TWI284919B - High-pressure processing chamber for a semiconductor wafer - Google Patents

High-pressure processing chamber for a semiconductor wafer Download PDF

Info

Publication number
TWI284919B
TWI284919B TW093130116A TW93130116A TWI284919B TW I284919 B TWI284919 B TW I284919B TW 093130116 A TW093130116 A TW 093130116A TW 93130116 A TW93130116 A TW 93130116A TW I284919 B TWI284919 B TW I284919B
Authority
TW
Taiwan
Prior art keywords
pressure
processing
seal
chamber
space
Prior art date
Application number
TW093130116A
Other languages
Chinese (zh)
Other versions
TW200523990A (en
Inventor
William D Jones
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW200523990A publication Critical patent/TW200523990A/en
Application granted granted Critical
Publication of TWI284919B publication Critical patent/TWI284919B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S134/00Cleaning and liquid contact with solids
    • Y10S134/902Semiconductor wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A processing chamber having an improved sealing means is disclosed. The processing chamber comprises a lower element, an upper element, and a seal energizer. The seal energizer is configured to maintain the upper element against the lower element to maintain a processing volume. The seal energizer is further configured to generate a sealing pressure in a seal-energizing cavity that varies non-linearly with a processing pressure generated within the processing volume. In one embodiment, the seal energizer is configured to minimize a nonnegative net force against one of the upper element and the lower element above a threshold value. The net force follows the equation P1*A1 - P2*A2, where P1 equals the sealing pressure, P2 equals the processing pressure, A1 equals a cross-sectional area of the seal-energizing cavity, and A2 equals a cross-sectional area of the processing volume.

Description

1284919 九、發明說明: 【發明所屬之技術領域】 、本發明係美國申請號10/364, 284之申請案的部份接續案,上 述申請案的名稱為『High-Pressure Processing Chamber for a Semiconductor Wafer』(半導體晶圓之高壓處理室),而其申請日 為2003年2月10曰,於此將其列入作為參考。 _本發明係有關於處理室之技術領域,特別有關於確實的密封 一高壓處理室的方法與系統。 【先前技術】 =¥體$件係藉由將其置人處理室的方法而加以製造,在此 了器件層、移除了處理殘留物,並在半導體器件上 的處理步驟。此外,有些處理室 和壓力清料導體晶圓。 队皿度 合時包含—上元件及—下元件。當兩個元件互相結 i處理^間,而晶圓被處理時即位於這處5里空間中。 狀賤下ΐ採ίΐΐΐ疋否保持密封是很重要的,因為僅有在密封 或i其二:ϋ能保持在正確的動作狀態,如高壓、大氣壓、 理的會曝部^職封處理室亦使得:⑷被處 處理室的。二it物中而變得不能使用,以及⑹被導入 當處理^。性材料等,並不會被釋放至週邊環境。 理力二門猎Ϊ產生—密封力抵消在處理室中產生的處 開,打開if理力之作用為迫使上元件和下元件分 塞而產生。為壞處理空間。密封力可藉由液壓活 理工作件前,蔣間不受密封力的影響而可以維持,在處 可達到處理力從去、查f丨设定成最大可達到之處理力。即使此最大 到’密封力仍維持者僅在全處理循環的—小部份中達 類處理至具有許多缺點。首先,在反複施加密封力後,承 1284919 =最高可達到之密封力一段非必要的長時間之密封元件易於故 障。第二’密封面上的巨大接觸力會產生微粒物質,此物質會被 導入處理空間中且污染晶圓。第三,用以加壓液壓液體的設備增 加了處理系統的成本,因為此設備係用以密封處理室而不是處理 =晶圓。第四’設計成將液壓零件換成使用超臨界處理材料的超 臨界零件之系統相當昂貴。這些系統也需要複雜的回收技術,因 為超臨界材料於能夠被再度使用前必須被膨脹及加壓。 …因此,吾人需要一處理系統,此系統:(1)不需要持續之過大 密t力以維持一處理空間,(2)降低可能被導入處理空間的污染物 數量’(3)利用已使用在處理中的元件以維持處理空間的密封,以 及(4)使用較小的能量供給空間,以使處理系統較緊密且較有效率 的操作。 【發明内容】 本發明係有關於一半導體處理系統,此系統使用一密封壓力 維持一處理空間,此壓力係遵循維持最佳密封之規則。在本發明 士第一態樣中,半導體處理系統包含一上元件、一下元件以及一 密封士具。上元件和下元件被設計成互相結合以形成一處理空 間德封強化為用以保持上元件抵住下元件以維持處理空間。密 更用以控制在密封強化腔室中的密封壓力,密封強化腔 至隨著處理空間中產生的處理壓力呈非線性的改變。 ^發明之-實施财,密封強化以使—非負淨力保持 值之上並最小化此淨力’此非負淨力係作用於上元件和 =件其中之-。淨力可雜等式p_—mA2來表示,其中ρι 5m力、P2為處賴力、A1域賴键室的制面面積、 理循ΛίΓϋ的橫剖面面積。難的情況是,密封強化器在處 人-ΐ 維持在實質上不變的狀況。密封強化器最好包 厂ίζ腔至以及密封強化腔室。第一腔室連接於密封強化腔 強化器使得產生於第—腔室中的第—壓力在密封強化腔 至中產生比第—動大的第二勤,佳的情況是,橫剖面面積 1284919 A1大於橫剖面面積A2。 在另一實施例中,系統更包含用以產生超臨界狀況的工具, 此工具連接至一處理空間。此系統更包含連接至處理空間的C〇2 供應容器。較佳的情況是,上元件以及下元件形成一超臨界處理 至。遂、封強化腔室可更包含一液壓活塞,此活塞連接至一下元林 並用以維持處理空間。 本發明的第二態樣為維持處理空間的方法,此方法包含在一 處理至中產生一處理壓力以及控制一密封壓力以產生並維持一處 理空間。在一處理循環中,密封壓力隨著處理壓力作非線性的變 化。較佳的情況是,密封壓力與依下列公式求取的處理壓力相關: △F=P1*A1-P2*A2,其中π為密封壓力,P2為處理壓力,A1為密 ^強化腔室的橫剖面面積,且A2為處理空間的橫剖面面積。密封 壓力係改變㈣轉在轉值之上。處理空間的横面積最 好小於始、封強化腔室的横剖面面積。產生處理壓力的步驟最好包 含在處理空㈣具有-賴力處理流體。高壓力處理流體可包含 =界二氧化碳。㈣密封壓力的步驟最好包含在 中產生一液壓壓力。 1 【實施方式】 本發明係有關於在ϋ件處理期間有效率的 之ΪΓΓ圓在處理室中被處理時,其:經: 處理空間,該使用最小的作用力維持密封。 钌 盡月Γ 1處理壓力』係指在器件處理期間於處理空間 的作程中可能改變。『處理力』係指由處 係指在密封強化腔室中所產生的壓力(如下所述)『密Sf^』t 據本發明,密封力與處理力均衡且被“維持處理匕根 1284919 處i 了 理空間,密封力必須略大於處理力。 s二t r二異,常,。『處理空間密封』係= 與封』係藉由使㈣元件之表面 之實施例係藉由平衡處理勤與密封《力之方式來維 由確雜之實現,係藉 空_ 一上二(±53匕腔至的一面之表面面積較大於處理1284919 IX. Description of the Invention: [Technical Field of the Invention] The present invention is a continuation of the application of U.S. Application No. 10/364,284, the name of which is "High-Pressure Processing Chamber for a Semiconductor Wafer" (High-voltage processing chamber for semiconductor wafers), and its filing date is February 10, 2003, which is hereby incorporated by reference. The present invention relates to the technical field of processing chambers, and more particularly to a method and system for reliably sealing a high pressure processing chamber. [Prior Art] = ¥ Body $ is manufactured by placing it in a processing chamber, where the device layer is removed, the processing residue is removed, and the processing steps on the semiconductor device. In addition, there are some processing chambers and pressure-clearing conductor wafers. The team includes the upper and lower components. When two components are connected to each other, and the wafer is processed, it is located in this 5 mile space. It is very important to keep the seal, because it is only in the seal or i: the ϋ can maintain the correct operating state, such as high pressure, atmospheric pressure, and the treatment will also be exposed Make: (4) is in the processing room. It becomes unusable in the second thing, and (6) is imported when it is processed ^. Sex materials, etc., will not be released to the surrounding environment. The two-door hunting scorpion produces a seal force that counteracts the opening in the processing chamber, and the effect of opening the if force is forced to force the upper and lower components to separate. Handling space for bad. The sealing force can be maintained by the hydraulic working piece before the Jiang is not affected by the sealing force, and the processing force can be set to the maximum achievable processing force. Even if this is up to the 'sealing force is maintained, only the small part of the full processing cycle is processed to have many disadvantages. First, after repeated application of the sealing force, the 1284919 = the highest achievable sealing force for a non-essential long-term sealing element is prone to failure. The large contact force on the second 'sealing surface' creates particulate matter that can be introduced into the processing space and contaminate the wafer. Third, equipment used to pressurize hydraulic fluid adds to the cost of the processing system because it is used to seal the process chamber rather than processing the wafer. The fourth system designed to replace hydraulic parts with supercritical parts using supercritical processing materials is quite expensive. These systems also require complex recycling techniques because the supercritical material must be expanded and pressurized before it can be reused. ...so, we need a processing system that: (1) does not need to continue to over-tighten the force to maintain a processing space, and (2) reduces the amount of contaminants that may be introduced into the processing space' (3) The components in process to maintain the seal of the process space, and (4) use a smaller energy supply space to allow the processing system to operate more tightly and more efficiently. SUMMARY OF THE INVENTION The present invention is directed to a semiconductor processing system that maintains a processing space using a sealing pressure that follows the rules for maintaining an optimal seal. In a first aspect of the invention, a semiconductor processing system includes an upper component, a lower component, and a sealing implement. The upper and lower members are designed to be joined to each other to form a process space. The seal is strengthened to hold the upper member against the lower member to maintain the processing space. The seal is used to control the seal pressure in the seal strengthening chamber, sealing the chamber to a non-linear change with the processing pressure created in the process space. ^Inventive-implementation, the seal is strengthened so that the non-negative net force is above the value and minimizes the net force. This non-negative net force acts on the upper element and the = part. The net force can be expressed by the equation p_-mA2, where ρι 5m force, P2 is the reliance force, the area of the A1 domain reliance key chamber, and the cross-sectional area of the Λ Γϋ 。. The difficult case is that the seal strengthener is maintained in a substantially constant condition. The seal strengthener is preferably packaged in a chamber to seal the chamber. The first chamber is connected to the seal-enhanced chamber intensifier such that the first pressure generated in the first chamber produces a second duty in the seal strengthening chamber to the middle, preferably a cross-sectional area of 1284919 A1 Greater than the cross-sectional area A2. In another embodiment, the system further includes a tool for generating a supercritical condition, the tool being coupled to a processing space. This system also includes a C〇2 supply container that is connected to the processing space. Preferably, the upper and lower elements form a supercritical process. The helium and seal strengthening chamber may further comprise a hydraulic piston connected to the lower forest to maintain the processing space. A second aspect of the invention is a method of maintaining a processing space that includes generating a process pressure in a process and controlling a seal pressure to create and maintain a process space. In a treatment cycle, the seal pressure changes nonlinearly with the process pressure. Preferably, the sealing pressure is related to the processing pressure obtained by the following formula: ΔF = P1 * A1 - P2 * A2, where π is the sealing pressure, P2 is the processing pressure, and A1 is the transverse of the strengthening chamber The cross-sectional area, and A2 is the cross-sectional area of the processing space. The seal pressure changes (4) above the turn. The cross-sectional area of the processing space is preferably smaller than the cross-sectional area of the initial and sealed strengthening chambers. The step of generating a process pressure is preferably included in the process air (four) having a treatment fluid. The high pressure treatment fluid can contain = boundary carbon dioxide. (d) The step of sealing the pressure preferably includes generating a hydraulic pressure therein. [Embodiment] The present invention relates to a process in which a circle that is efficient during processing of a workpiece is processed in a processing chamber, which is: through a processing space, which maintains a seal with a minimum force.尽 尽 Γ 1 Processing pressure means that it may change during the processing of the processing space during device processing. "Processing force" means the pressure generated by the Department in the seal strengthening chamber (described below) "Sm^". According to the present invention, the sealing force and the treatment force are balanced and are "maintained and treated at 1284919". I have a space, the sealing force must be slightly larger than the processing force. s two tr two different, often, "processing space seal" = and the seal is made by the embodiment of the surface of the (four) component by balancing the treatment Sealing the way of force to achieve the realization of the miscellaneous, is to borrow the space _ one on the second (±53 匕 cavity to the side of the surface area is larger than the treatment

^處理[力且相差—夠大的值。依此方式,處理 二高ί理力之作用力所需之密封壓力預加J =ϊ;稍大於處理力。 ΐϊϊϊ^ΓΓ維ί:因此說密封壓力係隨著處理壓力而變動 力平衡 由於密封面的接觸力不會變得過大,故本發明之 ΪΞΙΪϋίΐί面^磨損·。此外,受平衡施力的零件並不ΐϊ 施例得 „以承受密封壓力的所有作用力:此 平衡處理力的密封力。 而要承又超過 本發明之實施例亦防止設備的損壞。舉例而言 或其他異物不慎被放在密封表關時,㈣ 2 件或其他外部物體,或損壞處理設備。 在此狀況下轉較小的值,可雑處職叙損壞^保在封力 本發明之實施例亦可以在密封壓力低於一臨界值 封強化腔室漏氣絲充滿密封液料,將處理空間以預定方法= 8 1284919 行排=因此,處理材料將不會被__遭環境。 強化妒官必ίΐί之實施例可降低密封強化腔室的大小,此密封 用在ί封強二4匕以?持處理空間密封。其他實施例亦因為作 且此^力之上的淨力減小而降將低密封強化腔室的大小, 此,處理空間ΐ有壓力平衡於而非遠超_理壓力。因 圖1 dUi明之一實施例的處理組件⑽之橫剖面圖。 導體晶®二下^的i理組件1〇〇,在此位置可置入或移除一半 及(b)當在㈣被確貫地贿(也就是被維持),以 排氣,因此暫緩處理未維持一超臨界壓力時,處理室101被 171 二一活fj72’其將-圓筒室分成-上儲存室 此,當活塞 P$ h 〇 ,孔隙,弟一導官Ϊ80之第一端便連 存室173具有-孔隙,第-導管181之第- 存室173之間的液體連齡至173並允許外部來源和下儲 處理至101包含一上元杜1 1 Π »Μ 12 包含一平臺120,此平臺將上^ ^ = 一下元件150。上元件110 I, „6 〇 =密啦⑴。在此方 1284919 通於]^^2,1181,使得導管181的第二端亦可連 空間中並包含活突6。平室120係可滑動的裝設在上元件110的内 依二二。因此,如圖1所示,當平_ 腔室116的办門二’被封強化腔室115的空間減少且上處理 ^^尸^ ί圖1,示的,平臺120的横剖面係呈 將在底下詳述。下毛1為包含松封兀件131(如0環)的密封面I30 圖ZA C '/i70件150具有連接至平臺155的上表面156。 圖自不平ί120的俯視圖、橫剖面圖以及底面圖。 臺120、之>Μ[Γτ^μ<3化腔室115觀察的平臺120。圖2Α亦繪示了平 Γ35 ,其形成了密封強化腔室爪的表面。外部面 的樺以及一對應的表面面積。圖2Β顯示平臺120 據㈣,其顯科臺⑽的橫剖賴為—彻型。 義了备/系則頭顯不平臺120的内部面136。内部面136定 -奢:〜“ φ °>位於—關閉位置時的處理空間(14G,圖3)之 溝^之^ ί顯示密封面13G以及包含在密封面130上的密封 平圖%顯示自處理空間140(參考圖3)觀察的 為平臺120的^面如所示’内部面136以及外部面135 示的外邱、、。車又佳的,如圖2A-C所示,由半徑134所表 之奈」ΐ 135之表面面積大於由箭頭132所表示的内部面136 上=積。在—實施例中’内部面136以及外部面135為實質 亦可ϋί,,雖然圖2A~C描述平臺12G為圓形,但平臺120^ Process [force and phase difference - a large enough value. In this way, the sealing pressure required to handle the force of the two high forces is pre-added J = ϊ; slightly larger than the processing force. Ϊ́ϊϊϊ^ΓΓ维ί: Therefore, the sealing pressure varies with the processing pressure. Force balance Since the contact force of the sealing surface does not become excessive, the ΪΞΙΪϋίΐί surface of the present invention is worn. In addition, the parts subjected to the balanced application are not operative to withstand all the forces of the sealing pressure: this balances the sealing force of the treatment force. However, the embodiment of the present invention is also prevented from damaging the equipment. Words or other foreign objects are inadvertently placed on the seal table, (4) 2 pieces or other external objects, or damage to the processing equipment. Under this condition, the smaller value can be used to damage the work. The embodiment can also be used to seal the chamber leakage gas to fill the sealing liquid at a sealing pressure lower than a critical value, and the processing space is arranged in a predetermined manner = 8 1284919 rows. Therefore, the treated material will not be subjected to the environment. The embodiment of the reinforced 必 必 ΐ 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之 之Smaller and lower will seal the size of the chamber, so that the processing space has a pressure balance rather than a much higher pressure. Because of the cross-sectional view of the processing assembly (10) of one embodiment of Figure 1 dUi Ming. Under the ^ component of the ^, This position can be placed or removed in half and (b) when (4) is successfully bribed (that is, maintained) to vent, so when the treatment is not maintained at a supercritical pressure, the processing chamber 101 is 171 Live fj72' which divides the cylinder chamber into the upper storage chamber. When the piston P$ h 〇, the aperture, the first end of the guide Ϊ 80 has a porosity, the first of the first conduit 181 The liquid between the chambers 173 is connected to the age of 173 and allows the external source and the lower storage process to 101 to include an upper element 1 1 Π » Μ 12 comprising a platform 120, which will be on the ^ ^ = lower element 150. 110 I, „6 〇=密啦(1). On this side 1284919 is passed through ^^2, 1181, so that the second end of the conduit 181 can also be connected to the space and contain the living protrusion 6. The flat chamber 120 is slidably mounted within the upper member 110. Therefore, as shown in FIG. 1, when the space of the door 2' of the flat chamber 116 is reduced, and the space of the chamber 115 is reduced, and the upper processing is performed, the cross section of the platform 120 is shown. Detailed below. The lower hair 1 is a sealing surface I30 comprising a loose element 131 (such as a 0 ring). The ZA C '/i 70 piece 150 has an upper surface 156 that is coupled to the platform 155. The top view, cross section, and bottom view of the figure are not flat. The stage 120, the Μ[Γτ^μ<3, the platform 120 observed by the chamber 115. Figure 2A also shows a flat 35 which forms the surface of the seal-enhancing chamber jaws. The outer surface of the birch and a corresponding surface area. Fig. 2 shows the platform 120 according to (4), and the cross section of the display station (10) is - type. The inner surface 136 of the platform 120 is not shown. The inner surface 136 is fixed-luxury: ~ "φ °" is located in the processing space (14G, Fig. 3) of the closed position ^ ί shows the sealing surface 13G and the sealed flat figure % shown on the sealing surface 130 The surface of the platform 120 as viewed from the processing space 140 (refer to FIG. 3) is as shown in the 'internal surface 136 and the outer surface 135, and the outer surface of the outer surface 135 is good, as shown in FIG. 2A-C. The surface area of the surface 134 of 134 is greater than the inner surface 136 of arrow 132 = product. In the embodiment, the inner surface 136 and the outer surface 135 are substantially ,, although FIGS. 2A-C depict the platform 12G as a circle, the platform 120

、=形狀’不論是幾何形或非幾何形。而且,雖然、圖2A-C J 轉i31以及其組合密封溝痕(未圖示)為圓形且位於平 二τ-入β但⑥封元件131以及其組合密封溝痕亦可以為其他形 何交杜何形或魏何形,*且可錄於處理系統1G〇的任 下:ί上I舉例來說,密封元件131以及其組合密封溝痕可位於 ρ件之表面156上⑽’圖υ、平臺⑽、圖υ上或是其他位 1284919 HO Γ〇 } 100 $ j 1、40由平,部面136、密封環i3i以及上表面i56 1辻C義。,T二5!被包含在處理空間140内。如以下將 由如下步驟鱗持:在㈣強化腔室 的声而 壓Ί吏平室120及密封環131頂住下元件150 m6,以形成—處理賴。處理材料在此時被導人處理空間 理方H導體晶圓/吉根據本發明’半導體晶圓可以使用任何處 ^方法^組合.,例如在真空、低壓、大氣壓 Ϊ限:ίίΐ=賴製造步驟等,但並非表示本發明之範^ 魏ί 3顯示一輛188(圖4)的橫剖面圖龜-B和186Α-Β,輛188 Γϋ 的⑽’將上元件11G料至下元件150,以在處理 郎⑽。圖3顯示輛188的—左上臂舰、一左下 理宮im、一右上臂腿以及一右下臂186β,兩左臂用以緊固處 劈之一邊,而兩右臂用以緊固處理室101之另一邊。左上 186A f f左下臂185B形成了左臂185的—部份(圖4)。右上臂 86A和右下臂186B形成了右臂186的一部份(圖4)。 徠9^ ί顯示處理室10卜輛188以及支撐組件250,其中支撐组 Hi,撐處理組件⑽,圖υ。圖4顯示位於關閉^置的 或導其^至1〇1。為了簡化’圖4和5並未圖示平衡圓筒170 ίο】月'* ^、181和190。圖4顯示軛臂185和186如何在處理室 技蓺 以將上元件11G緊密連接至下元件15G。如熟知此項 ί Γ8ΐ=ϊ ’麵188可具有多種不同結構。舉例來說’耗臂185 為楔形,因此當其依圖4之箭頭2所指之方向移動時, 臂以及下元件150朝彼此推壓並使其緊密頂住,當軛 互相分門丨86順著箭頭3方向移動時,上元件110以及下元件巧〇 1284919 拔人_是’亦可以使用輛以外的結構將上元件110緊密的 >二μ 150。舉例來說,位於上元件110和下元件150其中 夕I一加工字螺检(T—b〇lt),以及位於上元件110和下元件150 合=:額=提供在處理期間將上元件緊密的接 水鉗顯示:支樓組件’此組件包含基座209、底部延伸部2〇7、 某座209且HI03以及頂部延伸部2〇5。底部延伸部207連接至 ,滑動方式設置於其上,使難188及相連 乒同二二inf兩度得以調整。夾鉗201和配重(weight)203 S密的g人;=心提供了—額外的力,以保持上元件110 施上而頂部延伸部205允許夾甜201在配重 且古ί =示位於開放位置的圖4之處理室101,此處理室101 ? 11和支撐組件250。在圖5中,配重203自夾鉗201被舉 起’而輕188藉著伽 使得ΐ導體晶圓可;理自下元件150被移除, 半導^(13圖^/^^5^=動=。在動作中,, = shape 'either geometric or non-geometric. Moreover, although, FIG. 2A-CJ to i31 and the combination seal groove (not shown) are circular and located in the flat two-n-into-beta, the six-package element 131 and its combined seal groove may be other shapes. Du He shape or Wei He shape, * and can be recorded in any of the processing systems 1G :: 上 I, for example, the sealing element 131 and its combined sealing groove marks can be located on the surface 156 of the p piece (10) ', The platform (10), the figure or other bits 1284919 HO Γ〇} 100 $ j 1, 40 from the flat, the face 136, the seal ring i3i and the upper surface i56 1 辻 C sense. , T 2 5! is included in the processing space 140. The following steps will be carried out by: (4) strengthening the sound of the chamber and pressing the flat chamber 120 and the sealing ring 131 against the lower member 150 m6 to form a treatment. The processing material is then processed by the human body to process the H-conductor wafer/Ji. According to the invention, the semiconductor wafer can be used in any combination of methods, such as vacuum, low pressure, atmospheric pressure limit: ίίΐ = Lai manufacturing steps Etc., but does not mean that the invention of the invention shows a cross-sectional view of a 188 (Fig. 4) turtle-B and 186 Α-Β, and a 188 Γϋ (10)' feeds the upper element 11G to the lower element 150 to Processing Lang (10). Figure 3 shows the left-hand arm of the 188, a left lower arm, a right upper arm and a right lower arm 186β. The two left arms are used to fasten one side of the sill, and the two right arms are used to fasten the processing room. The other side of 101. The upper left 186A f f left lower arm 185B forms a portion of the left arm 185 (Fig. 4). The right upper arm 86A and the lower right arm 186B form part of the right arm 186 (Fig. 4).徕9^ ί shows the processing chamber 10 and the support assembly 250, wherein the support group Hi, the support assembly (10), Fig. Figure 4 shows that it is located at or close to 1〇1. For simplicity, Figures 4 and 5 do not illustrate the balance cylinder 170 ίο] months '* ^, 181 and 190. Figure 4 shows how the yoke arms 185 and 186 are in the process chamber to tightly connect the upper member 11G to the lower member 15G. As is well known, the 1888ΐ=ϊ 面 188 can have a variety of different configurations. For example, the 'arm 185 is wedge-shaped, so when it moves in the direction indicated by the arrow 2 of FIG. 4, the arm and the lower member 150 push against each other and hold it tightly, when the yokes are separated from each other by the threshold 86 When moving in the direction of the arrow 3, the upper element 110 and the lower element are arbitrarily 1284919. It is also possible to use the structure other than the vehicle to make the upper element 110 tight > For example, it is located in the upper element 110 and the lower element 150, wherein the first element is a machine word screw (T-b〇lt), and the upper element 110 and the lower element 150 are combined: the amount = provides the upper element tightly during processing Water Pliers Display: Branch Building Assembly 'This assembly includes a base 209, a bottom extension 2〇7, a seat 209 and a HI03 and a top extension 2〇5. The bottom extension 207 is connected to and slidably disposed thereon so that the difficulty 188 and the connected ping are adjusted twice as well as the two inf. Clamp 201 and weight 203 S dense g;; the heart provides - additional force to keep the upper element 110 applied and the top extension 205 allows the clip 201 to be in the counterweight and the ancient The processing chamber 101 of FIG. 4 in an open position, the processing chamber 101-11 and the support assembly 250. In FIG. 5, the weight 203 is lifted from the clamp 201' and the light 188 is used to make the conductive wafer can be removed by the gamma; the lower element 150 is removed, the semi-conductor ^ (13图^/^^5^ = motion =. In the action,

IsJ ! JJ 18!Α1Β/σ 186A'B ^ ^ ΐΐιΤτ% 3 = i⑴”上储存至171並流入密封強化 夕T: 用水以外的液體,如油等來作為密封材料上ί 厭喊不可壓縮的材料亦可以根據本發明被使用。而曰 I祕或不可麵液體亦可以在處入’ 處理組件100位於開放位置時。 ⑼了間被置入’例如’ 著’―處理材料被置人下儲存室173。處理材料可為#計 $刻、·刻、超臨界餘刻或是其他餘刻方法 在 s者’處理材料可為處理料體或料體器件的其他材&。2本 12 1284919 發明的一實施例中,此處的清潔材料為c〇2,此材料將在稍後變成 超臨界狀態,並用以清除在處理空間14〇中的半導體晶圓上之光 阻殘留。C〇2可藉由導管190置入下儲存室173,此導管在稍後會 被覆蓋。C〇2經過導管181並進入處理空間14〇。C〇2—但位於處理 空間140中便形成超臨界C〇2。超臨界C〇2可透過處理空間140循 環以在平臺155上清潔一半導體晶圓。 處理室以及超臨界C〇2的動作在底下的專利有所描述:在2〇〇 1 年7月24號申請的美國專利” Supercritical Processing Chamber for Processing Semiconductor Wafer” ,專利號碼為 09/912,844;在2002年4月10號申請的美國專利,,耵§匕1^二如1^ Processing Chamber for Semiconductor Substrate IncludingIsJ ! JJ 18!Α1Β/σ 186A'B ^ ^ ΐΐιΤτ% 3 = i(1)” stored in 171 and flows into the seal to strengthen the evening T: a liquid other than water, such as oil, is used as a sealing material. It can also be used in accordance with the present invention, and the 秘I secret or non-surface liquid can also be placed in the 'processing assembly 100 in the open position. (9) The room is placed in 'for example' - the processing material is placed in the storage room 173. The processing material may be #刻,刻刻,Supercritical Residual or other residual method. The material may be treated as a material or material device. 2 This 12 1284919 invention In one embodiment, the cleaning material herein is c〇2, which will later become a supercritical state and used to remove photoresist residue on the semiconductor wafer in the processing space 14〇. The conduit 190 is placed into the lower storage chamber 173, which will be covered later. C〇2 passes through the conduit 181 and enters the processing space 14〇. C〇2—but in the processing space 140, a supercritical C〇2 is formed. Supercritical C〇2 can be cycled through processing space 140 on platform 155 Jieyi Semiconductor Wafer. The processing room and the supercritical C〇2 action are described in the following patent: US Patent “Supercritical Processing Chamber for Processing Semiconductor Wafer”, patent number applied on July 24, 2002 US Patent No. 09/912,844; filed on April 10, 2002, 耵§匕1^二如1^ Processing Chamber for Semiconductor Substrate Including

Flow Enhancing Feature”,專利號碼為 10/121,791 ;在 2000 年11月1號申請的美國專利Method and Apparatus for Supercritical Processing of a Workpiece”,專利號碼為 09/704, 641。 ' 如前所述,本發明確認處理空間(140,圖3)在處理期間被維 持。圖6為圖1和3之平衡圓筒170的更詳細圖解,顯示當處理 空間(140 ’圖3)被維持時’也就是正常處理時的平衡圓筒。 如底下所述,根據圖6和7,平衡圓筒170係用以確定當一半導體 器件在處理空間140中被處理時,處理空間140係被維持的狀態t 如圖6所示’上儲存室171包含如水或油之類的不可壓縮液體 177。不可壓縮液體Π7流過導管180並全部或部份的填滿密封強 化腔室(115,圖3)。較佳的情況是,由上儲存室ι71所定^的密 封強化腔室(115,圖3)係分開的。較佳的情況是,可成為超臨^ 狀態的清潔液體178被置入導管190,在此處全部或部份滿下 儲存室173並被置入封閉處理室101的處理空間14〇。在處$里期 間,清洗液體178變為超臨界狀態,使得處理空間14〇中^半導 體晶圓得以被清洗。須注意的是,將液體導入並將期變成超㉟界 或其他處理狀態的步驟可以在處理循環中不段重覆。在動1 13 1284919 間,活塞172可用以堵住孔隙175。 平衡圓筒170可確認處理空間140係緊密的密封。此目的 藉由平衡處理空間140中的處理壓力與密封強化腔室115中的I 封壓力而達成。在一例子中,如圖3和6所示,處理壓力大於二 封壓力。因為密封強化腔室115透過導管18〇連通於上儲存室松 Π1,兩者壓力相等;且處理空間14〇透過導管ι81連通於下^ 室173,兩者壓力相等。因此,當處理壓力大於密封壓力時,活j 172會朝箭頭4方向被推壓(圖6)。因為由上儲存室171所定義二 ,間和密封強化腔室(115,圖3)錢的空間係相互隔離的,月 前頭4方向的移動增大密封壓力並減小處理壓力。此步驟持續 士理壓力與後、封壓力達到相等或平衡。同樣的,當處理壓力小於 袷封-力,時,活塞172會朝箭頭5方向被推壓(圖6),減小了密封 ,力並牦大處理壓力。再一次,這種情況持續到處理壓力與密封 壓力達到相等或平衡,因為在上儲存室中的液體為不可壓^近 =不可壓縮。目此,處理壓力平衡於密封壓力或追隨密封壓 殳化,且密封壓力不須預加載成最大可能處理壓力。 、圖7為當密封強化腔室(115,圖3)並未維持一適當的壓力, 是,在異常處理期關6之平衡圓筒17〇的更詳細圖解。有 會造成此種狀況。舉例而言,密封強化腔室115有漏茂 持自上儲存室171接收的不可壓縮液體177。或者,上 ΐϊίΓ1及與其連通之密封強化腔室115可能因疏忽而未充滿 7。在任何情況下,絲封強化腔室115沒有足夠 ,密封壓力低於—轉壓力),辭導體清洗程序 Ϊ。因為處理如140並沒有維持,處理材料178 t 間自處理空間⑽,圖3) 半導體。根據本發明之實施例,可確 所指,#密封壓力低於—臨界值時,活塞172在箭頭4 付曰的方向移動。排放孔175位於下儲存室173中,且處理材料 1284919 178自排放孔175被排出且安全的逐出至一容 氣中或者至可儲存紐的其他容財。因 ^ ^ 序可傳迗一用以停止或暫緩器件處理的訊號。 圖8至10顯示包含壓力增奸的實_ 室中接收-傾並職此壓相纽—較切密封壓力在所= 圖8-10的實施例須產生並維持一相對小的壓力以產 ^ ^些實施例需要較少的能量以及朗來維持—處理如,因此較 有效率。Flow Enhancing Feature, patent number 10/121,791; US Patent Method and Apparatus for Supercritical Processing of a Workpiece, filed November 1, 2000, patent number 09/704, 641. As described above, the present invention confirms that the processing space (140, Fig. 3) is maintained during processing. Figure 6 is a more detailed illustration of the balance cylinder 170 of Figures 1 and 3 showing the balance cylinder when the process space (140 'Figure 3) is maintained, i.e., during normal processing. As described below, according to Figures 6 and 7, the balancing cylinder 170 is used to determine the state in which the processing space 140 is maintained when a semiconductor device is processed in the processing space 140. 171 contains an incompressible liquid 177 such as water or oil. The incompressible liquid crucible 7 flows through the conduit 180 and fills all or part of the seal strengthening chamber (115, Figure 3). Preferably, the seal strengthening chamber (115, Fig. 3) defined by the upper storage chamber ι 71 is separated. Preferably, the cleaning liquid 178, which can be in the super-state, is placed in the conduit 190 where it is fully or partially filled with the storage chamber 173 and placed in the processing space 14 of the closed processing chamber 101. During the period of $, the cleaning liquid 178 becomes supercritical, so that the semiconductor wafer can be cleaned in the processing space. It should be noted that the step of introducing the liquid and turning it into a super-35 or other processing state can be repeated in the processing cycle. Between 1 13 1284919, piston 172 can be used to block aperture 175. The balance cylinder 170 can confirm that the process space 140 is a tight seal. This object is achieved by balancing the process pressure in the process space 140 with the I-block pressure in the seal enhancement chamber 115. In one example, as shown in Figures 3 and 6, the process pressure is greater than the two seal pressures. Since the seal strengthening chamber 115 is connected to the upper chamber looseness 1 through the conduit 18, the pressures of the two are equal; and the processing space 14 is communicated to the lower chamber 173 through the conduit ι 81, and the pressures are equal. Therefore, when the process pressure is greater than the seal pressure, the live j 172 is pushed in the direction of the arrow 4 (Fig. 6). Since the space defined by the upper storage chamber 171 and the seal strengthening chamber (115, Fig. 3) are isolated from each other, the movement in the head 4 direction increases the sealing pressure and reduces the processing pressure. This step continues with the stamen pressure and the back and seal pressures equal or balanced. Similarly, when the process pressure is less than the seal-force, the piston 172 is pushed in the direction of arrow 5 (Fig. 6), reducing the seal, force and increasing the process pressure. Again, this continues until the process pressure and seal pressure are equal or balanced because the liquid in the upper reservoir is incompressible = incompressible. To achieve this, the process pressure is balanced to the seal pressure or following the seal pressure, and the seal pressure does not have to be preloaded to the maximum possible process pressure. Figure 7 is a more detailed illustration of the balance cylinder 17 关 when the seal strengthening chamber (115, Figure 3) does not maintain a suitable pressure. This can cause this situation. For example, the seal enhancement chamber 115 has a leak impervious to the incompressible liquid 177 received from the upper reservoir 171. Alternatively, the upper ΐϊίΓ1 and the seal-enhancing chamber 115 connected thereto may be inadvertently unfilled. In any case, the wire seal strengthening chamber 115 is not sufficient, the sealing pressure is lower than the - turning pressure, and the conductor cleaning procedure is Ϊ. Since the process, such as 140, is not maintained, the processing material 178 t is self-processing space (10), and Figure 3) is a semiconductor. According to an embodiment of the present invention, it can be confirmed that when the #sealing pressure is lower than the -threshold value, the piston 172 moves in the direction of the arrow 4. The venting opening 175 is located in the lower storage chamber 173, and the processing material 1284919 178 is discharged from the venting opening 175 and safely ejected into a volume of gas or other treasury that can store the nucleus. The signal can be used to stop or suspend the processing of the device. Figures 8 to 10 show that in a real chamber containing pressure-increasing rape, the pressure-receiving phase is the same as the sealing pressure. The embodiment of Figures 8-10 is required to generate and maintain a relatively small pressure to produce Some embodiments require less energy and are more prone to processing, such as, and therefore more efficient.

—藉由使用-壓力增強ϋ可將不可壓縮液體如水等施壓成所需 的密^壓力’ ^此可省略高液壓設備。壓力增強器中的壓力須夠 ^得,臨界處理㈣在進人壓力增強科得以變成氣體。因為 ,臨界處理液體變成氣相,其密度降低,讎力增髓將不可壓 縮液體施壓成所需的密封壓力所需要的處理液體要比未增強時要 J。此類的結構減少了須輸入處理系統以轉處理空間密封的處 理液體之花費,增加了處理系統之效率。 圖8為處理組件300的橫剖面圖,處理組件3〇〇包含根據本 發明之實此例的處理室和連接的空間組件。處理组件包含一 處理室700 ; - C〇2供應容器360 ; -密封一誠_器34〇 ; 一水- An incompressible liquid such as water or the like can be pressed to a desired pressure by using - pressure enhancement ^ ^ This can omit high hydraulic equipment. The pressure in the pressure intensifier must be sufficient, and the critical treatment (4) can be turned into a gas in the pressure-enhancing section. Because the critical treatment liquid becomes a gas phase, its density is reduced, and the force required for the pressure to recombine the incompressible liquid to the desired sealing pressure is higher than that of the unreinforced one. This type of construction reduces the expense of having to enter the processing system to transfer the process space to seal the process liquid, increasing the efficiency of the processing system. Figure 8 is a cross-sectional view of a processing assembly 300 that includes a processing chamber and attached spatial components in accordance with the present invention. The processing component comprises a processing chamber 700; - C〇2 supply container 360; - a sealed one _ 34 〇; one water

導管320 ; —排水埠321 ;氣流動作導管323、324、325、330、342 和343 ; —水過濾器322 ; —壓力-比例安全閥341 ; 一電子控制器 350 ;壓力變換器370和375 ; —設定點訊號源379 ;排放孔362°° 和371 ;壓力調整器352 ;以及壓力釋放閥331。在一實施例中, 電子控制器可為由 Tescom Corporation,ElkRiver,Minnes〇ta 所製造的ER3000。 ’ 處理室700包含上元件302和下元件3〇4。上元件302具有一 内表面301。下元件304包含一上空間406、一密封強化腔室410、 一壓力增強器908。下元件304包含一座臺305。座臺305具有包 含在上空間406中的平臺306以及包含在密封強化腔室41〇中的 15 1284919 基座980。平臺306具有一桿,此桿可滑動的設置在頸部315上, ,得座臺305可依箭頭6所指的方向上滑或箭頭7所指的方向下 =丄平臺306包含一密封元件520。較佳的情況是,密封元件52〇 ^ 3如0環士類的襯墊。為了使圖示較為清楚,密封元件52〇與 …他部份的咼度比對以放大的方式表現。圖8更顯示放置在平臺 306上的半導體晶圓400。 ”的ΐΐ 8所示,水導管320連接於空氣操作閥323,而空氣操作 閥^3。連接於水過濾器322。水過濾器322連接至空氣操作閥325, 空氣操作閥325連接至密封強化腔室41〇。排水埠321連接至空氣 操作閥325,空氣操作閥325連接至密封強化腔室41〇。密封一洩 露偵測器340連接至頸部315以及活塞密封墊_。壓力—比例安 全空間341連接至處理空間51〇、排放孔362、空氣操作閥343, 以及壓力增強器908。壓力釋放閘331連接至排放孔370,空氣操 作閥330、壓力變換器375以及壓力峨器352。空氣操作閥33〇 連接至壓力增強器908、排放孔370、壓力釋放閘331、壓力變換 器375,以及壓力調整器脱。電子控制器35〇連接至定點訊號源 37、堊力變換器375以及壓力調整器352。C〇2供應容器360連接 至壓力调^器352並通過空氣操作閥343連接至處理空間51〇。排 放孔371藉由空氣操作閥342連接至排放孔362以及壓力-比例安 全闊341。 壓力增強器908包含一低壓室705 ;頸部303具有比低壓室 705的橫剖面區域更小的橫剖面區域;活塞31〇具有包含在低壓室 705中的基座392以及包含在頸部303内的頭部391 ;以及活塞密 封墊8=。頸部303與密封強化腔室41〇有所連接,使得當頭部 391依箭頭6所指的方向移動時,密封強化腔室中的壓力會增 加。較佳的情況是,基座392具有比頭部391之橫剖面區域大的 橫剖面區域。 圖8顯示在關閉位置的處理室7〇〇。處理空間51〇由内表面 301、密封元件520以及平臺306之内表面所定義。如圖8所示, 1284919 =元件52G最好位於平臺3G6之内使得處理^間51()的橫剖面 區域小於平室306之橫剖面區域。因此一處理 = 内 301以及密封元件520形成。 U由内表面 當基座980往上移動時,密封元件52〇 將處理組件300置於關閉位置。在關閉位置中,形成處^空間 510。當基座980向下移動時,密封元件52〇自表φ 3〇1移^曰將 处理組件3GG置於開放位置。在開放位置中理 〇分開 使得半導體μ 可4解臺 μ自平㈣6餅。刀 圓被;上當,半導體晶 ^ 向移動座臺305和平臺306。如此處理組件 3〇〇便位於關閉位置。壓力增爺可用以確認當半導體^ =空ΪΓ0被處理時,處理賴密封被維持(以及處理空間 斤理)細成時’密封材料可處理自密封強化腔室410以將 Ϊ 至開放位置。接著半導體晶圓可自平臺306被移 ^理的疋’除了半導體晶圓之外的器件亦可根據本發明被 ,操作過程中,藉由將低壓水自水導管卿移至密封強化妒 件咖置於關閉位置。低壓水自水導管320 ^ 配ϋΐΐί 水過遽器、配管915和918、空氣操作闕325、 庙qsn 机入雄、封強化腔室410。低壓水流入位於頭部391和基 時,Ιίϊΐ密封強化腔室410。在低壓水流入密封強化腔室彻 往I· 基座_往上移位並使頭部391往下移位^使基座_ 办門^的結ίί成密封元件520緊壓住表® 301,因此形成處理 ^ 理組件細位於關閉位置。當位置感測器(未圖 蚀ϋ平室已往上移動以形成處理空間510,且頭部391 至其極限位置(也就是’抵靠於活塞密封墊_時,空氣操Catheter 320; - drain 埠 321; air flow action conduits 323, 324, 325, 330, 342 and 343; - water filter 322; - pressure-proportional safety valve 341; an electronic controller 350; pressure transducers 370 and 375; - set point signal source 379; discharge holes 362 ° ° and 371; pressure regulator 352; and pressure relief valve 331. In an embodiment, the electronic controller may be an ER3000 manufactured by Tescom Corporation, ElkRiver, Minnes. The processing chamber 700 includes an upper member 302 and a lower member 3〇4. Upper member 302 has an inner surface 301. The lower member 304 includes an upper space 406, a seal enhancement chamber 410, and a pressure intensifier 908. Lower element 304 includes a table 305. The table 305 has a platform 306 included in the upper space 406 and a 15 1284919 pedestal 980 contained in the seal enhancement chamber 41A. The platform 306 has a rod slidably disposed on the neck 315, and the seat 305 can be slid in the direction indicated by the arrow 6 or in the direction indicated by the arrow 7 = the platform 306 includes a sealing member 520 . Preferably, the sealing member 52 〇 ^ 3 is a gasket of a 0 ring type. In order to make the illustration clearer, the sealing element 52〇 and its partial twist ratio are expressed in an enlarged manner. FIG. 8 further shows the semiconductor wafer 400 placed on the platform 306. As shown in Fig. 8, the water conduit 320 is connected to the air operated valve 323, and the air operated valve is connected to the water filter 322. The water filter 322 is connected to the air operated valve 325, and the air operated valve 325 is connected to the seal strengthening The chamber 41. The drain port 321 is connected to the air operating valve 325, and the air operating valve 325 is connected to the seal strengthening chamber 41. The seal a leak detector 340 is connected to the neck 315 and the piston seal _. Pressure-proportional safety The space 341 is connected to the processing space 51A, the discharge hole 362, the air operating valve 343, and the pressure intensifier 908. The pressure release gate 331 is connected to the discharge hole 370, the air operating valve 330, the pressure transducer 375, and the pressure cooker 352. The operating valve 33 is connected to the pressure intensifier 908, the discharge port 370, the pressure release gate 331, the pressure transducer 375, and the pressure regulator. The electronic controller 35 is connected to the fixed point signal source 37, the force transducer 375, and the pressure. The regulator 352. The C〇2 supply container 360 is connected to the pressure regulator 352 and is connected to the processing space 51A through the air operation valve 343. The discharge hole 371 is connected to the discharge hole 362 by the air operation valve 342. And the pressure-proportional safety is wide 341. The pressure intensifier 908 includes a low pressure chamber 705; the neck portion 303 has a smaller cross-sectional area than the cross-sectional area of the low pressure chamber 705; the piston 31 has a base included in the low pressure chamber 705 392 and a head 391 included in the neck 303; and a piston seal 8 =. The neck 303 is connected to the seal strengthening chamber 41A such that the seal strengthens when the head 391 moves in the direction indicated by the arrow 6. The pressure in the chamber will increase. Preferably, the base 392 has a cross-sectional area that is larger than the cross-sectional area of the head 391. Figure 8 shows the processing chamber 7 in the closed position. The inner surface 301, the sealing member 520, and the inner surface of the platform 306 are defined. As shown in Fig. 8, 1284919 = element 52G is preferably located within the platform 3G6 such that the cross-sectional area of the processing chamber 51() is smaller than the horizontal portion of the flat chamber 306. The cross-sectional area is therefore formed by a process = inner 301 and sealing element 520. U is moved from the inner surface by the sealing member 52 when the base 980 is moved upwards. In the closed position, the space is formed. 510. When the base 9 When the 80 moves downward, the sealing member 52 moves from the table φ 3〇1 to place the processing assembly 3GG in the open position. In the open position, the separation is made so that the semiconductor μ can be released from the flat (four) 6 cake. The semiconductor wafer moves the pedestal 305 and the platform 306. The processing component 3 is thus in the closed position. The pressure can be used to confirm that the semiconductor seal is maintained when the semiconductor ^ = ΪΓ 0 is processed (and The processing space can be processed to form a self-sealing strengthening chamber 410 to bring the crucible to an open position. The semiconductor wafer can then be removed from the platform 306. Devices other than the semiconductor wafer can also be used in accordance with the present invention. During operation, the low pressure water is moved from the water conduit to the sealed reinforced package. Put it in the off position. The low-pressure water self-water conduit 320 ^ is equipped with water immersing device, pipes 915 and 918, air operation 阙 325, temple qsn machine, and sealing chamber 410. When the low pressure water flows into the head 391 and the base, the tempering chamber 410 is sealed. The low-pressure water flows into the seal-enhancing chamber and goes to the I·base _ upwards and shifts the head 391 downwards ^ so that the pedestal _ the door _ the sealing element 520 presses the watch® 301, Therefore, the forming process component is finely located in the closed position. When the position sensor (not etched the flat chamber has moved up to form the processing space 510, and the head 391 to its extreme position (ie, 'opposite the piston seal _, air operation

Slf 325關閉以分隔密封強化腔室41〇(此供給室410此 17 1284919 因為使用諸如低壓水之低壓材料,故可以利用相對少量的能 量來快速充滿密封強化腔室410。換句話說,因為水在低壓狀態^ 流入密封強化腔室41〇,因此供應水的部份便不需要額外轉換並維 持高壓水。與使用高壓設備以填滿密封強化腔室410並形成處理 空間510的處理組件比較起來,處理組件3〇〇可以更有效率。 一旦處理組件300位於關閉位置中,低壓C〇2氣體即自(:〇2供 應容器360被引入到低壓室705。低壓c〇2氣體自c〇2供應容器36〇 通過壓力調整器352、配管901C、空氣操作閥330、配管901A, ,後進入低壓室705。利用施一力在活塞31〇上的方法使低壓c〇2 氣,進入低壓室705,此力推動基座392並使得頭部391在箭頭β 戶曰,方向移動。因為頭部391上的低壓水被隔絕,因此並不能 =出雄、封強化腔室41〇。低壓水變成被加壓並推動頭部gw使得平Slf 325 is closed to separate the seal strengthening chamber 41A (this supply chamber 410 is this 17 1284919. Because of the use of low pressure materials such as low pressure water, a relatively small amount of energy can be utilized to quickly fill the seal strengthening chamber 410. In other words, because of the water In the low pressure state ^ flows into the seal strengthening chamber 41, so that the portion supplying the water does not require additional conversion and maintenance of high pressure water. Compared with a processing assembly that uses a high pressure device to fill the seal strengthening chamber 410 and form the processing space 510 The processing assembly 3 can be more efficient. Once the processing assembly 300 is in the closed position, the low pressure C〇2 gas is self-introduced: the 〇2 supply container 360 is introduced into the low pressure chamber 705. The low pressure c〇2 gas from c〇2 The supply container 36 is passed through the pressure regulator 352, the pipe 901C, the air operated valve 330, the pipe 901A, and then enters the low pressure chamber 705. The low pressure c〇2 gas is introduced into the low pressure chamber 705 by applying a force on the piston 31〇. This force pushes the base 392 and causes the head 391 to move in the direction of the arrow β. Since the low-pressure water on the head 391 is isolated, it cannot be = the male, the sealed chamber 41〇. The low pressure water becomes pressurized and pushes the head gw to make it flat

$ 306往上移動,使得密封元件52〇抵住表面3〇1以維持處理空 間 510 〇 I 接著,在一器件處理步驟中,c〇2被置入處理空間510,以增 加處理廢力。〇}2自0)2供應容器㈣通過配f 9_上啦氣操^ 3並進入處理空間51〇β設定點訊號源379被設定至處理壓力 =點丄此點相當於所須的處理壓力。壓力變換器謂债測處理 壓力變換器370谓測到處理壓力與壓力設定點的壓力相 產生傳輸到空氣操作㈣3 # 一訊號以停止c〇2流入處理空 骑日n *將處理壓力設定成所望之處理壓力,並可以處理半轰 力所產生的處理力可如所職被密封力平衡。 β制370 _處理壓力並傳送相_處理訊號至電^ 二力變換器375偵測在低壓處理$ 705產生的增強^ 控制器3,若處理訊號和密封1 茂七ί力同孩、封壓力,則電子控制器350傳送一訊號s =2 調整器352安排⑺2從⑶2供應容器360至 一 的途徑,增加了增強壓力之強度以及密封壓力。 1284919 =控制器35G可使處理壓力設定點變換時,密封力仍與處 μ —衡舉例而S,若需要一低壓壓力’則可以降低處理壓力 二士點。可打開空氣操作閥342以降低處理壓力設定點。壓力變 tif 370債測其落於處理壓力並傳送一處理訊號至電子控制器 。,然後電子控制器350作動壓力調整器352以透過排放孔362 對巧處理室7〇5進行排氣,以降低被增強的壓力。排氣會不斷 進打^到密封力與處理力相同為止。 當處理空間510中的處理完成後,處理組件3〇0位於開放位 置。此動作係藉由汲取密封強化腔室41〇中的水而完成,而被汲 取的水流過配管916和917、空氣操作閥324鎌流出排水埠321。 ,注思的是,空氣操作閥323、324和325必須協調,使得(&)低 垄水自水導管320移至密封強化腔室41〇以使處理組件3〇〇位於 開放位置,(b)低壓水自密封強化腔室41〇透過排水埠321流出以 使處理組件300位於關閉位置。 過程中’ C〇2可在處理空間510中循環以清潔半導體晶 0 400的表面。稍後空氣操作閥343可以被打開,因此在處理空 =510中使用的C〇2可回至應容器36〇然後使用在接下來的 乂驟中。須注意的是,C〇2可在處理空間51〇中單獨循環或者與其 他處理材料在一或多的處理循環中一起循環。 八 壓力-比例安全閥341與圖1至圖6中的平衡圓筒17〇有類似 的功能。壓力-比例安全閥341包含一活塞333。活塞333更用以 平衡處理壓力和增強器使得增強壓力被壓力增強器咖增強數倍 的時候產生-壓力,此壓力更產生鱗理力辦或大致相等的密 ,力’以維持處理空間510。若低壓室705中的壓力低於此值(低 壓點),處理空間510透過配管900A、900B和9〇〇c排氣。壓力二 ^匕例安全閥341匹_組件使處理力和密封力平衡,以維持處理 空間510。 ”現討論處理組件300的安全機制。勤釋放閥331將使增強 壓力不會超過臨界壓力。若增強壓力超過臨界壓力,則壓力釋放 19 1284919 閥331將開啟將低壓室705之氣體透過配管90ίΑ、901B、901C、 901D和902排出排放孔370。密封-滲漏偵測器340監測活塞密封 墊809以及頸部315。若發生了渗漏之類的問題,則密封—滲漏偵 測态340可採取預防措施,例如產生一閃爍的燈光以警告使用者, 停止組件300使處理中斷,或其他動作等。 圖9顯示根據本發明之另一實施例的處理組件4〇〇之橫剖面 圖與示思圖。處理組件400與圖8所示的處理組件3〇〇之不同之 ,在於處理組件400使用一電子壓力控制器800以控制壓力調整 器801和802。與圖8比較起來,類似數量的元件具有類似的功能。 處理組件400包含壓力變換器380、電子壓力控制器8〇〇、壓力調The 306 is moved upward so that the sealing member 52 is against the surface 3〇1 to maintain the processing space 510 〇 I Next, in a device processing step, c〇2 is placed into the processing space 510 to increase the processing waste. 〇}2 from 0) 2 supply container (4) by dispensing f 9_上气气^3 and entering the processing space 51〇β set point signal source 379 is set to processing pressure = point 丄 this point is equivalent to the required processing pressure . The pressure transducer is called the debt measurement processing pressure transducer 370. It is detected that the pressure of the processing pressure and the pressure set point is generated and transmitted to the air operation (4) 3 # a signal to stop the c〇2 inflow to process the empty riding day n * set the processing pressure to be expected The processing pressure and the processing power generated by the half-shot force can be balanced by the sealing force as the job.制 370 _ processing pressure and transmission phase _ processing signal to electricity ^ two force converter 375 detected in the low voltage processing $ 705 generated enhancement ^ controller 3, if the processing signal and seal 1 Mao Qi Lili with the child, seal pressure Then, the electronic controller 350 transmits a signal s = 2, and the adjuster 352 arranges (7) 2 from the (3) 2 supply container 360 to one, increasing the strength of the enhanced pressure and the sealing pressure. 1284919 = When the controller 35G can change the processing pressure set point, the sealing force is still balanced with the example of S. If a low pressure is required, the processing pressure can be reduced by two. Air operated valve 342 can be opened to reduce the process pressure set point. The pressure change tif 370 debt test falls on the processing pressure and transmits a processing signal to the electronic controller. The electronic controller 350 then actuates the pressure regulator 352 to vent the processing chamber 7〇5 through the venting opening 362 to reduce the enhanced pressure. The exhaust will continue to hit until the sealing force is the same as the processing force. When the processing in processing space 510 is complete, processing component 3〇0 is in an open position. This action is accomplished by drawing water from the seal-enhancing chamber 41, and the drawn water flows through the pipes 916 and 917, and the air-operated valve 324 flows out of the drain 321 . It is to be noted that the air operated valves 323, 324 and 325 must be coordinated such that (&) low ridge water is moved from the water conduit 320 to the seal enhancement chamber 41 〇 to place the process assembly 3 in the open position, (b The low pressure water exits the seal chamber 41 through the drain 321 to place the process assembly 300 in the closed position. The process 'C〇2' may be circulated in the process space 510 to clean the surface of the semiconductor crystal 0 400. The air operated valve 343 can be opened later, so the C〇2 used in the process empty = 510 can be returned to the container 36 and then used in the next step. It should be noted that C〇2 may be cycled separately in the processing space 51〇 or in one or more processing cycles with other processing materials. The eight pressure-proportional safety valve 341 has a similar function to the balance cylinder 17A of Figs. The pressure-proportional safety valve 341 includes a piston 333. The piston 333 is further used to balance the process pressure and the intensifier such that the enhanced pressure is increased by a multiple of the pressure intensifier, which pressure produces a more or less equal force, to maintain the processing space 510. If the pressure in the low pressure chamber 705 is lower than this value (low pressure point), the processing space 510 is exhausted through the pipes 900A, 900B, and 9〇〇c. The pressure of the second safety valve 341 _ component balances the processing force and the sealing force to maintain the processing space 510. The safety mechanism of the process assembly 300 will now be discussed. The service relief valve 331 will cause the boost pressure to not exceed the critical pressure. If the boost pressure exceeds the critical pressure, the pressure release 19 1284919 valve 331 will open the gas of the low pressure chamber 705 through the pipe 90, 901B, 901C, 901D, and 902 exhaust the venting holes 370. The seal-leak detector 340 monitors the piston seal 809 and the neck 315. If a leak or the like occurs, the seal-leak detection state 340 can Precautions are taken, such as generating a flashing light to alert the user, stopping the assembly 300 to interrupt processing, or other actions, etc. Figure 9 shows a cross-sectional view and illustration of a processing assembly 4 in accordance with another embodiment of the present invention. The processing component 400 differs from the processing component 3 shown in Figure 8 in that the processing component 400 uses an electronic pressure controller 800 to control the pressure regulators 801 and 802. Compared to Figure 8, a similar number The components have similar functions. The processing assembly 400 includes a pressure transducer 380, an electronic pressure controller 8〇〇, a pressure modulation

整器801和802以及設定點訊號源810。壓力變換器38〇連接至處 理空=510、電子壓力控制器800以及壓力調整器8〇卜電子壓力 控制态800連接至設定點訊號源81〇以及壓力調整器8〇1和8〇2。 電子壓力控制器800控制處理壓力和增強壓力。電子屋力控 制器800使用由設定點訊號源81〇決定的設定點控制壓力變換^ 801和802。壓力變換器801控制處理壓力,而壓力變換哭8犯& 制增強壓力。若處理空間510中的壓力超過處理設定點Γ則處理工 組件400將對處理空間510和低壓處理室7〇5進行排氣。電子壓The whole device 801 and 802 and the set point signal source 810. The pressure transducer 38 is coupled to the process air = 510, the electronic pressure controller 800, and the pressure regulator 8 to control the electronic pressure control state 800 to the set point signal source 81 and the pressure regulators 8〇1 and 8〇2. The electronic pressure controller 800 controls the process pressure and the enhanced pressure. The electronic house controller 800 controls the pressure maps 801 and 802 using the set points determined by the setpoint signal source 81A. The pressure transducer 801 controls the processing pressure, while the pressure changes the crying & If the pressure in the process space 510 exceeds the process set point, the process component 400 will vent the process space 510 and the low pressure process chamber 7A5. Electronic pressure

力控制器800比起圖8所示的結構,更可以提供連續且精確的 理壓力之控制。 ,10顯不根據本發明之另一實施例的處理組件5〇〇之橫剖道 圖與示意圖。處理組件500與圖8所示的處理組件3〇〇之不同 ^在於處理組件500使用-電子壓力控制器9〇幢制一壓敕 器902,該壓力調整器902用以控制增強壓力。與圖8比較起I 類似數量的元件具有類似的魏。處理組件5⑽包含壓力哭 385、電子壓力控制器9〇〇、壓力調整器9〇1和9〇2以及設 號源909。壓力變換器385連接至處理空間51()、壓力調整哭";;. 子壓ΐ控制器刪。電子壓力控制器刪連接至設定“载 源909以及壓力調整器9〇2。壓力調整器9〇1連接至c〇2供應容奉 20 1284919 細、、處理,間51〇、排放孔362、壓力一比例安全閥34卜低壓室 705以及f氣操作閥33〇。壓力調整器9〇2連接至c〇2供應容器 360、空氣^喿作閥330以及壓力釋放閥331。 . 電子壓力控制器9〇〇使用來自設定點訊號源9〇9的外部設定 點。,子壓力控制器9〇〇傳送一訊號至用以控制增強壓力的壓力 調整器902。當增強壓力升高以產生與處理壓力所產生的作用力平· 衡之一作用力時,來自壓力增強器9〇8的一壓力訊號被傳送至壓 力調整器901,促使處理壓力追隨密封壓力而變化。處理壓力係由· 連接至電子壓力控制器9〇〇之壓力變換器385所監測。 抑^在另一變化例中(未圖示),具有電子壓力控制器的壓力調整 裔測處理壓力並調整控制密封壓力的壓力調整器,其中電子壓鲁 力控制為反應於外部設定點。此調整使密封壓力可隨著處理壓力 變化。 圖11顯示根據本發明之另一實施例的處理系統6〇〇之側向橫 剖面圖與示意圖。處理系統6〇〇包含具有頂板921和底板922的 處理室920 ;引線位置感測器925 ;具有複數引線之平臺982 ;腳 柱位置感測器926 ;連接至活塞965之腳柱981 ;差動壓力開關 932 ’壓力開關933 ;密封強化器950 ;壓力增強器975 ;具有輸入 端9440、9441、9444及輸出端9442、9443的壓力調整器單元944 ; 空氣操作閥952 ;壓力變換器930、931和934 ;壓力釋放閥945、 φ 947和968 ;過濾器961 ;螺線管控制閥960 ;具有輸出端9510和 _ 輸入端9511、9512的螺線管控制閥951 ;方向性流動控制器966 ;, 排放孔971 ;液體導管967 ;壓縮氣體供應器972和999 Γ以及外 部設定點946。 頂板921和底板922定義了包含平臺982的處理空間983。頂 板921具有形成處理空間983之一部份的内表面989。平臺982 支撐如半導體晶圓之類的工作件,且此工作件正經歷處理空間983 中之處理。活塞965包含具有面9502之頭部962。頭部962被包 含在内腔室9501中,如底下所述。 21 1284919 方向性流動控制器966包含一確認閥963以及針閥964。壓力 增強器975包含低壓室942、高壓室941以及將低壓室942連接至 咼壓室941的活塞943。壓力增強器975具有連接至低壓室942 的輸入端9750以及連接至高壓室941的輸出端9751。與圖8之壓 力增強器908類似,在輸入端9750產生的低壓被轉換成在輪出端 9751產生的高壓。在一實施例中,壓力調整器單元gw包含tsiThe force controller 800 provides continuous and precise control of the pressure rather than the configuration shown in FIG. 10 shows a cross-sectional view and a schematic view of a processing assembly 5 according to another embodiment of the present invention. The processing assembly 500 differs from the processing assembly 3 shown in Figure 8 in that the processing assembly 500 utilizes an electronic pressure controller 9 to construct a compressor 902 for controlling the enhanced pressure. A similar number of elements have similar Wei compared to Figure 8. The processing assembly 5 (10) includes a pressure crying 385, an electronic pressure controller 9A, pressure regulators 9〇1 and 9〇2, and a source 909. The pressure transducer 385 is connected to the processing space 51(), the pressure adjustment crying ";. The electronic pressure controller is connected to the setting "load source 909 and pressure regulator 9〇2. Pressure regulator 9〇1 is connected to c〇2 supply capacity 20 1284919 fine, processing, 51 间, discharge hole 362, pressure A proportional safety valve 34 is provided with a low pressure chamber 705 and an air operated valve 33. The pressure regulator 9〇2 is connected to the c〇2 supply container 360, the air valve 330, and the pressure release valve 331. Electronic Pressure Controller 9 〇〇Using an external set point from the setpoint signal source 9〇9, the sub-pressure controller 9 transmits a signal to the pressure regulator 902 for controlling the boosted pressure. When the boost pressure is raised to generate and process the pressure When the generated force balances one of the forces, a pressure signal from the pressure intensifier 9〇8 is transmitted to the pressure regulator 901, causing the process pressure to follow the seal pressure. The process pressure is connected to the electronic pressure. The pressure converter 385 of the controller 9 is monitored. In another variation (not shown), the pressure regulator with the electronic pressure controller adjusts the processing pressure and adjusts the pressure regulator that controls the sealing pressure. Wherein the electronic pressure is controlled to react to an external set point. This adjustment causes the seal pressure to vary with the process pressure. Figure 11 shows a side cross-sectional view and schematic view of a processing system 6 in accordance with another embodiment of the present invention. The processing system 6A includes a processing chamber 920 having a top plate 921 and a bottom plate 922; a lead position sensor 925; a platform 982 having a plurality of leads; a foot position sensor 926; and a foot post 981 connected to the piston 965; Dynamic pressure switch 932 'pressure switch 933; seal intensifier 950; pressure booster 975; pressure regulator unit 944 having inputs 9440, 9441, 9444 and output ends 9442, 9443; air operated valve 952; pressure transducer 930, 931 and 934; pressure relief valves 945, φ 947 and 968; filter 961; solenoid control valve 960; solenoid control valve 951 having output 9510 and _ input 9511, 9512; directional flow controller 966 ; venting opening 971; liquid conduit 967; compressed gas supply 972 and 999 Γ and external set point 946. Top plate 921 and bottom plate 922 define a processing space 983 containing a platform 982. Top plate 921 has a processing space 983 A portion of the inner surface 989. The platform 982 supports a workpiece such as a semiconductor wafer, and the workpiece is undergoing processing in the processing space 983. The piston 965 includes a head 962 having a face 9502. The head 962 is included In the inner chamber 9501, as described below. 21 1284919 The directional flow controller 966 includes a confirmation valve 963 and a needle valve 964. The pressure enhancer 975 includes a low pressure chamber 942, a high pressure chamber 941, and a low pressure chamber 942 connected to the crucible. The piston 943 of the pressure chamber 941. The pressure booster 975 has an input end 9750 connected to the low pressure chamber 942 and an output end 9751 connected to the high pressure chamber 941. Similar to the pressure booster 908 of Fig. 8, the low pressure generated at the input 9750 is converted to the high voltage generated at the wheel end 9751. In an embodiment, the pressure regulator unit gw comprises tsi

Solutions,2220 Centre Park Court,Stone Mountain,Georgia 30087所售的MAC PPC93A。在一實施例中,過濾器為一三微 米過濾器。 壓力增強器975的輸出端9751連接至方向性流動控制器 966,並連接至確認閥963的輸入端以及針閥%4的輸入端。方向 性流動控制器966之輸出端,確認閥963的輸出端以及針閥964 的輸出端連接至壓力釋放閥945。壓力釋放閥945連接至過濾器 961和螺線管控制閥960。螺線管控制閥960之一輸出端連接至過 濾,961。過濾器961連接至液體導管967以提供低壓液態油。螺 線^控制閥960之一輸出端連接至差動壓力開關932以及密封強 ^器950。密封強化器950的内腔室9501(密封強化腔室)藉由配 管連接至螺線管控制閥951之輸出端9510。壓力釋放閥968亦連 接至配管。螺線管控制閥951的第一輸出端9511連接至空氣操作 ,952之輸出端。空氣操作閥952之輸入端連接至壓縮氣體供應 器972。螺線管控制閥951之第二輸出端9512連接至排放孔971。 如圖11所示’處理空間983連接至壓力變換器931和差動壓 力開,932。壓力調整器單元944的第一輸入端944〇連接至壓力 器931,壓力調整器單元944的第二輸入端9441連接至外部 ,定點946。,壓力調整器單元944的第三輸入端籠連接至壓縮 ^體供應器999。壓力調整器單元944的第一輸出端9442連接至 ΐ士釋賴947以及透過排放孔(未圖示)連接至空氣。壓力調整 器單兀胃944的第二輸出端9443連接至壓力增強器975的輸入端 9750。壓力釋放閥947藉由配管連接至壓力增強器975之輸入端 22 1284919 9750,壓力憂換态934亦連接至導管。壓力變換器亦可以用以監 測壓力釋放閥947和壓力增強器975的輸入端975〇之間的壓力。 f動作中,工作件被置於從平臺982延伸出的引線上。工作 件可藉由把平臺982的引線縮回的方式放置於平臺g82上,並 由延伸引線的方式自平臺982移除。平臺表面和引線的關係係』 引線位置感測器925所監測。引線的使用在美國專利申請號 10/289, 830,中請日為2002年11月6日的專利『High pressureSolutions, 2220 Centre Park Court, Stone Mountain, MAC PPC93A sold by Georgia 30087. In one embodiment, the filter is a three micrometer filter. The output 9751 of the pressure intensifier 975 is coupled to the directional flow controller 966 and to the input of the confirmation valve 963 and the input of the needle valve %4. At the output of the directional flow controller 966, the output of the confirmation valve 963 and the output of the needle valve 964 are connected to the pressure relief valve 945. Pressure relief valve 945 is coupled to filter 961 and solenoid control valve 960. One of the outputs of the solenoid control valve 960 is connected to the filter, 961. Filter 961 is coupled to liquid conduit 967 to provide a low pressure liquid oil. An output of the solenoid control valve 960 is coupled to the differential pressure switch 932 and the seal 950. The inner chamber 9501 (seal-enhanced chamber) of the seal strengthener 950 is connected to the output end 9510 of the solenoid control valve 951 by piping. The pressure relief valve 968 is also connected to the piping. The first output end 9511 of the solenoid control valve 951 is connected to the output of the air operation, 952. The input of air operated valve 952 is coupled to compressed gas supply 972. The second output end 9512 of the solenoid control valve 951 is connected to the discharge hole 971. The processing space 983 is connected to the pressure transducer 931 and the differential pressure opening 932 as shown in FIG. The first input 944 of the pressure regulator unit 944 is coupled to a pressure vessel 931, and the second input end 9441 of the pressure regulator unit 944 is coupled to the outside, a fixed point 946. The third input end of the pressure regulator unit 944 is coupled to the compression body supply 999. The first output end 9442 of the pressure regulator unit 944 is coupled to the gentleman release 947 and to the air through a discharge orifice (not shown). The second output end 9443 of the pressure regulator single stomach 944 is coupled to the input 9750 of the pressure enhancer 975. The pressure relief valve 947 is connected to the input end of the pressure intensifier 975 by means of a pipe 22 1284919 9750, and the pressure relief state 934 is also connected to the conduit. The pressure transducer can also be used to monitor the pressure between the pressure relief valve 947 and the input 975A of the pressure intensifier 975. In the f action, the workpiece is placed on the lead extending from the platform 982. The workpiece can be placed on the platform g82 by retracting the leads of the platform 982 and removed from the platform 982 by extending the leads. The relationship between the surface of the platform and the leads is monitored by the lead position sensor 925. The use of the lead is disclosed in U.S. Patent Application Serial No. 10/289, 830, the entire disclosure of which is issued to

Compatible Vacuum Chuck for Semiconductor Wafer Including Lifting Mechanism(包含升降機構的半導體晶圓之高壓相直* 夹頭)』中有所揭示。 ”二 接著,低壓油從液體導管967通過螺線管控制閥96〇的輸入 端並進入密封強化腔室9501以關閉處理室92〇,如圖8所揭露之 處理組件300。接著,一處理材料,如超臨界c〇2,被置入處理空 間983以處理工作件。處理空間983中的壓力藉由壓力變換器 而轉換成電子訊號。電手訊號被傳送至壓力調整器單元944,其產 生如對應壓力之類的機械輸出訊號。在通常動作中,機械輸出訊 號被傳送至壓力增強器975的輸入端9750。壓力增強哭力^ 輸出端_上產生-高壓。高壓輸出透過方向性流動控^在%6 达至岔封強化腔室9501以密封處理室92〇,如圖8所揭露處 組件3QG。 在異常動作期間,壓力釋放閥945可以選擇性的將方向性流 動控制器單元966之輸出端連接至過濾器961以及液體導管96f 或者,在異常處理期間,螺線管控制閥96〇可選擇性的將方 k動控制器早元966之輸出端連接至液體導管967。 壓力釋放閥947係負責壓力增強器975的低壓侧之安全機 制’當輸入端9750上的壓力到達預先設定的值時,壓力釋放閥 對壓力增強器975的輸入端9750進行排氣。壓力釋放閥945 1增強975❸高壓側上具有類似的功能,當輸入端9751上的壓 到達預先設定的值時,壓力釋放閥945對壓力增強器975的輸 23 1284919 出端9751進行排氣。 當工作件在處理空間983接受處理時,處理壓力藉由壓力變 換器931轉換成電子訊號而傳送至壓力調整器單元944。接著壓力 調整器單元944產生一低壓壓力,此低壓壓力被傳送至壓力增強 器975的輸入端9750。此低壓在被傳送至壓力增強器975的輸入 端9750時被轉換成於輸出端9751上產生之高壓的壓力,而形成 與處理壓力大致相同的密封力。在動作中,壓力調整器單元944 比較外部設定點946與來自壓力變換器931的電子訊號(回授)。 若外部設定點946小於回授訊號則壓力調整器單元944透過壓力 釋放閥947對壓力增強器975進行排氣至大氣中。若外部設定點 大於回授减’則壓力調整器單元944將壓縮氣體自壓縮氣體 999循環至壓力調整器單元刚的輸入端_,通過輸出 1 975的輪人端9750。在織中,密封 須注意的是,壓力槪閥945、947和_使得零件間的壓力 :且壓力變換器930和934可用以顯示並監測 使用在處理系統600之配管的壓力。 壓發5實施例的其他結構可利用處理壓力和密封 力右δΓ’ϋ 使Λτ公式,此公式與處理壓力和密封壓 為最:卜可,的藉由將此密封力限制 力為常數時,則(3)平㈣力和施加在第二面上的壓 例Ξ士,若ριϋϊΐ的淨力為非常數,且會變動。因此,舉 在具有橫剖面區域αι的第—面上之壓 △F=P1*A1 - P2*A2 24 1284919 △F對應於平板之一侧相較於另一側的額外作用合一 時:fF為Q。須注意的是,當—平面被使用二形成一 ΐ理 =間打,猎由平衡平板(也就是,使AF^O),可維持一處理空間。 當AF大於〇,處理空間便需要較所必須者更大的作用力來維 而需要額外之不需要的能量。 ,參考公式(1),當A1與A2相等時,等於A1*(P1—P2), 也就是說,當P1與P2之差ap保持不變時,AF亦保持不變。當 △P改變時,AF隨著AP作線性的變化。當A1與A2不相等時, △F和之間的關聯性會不相同,本發明便利用了此關聯性。更 確切的來說,AF不一定與P1—P2呈比例關係。因此,舉例來說,Compatible Vacuum Chuck for Semiconductor Wafer Including Lifting Mechanism is disclosed in the High Voltage Direct * Collet of Semiconductor Wafers with Lifting Mechanisms. Secondly, low pressure oil passes from the liquid conduit 967 through the input of the solenoid control valve 96A and into the seal enhancement chamber 9501 to close the process chamber 92, as disclosed in Fig. 8. Next, a treatment material For example, supercritical c〇2 is placed into the processing space 983 to process the workpiece. The pressure in the processing space 983 is converted into an electronic signal by the pressure transducer. The electric hand signal is transmitted to the pressure regulator unit 944, which generates For example, the mechanical output signal corresponding to the pressure. In the normal action, the mechanical output signal is transmitted to the input end 9750 of the pressure intensifier 975. The pressure is enhanced by the crying force ^ the output _ is generated - the high voltage. The high voltage output is transmitted through the directional flow control ^ At %6, the reinforced chamber 9501 is sealed to seal the chamber 92, as disclosed in Figure 8. The pressure relief valve 945 can selectively directional the flow controller unit 966 during abnormal operation. The output is connected to the filter 961 and the liquid conduit 96f. Alternatively, during abnormal processing, the solenoid control valve 96 can selectively connect the output of the square k controller to the liquid 966. Conduit 967. Pressure relief valve 947 is responsible for the safety mechanism of the low pressure side of pressure intensifier 975. When the pressure on input end 9750 reaches a predetermined value, the pressure relief valve vents input 9750 of pressure intensifier 975. The pressure relief valve 945 1 enhances the similar function on the high pressure side of the 975 ,. When the pressure on the input 9751 reaches a predetermined value, the pressure relief valve 945 vents the outlet 9751 of the pressure booster 975. When the workpiece is processed in the processing space 983, the process pressure is converted to an electronic signal by the pressure transducer 931 and transmitted to the pressure regulator unit 944. The pressure regulator unit 944 then generates a low pressure that is transmitted to the pressure boost. The input end 9750 of the pump 975. This low pressure is converted to the high pressure generated at the output end 9751 when it is delivered to the input end 9750 of the pressure intensifier 975, forming a sealing force that is substantially the same as the processing pressure. The pressure regulator unit 944 compares the external set point 946 with the electronic signal (feedback) from the pressure transducer 931. If externally set 946 is less than the feedback signal and the pressure regulator unit 944 vents the pressure booster 975 to the atmosphere through the pressure relief valve 947. If the external set point is greater than the feedback minus, then the pressure regulator unit 944 compresses the gas from the compressed gas 999. Circulating to the input end of the pressure regulator unit _, by outputting the wheel end 9750 of the 1 975. In the weaving, the seal must be noted that the pressure 槪 945, 947 and _ make the pressure between the parts: and the pressure transducer 930 and 934 can be used to display and monitor the pressure of the piping used in the processing system 600. Other configurations of the crimping 5 embodiment can utilize the processing pressure and sealing force to the right δ Γ ' ϋ Λ τ formula, which is the treatment pressure and sealing pressure Most: Bu Ke, by limiting the sealing force to a constant, then (3) the flat (four) force and the gentleman applied to the second side, if the net force of ριϋϊΐ is a very large number, and will change . Therefore, the pressure ΔF=P1*A1 - P2*A2 24 1284919 ΔF on the first surface having the cross-sectional area α1 corresponds to the additional action of one side of the flat plate compared to the other side: fF is Q. It should be noted that when the plane is used to form a = = 间 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , When AF is greater than 〇, the processing space requires more force than is necessary to maintain additional unwanted energy. Referring to formula (1), when A1 and A2 are equal, it is equal to A1*(P1 - P2), that is, when the difference ap between P1 and P2 remains unchanged, AF remains unchanged. When ΔP changes, AF changes linearly with AP. When A1 and A2 are not equal, the correlation between ΔF and hues may be different, and the present invention facilitates the use of this correlation. More specifically, AF is not necessarily proportional to P1-P2. So, for example,

當 Al=100 in2、A2=200 in2、Pl=3000 lb-f/in2、P2=1600 lb-f/in2 時’則 PI-P2 或△P=3000 lb-f/in2-1600 lb-f/in2=1400 psid (psid表石旁/英寸平方)。淨力△f=p2*A2-P1*A1=1600 lb-f/in2*200 in2-3000 lb-f/in2*100 in2=20000 lbf-d ( “lbf-d” 代表作用力差值)。然而,若P1=2500 lb-f/in2且P2=ll〇〇 lb-f/in2,則ΛΡ沒有改變(仍等於14〇〇 psid),但八 F=『2*A2-P1*AW1G0 lb-f/in2*20G in2-2500 lb-f/in2*l〇〇 in2=-30000 lbf-d。因此,雖然ap保持不變,當壓力改變時,△ F仍會改變大小及方向。通常來說,如圖1]t所示的處理系統6〇〇When Al=100 in2, A2=200 in2, Pl=3000 lb-f/in2, P2=1600 lb-f/in2' then PI-P2 or △P=3000 lb-f/in2-1600 lb-f/ In2=1400 psid (psid beside the stone/inch square). Net force Δf=p2*A2-P1*A1=1600 lb-f/in2*200 in2-3000 lb-f/in2*100 in2=20000 lbf-d (“lbf-d” represents the force difference). However, if P1=2500 lb-f/in2 and P2=ll〇〇lb-f/in2, then ΛΡ does not change (still equal to 14〇〇psid), but eight F=“2*A2-P1*AW1G0 lb- f/in2*20G in2-2500 lb-f/in2*l〇〇in2=-30000 lbf-d. Therefore, although ap remains unchanged, Δ F still changes size and direction when pressure changes. Generally speaking, the processing system shown in Figure 1]t〇〇

之類的處理系統,AF隨著處理空間裡的壓力而改變〇pvQl),如處 理系統983。 如底下所述,本發明之實施例利用此關聯性有效率的維持處 理空間。使用前述的例子,當P1增加時,AF增加。參考圖u, P1對應於處理空間983(PVQl)而P2對應於密封力(pseal)。因此,當 Pm增加而AP維持不變時,沒有必要的增加。當維持處理空 間時,AF (以及P—)可降低以節省能量。可利用此非線性關係(ρ_ 無須隨著Pw而改變)可降低輸入處理系統以維持處理空間之能 量。可在例如圖11之壓力調整器單元944之輸入端9444將能量 輸入至處理系統。 25 1284919 藉由以上的描述和以下的圖敘述了一處理系統,在此系統中 壓力差值ΔΡ實質上不變動。此限制主要用以簡化描述。亦可用以 簡化控制壓力調整器單元944之演算法。須注意的是,Λρ可根據 本發明之實施例而變動。 ^圖12用以描述本發明之實施例的原理。圖12為圖Π之處理 系統600之壓力/作用力與時間圖解12〇〇,係對應增加的時間七 至h的一或多個處理循環。圖解12〇〇具有兩個垂直軸,左垂直軸 和右垂直軸。左垂直軸標示為『壓力』,單位為psig或psid,係 用以塁線210、215和220所表示的值,將在底下詳述。右垂直 =示為” F瞻’’ ’單位為lbf或lbf_d,係用以測量線概、 L I5 *表-示的值,亦將在底下詳述。須注意的是,雖然圖解 田I f時間顯示於水平轴’但圖解1200係用以描述壓力差值和作 力的關係’故此圖亦可稱為是作用力和壓力之關係圖。 μ 圖11 ’處理系統600包含一處理空間983。處理空間983 Ϊίίΐ下列的物件而維持:⑴施加在處理空間983中之面989 理系統_ 高壓處理。舉例而言,處 臨界溫度和 ,_ 983扣抵抗超 器等。 並連接至供應超臨界材料的容器,如C〇2供應容 215係‘和時間之關你』f /、中匕。1係以PS1§為單位;線 係Μ和時間之關係,其中單位;而線22〇 圖解1200亦用3铬綠矣—| ” Pseal—PvQl相專,亦以Psid為單位。 面989之作用力用力跟時間之關係;、線225,施加在 用力細lbf對時間之_ ;線23G,施加在面9502 26 1284919 iF之二細1Μ _之_⑹細, ί-:; 220 -- 處理空丨,n:?資《 ^足夠狀維持 «a ^ - Π/Ι, 才不不為MAC壓力”,包含了由壓力調聲 (;早Γ 生之壓力的資料項目’此壓力被轉換成密封壓力 983 ! ^ p—p p". 匕3 7攔位2和3相對應資料項目之差值(△ 乍用=4^目5=示為”處理力”,包含施加在_上的 ff賢料項目。攔位7,標示為”以”,包含了攔 位5和6相對應資料項目之差值。 3㈣ 一圖1300,顯示在附表1的一部份點中,作用力差值 顯干早ί又與Ρν°1(單位為Psig)的對應關係。圖1300 = f上恆定時,AF直接隨改變。須注意的是, n 上非為蚊騎改變時,此種_憾—樣。為了 $兄實^=,處理壓力介於28响和1218psig之間, 實貝上匣疋,在196 psid和226 psid間變化。 卢理係具有兩種結果,若轉—處理空間(也就是,維持一 ΐ右要—最小作用力,則必須選擇δρ,以使得最低麼力 、ϋ巧作用力以轉處理空間。在此例中,若壓力增加,則 Τ ^ F超過此最小位準(△?_&),變成沒有效率的處理。此 料元944可被最触,使彳化磁測使得Μ不 二二,而使用最小能量維持處理空間。第二個結果是, Ϊ經L的ί封力(Pseal)增加的比處理力(Pv。0為慢,貝|JP-可比Pv。1 遲緩並仍維持處理空間。因此,肋產生密封力的壓力調整器單 27 1284919 元944之反應時間並不需要跟處理壓力的改變一樣快A processing system such as AF changes 〇pvQl) with pressure in the processing space, such as processing system 983. As described below, embodiments of the present invention utilize this correlation to efficiently maintain processing space. Using the aforementioned example, AF increases as P1 increases. Referring to Figure u, P1 corresponds to processing space 983 (PVQl) and P2 corresponds to pseal. Therefore, when Pm increases and the AP remains unchanged, there is no necessary increase. AF (and P-) can be reduced to save energy while maintaining processing space. This non-linear relationship can be exploited (ρ_ does not have to change with Pw) to reduce the energy of the input processing system to maintain processing space. Energy can be input to the processing system at, for example, input end 9444 of pressure regulator unit 944 of FIG. 25 1284919 A processing system is described by the above description and the following figures, in which the pressure difference ΔΡ does not substantially change. This limitation is mainly used to simplify the description. It can also be used to simplify the algorithm for controlling the pressure regulator unit 944. It should be noted that Λρ may vary according to embodiments of the invention. Figure 12 is a diagram for describing the principles of an embodiment of the present invention. Figure 12 is a graph of pressure/force versus time for processing system 600 of the drawing, corresponding to one or more processing cycles of increasing time seven to h. Figure 12 has two vertical axes, a left vertical axis and a right vertical axis. The left vertical axis is labeled "Pressure" in psig or psid, and is used to represent the values indicated by lines 210, 215, and 220, as detailed below. Right vertical = shown as "F-view" ''units are lbf or lbf_d, used to measure the line outline, L I5 * table - the value shown, will also be detailed below. It should be noted that although the map field I f The time is shown on the horizontal axis 'but diagram 1200 is used to describe the relationship between the pressure difference and the force'. Therefore, the figure can also be referred to as the relationship between force and pressure. μ Figure 11 'Processing system 600 includes a processing space 983. The processing space 983 Ϊ ΐ ΐ ΐ 维持 维持 维持 : : : : ( ( 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加 施加The container, such as C〇2 supply capacity 215 system 'and time you close' f /, Zhong Hao. 1 is based on PS1 §; line system and time relationship, which unit; and line 22 〇 diagram 1200 also Use 3 chrome green enamel -| ” Pseal-PvQl phase, also in Psid. The force of the face 989 is related to the force; the line 225 is applied to the force lbf to the time _; the line 23G is applied to the face 9502 26 1284919 iF two fine 1 Μ _ _ (6) thin, ί-:; 220 -- Dealing with open space, n: "Supply "^ is sufficient to maintain «a ^ - Π / Ι, is not the pressure of MAC", including the pressure of the sound (the data of the early pressure of the project) 'this pressure It is converted into a sealing pressure 983 ! ^ p—p p". 匕3 7 The difference between the corresponding data items of the 2 and 3 blocks (△ 乍 = 4^目 5 = indicated as "processing power", including applied to _ On the ff sage item. Block 7, marked as "Yes", contains the difference between the corresponding data items of the blocks 5 and 6. 3 (four) A picture 1300, shown in a part of the point of the first table, the role The force difference is dry and early ί and the corresponding relationship with Ρν°1 (unit is Psig). Figure 1300 = AF is constant, AF directly changes. It should be noted that when n is not changed for mosquito ride, this kind _ regret - like. For $ brother real ^ =, the processing pressure is between 28 and 1218 psig, the upper shell, varying between 196 psid and 226 psid. Lu Li has two results, if the transfer - processing Between (that is, to maintain a right-minimum force, you must choose δρ, so that the minimum force, the force of force to turn the processing space. In this case, if the pressure increases, Τ ^ F exceeds this The minimum level (△?_&) becomes an inefficient process. This element 944 can be touched most, so that the magnetic measurement makes it impossible to use the minimum energy to maintain the processing space. The second result is that Pseal increases the specific processing power (Pv. 0 is slow, B | JP - comparable Pv. 1 is sluggish and still maintains processing space. Therefore, the rib produces a sealing force pressure regulator single 27 1284919 The reaction time of element 944 does not need to be as fast as the change in processing pressure.

认八參考圖11,壓力調整器單元944可被控制以符合前述 舉例來說’根據本發明,壓力調整器單元944可被程 L(5i^。控制壓力調整器單元944之控制器以有效率的變動 亦^^制壓力調整器單元944,使得AF不會超過 =esh。舉例而言,可對應於允許小幅壓力擺蜜的作 力^^處理工間亦可以維持。須注意的是,壓力調整器單元944 必縣塵力間夠快速的切換以維持處理空間983。 ™ 28 1284919 中,根據本發明之實施例的步驟14,在第-步驟1401 始步驟’可利用任何初始化步驟。參考㈣在第 1二驟J01中,一晶圓被置於平臺982上並形成處理空間983。 i其測處理空間983中的最大處理壓力,計 作^力。、妾著,在步驟1402中’ _是否需要一最小 力差值(△?_)以維持處理空間983。若需要最小作 值,則執行步驟1410 ;否則,執行步驟1405。 在步驟1410中,計算最小作用力差值。在步驟14〇5中 設定為〇 lb-f。須注意的是,在步驟14〇5中,㈣可Referring to Figure 11, the pressure regulator unit 944 can be controlled to conform to the foregoing examples. According to the present invention, the pressure regulator unit 944 can be operated by a controller that controls the pressure regulator unit 944 to be efficient. The change also controls the pressure regulator unit 944 so that the AF does not exceed = esh. For example, it can be maintained in response to a force allowing a small amount of pressure to be placed. The treatment room can also be maintained. The adjuster unit 944 has a fast switching between the dusts to maintain the processing space 983. In step 28 of the embodiment of the invention, in step 12 of the first step of the invention, any initialization step can be utilized. Reference (4) In the first step J01, a wafer is placed on the platform 982 and forms a processing space 983. The maximum processing pressure in the processing space 983 is counted as a force. Next, in step 1402, '_ Whether a minimum force difference (Δ?_) is needed to maintain the processing space 983. If a minimum value is required, step 1410 is performed; otherwise, step 1405 is performed. In step 1410, the minimum force difference is calculated. 〇5 is set to 〇 Lb-f. It should be noted that in step 14〇5, (4)

,设定成較符合情況的其他值。不管在步驟141〇或步驟14〇5 後,皆施行步驟1415。 在步驟1415中,在處理空間983中處理一晶圓。接著,在步 驟1420中,pVQl*匕如被讀取且變動以維持處理空間983。根 據本發明之-實施例,卩_根據前述的公式⑴變動以有效率的維 持處理空間983。也就是說,可設sPseal以延遲Pv()i&藉由讓AF 大於AFthresh而維持處理空間983。須注意的是,為了簡化,在圖 14中,步驟1420係在步驟1415之後,但在晶圓被處理時,步驟 1420可在步驟1415中被執行。, set to other values that are more in line with the situation. Step 1415 is performed regardless of either step 141 or step 14〇5. In step 1415, a wafer is processed in processing space 983. Next, in step 1420, pVQl* is read and varied to maintain processing space 983. According to the embodiment of the present invention, 卩_ is varied in accordance with the aforementioned formula (1) to efficiently maintain the processing space 983. That is, sPseal can be set to delay Pv()i& to maintain processing space 983 by letting AF be greater than AFthresh. It should be noted that for simplicity, in Figure 14, step 1420 is after step 1415, but when the wafer is processed, step 1420 can be performed in step 1415.

―、接著,在步驟1430中,偵測晶圓的處理是否完成。若處理未 完成’步驟1420被再度施行。若處理完成,則施行步驟1435。在 步驟1435中,處理空間983變成未處理狀態,處理空間g83被破 壞’晶圓自平臺982被移除。接著,在步驟1440中,處理步驟被 完成。 如前所述,根據本發明之實施例,pseal可被MAC閥940所控制, 其可被程式化以施行步驟1420。如前所述,壓力調整器單元944 可被程式化,或者被控制以產生一壓力,此壓力被轉換成如之前 的公式(1)所述的密封力。 雖然本發明已就一些較佳實施例來說明,但熟悉此技藝者藉 著前述的說明與附圖,當可對其進行修改、增加、及等效的變更。 29 1284919 因此任何未脫離本發明之精神與範圍 及等效的較,均應包含於本發明 L知'錢、增加、 【圖式簡單說明】 之-在開放位置的處理系統之橫剖面圖,係根據本發明 平烏臺的俯視圖、橫剖面圖以及底面圖,此 圖3繪示處於關閉位置的圖1所示之處工間, 情況圖4纟細處於_位置_丨所示之處㈣屬—輛組合的 與圖開放位置的處理系統與i组合的情況,其元件 ,峨園筒 ,8? ί示ΐί f處理中的圖6所示之平衡圓筒; 組合間的組合之橫剖面圖和示意圖,此 組合之橫剖面圖和示意圖,此 組合據顯本=月理之系又統_和實組施tr組合之橫剖面圖和示意圖,此 组人理系f和組合闕的組合之橫剖面圖和示意圖,此 組合係根據本發明之再一實施例,· 實施操為作i兄力·/作用力與時間的關係圖,其顯示本發明之一 施例==乍用以力及與處理麗力的關係圖,其顯示本發明之一實 發明之—實施例的動作步驟流程圖。 30 1284919 100處理組件 101處理室 110上元件 115密封強化腔室 116上處理腔室 120處理平板 125活塞密封墊 130密封面 131密封元件 132箭頭 134半徑 135外部面 136内部面 140空間 150下元件 155平臺 156上表面 170平衡圓筒 171上儲存室 172活塞 173下儲存室 175排放孔 177不可壓縮液體 178清洗液體 180、181 和 190 導管 185左臂 185A左上臂 185B左下臂 186右臂 1284919 186A右上臂 186B右下臂 188輛 201夾鉗 203配重 205頂部延伸部 207底部延伸部 209基座 250支撐組件 300處理組件 301内表面 302上元件 303頸部 304下元件 305座臺 306平臺 310活塞 315頸部 320水導管 321排水埠 322水過濾器 323、324、325、330、342 和 343 空氣操作閥 325空氣操作閥 331壓力釋放閥 333活塞 340密封-洩露偵測器 341壓力-比例安全閥 350電子控制器 352壓力調整器 32 1284919 360 C〇2供應容器 362和371排放孔 370和375壓力變換器 37Θ設定點訊號源 380電子壓力控制器 385壓力變換器 391頭部 392基座 400處理組件 406上空間 410密封強化腔室 500處理組件 510處理空間 520密封元件 600處理系統 700處理室 705低壓處理室 800電子壓力控制器 801和802壓力調整器 809活塞密封墊 810設定點訊號源 900電子壓力控制器 901、902壓力調整器 900A、900B、900C、901A、901B、901C、901D、916、917 配 908壓力增強器 909設定點訊號源 915和918配管 920處理室 33 1284919 921頂板 922底板 925引線位置感測器 926腳柱位置感測器 930、931和934壓力變換器 932差動壓力開關 933壓力開關 941高壓室 942低壓室 943活塞 944壓力調整器單元 9440第一輸入端 9441第二輸入端 9442和9443輸出端 9444第三輸入端 945、947和968壓力釋放閥 946外部設定點 950密封強化器 9501内腔室 9502 面 9510輸出端 9511、9512輸入端 951螺線管控制閥 952空氣操作閥 960螺線管控制閥 961過濾器 962頭部 963確認閥 964針閥 34 1284919 965活塞 966方向性流動控制器 967液體導管 968壓力釋放閥 971排放孔 972壓縮氣體供應器 975壓力增強器 9750輸入端 9751輸出端 980基座 981腳柱 982平臺 983處理空間 989内表面 999壓縮氣體供應器 1200 圖 1300 圖Then, in step 1430, it is detected whether the processing of the wafer is completed. If the process is not completed, step 1420 is re-executed. If the process is complete, then step 1435 is performed. In step 1435, processing space 983 becomes unprocessed and processing space g83 is corrupted. The wafer is removed from platform 982. Next, in step 1440, the processing steps are completed. As previously mentioned, in accordance with an embodiment of the present invention, the pseal can be controlled by the MAC valve 940, which can be programmed to perform step 1420. As previously mentioned, the pressure regulator unit 944 can be programmed or controlled to generate a pressure that is converted to a sealing force as previously described in equation (1). While the invention has been described with respect to the preferred embodiments, the modifications and the 29 1284919 Therefore, any cross-sectional view of the processing system in the open position of the present invention should be included in the present invention without departing from the spirit and scope and equivalents of the present invention. According to the top view, the cross-sectional view and the bottom view of the Pingwu station according to the present invention, FIG. 3 shows the work place shown in FIG. 1 in the closed position, and the situation is shown in the position of _ position_丨 (4). The combination of the combined treatment system and the i-opening position processing system, the components thereof, the cylinder, the balance cylinder shown in Fig. 6 in the processing; the cross section of the combination between the combinations Figure and schematic diagram, cross-sectional view and schematic diagram of the combination, this combination is shown in the cross-section and schematic diagram of the combination of the system of the system and the group of the real group, the combination of the group of humanities f and the combination Cross-sectional view and schematic view, this combination is in accordance with still another embodiment of the present invention, and is implemented as a relationship between force and force versus time, which shows one embodiment of the present invention == And a relationship diagram with the processing of Lili, which shows one of the inventions Describing the flow chart of the steps of the embodiment. 30 1284919 100 processing assembly 101 processing chamber 110 upper element 115 sealing strengthening chamber 116 processing chamber 120 processing plate 125 piston gasket 130 sealing surface 131 sealing element 132 arrow 134 radius 135 outer surface 136 inner surface 140 space 150 lower element 155 Platform 156 upper surface 170 balance cylinder 171 upper storage chamber 172 piston 173 lower storage chamber 175 discharge hole 177 incompressible liquid 178 cleaning liquid 180, 181 and 190 conduit 185 left arm 185A left upper arm 185B left lower arm 186 right arm 1284919 186A right upper arm 186B right lower arm 188 201 clamp 203 weight 205 top extension 207 bottom extension 209 base 250 support assembly 300 processing assembly 301 inner surface 302 upper element 303 neck 304 lower element 305 seat 306 platform 310 piston 315 neck Part 320 Water conduit 321 Drain 埠 322 Water filter 323, 324, 325, 330, 342 and 343 Air operated valve 325 Air operated valve 331 Pressure release valve 333 Piston 340 Seal - Leak detector 341 Pressure - Proportional safety valve 350 Electronics Controller 352 Pressure Regulator 32 1284919 360 C〇2 Supply Containers 362 and 371 Discharge Holes 370 and 375 Pressure Transducer 37 Θ Set Point Signal Source 380 Sub-pressure controller 385 pressure transducer 391 head 392 pedestal 400 processing assembly 406 upper space 410 sealing reinforced chamber 500 processing assembly 510 processing space 520 sealing element 600 processing system 700 processing chamber 705 low pressure processing chamber 800 electronic pressure controller 801 And 802 pressure regulator 809 piston seal 810 set point signal source 900 electronic pressure controller 901, 902 pressure regulator 900A, 900B, 900C, 901A, 901B, 901C, 901D, 916, 917 with 908 pressure enhancer 909 set point Signal source 915 and 918 piping 920 processing chamber 33 1284919 921 top plate 922 bottom plate 925 lead position sensor 926 foot position sensor 930, 931 and 934 pressure transducer 932 differential pressure switch 933 pressure switch 941 high pressure chamber 942 low pressure chamber 943 piston 944 pressure regulator unit 9440 first input end 9941 second input end 9442 and 9443 output end 9444 third input end 945, 947 and 968 pressure relief valve 946 external set point 950 seal intensifier 9501 inner chamber 9502 surface 9510 Output 9511, 9512 Input 951 Solenoid Control Valve 952 Air Operated Valve 960 Solenoid Control Valve 961 Filter 962 Head 963 Confirmation Valve 9 64 needle valve 34 1284919 965 piston 966 directional flow controller 967 liquid conduit 968 pressure relief valve 971 discharge hole 972 compressed gas supply 975 pressure booster 9750 input 9751 output 980 base 981 foot 982 platform 983 processing space 989 Inner surface 999 compressed gas supply 1200 Figure 1300

Claims (1)

1284919 十、申請專利範圍: 1· 一種用以處理半導體晶圓的設備,包含: a. —上元件; b· —下元件,其中該上元件以及該下元件互相結合以形 處理空間;以及 c· 一猎封強化态,用以保持上元件抵住該下元件以維持該處 理空間,戎密封強化器用以控制一密封強化腔室中的壓力,該密 封強化腔室中的壓力係依產生於該處理空間中的一處理壓力而^ 非線性的變化。 2·如申請專獅圍第1項之㈣處理轉體晶圓的設備,盆 中該密封強化器係用以使作用於上元件和下元件其中之一的超& 一臨界值之非負淨力最小化,該淨力係依公式ρι*Α1—ρ2*Α2叶管, 其中P1等於該密封壓力,P2等於該處理壓力,A1等於該密封^ 化腔室的橫剖面面積,A2等於該處理空間的橫剖面面積。 ^如申請,利範圍第2項之用以處理半導體晶圓的設備,其 中該密封強化器用以維持-P卜P2之差值在—處理循環期中實質 上不變。 、 範圍第1項之用以處理半導體_的設備,其 ΐίίΐϊΐ15包含—第—腔室以及該密封強化腔室,該第一腔 ΐΐίίΐί化腔室’該密封強化器使得產生在該第一腔室 内=第-勤在該密賴化腔室内產纽該第—壓力大的 二壓力。 中二圍第2項之用以處理半導體晶圓的設備,其 中该杈σι]面面積A1大於該橫剖面面積A2。 範圍第1項之用以處理半導體晶_設備,更 7 ίίϊί处間的用以產生超臨界狀態之一裝置。 勺入圍第6項之用以處理半導體晶圓的設備,更 包含連接域處理如之—ω2供應容器。 8.如申請專利範圍第1項之用以處理半導體晶圓的設備,其 36 1284919 中4上元件以及该下元件形成一超臨界處理室。 由姑!1如中凊專利範圍第1項之用以處理半導體晶圓的設備,其 哭化^包含連接至該下猶的—液壓活塞,該密封強化 器用以維持該處理空間。 10·—種用以處理半導體晶圓的設備,包含: a· —上元件; ’其付上元件以及該下元件互減合以形成— _ = 裝置’用以保持該上元件和該下元制之密封以維持該 ’該裝置用以控制—密封強化腔室中的—密封壓力,^ 腔室中的該密封壓力係隨產生於 = 壓力作非線性變化。 題理 Π· —種處理空間的維持方法,包含如下步驟: a·於一處理空間中產生一處理壓力;以及 々Λ控制—密封壓力以形成並維持—處理空間,其中在-盧理 循壤中’該密封壓力隨著該處理壓力而作非線性的變化。处理 —12.如中請專利範圍第η項之處理空間的維持方法, =封壓力和依公式他㈣卜mA2求 字方 面面積’而A2等於一處理空間的橫 壓力變化以維持Λίτ高於一臨界值。 谓且7忒袷封 13.如申請專利範圍第12項之處理空間的維持 •如甲明專利乾圍弟11項之處理空間的維持方法,1 體生一地理壓力之步驟包括在該處理空間内容納一高壓處^ 15. 如申請專魏圍f 14項之處理空_維 尚壓處理液體包含超臨界二氧化碳。 法其中该 16. 如申請專利範圍第12項之處理空_維持方法,其中該控 37 1284919 制該密封壓力的步驟包含在該密封強化腔室中產生一液壓。 十一、圖式: 381284919 X. Patent application scope: 1. A device for processing a semiconductor wafer, comprising: a. an upper component; b. a lower component, wherein the upper component and the lower component are combined with each other to form a processing space; · a seal-enhanced state for holding the upper member against the lower member to maintain the processing space, and the seal intensifier for controlling the pressure in a seal-enhancing chamber, the pressure in the seal-enhancing chamber being generated A processing pressure in the processing space and a nonlinear change. 2. If applying for the equipment for processing the wafer, the seal intensifier is used to make the super/amp; one of the upper and lower components a non-negative net. The force is minimized, and the net force is according to the formula ρι*Α1—ρ2*Α2, wherein P1 is equal to the sealing pressure, P2 is equal to the processing pressure, A1 is equal to the cross-sectional area of the sealing chamber, and A2 is equal to the treatment. The cross-sectional area of the space. ^ If applied, the apparatus for processing semiconductor wafers of item 2 of the benefit range, wherein the seal enhancer is used to maintain the difference between -P and P2 substantially unchanged during the processing cycle. The device of the first item of the scope for processing the semiconductor_, the ΐίίΐϊΐ15 includes a first chamber and the seal strengthening chamber, the first chamber ΐΐ ΐ ΐ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' = The first - diligent in the Mi Lai chamber to produce the second - pressure two pressure. The device for processing a semiconductor wafer according to item 2 of the second division, wherein the 杈σι] face area A1 is larger than the cross-sectional area A2. The first item of the scope is used to process a semiconductor crystal device, and a device for generating a supercritical state. Spoons are included in the equipment for processing semiconductor wafers in item 6, and include the connection domain processing such as the ω2 supply container. 8. The apparatus for processing a semiconductor wafer according to claim 1 of the invention, wherein the upper element and the lower element of the 36 1284919 form a supercritical processing chamber. The apparatus for processing a semiconductor wafer according to the first item of the Chinese Patent Laid-Open Patent Publication No. 1, the crying of which comprises a hydraulic piston connected to the lower chamber, the seal strengthener for maintaining the processing space. 10. A device for processing a semiconductor wafer, comprising: a·- an upper component; 'the upper component and the lower component are mutually reduced to form a _=device' for holding the upper component and the lower element The seal is made to maintain the seal pressure in the device to control the seal-enhancement chamber, and the seal pressure in the chamber varies non-linearly with the pressure generated. The method of maintaining the processing space includes the following steps: a. generating a processing pressure in a processing space; and controlling the sealing pressure to form and maintain a processing space, wherein in the - Luli path The sealing pressure changes non-linearly with the processing pressure. Processing—12. For the maintenance method of the processing space in the nth patent range, = sealing pressure and the area according to the formula (4) mA2 seeking word ', and A2 is equal to the transverse pressure change of a processing space to maintain Λίτ higher than one Threshold value. Said that 7忒袷封13. If the processing space of the patent application scope 12 is maintained, such as the maintenance method of the processing space of 11 patents of the company, 1 step of the physical pressure is included in the processing space. Contents of a high pressure ^ 15. If you apply for a special Wei Wei f 14 items of treatment _ Weishang pressure treatment liquid contains supercritical carbon dioxide. 16. The method of claim 12, wherein the step of applying the sealing pressure comprises generating a hydraulic pressure in the seal strengthening chamber. XI. Schema: 38
TW093130116A 2003-10-06 2004-10-05 High-pressure processing chamber for a semiconductor wafer TWI284919B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/680,783 US7225820B2 (en) 2003-02-10 2003-10-06 High-pressure processing chamber for a semiconductor wafer

Publications (2)

Publication Number Publication Date
TW200523990A TW200523990A (en) 2005-07-16
TWI284919B true TWI284919B (en) 2007-08-01

Family

ID=34465443

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093130116A TWI284919B (en) 2003-10-06 2004-10-05 High-pressure processing chamber for a semiconductor wafer

Country Status (4)

Country Link
US (1) US7225820B2 (en)
JP (2) JP4787761B2 (en)
TW (1) TWI284919B (en)
WO (1) WO2005038868A2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255231B4 (en) * 2002-11-26 2006-02-02 Uhde High Pressure Technologies Gmbh High pressure device for closing a pressure vessel in the clean room
US7225820B2 (en) * 2003-02-10 2007-06-05 Tokyo Electron Limited High-pressure processing chamber for a semiconductor wafer
US7767145B2 (en) 2005-03-28 2010-08-03 Toyko Electron Limited High pressure fourier transform infrared cell
US20060226117A1 (en) * 2005-03-29 2006-10-12 Bertram Ronald T Phase change based heating element system and method
US10651063B2 (en) 2005-06-18 2020-05-12 Frederick A. Flitsch Methods of prototyping and manufacturing with cleanspace fabricators
US9457442B2 (en) * 2005-06-18 2016-10-04 Futrfab, Inc. Method and apparatus to support process tool modules in a cleanspace fabricator
US11024527B2 (en) 2005-06-18 2021-06-01 Frederick A. Flitsch Methods and apparatus for novel fabricators with Cleanspace
US9059227B2 (en) 2005-06-18 2015-06-16 Futrfab, Inc. Methods and apparatus for vertically orienting substrate processing tools in a clean space
US7513822B2 (en) 2005-06-18 2009-04-07 Flitsch Frederick A Method and apparatus for a cleanspace fabricator
US10627809B2 (en) 2005-06-18 2020-04-21 Frederick A. Flitsch Multilevel fabricators
US9339900B2 (en) * 2005-08-18 2016-05-17 Futrfab, Inc. Apparatus to support a cleanspace fabricator
US9159592B2 (en) 2005-06-18 2015-10-13 Futrfab, Inc. Method and apparatus for an automated tool handling system for a multilevel cleanspace fabricator
KR100829923B1 (en) * 2006-08-30 2008-05-16 세메스 주식회사 Spin head and method using the same for treating substrate
US7993457B1 (en) * 2007-01-23 2011-08-09 Novellus Systems, Inc. Deposition sub-chamber with variable flow
GB0814025D0 (en) * 2008-08-01 2008-09-10 Goodrich Control Sys Ltd Fuel pumping system
US9166139B2 (en) * 2009-05-14 2015-10-20 The Neothermal Energy Company Method for thermally cycling an object including a polarizable material
JP5708506B2 (en) * 2011-04-20 2015-04-30 東京エレクトロン株式会社 Processing equipment
US20140224409A1 (en) * 2013-02-11 2014-08-14 International Rectifier Corporation Sintering Utilizing Non-Mechanical Pressure
KR102064552B1 (en) 2013-03-26 2020-01-10 삼성전자주식회사 Substrate treating apparatus
US9353439B2 (en) 2013-04-05 2016-05-31 Lam Research Corporation Cascade design showerhead for transient uniformity
US10023959B2 (en) 2015-05-26 2018-07-17 Lam Research Corporation Anti-transient showerhead
KR101910801B1 (en) * 2016-10-26 2019-01-07 세메스 주식회사 Apparatus and method for treating substrate
KR101949408B1 (en) * 2016-11-25 2019-02-20 세메스 주식회사 Apparatus for treating substrate
KR102358561B1 (en) * 2017-06-08 2022-02-04 삼성전자주식회사 Substrate processing apparatus and apparatus for manufacturing integrated circuit device
KR102126180B1 (en) * 2018-04-30 2020-06-26 세메스 주식회사 Apparatus and Method for treating substrate
KR102267171B1 (en) * 2018-04-30 2021-06-22 세메스 주식회사 Apparatus and Method for treating substrate
KR102616514B1 (en) * 2019-03-14 2023-12-26 주식회사 케이씨텍 Substrate treating apparatus and substrate treating method
KR102616133B1 (en) * 2020-07-08 2023-12-22 세메스 주식회사 Apparatus and method for treating substrate
KR20230025563A (en) * 2021-08-12 2023-02-22 세메스 주식회사 Substrate treating apparatus and substrate treating method

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2625886A (en) * 1947-08-21 1953-01-20 American Brake Shoe Co Pump
US2617719A (en) * 1950-12-29 1952-11-11 Stanolind Oil & Gas Co Cleaning porous media
US2873597A (en) * 1955-08-08 1959-02-17 Victor T Fahringer Apparatus for sealing a pressure vessel
US3521765A (en) * 1967-10-31 1970-07-28 Western Electric Co Closed-end machine for processing articles in a controlled atmosphere
US3681171A (en) * 1968-08-23 1972-08-01 Hitachi Ltd Apparatus for producing a multilayer printed circuit plate assembly
US3623627A (en) * 1969-08-22 1971-11-30 Hunt Co Rodney Door construction for a pressure vessel
US3689025A (en) * 1970-07-30 1972-09-05 Elmer P Kiser Air loaded valve
US3744660A (en) * 1970-12-30 1973-07-10 Combustion Eng Shield for nuclear reactor vessel
US3968885A (en) * 1973-06-29 1976-07-13 International Business Machines Corporation Method and apparatus for handling workpieces
US4341592A (en) * 1975-08-04 1982-07-27 Texas Instruments Incorporated Method for removing photoresist layer from substrate by ozone treatment
US4029517A (en) * 1976-03-01 1977-06-14 Autosonics Inc. Vapor degreasing system having a divider wall between upper and lower vapor zone portions
JPS52107604A (en) * 1976-03-05 1977-09-09 Toyo Denki Kougiyoushiyo Kk Pressure regurators for submarine instruments
US4091643A (en) * 1976-05-14 1978-05-30 Ama Universal S.P.A. Circuit for the recovery of solvent vapor evolved in the course of a cleaning cycle in dry-cleaning machines or plants, and for the de-pressurizing of such machines
GB1594935A (en) * 1976-11-01 1981-08-05 Gen Descaling Co Ltd Closure for pipe or pressure vessel and seal therefor
US4145161A (en) * 1977-08-10 1979-03-20 Standard Oil Company (Indiana) Speed control
JPS5448172A (en) * 1977-09-24 1979-04-16 Tokyo Ouka Kougiyou Kk Plasma reaction processor
US4367140A (en) * 1979-11-05 1983-01-04 Sykes Ocean Water Ltd. Reverse osmosis liquid purification apparatus
DE3110341C2 (en) * 1980-03-19 1983-11-17 Hitachi, Ltd., Tokyo Method and apparatus for aligning a thin substrate in the image plane of a copier
US4355937A (en) * 1980-12-24 1982-10-26 International Business Machines Corporation Low shock transmissive antechamber seal mechanisms for vacuum chamber type semi-conductor wafer electron beam writing apparatus
DE3112434A1 (en) * 1981-03-28 1982-10-07 Depa GmbH, 4000 Düsseldorf PNEUMATIC DIAPHRAGM PUMP
US4682937A (en) * 1981-11-12 1987-07-28 The Coca-Cola Company Double-acting diaphragm pump and reversing mechanism therefor
DE3145815C2 (en) * 1981-11-19 1984-08-09 AGA Gas GmbH, 2102 Hamburg Process for removing peelable layers of material from coated objects,
US4522788A (en) 1982-03-05 1985-06-11 Leco Corporation Proximate analyzer
US4426358A (en) * 1982-04-28 1984-01-17 Johansson Arne I Fail-safe device for a lid of a pressure vessel
DE3238768A1 (en) * 1982-10-20 1984-04-26 Kurt Wolf & Co Kg, 7547 Wildbad COOKING VESSEL FROM COOKER AND LID, ESPECIALLY STEAM PRESSURE COOKER
FR2536433A1 (en) * 1982-11-19 1984-05-25 Privat Michel METHOD AND APPARATUS FOR CLEANING AND DECONTAMINATING PARTICULARLY CLOTHING, ESPECIALLY CLOTHES CONTAMINATED WITH RADIOACTIVE PARTICLES
US4626509A (en) * 1983-07-11 1986-12-02 Data Packaging Corp. Culture media transfer assembly
US4865061A (en) * 1983-07-22 1989-09-12 Quadrex Hps, Inc. Decontamination apparatus for chemically and/or radioactively contaminated tools and equipment
US4549467A (en) * 1983-08-03 1985-10-29 Wilden Pump & Engineering Co. Actuator valve
GB8332394D0 (en) * 1983-12-05 1984-01-11 Pilkington Brothers Plc Coating apparatus
US4693777A (en) * 1984-11-30 1987-09-15 Kabushiki Kaisha Toshiba Apparatus for producing semiconductor devices
US4960140A (en) * 1984-11-30 1990-10-02 Ishijima Industrial Co., Ltd. Washing arrangement for and method of washing lead frames
US4788043A (en) * 1985-04-17 1988-11-29 Tokuyama Soda Kabushiki Kaisha Process for washing semiconductor substrate with organic solvent
US4778356A (en) * 1985-06-11 1988-10-18 Hicks Cecil T Diaphragm pump
US4749440A (en) * 1985-08-28 1988-06-07 Fsi Corporation Gaseous process and apparatus for removing films from substrates
US5044871A (en) * 1985-10-24 1991-09-03 Texas Instruments Incorporated Integrated circuit processing system
US4827867A (en) * 1985-11-28 1989-05-09 Daikin Industries, Ltd. Resist developing apparatus
US4917556A (en) * 1986-04-28 1990-04-17 Varian Associates, Inc. Modular wafer transport and processing system
US4670126A (en) * 1986-04-28 1987-06-02 Varian Associates, Inc. Sputter module for modular wafer processing system
US4951601A (en) * 1986-12-19 1990-08-28 Applied Materials, Inc. Multi-chamber integrated process system
JPS63157870A (en) * 1986-12-19 1988-06-30 Anelva Corp Substrate treatment device
US4924892A (en) * 1987-07-28 1990-05-15 Mazda Motor Corporation Painting truck washing system
DE3725565A1 (en) * 1987-08-01 1989-02-16 Peter Weil METHOD AND SYSTEM FOR DE-PAINTING OBJECTS WITH A SUBMERSIBLE CONTAINER WITH SOLVENT
US5105556A (en) * 1987-08-12 1992-04-21 Hitachi, Ltd. Vapor washing process and apparatus
US4838476A (en) * 1987-11-12 1989-06-13 Fluocon Technologies Inc. Vapour phase treatment process and apparatus
US4789077A (en) * 1988-02-24 1988-12-06 Public Service Electric & Gas Company Closure apparatus for a high pressure vessel
US4823976A (en) * 1988-05-04 1989-04-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Quick actuating closure
US5224504A (en) * 1988-05-25 1993-07-06 Semitool, Inc. Single wafer processor
US5185296A (en) * 1988-07-26 1993-02-09 Matsushita Electric Industrial Co., Ltd. Method for forming a dielectric thin film or its pattern of high accuracy on a substrate
US5051135A (en) * 1989-01-30 1991-09-24 Kabushiki Kaisha Tiyoda Seisakusho Cleaning method using a solvent while preventing discharge of solvent vapors to the environment
CA2027550C (en) * 1989-02-16 1995-12-26 Janusz B. Pawliszyn Apparatus and method for delivering supercritical fluid
US4879431A (en) * 1989-03-09 1989-11-07 Biomedical Research And Development Laboratories, Inc. Tubeless cell harvester
US5169296A (en) * 1989-03-10 1992-12-08 Wilden James K Air driven double diaphragm pump
US5213485A (en) * 1989-03-10 1993-05-25 Wilden James K Air driven double diaphragm pump
DE3914065A1 (en) * 1989-04-28 1990-10-31 Leybold Ag DEVICE FOR CARRYING OUT PLASMA ETCHING PROCESSES
US5288333A (en) 1989-05-06 1994-02-22 Dainippon Screen Mfg. Co., Ltd. Wafer cleaning method and apparatus therefore
US5186718A (en) * 1989-05-19 1993-02-16 Applied Materials, Inc. Staged-vacuum wafer processing system and method
DE3926577A1 (en) * 1989-08-11 1991-02-14 Leybold Ag VACUUM PUMP WITH A ROTOR AND ROTOR BEARINGS OPERATED WITH VACUUM
US5062770A (en) * 1989-08-11 1991-11-05 Systems Chemistry, Inc. Fluid pumping apparatus and system with leak detection and containment
US4983223A (en) * 1989-10-24 1991-01-08 Chenpatents Apparatus and method for reducing solvent vapor losses
US5169408A (en) * 1990-01-26 1992-12-08 Fsi International, Inc. Apparatus for wafer processing with in situ rinse
US5186594A (en) * 1990-04-19 1993-02-16 Applied Materials, Inc. Dual cassette load lock
US5217043A (en) * 1990-04-19 1993-06-08 Milic Novakovic Control valve
EP0456426B1 (en) 1990-05-07 2004-09-15 Canon Kabushiki Kaisha Vacuum type wafer holder
US5370741A (en) 1990-05-15 1994-12-06 Semitool, Inc. Dynamic semiconductor wafer processing using homogeneous chemical vapors
DE4018464A1 (en) * 1990-06-08 1991-12-12 Ott Kg Lewa DIAPHRAGM FOR A HYDRAULICALLY DRIVED DIAPHRAGM PUMP
US5071485A (en) * 1990-09-11 1991-12-10 Fusion Systems Corporation Method for photoresist stripping using reverse flow
US5236669A (en) * 1990-09-12 1993-08-17 E. I. Du Pont De Nemours And Company Pressure vessel
US5167716A (en) * 1990-09-28 1992-12-01 Gasonics, Inc. Method and apparatus for batch processing a semiconductor wafer
DE4106180A1 (en) * 1990-10-08 1992-04-09 Dirk Dipl Ing Budde DOUBLE DIAPHRAGM PUMP
US5306350A (en) 1990-12-21 1994-04-26 Union Carbide Chemicals & Plastics Technology Corporation Methods for cleaning apparatus using compressed fluids
US5143103A (en) * 1991-01-04 1992-09-01 International Business Machines Corporation Apparatus for cleaning and drying workpieces
CH684402A5 (en) * 1991-03-04 1994-09-15 Xorella Ag Wettingen Device for sliding and pivoting of a container-closure.
US5259731A (en) * 1991-04-23 1993-11-09 Dhindsa Jasbir S Multiple reciprocating pump system
US5195878A (en) * 1991-05-20 1993-03-23 Hytec Flow Systems Air-operated high-temperature corrosive liquid pump
US5243821A (en) * 1991-06-24 1993-09-14 Air Products And Chemicals, Inc. Method and apparatus for delivering a continuous quantity of gas over a wide range of flow rates
US5242641A (en) * 1991-07-15 1993-09-07 Pacific Trinetics Corporation Method for forming filled holes in multi-layer integrated circuit packages
US5251776A (en) * 1991-08-12 1993-10-12 H. William Morgan, Jr. Pressure vessel
JP3040212B2 (en) * 1991-09-05 2000-05-15 株式会社東芝 Vapor phase growth equipment
DE9112761U1 (en) * 1991-10-14 1992-04-09 Krones Ag Hermann Kronseder Maschinenfabrik, 8402 Neutraubling Vessel sealing machine
US5221019A (en) * 1991-11-07 1993-06-22 Hahn & Clay Remotely operable vessel cover positioner
US5190373A (en) * 1991-12-24 1993-03-02 Union Carbide Chemicals & Plastics Technology Corporation Method, apparatus, and article for forming a heated, pressurized mixture of fluids
US5240390A (en) * 1992-03-27 1993-08-31 Graco Inc. Air valve actuator for reciprocable machine
US5252041A (en) * 1992-04-30 1993-10-12 Dorr-Oliver Incorporated Automatic control system for diaphragm pumps
US5404894A (en) 1992-05-20 1995-04-11 Tokyo Electron Kabushiki Kaisha Conveyor apparatus
US5313965A (en) 1992-06-01 1994-05-24 Hughes Aircraft Company Continuous operation supercritical fluid treatment process and system
JPH0613361A (en) 1992-06-26 1994-01-21 Tokyo Electron Ltd Processing apparatus
US5401322A (en) 1992-06-30 1995-03-28 Southwest Research Institute Apparatus and method for cleaning articles utilizing supercritical and near supercritical fluids
US5267455A (en) 1992-07-13 1993-12-07 The Clorox Company Liquid/supercritical carbon dioxide dry cleaning system
US5285352A (en) 1992-07-15 1994-02-08 Motorola, Inc. Pad array semiconductor device with thermal conductor and process for making the same
US5368171A (en) 1992-07-20 1994-11-29 Jackson; David P. Dense fluid microwave centrifuge
US5339844A (en) 1992-08-10 1994-08-23 Hughes Aircraft Company Low cost equipment for cleaning using liquefiable gases
US5355901A (en) 1992-10-27 1994-10-18 Autoclave Engineers, Ltd. Apparatus for supercritical cleaning
US5337446A (en) 1992-10-27 1994-08-16 Autoclave Engineers, Inc. Apparatus for applying ultrasonic energy in precision cleaning
US5328722A (en) 1992-11-06 1994-07-12 Applied Materials, Inc. Metal chemical vapor deposition process using a shadow ring
KR100251873B1 (en) 1993-01-21 2000-04-15 마쓰바 구니유키 Vertical type heat treating apparatus
US5474410A (en) 1993-03-14 1995-12-12 Tel-Varian Limited Multi-chamber system provided with carrier units
US5433334A (en) 1993-09-08 1995-07-18 Reneau; Raymond P. Closure member for pressure vessel
US5377705A (en) 1993-09-16 1995-01-03 Autoclave Engineers, Inc. Precision cleaning system
US5417768A (en) 1993-12-14 1995-05-23 Autoclave Engineers, Inc. Method of cleaning workpiece with solvent and then with liquid carbon dioxide
US5434107A (en) * 1994-01-28 1995-07-18 Texas Instruments Incorporated Method for planarization
DE69523208T2 (en) 1994-04-08 2002-06-27 Texas Instruments Inc Process for cleaning semiconductor wafers using liquefied gases
JP3346698B2 (en) * 1996-03-18 2002-11-18 株式会社荏原製作所 High temperature motor pump and its operation method
JPH10131889A (en) * 1996-10-25 1998-05-19 Mitsubishi Heavy Ind Ltd Compressor for perforator
US6103638A (en) * 1997-11-07 2000-08-15 Micron Technology, Inc. Formation of planar dielectric layers using liquid interfaces
KR100524204B1 (en) * 1998-01-07 2006-01-27 동경 엘렉트론 주식회사 Gas processor
US6280573B1 (en) * 1998-08-12 2001-08-28 Kimberly-Clark Worldwide, Inc. Leakage control system for treatment of moving webs
US6642140B1 (en) * 1998-09-03 2003-11-04 Micron Technology, Inc. System for filling openings in semiconductor products
JP2000265945A (en) * 1998-11-10 2000-09-26 Uct Kk Chemical supplying pump, chemical supplying device, chemical supplying system, substrate cleaning device, chemical supplying method, and substrate cleaning method
US6602349B2 (en) * 1999-08-05 2003-08-05 S.C. Fluids, Inc. Supercritical fluid cleaning process for precision surfaces
US6264003B1 (en) * 1999-09-30 2001-07-24 Reliance Electric Technologies, Llc Bearing system including lubricant circulation and cooling apparatus
JP2001138481A (en) * 1999-11-15 2001-05-22 Hitachi Techno Eng Co Ltd Printer having press injecting head
US6558475B1 (en) * 2000-04-10 2003-05-06 International Business Machines Corporation Process for cleaning a workpiece using supercritical carbon dioxide
WO2002009147A2 (en) * 2000-07-26 2002-01-31 Tokyo Electron Limited High pressure processing chamber for semiconductor substrate
EP1573779A4 (en) * 2001-04-10 2006-11-15 Tokyo Electron Ltd High pressure processing chamber for semiconductor substrate including flow enhancing features
JP3978023B2 (en) * 2001-12-03 2007-09-19 株式会社神戸製鋼所 High pressure processing method
US7225820B2 (en) * 2003-02-10 2007-06-05 Tokyo Electron Limited High-pressure processing chamber for a semiconductor wafer
US7077917B2 (en) * 2003-02-10 2006-07-18 Tokyo Electric Limited High-pressure processing chamber for a semiconductor wafer
US6875285B2 (en) * 2003-04-24 2005-04-05 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for dampening high pressure impact on porous materials

Also Published As

Publication number Publication date
WO2005038868A2 (en) 2005-04-28
US7225820B2 (en) 2007-06-05
WO2005038868A3 (en) 2006-02-23
TW200523990A (en) 2005-07-16
JP2011097101A (en) 2011-05-12
JP4787761B2 (en) 2011-10-05
JP2007507906A (en) 2007-03-29
US20050014370A1 (en) 2005-01-20

Similar Documents

Publication Publication Date Title
TWI284919B (en) High-pressure processing chamber for a semiconductor wafer
US7077917B2 (en) High-pressure processing chamber for a semiconductor wafer
US7119531B2 (en) Pusher in an autohandler for pressing a semiconductor device
JP4406292B2 (en) Water hammerless opening method of fluid passage and water hammerless opening device using the same
CN109383064B (en) Using bladders to control application of force to different portions of a surface of an object
KR20130054235A (en) Method and system for optimizing operation of a pump
US20100122733A1 (en) Pressure biased micro-fluidic valve
JP2013000939A (en) Mechanism for controlling degree of vacuum of vacuum chamber, joining apparatus equipped with the same, method for controlling degree of vacuum of vacuum chamber, and method for controlling degree of vacuum of joining apparatus
JP6015738B2 (en) Processing apparatus, processing method, and storage medium
KR20050004247A (en) Method for closing fluid passage, water hammerless valve and water hammerless closing device
TW462992B (en) Apparatus for pressurizing treatment of semiconductor
US5533868A (en) Apparatus and method for batch-wire continuous pumping
CA2388531A1 (en) Dual chamber liquid pump
JP2015000765A (en) Device and method for filling container with filling material
JP6681099B1 (en) Liquid pressure processing apparatus and liquid pressure processing method
JP2008254986A (en) Activation device and method for hydrogen storage alloy vessel
JPH10305223A (en) Gas pressurizing feeder
CN113604349B (en) Three-dimensional cell loading device using sample rack
JP2022033924A (en) Valve actuator and diaphragm valve equipped with the same
JPS61100637A (en) Apparatus for generating varying pressure
JP2018123872A (en) Actuator for valve and diaphragm valve including the same
RU2455114C1 (en) Gasostatic extruder
CN101050828A (en) Integrated valve
JP2004214640A (en) Sealed vessel with internal atmosphere switching mechanism
JP4226358B2 (en) Pressure medium differential pressure recovery method of pressure device and recovery device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees