製備成濃度6.5X10·4 mol/g 5 的溶液。 將異丙醇鈦(8·93 g)與先前之氣化钽溶液(〇92g) /合於N,N_二甲基乙醇胺(6〇 g),以形成鈦先驅體溶液。 將金屬鋇(2.2 g)及金屬锶(L4g)加入至鈦先驅體 洛液’待鋇、勰溶解後,加入N,N•二甲基乙酵胺,以形成 馨 10 Ο·1 Μ鈦酸錄鋇溶膠_凝膠溶液。 加入2-甲氧基乙醇( 320 g)至鈦酸勰鋇溶膠-凝膠溶 液以改善溶膠-凝膠溶液之旋轉塗佈特性並增加濕潤度,。 2.薄膜製備 使用旋轉塗佈機,旋轉速率為5〇〇-3〇〇〇rpm,將溶膠· 15凝膠溶液塗佈在具有Si/Si02/Ti/Pt結構基材上。當塗佈機 旋轉時,易揮發的溶劑將藉由蒸發而損失。 塗佈το成’薄膜藉由加熱板加熱至12〇_35〇〇c,時間為 5-10分鐘,完成乾燥程序;然後藉由快速昇溫裝置,溫度 在500-7GGC ’間為5-1G分鐘’並在氧氣氣氛下完成锻燒 20 程序。 第二層至第十層薄媒遵循上述之方法,並使總厚度達 到2000〜4000 A之厚度。 21 1288787 當完成最後一層之薄膜後,經由快速昇溫裝置,在流 動之氧氣氣氛下,溫度範圍為600-70(TC,時間為10-20分 鐘,完成回火程序。 3·電性量測 回火完成之BSTT薄膜,經由蔽蔭遮罩蒸鍍白金,鍍上 固疋面積之上電極,使其成為MIM結構。 使用量測儀HP 4284A,量測頻率為1〇〇 kHz,電壓範 圍為-15V〜15V。 量測結果介電常數為500。 參 量測結果介電損耗為〇.〇3。 量測結果調變能力為38%。 從上述實施例中可以得知,本發明所提供之多元金屬 氧化物及其製備方法,可以提供較佳的調變能力、較低的 15介電損耗,深具進步性與產業利用性。 20 上述實施例僅係為了 主張之權利範圍自應以申 於上述實施例。 方便說明而舉例而已,本發明所 請專利範圍所述為準,而非僅限Ba〇.5Sr〇.5Ti0.98Ta〇.〇2〇3 〇1·Precursor preparation The gasification group (5 g) was dissolved in isopropanol to prepare a solution having a concentration of 6.5×10·4 mol/g 5 . Titanium isopropoxide (8·93 g) was combined with a previously vaporized hydrazine solution (〇92 g) / N,N-dimethylethanolamine (6 〇 g) to form a titanium precursor solution. Metal ruthenium (2.2 g) and metal ruthenium (L4g) are added to the titanium precursor solution. After the ruthenium and ruthenium are dissolved, N,N•dimethylacetamide is added to form sensitized 10 Ο·1 Μtarthotanic acid. Record the sol-gel solution. 2-methoxyethanol (320 g) was added to the barium titanate sol-gel solution to improve the spin coating characteristics of the sol-gel solution and increase the wettability. 2. Film preparation A sol 15 gel solution was coated on a substrate having a Si/SiO 2 /Ti/Pt structure using a spin coater at a rotation rate of 5 〇〇 to 3 rpm. When the coater is rotated, the volatile solvent will be lost by evaporation. Coating the film into a film by heating the plate to 12 〇 _35 〇〇 c for 5-10 minutes to complete the drying process; then using a rapid temperature riser, the temperature is between 5-1 G minutes between 500-7 GGC ' 'And complete the calcination 20 procedure in an oxygen atmosphere. The second to tenth layers of the thinner follow the above method and have a total thickness of up to 2000 to 4000 Å. 21 1288787 After completing the film of the last layer, through the rapid heating device, under the flowing oxygen atmosphere, the temperature range is 600-70 (TC, time is 10-20 minutes, the tempering process is completed. 3. Electrical measurement back The fire-completed BSTT film is vapor-deposited with white gold through a shadow mask, and is plated with an electrode above the solid area to make it a MIM structure. Using a measuring instrument HP 4284A, the measuring frequency is 1 〇〇 kHz, and the voltage range is - 15V~15V. The measurement result has a dielectric constant of 500. The dielectric loss of the measurement result is 〇.〇3. The measurement result has a modulation capacity of 38%. It can be known from the above embodiments that the present invention provides The multi-metal oxide and its preparation method can provide better modulation capability, lower 15 dielectric loss, and deep progress and industrial utilization. 20 The above embodiments are only for the purpose of claiming In the above embodiments, for convenience of description, the scope of the patent application of the present invention shall prevail, and not limited thereto.

22twenty two

Claims (1)

1288787 拾、申請專利範圍: 1. 一種多元金屬氧化物,其係為如式⑴之結構: MlUxM2xM3UyM4y03 (I) 5 其中,Μ1,M2係分別獨立地選自一群組包括:弼(calcium)、 鋇(barium)、錄(strontium)、麵(bismuth)及錯(lead); M3,M4係分別獨立地選自一群組包括:鈦(titanium)、鉍 (bismuth)、編(cadmium)、錯(lead)、组(tantalum)、铪 10 (hafnium) 鎢(tungsten) 、銳(niobium) 、錯 (zirconium) 、錫(tin) 、(manganese)、鐵(iron)、鏡 (yttrium) 、 M (lanthanum) 、録(antimony) 、鉻 (chromium)、及銘(thallium) ; 0&lt;χ&lt;1 ;且 0 S y $ 1。 2. 如申請專利範圍第1項所述之多元金屬氧化物,其 15 中該多元金屬氧化物係為Bai.xSrxTin-yTayC^。 3. 如申請專利範圍第2項所述之多元金屬氧化物,其 中 0·3€χ$0·7,且 O.OlgySO.l。 4. 一種多元金屬氧化物溶液之製備方法,該金屬氧化 物係為如式(I)之化合物: 20 Μ\.χΜ\Μ\.γΜ\〇3 (I) 該方法包括: (a)將Μ3、Μ4之醇鹽溶解於一有機溶劑中,形成一 25 先驅液,其中Μ3、M4係分別獨立地選自一由鈦 1288787 (titanium)、缺(bismuth)、編(cadmium)、鉛(lead)、组 (tantalum)、給(hafnium)、嫣(tungsten)、鈮(niobium)、 It (zirconium)、錫(tin)、猛(manganese)、鐵(iron)、鏡 (yttrium) 、鑭(lanthanum) 、錄(antimony) 、鉻 5 (chromium)、及銘(thallium)組成之群組;以及 (b) 將Μ1、M2溶解於該先驅液中,形成一多 元金屬氧化物溶液,其中Μ1、Μ2係分別獨立地選 自一由:4弓(calcium)、鎖(barium)、錄(strontium)、银 (bismuth)及鉛(lead) 組成之群組。 10 5·如申請專利範圍第4項所述之製備方法,其中該步 驟(a)中之該有機溶劑係為N,N-二曱基乙醇胺、乙醇 胺、N-甲基乙醇胺、異丙醇胺、3-氨基-2_ 丁醇及 2-氨基-2-甲基丙醇。 6. 如申請專利範圍第4項所述之製備方法,其中更包 15 括一步驟(c): (c) 加入一溶劑添加劑至該多元金屬氧化物溶液;其 中該溶劑添加劑係選自一群組包括:2-甲氧基乙醇及3-曱氧基-1-丁醇。 7. 如申請專利範圍第4項所述之製備方法,其中該多 20 元金屬氧化物係為Bai.xSrxTibyTayC^。 8. 如申請專利範圍第7項所述之製備方法,其中0.3 S xS 0.7,且 0·01 $ 0_1 〇 9. 一種介電薄膜之製造方法,該介電薄膜係包含有一 如式(I)之多元金屬氧化物: 1288787 Μ\.χΜ\Μ\.γΜ\〇3 (I) 其中,Μ、Μ2係分別獨立地選自一群組包括:鈣 (calcium)、鋇(barium)、錯(strontium)、祕(bismuth)及 5 鉛(lead) ; M3,M4係分別獨立地選自一群組包括:鈦 (titanium)、祕(bismuth)、編(cadmium)、船(lead)、艇 (tantalum)、給(hafnium)、鑛(tungsten)、鈮(niobium)、 錄(zirconium)、錫(tin)、猛(manganese)、鐵(iron)、鐘 (yttrium) 、 M (lanthanum) 、錄(antimony) 、鉻 10 (chromium)、及銘(thallium) ; 0&lt;χ&lt;1 ;且 0 S y $ 1 ;該製 備方法包括: (1) 提供一多元金屬氧化物醋酸鹽溶液; (2) 提供一多元金屬氧化物醇胺溶液; (3) 提供一基材,該基材係由矽、二氧化矽、鈦 15 或鉑所構成; (4) 塗佈並加熱至少一層多元金屬氧化物醋酸鹽 薄膜於該基材之表面,其中該多元金屬氧化物醋酸鹽薄膜 係由該多元機屬氧化物醋酸鹽溶液所構成;以及 (5) 塗佈並加熱至少一層該多元金屬氧化物醇胺 20 薄膜於該多元金屬氧化物醋酸鹽薄膜之上,其中該多元金 屬氧化物醇胺薄膜係由該多元金屬氧化物醇胺溶液所構 成。 10.如申請專利範圍第9項所述之製造方法,其中該多 元金屬氧化物醋酸溶液係由以下步驟製備: 1288787 (1A)將M,M之醇鹽溶解於甲氧基乙醇中,形成〆 M3-M4先驅溶液; (1-B)將M!,M2之贈酸gg、、交达4 : 夂,/合液加入丙酸中,形成Μ 先驅溶液;以及 5 (1 C)混曰該Μ -Μ先驅溶液與該Μι_Μ2先驅溶液,得 到該多元金屬氧化物醋酸鹽溶液。 11 ·如申明專利範圍第9項所述之製造方法,其中該多 元金屬氧化物醇胺溶液係由以下步驟製借: 10 (2-Α)將Μ3、Μ4之醇鹽溶解於一有機溶劑中,形成一 Μ、Μ4先驅液,且該有機溶劑係選自一由:ν,ν•二甲 基乙醇胺、乙醇胺、Ν_曱基乙醇胺、異丙醇胺、 3-氨基-2-丁醇及2-氨基_2_甲基丙酵組成之群組; (2-Β)將Μ1、Μ2溶解於該μ3·Μ4先驅液中,形 成一多元金屬氧化物醇胺溶液;以及 15 (2 - C )加入一溶劑添加劑至該多元金屬氧化物溶 液;其中該溶劑添加劑係選自一群組包栝:2-甲氧基乙 醇及3-甲氧基-1-丁醇、 12·如申請專利範圍第10項所述之製造方法,其中該多 元金屬氧化物醋酸鹽溶液中之多元金屬氧化物係為 20 BahSrxIVyTayOs,其中 0·3$χ$0.7,且 〇.〇l$y《 0·1 〇 〜 13.如申請專利範圍第1 1項所述之製造方法, 其中該多元金屬氧化物醇胺溶液中之多元金屬氣 26 1288787 化物係為 BakSrxTibyTayC^,其中 0·3$χ$0.7,且 0·01 $ y S Ο · 1 0 14.如申請專利範圍第9項所述之製造方法,其中該多 元金屬氧化物醋酸薄膜與該多元金屬氧化物醇胺薄膜之總 5 厚度係介於2000-4000埃(Angstrom)之間。1288787 Pickup, patent application scope: 1. A multi-metal oxide, which is of the structure of formula (1): MlUxM2xM3UyM4y03 (I) 5 wherein, Μ1, M2 are independently selected from a group including: ) (calcium), Barium, strontium, bismuth, and lead; M3, M4 are independently selected from the group consisting of: titanium, bismuth, cadmium, and error. Lead, tantalum, hafnium, tungsten, niobium, zirconium, tin, manganese, iron, yttrium, M Lanthanum), antimony, chromium, and thallium; 0&lt;χ&lt;1; and 0 S y $ 1. 2. The multi-metal oxide according to claim 1, wherein the multi-metal oxide is Bai.xSrxTin-yTayC^. 3. For the multi-metal oxides described in the second paragraph of the patent application, 0. 3 € χ $0·7, and O.OlgySO.l. 4. A method of preparing a multi-metal oxide solution, the metal oxide being a compound of formula (I): 20 Μ\.χΜ\Μ\.γΜ\〇3 (I) The method comprises: (a) The alkoxides of Μ3 and Μ4 are dissolved in an organic solvent to form a 25 precursor liquid, wherein Μ3 and M4 are independently selected from titanium 1288787 (titanium), bismuth, cadmium, lead (lead). ), group (tantalum), give (hafnium), tungsten, niobium, It (zirconium), tin (tin), mamantic, iron, yttrium, lanthanum a group consisting of: antimony, chromium 5, and thallium; and (b) dissolving Μ1, M2 in the precursor liquid to form a multi-metal oxide solution, wherein Μ1 The Μ2 lines are each independently selected from the group consisting of: 4 calcium, barium, strontium, bismuth, and lead. The preparation method of claim 4, wherein the organic solvent in the step (a) is N,N-dimercaptoethanolamine, ethanolamine, N-methylethanolamine, isopropanolamine , 3-amino-2-butanol and 2-amino-2-methylpropanol. 6. The preparation method according to claim 4, wherein further comprising a step (c): (c) adding a solvent additive to the multi-metal oxide solution; wherein the solvent additive is selected from the group consisting of The group includes: 2-methoxyethanol and 3-decyloxy-1-butanol. 7. The preparation method according to claim 4, wherein the multi-element metal oxide is Bai.xSrxTibyTayC^. 8. The preparation method according to claim 7, wherein 0.3 S xS 0.7, and 0·01 $ 0_1 〇9. A method for producing a dielectric film, the dielectric film comprising a formula (I) Polymetallic oxides: 1288787 Μ\.χΜ\Μ\.γΜ\〇3 (I) wherein Μ and Μ2 are independently selected from the group consisting of: calcium, barium, and Strontium), bismuth, and 5 lead; M3, M4 are independently selected from the group consisting of: titanium, bismuth, cadmium, lead, and boat ( Tantalum), hafnium, tungsten, niobium, zirconium, tin, manganese, iron, yttrium, M (lanthanum), recorded ( Antimony), chromium 10 (chromium), and imal (thallium); 0&lt;χ&lt;1; and 0 S y $ 1 ; the preparation method comprises: (1) providing a multi-metal oxide acetate solution; (2) Providing a multi-metal oxide alkanolamine solution; (3) providing a substrate consisting of ruthenium, ruthenium dioxide, titanium 15 or platinum; (4) coating and heating to An additional layer of a multi-metal oxide acetate film on the surface of the substrate, wherein the multi-metal oxide acetate film is composed of the multi-component oxide acetate solution; and (5) coating and heating at least one layer A multi-metal oxide alkanolamine 20 film is formed on the multi-metal oxide acetate film, wherein the multi-metal oxide alkanol film is composed of the multi-metal oxide alkanolamine solution. 10. The manufacturing method according to claim 9, wherein the multi-metal oxide acetic acid solution is prepared by the following steps: 1288787 (1A) Dissolving M, M alkoxide in methoxyethanol to form hydrazine M3-M4 precursor solution; (1-B) M!, M2 acid gg, 4: 夂, / liquid into propionic acid, forming Μ precursor solution; and 5 (1 C) mixing The Μ-Μ precursor solution and the Μι_Μ2 precursor solution are used to obtain the multi-metal oxide acetate solution. The manufacturing method according to claim 9, wherein the multi-metal oxide alkanolamine solution is obtained by the following steps: 10 (2-Α) dissolving the alkoxides of cerium 3 and cerium 4 in an organic solvent Forming a hydrazine, Μ4 precursor solution, and the organic solvent is selected from the group consisting of: ν, ν dimethylethanolamine, ethanolamine, Ν-mercaptoethanolamine, isopropanolamine, 3-amino-2-butanol and a group consisting of 2-amino-2-methylpropanol; (2-Β) dissolving Μ1, Μ2 in the precursor solution of μ3·Μ4 to form a multi-metal oxide alkanolamine solution; and 15 (2 - C) adding a solvent additive to the multi-metal oxide solution; wherein the solvent additive is selected from the group consisting of 2-methoxyethanol and 3-methoxy-1-butanol, 12. The method of claim 10, wherein the multi-metal oxide in the multi-metal oxide acetate solution is 20 BahSrxIVyTayOs, wherein 0·3$χ$0.7, and 〇.〇l$y“0·1 〇 </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; The genus 26 1288787 is a BakSrxTibyTayC^, wherein 0·3$χ$0.7, and 0·01 $ y S Ο · 1 0 14. The manufacturing method according to claim 9, wherein the multi-metal oxide The total thickness of the acetic acid film and the multi-metal oxide anlkoxide film is between 2,000 and 4,000 angstroms (Angstrom). 2727
TW92137757A 2003-12-31 2003-12-31 A metal-oxide and the preparation method of the same TWI288787B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92137757A TWI288787B (en) 2003-12-31 2003-12-31 A metal-oxide and the preparation method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92137757A TWI288787B (en) 2003-12-31 2003-12-31 A metal-oxide and the preparation method of the same

Publications (2)

Publication Number Publication Date
TW200521276A TW200521276A (en) 2005-07-01
TWI288787B true TWI288787B (en) 2007-10-21

Family

ID=39228447

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92137757A TWI288787B (en) 2003-12-31 2003-12-31 A metal-oxide and the preparation method of the same

Country Status (1)

Country Link
TW (1) TWI288787B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098852A1 (en) * 2015-12-11 2017-06-15 国立大学法人北陸先端科学技術大学院大学 Oxide dielectric body, method for producing same, solid-state electronic device and method for manufacturing solid-state electronic device

Also Published As

Publication number Publication date
TW200521276A (en) 2005-07-01

Similar Documents

Publication Publication Date Title
JP4905620B2 (en) Ceramics and manufacturing method thereof, semiconductor device, actuator, optical modulator, ultrasonic sensor
WO2005102958A1 (en) Composition for thin film capacitive device, insulating film with high dielectric constant, thin film capacitive device, thin-film laminated capacitor and process for producing thin film capacitive device
CN103130504A (en) Composition for forming ferroelectric thin film, method for forming ferroelectric thin film, ferroelectric thin film, and complex electronic componen
JP2014144904A (en) Niobate dielectric composition and nanosheet thin film using the same
JP2002275390A (en) Crystalline gel dispersing coating solution, and method for forming thin film using crystalline gel dispersing coating solution
CN101205139A (en) Method for preparing micro-wave dielectric adjustable strontium bismuth titanate film
TWI288787B (en) A metal-oxide and the preparation method of the same
JPH08111411A (en) Manufacturing for ferroelectric thin film
JP4411483B2 (en) Method for producing barium titanate powder
JP2007184622A (en) Method of fabricating high capacitance thin film capacitor
JP3457892B2 (en) Dielectric thin film and ceramic capacitor
JP2001026421A (en) Formation of crystalline thin film by sol/gel method
JP6970702B2 (en) Method for manufacturing ferroelectric ceramics
JP3681844B2 (en) Dielectric thin film and ceramic capacitor
CN1876600A (en) Bismuth zinc niobate / barium strontium titanate composite dielectric adjustable thick film preparation method
JP3389370B2 (en) Ceramic capacitors
JP3652129B2 (en) Dielectric thin film and ceramic capacitor
JPH11273989A (en) Dielectric thin film and ceramic capacitor
JP2004253294A (en) Dielectric thin film, thin film capacitor, and electronic circuitry component using it
CN101307497B (en) Composite ferro-electric thin film for microwave adjustable device and method for making same
JPH1045469A (en) Dielectric thin film and ceramic capacitor
JP3631570B2 (en) Dielectric thin film and ceramic capacitor
JPH11103022A (en) Thin dielectric film and manufacture thereof
JP3120696B2 (en) Sr-Bi-Ta-O based dielectric, dielectric thin film, thin film forming composition and thin film forming method
Wang et al. Electrical properties of Pt/SrBi2Ta2O9/Bi4Ti3O12/p-Si heterostructure prepared by sol-gel processing

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees