TWI280723B - Method and system for determining a rotor angle in a drive control for a motor - Google Patents

Method and system for determining a rotor angle in a drive control for a motor Download PDF

Info

Publication number
TWI280723B
TWI280723B TW93120008A TW93120008A TWI280723B TW I280723 B TWI280723 B TW I280723B TW 93120008 A TW93120008 A TW 93120008A TW 93120008 A TW93120008 A TW 93120008A TW I280723 B TWI280723 B TW I280723B
Authority
TW
Taiwan
Prior art keywords
motor
rotor angle
power input
circuit
model
Prior art date
Application number
TW93120008A
Other languages
Chinese (zh)
Inventor
Eddy Ying Yin Ho
Original Assignee
Int Rectifier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/294,201 external-priority patent/US6910389B2/en
Application filed by Int Rectifier Corp filed Critical Int Rectifier Corp
Application granted granted Critical
Publication of TWI280723B publication Critical patent/TWI280723B/en

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A method of determining a rotor angle in a drive control for a motor, comprising the steps of (a) determining a rotor magnetic flux in the motor; (b) estimating the rotor angle on the basis of the rotor magnetic flux; and (c) correcting the estimated rotor angle on the basis of reactive power input to the motor. Step (a) may include the step of non-ideal integration of stator voltage and current values. Step (b) may include the step of correcting phase errors caused by said non-ideal integration via a PLL circuit with phase compensation (F). Step (c) may include the steps of (1) calculating a first reactive power input value as 1:5*We*(C_Lq*I*1) and a second reactive power input value as 1.5*(Vq*id-Vd*iq); (2) determining a difference between said first and second reactive power input values; and (3) applying said difference to the rotor angle estimated in step (b) to obtain a corrected rotor angle. At higher motor frequencies, the estimated rotor angle is based on the rotor magnetic flux. At lower frequencies, it is based on a predetermined motor load model which is used in conjunction with a start-up sequencing logic circuit.

Description

1280723 九、發明說明: I;發明所屬技術領域】 發明領域 本發明係有關馬達驅動機之控制,特別係有關於永久 5磁鐵同步馬達(pMSM)驅動機之轉子角估計技術,特別為 PMSM由靜止啟動時之轉子角之估計。 t先前椅;j 發明背景 轉子位置資訊通常為具有正弦電流激化之永久磁鐵交 10流馬達穩定操作所需。過去由架設於馬達轴的編碼器已經 獲付連、、、貝轉子位置,或間接經由基於電壓與電流的回授經 由估計演繹法則而間接獲得連續轉子位置。以後者為佳, 原因在於後者之系統成本及運作成本較低。 但大部分被動馬達估計方案(基於測量所得電壓及電 /4估计)自複雜,要求有關馬達參數例如電阻及電感之精確 知識此等參數特別為定子電阻隨著溫度而有寬廣變化。 如此‘致轉子角估計的不準,以及導致控制穩定性問題, 每安培轉矩能力降低,以及馬賴作效率低劣。 弟10/294,201號專利申請案說明一種方法,其中轉子角 2〇係透過鎖相迴路(PLL)估計,鎖相迴路係鎖定於馬達磁通, 特別於正常運轉模係鎖定於馬達磁通。 仁t明人觀察到馬達啟動時有額外問題。於零速或低 速(<1〇=)條件下,由於馬達後糧聊MF)振幅低,因而難 、準t里#械準確估計馬達電歷。於大部分無感測器(無主 1280723 轴、’扁馬抑)之控制驅動機,基於bemf追縱轉子角通常於低 、、 )才失敗。因此然感測器控制永久磁鐵馬達驅動機要 求某種啟動馬細手段。大部分情況下,馬達細開放迴 路(未使用任何回授)之方式啟動。—旦馬達速度加快(典型 >1〇%)’驅動機切換成為封閉迴路(使用電流及/或電壓回授) 控制杈。但於由開放迴路模切換至封閉迴路模期間,由於 模之k遷可能出現轉矩及電流脈波化。 因此希望提供一種轉子角估計方案,其可提供每安培 最大轉矩效能,而無需準確了解定子電阻或其它馬達參數。 進一步希望提供一種方案來估計啟動時之轉子角,因 而提t、馬達強勁的啟動,減少馬達啟動期間出現轉矩脈波 化現象。 【發明内容】 發明概要 本發明提供一種新穎估計具有正弦背EMF之永久磁鐵 父換馬達控制用之轉子角資訊之新穎方法。 轉子角係透過接收轉子磁通估值之鎖相迴路(帶有相 位秩差補償)估計。轉子磁通係得自定子電壓(實際電壓或指 令電壓)、電流、電阻及電感。 然後轉子角估計誤差(因溫度造成之定子電阻改變)經 由使用新穎角誤差校正器去除。此種角誤差校正器係基於 無效功率補償,且對電阻變化不敏感。此外對角校正器參 考模只要求一項電感參數。 為了於馬達啟動期間提供強勁啟動且減少轉矩脈波 1280723 化,本發明使用前述PLL結合新發展出的啟動邏輯。啟動邏 ,包含啟動排序減機械模。料元件可製作成極為簡 早,原因在於此等元件利用第10/294,201號專利料用來估 計轉子角的相同PLL積分器。 5 輯所得磁通資訊由PLL用於封_路模來追蹤轉子 角。單純機械模由PLL用於開放迴路用來預測轉子角。此種 啟動順序邏輯用來提供馬達啟動期間強勁且順利地由開放 迴路控制模變遷成為封閉迴路控制模。 如此PM馬達之無感測器控制用之轉子角估計演繹法 1〇則包含以下一或多項範例特性。 (1) 磁通估計器帶有前饋電感補償。向量pLL鎖定於磁 通估什恭輸出。非理想磁通估計器結合磁通pLL用於估計轉 子角。 (2) 相位補償電路(F)含括於pll,來估計由非理想磁通 15 估計器所導入之相位誤差。 (3) 基於無效功率之補償方案,可去除轉子角估計方法 對定子電阻變化的敏感度。 (4) 啟動排序器及負載模結合向量pll操作,來達成強 勁啟動以及順利的速度斜坡式升高。 20 其它本發明之特色及優點由後文發明具體例之說明參 照附圖將更為彰顯。 圖式簡單說明 第1圖為方塊圖,顯示包括本發明之第一具體例之 PMSM控制系統。 1280723 第2圖為細節方塊圖,顯示第1圖之轉子角估計器。 第3圖為關聯第2圖之略圖之轉子磁通估計器電路圖。 第4圖為進一步細節圖,顯示第1圖之轉子角校正器。 第5圖為線圖,顯示以馬達額定功率為單位,無效功率 5 誤差相對於轉子角誤差間之關係。 第6圖為方塊圖,顯示轉子角估計器之第二具體例。 第7圖為方塊圖,顯示轉子角估計器之第三具體例。 第8圖顯示第7圖之轉子角估計器之進一步細節。 【實施方式3 10 較佳實施例之詳細說明 本發明於此處係有關於韌體實作之馬達控制演繹法則 做說明。但本發明之範圍包括於業界技巧範圍内已經可以 預見之任一種硬體、韌體與軟體的組合實作。 控制方法之第一具體例之方塊圖顯示於第1圖。d軸為 15 校準轉子磁軸之方向(參考文獻之使用習慣)。 以下為第1圖列舉之各數量定義。 1280723 id* 石兹通電流指令 iq* 轉矩電流指令 id 磁通電流回授 iq 轉矩電流回授 ia,ib 相位電流 Rtr_Ang 估計所得之轉子角 C_Rs 每相位電阻之定子 Del_Ang 得自角校正器之補償角 Vab,Vbc 線電壓回授 Vd 磁通-軸電壓回授 Vq 轉矩·轴電壓回授 We 反相器基頻 第1圖之轉子角估計方塊之細節顯示於第2圖。輸入 Flx_A及Flx_B為轉子磁通,轉子磁通係藉電壓背enlf之非理 5 想積分獲得,電壓後emf係經由定子電流、電壓、電阻及電 感形成,如第3圖所示。於圖中,Tf表示非理想積分器之時 間常數。 注意第3圖之磁通估計器的輸入(V_A、V_B、1_八及I_B) 單純為3相(ia、ib、Vab、Vbc)至2相轉換信號。 ° 轉子角估計器(第2圖)利用新穎通量鎖相迴路系統。頻 率前饋電路F補償因定子電壓非理想積分導致之相位誤 差’於第3圖用來獲得磁通。由非理想積分產生之相位誤差 於電路F完整補償。 然後’因電阻導致之估計誤差由轉子角校正器系統補 1280723 偵’就第4圖說明如後。 第1圖之轉子角校正器電路細節顯示於第4圖。當估計 _之轉子角(第㈤匹配實際轉子角時,無效功率⑼輪入 馬達之參考值等於: 1.5*We*(C Lq*I*I+Flx—M*id+(C—Ld-C—Ld)*id*id) 但注意對永久磁鐵表面安裝(PMSM)馬達而言,於d軸 及q軸之氣隙磁阻相同。如此id=〇及Ld=Lq。因此前述參考 無效功率方程式可縮減為: 1.5*We*(C_Lq*I*I) 貫際馬達無效功率(Q)只以電壓及電流表示,可如下求 出: Q=L5*(Vq*id-Vd*iq) 上式中: C—Ld - d轴電感 C_Lq - q軸電感 I -定子電流幅度BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the control of a motor drive machine, and more particularly to a rotor angle estimation technique for a permanent 5 magnet synchronous motor (pMSM) drive machine, particularly for PMSM by stationary Estimation of the rotor angle at start-up. tPrevious chair; j Background of the invention Rotor position information is usually required for stable operation of a permanent magnet with a sinusoidal current excitation. In the past, the encoders mounted on the motor shaft have been subjected to the position of the joint, the bay rotor, or indirectly via the voltage and current based feedback by the estimation of the deductive rule to obtain the continuous rotor position indirectly. The latter is preferred because of the lower system cost and operating costs of the latter. However, most passive motor estimation schemes (based on measured voltage and power /4 estimates) are complex and require precise knowledge of motor parameters such as resistance and inductance. These parameters are particularly variable for stator resistance as a function of temperature. In this way, the rotor angle estimation is inaccurate, and the control stability problem is caused, the torque per ampere is reduced, and the efficiency of the Ma Lai is inferior. The patent application Serial No. 10/294,201 describes a method in which the rotor angle 2 is estimated by a phase-locked loop (PLL), the phase-locked loop is locked to the motor flux, and in particular the normally operating mode is locked to the motor flux. Ren Ting observed that there were additional problems when starting the motor. Under the condition of zero speed or low speed (<1〇=), due to the low amplitude of the motor after the MF), it is difficult to accurately estimate the motor electric history. For most of the non-sensors (no main 1280723 axis, 'flat horse suppression) control drive, based on bemf tracking rotor angle usually low, , ) failed. Therefore, the sensor controls the permanent magnet motor driver to require some sort of starting device. In most cases, the motor is opened in a thin open loop (without any feedback). Once the motor speed is increased (typical > 1〇%), the drive is switched to a closed loop (using current and / or voltage feedback) control. However, during the switching from the open loop mode to the closed loop mode, torque and current ripple may occur due to the mode shift. It is therefore desirable to provide a rotor angle estimation scheme that provides maximum torque performance per amp without the need to accurately understand stator resistance or other motor parameters. It is further desirable to provide a solution to estimate the rotor angle at start-up, thereby providing a strong start of the motor and reducing torque ripple during motor starting. SUMMARY OF THE INVENTION The present invention provides a novel method for novelly estimating rotor angle information for permanent magnet parental motor control having a sinusoidal back EMF. The rotor angle is estimated by a phase-locked loop (with phase-rank difference compensation) that receives the rotor flux estimate. The rotor flux is derived from the stator voltage (actual voltage or command voltage), current, resistance and inductance. The rotor angle estimation error (the stator resistance change due to temperature) is then removed using a novel angular error corrector. Such angular error correctors are based on reactive power compensation and are insensitive to resistance changes. In addition, the diagonal corrector reference module requires only one inductance parameter. In order to provide a strong start during motor start-up and reduce torque ripple 1280723, the present invention uses the aforementioned PLL in conjunction with newly developed start-up logic. Start the logic, including starting the sort minus the mechanical mode. The material elements can be made very early, for the reason that the elements utilize the same PLL integrator used to estimate the rotor angle using the 10/294,201 patent. The 5 pieces of flux information are used by the PLL to seal the rotor angle to track the rotor angle. A simple mechanical mode is used by the PLL for the open loop to predict the rotor angle. This startup sequence logic is used to provide a robust and smooth transition from open loop control mode to closed loop control mode during motor start-up. The rotor angle estimation deduction method for sensorless control of such a PM motor includes one or more of the following example characteristics. (1) The flux estimator has feedforward inductance compensation. The vector pLL is locked to the flux estimate. A non-ideal flux estimator in combination with flux pLL is used to estimate the rotor angle. (2) The phase compensation circuit (F) is included in pll to estimate the phase error introduced by the non-ideal flux 15 estimator. (3) Based on the compensation scheme of the reactive power, the sensitivity of the rotor angle estimation method to the change of the stator resistance can be removed. (4) Start the sequencer and load mode combined with the vector pll operation to achieve a strong start and a smooth ramp rise. 20 Other features and advantages of the present invention will become more apparent from the following description of the embodiments of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing a PMSM control system including a first specific example of the present invention. 1280723 Figure 2 is a detailed block diagram showing the rotor angle estimator of Figure 1. Fig. 3 is a circuit diagram of a rotor flux estimator associated with the sketch of Fig. 2. Figure 4 is a further detailed view showing the rotor angle corrector of Figure 1. Figure 5 is a line graph showing the relationship between the error of the reactive power 5 and the rotor angular error in terms of motor rated power. Fig. 6 is a block diagram showing a second specific example of the rotor angle estimator. Fig. 7 is a block diagram showing a third specific example of the rotor angle estimator. Figure 8 shows further details of the rotor angle estimator of Figure 7. [Embodiment 3] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention is described herein with respect to a motor control deductive rule for firmware implementation. However, the scope of the present invention encompasses any combination of hardware, firmware and software that has been foreseen within the skill of the art. A block diagram of the first specific example of the control method is shown in FIG. The d-axis is 15 to calibrate the direction of the rotor's magnetic axis (reference usage habits). The following are the definitions of each quantity listed in Figure 1. 1280723 id* Shiztong current command iq* torque current command id flux current feedback iq torque current feedback ia, ib phase current Rtr_Ang estimated rotor angle C_Rs stator per phase resistance Del_Ang from angle corrector Compensation angle Vab, Vbc line voltage feedback Vd flux-axis voltage feedback Vq torque · shaft voltage feedback We inverter fundamental frequency The details of the rotor angle estimation block of Figure 1 are shown in Figure 2. The input Flx_A and Flx_B are the rotor flux, and the rotor flux is obtained by the unbalance of the voltage back enlf. The voltage emf is formed by the stator current, voltage, resistance and inductance, as shown in Fig. 3. In the figure, Tf represents the time constant of a non-ideal integrator. Note that the inputs (V_A, V_B, 1_8, and I_B) of the flux estimator in Figure 3 are simply 3-phase (ia, ib, Vab, Vbc) to 2-phase conversion signals. ° The rotor angle estimator (Fig. 2) utilizes a novel flux-locked loop system. The frequency feedforward circuit F compensates for the phase error caused by the non-ideal integration of the stator voltage. Figure 3 is used to obtain the magnetic flux. The phase error produced by the non-ideal integral is fully compensated by circuit F. Then the 'estimation error due to the resistance is compensated by the rotor angle corrector system 1280723'. Figure 4 illustrates the following. The rotor angle corrector circuit details of Fig. 1 are shown in Fig. 4. When estimating the rotor angle of _ (the fifth (five) matches the actual rotor angle, the reference value of the reactive power (9) wheeled motor is equal to: 1.5*We*(C Lq*I*I+Flx—M*id+(C—Ld-C— Ld)*id*id) Note that for permanent magnet surface mount (PMSM) motors, the air gap reluctance is the same for the d-axis and q-axis. Thus id=〇 and Ld=Lq. Therefore, the aforementioned reference invalid power equation can be Reduced to: 1.5*We*(C_Lq*I*I) The internal motor reactive power (Q) is expressed only by voltage and current, and can be obtained as follows: Q=L5*(Vq*id-Vd*iq) : C—Ld - d-axis inductance C_Lq - q-axis inductance I - stator current amplitude

Flx_M -轉子磁鐵之等效磁通鏈結 Q-終端無效功率,及Flx_M - equivalent flux linkage of the rotor magnet Q-terminal reactive power, and

We(omegae)-定子基頻 由於C—Ld=C_Lq,只有一個電感參數(Lq或Ld)即可達 成轉子角校正。Lq用於此種情況下。當然本發明也適合用 於其它類型馬達,例如内部永久磁鐵馬達,其中Ld不等於 Lq,如熟諳技藝人士已知。 若估計所得轉子角匹配實際轉子角,則將滿足如下關 10 1280723 係式: (Vq*id-Vd*iq)-We*C—Lq*I*I=0 如此Q與(We*C_Lq*I*i)(第5圖縱軸)間之無效功率誤 差可用來抵消任何轉子角誤差(第5圖橫軸),因此維持每安 5 培之最大轉矩,即使磁通估計器使用之電阻參數有錯誤亦 如此(第3圖)。 根據本發明之第二具體例之轉子角估計方塊顯示於第 6圖。系統可藉估計第2圖系統之M〇d-2 7Γ方塊中的上方塊加 以簡化。 10 第三具體例顯示於第7圖。第6圖之系統再度經修改。 第一具體例及第二具體例中,PI (比例整數)調節器之二輸入 端繫在一起’ 一者接收來自Demod-Flux之Pll—Err輸出。本 具體例中,:PI調節器之二輸入端接收啟動方塊之分開個別 輸出"ί§號’-一輸入女而皆接收來自Demod_Flux之Pll Err。 15 啟動模及其與PLL角追蹤模之介面之進一步細節顯示 於第8圖。第8圖中:We(omegae) - Stator fundamental frequency Since C_Ld=C_Lq, only one inductance parameter (Lq or Ld) can achieve rotor angle correction. Lq is used in this case. Of course, the invention is also suitable for use with other types of motors, such as internal permanent magnet motors, where Ld is not equal to Lq, as is known to those skilled in the art. If the estimated rotor angle matches the actual rotor angle, then the following will be satisfied. 10 1280723 Series: (Vq*id-Vd*iq)-We*C—Lq*I*I=0 So Q and (We*C_Lq*I *i) (Inverted power error between the vertical axis of Figure 5) can be used to offset any rotor angular error (horizontal axis of Figure 5), thus maintaining a maximum torque of 5 amps per amp, even if the resistance parameter used by the flux estimator The same is true for errors (Figure 3). The rotor angle estimation block according to the second specific example of the present invention is shown in Fig. 6. The system can be simplified by estimating the upper square in the M〇d-2 7Γ block of the system of Figure 2. 10 The third specific example is shown in Fig. 7. The system of Figure 6 has been modified again. In the first specific example and the second specific example, the two input terminals of the PI (proportional integer) regulator are tied together. One receives the Pll-Err output from Demod-Flux. In this specific example, the second input of the PI regulator receives the separate individual output of the start block "ί§' - an input female receives the Pll Err from Demod_Flux. Further details of the 15 start mode and its interface to the PLL angle tracking mode are shown in Figure 8. In Figure 8:

Rtr 一 Ang -估計所得之轉子角Rtr an Ang - estimated rotor angle

Flx_A -估計所得之α磁通Flx_A - Estimated alpha flux

Fix一Β -估計所得之万磁通Fix a Β - Estimated 10,000 flux

Pll-Err -PLL誤差信號Pll-Err - PLL error signal

Trq -估計所得之馬達轉矩Trq - estimated motor torque

We -反相器基頻 第6圖顯示相同PLL(第2圖),方塊F移動至pLL之回浐 路徑。如此提供方便介面至啟動模組。移動至方塊f不影響 20 1280723 PLL功能,原因在於方塊F之主要功能為估計所得轉子角之 相移(Rtr_Ang)。第2圖之PI方塊於第8圖擴大,來顯示介面 至啟動模組之P路徑及I路徑。 第8圖顯示啟動模組與pll模組間之介面。 5 當馬達BEMF小(<1〇%)時磁通信號Flx_A&Flx__B(由估 計所得馬達電壓或测量所得馬達電壓運算獲得)之逼真度 低劣,造成誤差校正信號(Pll_Err)的不準確。為了解決此項 問題,於最初啟動期間藉單純馬達模(第8圖之負載模)產生 P11 一Err。負載模只用於啟動時的一段短時間。當馬達頻率 10 (We)達到某個臨限值時,F1x_a&F1x_b之逼真度改良,然 後由Fix一 A及Flx—B之數量可獲得P11_Err之計算。 第8圖中’馬達啟動期間,開關Swl及Sw2係於其上位。 啟動排序器係於其停泊態,PI調節器之輸入為零。於停泊 態,初馬達角經捕捉(利用任一種常見技術例如直流電流注 15入捕捉)以及初馬達角經過初始化。停泊完成後,Sw2閉路, 而Swl仍然於其上位(開放迴路模)。ρι調節器之積分器輸入 係藉單純負載模饋送,係由兩個增益倍增器(Kt&K〇組成。 Kt路徑為馬達加速轉矩模,Kt路徑係由負載轉矩電流回授 (iq)饋送。Kf路徑為摩擦轉矩模,係由頻率()饋送。 20 隸情況下,馬達啟動期間,加速轉矩遠大於摩擦轉 矩,該等情況下可刪除Kf路徑的使用。 當馬達啟動加速時,馬達頻率(We)也增高。一旦絕對 馬達頻率超過某個臨限值(通常為額定頻率之1〇%)時,開關 Swl閉路,作動封閉迴路模。 12 1280723 雖然已經就特定具體例說明本發明,但熟諳技藝人士 顯然易知多種其它變化及修改及其它用途。因此本發明並 非受此處之特定揭示所限。 L圖式簡單說明3 5 第1圖為方塊圖,顯示包括本發明之第一具體例之 PMSM控制系統。 第2圖為細節方塊圖,顯示第1圖之轉子角估計器。 第3圖為關聯第2圖之略圖之轉子磁通估計器電路圖。 第4圖為進一步細節圖,顯示第1圖之轉子角校正器。 10 第5圖為線圖,顯示以馬達額定功率為單位,無效功率 誤差相對於轉子角誤差間之關係。 第6圖為方塊圖,顯示轉子角估計器之第二具體例。 第7圖為方塊圖,顯示轉子角估計器之第三具體例。 第8圖顯示第7圖之轉子角估計器之進一步細節。 15 -【主要元件符號說明】 1.. .Rtr-Ang,估計得之轉子角 2…We,反相器基頻 3.. .Flx-A,估計得之oc磁通 4.. .F1X-B,估計得之β磁通 13We - Inverter Fundamental Frequency Figure 6 shows the same PLL (Figure 2), and block F moves to the path of the pLL. This provides a convenient interface to the boot module. Moving to block f does not affect the 20 1280723 PLL function because the main function of block F is to estimate the phase shift (Rtr_Ang) of the resulting rotor angle. The PI block of Figure 2 is expanded in Figure 8 to show the P-path and I-path of the interface to the boot module. Figure 8 shows the interface between the boot module and the pll module. 5 When the motor BEMF is small (<1〇%), the fidelity signal Flx_A&Flx__B (obtained from the estimated motor voltage or the measured motor voltage calculation) is inferior, resulting in an inaccuracy of the error correction signal (Pll_Err). In order to solve this problem, P11-Err is generated by a simple motor mode (load mode of Fig. 8) during the initial startup. The load mode is only used for a short period of time at startup. When the motor frequency 10 (We) reaches a certain threshold, the fidelity of F1x_a & F1x_b is improved, and then the calculation of P11_Err can be obtained from the number of Fix-A and Flx-B. In Fig. 8, during the start of the motor, the switches Sw1 and Sw2 are tied to their upper positions. The start sequencer is in its parked state and the input to the PI regulator is zero. In the parked state, the initial motor angle is captured (using any common technique such as DC current capture) and the initial motor angle is initialized. After the berth is completed, Sw2 is closed, and Swl is still in its upper position (open loop mode). The integrator input of the ρι regulator is fed by a simple load mode, consisting of two gain multipliers (Kt&K〇. The Kt path is the motor acceleration torque mode, and the Kt path is fed back by the load torque current (iq)). Feed. The Kf path is the friction torque mode, which is fed by the frequency (). In the case of the motor, the acceleration torque is much larger than the friction torque during the motor start. In this case, the use of the Kf path can be deleted. When the absolute motor frequency exceeds a certain threshold (usually 1% of the rated frequency), the switch Swl is closed and the closed loop mode is activated. 12 1280723 Although specific examples have been described The present invention is susceptible to various other modifications and adaptations and other uses. The invention is therefore not limited by the specific disclosure herein. L. BRIEF DESCRIPTION OF THE DRAWINGS 3 5 FIG. 1 is a block diagram showing the present invention. The PMSM control system of the first specific example. Fig. 2 is a detailed block diagram showing the rotor angle estimator of Fig. 1. Fig. 3 is a circuit diagram of the rotor flux estimator associated with the sketch of Fig. 2. For further detail, the rotor angle corrector of Figure 1 is shown. 10 Figure 5 is a line diagram showing the relationship between the reactive power error and the rotor angular error in terms of motor rated power. Figure 6 is a block diagram. A second specific example of the rotor angle estimator is shown. Fig. 7 is a block diagram showing a third specific example of the rotor angle estimator. Fig. 8 shows further details of the rotor angle estimator of Fig. 7. 15 - [Main components Explanation of symbols] 1.. .Rtr-Ang, estimated rotor angle 2...We, inverter fundamental frequency 3.. .Flx-A, estimated oc magnetic flux 4.. .F1X-B, estimated Beta flux 13

Claims (1)

1280723--—1 修(更)正賴j ......... mm ιιι „,, 鳴·»··如 J 十、申請專利範圍: 第93120008號申請案申請專利範圍修正本 95.1〇.% 1· -種用以測定馬達之驅動控制器中的轉子角之方法,該 方法包含下列步驟: ^ 5 幻基於該馬達内之轉子磁通量來估計該轉子角;以 及 b)基於該馬達之無效功率輸入來校正該估計所得 之轉子角; 其中步驟⑷進一步包含步驟(al):於馬達啟動期 1〇 間,根據預定馬達負載模型結合啟動排序器來估計轉子 角。 2·如申請專利範圍第1項之方法,其中該負載模型為馬達 加速轉矩之代表。 3·如申明專利範圍第2項之方法,其中該模型係回應於負 15 載轉矩電流回授(iq)。 4·如申請專利範圍第2項之方法,其中該負載模型為摩擦 轉矩之代表。 5·如申請專利範圍第4項之方法,其中該模型係回應於馬 達頻率(We)。 20 6·如申請專利範圍第1項之方法,其中該步驟(al)係結束於 可調整之額定馬達頻率百分比。 7·如申清專利範圍第6項之方法,其中該可調整之百分比 為約10%。 8·如申清專利範圍第1項之方法,其中該步驟(al)係於開放 14 1280723 牴10屬6 Ε 迴路模式進行,而結束於由開放迴路模式變遷至封 路模式。 、( 9. _ 〜種用以測定馬達之驅動控制器中的轉子角之 ^ 方法包含下列步驟: 法孩 幻測定該馬達之轉子磁通;以及 b)基於該馬達内之轉子 間,根攄予i宏X及於馬達啟動期 子角:以^ 結合啟動排序11,估計該轉 10 15 20 之轉=於該馬達之無效功率輸入來校正該估計所得 分步=中步賴㈣蝴值及議之非理想積 10_如申請專利範圍第9項 加逮轉矩之代表。、其中該負載模型為馬達 u·如申請專利範圍第㈣之方法, 载轉矩電流回授⑽。 〃 回應於負 U·如申請專利範圍第1〇項 轉矩之代表。 、法、、中該負载模型為摩擦 A如申t#專姆_12奴 達頻率(We)。 ㈣係回應於馬 K如申請專利範圍第9項之方法,其中 可調整之額定馬達頻率百分比。 糸結束於 α如申請專利範圍第U項之方法, 約10%額定馬達電髮。 /、"’)係結束於 15 1280723^ 月曰修(更)正替换; 10.26 16. 如申請專利範圍第9項之方法,其中該步驟(b)係於開放 迴路模式進行,而結束於由開放迴路模式變遷至封閉迴 路模式。 17. 如申請專利範圍第9項之方法,其中步驟(a)進一步包括 下述步驟,透過有相位補償(F)之PLL電路,校正因非理 想積分所引起之相位誤差。 18. —種用以測定馬達之驅動控制器中的轉子角之系統,該 系統包含: 10 15 20 一第一電路,其係基於該馬達内之轉子磁通量來估 計一轉子角;以及 一第二電路,其係基於該馬達之無效功率輸入來校 正該估計所得之轉子角; 其中該第一電路更於馬達啟動期間,根據一預定馬 達負載模型結合啟動排序器,估計該轉子角。 19. 如申請專利範圍第18項之系統,其中該負載模型為馬達 加速轉矩之代表。 20. 如申請專利範圍第19項之系統,其中該模型係回應於負 載轉矩電流回授(iq)。 21. 如申請專利範圍第19項之系統,其中該負載模型為摩擦 轉矩之代表。 22. 如申請專利範圍第21項之系統,其中該模型係回應於馬 達頻率(We)。 23. 如申請專利範圍第18項之系統,其中該估計步驟係結束 於可調整之額定馬達頻率百分比。 16 1280723—— i n严(更)正替, 24.如申請專利範圍第23項之系統,其中該估計步驟係結束 於約10%額定馬達電壓。 25·如申請專利範圍第18項之系統,其中該估計步驟係於開 放迴路模式進行,而結束於由開放迴路模式變遷至封閉 5 迴路模式。 26· —種用以測定馬達之驅動控制器中的轉子角之系統,該 系統包含: a) —第一電路,供測定於該馬達之轉子磁通;以及 b) —第二電路,供基於該馬達内之該轉子磁通量, 10 以及於馬達啟動期間,根據預定馬達負載模型結合啟動 排序Is來估計該轉子角;並且幻基於該馬達之無效功率 輸入來校正該估計所得之轉子角; 其中該第一電路進行定子電壓值與電流值之非理 想積分。 15 27·如中巧專利範圍第26項之系統,其中該負載模型為馬達 加速轉矩之代表。 认如申請專利範圍第27項之系統,其中該模型係回應於負 載轉矩電流回授(iq)。 29.如申請專利範圍第27項之系統,其中該負载模型為摩擦 2〇 轉矩之代表。 3〇·如申請專利範圍第29項之系統,其中該模型係回應於馬 達頻率(We)。 31.如申請專利範圍第26項之系統,其中該估計步驟係結束 於可調整之額定馬達頻率百分比。 17 Ι28〇71ϊ]26Ώ 32·如申請專利範圍第31項之系統,其中該估計步驟係結束 於約10%額定馬達電壓。 33·如申請專利範圍第26項之系統,其中該估計步驟係於開放 5 10 15 20 迴路模式進行,而結束於由開放迴路模式變遷至封閉迴路 模式。 34. 如申請專利範圍第26項之系統,其中該第二電路係透過 帶有相位補償(F)之PLL電路,來校正由該非理想積分所 造成的相位誤差。 35. 如申請專利範圍第1項之方法,其中該校正步驟藉由下 列動作而被執行:計算—第—無效功率輸人值及一第二 無效功率輸人值;判定該第H無效料輸入值之 間的關聯;以及將該_應用至在姉計錢中該估計 所得之轉子角,以獲得該校正之轉子角。 36. 如申凊專利範圍第1項之 法其中該估計步驟包含定 子電壓值與電流值之非理想 物Μίν、 、積刀步驟,以及透過具有相 位補彳員(F)之一pll電路來校正 相位誤差的步驟。 ⑽理想積分所引起之 37·如申請專利第9項之方法,苴 輪入校正該估計所得之轉子::该馬達之無效功率 而被實行:計算一第n,的步驟係藉由下列動作 產鉍 功率輪入值及一第二盔效功 率輪入值;判定該第一盥第二 …、 聯;以及將該關聯應用騎功率輸入值之間的關 以獲得-校正之轉子角。,)中估計所得之轉子角, 38·如申請專利範圍第9項之方法, "t步驟(b)包含透過具 18 2沪修(更)正替換錢丨 有相位補償(F)之一 PLL電路來校正因非理想積分所引 起之相位誤差之步驟。 39. 如申請專利範圍第18項之系統,其中該第二電路藉由下 列步驟來基於該馬達之無效功率輸入來校正該估計所 得之轉子角:計算一第一無效功率輸入值及一第二無效 功率輸入值;判定該第一與第二無效功率輸入值之間的 關聯;以及將該關聯應用至該估計步驟中估計所得之轉 子角,以藉此獲得一校正之轉子角。 40. 如申請專利範圍第18項之系統,其中該第一電路實行定 子電壓值與電流值之非理想積分,且其中該第二電路透 過具有相位補償(F)之一PLL電路來校正因非理想積分 所引起之相位誤差。 41. 如申請專利範圍第26項之系統,其中該估計所得之轉子 角係基於該馬達之無效功率輸入而依以下方式予以校 正:計算一第一無效功率輸入值及一第二無效功率輸入 值;判定該第一與第二無效功率輸入值之間的關聯;以 及將該關聯應用至步驟(b)中所估計之該轉子角,以獲得 一校正之轉子角。 42. 如申請專利範圍第26項之系統,其中該第二電路透過具 有相位補償(F)之一PLL電路來校正因非理想積分所引 起之相位誤差。 43. 如申請專利範圍第3項之方法,其中該模型對該負載轉 矩電流回授使用一預定增益倍增器。 44. 如申請專利範圍第5項之方法,其中該模型對該馬達頻 191280723---1 repair (more) depends on j ......... mm ιιι „,, 鸣································ 〇.% 1 - A method for determining the rotor angle in a drive controller of a motor, the method comprising the steps of: ^ 5 phantom based on the rotor flux in the motor to estimate the rotor angle; and b) based on the motor The invalid power input is used to correct the estimated rotor angle; wherein the step (4) further comprises the step (al): estimating the rotor angle according to a predetermined motor load model in combination with the start sequencer during the motor start period. The method of claim 1, wherein the load model is representative of a motor acceleration torque. 3. The method of claim 2, wherein the model is responsive to a negative 15 load torque current feedback (iq). The method of claim 2, wherein the load model is representative of friction torque. 5. The method of claim 4, wherein the model is responsive to the motor frequency (We). Patent application scope The method of item 1, wherein the step (al) ends at an adjustable percentage of the rated motor frequency. 7. The method of claim 6, wherein the adjustable percentage is about 10%. The method of the first aspect of the patent scope, wherein the step (al) is performed in the open circuit mode of 12 1280723 牴 10 genus, and ends in the open circuit mode to the closed circuit mode. (9) The method for determining the rotor angle in the drive controller of the motor comprises the following steps: determining the rotor flux of the motor; and b) based on the rotor between the motors, starting from the macro X and starting the motor Period sub-angle: Start the sort 11 with ^, and estimate the turn of 10 15 20 = the invalid power input of the motor to correct the estimated score step = the step (4) butterfly value and the non-ideal product 10_ Representation of the ninth item of the patent application, the torque is added. The load model is the motor u. For example, the method of applying the patent range (4), the torque current feedback (10). 回应 Responding to the negative U·such as the scope of patent application 1 item torque Table, method, and the load model are friction A such as Shen t# 姆 _12 slave frequency (We). (d) in response to Ma K as in the patent application scope item 9, wherein the adjustable rated motor Percentage of frequency. 糸 Ends with α as in the method of U of the patent application, about 10% of rated motor power. /, " ') Ends at 15 1280723 ^ Month repair (more) is being replaced; 10.26 16. The method of claim 9, wherein the step (b) is performed in an open loop mode and ends in an open loop mode transition to a closed loop mode. 17. The method of claim 9, wherein the step (a) further comprises the step of correcting the phase error caused by the unintended integration through the phase compensation (F) PLL circuit. 18. A system for determining a rotor angle in a drive controller of a motor, the system comprising: 10 15 20 a first circuit that estimates a rotor angle based on a rotor flux in the motor; and a second A circuit that corrects the estimated rotor angle based on an invalid power input of the motor; wherein the first circuit estimates the rotor angle in conjunction with a start sequencer in accordance with a predetermined motor load model during motor startup. 19. The system of claim 18, wherein the load model is representative of motor acceleration torque. 20. The system of claim 19, wherein the model is responsive to load torque current feedback (iq). 21. The system of claim 19, wherein the load model is representative of friction torque. 22. The system of claim 21, wherein the model is responsive to the frequency of the motor (We). 23. The system of claim 18, wherein the estimating step ends with an adjustable nominal motor frequency percentage. 16 1280723 - i n strict (more), 24. The system of claim 23, wherein the estimating step ends at about 10% of the rated motor voltage. 25. The system of claim 18, wherein the estimating step is performed in an open loop mode and ends in an open loop mode transition to a closed 5 loop mode. 26. A system for determining a rotor angle in a drive controller of a motor, the system comprising: a) a first circuit for measuring rotor flux of the motor; and b) a second circuit for The rotor flux in the motor, 10 and during motor startup, estimating the rotor angle in accordance with a predetermined motor load model in conjunction with the start sequence Is; and correcting the estimated rotor angle based on the motor's reactive power input; The first circuit performs a non-ideal integration of the stator voltage value and the current value. 15 27. The system of claim 26, wherein the load model is representative of motor acceleration torque. A system as claimed in claim 27, wherein the model is responsive to load torque current feedback (iq). 29. The system of claim 27, wherein the load model is representative of friction 2 转矩 torque. 3. A system as claimed in claim 29, wherein the model is responsive to the frequency of the motor (We). 31. The system of claim 26, wherein the estimating step ends with an adjustable nominal motor frequency percentage. 17 Ι28〇71ϊ]26Ώ 32. The system of claim 31, wherein the estimating step ends at about 10% of the rated motor voltage. 33. The system of claim 26, wherein the estimating step is performed in an open 5 10 15 20 loop mode and ends in an open loop mode transition to a closed loop mode. 34. The system of claim 26, wherein the second circuit is calibrated by a PLL circuit with phase compensation (F) to correct the phase error caused by the non-ideal integration. 35. The method of claim 1, wherein the correcting step is performed by: calculating a first-invalid power input value and a second invalid power input value; determining the H-th reactive material input The association between the values; and applying the _ to the estimated rotor angle in the stipulated money to obtain the corrected rotor angle. 36. The method of claim 1, wherein the estimating step comprises a non-ideal Μίν of the stator voltage value and the current value, a step of accumulating the knives, and correcting through a pll circuit having a phase complement (F) The step of phase error. (10) Caused by the ideal integral 37. As in the method of claim 9, the wheel is calibrated to correct the estimated rotor: the reactive power of the motor is implemented: the step of calculating an nth is performed by the following actions铋 power wheeling value and a second helmet power wheeling value; determining the first 盥 second..., 联; and applying the correlation between the riding power input values to obtain a corrected rotor angle. ,) Estimated rotor angle, 38. If the method of claim 9 is applied, "t step (b) contains one of the phase compensation (F) by replacing the money with 18 2 repair (more) A PLL circuit to correct the phase error caused by non-ideal integration. 39. The system of claim 18, wherein the second circuit corrects the estimated rotor angle based on the reactive power input of the motor by: calculating a first invalid power input value and a second An invalid power input value; determining an association between the first and second invalid power input values; and applying the association to the estimated rotor angle in the estimating step to thereby obtain a corrected rotor angle. 40. The system of claim 18, wherein the first circuit performs a non-ideal integration of a stator voltage value and a current value, and wherein the second circuit is calibrated by a PLL circuit having phase compensation (F) Phase error caused by ideal integration. 41. The system of claim 26, wherein the estimated rotor angle is corrected based on the reactive power input of the motor in the following manner: calculating a first invalid power input value and a second invalid power input value Determining an association between the first and second invalid power input values; and applying the association to the estimated rotor angle in step (b) to obtain a corrected rotor angle. 42. The system of claim 26, wherein the second circuit corrects a phase error due to non-ideal integration through a PLL circuit having phase compensation (F). 43. The method of claim 3, wherein the model uses a predetermined gain multiplier for the load torque current feedback. 44. The method of claim 5, wherein the model is for the motor frequency 19 26日修(更)正替換為丨 "'"丨· III _·ι 丨丨 率使用一預定增益倍增器。 45. 如申請專利範圍第20項之系統,其中該模型對該負載轉 矩電流回授使用一預定增益倍增器。 46. 如申請專利範圍第22項之系統,其中該模型對該馬達頻 5 率使用一預定增益倍增器。The 26th repair (more) is being replaced with 丨 "'"丨· III _·ι 丨丨 rate using a predetermined gain multiplier. 45. The system of claim 20, wherein the model uses a predetermined gain multiplier for the load torque current feedback. 46. The system of claim 22, wherein the model uses a predetermined gain multiplier for the motor frequency. 2020
TW93120008A 2002-11-12 2004-07-02 Method and system for determining a rotor angle in a drive control for a motor TWI280723B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/294,201 US6910389B2 (en) 2001-11-12 2002-11-12 Rotor angle estimation for permanent magnet synchronous motor drive

Publications (1)

Publication Number Publication Date
TWI280723B true TWI280723B (en) 2007-05-01

Family

ID=38742586

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93120008A TWI280723B (en) 2002-11-12 2004-07-02 Method and system for determining a rotor angle in a drive control for a motor

Country Status (1)

Country Link
TW (1) TWI280723B (en)

Similar Documents

Publication Publication Date Title
US7066034B2 (en) Start-up method and system for permanent magnet synchronous motor drive
US6910389B2 (en) Rotor angle estimation for permanent magnet synchronous motor drive
JP3860031B2 (en) Synchronous motor control device and control method of synchronous motor
CN107431453B (en) Sensorless commutation method
US6462491B1 (en) Position sensorless motor control apparatus
JP3843391B2 (en) Synchronous motor drive
JP3707535B2 (en) Method and apparatus for correcting estimated speed value of induction motor
JP3783159B2 (en) Synchronous motor drive control device
JP2003061386A (en) Synchronous motor drive system
AU2012220884A1 (en) Method and system for controlling an electrical motor with temperature compensation
CN109167547A (en) Based on the PMSM method for controlling position-less sensor for improving sliding mode observer
JP3637897B2 (en) Synchronous motor drive device, inverter device, and synchronous motor control method
JP3894286B2 (en) Control device for permanent magnet synchronous motor
CN108964556A (en) For driving the senseless control device of permanent magnetic synchronous electrical motor
Ji et al. Sensorless control of linear vernier permanent-magnet motor based on improved mover flux observer
JP2008505596A (en) Method and system for starting permanent magnet synchronous motor drive
JP6003143B2 (en) Control device for synchronous motor
JP5585397B2 (en) Rotating machine control device
TWI280723B (en) Method and system for determining a rotor angle in a drive control for a motor
Xu et al. An improved stator flux estimation for a variable structure direct torque controlled IPM synchronous motor drive using a sliding, observer
Wang et al. Improved rotor flux estimation based on voltage model for sensorless field-oriented controlled induction motor drives
KR100853870B1 (en) Start-up method and system for permanent magnet synchronous motor drive
Noguchi et al. Study of parameter variations compensation in sensorless control of PMSM
JP2006271198A (en) Synchronous motor driving device
JP4434402B2 (en) Control device and control method for synchronous motor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees