JP3388639B2 - Manufacturing method of capacitor element - Google Patents

Manufacturing method of capacitor element

Info

Publication number
JP3388639B2
JP3388639B2 JP20539994A JP20539994A JP3388639B2 JP 3388639 B2 JP3388639 B2 JP 3388639B2 JP 20539994 A JP20539994 A JP 20539994A JP 20539994 A JP20539994 A JP 20539994A JP 3388639 B2 JP3388639 B2 JP 3388639B2
Authority
JP
Japan
Prior art keywords
leakage current
sintered body
sintered
oxygen concentration
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20539994A
Other languages
Japanese (ja)
Other versions
JPH0869946A (en
Inventor
紘一 三井
芳昭 佐藤
文雄 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP20539994A priority Critical patent/JP3388639B2/en
Publication of JPH0869946A publication Critical patent/JPH0869946A/en
Application granted granted Critical
Publication of JP3388639B2 publication Critical patent/JP3388639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タンタル、ニオブ等弁
作用金属を使用した電解コンデンサに用いる焼結体素子
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a sintered body element used in an electrolytic capacitor using a valve metal such as tantalum or niobium.

【0002】[0002]

【従来の技術】コンデンサの高容量化の為には、弁作用
金属の微粒子化が最も有効で、弁作用金属の表面積を増
大させる方法が知られている。
2. Description of the Related Art Fine particles of a valve metal are most effective for increasing the capacity of a capacitor, and a method for increasing the surface area of the valve metal is known.

【0003】弁作用金属の表面積増大に伴い、弁作用金
属表面の自然酸化皮膜及び吸着酸素が増加する為、焼結
体素子の全体の酸素濃度が増大する。
As the surface area of the valve metal increases, the natural oxide film and adsorbed oxygen on the surface of the valve metal increase, so that the oxygen concentration of the whole sintered body element increases.

【0004】焼結体素子の酸素濃度が増加すると、電極
引出用の弁作用金属ワイヤ−の機械強度の劣化、誘電体
酸化皮膜の欠陥部が増加し、コンデンサを製造した時、
漏れ電流が高くなることが知られている。
When the oxygen concentration of the sintered body element is increased, the mechanical strength of the valve action metal wire for drawing out the electrode is deteriorated and the defective portion of the dielectric oxide film is increased.
It is known that leakage current becomes high.

【0005】また、上記ワイヤ−埋込部の強度が弱いと
漏れ電流が高くなる問題があり、一旦焼結した後にワイ
ヤ−を溶接した後、再度焼結することにより、焼結体と
ワイヤ−の結合力を向上させる技術が知られている。
Further, if the strength of the wire-embedding portion is weak, there is a problem that leakage current becomes high. Therefore, after the wire is welded once after the sintering, the wire is re-sintered, whereby the sintered body and the wire There is known a technique for improving the binding force of.

【0006】ワイヤ−を溶接するコンデンサ素子は、ワ
イヤ−溶接時に酸素濃度が増加し、上述の様に弁作用金
属の微粒子化が進むと大幅に漏れ電流が上昇する為、ワ
イヤ−を溶接することは特性面から出来なかった。
In the capacitor element for welding the wire, the oxygen concentration increases during the wire welding, and the leakage current increases greatly as the valve action metal becomes finer as described above. Therefore, the wire should be welded. Was not possible from the aspect of characteristics.

【0007】[0007]

【発明が解決しようとする課題】上記した欠陥部の数
と、漏れ電流との間には図1に示すような正の相関関係
があり、欠陥部が多い程、漏れ電流が高い。また、欠陥
部の数が多い程、寿命試験でも漏れ電流の増加等、悪い
結果を示す。
There is a positive correlation between the number of defective portions and the leakage current as shown in FIG. 1, and the more defective portions, the higher the leakage current. In addition, the larger the number of defective portions, the worse the result of the life test, such as an increase in leakage current.

【0008】焼結体素子の酸素濃度と漏れ電流、酸素濃
度と弁作用金属ワイヤ−の機械強度は、図2、図3に示
すような相関関係がある。即ち、焼結体素子の酸素濃度
が高いと、漏れ電流の増加、弁作用金属ワイヤ−の機械
強度の劣化が起こる。
The oxygen concentration and the leakage current of the sintered body element, and the oxygen concentration and the mechanical strength of the valve action metal wire have a correlation as shown in FIGS. That is, when the oxygen concentration of the sintered body element is high, the leakage current increases and the mechanical strength of the valve action metal wire deteriorates.

【0009】一方、焼結体素子の酸素濃度は、弁作用金
属粉末の表面積又は、焼結体素子の表面積に比例する
為、高容量値粉末、即ち微粒子化粉末を使用した素子
程、焼結体素子の酸素濃度が高くなる。
On the other hand, the oxygen concentration of the sintered body element is proportional to the surface area of the valve action metal powder or the surface area of the sintered body element. The oxygen concentration of the body element is increased.

【0010】本発明は、このような問題点を解決する
為、焼結体素子の酸素濃度を低減させることにより、弁
作用金属ワイヤ−の機械的強度の改善、誘電体酸化皮膜
の欠陥部を減少させて、漏れ電流を低減し、耐電圧の改
善、寿命試験の信頼性向上を目的とする。
In order to solve the above problems, the present invention reduces the oxygen concentration of the sintered body element to improve the mechanical strength of the valve action metal wire and to improve the defective portion of the dielectric oxide film. The purpose is to reduce leakage current, improve withstand voltage, and improve reliability of life test.

【0011】[0011]

【課題を解決する為の手段】上記目的を達成する為に、
本発明の焼結体素子の製造方法は、弁作用金属粉末で成
形した素子を必要に応じ成形時のバインダ−を真空中で
除去した後、真空中で焼結する。その後、弁作用金属ワ
イヤ−を溶接し、焼結体素子を還元材料で還元し、還元
材料を酸洗浄した後、再度真空中で還元時の温度よりも
高い温度で焼結することを特徴として構成される。
[Means for Solving the Problems] In order to achieve the above object,
In the method for producing a sintered body element according to the present invention, the element formed of the valve action metal powder is sintered in vacuum after removing the binder used in the forming process in vacuum if necessary. Thereafter, the valve action metal wire is welded, the sintered body element is reduced with a reducing material, the reducing material is acid-cleaned, and then again sintered in vacuum at a temperature higher than the temperature at the time of reduction. Composed.

【0012】[0012]

【作用】上記したように本発明の還元処理を実施するこ
とにより、酸素濃度の少ない焼結体素子を得ることがで
き、その結果弁作用金属ワイヤ−の機械強度の向上、コ
ンデンサの漏れ電流特性の向上が図れるものである。ま
た、本発明の還元後、酸洗浄を実施しないと還元材料が
残存し、漏れ電流特性が悪くなる。
By carrying out the reduction treatment of the present invention as described above, a sintered body element having a low oxygen concentration can be obtained, and as a result, the mechanical strength of the valve action metal wire is improved and the leakage current characteristic of the capacitor is improved. Can be improved. Further, after the reduction of the present invention, if the acid cleaning is not carried out, the reducing material remains and the leakage current characteristic is deteriorated.

【0013】[0013]

【実施例1】以下、本発明の一実施例について説明す
る。
[Embodiment 1] An embodiment of the present invention will be described below.

【0014】タンタルパウダ−150mgを3.0mmφ×4.5mm
の円柱型に加圧成形し、成形素子を0.0133Pa以下の真空
中で1350℃で10分間焼結した後、タンタルワイヤ−を抵
抗溶接し、素子重量に対し、2重量%のマグネシウムと焼
結素子を焼結皿に入れ、0.133Pa以下の真空中で1000℃
で60分間熱処理し、素子中の酸素を還元させた。
Tantalum powder-150 mg is 3.0 mmφ × 4.5 mm
After pressure molding into a cylindrical shape, the molded element was sintered at 1350 ° C for 10 minutes in a vacuum of 0.0133 Pa or less, and then tantalum wire was resistance-welded, and sintered with 2% by weight of magnesium relative to the element weight. Put the element in a sintering dish, 1000 ℃ in a vacuum of 0.133Pa or less.
Was heat-treated for 60 minutes to reduce oxygen in the device.

【0015】その後、素子を硫酸で酸洗浄した後、再度
0.0133Pa以下の真空中で1350℃で10分間焼結した。尚、
酸洗浄は硝酸、塩酸等で実施しても良い。
After that, the element was acid-washed with sulfuric acid and then again.
Sintering was performed at 1350 ° C. for 10 minutes in a vacuum of 0.0133 Pa or less. still,
The acid cleaning may be performed with nitric acid, hydrochloric acid or the like.

【0016】その焼結素子を、EIAJ RC-2361(日本電子
機械工業会規格)に示された方法で50Vで2時間保持し
て、陽極酸化を行い誘電体酸化皮膜を形成した。そして
このように構成されたコンデンサ素子に35Vの電圧を印
加して、2分間充電した後、漏れ電流を測定した。ま
た、タンタルワイヤ−の曲げ強さと焼結素子の酸素濃度
との関係を測定した。
The sintered element was held at 50 V for 2 hours by the method shown in EIAJ RC-2361 (Japan Electronic Machinery Manufacturers Association Standard) for anodic oxidation to form a dielectric oxide film. Then, a voltage of 35 V was applied to the thus constituted capacitor element, the capacitor element was charged for 2 minutes, and then the leakage current was measured. Further, the relationship between the bending strength of the tantalum wire and the oxygen concentration of the sintered element was measured.

【0017】結果を表1に示す。The results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1の結果から明らかな様に、本発明の還
元処理を実施した焼結体素子は、従来法に比べて液中の
漏れ電流特性及び、タンタルワイヤ−の曲げ強さが改善
した。また、焼結素子の酸素濃度も低減している。
As is clear from the results of Table 1, the sintered body element subjected to the reduction treatment of the present invention has improved leakage current characteristics in the liquid and bending strength of the tantalum wire as compared with the conventional method. . Also, the oxygen concentration of the sintered element is reduced.

【0020】この後、誘電体酸化皮膜の上に、半導体
層、カ−ボン層、銀層を順次形成した後、外部引出し用
の陰極リ−ド及び、陽極リ−ドを引出した後、外装樹脂
を施してタンタル電解コンデンサを構成した。
Thereafter, a semiconductor layer, a carbon layer, and a silver layer are sequentially formed on the dielectric oxide film, and then a cathode lead for external extraction and an anode lead are drawn out, and then an outer package. Resin was applied to form a tantalum electrolytic capacitor.

【0021】そして、このタンタル電解コンデンサを12
5℃ 16V印加の高温負荷寿命試験に1000時間供した。そ
の結果を図4に示す。この図4から明らかなように、10
00時間後においては、従来の焼結体素子を使用したタン
タル電解コンデンサは、漏れ電流が10倍に増加している
が本発明の実施例の焼結体素子を使用したタンタル電解
コンデンサは、漏れ電流の増加がほとんどなく、これに
より、高温負荷寿命試験の信頼性が改善されることが証
明された。
Then, this tantalum electrolytic capacitor 12
The sample was subjected to a high temperature load life test of applying 5 V at 16 V for 1000 hours. The result is shown in FIG. As is clear from FIG. 4, 10
After 00 hours, the leakage current of the tantalum electrolytic capacitor using the conventional sintered body element is increased 10 times, but the tantalum electrolytic capacitor using the sintered body element of the embodiment of the present invention leaks. It has been demonstrated that there is little increase in current, which improves the reliability of the high temperature load life test.

【0022】今回の実施例では、成形素子を製作する
際、タンタルパウダ−にバインダ−を混合しなかった
が、成形性を向上させる為にバインダ−を混合した場合
は、加圧成形後に上記バインダ−を真空中で除去した後
で焼結を行った上、還元を行うと良い。また、還元温度
と同等または、低い温度で焼結してもタンタル素子中の
マグネシウムが残存する為、漏れ電流特性が悪くなる。
タンタル素子中のマグネシウムを除去する為、還元温度
より高い温度で焼結すると良い。尚、実施例の還元材料
にはマグネシウムを使用したが、アルミニウムを使用し
ても同等の効果が得られる。
In the present embodiment, the binder was not mixed with the tantalum powder when the molded element was manufactured. However, when the binder was mixed to improve the moldability, the binder was pressed after the pressure molding. It is advisable to perform reduction after removing − in vacuum and then performing sintering. Further, even if the sintering is performed at a temperature equal to or lower than the reduction temperature, magnesium remains in the tantalum element, resulting in poor leakage current characteristics.
In order to remove magnesium in the tantalum element, it is preferable to sinter at a temperature higher than the reduction temperature. Although magnesium was used as the reducing material in the examples, the same effect can be obtained by using aluminum.

【0023】[0023]

【発明の効果】以上に述べた様に、本発明のコンデンサ
は従来の製造方法に比べ、タンタルワイヤ−の機械強度
や、漏れ電流特性の大幅な改善を行うことができ、実際
の製品における高温負荷試験に供した場合の信頼性も著
しい改善が計れるものである。また、本発明では弁作用
金属ワイヤ−を溶接した後に還元した為、溶接時の素子
の酸素濃度増加を還元により低減することができ、より
漏れ電流特性の良好なコンデンサ素子を作ることが出来
る。
As described above, the capacitor of the present invention can significantly improve the mechanical strength of the tantalum wire and the leakage current characteristics as compared with the conventional manufacturing method, and the high temperature in an actual product can be improved. The reliability when subjected to the load test can be remarkably improved. Further, in the present invention, since the valve action metal wire is reduced after being welded, the increase in oxygen concentration of the element at the time of welding can be reduced and the capacitor element having better leakage current characteristics can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】コンデンサ素子の誘電体酸化皮膜の欠陥個数と
漏れ電流の関係図である。
FIG. 1 is a relationship diagram between the number of defects in a dielectric oxide film of a capacitor element and a leakage current.

【図2】焼結体素子の酸素濃度とコンデンサ素子の漏れ
電流の関係図である。
FIG. 2 is a diagram showing the relationship between the oxygen concentration of a sintered body element and the leakage current of a capacitor element.

【図3】焼結体素子の酸素濃度と弁作用金属ワイヤ−の
折曲回数の関係図である。
FIG. 3 is a diagram showing the relationship between the oxygen concentration of the sintered body element and the number of bendings of the valve action metal wire.

【図4】高温負荷試験での漏れ電流特性結果図である。FIG. 4 is a leakage current characteristic result diagram in a high temperature load test.

フロントページの続き (72)発明者 片山 文雄 京都府京都市中京区御池通烏丸東入一筋 目仲保利町191番地の4 上原ビル3階 ニチコン株式会社内 (56)参考文献 特開 昭63−16613(JP,A) 特開 平4−223318(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 9/00 H01G 9/052 Front Page Continuation (72) Fumio Katayama Inventor Fumio Katayama 4th floor, Uehara Building, 3rd floor, Uehara Building, No. 191, Nakaboricho, Oike Dori, Kaikemaru Higashiiri, Nakagyo-ku, Kyoto (56) , A) JP-A-4-223318 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01G 9/00 H01G 9/052

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 弁作用金属粉末を加圧成形した後、真空
中で焼結し電極引出用の弁作用金属ワイヤ−を溶接し
て、焼結体素子を形成し、該焼結体素子を還元材料を使
用して還元した後、真空中で且つ、還元時の温度よりも
高い温度で再度焼結することを特徴とするコンデンサ素
子の製造方法。
1. A valve-acting metal powder is pressure-molded, then sintered in a vacuum, and a valve-acting metal wire for drawing out an electrode is welded to form a sintered body element. A method for manufacturing a capacitor element, which comprises reducing the material using a reducing material and then performing sintering again in a vacuum and at a temperature higher than the temperature at the time of reduction.
【請求項2】 上記還元後、コンデンサ素子に付着した
還元材料を酸を用いて洗浄した後、再度焼結することを
特徴とする請求項1のコンデンサ素子の製造方法。
2. The method of manufacturing a capacitor element according to claim 1, wherein after the reduction, the reducing material attached to the capacitor element is washed with an acid and then sintered again.
JP20539994A 1994-08-30 1994-08-30 Manufacturing method of capacitor element Expired - Fee Related JP3388639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20539994A JP3388639B2 (en) 1994-08-30 1994-08-30 Manufacturing method of capacitor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20539994A JP3388639B2 (en) 1994-08-30 1994-08-30 Manufacturing method of capacitor element

Publications (2)

Publication Number Publication Date
JPH0869946A JPH0869946A (en) 1996-03-12
JP3388639B2 true JP3388639B2 (en) 2003-03-24

Family

ID=16506194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20539994A Expired - Fee Related JP3388639B2 (en) 1994-08-30 1994-08-30 Manufacturing method of capacitor element

Country Status (1)

Country Link
JP (1) JP3388639B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317723C (en) * 2000-03-23 2007-05-23 卡伯特公司 Oxygen reduced niobium oxides
JP4738703B2 (en) * 2002-04-17 2011-08-03 パナソニック株式会社 Electrolytic capacitor manufacturing method
JP4727160B2 (en) * 2003-04-28 2011-07-20 昭和電工株式会社 Valve action metal sintered body, manufacturing method thereof and solid electrolytic capacitor
CN1813323B (en) * 2003-04-28 2011-09-14 昭和电工株式会社 Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
US9548163B2 (en) * 2012-07-19 2017-01-17 Avx Corporation Solid electrolytic capacitor with improved performance at high voltages
DE102013213720A1 (en) 2012-07-19 2014-01-23 Avx Corporation Temperature stable solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH0869946A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
US7489498B2 (en) Capacitors and methods for manufacturing the same
US6522527B2 (en) Anode member for a solid electrolytic capacitor, an electrolytic capacitor using the same, and a method of making the same
JP4850127B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3388639B2 (en) Manufacturing method of capacitor element
EP1102287A2 (en) Fabrication method of solid electolytic capacitor
JP4776522B2 (en) Solid electrolytic capacitor
JP3547484B2 (en) Manufacturing method of capacitor element
CN110234451B (en) Improved wire to anode connection
JP3503971B2 (en) Manufacturing method of capacitor element
JP3425200B2 (en) Manufacturing method of capacitor element
JP4804235B2 (en) Solid electrolytic capacitor element, manufacturing method thereof and solid electrolytic capacitor
JP4748726B2 (en) Solid electrolytic capacitor
JP4366259B2 (en) Method for manufacturing element for solid electrolytic capacitor
JP4624017B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007081067A (en) Electrolytic capacitor and its manufacturing method
JP4648202B2 (en) Method for manufacturing anode element for solid electrolytic capacitor
US10777362B2 (en) Method to reduce anode lead wire embrittlement in capacitors
JP4947888B2 (en) Manufacturing method of solid electrolytic capacitor
JP2010192502A (en) Capacitor, and method of manufacturing capacitor
JPH08162372A (en) Manufacture of electrolytic capacitor
JP2908830B2 (en) Manufacturing method of electrolytic capacitor
JP4969233B2 (en) Solid electrolytic capacitor and niobium anode lead manufacturing method for solid electrolytic capacitor
JP2730512B2 (en) Method for manufacturing anode body of solid electrolytic capacitor
JP4942837B2 (en) Solid electrolytic capacitor
JPH11111575A (en) Manufacture of porous anode in solid electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees