1286727 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種顯示器之驅動方法,詳言之,係有们 於一種顯示器之資料驅動系統及其方法,可以在空間或日^ 間上產生驅動電壓偏移量相互抵消之效果。 【先前技術】 參考圖1所示,一顯示面板11 (以液晶顯示面板為例說 明)係由多個資料驅動系統1〇(圖中以兩個為例)進行驅動 以顯示影像。每一個資料驅動系統10自一參考電壓產生器 (圖未顯示)取得多個參考電壓VRi〜VRm並在多個通道 (channelkh^chn上接收像素數值,以將像素數值轉換為類 比式的驅動電壓,並依據掃描時序及資料極性的反轉時序 平行地將這些通道上的驅動電壓送至顯示面板丨丨上相對 的一組資料線。每一個資料驅動系統1〇具有一伽瑪電壓產 生器101、一數位類比轉換器(DAC)103、一輸出緩衝器1〇5 及一切換器107。 伽瑪電壓產生器ιοί包括了多個運算放大器〇Pi〜〇Pm& 電阻RcRi。每一個運算放大器〇Pl〜〇Pm係做為每一個參 考電壓VRcVRm之輸入緩衝器,以避免參考電壓受到負載 之影響而產生變化。經由緩衝器接收、輸出後之參考電壓 再經由電阻R^Ri進行分壓而產生兩組具有正、負資料極 性之伽瑪(gamma)電壓,如vG+〜V:以及V〇_〜V63_。這些伽 瑪電壓再被輸入至數位類比轉換器103中。數位類比轉換 器103會為每一通道依據其像素數值及資料極性,輸出兩 TW1881F(奇景).d〇C 5 1286727 組伽瑪電壓中之一相對的伽瑪電壓。由數位類比轉換器i〇3 輸出之電壓再經由輸出緩衝器105輸出成為驅動電壓。切 換器107之作用在於配合資料極性的反轉時序,進行資料 驅動系統之輸出通道與面板資料線間的連接切換,以達成 畫面反轉(frame inversion)、列反轉(r〇w inversion)、行 反轉(column inversion)、點反轉(dot inversion)或二條 線點反轉(two dot lines inversion )等等的驅動模式。 然而’由於運算放大器的輸出天生具有正或負極性的偏 移1 (offset) ’因此伽瑪電壓產生器輸出的伽瑪電壓中也會 產生相同極性的偏移量,進而使得最後產生的驅動電壓也 具有同樣極性的偏移量。再者,由於每個運算放大器輸出 的偏移量不會相同,且每個資料驅動系統中的伽瑪電壓產 生器各自使用一組運算放大器,因此每個模組所產生之驅 動電壓也會具有不同的偏移量。於是,在面板上由不同資 料驅動系統驅動之垂直帶狀區域間,就會因為各模組的驅 動電壓偏移量不同而產生明顯的亮度或色彩差異,造成所 謂的「帶狀雜紋」(band mura)。 因此,有必要提供一種創新且具進步性的資料驅動系統 及其方法,以解決上述問題。 【發明内容】 本發明之目的在於提供一種資料驅動系統及方法,用以 ,動—顯示面板’該資料驅動系統包括:一伽瑪電壓產生 盗及-數位類比轉換器。該伽瑪電壓產生器用以產生複數 個伽瑪電壓。該數位類比轉換器接收該些伽瑪電壓以及一 TW1881F(奇景).doc 6 1286727 第-像素數值與-第:像素數值,並將每—第_像素數值 與第二像素數值轉換為該些伽瑪電壓中之一相對伽瑪電 壓。其中,當該數位類比轉換器轉換該第一像素數值時, 該伽瑪電壓產生器在該些伽瑪電壓中產生一第一極性偏移 量,而當該數位類比轉換器轉換該第二像素數值時,該伽 瑪電壓產生器在該些伽瑪電壓中產生一第二極性偏移量。 因此,本發明之該資料驅動系統係週期性地切換該伽瑪 電壓產生器之第一極性偏移量及第二極性偏移量,使得驅 動電壓中的偏移量在空間及時間上產生正、負相抵的效 果。由於每一個資料驅動系統的驅動電壓偏移量被消除, 因而使得帶狀雜紋不會產生。 【實施方式】 請參閱圖2,其顯示本發明一實施例中之資料驅動系統 20之示思圖。為了說明之簡潔,圖1與圖2中相同之元件 係使用相同之符號。資料驅動系統20包括一伽瑪電壓產生 器201、數位類比轉換器1〇3、輸出緩衝器1〇5及切換器 107。伽瑪電壓產生器201則包括了多個截波式(ch〇pper) 運算放大器coPeCOPm及多個電阻Rl〜Ri。由圖2可知, 資料驅動系統20與習知之資料驅動系統最大之不同在 於伽瑪電壓產生器201使用了載波式運算放大器 COPi〜COPm做為參考電壓VURm之輸入緩衝器之用。 以下將特別說明截波式運算放大器之結構及操作。 參考圖3A,每一截波式運算放大器cOP^coPm自一輸 入知Vin接收參考電壓並由一輸出端v〇ut輪出。其包括電 TW1881F(奇景).doc 7 1286727 晶體M1〜M4、電容c、—電流源cs及開關S1、S2。電晶 體MS之源極連接接收__正供應電壓。電晶體…之問㈣ 電晶體M3之閉極相連,其源極連接接收該正供應電壓。1286727 IX. Description of the Invention: [Technical Field] The present invention relates to a driving method for a display, and more particularly to a data driving system and method thereof for generating a display, which can be generated in space or on a daily basis The effect of the drive voltage offsets cancel each other out. [Prior Art] Referring to Fig. 1, a display panel 11 (which is exemplified by a liquid crystal display panel) is driven by a plurality of data driving systems 1 (two in the figure) to display an image. Each data driving system 10 obtains a plurality of reference voltages VRi VRmm from a reference voltage generator (not shown) and receives pixel values on a plurality of channels (channelkh^chn) to convert pixel values into analog driving voltages. And driving the driving voltages on the channels to the opposite group of data lines on the display panel in parallel according to the scanning timing and the inversion timing of the data polarity. Each data driving system 1 has a gamma voltage generator 101. a digital analog converter (DAC) 103, an output buffer 1〇5 and a switch 107. The gamma voltage generator ιοί includes a plurality of operational amplifiers 〇Pi~〇Pm& RcRi. Each operational amplifier〇 Pl~〇Pm is used as an input buffer for each reference voltage VRcVRm to prevent the reference voltage from being affected by the load. The reference voltage received and outputted via the buffer is then divided by the resistor R^Ri. Two sets of gamma voltages with positive and negative data polarities, such as vG+~V: and V〇_~V63_. These gamma voltages are then input to the digital analog converter. In 103, the digital analog converter 103 outputs a gamma voltage corresponding to one of the two TW1881F (deception).d〇C 5 1286727 group gamma voltages for each channel according to its pixel value and data polarity. The voltage output from the converter i〇3 is output as a driving voltage via the output buffer 105. The switch 107 functions to switch the connection between the output channel of the data driving system and the panel data line in accordance with the inversion timing of the data polarity. Drive for frame inversion, column inversion, column inversion, dot inversion, or two dot lines inversion Mode. However, 'because the output of the op amp is inherently positive or negative offset 1 (offset)', the gamma voltage output from the gamma voltage generator also produces an offset of the same polarity, which in turn results in the resulting The drive voltage also has the same polarity offset. Furthermore, since the offset of each op amp output is not the same, and the gamma in each data drive system The voltage generators each use a set of operational amplifiers, so the driving voltage generated by each module also has a different offset. Therefore, between the vertical strips on the panel driven by different data driving systems, Each module has a different driving voltage offset and produces a distinct brightness or color difference, resulting in a so-called "band mura". Therefore, it is necessary to provide an innovative and progressive data drive system and The present invention aims to provide a data driving system and method for the dynamic-display panel 'the data driving system includes: a gamma voltage generating stolen-digital analog converter . The gamma voltage generator is operative to generate a plurality of gamma voltages. The digital analog converter receives the gamma voltage and a TW1881F (doct).doc 6 1286727 first-pixel value and a -: pixel value, and converts each of the -th pixel value and the second pixel value into the One of the gamma voltages is relative to the gamma voltage. Wherein, when the digital analog converter converts the first pixel value, the gamma voltage generator generates a first polarity offset in the gamma voltages, and when the digital analog converter converts the second pixel In the case of a value, the gamma voltage generator generates a second polarity offset in the gamma voltages. Therefore, the data driving system of the present invention periodically switches the first polarity offset and the second polarity offset of the gamma voltage generator such that the offset in the driving voltage is positive in space and time. The effect of negative correlation. Since the driving voltage offset of each data driving system is eliminated, band-like streaks are not generated. [Embodiment] Please refer to Fig. 2, which shows a schematic diagram of a data driving system 20 in an embodiment of the present invention. For the sake of brevity, the same elements in Fig. 1 and Fig. 2 use the same symbols. The data driving system 20 includes a gamma voltage generator 201, a digital analog converter 1〇3, an output buffer 1〇5, and a switch 107. The gamma voltage generator 201 includes a plurality of c〇pper operational amplifiers coPeCOPm and a plurality of resistors R1 to Ri. As can be seen from Fig. 2, the data driving system 20 is different from the conventional data driving system in that the gamma voltage generator 201 uses the carrier operational amplifiers COPi to COpm as input buffers for the reference voltage VURm. The structure and operation of the chopper type operational amplifier will be specifically described below. Referring to Fig. 3A, each of the chopper type operational amplifiers cOP^coPm receives a reference voltage from an input Vin and is rotated by an output terminal v〇ut. It includes electric TW1881F (奇景).doc 7 1286727 crystal M1~M4, capacitor c, current source cs and switches S1, S2. The source connection of the transistor MS receives the __ positive supply voltage. The transistor (4) The closed end of the transistor M3 is connected, and its source is connected to receive the positive supply voltage.
電晶體Ml之沒極連接至雷$辦A 丧冤日日體M3之汲極。電晶體M2之 没極與電晶體M4之没極相連,其源極則與電晶體mi之源 極相連。電流源CS與電晶體⑷及⑽之源極連接。電容 c則連接於開關81與輸出端v〇ut之間。開關81及以各 具有兩種操作狀態’以下將分別以圖3A及圖叩說明切換 開關S1及S2之操作狀態。 如圖3A所示,開關S1將電晶體%3及M4之閘極連接 至電晶體M4之汲極,並將電晶體M3之汲極連接至電容 C,而開關S2將電晶體M2之閘極連接至輸出端v〇ut,並 將電晶體Ml之閘極連接至輸入端Vin。如此,將使得截波 式運算放大器在輸出端Vout會產生一正偏移量,即輸出電 壓(Vout)等於輸入電壓(Vin)加正偏移量(v〇s),其等 效電路如圖4A所示。因此,當所有截波式運算放大器 COP^COPm中的開關S1及S2處於第一狀態時,經過電阻The pole of the transistor Ml is connected to the thunder of the A. The gate of the transistor M2 is connected to the pole of the transistor M4, and its source is connected to the source of the transistor mi. The current source CS is connected to the sources of the transistors (4) and (10). Capacitor c is connected between switch 81 and output terminal v〇ut. The switch 81 and each of the two operating states are described below. The operation states of the switches S1 and S2 will be described with reference to Fig. 3A and Fig. 3, respectively. As shown in FIG. 3A, the switch S1 connects the gates of the transistors %3 and M4 to the drain of the transistor M4, and connects the drain of the transistor M3 to the capacitor C, and the switch S2 connects the gate of the transistor M2. It is connected to the output terminal v〇ut and connects the gate of the transistor M1 to the input terminal Vin. In this way, the cut-off operational amplifier will generate a positive offset at the output terminal Vout, that is, the output voltage (Vout) is equal to the input voltage (Vin) plus the positive offset (v〇s), and its equivalent circuit is as shown in the figure. 4A is shown. Therefore, when all the switches S1 and S2 in the OPERATION amp COP^COPm are in the first state, the resistor
Ri〜Ri分壓而產生的兩組正、負資料極性的伽瑪電壓中便會 出現一正偏移量。 如圖3B所示,開關S1將電晶體m3及M4之閘極連接 至電晶體M3之汲極,並將電晶體M4之汲極連接至電容 C,而開關S2將電晶體M2之閘極連接至輸入端Vin,並 將電晶體Ml之閘極連接至輸出端v〇ut。如此,將使得截 波式運算放大器在輸出端Vout會產生一負偏移量,即輸出 TW1881F(奇景).doc 8 1286727 電壓(Vout)等於輸入電壓(vin)加負偏移量(_v〇s), 其等效電路如圖4B所示。因此,當所有截波式運算放大器 COPiKCOPm中的開關S1及S2處於第二狀態時,經過電阻A positive offset occurs in the gamma voltages of the two sets of positive and negative data polarities generated by the division of Ri~Ri. As shown in FIG. 3B, the switch S1 connects the gates of the transistors m3 and M4 to the drain of the transistor M3, and connects the drain of the transistor M4 to the capacitor C, and the switch S2 connects the gate of the transistor M2. To the input terminal Vin, and connect the gate of the transistor M1 to the output terminal v〇ut. In this way, the cut-off op amp will produce a negative offset at the output Vout, ie output TW1881F (singular view).doc 8 1286727 voltage (Vout) is equal to the input voltage (vin) plus negative offset (_v〇 s), its equivalent circuit is shown in Figure 4B. Therefore, when the switches S1 and S2 in all the chopper op amps COPiKCOPm are in the second state, the resistors
Ri〜Ri分壓而產生的兩組正、負資料極性的伽瑪電壓中便會 出現一負偏移量。 以下’將首先以點反轉驅動模式為例說明本發明一第一 貫%例中資料驅動系統之操作方法。圖5顯示了在一幀書 面中,由一個資料驅動系統2〇所驅動之帶狀區域裏部份像 素(僅顯示四條資料線及八條掃描線之影像範圍)之資料極 性及驅動電壓偏移量極性,其中在括號内之正負符號係表 示驅動電壓偏移量之極性,而括號外之正負符號係表示資 料極性。在點反轉驅動模式中,在同一畫面裏,每一個像 素之資料極性係與其四週像素之資料極性相反。另一方 面,所有截波式運算放大器COPl〜COPm中開關之狀態係在 每兩個掃描週期中同時切換一次,造成伽瑪電壓中的偏移 篁極性以及驅動電壓中之偏移量極性也隨之切換。如此, 使知在同一畫面中,每隔兩條掃描線上像素之驅動電壓具 有相反的偏移量極性。由於在同一畫面中同時出現了其驅 動電壓被正向及負向偏移的兩種像素,因此會在空間上造 成了偏移量相互抵銷的效果。 截波式運算放大器COPl〜COPmt開關之狀態除了在每 兩個掃描週期進行切換一次外,亦在每兩個畫面() 週期中改變一次切換的起始狀態。參考圖6所示,以四個 連續畫面(僅顯示四條資料線及八條掃描線之影像範圍)為 TW1881F(奇景).doc 9 1286727 例說明。同樣地,在圖6中,接躲向— T括娩内之正負號為驅動電壓 之偏移量極性,而括號外者為資料 、 互馮貝枓極性。在點反轉驅動模 式中’相鄰的兩個畫面中同一位罟 J位I之像素資料極性係相 反0因此,不但在同一書而Φ /工 /rn ^ U旦面中任一個像素之資料極性與其 四周像素相反,同-個像素位置在先、後兩個連續晝面中 之資料極性亦相反。另-方面,截波式運算放大器 C〇Pl〜COPm中開關之起始狀態係在每兩個畫面週期中改 變-次,使得每隔兩個畫面中同一像素位置之驅動電壓偏 移量極性相反。以畫面F1及F3為例,在晝面F1中,截波 式運算放大器C〇Pl〜C〇Pm之開關是以第一狀態為起始狀 態,而在晝面F3中改變為以第二狀態為起始狀態。因此, 在畫面F1中是先產生具有正偏移量之驅動電壓,而在畫面 F3中是先產生具有負偏移量之驅動電壓。從圖6可以看 出,對同一個像素來說,在先、後的畫面時間中會出現具 有相反極性偏移量的現象,如此便造成了時間上的偏移量 抵銷效果。 因此,藉由週期性地切換截波式運算放大器中的開關狀 態以及週期性地改變切換順序的起始狀態便可以使得駆動 電壓中的偏移量在空間及時間上產生正、負相抵的效果。 由於每一個資料驅動系統的驅動電壓偏移量被消除,因而 使得帶狀雜紋不會產生。 接著,再以二條線點反轉驅動模式為例說明本發明一第 二實施例中資料驅動系統之操作方法。圖7顯示了在一幢 畫面中,由一個資料驅動系統20所驅動之帶狀區域裏部份 TW1881F(奇景).doc 10 1286727 像素(僅顯示四條資料線及八條掃描線之影像範圍)之資料 極性及驅動電壓偏移量極性,其中在括號内之正負符號係 表示驅動電壓偏移量之極性,而括號外之正負符號係表示 資料極性。在二條線點反轉驅動模式中,在同一書面裏, 每一個像素之資料極性係與其左、右、下方或左、右、上 方像素之資料極性相反。另一方面,所有截波式運算放大 器COP^COPm中開關之狀態係在每一個掃描週期中同時 切換一次,造成伽瑪電壓中的偏移量極性以及驅動電壓中 之偏移量極性也隨之切換。如此,使得在同一晝面中,每 兩條相鄰掃描線上像素之驅動電壓具有相反的偏移量極 性。由於在同一畫面中同時出現了其驅動電壓被正向及負 向偏移的兩種像素,因此會在空間上造成了偏移量相互抵 銷的效果。 截波式運算放大器C0pl〜c0pm中開關之狀態除了在每 一個掃描週期進行切換一次外,亦在每兩個畫面(frame) 週期中改變一次切換的起始狀態。參考圖8所示,以四個 連續晝面(僅顯示四條資料線及八條掃描線之影像範圍)為 例說明。同樣地,在圖8中,括號内之正負號為驅動電屡 偏移篁極f生而括號外者為資料極性。在點反轉驅動模 式中相鄰的兩個畫面中同一位置之像素資料極性係相 反因此,不但在同一畫面中任一個像素之資料極性與其 左、右、上方或左、右、下方像素相反,同一個像素位置 在先後兩個連績畫面中之資料極性亦相反。另―方面, 截波式運算放大H C〇Pi〜C〇Pm中開關之起始狀態係在每 TW1881F(奇景).doc 11 1286727 兩個畫面週期中改變一次,使得每隔兩個晝面中同一像素 位置之驅動電壓偏移量極性相反。以晝面Fi及F3為例, 在畫面F1中’截波式運算放大器c〇Pi〜c〇Pm之開關是以 第一狀態為起始狀態,而在畫面F3中改變為以第二狀態為 起始狀態。因此,在畫面F1中是先產生具有正偏移量之驅 動電壓,而在晝面F3中是先產生具有負偏移量之驅動電 壓攸圖8可以看出’對同一個像素來說,在先、後的畫 面時間中會出現具有相反極性偏移量的現象,如此便造成 了時間上的偏移量抵鎖效果。 而於上述之實施例中,欲使截波式運算放大器 COP 1〜COPm中開關之起始狀態係在每兩個晝面週期中改 變一次,使得每隔兩個畫面中同一像素位置之驅動電壓偏 移1極性相反,則必需有一可偵測畫面次序之機制,可在 適當的時機切換截波式運算放大器copl〜copm之開關狀 態,產生正負極性之偏移量。請參照第9圖,其繪示係為 依照本發明之較佳實施例之一種畫面次序偵測單元之方塊 圖。資料驅動模組20更包括畫面序次偵測單元9〇〇,用以 偵測於不同時間點之晝面次序,例如圖6之晝面fi及晝面 F3中,藉此於同一像素以切換產生具正偏移量之驅動電壓 或具負偏移量之驅動電壓。畫面序次偵測單元9〇〇包括計 數器90卜解析度設定器9〇2、處理單元9〇3及重置器9〇4。 計數器901用以計算水平起始訊號S1之數量,並輸出計量 訊號S2。一個水平起始訊號S1表示開始顯示畫面中的一 條水平線。解析度設定器(Resolution Selecti〇n)9〇2用以輸 TW1881F(奇景).d0< 12 1286727 出解析度參數S3,其係表示液晶顯示面板1 3之解析度。 處理單元903用以接收計量訊號S2及解析度參數S3,比 較計量訊號S2與解析度參數S3後,據以輸出觸發訊號 S4。重置器(Set/reset Pulse Generator)904 根據觸發訊號 S4 而輪出重置訊號Sp,以切換伽濟電壓產生器201之偏移量 極性’以隔畫面切換伽瑪電壓產生器201之偏移量極性為 例’如第8圖所示。並假設解析度參數S3所對應的解析度 係為1024*768,則當計量訊號S2累積至768*2=1536時, 處理單元903參考解析度參數S3即可得知已經顯示了兩個 晝面F1及F2,因此輸出觸發訊號S4使得重置器904輸出 重置訊號Sp而切換伽瑪電壓產生器201之偏移量極性。在 晝面F3中,其伽瑪電壓產生器2〇1即使得偏移量極性有別 於前兩個畫面F1及F2。 處理單元9〇3包括解碼器905及多工器906。解碼器905 接收計量訊號S2,並輸出晝面次序訊號S5〜S7。多工器9〇6 接收解析度參S3及畫面次序訊號S5並輸出觸發訊號 S4。解碼器905是依據計數器9〇1輸出之計量訊號^輸出 晝面次序訊號S5〜S7,其係因應液晶顯示面板13之解析 度’而有畫面次序訊號S5〜S7。當計數器9gi已接收多少 的水平起始E孔號S1’而解碼哭 解碼裔905決定代表不同水平線之 晝面次序錢錢’例㈣以序喊S5g卩録水平線數 4 ^ 768 次序訊號S7即代表水平岭 — 泉教為1024。舉例而言,若設定 為每隔兩晝面切換偏移|柄 ^ ί α性,當計數器9〇1已接收 TW1881F(奇景).doc 13 1286727 768*2 = 1536條水平線,此時解碼器9〇5使畫面次序訊號% 致能;當計數器901已接收1〇24*2=2〇28條水平線,此時 解碼器905使畫面次序訊號S7致能,依此類推。多工器 9〇6則依據解析度參數S3及畫面次序訊號S6〜s7,輸出觸 發訊號S4。舉例而言,多工器9〇6接收解析度參數83,得 知水平線數為768條’當解碼器9〇5使代表水平線數為768 條之畫面次序訊號S6致能,此時多工器9〇6輪出觸發訊號 S4而經過多少畫面才切換偏移量之極性,並無限& 其於效果及實際要求之考量決定。 因此,藉由週期性地切換截波式運算放大器中的開關狀 態以及週期性地改變切換順序的起始狀態便可以使得驅動 電壓:的偏移量在空間及時間上產生正、負相抵的效果。 由於母-個貧料驅動系統的驅動電壓偏移量被抵消,因而 使得帶狀雜紋不會產生。 雖;^本毛明以上遠點反轉驅動模式及二條線點反轉驅動 反轉驅動杈式操作,在任何其他的資料極性反轉驅動模式 :亦可週期性地切換截波式運算放大器之開關狀態,使 5旦面時間中出現具有驅動電塵偏移量極性相反之像 素,或是使同一像素在不同的晝面時間中具有相反的驅動 電壓偏移量極性,而在空間上或時間上產生正、負偏移量 相互抵銷之效果。 准上述寅施例僅為說明本發明之原理及其功效,而非限 本么明。因此,習於此技術之人士可在不違背本發明之 TW1881F(奇景).d〇c 14 1286727 本發明之權利範圍應 精神對上述實施例進行修改及變化 如後述之申請專利範圍所列。 【圖式簡單說明】 圖1顯示習知之資枓驅動系統; 圖2顯示本發明; 圖3A顯示操作於第—狀態時之截波式運算放大器. 圖3B顯示操作於第二狀_之截波式運算放大号 路圖 圖4A為截波式運算放大器操作於第-狀態時之等效電 圖 4B 路圖; 為截波式運算放大器操作於第二狀態時之等效電 圖 5顯不本發明__笛 I , , ♦ +没a弟一#他例中由貢料驅動系統所驅動 之狀區域中部份像素所對應之資料極性及驅動電壓偏移 量極性; 圖6顯示本發明之第一實施例中四個連續畫面之像素資 料極性及偏移量極性; 圖7顯不本發明一第二實施例中由資料驅動系統所驅動 之帶狀區域中部份像素所對應之資料極性及驅動電壓偏移 量極性;及 圖8顯不了本發明之第二實施例中四個連續晝面之像素 貢料極性及偏移量極性。 圖9顯示了畫面次序偵測單元之方塊圖。 【主要元件符號說明】 10 習知之資料驅動系統 TW1881F(奇景).doc 15 1286727 11 顯示面板 20 本發之資料驅動 101 伽瑪電壓產生器 103 數位類比轉換器 105 輸出緩衝裔 107 切換1 201 伽瑪電壓產生器 OPfOPjn 運算放大器 R i 〜Ri 電阻 VR】〜VRm 參考電壓 chrchn 通道 COP广 COPm 截波式運算放大器 Ml 〜M4 電晶體 SI 〜S2 開關 cs 電流源 c 電容 900 畫面序次偵測單元 901 計數器 902 解析度設定器 903 處理單元 904 重置器 905 解碼II 906 多工器 TW1881F(奇景).doc 16A negative offset occurs in the gamma voltages of the two sets of positive and negative data polarities generated by the division of Ri~Ri. Hereinafter, the operation method of the data driving system in a first example of the present invention will be described by taking a dot inversion driving mode as an example. Figure 5 shows the data polarity and drive voltage offset of some pixels in the strip region driven by a data drive system 2 (only the image range of four data lines and eight scan lines are displayed) in one frame of writing. The polarity of the quantity, wherein the positive and negative signs in parentheses indicate the polarity of the driving voltage offset, and the positive and negative signs outside the parentheses indicate the data polarity. In the dot inversion driving mode, in the same screen, the data polarity of each pixel is opposite to the polarity of the data of the surrounding pixels. On the other hand, the state of the switches in all of the chopped operational amplifiers COP1 to COPm is switched once every two scan cycles, causing the offset 篁 polarity in the gamma voltage and the offset polarity in the drive voltage to follow. Switching. Thus, it is known that the driving voltage of the pixels on every two scanning lines has the opposite offset polarity in the same picture. Since the two pixels whose driving voltage is shifted in the positive and negative directions appear simultaneously in the same picture, the effect of the offset offsets is spatially created. The state of the COFFP-COPmt switch of the chopper-operated operational amplifier changes the start state of the switching in every two picture () cycles, except that it is switched once every two scanning periods. Referring to Fig. 6, four consecutive pictures (only the image range of four data lines and eight scan lines are displayed) are TW1881F (奇景).doc 9 1286727. Similarly, in Fig. 6, the sign of the hiding direction is the offset polarity of the driving voltage, and the parentheses are the data and the mutual von. In the dot inversion driving mode, the pixel data of the same bit 罟J bit I in the two adjacent pictures is opposite to each other. Therefore, not only the data of any pixel in the same book but Φ / gong / rn ^ U 面 face The polarity is opposite to the surrounding pixels, and the data polarity of the first and last consecutive faces of the same pixel position is also opposite. On the other hand, the initial state of the switch in the chopper type operational amplifiers C〇P1 to COPm is changed every two picture periods, so that the driving voltage offsets of the same pixel position in every two pictures are opposite in polarity. . Taking the pictures F1 and F3 as an example, in the face F1, the switches of the chopper type operational amplifiers C〇P1 to C〇Pm are started in the first state, and are changed to the second state in the face F3. Is the starting state. Therefore, in the picture F1, a driving voltage having a positive offset is generated first, and in the picture F3, a driving voltage having a negative offset is first generated. It can be seen from Fig. 6 that for the same pixel, there is a phenomenon in which the opposite polarity shift occurs in the preceding and following picture times, thus causing a time offset offset effect. Therefore, by periodically switching the switching states in the chopper operational amplifier and periodically changing the initial state of the switching sequence, the offset in the sway voltage can be positively and negatively offset in space and time. . Since the driving voltage offset of each data driving system is eliminated, banding noise is not generated. Next, an operation method of the data driving system in a second embodiment of the present invention will be described by taking a two-line dot inversion driving mode as an example. Figure 7 shows a portion of the TW1881F (Scene View).doc 10 1286727 pixel in the strip region driven by a data drive system 20 in a single screen (only the image range of four data lines and eight scan lines is displayed) The data polarity and the driving voltage offset polarity, wherein the positive and negative signs in parentheses indicate the polarity of the driving voltage offset, and the positive and negative signs outside the parentheses indicate the data polarity. In the two-line inversion driving mode, in the same writing, the data polarity of each pixel is opposite to that of the left, right, lower or left, right, and upper pixels. On the other hand, the state of the switches in all the chopper op amps COP^COPm is switched simultaneously in each scan cycle, causing the offset polarity in the gamma voltage and the offset polarity in the drive voltage to follow. Switch. Thus, in the same plane, the driving voltage of the pixels on each of the two adjacent scanning lines has opposite offset polarities. Since two kinds of pixels whose driving voltages are shifted in the forward direction and the negative direction appear simultaneously in the same picture, the effect of offsetting each other is caused spatially. The state of the switches in the chopper operational amplifiers C0pl~c0pm is changed in the start state of the switching every two frame periods except for switching once every scan period. Referring to Fig. 8, four continuous faces (only the image ranges of four data lines and eight scan lines are displayed) are taken as an example. Similarly, in Fig. 8, the sign in the parentheses is the driving electric offset, and the parentheses are the data polarity. In the dot inversion driving mode, the polarity of the pixel data of the same position in the two adjacent pictures is opposite. Therefore, not only the data polarity of any pixel in the same picture is opposite to that of the left, right, upper or left, right, and lower pixels. The same pixel position is reversed in the polarity of the data in the two consecutive performance pictures. On the other hand, the initial state of the switch in the cutoff operation amplification HC〇Pi~C〇Pm is changed every two picture periods of TW1881F (奇景).doc 11 1286727, so that every two sides The driving voltage offsets of the same pixel position are opposite in polarity. Taking the face Fi and F3 as an example, in the picture F1, the switches of the chopper type operational amplifiers c〇Pi~c〇Pm are in the first state, and in the picture F3 are changed to the second state. Starting state. Therefore, in the picture F1, the driving voltage with a positive offset is generated first, and in the front surface F3, the driving voltage with the negative offset is first generated. FIG. 8 can be seen that 'for the same pixel, The phenomenon of offsetting the opposite polarity occurs in the first and last screen time, thus causing a shifting effect on the offset in time. In the above embodiment, the starting state of the switch in the cut-off operational amplifiers COP 1 to COPm is changed every two cycles, so that the driving voltage of the same pixel position in every two pictures is obtained. If the offset 1 polarity is opposite, it is necessary to have a mechanism for detecting the picture order, and the switching state of the chopper type oppl to copp~copm can be switched at an appropriate timing to generate an offset of positive and negative polarity. Referring to FIG. 9, a block diagram of a picture order detecting unit in accordance with a preferred embodiment of the present invention is shown. The data driving module 20 further includes a picture sequence detecting unit 9 侦测 for detecting the order of the faces at different time points, for example, the face fi and the face F3 of FIG. 6 , thereby switching between the same pixels. A drive voltage with a positive offset or a drive voltage with a negative offset is generated. The picture sequence detecting unit 9A includes a counter 90 resolution unit 9〇2, a processing unit 9〇3, and a reset unit 9〇4. The counter 901 is configured to calculate the number of horizontal start signals S1 and output a measurement signal S2. A horizontal start signal S1 indicates that a horizontal line in the display screen is started. The resolution setting device (Resolution Selecti〇n) 9〇2 is used to input TW1881F (odd view).d0<12 1286727 The resolution parameter S3 represents the resolution of the liquid crystal display panel 13. The processing unit 903 is configured to receive the measurement signal S2 and the resolution parameter S3, and compare the measurement signal S2 with the resolution parameter S3 to output the trigger signal S4. The set/reset pulse generator 904 rotates the reset signal Sp according to the trigger signal S4 to switch the offset polarity of the gamma voltage generator 201 to switch the offset of the gamma voltage generator 201 by the screen. The polarity of the example is as shown in Figure 8. Assuming that the resolution corresponding to the resolution parameter S3 is 1024*768, when the measurement signal S2 is accumulated to 768*2=1536, the processing unit 903 can refer to the resolution parameter S3 to know that two faces have been displayed. F1 and F2, therefore, the output trigger signal S4 causes the resetter 904 to output the reset signal Sp to switch the offset polarity of the gamma voltage generator 201. In the face F3, its gamma voltage generator 2〇1 makes the offset polarity different from the first two pictures F1 and F2. The processing unit 〇3 includes a decoder 905 and a multiplexer 906. The decoder 905 receives the measurement signal S2 and outputs the face sequence signals S5 to S7. The multiplexer 9〇6 receives the resolution parameter S3 and the picture order signal S5 and outputs a trigger signal S4. The decoder 905 is based on the measurement signal output from the counter 910. The output sequence signals S5 to S7 have screen order signals S5 to S7 in response to the resolution of the liquid crystal display panel 13. When the counter 9gi has received the number of horizontal start E hole number S1' and the decoded crying decoding 905 determines the order of the different horizontal lines of money. Example (4) in order to shout S5g record horizontal line number 4 ^ 768 order signal S7 represents Horizontal Ridge - Spring is 1024. For example, if it is set to switch the offset | handle ^ ί α every two sides, when the counter 9〇1 has received TW1881F (奇景).doc 13 1286727 768*2 = 1536 horizontal lines, the decoder at this time 9〇5 enables the picture order signal %; when the counter 901 has received 1〇24*2=2〇28 horizontal lines, the decoder 905 enables the picture order signal S7, and so on. The multiplexer 9〇6 outputs a trigger signal S4 based on the resolution parameter S3 and the picture order signals S6 to s7. For example, the multiplexer 9〇6 receives the resolution parameter 83 and knows that the number of horizontal lines is 768. 'When the decoder 9〇5 enables the picture order signal S6 representing the horizontal line number of 768, the multiplexer at this time 9〇6 turns out the trigger signal S4 and passes through the number of screens to switch the polarity of the offset, and infinite & it is determined by the effect and actual requirements. Therefore, by periodically switching the switching states in the chopper operational amplifier and periodically changing the initial state of the switching sequence, the offset of the driving voltage can be positively and negatively offset in space and time. . Since the driving voltage offset of the mother-and-lean drive system is offset, the band-like streaks are not generated. Although; ^本明明 above the far-point inversion drive mode and two line-point inversion drive inversion drive-type operation, in any other data polarity inversion drive mode: can also switch the chopper type operational amplifier periodically The state of the switch, such that the pixel having the opposite polarity of the driving electric dust offset occurs in the 5th surface time, or the same pixel has the opposite driving voltage offset polarity in different kneading time, and in space or time The effect of offsetting between positive and negative offsets is generated. The above-described embodiments are merely illustrative of the principles and effects of the invention, and are not intended to be limiting. Therefore, those skilled in the art can modify and change the above-described embodiments without departing from the scope of the invention as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a conventional resource driving system; Fig. 2 shows the present invention; Fig. 3A shows a chopper type operational amplifier operating in a first state. Fig. 3B shows a chopping operation in a second state Figure 4A is the equivalent diagram 4B of the chopper op amp operating in the first state; the equivalent electrogram 5 is the case when the chopper op amp is operated in the second state. Invention __笛I, , ♦+不一弟一# The data polarity and driving voltage offset polarity corresponding to some pixels in the region driven by the tribute driving system in the example; FIG. 6 shows the invention The pixel data polarity and the offset polarity of the four consecutive pictures in the first embodiment; FIG. 7 shows the data polarity corresponding to some pixels in the strip-shaped area driven by the data driving system in a second embodiment of the present invention. And the driving voltage offset polarity; and FIG. 8 shows the pixel tribute polarity and offset polarity of the four consecutive sides in the second embodiment of the present invention. Figure 9 shows a block diagram of the picture order detection unit. [Main component symbol description] 10 Known data drive system TW1881F (Wonder).doc 15 1286727 11 Display panel 20 Data drive 101 gamma voltage generator 103 Digital analog converter 105 Output buffer descent 107 Switch 1 201 gamma mA voltage generator OPfOPjn operational amplifier R i ~Ri resistance VR] ~VRm reference voltage chrchn channel COP wide COPm chopper operational amplifier Ml ~ M4 transistor SI ~ S2 switch cs current source c capacitor 900 picture sequence detection unit 901 Counter 902 Resolution Setter 903 Processing Unit 904 Resetter 905 Decode II 906 Multiplexer TW1881F (Wonder View).doc 16