JP2007010871A - Display signal processing apparatus and liquid crystal display device - Google Patents

Display signal processing apparatus and liquid crystal display device Download PDF

Info

Publication number
JP2007010871A
JP2007010871A JP2005189901A JP2005189901A JP2007010871A JP 2007010871 A JP2007010871 A JP 2007010871A JP 2005189901 A JP2005189901 A JP 2005189901A JP 2005189901 A JP2005189901 A JP 2005189901A JP 2007010871 A JP2007010871 A JP 2007010871A
Authority
JP
Japan
Prior art keywords
voltage
pixel
display
display signal
gradation reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005189901A
Other languages
Japanese (ja)
Other versions
JP2007010871A5 (en
JP4991127B2 (en
Inventor
Harutoshi Kaneda
晴利 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Central Inc
Original Assignee
Toshiba Matsushita Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Matsushita Display Technology Co Ltd filed Critical Toshiba Matsushita Display Technology Co Ltd
Priority to JP2005189901A priority Critical patent/JP4991127B2/en
Publication of JP2007010871A publication Critical patent/JP2007010871A/en
Publication of JP2007010871A5 publication Critical patent/JP2007010871A5/ja
Application granted granted Critical
Publication of JP4991127B2 publication Critical patent/JP4991127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a driving period of a pixel without requiring enhancement of a driving capability. <P>SOLUTION: A display signal processing apparatus includes a gradation reference voltage generation circuit 7 for generating a plurality of gradation reference voltages from a plurality of voltage output ends V0 to V9 and a signal conversion circuit 23 for converting a display signal to a pixel voltage by selectively using a prescribed number of gradation voltages obtained from resistance groups r0 to r8 which are connected in series so as to divide inter-terminal voltages of the plurality of voltage output ends V0 to V9. The gradation reference voltage generation circuit 7 includes output control parts VC1 to VC6 which temporarily set the plurality of gradation reference voltages to intermediate voltage values for precharge, which are mutually identical in a pixel voltage range corresponding to a maximum gradation difference of the display signal, and then set the plurality of gradation reference voltages to voltage values for display, which are mutually different in the pixel voltage range, in every conversion operation of the signal conversion circuit 23. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表示信号を画素電圧に変換する表示信号処理装置およびこの表示信号処理装置を有する液晶表示装置に関する。   The present invention relates to a display signal processing device that converts a display signal into a pixel voltage and a liquid crystal display device having the display signal processing device.

液晶表示装置に代表される平面表示装置は、パーソナルコンピュータ、情報携帯端末、テレビジョン受像機、あるいはカーナビゲーションシステム等の表示装置として広く利用されている。   A flat display device typified by a liquid crystal display device is widely used as a display device for a personal computer, an information portable terminal, a television receiver, a car navigation system, or the like.

液晶表示装置は、一般に複数の液晶画素のマトリクスアレイを含む表示パネルと、この表示パネルを駆動する駆動回路とを備える。典型的な表示パネルはアレイ基板および対向基板間に液晶層を挟持した構造を有する。アレイ基板はマトリクス状に配置される複数の画素電極を有し、対向基板はこれら画素電極に対向する共通電極を有する。画素電極および共通電極はこれら電極間に配置される液晶層の画素領域と共に液晶画素を構成し、画素領域内の液晶分子配列を画素電極および共通電極間の電界によって制御する。駆動回路では、例えば各行の画素に対するデジタル表示信号が複数の階調基準電圧を用いて画素電圧に変換され、表示パネルに出力される。画素電圧は共通電極の電位を基準として画素電極に印加される電圧であり、液晶分子の偏在化による表示パネルの劣化を避けるために例えば図5に示すように1水平走査期間(1H)毎に共通電極の電位に対して極性反転されてソースドライバから出力される。図5において、CKVは1垂直走査期間において1水平走査期間を周期として発生されるパルスである垂直クロック信号CKVを表し、STBは垂直クロック信号CKVに同期して水平走査期間(1H)毎に発生されるストローブ信号である。   A liquid crystal display device generally includes a display panel including a matrix array of a plurality of liquid crystal pixels, and a drive circuit that drives the display panel. A typical display panel has a structure in which a liquid crystal layer is sandwiched between an array substrate and a counter substrate. The array substrate has a plurality of pixel electrodes arranged in a matrix, and the counter substrate has a common electrode facing the pixel electrodes. The pixel electrode and the common electrode constitute a liquid crystal pixel together with the pixel region of the liquid crystal layer disposed between these electrodes, and the liquid crystal molecular arrangement in the pixel region is controlled by an electric field between the pixel electrode and the common electrode. In the driving circuit, for example, digital display signals for pixels in each row are converted into pixel voltages using a plurality of gradation reference voltages, and are output to the display panel. The pixel voltage is a voltage applied to the pixel electrode with reference to the potential of the common electrode. In order to avoid deterioration of the display panel due to uneven distribution of liquid crystal molecules, for example, as shown in FIG. 5, every horizontal scanning period (1H). The polarity is inverted with respect to the potential of the common electrode and output from the source driver. In FIG. 5, CKV represents a vertical clock signal CKV that is a pulse generated in one vertical scanning period with one horizontal scanning period as a cycle, and STB is generated every horizontal scanning period (1H) in synchronization with the vertical clock signal CKV. Strobe signal.

従来の階調基準電圧発生回路は、例えば一対の電源端子間に複数の抵抗を直列に接続したラダー抵抗器からなり、電源端子間の電圧を分圧して複数の階調基準電圧を出力する(例えば、特許文献1を参照)。
特開2003−228332号公報
A conventional gradation reference voltage generation circuit is formed of, for example, a ladder resistor in which a plurality of resistors are connected in series between a pair of power supply terminals, and a plurality of gradation reference voltages are output by dividing the voltage between the power supply terminals ( For example, see Patent Document 1).
JP 2003-228332 A

近年では、液晶表示装置の高精細化が求められ、画素数が増大する傾向にある。駆動回路の駆動能力が一定であるとすれば、1垂直走査期間内において表示信号に対応して全ての画素を駆動するために各行の画素の駆動時間を短縮する必要がある。1行(ライン)分の画素の画素電圧はこの駆動時間内に遷移して、これら画素の階調を例えば白表示である最大値から黒表示である最小値まで、あるいは最小値から最大値まで変化させることが可能でなくてはならない。しかしながら、この駆動時間が駆動回路の駆動能力に対して短すぎると、この駆動時間内に画素電圧の遷移を完了させることが困難となる。   In recent years, high definition of liquid crystal display devices is required, and the number of pixels tends to increase. If the driving capability of the driving circuit is constant, it is necessary to shorten the driving time of the pixels in each row in order to drive all the pixels corresponding to the display signal within one vertical scanning period. The pixel voltage of the pixels for one line (line) changes within this drive time, and the gradation of these pixels is changed, for example, from the maximum value for white display to the minimum value for black display, or from the minimum value to the maximum value. It must be possible to change. However, if this drive time is too short for the drive capability of the drive circuit, it will be difficult to complete the transition of the pixel voltage within this drive time.

本発明はこのような問題点に鑑みてなされたものであり、駆動能力の増大を必要とせずに画素の駆動期間を短縮することが可能な表示信号処理装置および液晶表示装置を提供することにある。   The present invention has been made in view of such problems, and provides a display signal processing device and a liquid crystal display device capable of shortening the pixel driving period without requiring an increase in driving capability. is there.

本発明によれば、複数の階調基準電圧を複数の電圧出力端から発生する階調基準電圧発生回路と、複数の電圧出力端の端子間電圧を分圧するように直列に接続される抵抗群から得られる所定数の階調電圧を選択的に用いて表示信号を画素電圧に変換する信号変換回路とを備え、階調基準電圧発生回路は信号変換回路の変換動作毎に複数の階調基準電圧を表示信号の最大階調差に対応した画素電圧範囲において互いに同じであるプリチャージ用中間電圧値に一時的に設定し、続いて複数の階調基準電圧をこの画素電圧範囲において互いに異なる表示用電圧値に設定する出力制御部を含む表示信号処理装置が提供される。   According to the present invention, a gradation reference voltage generation circuit that generates a plurality of gradation reference voltages from a plurality of voltage output terminals, and a group of resistors connected in series so as to divide voltages between terminals of the plurality of voltage output terminals And a signal conversion circuit that selectively converts a display signal into a pixel voltage by selectively using a predetermined number of gradation voltages obtained from the gradation reference voltage generation circuit, wherein the gradation reference voltage generation circuit has a plurality of gradation references for each conversion operation of the signal conversion circuit. The voltage is temporarily set to a precharge intermediate voltage value that is the same in the pixel voltage range corresponding to the maximum gradation difference of the display signal, and then a plurality of gradation reference voltages are displayed differently in the pixel voltage range. A display signal processing device including an output control unit for setting a voltage value for operation is provided.

さらに本発明によれば、略マトリクス状に配置される複数の表示画素、複数の表示画素の行に沿って配置される複数のゲート線、複数の表示画素の列に沿って配置される複数のソース線、および複数のゲート線および複数のソース線の交差位置近傍に配置され各々対応ゲート線が駆動される間に対応表示画素を対応ソース線に電気的に接続する複数の画素スイッチング素子を含む液晶表示パネルと、複数のゲート線を順次駆動するゲートドライバ回路と、1行分の表示画素に対する表示信号に対応して複数のソース線を駆動するソースドライバ回路とを備え、ソースドライバ回路は複数の階調基準電圧を複数の電圧出力端から発生する階調基準電圧発生回路と、複数の電圧出力端の端子間電圧を分圧するように直列に接続される抵抗群から得られる所定数の階調電圧を選択的に用いて表示信号を画素電圧に変換する信号変換回路とを含み、階調基準電圧発生回路が信号変換回路の変換動作毎に複数の階調基準電圧を表示信号の最大階調差に対応した画素電圧範囲において互いに同じであるプリチャージ用中間電圧値に一時的に設定し、続いて複数の階調基準電圧を画素電圧範囲において互いに異なる表示用電圧値に設定する出力制御部を含む表示信号処理装置を有し、ソースドライバ回路は出力制御部が複数の階調基準電圧をプリチャージ用中間電圧値に設定するプリチャージ期間において2隣接ゲート線を一緒に駆動するように構成される液晶表示装置が提供される。   Further, according to the present invention, a plurality of display pixels arranged in a substantially matrix shape, a plurality of gate lines arranged along a row of the plurality of display pixels, and a plurality of rows arranged along a column of the plurality of display pixels. A source line, and a plurality of pixel switching elements disposed near the intersection of the plurality of gate lines and the plurality of source lines and electrically connecting the corresponding display pixel to the corresponding source line while each corresponding gate line is driven A liquid crystal display panel, a gate driver circuit that sequentially drives a plurality of gate lines, and a source driver circuit that drives a plurality of source lines in response to display signals for one row of display pixels. Obtained from a plurality of voltage output terminals and a resistor group connected in series so as to divide the voltage across the terminals of the plurality of voltage output terminals. And a signal conversion circuit that selectively uses a predetermined number of gradation voltages to convert a display signal into a pixel voltage, and the gradation reference voltage generation circuit generates a plurality of gradation reference voltages for each conversion operation of the signal conversion circuit. Temporarily set an intermediate voltage value for precharging that is the same in the pixel voltage range corresponding to the maximum gray level difference of the display signal, and then a plurality of gray scale reference voltages that are different from each other in the pixel voltage range A display signal processing device including an output control unit to set the two adjacent gate lines together in a precharge period in which the output control unit sets a plurality of gradation reference voltages to intermediate voltage values for precharging. A liquid crystal display device configured to be driven is provided.

これら表示信号処理装置および液晶表示装置では、出力制御部が信号変換回路の変換動作毎に複数の階調基準電圧を画素電圧範囲において互いに同じであるプリチャージ用中間電圧値に一時的に設定する。この状態では、階調基準電圧発生回路の電圧出力端子間に電圧差が生じないため、信号変換回路が抵抗群から得られる全階調電圧のどれを画素電圧として選択しても、上述したプリチャージ用中間電圧値の画素電圧が出力される。信号変換回路の画素電圧出力端の負荷容量がこの画素電圧によってプリチャージされていると、画素電圧が表示信号を反映した電圧値までより短い時間で遷移する。従って、駆動能力の増大を必要とせずに画素の駆動期間を短縮することが可能である。   In these display signal processing devices and liquid crystal display devices, the output control unit temporarily sets a plurality of gradation reference voltages to precharge intermediate voltage values that are the same in the pixel voltage range for each conversion operation of the signal conversion circuit. . In this state, no voltage difference is generated between the voltage output terminals of the gradation reference voltage generation circuit. Therefore, the signal conversion circuit can select any of the gradation voltages obtained from the resistor group as the pixel voltage. A pixel voltage having an intermediate charging voltage value is output. When the load capacitance at the pixel voltage output terminal of the signal conversion circuit is precharged by this pixel voltage, the pixel voltage transitions to a voltage value reflecting the display signal in a shorter time. Therefore, it is possible to shorten the pixel driving period without requiring an increase in driving capability.

以下、本発明の一実施形態に係る液晶表示装置について添付図面を参照して説明する。図1はこの液晶表示装置1の回路構成を概略的に示す。液晶表示装置1は、複数の液晶画素PXを有する表示パネルDP、および表示パネルDPを制御する制御ユニットCNTを備える。表示パネルDPはアレイ基板2および対向基板3間に液晶層4を挟持した構造である。   Hereinafter, a liquid crystal display device according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 schematically shows a circuit configuration of the liquid crystal display device 1. The liquid crystal display device 1 includes a display panel DP having a plurality of liquid crystal pixels PX, and a control unit CNT that controls the display panel DP. The display panel DP has a structure in which the liquid crystal layer 4 is sandwiched between the array substrate 2 and the counter substrate 3.

アレイ基板2は、例えばガラス等の透明絶縁基板上にマトリクス状に配置される複数の画素電極PE、複数の画素電極PEの行に沿って配置される複数のゲート線Y(Y1〜Ym)、複数の画素電極PEの列に沿って配置される複数のソース線X(X1〜Xn)、これらゲート線Yおよびソース線Xの交差位置近傍に配置される画素スイッチング素子W、および複数のゲート線Yを順次駆動するゲートドライバ10、および各ゲート線Yが駆動される間に複数のソース線Xを駆動するソースドライバ20を有する。各画素スイッチング素子Wは例えばポリシリコン薄膜トランジスタからなる。この場合、薄膜トランジスタのゲートが1本のゲート線Yに接続され、ソースおよびドレインパスが1本のソース線Xおよび1個の画素電極PE間にそれぞれ接続される。尚、ゲートドライバ10は画素スイッチング素子Wと同一工程で同時に形成されるポリシリコン薄膜トランジスタを用いて構成される。また、ソースドライバ20はCOG(Chip On Glass)技術によりアレイ基板2にマウントされた集積回路(IC)チップである。   The array substrate 2 includes, for example, a plurality of pixel electrodes PE arranged in a matrix on a transparent insulating substrate such as glass, a plurality of gate lines Y (Y1 to Ym) arranged along a row of the plurality of pixel electrodes PE, A plurality of source lines X (X1 to Xn) disposed along a column of the plurality of pixel electrodes PE, a pixel switching element W disposed in the vicinity of the intersection position of the gate lines Y and the source lines X, and a plurality of gate lines It has a gate driver 10 that sequentially drives Y, and a source driver 20 that drives a plurality of source lines X while each gate line Y is driven. Each pixel switching element W is made of, for example, a polysilicon thin film transistor. In this case, the gate of the thin film transistor is connected to one gate line Y, and the source and drain paths are connected between one source line X and one pixel electrode PE, respectively. The gate driver 10 is configured using a polysilicon thin film transistor that is formed simultaneously in the same process as the pixel switching element W. The source driver 20 is an integrated circuit (IC) chip mounted on the array substrate 2 by COG (Chip On Glass) technology.

対向基板3は例えばガラス等の透明絶縁基板上に配置されるカラーフィルタ(図示せず)、および複数の画素電極PEに対向してカラーフィルタ上に配置される共通電極CE等を含む。各画素電極PEおよび共通電極CEは例えばITO等の透明電極材料からなり、画素電極PEおよび共通電極CE間に配置されこれら電極PE,CEからの電界に対応した液晶分子配列に制御される液晶層4の画素領域と共に液晶画素PXを構成する。また、全ての画素PXは補助容量Csを有する。これら補助容量Csはアレイ基板2側において複数行の画素電極PEにそれぞれ容量結合した複数の補助容量線を共通電極CEに電気的に接続することにより得られる。   The counter substrate 3 includes a color filter (not shown) disposed on a transparent insulating substrate such as glass, and a common electrode CE disposed on the color filter so as to face the plurality of pixel electrodes PE. Each pixel electrode PE and common electrode CE is made of a transparent electrode material such as ITO, for example, and is arranged between the pixel electrode PE and common electrode CE and is controlled by a liquid crystal molecular arrangement corresponding to the electric field from these electrodes PE and CE. The liquid crystal pixel PX is configured together with the four pixel regions. All the pixels PX have an auxiliary capacitor Cs. These auxiliary capacitances Cs are obtained by electrically connecting a plurality of auxiliary capacitance lines that are capacitively coupled to the plurality of rows of pixel electrodes PE on the array substrate 2 side to the common electrode CE.

制御ユニットCNTはコントローラ5、コモン電圧発生回路6、階調基準電圧発生回路7を含む。コントローラ5は外部から供給されるデジタル映像信号VIDEOを画像として表示パネルDPに表示させるためにコモン電圧発生回路6、階調基準電圧発生回路7、ゲートドライバ10、ソースドライバ20を制御する。コモン電圧発生回路6は対向基板3上の共通電極CEに対してコモン電圧Vcomを発生する。階調基準電圧発生回路7は映像信号VIDEOから各画素PXに対して得られる例えば6ビットの表示信号DATAを画素電圧に変換するために用いられる複数の階調基準電圧VREFを発生する。画素電圧は共通電極CEの電位を基準として画素電極PEに印加される電圧である。   The control unit CNT includes a controller 5, a common voltage generation circuit 6, and a gradation reference voltage generation circuit 7. The controller 5 controls the common voltage generation circuit 6, the gradation reference voltage generation circuit 7, the gate driver 10, and the source driver 20 in order to display the externally supplied digital video signal VIDEO as an image on the display panel DP. The common voltage generation circuit 6 generates a common voltage Vcom for the common electrode CE on the counter substrate 3. The gradation reference voltage generation circuit 7 generates a plurality of gradation reference voltages VREF used for converting, for example, a 6-bit display signal DATA obtained from the video signal VIDEO for each pixel PX into a pixel voltage. The pixel voltage is a voltage applied to the pixel electrode PE with reference to the potential of the common electrode CE.

コントローラ5は、1垂直走査期間毎に順次複数のゲート線Yを選択するための制御信号CTYおよび、1水平走査期間(1H)毎に映像信号VIDEOに含まれる1行(ライン)分の画素PXに対する表示信号DATAを複数のソース線Xにそれぞれ割り当てるための制御信号CTX等を発生する。制御信号CTYは1垂直走査期間(1V)毎に発生されるパルスである垂直スタート信号STV、および1垂直走査期間においてゲート線数分発生されるパルスである垂直クロック信号CKVを含む。ここで、制御信号CTXは1水平走査期間(1H)毎に発生されるパルスである水平スタート信号STH、各水平走査期間においてソース線数分発生されるパルスである水平クロック信号CKH、1ライン分の画素に対する表示信号DATAを並列的に画素電圧に変換してソース線X1〜Xnに出力するために1水平走査期間(1H)毎にスタート信号STHから所定時間遅れて発生されるパルスであるストローブ信号STB、および1水平走査期間毎および1垂直走査期間毎に画素電圧の極性を反転させるための極性信号POLを含む。制御信号CTYはコントローラ5からゲートドライバ10に供給され、制御信号CTXは表示信号DATAと共にコントローラ5からソースドライバ20に供給される。   The controller 5 controls the control signal CTY for sequentially selecting a plurality of gate lines Y every one vertical scanning period and one row (line) of pixels PX included in the video signal VIDEO every one horizontal scanning period (1H). A control signal CTX for assigning the display signal DATA to the plurality of source lines X is generated. The control signal CTY includes a vertical start signal STV that is a pulse generated every one vertical scanning period (1V) and a vertical clock signal CKV that is a pulse generated for the number of gate lines in one vertical scanning period. Here, the control signal CTX is a horizontal start signal STH which is a pulse generated every horizontal scanning period (1H), and a horizontal clock signal CKH which is a pulse generated by the number of source lines in each horizontal scanning period. A strobe which is a pulse generated with a predetermined time delay from the start signal STH every one horizontal scanning period (1H) in order to convert the display signal DATA to the pixels in parallel to a pixel voltage and output it to the source lines X1 to Xn. The signal STB includes a polarity signal POL for inverting the polarity of the pixel voltage every horizontal scanning period and every vertical scanning period. The control signal CTY is supplied from the controller 5 to the gate driver 10, and the control signal CTX is supplied from the controller 5 to the source driver 20 together with the display signal DATA.

ゲートドライバ10は制御信号CTYの制御により複数のゲート線Yを順次選択し、画素スイッチング素子Wを導通させる走査信号を選択ゲート線Yに供給する。但し、ゲートドライバ10は各水平走査期間の開始後において一時的に2本の隣接ゲート線Y1およびY2,Y2およびY3,Y3およびY4…を一緒に選択するように構成されている。   The gate driver 10 sequentially selects a plurality of gate lines Y under the control of the control signal CTY, and supplies a scanning signal for making the pixel switching element W conductive to the selection gate line Y. However, the gate driver 10 is configured to temporarily select two adjacent gate lines Y1, Y2, Y2, Y3, Y3, Y4... Together after the start of each horizontal scanning period.

図2は図1に示すソースドライバ20の構成を概略的に示す。ソースドライバ20は、水平スタート信号STHを水平クロック信号CKHに同期してシフトし、デジタル映像信号VIDEOを順次直並列変換するタイミングを制御するシフトレジスタ21、シフトレジスタ21の制御により1ライン分の画素PXに対する表示信号DATAを順次ラッチし、並列的に出力するサンプリング&ロードラッチ22、これら表示信号DATAをアナログ形式の画素電圧に変換するデジタルアナログ(D/A)変換回路23、およびD/A変換回路23から得られるアナログ画素電圧をソース線X1〜Xnに出力する出力バッファ回路24を含む。D/A変換回路23は、階調基準電圧発生回路7から発生される複数の階調基準電圧VREFを参照するように構成される。   FIG. 2 schematically shows the configuration of the source driver 20 shown in FIG. The source driver 20 shifts the horizontal start signal STH in synchronization with the horizontal clock signal CKH, and controls the shift register 21 for controlling the timing of serial-to-parallel conversion of the digital video signal VIDEO. A sampling and load latch 22 that sequentially latches the display signal DATA for PX and outputs it in parallel, a digital / analog (D / A) conversion circuit 23 that converts the display signal DATA into an analog pixel voltage, and D / A conversion An output buffer circuit 24 that outputs an analog pixel voltage obtained from the circuit 23 to the source lines X1 to Xn is included. The D / A conversion circuit 23 is configured to refer to a plurality of gradation reference voltages VREF generated from the gradation reference voltage generation circuit 7.

階調基準電圧発生回路7は、図3に示すように例えば6個の電圧切換部VC1〜VC6と、これら電圧切換部VC1〜VC6によって制御される可変電圧発生部VG1〜VG6と、これら可変電圧発生部VG1〜VG6の出力端(出力チャネル)CH6〜CH1間電圧を分圧するように直列に接続される複数の抵抗R0〜R8とを有する。   As shown in FIG. 3, the gradation reference voltage generating circuit 7 includes, for example, six voltage switching units VC1 to VC6, variable voltage generating units VG1 to VG6 controlled by these voltage switching units VC1 to VC6, and these variable voltages. A plurality of resistors R0 to R8 connected in series so as to divide the voltage between the output ends (output channels) CH6 to CH1 of the generating units VG1 to VG6.

電圧切換部VC1〜VC6は表示用数値データを格納するレジスタRG1、プリチャージ用数値データを格納するレジスタRG2、並びに可変電圧発生部VG1〜VG6を制御するために表示用数値データおよびプリチャージ用数値データの一方を選択的に出力する切換スイッチSを含む。表示用数値データおよびプリチャージ用数値データは電源投入時にコントローラ5から複数の電圧切換部33のレジスタRG1,RG2に供給される。電圧切換部VC1〜VC6の切換スイッチSは各水平走査期間においてストローブ信号STBに同期してプリチャージ用数値データを所定のプリチャージ期間出力し、このプリチャージ期間の経過後に表示用数値データを出力するようにコントローラ5により制御される。1水平走査期間が31.7μsである場合、プリチャージ期間は8μs程度である。表示用数値データおよびプリチャージ用数値データは8〜10ビット程度であり、6ビットの表示信号DATAに対して十分高い分解能を有する。   The voltage switching units VC1 to VC6 are a register RG1 for storing display numerical data, a register RG2 for storing precharge numerical data, and display numerical data and precharge numerical values for controlling the variable voltage generating units VG1 to VG6. A changeover switch S for selectively outputting one of the data is included. The display numerical data and the precharge numerical data are supplied from the controller 5 to the registers RG1 and RG2 of the plurality of voltage switching units 33 when the power is turned on. The changeover switch S of the voltage switching units VC1 to VC6 outputs the precharge numerical data in a predetermined precharge period in synchronization with the strobe signal STB in each horizontal scanning period, and outputs the display numerical data after the precharge period has elapsed. Control is performed by the controller 5 as described above. When one horizontal scanning period is 31.7 μs, the precharge period is about 8 μs. The display numerical data and the precharge numerical data are about 8 to 10 bits, and have a sufficiently high resolution with respect to the 6-bit display signal DATA.

可変電圧発生部VG1〜VG6の各々は、D/A変換器30および出力バッファ31を含む。可変電圧発生部VG1〜VG6のD/A変換器30はそれぞれ電圧切換部VC1〜VC6から出力される数値データを出力電圧に変換し、出力バッファ31がこの出力電圧を出力端CH6〜CH1に出力する。   Each of variable voltage generators VG1 to VG6 includes a D / A converter 30 and an output buffer 31. The D / A converters 30 of the variable voltage generators VG1 to VG6 convert the numerical data output from the voltage switching units VC1 to VC6 into output voltages, respectively, and the output buffer 31 outputs this output voltage to the output terminals CH6 to CH1. To do.

複数の抵抗R0〜R8は可変電圧発生部VG1〜VG6の出力端CH6〜CH1間電圧を分圧して複数の階調基準電圧VREFを得ると共にこれら階調基準電圧VREFの電圧出力端の電気的な相互接続のために用いられる。この実施形態において、階調基準電圧VREFは例えば10個の電圧出力端から出力される階調基準電圧V0〜V9である。これら階調基準電圧V0〜V9は、階調基準電圧V0に向かって相対的に高いレベルになり、階調基準電圧V9側に向かって相対的に低いレベルになるように設定されている。   The plurality of resistors R0 to R8 divide the voltage between the output terminals CH6 to CH1 of the variable voltage generators VG1 to VG6 to obtain a plurality of gradation reference voltages VREF and to electrically connect the voltage output terminals of these gradation reference voltages VREF. Used for interconnection. In this embodiment, the gradation reference voltage VREF is, for example, gradation reference voltages V0 to V9 output from ten voltage output terminals. These gradation reference voltages V0 to V9 are set to be relatively high levels toward the gradation reference voltage V0 and relatively low levels toward the gradation reference voltage V9.

ソースドライバ20のD/A変換回路23は、例えば図2および図3に示すように複数のD/A変換部23’および階調基準電圧発生回路7の電圧出力端間に接続される入力抵抗群r0〜r8で構成される。入力抵抗群r0〜r8は複数のD/A変換部23’に対して共通に設けられ、これら電圧出力端間電圧を分圧して得られる所定数の階調電圧を複数のD/A変換部23’に出力する。   The D / A conversion circuit 23 of the source driver 20 includes, for example, input resistors connected between the plurality of D / A conversion units 23 ′ and the voltage output terminals of the gradation reference voltage generation circuit 7 as shown in FIGS. It is composed of groups r0 to r8. The input resistance groups r0 to r8 are provided in common to the plurality of D / A converters 23 ′, and a predetermined number of gradation voltages obtained by dividing the voltage between the voltage output terminals are supplied to the plurality of D / A converters. To 23 '.

各D/A変換部23’はサンプリング&ロードラッチ22から出力されるデジタル表示信号DATAに対応して所定数の階調電圧の1つを選択して、これをアナログ画素電圧として出力バッファ回路24に出力する。出力バッファ回路24は複数のD/A変換部23’からのアナログ画素電圧をそれぞれソース線X1,X2,X3,…に出力する複数のバッファアンプ24’で構成される。   Each D / A converter 23 'selects one of a predetermined number of gradation voltages corresponding to the digital display signal DATA output from the sampling & load latch 22, and uses this as an analog pixel voltage to output buffer circuit 24. Output to. The output buffer circuit 24 includes a plurality of buffer amplifiers 24 ′ that output analog pixel voltages from the plurality of D / A converters 23 ′ to the source lines X 1, X 2, X 3,.

上述の出力切換部VC1〜VC6はD/A変換回路23の変換動作毎に階調基準電圧V0〜V9を表示信号の最大階調差に対応した画素電圧範囲において互いに同じであるプリチャージ用中間電圧値に一時的に設定し、続いて階調基準電圧V0〜V9をこの画素電圧範囲において互いに異なる表示用電圧値に設定する出力制御部を構成する。プリチャージ用中間電圧値は画素電圧範囲の略1/2であることが好ましい。また、D/A変換回路23および出力バッファ回路24は階調基準電圧発生回路7の電圧出力端間電圧を分圧するように直列に接続される入力抵抗群r0〜r8から得られる所定数の階調電圧を選択的に用いて1ライン分の表示信号DATAをそれぞれ画素電圧に変換し、これら画素電圧をソース線X1〜Xnに出力する信号変換回路を構成する。   The above-described output switching units VC1 to VC6 have the same gradation reference voltages V0 to V9 in the pixel voltage range corresponding to the maximum gradation difference of the display signal for each conversion operation of the D / A conversion circuit 23. An output control unit is configured to temporarily set the voltage value and then set the gradation reference voltages V0 to V9 to different display voltage values in this pixel voltage range. The precharge intermediate voltage value is preferably approximately ½ of the pixel voltage range. Further, the D / A conversion circuit 23 and the output buffer circuit 24 have a predetermined number of levels obtained from the input resistance groups r0 to r8 connected in series so as to divide the voltage between the voltage output terminals of the gradation reference voltage generation circuit 7. A signal conversion circuit is configured to convert display signals DATA for one line into pixel voltages by selectively using the regulated voltage and output these pixel voltages to the source lines X1 to Xn.

ソース線X1〜Xn上の画素電圧は走査信号によって駆動された1ライン分の画素スイッチング素子Wを介して対応する画素電極PEにそれぞれ供給される。コモン電圧Vcomは画素電圧の出力タイミングに同期してコモン電圧発生回路6から共通電極CEに出力される。このコモン電圧発生回路6はコントローラ5によって設定される8〜10ビット程度の数値データに対応した出力電圧を発生するD/A変換器等を用いて構成され、例えば0Vおよび5.8Vの電圧を1水平走査期間毎に交互に出力する。このため、ソースドライバ20側では、各D/A変換部23’がコモン電圧Vcomの中心レベルを基準にして画素電圧を極性反転させる。液晶印加電圧を最大にする場合、画素電圧は0Vのコモン電圧Vcomに対して5.8Vに設定され、5.8Vのコモン電圧Vcomに対して0Vに設定される。ちなみに、画素電圧がソースドライバ20から5.8Vで出力されても、画素スイッチング素子Wの寄生容量に起因するフィールドスルー電圧等により例えば4.8V程度に低下して画素電極PEに保持されることになる。このため、コモン電圧発生回路6から出力されるコモン電圧Vcomの振幅および中心レベルは実際に画素電極PEに保持される画素電圧に合わせて予め調整される。全画素PXの液晶印加電圧はさらに1フレーム(1垂直走査期間)毎に反転される。   The pixel voltages on the source lines X1 to Xn are respectively supplied to the corresponding pixel electrodes PE via the pixel switching elements W for one line driven by the scanning signal. The common voltage Vcom is output from the common voltage generation circuit 6 to the common electrode CE in synchronization with the output timing of the pixel voltage. The common voltage generation circuit 6 is configured by using a D / A converter or the like that generates an output voltage corresponding to numerical data of about 8 to 10 bits set by the controller 5. For example, voltages of 0 V and 5.8 V are generated. Alternately output every horizontal scanning period. Therefore, on the source driver 20 side, each D / A converter 23 'reverses the polarity of the pixel voltage with reference to the center level of the common voltage Vcom. When the liquid crystal applied voltage is maximized, the pixel voltage is set to 5.8 V with respect to the common voltage Vcom of 0 V, and is set to 0 V with respect to the common voltage Vcom of 5.8 V. Incidentally, even if the pixel voltage is output from the source driver 20 at 5.8V, it is reduced to, for example, about 4.8V due to the field through voltage caused by the parasitic capacitance of the pixel switching element W, and is held in the pixel electrode PE. become. For this reason, the amplitude and center level of the common voltage Vcom output from the common voltage generation circuit 6 are adjusted in advance according to the pixel voltage actually held in the pixel electrode PE. The liquid crystal applied voltage of all the pixels PX is further inverted every frame (one vertical scanning period).

この液晶表示装置1では、ゲートドライバ10が1垂直走査期間においてゲート線Y1,Y2,Y3,…に1水平走査期間ずつ順次走査信号を出力する。また、走査信号は各水平走査期間の開始直後のプリチャージ期間だけゲート線Y1,Y2,Y3,…の次のゲート線Y2,Y3,Y4…にも出力される。すなわち、各水平走査期間の開始直後のプリチャージ期間では、2本のゲート線Y1およびY2,Y2およびY3,Y3およびY4…が一緒に駆動される。   In this liquid crystal display device 1, the gate driver 10 sequentially outputs scanning signals to the gate lines Y1, Y2, Y3,. Further, the scanning signal is also output to the gate lines Y2, Y3, Y4,... Following the gate lines Y1, Y2, Y3,... Only during the precharge period immediately after the start of each horizontal scanning period. That is, in the precharge period immediately after the start of each horizontal scanning period, the two gate lines Y1, Y2, Y2, Y3, Y3, Y4,... Are driven together.

例えばゲート線Y1およびY2がプリチャージ期間において一緒に駆動されると、2ライン分の画素スイッチング素子Wが同時に導通し、ソース線X1,X2,X3,…が対応画素スイッチング素子Wを介して第1ラインの対応画素電極PEおよび第2ラインの対応画素電極PEに電気的に接続される。階調基準電圧発生回路7では、電圧切換部VC1〜VC6の切換スイッチSがこのプリチャージ期間においてプリチャージ用数値データを可変電圧発生部VG1〜VG6に出力し、可変電圧発生部VG1〜VGがプリチャージ用数値データを出力電圧に変換する。この結果、複数の階調基準電圧V0〜V9は表示信号DATAの最大階調差に対応した画素電圧範囲において互いに同じであるプリチャージ用中間電圧値に一時的に設定される。すなわち、階調基準電圧発生回路7の電圧出力端子間に電圧差が生じない。このため、これら電圧出力端間に接続された入力抵抗群r0〜r8から得られる所定数の階調電圧が全てこの中間電圧値に設定され、複数のD/A変換部23’に出力される。各D/A変換部23’が表示信号DATAに対応してこれら階調電圧の1つを選択しこれを画素電圧として画素電圧出力端から出力すると、ソース線X1〜Xnが実質的に表示信号DATAを反映しない中間電圧値の画素電圧までプリチャージされる。   For example, when the gate lines Y1 and Y2 are driven together in the precharge period, the pixel switching elements W for two lines are simultaneously turned on, and the source lines X1, X2, X3,. The corresponding pixel electrode PE in one line and the corresponding pixel electrode PE in the second line are electrically connected. In the gradation reference voltage generation circuit 7, the changeover switches S of the voltage switching units VC1 to VC6 output the precharge numerical data to the variable voltage generation units VG1 to VG6 during the precharge period, and the variable voltage generation units VG1 to VG Converts precharge numerical data into output voltage. As a result, the plurality of gradation reference voltages V0 to V9 are temporarily set to the same precharge intermediate voltage value in the pixel voltage range corresponding to the maximum gradation difference of the display signal DATA. That is, no voltage difference is generated between the voltage output terminals of the gradation reference voltage generation circuit 7. Therefore, a predetermined number of gradation voltages obtained from the input resistance groups r0 to r8 connected between these voltage output terminals are all set to this intermediate voltage value and output to the plurality of D / A converters 23 ′. . When each D / A conversion unit 23 'selects one of these gradation voltages corresponding to the display signal DATA and outputs it as a pixel voltage from the pixel voltage output terminal, the source lines X1 to Xn are substantially connected to the display signal. Precharged to an intermediate voltage pixel voltage that does not reflect DATA.

上述のプリチャージ期間が経過すると、走査信号は1本のゲート線Y1だけに継続的に出力され、次のゲート線Y2には出力されなくなる。これにより、ゲート線Y1が単独で駆動され、1ライン分の画素スイッチング素子Wだけ導通させると、ソース線X1,X2,X3,…が対応画素スイッチング素子Wを介して第1ラインの対応画素電極PEに電気的に接続される。階調基準電圧発生回路7では、電圧切換部VC1〜VC6の切換スイッチSがプリチャージ期間の経過後に表示用数値データを可変電圧発生部VG1〜VG6に出力し、可変電圧発生部VG1〜VGが表示用数値データを出力電圧に変換する。この結果、複数の階調基準電圧V0〜V9は表示信号DATAの最大階調差に対応した画素電圧範囲において互いに異なる表示用電圧値に設定される。これにより、階調基準電圧発生回路7の電圧出力端子間に電圧差が生じるため、これら電圧出力端間に接続された入力抵抗群r0〜r8から得られる所定数の階調電圧が互いに異なる表示用電圧値に設定され、複数のD/A変換部23’に出力される。各D/A変換部23’が表示信号DATAに対応してこれら階調電圧の1つ選択し、これを画素電圧として画素電圧出力端から出力すると、ソース線X1〜Xn上の画素電圧が表示信号DATAを反映した電圧値まで遷移する。   When the above-described precharge period elapses, the scanning signal is continuously output to only one gate line Y1, and is not output to the next gate line Y2. As a result, when the gate line Y1 is driven singly and only the pixel switching elements W for one line are made conductive, the source lines X1, X2, X3,. Electrically connected to PE. In the gradation reference voltage generation circuit 7, the changeover switches S of the voltage switching units VC1 to VC6 output display numerical data to the variable voltage generation units VG1 to VG6 after the precharge period has elapsed, and the variable voltage generation units VG1 to VG Convert numeric data for display to output voltage. As a result, the plurality of gradation reference voltages V0 to V9 are set to different display voltage values in the pixel voltage range corresponding to the maximum gradation difference of the display signal DATA. As a result, a voltage difference is generated between the voltage output terminals of the gradation reference voltage generation circuit 7, so that a predetermined number of gradation voltages obtained from the input resistance groups r0 to r8 connected between these voltage output terminals are different from each other. Is set to a voltage value for use and output to a plurality of D / A converters 23 '. When each D / A converter 23 'selects one of these gradation voltages corresponding to the display signal DATA and outputs it as a pixel voltage from the pixel voltage output terminal, the pixel voltages on the source lines X1 to Xn are displayed. Transitions to a voltage value reflecting the signal DATA.

上述の実施形態では、階調電圧発生回路7およびソースドライバ20の組み合わせが書き込み能力に優れた表示信号処理装置を構成し、画素電圧の電圧値および時間を任意に制御してソース線Xおよび画素PXをプリチャージできる。具体的には、出力制御部(電圧切換部VC1〜VC6)が信号変換回路(D/A変換回路23および出力バッファ24)の変換動作毎に階調基準電圧V0〜V9を表示信号DATAの最大階調差に対応する画素電圧範囲において互いに同じであるプリチャージ用中間電圧値に一時的に設定する。この状態では、階調基準電圧V0〜V9の電圧出力端子間に電圧差が生じないため、信号変換回路が入力抵抗群r0〜r8から得られる全階調電圧のどれを画素電圧として選択しても、上述した中間電圧値の画素電圧が出力される。信号変換回路の画素電圧出力端の負荷容量(ソース線X1〜Xn)が中間電圧値の画素電圧によってプリチャージされていると、画素電圧が表示信号DATAを反映した電圧値までより短い時間で遷移する。従って、駆動能力の増大を必要とせずに画素の駆動期間を短縮することが可能である。   In the above-described embodiment, the combination of the gradation voltage generation circuit 7 and the source driver 20 constitutes a display signal processing device having excellent writing capability, and the source line X and the pixel are controlled by arbitrarily controlling the voltage value and time of the pixel voltage. PX can be precharged. Specifically, the output control unit (voltage switching units VC1 to VC6) sets the gradation reference voltages V0 to V9 at the maximum of the display signal DATA for each conversion operation of the signal conversion circuit (D / A conversion circuit 23 and output buffer 24). The precharge intermediate voltage values are temporarily set to be the same in the pixel voltage range corresponding to the gradation difference. In this state, no voltage difference is generated between the voltage output terminals of the gradation reference voltages V0 to V9. Therefore, the signal conversion circuit selects any gradation voltage obtained from the input resistance groups r0 to r8 as the pixel voltage. Also, the pixel voltage having the above intermediate voltage value is output. When the load capacitance (source lines X1 to Xn) at the pixel voltage output terminal of the signal conversion circuit is precharged by the intermediate voltage pixel voltage, the pixel voltage transitions to a voltage value reflecting the display signal DATA in a shorter time. To do. Therefore, it is possible to shorten the pixel driving period without requiring an increase in driving capability.

特に上述のように全画素PXの液晶印加電圧の極性が1ライン毎および1フレーム毎に反転される駆動形式である場合には、ソースドライバ20のバッファ出力が各画素PXの画素電極PEに対して画素電圧を設定するために極めて大きく遷移しなくてはならない。例えば全体的に黒(または白)の画像が複数フレームにおいて連続的に表示される場合には、ソースドライバ20のバッファ出力はストローブ信号STBおよび垂直クロック信号CKVに対して図4に示すようなタイミングで遷移する。表示信号DATAに基づくD/A変換の開始タイミングをソース線Xを中間電圧値に設定した後にしてもよいが、上述のようにソースドライバ20のバッファ出力がフレームiおよび次のフレームi+1について逆極性になる場合には、表示信号DATAに基づくD/A変換の開始タイミングが既存のソースドライバICの仕様のためにソース線Xを中間電圧値に設定する前に制約されても、次の理由から表示信号DATAを反映した電圧値までの遷移時間を短縮することが可能である。ここで、例えばゲート線Yk−1,Ykおよびソース線X1に対応した一対の画素PXk−1,PXkに注目する。画素PXk−1,PXkはプリチャージ期間において導通する一対の画素スイッチング素子Wk−1,Wkをそれぞれ介して電気的にソース線X1接続され、画素PXk−1および画素PXk間で電荷を等しく配分させてこれら一対の画素PXk−1,PXkに同量の電荷を共有させる。ソース線X1がソースドライバ20のバッファ出力によって画素電圧範囲の略1/2である中間電圧値までプリチャージされる場合には、ソース線X1の電位遷移がこのプリチャージにおいて促進される。次に、ゲート線Yk,Yk+1およびソース線X1に対応した一対の画素PXk,PXk+1に注目すると、画素PXk−1,PXkは1水平走査期間(1H)後のプリチャージ期間において導通する一対の画素スイッチング素子Wk,Wk+1をそれぞれ介して電気的にソース線X1接続され、画素PXkおよび画素PXk+1間で電荷を等しく配分させてこれら一対の画素PXk−1,PXkに同量の電荷を共有させる。画素PXkについては、1水平走査期間(1H)前のプリチャージ期間においてソース線X1と共に中間電圧値に設定されている。これは、プリチャージ期間後においてソースドライバ20のバッファ出力によって行うソース線X1の電位遷移についても促進し、その結果として画素PXkの画素電圧を表示信号DATAを反映させた電圧値まで遷移させる時間を短縮する。   In particular, as described above, when the drive type is such that the polarities of the liquid crystal applied voltages of all the pixels PX are inverted for every line and every frame, the buffer output of the source driver 20 is applied to the pixel electrode PE of each pixel PX. In order to set the pixel voltage, a very large transition must be made. For example, when an overall black (or white) image is continuously displayed in a plurality of frames, the buffer output of the source driver 20 has a timing as shown in FIG. 4 with respect to the strobe signal STB and the vertical clock signal CKV. Transition with. Although the D / A conversion start timing based on the display signal DATA may be after the source line X is set to the intermediate voltage value, the buffer output of the source driver 20 is reversed for the frame i and the next frame i + 1 as described above. In the case of polarity, even if the start timing of D / A conversion based on the display signal DATA is restricted before setting the source line X to the intermediate voltage value due to the specifications of the existing source driver IC, the following reason It is possible to shorten the transition time from 1 to the voltage value reflecting the display signal DATA. Here, for example, attention is paid to the pair of pixels PXk-1, PXk corresponding to the gate lines Yk-1, Yk and the source line X1. The pixels PXk-1 and PXk are electrically connected to the source line X1 through a pair of pixel switching elements Wk-1 and Wk that are turned on in the precharge period, respectively, and charge is equally distributed between the pixels PXk-1 and PXk. Thus, the same amount of charge is shared by the pair of pixels PXk-1 and PXk. When the source line X1 is precharged to an intermediate voltage value that is approximately ½ of the pixel voltage range by the buffer output of the source driver 20, the potential transition of the source line X1 is promoted in this precharge. Next, paying attention to the pair of pixels PXk and PXk + 1 corresponding to the gate lines Yk and Yk + 1 and the source line X1, the pixels PXk-1 and PXk are turned on in a precharge period after one horizontal scanning period (1H). The source line X1 is electrically connected via the switching elements Wk and Wk + 1, respectively, and the charge is equally distributed between the pixel PXk and the pixel PXk + 1 so that the same amount of charge is shared by the pair of pixels PXk-1 and PXk. The pixel PXk is set to an intermediate voltage value together with the source line X1 in the precharge period before one horizontal scanning period (1H). This also promotes the potential transition of the source line X1 performed by the buffer output of the source driver 20 after the precharge period, and as a result, the time for transitioning the pixel voltage of the pixel PXk to the voltage value reflecting the display signal DATA. Shorten.

本発明の一実施形態に係る液晶表示装置の回路構成を概略的に示す図である。It is a figure which shows schematically the circuit structure of the liquid crystal display device which concerns on one Embodiment of this invention. 図1に示すソースドライバの構成を概略的に示す図である。It is a figure which shows schematically the structure of the source driver shown in FIG. 図2に示す階調基準電圧発生回路の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a gradation reference voltage generation circuit illustrated in FIG. 2. 図1に示す液晶表示装置の動作を示す波形図である。It is a wave form diagram which shows operation | movement of the liquid crystal display device shown in FIG. 従来から知られるHライン反転駆動方式を示す波形図である。It is a wave form diagram which shows the H line inversion drive system known conventionally.

符号の説明Explanation of symbols

1…液晶表示装置、2…アレイ基板、3…対向基板、4…液晶層、5…コントローラ、6…コモン電圧発生回路、7…階調基準電圧発生回路、10…ゲートドライバ、20…ソースドライバ、23…D/A変換回路、23’…D/A変換部、VC1〜VC6…電圧切換部VC1〜VC6、VG1〜VB6…可変電圧発生部、30…D/A変換器、31…出力バッファ、PE…画素電極、CE…共通電極、PX…液晶画素、DP…表示パネル、CNT…制御ユニット、X…ソース線、Y…ゲート線、W…画素スイッチング素子。   DESCRIPTION OF SYMBOLS 1 ... Liquid crystal display device, 2 ... Array substrate, 3 ... Opposite substrate, 4 ... Liquid crystal layer, 5 ... Controller, 6 ... Common voltage generation circuit, 7 ... Tone reference voltage generation circuit, 10 ... Gate driver, 20 ... Source driver , 23 ... D / A conversion circuit, 23 '... D / A conversion unit, VC1 to VC6 ... Voltage switching units VC1 to VC6, VG1 to VB6 ... Variable voltage generation unit, 30 ... D / A converter, 31 ... Output buffer , PE ... pixel electrode, CE ... common electrode, PX ... liquid crystal pixel, DP ... display panel, CNT ... control unit, X ... source line, Y ... gate line, W ... pixel switching element.

Claims (8)

複数の階調基準電圧を複数の電圧出力端から発生する階調基準電圧発生回路と、前記複数の電圧出力端の端子間電圧を分圧するように直列に接続される抵抗群から得られる所定数の階調電圧を選択的に用いて表示信号を画素電圧に変換する信号変換回路とを備え、前記階調基準電圧発生回路は前記信号変換回路の変換動作毎に前記複数の階調基準電圧を表示信号の最大階調差に対応した画素電圧範囲において互いに同じであるプリチャージ用中間電圧値に一時的に設定し、続いて前記複数の階調基準電圧を前記画素電圧範囲において互いに異なる表示用電圧値に設定する出力制御部を含むことを特徴とする表示信号処理装置。 A predetermined number obtained from a gradation reference voltage generating circuit for generating a plurality of gradation reference voltages from a plurality of voltage output terminals, and a resistor group connected in series so as to divide voltages between the terminals of the plurality of voltage output terminals. And a signal conversion circuit that selectively converts a display signal into a pixel voltage by selectively using the grayscale voltage, and the grayscale reference voltage generation circuit outputs the plurality of grayscale reference voltages for each conversion operation of the signal conversion circuit. Temporarily set to a precharge intermediate voltage value that is the same in the pixel voltage range corresponding to the maximum gradation difference of the display signal, and then the plurality of gradation reference voltages for different display in the pixel voltage range A display signal processing apparatus comprising an output control unit for setting a voltage value. 前記階調基準電圧発生回路は各々前記複数の諧調基準電圧のいずれかを出力電圧として発生する複数の可変電圧発生部および前記出力制御部として前記複数の可変電圧発生部をそれぞれ制御する複数の電圧切換部とを含むことを特徴とする請求項1に記載の表示信号処理装置。 The gradation reference voltage generation circuit is configured to generate a plurality of variable voltage generation units that generate any one of the plurality of gradation reference voltages as an output voltage, and a plurality of voltages that respectively control the plurality of variable voltage generation units as the output control unit. The display signal processing apparatus according to claim 1, further comprising a switching unit. 各電圧切換部は前記表示用電圧値を表す数値データを保持する第1レジスタ、プリチャージ用中間電圧値を表す数値データを保持する第2レジスタ、および前記第1レジスタに保持された数値データおよび前記第2レジスタに保持された数値データを選択的に対応可変電圧発生部に出力する切換スイッチを含むことを特徴とする請求項2に記載の表示信号処理装置。 Each voltage switching unit includes a first register that holds numeric data representing the display voltage value, a second register that holds numeric data representing a precharge intermediate voltage value, and numeric data held in the first register; 3. The display signal processing apparatus according to claim 2, further comprising a changeover switch that selectively outputs the numerical data held in the second register to the corresponding variable voltage generator. 各可変電圧発生部は対応電圧切換部の切換スイッチから出力される数値データをアナログ電圧に変換するデジタルアナログ変換器を含むことを特徴とする請求項3に記載の表示信号処理装置。 4. The display signal processing apparatus according to claim 3, wherein each variable voltage generator includes a digital-analog converter that converts numerical data output from the changeover switch of the corresponding voltage switching unit into an analog voltage. 各電圧切換部は前記第1レジスタに保持される数値データ、前記第2レジスタに保持される数値データ、および前記切換スイッチから数値データを出力するタイミングについて外部から制御されることを特徴とする請求項3に記載の表示信号処理装置。 Each voltage switching unit is externally controlled with respect to numerical data held in the first register, numerical data held in the second register, and timing for outputting numerical data from the changeover switch. Item 4. The display signal processing device according to Item 3. 前記階調基準電圧発生回路はさらに前記複数の可変電圧発生部の出力端間電圧を分圧するように直列に接続される複数の抵抗を含むことを特徴とする請求項2に記載の表示信号処理装置。 3. The display signal processing according to claim 2, wherein the gradation reference voltage generation circuit further includes a plurality of resistors connected in series so as to divide voltages between output terminals of the plurality of variable voltage generation units. apparatus. 前記プリチャージ用中間電圧値は前記画素電圧範囲の略1/2であることを特徴とする請求項1に記載の表示信号処理装置。 The display signal processing apparatus according to claim 1, wherein the precharge intermediate voltage value is approximately ½ of the pixel voltage range. 略マトリクス状に配置される複数の表示画素、前記複数の表示画素の行に沿って配置される複数のゲート線、前記複数の表示画素の列に沿って配置される複数のソース線、および前記複数のゲート線および前記複数のソース線の交差位置近傍に配置され各々対応ゲート線が駆動される間に対応表示画素を対応ソース線に電気的に接続する複数の画素スイッチング素子を含む液晶表示パネルと、前記複数のゲート線を順次駆動するゲートドライバ回路と、1行分の表示画素に対する表示信号に対応して前記複数のソース線を駆動するソースドライバ回路とを備え、前記ソースドライバ回路は複数の階調基準電圧を複数の電圧出力端から発生する階調基準電圧発生回路と、前記複数の電圧出力端の端子間電圧を分圧するように直列に接続される抵抗群から得られる所定数の階調電圧を選択的に用いて表示信号を画素電圧に変換する信号変換回路とを含み、前記階調基準電圧発生回路が前記信号変換回路の変換動作毎に前記複数の階調基準電圧を表示信号の最大階調差に対応した画素電圧範囲において互いに同じであるプリチャージ用中間電圧値に一時的に設定し、続いて前記複数の階調基準電圧を前記画素電圧範囲において互いに異なる表示用電圧値に設定する出力制御部を含む表示信号処理装置を有し、前記ソースドライバ回路は前記出力制御部が前記複数の階調基準電圧をプリチャージ用中間電圧値に設定するプリチャージ期間において少なくとも2本の隣接ゲート線を一緒に駆動するように構成されることを特徴とする液晶表示装置。 A plurality of display pixels arranged in a substantially matrix, a plurality of gate lines arranged along a row of the plurality of display pixels, a plurality of source lines arranged along a column of the plurality of display pixels, and the A liquid crystal display panel including a plurality of pixel switching elements that are arranged in the vicinity of intersections of the plurality of gate lines and the plurality of source lines and electrically connect the corresponding display pixels to the corresponding source lines while the corresponding gate lines are driven. A gate driver circuit that sequentially drives the plurality of gate lines, and a source driver circuit that drives the plurality of source lines in response to a display signal for one row of display pixels. A gradation reference voltage generating circuit for generating a plurality of gradation reference voltages from a plurality of voltage output terminals, and a resistor connected in series so as to divide voltages between the terminals of the plurality of voltage output terminals. A signal conversion circuit that selectively converts a display signal into a pixel voltage by selectively using a predetermined number of gradation voltages obtained from a group, and wherein the plurality of gradation reference voltage generation circuits for each conversion operation of the signal conversion circuit Is temporarily set to a precharge intermediate voltage value that is the same in the pixel voltage range corresponding to the maximum gradation difference of the display signal, and then the plurality of gradation reference voltages are set to the pixel voltage. A display signal processing device including an output control unit for setting display voltage values different from each other in a range, wherein the output control unit sets the plurality of gradation reference voltages to precharge intermediate voltage values A liquid crystal display device configured to drive at least two adjacent gate lines together during a precharge period.
JP2005189901A 2005-06-29 2005-06-29 Display signal processing device and liquid crystal display device Active JP4991127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005189901A JP4991127B2 (en) 2005-06-29 2005-06-29 Display signal processing device and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005189901A JP4991127B2 (en) 2005-06-29 2005-06-29 Display signal processing device and liquid crystal display device

Publications (3)

Publication Number Publication Date
JP2007010871A true JP2007010871A (en) 2007-01-18
JP2007010871A5 JP2007010871A5 (en) 2008-07-17
JP4991127B2 JP4991127B2 (en) 2012-08-01

Family

ID=37749495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189901A Active JP4991127B2 (en) 2005-06-29 2005-06-29 Display signal processing device and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4991127B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157169A (en) * 2007-12-27 2009-07-16 Casio Comput Co Ltd Display
JP2009251616A (en) * 2008-04-10 2009-10-29 Beijing Boe Optoelectronics Technology Co Ltd Device and method for driving liquid crystal display
JP2011048318A (en) * 2009-08-27 2011-03-10 Samsung Mobile Display Co Ltd Data driver and organic electroluminescent display having the same
CN102298897A (en) * 2010-06-22 2011-12-28 瑞萨电子株式会社 Drive circuit, drive method, and display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325556A (en) * 1994-05-31 1995-12-12 Hitachi Ltd Gradation voltage generation circuit for liquid crystal display device
JPH10333648A (en) * 1997-06-03 1998-12-18 Mitsubishi Electric Corp Liquid crystal display device
JP2002072968A (en) * 2000-08-24 2002-03-12 Advanced Display Inc Display method and display device
JP2002311916A (en) * 2001-04-17 2002-10-25 Matsushita Electric Ind Co Ltd Driving method, display circuit and display device
JP2002366112A (en) * 2001-06-07 2002-12-20 Hitachi Ltd Liquid crystal driving device and liquid crystal display device
JP2004165749A (en) * 2002-11-11 2004-06-10 Rohm Co Ltd Gamma correction voltage generating apparatus, gamma correction apparatus, and display device
JP2005234495A (en) * 2004-02-23 2005-09-02 Toshiba Matsushita Display Technology Co Ltd Display signal processing apparatus and display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325556A (en) * 1994-05-31 1995-12-12 Hitachi Ltd Gradation voltage generation circuit for liquid crystal display device
JPH10333648A (en) * 1997-06-03 1998-12-18 Mitsubishi Electric Corp Liquid crystal display device
JP2002072968A (en) * 2000-08-24 2002-03-12 Advanced Display Inc Display method and display device
JP2002311916A (en) * 2001-04-17 2002-10-25 Matsushita Electric Ind Co Ltd Driving method, display circuit and display device
JP2002366112A (en) * 2001-06-07 2002-12-20 Hitachi Ltd Liquid crystal driving device and liquid crystal display device
JP2004165749A (en) * 2002-11-11 2004-06-10 Rohm Co Ltd Gamma correction voltage generating apparatus, gamma correction apparatus, and display device
JP2005234495A (en) * 2004-02-23 2005-09-02 Toshiba Matsushita Display Technology Co Ltd Display signal processing apparatus and display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157169A (en) * 2007-12-27 2009-07-16 Casio Comput Co Ltd Display
JP2009251616A (en) * 2008-04-10 2009-10-29 Beijing Boe Optoelectronics Technology Co Ltd Device and method for driving liquid crystal display
US8982025B2 (en) 2008-04-10 2015-03-17 Beijing Boe Optoelectronics Technology Co., Ltd. Device and a method for driving liquid crystal display
JP2011048318A (en) * 2009-08-27 2011-03-10 Samsung Mobile Display Co Ltd Data driver and organic electroluminescent display having the same
US8681186B2 (en) 2009-08-27 2014-03-25 Samsung Display Co., Ltd. Data driver and organic light emitting display having the same
CN102298897A (en) * 2010-06-22 2011-12-28 瑞萨电子株式会社 Drive circuit, drive method, and display device

Also Published As

Publication number Publication date
JP4991127B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
KR100859467B1 (en) Liquid crystal display and driving method thereof
JP4199141B2 (en) Display signal processing device and display device
US7403185B2 (en) Liquid crystal display device and method of driving the same
US7369124B2 (en) Display device and method for driving the same
JP4551712B2 (en) Gate line drive circuit
US8054266B2 (en) Display device, driving apparatus for display device, and driving method of display device
JP2006292807A (en) Semiconductor integrated circuit for liquid crystal display driving
JP2007094415A (en) Shift register and display apparatus having the same
JPH11119734A (en) Driving circuit for liquid crystal display device and liquid crystal display device
JP2011059380A (en) Display device and drive circuit used therefor
US20120127142A1 (en) Liquid crystal display and inversion driving method
JP2004294733A (en) Image display device, and signal line driving circuit and method used for image display device
TW200951930A (en) Liquid crystal display apparatus
KR101492885B1 (en) Driving circuit and Liquid crystal display having the same
KR101174162B1 (en) Liquid crystal display
US8115719B2 (en) Electro-optical device
JP4991127B2 (en) Display signal processing device and liquid crystal display device
JP2006071891A (en) Liquid crystal display device and driving circuit and driving method thereof
JP2007065134A (en) Liquid crystal display
JP2008216893A (en) Flat panel display device and display method thereof
JP4525343B2 (en) Display drive device, display device, and drive control method for display drive device
JPH11352464A (en) Liquid crystal display device and liquid crystal panel
JPH0876091A (en) Method and device for driving liquid crystal panel
CN101162335A (en) Gate driver, electro-optical device, electronic instrument, and drive method
US7898516B2 (en) Liquid crystal display device and mobile terminal

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

R150 Certificate of patent or registration of utility model

Ref document number: 4991127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121009

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250