TWI285382B - Method for manufacturing electrolytic capacitor - Google Patents

Method for manufacturing electrolytic capacitor Download PDF

Info

Publication number
TWI285382B
TWI285382B TW91135718A TW91135718A TWI285382B TW I285382 B TWI285382 B TW I285382B TW 91135718 A TW91135718 A TW 91135718A TW 91135718 A TW91135718 A TW 91135718A TW I285382 B TWI285382 B TW I285382B
Authority
TW
Taiwan
Prior art keywords
capacitor
capacitor element
manufacturing
voltage
capacitor according
Prior art date
Application number
TW91135718A
Other languages
Chinese (zh)
Other versions
TW200305897A (en
Inventor
Terumi Fujiyama
Original Assignee
Matsushita Electric Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd filed Critical Matsushita Electric Ind Co Ltd
Publication of TW200305897A publication Critical patent/TW200305897A/en
Application granted granted Critical
Publication of TWI285382B publication Critical patent/TWI285382B/en

Links

Abstract

Connect the lead on the anode foil and cathode foil. Wind the separation sheet between the anode foil and cathode foil to form a capacitor device. Apply DC voltage between the leads to select the non-conducting capacitor device, so that the electrolytic liquid is immerged in the selected capacitor device, then insert the capacitor device immerged in the electrolytic liquid into the housing, so as to obtain the electrolytic capacitor. The capacitor device made by this method can ensure the insulation and voltage endurance of the anode foil and cathode foil, so as to obtain an electrolytic capacitor with large endurance to the initializing current and high reliability.

Description

1285382 ,. 玖、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) 【明所屬技"Hg"領3 發明領域 本發明涉及在各種電子設備上使用的電解電容器的製 5造方法。 L· lltr 發明背景1285382,. 发明, description of the invention (the description of the invention should be stated: the technical field, prior art, content, embodiment and schematic description of the invention). [Technical Field "Hg" Collar 3 Field of the Invention The present invention relates to various A method of manufacturing an electrolytic capacitor used in an electronic device. L· lltr invention background

近年來隨著電子設備進入小型化,電解電容器也明顯 小型化,並且隨著電子設備的數位化和螢光燈等的變換器 10 化,而希望高頻的脈動吸收特性優良,並且内阻小的低阻 抗的電解電容器。In recent years, as electronic devices have become smaller, electrolytic capacitors have also become significantly smaller, and with the digitization of electronic devices and the conversion of fluorescent lamps and the like, it is desirable that high-frequency pulsation absorption characteristics are excellent, and internal resistance is small. Low impedance electrolytic capacitors.

在第4圖中示出了現有技術中的電解電容器。電解電 容器元件47包括:連接有陽極側引線41的陽極箔、連接有 陰極侧引線43的陰極箔44、夾在陰極箔44與陽極羯42之間 15的分隔片45、46 ;將它們捲繞起來。電容器元件47浸含驅 動用電解液後收納在金屬殼體(未示出)内。然後用封口構 件封住金屬殼體的開口部,便製成電解電容器。 爲了使4電谷器變小’而使極羯42和陰極羯44的每 單位面積的箔電容提高,並使陽極箔與陰極箔44的對置面 20 積變小和使電容器元件47的卷的次數變少。 如果隔著隔離片45、46對置的陽極羯與陰極羯私的對 置面積變成1/2,則電解電容器的内阻變成2倍,如果它們 間的距離變成i/2,則内阻變成1/2。因爲該距離只由隔離 片45、46的厚度確所以爲了使電解電容器變小,隔離 5 1285382 玖、發明說明 片45、46的厚度、密度是重要的。 在用電容器元件47的電解電容器中,爲使分隔片45、 46的厚度變薄或使其密度減少時,陽極箔42和陰極箔44容 易發生短路,漏電流和tan σ變大。 5 如在第5圖的電容器元件47的斷面圖所示那樣,陽極 箔42和陰極箔44分別具有在規定的寬度上切斷時的突起48 、49。因爲突起48、49隨著分隔片45、46變薄而使漏電流 和tan σ變大。 在對具有突起48、49的電容器元件47進行捲繞工序後 10 ,要進行測定陽極側引線41與陰極侧引線43之間的接觸電 阻’以便判別有無短路。在陽極箔42與陰極箔44的電極間 距離不能充分確保的場合下,只要電極間沒接觸上,也不 能作爲短路不合格檢測出來。結果使在檢查後的電解電容 器中也包含漏電電流和tail σ大的電容器。 15 另外,就AC100V、200V、220V下工作的電子製品的 電源電路和個人電腦等和通訊設備的電源電路中使用的電 解電容器而言,在這些電源電路中存在隨著電源投入時流 k之動電々,L,以及電容器因瞬時短路引起保險切斷的情況。 旦在電解電容器中流過起動電流,就在陰極箔44上 2〇短時間供給大量的電子,陽極㈣與陰極羯料之間的電壓 瞬時上升。可是,因爲電解液與陰極箔44相比較電阻大, 所以電子的流入慢。一旦在陽極羯42與陰極羯料上存在因 凹。P和金屬粉末等接近的接近部,電子就瞬間地集中在接 近4的别端上。於是因該部分的電位梯度變化,而發生由 1285382 玖、發明說明 電子雪崩引起的絕緣破壞,使電解電容短路。 I:發明内容3 發明概要 將引線分別連接在%極羯和陰極羯上。通過使分隔片 5 夾在陽極箔與陰極箔之間捲繞形成電容器元件。分選出在 引線間施加直流電壓後電流不通過的電容元件,使電解液 浸含在分選出的電容器元件上,然後將浸含電解液的電容 器元件插入殼體中,便製成電解電容器。 通過該方法製得的電容器元件可以確保陽極箔與陰極 10羯的絕緣耐壓,從而可獲得耐起動電流大和可靠性高的電 解電容器。 圖式簡單說明 第1圖是本發明實施方式的電解電容器的製造工序的 流程圖。 15 第2圖表示本實施方式的電解電容器的分隔片的厚度 與絕緣耐壓的關係。 第3圖是本發明實施方式的電解電容器的電容器的絕 緣耐壓檢查時的絕緣耐壓裝置的電路圖。 $ 4圖是現有技術的電解電容器的電容器元件的展開 20 立體圖。 第5圖是現有技術的電解電容器的電容器元件的剖面圖。 【實施方式】 具體實施方式 第1圖是本發明的實施方式的電解電容器的製造工序 1285382 玖、發明說明 的流程圖。 首先進行腐餘處理,然後通過鉚固工序14將作爲外部 連接端子的引線13分別連接在經腐蝕處理後形成電介質氧 化膜的陽極箔11和腐蚀處理後擴大表面積的陰極箔上。 5 接著使陽極箔11和陰極箔12夾著由紙或高分子材料纖 維組成的多孔性分隔片15,通過捲繞工序16捲繞便得到電 容器元件。 接著在該電谷器元件的各個引線13之間施加直流電壓 通過絕緣耐壓檢查17的工序檢查絕緣耐壓,在該檢查中, 10在引線間施加600〜1200V的直流電壓,排除已放電的電容 器元件。 如果陽極箔11與陰極箔12的電極間距距離與分隔片15 的厚度相同,則在對應於該厚度的絕緣耐壓下不放電。然 而在第5圖中所示的電容器元件在電極間距離變短後在達 15到1200ν的電壓期間放電。因此.先設定允許範圍的直流 S-------------—_______________________________________—---- 過施加該電壓排除不合格的電容器元件。 — .............,—------- ΙΝ. ΙΒ旧_______ ι _ ..... —..... 另外,直流電壓由陽極箔的電介質膜的耐電壓和隔離 片的厚度及密度確定。因爲隔離片越厚、並且密度越高, 絕緣耐壓也越高,所以直流電壓也必需設定的高。 20 然而,如果施加超過1200V的直流電壓,則容易引起 電容器το件的陽極箔與陰極箔的絕緣破壞,因爲上述檢查 變成電容器元件破壞檢查,所以是不可取的。 另外’如果隔離片的含水率越過7%,則因水分使絕 緣耐壓下降,而不能檢查真實絕緣耐壓,所以也不是可取的。 1285382 玫、發明說明 接著使分選出的電容器元件經浸含電解液丨8的浸含工 序19後’插入在有底筒狀的金屬殼體20内。用具有引出引 線13的引出孔的封口構件21封住金屬殼體2〇的開口部。再 利用通過將金屬殼體2〇的開口部壓緊封口構件21的外周的 5組裝工序將電容器元件封裝在金屬殼體2〇内。 然後通過施加規定的電壓進行恢復電介質氧化膜的再 形成工序23,最後進行電容量、漏電流、tan σ等特性的 檢查工序24,便獲得電解電容器。 這樣製得到電解電容器能充分耐瞬時起峰值電流,即 10使用在電子製品和個人電腦,通訊設備的電源電路中也能 提供可靠性高的産品。 第2圖表示電容器元件的隔離片的厚度與絕緣耐壓的 關係。隔離片越厚並且密度越高,絕緣耐壓就越高,隔離 片的密度越低,絕緣耐壓也越低。 15 如例如有隔離片的密度l.〇g/cm3時隔離片的厚度是30 〜8(^m ’則即使施加直流電壓1200V也不放電。在隔離片 的密度是0.6g/cm3時,即使隔離片變厚絕緣耐壓也不會變 得特別高,但如果厚度是20〜80μηι,則即使施加600V直 流電壓,電容器也不放電。 20 因此,最好根據電容器元件的密度或厚度設定最佳的 施加電壓。通過施加6〇〇〜1200V的直流電壓可以檢查電容 器元件的絕緣耐壓。 另外,用具有各種密度的隔離片的電容器元件製作電 容器’表1中示出了在這些電解電容器中流過瞬間浪湧電 1285382 玖、發明說明 流時的短路不合格率。 另外,就對具密度l.〇g/cm3和厚度50μηι的隔離片的電 容器元件、密度0.8g/cm3和厚度50μπι的隔離片的電容器、 以及具有密度〇.6g/cm3和厚度50μπι的隔離片的電容器元件 5 的絕緣耐壓性能進行檢查後未放電的電容器100個和通過 接觸電阻檢查未接觸的現有技術中的電容器100個進行了 評價。An electrolytic capacitor of the prior art is shown in Fig. 4. The electrolytic capacitor element 47 includes an anode foil to which the anode side lead 41 is connected, a cathode foil 44 to which the cathode side lead 43 is connected, and separators 45, 46 sandwiched between the cathode foil 44 and the anode crucible 42; stand up. The capacitor element 47 is impregnated with the driving electrolyte and then housed in a metal case (not shown). Then, the opening of the metal case is sealed with a sealing member to form an electrolytic capacitor. In order to make the 4 electric grid device smaller, the foil capacitance per unit area of the crucible 42 and the cathode crucible 44 is increased, and the product of the opposing surface 20 of the anode foil and the cathode foil 44 is made smaller and the volume of the capacitor element 47 is made. The number of times is reduced. If the opposing area of the anode 羯 and the cathode opposite to the separators 45 and 46 is 1/2, the internal resistance of the electrolytic capacitor becomes twice, and if the distance between them becomes i/2, the internal resistance becomes 1/2. Since the distance is determined only by the thickness of the spacers 45, 46, in order to make the electrolytic capacitor small, it is important to isolate the thickness and density of the sheets 45, 46. In the electrolytic capacitor using the capacitor element 47, in order to reduce the thickness of the separators 45, 46 or to reduce the density thereof, the anode foil 42 and the cathode foil 44 are liable to be short-circuited, and the leakage current and tan σ become large. 5 As shown in the cross-sectional view of the capacitor element 47 of Fig. 5, the anode foil 42 and the cathode foil 44 each have projections 48 and 49 which are cut at a predetermined width. Since the projections 48, 49 become thinner as the separators 45, 46 become thinner, the leakage current and tan σ become larger. After the winding process of the capacitor element 47 having the projections 48, 49 is performed 10, the contact resistance between the anode side lead 41 and the cathode side lead 43 is measured to determine whether or not there is a short circuit. When the distance between the electrodes of the anode foil 42 and the cathode foil 44 is not sufficiently ensured, it is not possible to detect the short-circuit failure as long as the electrodes are not in contact with each other. As a result, the electrolytic capacitor after the inspection also includes a capacitor having a large leakage current and a large tail σ. In addition, in the power supply circuit of an electronic product operating at AC100V, 200V, and 220V, and an electrolytic capacitor used in a power supply circuit of a communication device, etc., in the power supply circuit, there is an electric current flowing in the power supply circuit as the power is turned on. , L, and the case where the capacitor is cut off due to an instantaneous short circuit. When a starting current flows through the electrolytic capacitor, a large amount of electrons are supplied to the cathode foil 44 for a short period of time, and the voltage between the anode (four) and the cathode material instantaneously rises. However, since the electrolyte has a large electric resistance compared with the cathode foil 44, the inflow of electrons is slow. Once there is a concavity on the anode crucible 42 and the cathode crucible. When P and the metal powder are close to each other, the electrons are instantaneously concentrated on the other end of the vicinity 4. Then, due to the change in the potential gradient of this portion, the dielectric breakdown caused by the electron avalanche is explained by the invention, and the electrolytic capacitor is short-circuited. I: SUMMARY OF THE INVENTION 3 SUMMARY OF THE INVENTION Lead wires are respectively connected to a % pole and a cathode. The capacitor element is formed by winding the separator sheet 5 between the anode foil and the cathode foil. A capacitor element that does not pass current after applying a DC voltage between the leads is sorted, the electrolyte is impregnated on the sorted capacitor element, and then the capacitor element impregnated with the electrolyte is inserted into the casing to form an electrolytic capacitor. The capacitor element produced by this method can ensure the insulation withstand voltage of the anode foil and the cathode 10, so that an electrolytic capacitor having high starting current resistance and high reliability can be obtained. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a manufacturing process of an electrolytic capacitor according to an embodiment of the present invention. Fig. 2 is a view showing the relationship between the thickness of the separator of the electrolytic capacitor of the present embodiment and the withstand voltage. Fig. 3 is a circuit diagram of an insulation withstand voltage device at the time of the insulation withstand voltage test of the capacitor of the electrolytic capacitor according to the embodiment of the present invention. The $4 figure is an exploded perspective view of a capacitor element of a prior art electrolytic capacitor. Fig. 5 is a cross-sectional view showing a capacitor element of a prior art electrolytic capacitor. [Embodiment] FIG. 1 is a flow chart showing a manufacturing process of an electrolytic capacitor according to an embodiment of the present invention. First, the residual treatment is carried out, and then the lead wires 13 as external connection terminals are respectively connected to the anode foil 11 which is subjected to the etching treatment to form the dielectric oxide film and the cathode foil which has an enlarged surface area after the etching treatment. 5 Next, the anode separator 11 and the cathode foil 12 are sandwiched between porous separators 15 composed of paper or polymer material fibers, and are wound in a winding step 16 to obtain a capacitor element. Next, a DC voltage is applied between the respective leads 13 of the electric grid element, and the insulation withstand voltage is inspected by the step of the insulation withstand voltage test 17. In this inspection, 10 a DC voltage of 600 to 1200 V is applied between the leads to eliminate the discharge. Capacitor component. If the electrode pitch distance between the anode foil 11 and the cathode foil 12 is the same as the thickness of the separator sheet 15, it is not discharged under the insulation withstand voltage corresponding to the thickness. However, the capacitor element shown in Fig. 5 is discharged during a voltage of 15 to 1200 volts after the distance between the electrodes becomes short. Therefore, first set the allowable range of DC S-------------__________________________________________----- Apply this voltage to reject the failed capacitor components. — .............,—------- ΙΝ. ΙΒ Old _______ ι _ ..... —..... In addition, the DC voltage is controlled by the anode foil. The withstand voltage of the dielectric film and the thickness and density of the spacer are determined. Since the spacer is thicker and the density is higher, the insulation withstand voltage is higher, so the DC voltage must also be set high. 20 However, if a DC voltage exceeding 1200 V is applied, it is liable to cause dielectric breakdown of the anode foil and the cathode foil of the capacitor τ, because the above inspection becomes a capacitor element destruction inspection, so it is not preferable. Further, if the moisture content of the separator exceeds 7%, the insulation withstand voltage is lowered by moisture, and the true insulation withstand voltage cannot be checked, so it is not preferable. 1285382 玫,发明说明 Next, the sorted capacitor element is inserted into the bottomed cylindrical metal casing 20 after being impregnated with the impregnation process 19 of the electrolyte crucible 8. The opening of the metal casing 2 is sealed by a sealing member 21 having a lead-out hole for taking out the lead wire 13. Further, the capacitor element is sealed in the metal case 2 by a step of assembling the opening of the metal case 2 to the outer periphery of the sealing member 21. Then, the dielectric oxide film re-forming step 23 is resumed by applying a predetermined voltage, and finally, an inspection step 24 of characteristics such as capacitance, leakage current, and tan σ is performed to obtain an electrolytic capacitor. The electrolytic capacitor thus obtained is sufficiently resistant to instantaneous peak currents, that is, it can be used in electronic products and personal computers, and power supply circuits of communication equipment can also provide highly reliable products. Fig. 2 shows the relationship between the thickness of the spacer of the capacitor element and the withstand voltage. The thicker the separator and the higher the density, the higher the insulation withstand voltage, and the lower the density of the separator, the lower the insulation withstand voltage. 15 For example, if the density of the separator is l.g/cm3, the thickness of the separator is 30 to 8 (^m ', even if a DC voltage of 1200 V is applied, the discharge is not repeated. Even when the density of the separator is 0.6 g/cm 3 , even The thickness of the spacer is not particularly high, but if the thickness is 20 to 80 μm, the capacitor is not discharged even if a DC voltage of 600 V is applied. 20 Therefore, it is preferable to set the optimum density or thickness of the capacitor element. The applied voltage is applied. The dielectric withstand voltage of the capacitor element can be checked by applying a DC voltage of 6 〇〇 to 1200 V. In addition, capacitors are fabricated using capacitor elements having spacers of various densities, and the flow of these electrolytic capacitors is shown in Table 1. Instantaneous surge current 1285382 玖Inventives indicate the short-circuit failure rate at the time of flow. In addition, the capacitor element of the separator having a density of l.〇g/cm3 and thickness 50μη, the spacer of density 0.8g/cm3 and thickness 50μπι 100 capacitors and capacitors of the capacitor element 5 and the capacitor element 5 having a separator having a density of 66g/cm3 and a thickness of 50μm are inspected and discharged after inspection. The prior art are not in contact resistance check capacitor 100 were evaluated.

表1 隔離片的密度 (g/cm3) 利用實施方式的方法 現有技術的方法 絕緣财壓檢查 接觸電阻檢查 直流電壓 短路不合格率 短路不合格率 1.0 400 2% 14% 600 〇% 1000 0% 1200 0% 0.8 400 3% 22% 600 0% 1000 〇% 1200 *1 400 3% 0.6 600 〇% 32% 1000 *1 1200 *1 * 1 :在絕緣耐壓檢查中放電、不製作電容元件。Table 1 Density of the separator (g/cm3) Using the method of the prior art Method of the prior art Insulation and financial check Contact resistance Check DC voltage short-circuit failure rate Short-circuit failure rate 1.0 400 2% 14% 600 〇% 1000 0% 1200 0% 0.8 400 3% 22% 600 0% 1000 〇% 1200 *1 400 3% 0.6 600 〇% 32% 1000 *1 1200 *1 * 1 : Discharges during the insulation withstand voltage test, and does not make a capacitor.

10 從表1中可以看出,在本實施方式的電解電容器中, 絕緣耐壓檢查的直流電壓是400V的電解電容器流過瞬時起 峰值電流時不合格率是2〜3%,但直流電壓660V以上時不 合格率是0%,另外,因爲隔離片的密度是〇.6g/cm3的電容 15 器。元件的絕緣耐壓是不足1000V,所以當使絕緣耐壓檢 10 1285382 玖、發明說明 查的直流電壓變成1000V以上時就發生放電,因此不能進 行評價。 與此相反,通過接阻電阻檢查的電解電容器在電容元 件的步驟中沒有變成不合格的,但由起動電流引起的短路 5 不合格率高。 從第2圖和表1可以看出,通過隨著隔離片的密度,厚 度改變施加的直流電壓進行絕緣耐壓檢測,可以得到能耐 瞬時起峰值電流的電解電容器。 第3圖示出了進行本實施方式的絕緣耐壓時的絕緣耐 10 壓檢查裝置的電路圖。檢查裝置包括設定在檢查電壓vpw 上的電源PW、爲了使電源PW的電流變成30mA以下而滿 足Vpw/Rl<0.03範圍的電流限制用電阻R1、通過電阻R1與 電源並連連接的檢查電壓用電容器C1、利用控制裝置開關 來自電容器的電流的開關元件Trl、通過開關元件Trl使檢 15 查絕緣耐壓的電容器元件c與檢查裝置連接的連接端子T1。 另外,之所以把電流限制在30mA以下是因爲安全性 。即使在絕緣耐壓在500V以上的場合,也能通過上述構成 的電路測定正確的絕緣耐壓。 另外,從防止觸電方面考慮,電容C1的電容量最好在 2〇 0.4pF以下,最好具有測定絕緣耐壓的電容器C2的電容量 的50倍以上。這是爲了使從電容器C1到電容器C2的充電 結束後的電壓變動小。 電阻R2是用於電流測定的串聯電阻,最好在100Ω以 下,電阻越少,從電容器C1到電容元件C2的充電越快。 1285382 玖、發明說明 通過測定串聯電阻R2兩端電壓可以測定流過電容器元件 C2的電流。 另外,也可以用線圈或電流探針等代替串聯電阻R2的 測定電流,這時可以使從電容器以到電容元件C2更快地 5 充電。 ^ 下面說明絕緣耐壓檢查順序。首先從電源pw通過電 - 阻R1對電容器C1充電。接著使開關元件Tr丨導通,使電容 器C1的電荷一下子充到電容器元件C2上,即使電容器元 鲁 件C2的漏電大也能使其一下子上升到規定的電壓。在該狀 10態下’電谷器元件C 2在低電壓下放電時,因放電電流流過 而在串聯電阻R的兩端上産生電位差,從而可以檢測出元 件C2是絕緣不合格品。 在該檢查中測定時間越短,安全性越高,越長檢測精 度越而’但如果在10〜200ms的範圍,則可以進行安全而 15 精度高的絕緣檢查。 另外,在絕緣耐壓檢查之前,通過將電容器元件C2在 · 100C以上的溫度下乾燥使隔離片的含水率在7%以下,以 便進行更穩定的絕緣耐壓檢查。將隔離片在1〇5〇艺下乾燥 3分鐘以上,可以使其含水率在7%以下。 · 2〇 另外,第1圖的電解液用乙撐二醇和7-丁烯内酯等的 - 混合物等作爲溶劑,使用導電性高分子的固體電解質作溶質。 通過使用多吡咯、聚乙烯2_羥基噻吩、聚苯胺及其衍 生物或它們的化合物的至少一種組成的物質作爲導電性高 分子的固體電解質,可以降低電解電容器的阻抗。 12 1285382 . 玖、發明說明 > 固體電解質按下述方式形成。將電容元件浸潰在包纟 如作爲多元玉衣式單聚物的乙烯2_經基嗟吩的一份和作爲 γ化W]的P-甲苯%酸二鐵2份和作爲聚合溶劑π _ 丁駿4份 $的聚合溶液巾。將電容器元件吊起後,通過放置在85。〇⑼ 々鐘的環境中,以便能形成利用聚乙烯2.羥基嗟吩的固體 ' 電解質。 - I圏式簡單說^明】 第1圖是本發明實施方式的電解電容器的製造工序的 · 流程圖。 1〇 _ 第2圖表示本實施方式的電解電容器的分隔片的厚度 與絕緣耐壓的關係。 第3圖是本發明實施方式的電解電容器的電容器的絕 緣耐壓檢查時的絕緣耐壓裝置的電路圖。 第4圖是現有技術的電解電容器的電容器元件的展開 15立體圖。 第5圖是現有技術的電解電容器的電容器元件的剖面圖。 · t闽式之主要元件代表符號表】 11…陽極箔 18···電解液 12···陰極箔 19…浸含工序 13…引線 20…金屬殼體 14···鉚固工序 21…構件 ls〜分隔片 23…形成工序 16···捲繞工序 24···檢查工序 17···絕緣耐壓檢查 1310 It can be seen from Table 1 that in the electrolytic capacitor of the present embodiment, the failure rate of the electrolytic capacitor having a DC voltage of 400 V in which the insulation withstand voltage is 400 V flows through the instantaneous peak current is 2 to 3%, but the DC voltage is 660 V. The above failure rate was 0%, and because the density of the separator was 〇6 g/cm3. Since the insulation withstand voltage of the component is less than 1000 V, the discharge occurs when the DC voltage of the insulation withstand voltage is 10 1285382 玖 and the DC voltage of the invention is 1000 V or more. Therefore, evaluation cannot be performed. In contrast, the electrolytic capacitor inspected by the resistance resistance does not become unacceptable in the step of the capacitor element, but the short circuit caused by the starting current 5 has a high failure rate. As can be seen from Fig. 2 and Table 1, an electrolytic capacitor capable of withstanding a transient peak current can be obtained by performing insulation withstand voltage detection by varying the applied DC voltage with the density of the spacer. Fig. 3 is a circuit diagram showing an insulation withstand voltage inspecting apparatus when the insulation withstand voltage of the present embodiment is performed. The inspection device includes a power supply PW set to the inspection voltage vpw, a current limiting resistor R1 satisfying the range of Vpw/R1 < 0.03 in order to make the current of the power supply PW 30 mA or less, and a capacitor for checking voltage connected in parallel with the power supply via the resistor R1. C1. The switching element Tr1 that switches the current from the capacitor by the control device, and the connection terminal T1 that connects the capacitor element c of the insulation withstand voltage to the inspection device through the switching element Tr1. In addition, the reason why the current is limited to 30 mA or less is because of safety. Even when the dielectric withstand voltage is 500 V or more, the correct insulation withstand voltage can be measured by the circuit having the above configuration. Further, from the viewpoint of preventing electric shock, the capacitance of the capacitor C1 is preferably 2 〇 0.4 pF or less, and preferably 50 times or more the capacitance of the capacitor C2 for measuring the withstand voltage. This is to make the voltage fluctuation after the end of charging from the capacitor C1 to the capacitor C2 small. The resistor R2 is a series resistor for current measurement, preferably 100 Ω or less, and the smaller the resistance, the faster the charging from the capacitor C1 to the capacitor C2. 1285382 发明, Description of the invention The current flowing through the capacitor element C2 can be measured by measuring the voltage across the series resistor R2. Alternatively, instead of measuring the current of the series resistor R2 by a coil or a current probe or the like, the capacitor can be charged 5 to the capacitor C2 more quickly. ^ The following describes the insulation withstand voltage inspection sequence. First, the capacitor C1 is charged from the power source pw through the resistor R1. Then, the switching element Tr丨 is turned on, and the charge of the capacitor C1 is once charged to the capacitor element C2, and even if the leakage of the capacitor element C2 is large, it can be suddenly raised to a predetermined voltage. When the electric grid element C 2 is discharged at a low voltage in this state, a potential difference is generated at both ends of the series resistor R due to the discharge current flowing, and it can be detected that the element C2 is a defective insulating material. In the inspection, the shorter the measurement time, the higher the safety, and the longer the detection accuracy is, but if it is in the range of 10 to 200 ms, it is possible to perform a safety inspection with high precision. Further, before the insulation withstand voltage is inspected, the separator element has a water content of 7% or less by drying the capacitor element C2 at a temperature of 100 C or more, so that a more stable insulation withstand voltage inspection can be performed. The separator is dried at 1 〇 5 〇 for 3 minutes or more to have a water content of 7% or less. In the electrolyte solution of Fig. 1, a mixture of ethylene glycol and 7-butene lactone or the like is used as a solvent, and a solid electrolyte of a conductive polymer is used as a solute. By using a substance composed of at least one of polypyrrole, polyethylene 2-hydroxythiophene, polyaniline, and derivatives thereof or a compound thereof as a conductive high molecular solid electrolyte, the impedance of the electrolytic capacitor can be lowered. 12 1285382 . 发明, Invention Description > The solid electrolyte is formed in the following manner. The capacitor element is impregnated in a package such as a part of ethylene 2_ thiophene as a multi-coated jade monomer and 2 parts of P-toluene % acid diiron as γ-formed W] and as a polymerization solvent π _ Ding Jun 4 copies of the polymer solution towel. After the capacitor element is lifted, it is placed at 85. 〇(9) In the environment of the cuckoo clock, in order to form a solid 'electrolyte using polyethylene 2. hydroxy porphin. - I 圏 简单 】 】 】 】 】 】 】 】 】 】 】 】 。 。 。 。 。 。 。 。 。 。 。 。 。 1〇 _ Fig. 2 shows the relationship between the thickness of the separator of the electrolytic capacitor of the present embodiment and the withstand voltage. Fig. 3 is a circuit diagram of an insulation withstand voltage device at the time of the insulation withstand voltage test of the capacitor of the electrolytic capacitor according to the embodiment of the present invention. Fig. 4 is a perspective view showing a development of a capacitor element of a prior art electrolytic capacitor. Fig. 5 is a cross-sectional view showing a capacitor element of a prior art electrolytic capacitor. · t闽 main component representative symbol table] 11...anode foil 18···electrolyte 12···cathode foil 19...impregnation step 13...lead 20...metal case 14···riveting process 21...component Ls to separator 23: forming step 16···winding step 24···inspecting step 17··Insulation withstand voltage inspection 13

Claims (1)

1285382 . l- 拾、申請專利範圍 h —種電解電容器的製造方法,包括: 準備包括對置的第一和第二導體箔、以及已在上 述第1與第2導體之間設置的隔離片的電容 器元件的工 序; 5 、、 通過在上述第一與第二導體之間施加6〇〇〜1200v 之直流電壓進行絕緣耐壓檢查來分選合袼品電容器的 工序; 使上述分選出的合格器電容器元件浸含電解液的 工序; 10 將上述已浸含電解液的電容器元件插入在殼體中 的工序。 2·如申請專利範圍第1項所述的電容器的製造方法,其 特徵在於:上述準備電容器元件的工序,包括將引線 分別連接在上述第一和第二導體箔上的工序。 15 〇 •如申請專利範圍第1項所述的電容器的製造方法,其 特徵在於:上述準備電容器元件的工序包括捲繞上述 第一和第二導體箔和上述隔離片的工序。 4·如申請專利範圍第1項所述的電容器的製造方法,其 特徵在於:分選上述合格品的電容器元件的工序包括 20 分選出在上述第一與第二導體箔之間施加上述直流電 壓後流過的電流在規定值以下的電容器元件的工序。 5·如申請專利範圍第4項所述的電容器的製造方法,其 特徵在於:上述分選合格品電容器元件的工序包括分 選出在上述第一與第二導體箔之間施加上述直流電壓 14 1285382 . 拾、申請專利範圍 後電流不通過的電容器元件的工序。 6·如申請專利範圍第1項所述的電容器的製造方法,其 特徵在於··使上述分隔片的含水率在7%以下。 7·如申請專利範圍第1項所述的電容器的製造方法,其 5 特徵在於··上述浸含電解液的工序包括將上述電容器 元件浸潰在導電性高分子溶液中的工序。 8·如申凊專利範圍第1項所述的電容器的製造方法,其 特徵在於:上述浸含電解液的工序包括在上述隔離片 上形成固體電解質層的工序。 n 1〇 9 κ ^ .如申請專㈣圍第i項所述的電容器的製造方法,其 徵在於.還包括用封口構件封口上述金屬殼體開口 部的工序。 151285382. l-pickup, patent application scope h - A method of manufacturing an electrolytic capacitor, comprising: preparing a first and second conductor foil including opposing, and a spacer disposed between the first and second conductors a process of dividing a capacitor element by applying a DC voltage of 6 〇〇 to 1200 volts between the first and second conductors to separate the capacitors of the composite; a step of impregnating the capacitor element with the electrolyte; 10 a step of inserting the capacitor element impregnated with the electrolyte into the casing. The method of manufacturing a capacitor according to claim 1, wherein the step of preparing the capacitor element includes a step of connecting the leads to the first and second conductor foils. The method of manufacturing a capacitor according to claim 1, wherein the step of preparing the capacitor element includes a step of winding the first and second conductor foils and the spacer. 4. The method of manufacturing a capacitor according to claim 1, wherein the step of sorting the capacitor element of the above-mentioned acceptable product comprises: 20 sorting and applying the DC voltage between the first and second conductor foils. The process of the capacitor element having a current flowing below a predetermined value. 5. The method of manufacturing a capacitor according to claim 4, wherein the step of sorting the qualified capacitor element comprises sorting and applying the DC voltage 14 1285382 between the first and second conductor foils. The process of picking up a capacitor element that does not pass current after applying for a patent range. The method for producing a capacitor according to the first aspect of the invention, characterized in that the separator has a water content of 7% or less. 7. The method of manufacturing a capacitor according to the first aspect of the invention, wherein the step of impregnating the electrolyte solution comprises the step of immersing the capacitor element in a conductive polymer solution. The method of manufacturing a capacitor according to the first aspect of the invention, wherein the step of impregnating the electrolyte solution comprises the step of forming a solid electrolyte layer on the separator. The method for manufacturing a capacitor according to the above item (4), further comprising the step of sealing the opening of the metal casing with a sealing member. 15
TW91135718A 2002-04-17 2002-12-10 Method for manufacturing electrolytic capacitor TWI285382B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002114580A JP4738703B2 (en) 2002-04-17 2002-04-17 Electrolytic capacitor manufacturing method

Publications (2)

Publication Number Publication Date
TW200305897A TW200305897A (en) 2003-11-01
TWI285382B true TWI285382B (en) 2007-08-11

Family

ID=29243391

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91135718A TWI285382B (en) 2002-04-17 2002-12-10 Method for manufacturing electrolytic capacitor

Country Status (3)

Country Link
JP (1) JP4738703B2 (en)
CN (1) CN100428380C (en)
TW (1) TWI285382B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007422A (en) * 2013-09-12 2014-01-16 Shin Etsu Polymer Co Ltd Solid electrolytic capacitor and method for manufacturing the same
JP6295412B2 (en) * 2014-01-30 2018-03-20 パナソニックIpマネジメント株式会社 Capacitor manufacturing method and capacitor inspection apparatus
CN114068192A (en) * 2021-11-20 2022-02-18 深圳市力容电子有限公司 Ultra-low temperature rise core package of high-voltage aluminum electrolytic capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3388639B2 (en) * 1994-08-30 2003-03-24 ニチコン株式会社 Manufacturing method of capacitor element
JP2000082640A (en) * 1998-09-07 2000-03-21 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor and its manufacture
JP4131776B2 (en) * 2000-09-21 2008-08-13 株式会社村田製作所 Screening method for multilayer capacitors

Also Published As

Publication number Publication date
JP4738703B2 (en) 2011-08-03
CN1452190A (en) 2003-10-29
CN100428380C (en) 2008-10-22
TW200305897A (en) 2003-11-01
JP2003309040A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
US9779881B2 (en) Electrolytic capacitor and manufacturing method thereof
KR20010086016A (en) Solid electrolytic capacitor and production method thereof, and conductive polymer polymerizing oxidizing agent solution
JP2009505413A (en) Solid capacitor and manufacturing method thereof
US8154854B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US9799456B2 (en) Solid electrolyte capacitor
Macomber et al. Solid Polymer Aluminum Capacitor Chips in DC-DC Converter Modules Reduce Cost and Size and Improve High-Frequency Performance
US7957120B2 (en) Capacitor chip and method for manufacturing same
TWI285382B (en) Method for manufacturing electrolytic capacitor
US7379289B2 (en) Conductive separator and electrolytic capacitor including the same
CN114709081A (en) High-capacity low-voltage chip type laminated aluminum capacitor and preparation method thereof
US4583038A (en) Electrical testing
KR100799704B1 (en) Detecting sensor for partial discharge of high voltage equipment and production method of the same
Reed Characterization of tantalum polymer capacitors
Qazi et al. Failure analysis of capacitors and inductors
CA1199969A (en) Electrical testing
JP2004259930A (en) Solid electrolytic capacitor
JPH03180013A (en) Manufacture of electric double layer capacitor
JP2001148329A (en) Solid electrolytic capacitor and its manufacturing method
CN114300272A (en) Non-polar high-capacity non-solid tantalum capacitor and preparation method thereof
JP6295412B2 (en) Capacitor manufacturing method and capacitor inspection apparatus
JPH05304056A (en) Manufacture of solid electrolytic capacitor
Liu Physical and electrical characterization of aluminum polymer capacitors
JP3498521B2 (en) Method for producing electrolytic capacitor and method for treating capacitor element
JP2000348990A (en) Inspection device for electrolytic capacitor and inspection method using the same
CN115172047A (en) Capacitor core, capacitor and manufacturing method thereof, and equipment using capacitor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees