TWI274132B - Refrigerating apparatus - Google Patents

Refrigerating apparatus Download PDF

Info

Publication number
TWI274132B
TWI274132B TW094147040A TW94147040A TWI274132B TW I274132 B TWI274132 B TW I274132B TW 094147040 A TW094147040 A TW 094147040A TW 94147040 A TW94147040 A TW 94147040A TW I274132 B TWI274132 B TW I274132B
Authority
TW
Taiwan
Prior art keywords
unit
heat source
stage side
refrigerant
source unit
Prior art date
Application number
TW094147040A
Other languages
Chinese (zh)
Other versions
TW200624738A (en
Inventor
Masaaki Takegami
Satoru Sakae
Kenji Tanimoto
Kazuyoshi Nomura
Yoshinari Oda
Original Assignee
Daikin Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Ind Ltd filed Critical Daikin Ind Ltd
Publication of TW200624738A publication Critical patent/TW200624738A/en
Application granted granted Critical
Publication of TWI274132B publication Critical patent/TWI274132B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Pipeline Systems (AREA)

Abstract

A refrigerating apparatus, wherein, on the pressure loss of a refrigerant by a return side communication pipe (19) starting at the outlets (24), (34), and (44) of single stage side use units (12), (13), and (14) toward the inlet (61) of a heat source unit (11), the value of the pressure loss of the refrigerant by the return side communication pipe (19) connected to the single stage side use unit (14) with the lowest chamber set temperature among the plurality of single stage side use units (12), (13), and (14) is minimized.

Description

1274132 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種於熱源機組上並列連接著複數個利用 機組的冷;東裝置。 【先前技術】 向來已知有一種於熱源機組上並列連接著複數個利用機 組的冷凍裝置,其係設置於便利店等内,用於進行陳列櫃 等之冷藏、冷凍。如此之冷凍裝置中,係於熱源機組設置 有壓縮機和熱源側熱交換器,於利用機組分別設置有冷卻 熱交換器和膨脹閥,熱源機組和利用機組以聯絡管線相連 接。在各個利用機組,根據陳列櫃等庫内之設定溫度設定 冷卻熱交換器的冷媒的蒸發溫度。 專利文獻1中公開有此種冷凍裝置。在該文獻的圖1,係 顯不在作為熱源機組的一個室外機組上並列著連接著三個 作為利用機組的室内機組的冷凍裝置。三個室内機組,有 兩個冷藏機組和一個冷凍機組構成,冷凍機組上串聯連接 著包括壓縮機的增壓機組。 [專利文獻1]曰本特開2003-3 14909號公報 發明欲解決之課題 ^而’在便利店等設置前述冷凍裝置的情況下,熱源機 組、利用機組之配置,主要係由設置有冷凍裝置的設施平 面配置情況、利用型態決定。而且,自各個利用機組出口 至…源機組入口的聯絡管線長度,係根據該熱源機組、利 用機組之配置情況決定。 107690.doc 1274132 因此,有時候,自各個利用機組 聯絡管線長产,祗庙七 …你钱組入口的 n/ 4内设定溫度低之利用機組較庫 :度…用機組為長。而且,如此之情況下,有時: 由於自各個利用機組出口至熱源機組入,返回= 管線長度導致之冷姐厭士w 側聯絡 用機组m 7 也是庫内設定溫度低之利 用機組孝父庫内設定、、取庙古 〜 平Π σ又疋,皿度咼之利用機組為大。 ::二:二個利用機組出口的冷媒遷力、各個利用 發a力’係庫内設定溫度低之利用機組較庫内設定 >皿度馬之利用機4且兔古 g 栻為同。疋以,庫内設定溫度低之利用機 組的冷媒蒸發溫度係較庫内設定溫度高之利用機組的冷鲜 洛發溫度為高。亦即,於習知冷凍裝置,有時候,某一個 利用機組中,冷媒之蒸發溫度不會與庫内設定溫度相—致。 【發明内容】 本發明正是為解決該課題而研究開發者,其目的係在 於* X庫内的定溫度為基準決定合適的於利用機組冷媒 的蒸發度,以謀求冷凍裝置之效率提高。 用以解決課題之手段 自第一至第四各發明,以冷凍裝置(30)為對象,其包括: 複數台具有為了將庫内保持在規定的設定溫度而對庫内加 以冷卻之冷卻熱交換器(2卜31,41)的單段側利用機組(12, 13,14),以及一台具有壓縮機(29)的熱源機組(11),於複 數台前述單段側利用機組(12,13 , 14)藉由聯絡管線(18, 19)相對前述熱源機組(11)並聯連接之冷媒迴路(2〇),冷媒 於前述單段側利用機組(12 , 13 , 14)與前述熱源機組(11) 107690.doc 1274132 之間循環而進行單段壓縮冷凍循環。 在第-發明之冷;東裝置(30)’由於自前述各單段側利用 機組⑴’ n’ 14)出口(24’34,44)至前述熱源機組⑼入 口㈣之返回側聯絡管線(19)導致之冷媒壓力損失,係由於 連接前述複數台單段側利用機組(12,13,14)中庫内設定溫 度最低者的返回側聯絡管線導致之值為最小。1274132 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a cold-to-east device in which a plurality of utilization units are connected in parallel on a heat source unit. [Prior Art] There has been known a refrigerating apparatus in which a plurality of utilization units are connected in parallel to a heat source unit, and is installed in a convenience store or the like for refrigerating and freezing a showcase or the like. In such a refrigerating apparatus, a compressor and a heat source side heat exchanger are disposed in the heat source unit, and a cooling heat exchanger and an expansion valve are respectively disposed in the utilization unit, and the heat source unit and the utilization unit are connected by a communication line. In each of the utilization units, the evaporation temperature of the refrigerant that cools the heat exchanger is set according to the set temperature in the display cabinet or the like. Patent Document 1 discloses such a refrigeration system. In Fig. 1 of this document, it is shown that an outdoor unit that is not a heat source unit is connected in parallel with three refrigeration units that are indoor units that utilize the unit. The three indoor units are composed of two refrigeration units and one refrigeration unit. The refrigeration unit is connected in series with a booster unit including a compressor. [Patent Document 1] JP-A-2003-3 14909 SUMMARY OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION When a refrigerating device is installed in a convenience store or the like, the arrangement of the heat source unit and the use unit is mainly provided with a refrigerating device. The layout configuration of the facility and the type of use are determined. Moreover, the length of the communication line from each outlet of the unit to the inlet of the source unit is determined according to the configuration of the heat source unit and the utilization unit. 107690.doc 1274132 Therefore, sometimes, from the use of the unit communication line long-term production, the temple seven ... ... your money group entrance n / 4 set the temperature of the use of the unit compared to the library: degree ... with the unit is long. Moreover, in such a case, sometimes: due to the entrance from each utilization unit to the heat source unit, the return = the length of the pipeline leads to the cold sister's side w-side contact unit m 7 is also the low temperature set in the library. Set in the library, take the temple ancient ~ Pingyi σ and 疋, the use of the unit is large. ::Two: Two relocations of the refrigerant using the outlet of the unit, and the use of the unit with a set of powers is lower than the set temperature in the library. The unit is set in the library and the machine is used in the same way.疋 , , , 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 冷 冷 冷 冷 冷 冷 冷 冷 冷That is, in the conventional freezing device, sometimes, in a certain utilization unit, the evaporation temperature of the refrigerant does not coincide with the set temperature in the storage. SUMMARY OF THE INVENTION The present invention has been made in order to solve the problem, and an object of the present invention is to determine an appropriate degree of evaporation of a unit refrigerant based on a constant temperature in a * X library, thereby improving the efficiency of the refrigeration system. Means for Solving the Problems From the first to fourth inventions, the refrigeration apparatus (30) includes: a plurality of cooling heat exchanges for cooling the interior of the storage chamber in order to maintain the inside of the storage at a predetermined set temperature The single-stage side of the unit (2, 31, 41) utilizes the unit (12, 13, 14), and a heat source unit (11) having a compressor (29), which utilizes the unit on the single-stage side of the plurality of units (12, 13 , 14) A refrigerant circuit (2〇) connected in parallel with the heat source unit (11) by a communication line (18, 19), and the refrigerant uses the unit (12, 13, 14) and the aforementioned heat source unit on the single-stage side ( 11) 107690.doc 1274132 Cycles through a single-stage compression refrigeration cycle. In the cold of the first invention; the east device (30)' utilizes the outlet (24'34, 44) of the unit (1) 'n' 14) from the aforementioned single-stage side to the return side communication line of the inlet (4) of the aforementioned heat source unit (9) (19) The resulting refrigerant pressure loss is minimized due to the return side communication line connecting the aforementioned single-stage side unit (12, 13, 14) with the lowest set temperature in the bank.

在第二發明之冷;東裝置⑽,由於自前述各單段側利用 機組02’ 13’ 14)出口(24’34’44)至前述熱源機組(11)入 口⑻)之返回側聯絡管線(19)導致之冷媒壓力損失,係該聯 絡管線所連接之前述複數台單段側制機組(12, 13, 14) 中庫内設定溫度越低越小。 在第三發明之冷束裝置㈣’自前述各單段側利用機組 (12, 13’ 14)出口(24, 34’44)至前述熱源機組⑴)入口(61) 之聯絡管線長度,係連接前述複數台單段側制機組(12, U,14)中庫内設定溫度最低者的返回側聯絡管線為最短。 在第四發明之冷凍裝置(30),自前述各單段側利用機組 (12 ’ 13,14)出口(24,34 ’ 44)至前述熱源機組(u)入口(61) 之聯絡管線長度,係該聯絡管線所連接之前述複數台單段 側利用機組(12,13,14)中庫内設定溫度越低越短。 第五發明,係於前述第一至第四發明之任一發明,連接 前述各單段側利用機組(12,13,14)出口(24,34,44)與前 述熱源機組(11)入口(61)之返回側聯絡管線(19)中,前述複 數台單段侧利用機組(12, 13, 14)中庫内設定溫度最低者連 接最下游一側。 107690.doc 1274132 第/、發明,係於前述第五發明,連接前述熱源機組(11) 出口(71)與如述各單段側利用機組(12,13,14)入口(23, 43)之送出側聯絡管線(1 8)中,前述複數台單段側利用 、(I] 14)中庫内没定溫度最低者連接最上游一側。 第七發明,係於前述第一至第六發明之任一發明,包括: /、有為了將庫内保持在規定的設定溫度而對庫内加以冷卻 之冷部熱父換器(51)的兩段側利用機組(15)與增壓壓縮機 (46)係串聯連接之兩段側迴路(47)。於前述冷媒迴路, 月J述兩段側迴路(47)與前述單段側利用機組(12,13,14) 藉由聯絡官線(18,19)相對前述熱源機組(丨丨)並聯連接,冷 媒於前述兩段側利用機組(15)與前述熱源機組(11)之間循 環而進行兩段壓縮冷凍循環。 第八發明,係於前述第七發明,連接前述各單段側利用 機組(12 ’ 13,14)及兩段側迴路(47)出口,34,44,54) 與别述熱源機組(11)入口(61)之返回側聯絡管線(19)中,前 述兩段側迴路(47)連接最上游一側。 第九發明,係於前述第八發明,連接前述熱源機組(11) 出口(71)與前述各單段側利用機組(12, 13,14)及兩段侧迴 路(47)入口(23 ’ 33 ’ 43,5 3)之送出側聯絡管線(i 8)中,前 述兩段側迴路(47)連接最上游一側。 作用 於前述第一發明,前述複數個單段側利用機組(12 , 13, 14)中庫内设疋溫度最低之單段側利用機組(14)出口(44)之 冷媒壓力最低。單段側利用機組(12, 13, 14)中冷媒蒸發壓 107690.doc -10- 1274132 力,係大致於該單段側利用機組(12,13,14)出口(24,μ, 44)之冷媒壓力相等。換言之, 單段側利用機組(12 ’ 13,14)令冷媒之蒸發壓力與蒸發 溫度,係該單段側利用機組(12,13,14)出口(Μ,μ,44) 之冷媒壓力#低越⑯。因Λ,庫内設定溫度最低之單段側 、 利用枝組(14)之冷媒蒸發溫度’係前述複數個單段側利用機 組(12,13,14)中為最低。 Λ 於前述第二發明,前述複數個單段側利用機組(12, 13, 14)出口(24, 34, 44)之冷媒壓力,係按照庫内設定溫度由 高至低之順序而由高至低。於是,各個單段側利用機組 (12, 13, 14)中冷媒之蒸發壓力與蒸發溫度,亦係按照庫内 設定溫度由高至低之順序而由高至低。 聯絡管線導致之壓力損失,係大致於聯絡管線長度成正 比。因此,於前述第三發明,由於自前述各單段側利用機 組(12,13,14)出口(24,34,44)至前述熱源機組(11)入口 φ (61)之返回側聯絡管線(19)導致之冷媒壓力損失,係由於連 , 接前述複數台單段側利用機組(12, 13, 14)中庫内設定溫度 最低者的返回側聯絡管線導致之值為最小。 於前述第四發明,由於自前述各單段側利用機組(12, 13,14)出口(24,34,44)至前述熱源機組(11)入口(61)之返 回侧聯絡管線(19)導致之冷媒壓力損失,係該聯絡管線所連 接之前述複數台單段側利甩機組(12,13,14)中庫内設定溫 度越低越容易小。 於前述第五發明’庫内設定溫度最低之單段側利用機組 107690.doc • 11 - 1274132 (14) ’係連接返回側聯絡管線〇9)位於最下游—㈣即離熱 源機組(11)近的一側。 於岫述第/、發明,連接返回側聯絡管線(丨9)最下游亦即 離熱源機組(11)近之一側的庫内設定溫度最低的單段側利 用機組(14),係連接送出側聯絡管線(18)最上游亦即離熱源 機組(11)近之一側。換言之,於返回側聯絡管線(丨9),冷媒 谷易返回熱源機組(11)之狀態連接之庫内設定溫度最低之 單段側利用機組(14),於送出側聯絡管線(18)冷媒容易流入 之狀態連接。於是,與其他單段側利用機組(12,13)相比需 要較高冷卻能力、庫内設定溫度最低之單段側利用機組 (14) ’係較其他單段側利用機組(12,Η)容易流入更多的液 體冷媒。 於前述第七發明,自熱源機組(U)流出之冷媒中流入各單 段側利周機組(12,13,14)之冷媒,係於冷藏熱交換器(2 i, 31,41)蒸發後返回熱源機組(11)。另一方面,流入例如兩 段側利用機組(15)之冷媒,係於冷凍熱交換器(5丨)蒸發後於 增壓壓縮機(46)中壓縮後返回熱源機組(11)。是以,因為來 自兩段側利用機組(15)之冷媒到進入二段側迴路(4 7)出口 為止’於增壓壓縮機(46)壓力得以提高,故兩段側利用機組 (15) 能夠將冷媒之蒸發壓力與蒸發溫度設定得較單段側利 用機組(12,13,14)為低。 於前述第八發明,增壓壓縮機(46)所連接之二段側迴路 (47),在返回側聯絡管線(19)連接最上游。自二段側迴路(47) 至熱源機組(11)之間的冷媒壓力損失,係較自單段側利用機 107690.doc -12- 1274132 組(12,13,14)至熱源機組(ii)之間的冷媒壓力損失為大。 然而’於二段側迴路(47),在兩段側利用機組(15)蒸發之冷 媒係於增壓壓縮機(46)被壓縮後再被送出。於是,在兩段側 利用機組(15)之蒸發溫度較單段側利用機組(12,13,14) 為低。 於前述第九發明,兩段侧利用機組(15)所連接之二段側 迴路(47),係在送出側液側聯絡管線(18)中連接冷媒容易流 入之最上游一側。是以,液體冷媒容易流入能夠將冷媒蒸 發壓力與蒸發溫度設定得較單段側利用機組(12,13,14) 為低的兩段側利用機組(15)中。 發明之效果 根據前述第一發明,庫内設定溫度最低之單段側利用機 組(14)中冷媒蒸發溫度,係前述複數個單段側利用機組 (12 ’ 13 ’ 14)中最低者。因此,能夠使庫内設定溫度最低之 單段側利用機組(14)之冷藏熱交換器(41)之冷媒蒸發溫度 設定的最低,以與庫内設定溫度相對應。從而能夠由該單 段側利用機組(14)有效的冷卻庫内。 根據前述第二發明,各單段側利用機組(12,13,14)中 冷媒蒸發溫度,係按照庫内設定溫度由高至低之順序而由 南至低。於是,能夠按照庫内設定溫度由高至低之順序將 各單段側利用機組(12,13,14)之冷藏熱交換器(21,31, 41)之冷媒蒸發溫度設定的由高至低,以分別與庫内設定溫 度相對應。從而能夠由各單段側利用機組(12,13,14)有效 的冷卻庫内。 107690.doc •13· 1274132 13根^述第三發明’冑由規定自各單段側利用機組(12, )出口(24,34,44)至熱源機組(u)入口(61)之聯絡管 ' 、又則由於自各單段側利用機組(12,13,14)出口(24, /4)至熱源機組(11)入口(61)的返回側聯絡管線(I”導致 、媒C力損失,係連接前述複數個單段側利用機組(a, 13 1 ^ 4)中庫内設定溫度最低之返回側聯絡管線導致之值為 取小。是以,在利用庫内設定溫度最低之單段側利用機組 (14)有效的冷卻庫内之時,非常有利。 根據刚述第四發明,藉由規定自各單段側利用機組(12, 13,14)出口(24,34,44)至熱源機組(11)入口…㈠之聯絡管 線長度,則由於自各單段側利用機組(12, 13, 14)出口(24, 34 ’ 44)至熱源機組(丨丨)入口(61)的返回側聯絡管線(IQ)導致 之冷媒壓力損失,係該聯絡管線所連接之單段側利用機組 (12 ’ 13,14)中庫内設定溫度越低越容易成為較小的值。是 以’在利用庫内設定溫度最低之單段側利用機組(14)有效的 冷卻庫内之時,非常有利。 根據前述第六發明,與其他單段側利用機組(12,13)相 比需要較高冷卻能力、庫内設定溫度最低之單段側利用機 組(14),係在返回側之氣側聯絡管線(19)冷媒容易返回室外 機組(11)的狀態、在送出側之液側聯絡管線(18)來自室外機 組(11)之冷媒容易流入的狀態下連接,與第一及第二冷藏陳 列櫃(12,13)相比,容易流入更多的冷媒。因此,第三冷藏 陳列櫃(14),為了將庫内保持在規定之設定溫度而能夠發揮 出充分之冷卻能力。 107690.doc -14- 1274132 根據前述第七發明,即使將兩段側利用機組(15)之冷媒 蒸發壓力與蒸發溫度設定的較單段側利用機組(12,13,14) 為低’亦能夠使來自兩段側利用機組(15)的冷媒在進入二段 側迴路(47)出口之前在增壓壓縮機(46)中壓縮以提高冷媒 壓力。於是,故在不影響單段側利用機(12,13 , 14)之蒸發 溫度、蒸發壓力的情況下,兩段側利用機組(15)即能發揮出 較單段側利用機組(12,13,14)為高的冷卻能力。 根據前述第九發明,能夠將冷媒之蒸發壓力與蒸發溫度 設定的較單段側利用機組(12, 13,14)為低之值的兩段側利 用機組(15),於送出側聯絡管線(18)冷媒容易流入之狀態連 接。因此,因為兩段侧利用機組(1 5 )中容易流入更多的液體 冷媒,故即使將庫内設定溫度設定的較單段側利用機組 (12,13,14)為低,亦能發揮出能夠充分的將庫内保持在規 定之設定溫度的冷卻能力。 【實施方式】 以下,參考附圖,詳細說明本發明之實施型態。 發明之第一實施型態 本實施型態之冷凍裝置(30),係設置於便利店等,進行 陳列櫃内之冷卻。 如圖1所示,本實施型態之冷凍裝置(30),係包括:熱源 機組即室外機組(11)、四個陳列櫃(12,13,14,15)以及增 壓機組(16)。四個陳列櫃(12,13,14,15),係由作為冷藏 庫之第一冷藏陳列櫃(12)、第二冷藏陳列櫃(13)及第三冷藏 陳列櫃(14)、作為冷凍庫之冷凍陳列櫃(15)構成。室外機組 107690.doc -15- 1274132 (11)係設置在室外,四個陳列櫃(12,13,14,15)中之任一 個皆係設置於便利店等店内。 四個陳列櫃(12,13,14,15)之庫内設定溫度分別被決 疋。第一冷藏陳列櫃(12)之設定溫度被決定為1〇。〇,第二冷 藏陳列櫃(13)之設定溫度被決定為5它,第三冷藏陳列櫃 (14)之没疋溫度被決定為2°C,冷柬陳列櫃(15)之設定溢度 被決定為-20C。 室外機組(11)中設有室外迴路(28);第一冷藏陳列櫃(12) 中&有第一冷藏迴路(25);第二冷藏陳列櫃(13)中設有第二 冷藏迴路(35);第三冷藏陳列櫃(14)中設有第三冷藏迴路 (45) ’冷来陳列櫃(15)中設有冷象迴路(55);增壓機組(16) 中設有增壓迴路(65)。 增壓迴路(65)中設有增壓壓縮機(4 6)。冷束迴路(55)和增 壓迴路(65)串聯連接。冷象迴路(55)之入口(53)至增壓迴路 (65)之出口(54)構成二段側迴路(47)。 冷凍裝置(30)中,這些冷藏迴路(25,35,45)和二段側迴 路(47)係藉由液側聯絡管線(18)和氣側聯絡管線(19)相對室 外迴路(28)相互並聯連接’構成冷媒迴路(2〇)。各個冷藏陳 列櫃(12 ’ 13,14)構成單段側利用機組,冷束陳列櫃(i 5) 構成兩段側利用機組。 室外迴路(28)中設有壓縮機(29)和室外熱交換器(丨7)。壓 縮機(29)是高密閉型高壓拱頂型渦卷式旋壓縮機。於該壓縮 機(29) ’對已吸入之冷媒加以壓縮並喷出。室外熱交換器 (17)是鰭管型(fin and tube)熱交換器,係構成熱源側熱交換 107690.doc -16 - l274l32 器。於忒至外熱父換器(17),在冷媒和室外空氣之間進行熱 父換。於室外機組(11),壓縮機(29)入口之冷媒壓力大致和 至外機組(11)入口(61)之冷媒壓力相等。室外熱交換器(J7) 出口之冷媒壓力大致和室外機組(11)出口(7丨)之冷媒壓力 相等。 於前述各個冷藏迴路(25,35,45),自該液側一端朝著 氣側一端依次設有冷藏膨脹閥(22,32,42)和冷藏熱交換器 (21,31,41)。冷藏熱交換器(21,31,41)是鰭管式熱交換 器,構成冷藏熱交換器。為將庫内保持在規定的設定溫度 而對庫内進行冷卻。這些冷藏熱交換器(21,3 1,41)中,分 別進行冷媒和庫内空氣之熱交換。另一方面,冷藏膨脹閥 U2,32,42)係由電子膨脹閥構成。 第一冷藏陳列櫃(12)中,冷藏膨脹閥(22)入口之冷媒壓力 和第一冷藏陳列櫃(12)入口(23)之冷媒壓力大致相等;冷藏 熱交換器(21)出口之冷媒壓力和第一冷藏陳列櫃(12)出口 (24)之冷媒壓力大致相等。第二冷藏陳列櫃(13)中,冷藏膨 脹閥(32)入口之冷媒壓力和第二冷藏陳列櫃3)入口(33)之 冷媒壓力大致相等;冷藏熱交換器(31)出口之冷媒壓力和第 二冷藏陳列櫃(13)出口(34)之冷媒壓力大致相等。第三冷藏 陳列櫃(14)中,冷藏膨脹閥(42)入口之冷媒壓力和第三冷藏 陳列櫃(14)入口(43)之冷媒壓力大致相等;冷藏熱交換器 (41)出口之冷媒壓力和第三冷藏陳列櫃(14)出口(44)之冷媒 壓力大致相等。 冷凍迴路(55)中,自該液側一端朝著氣側一端依次設有 107690.doc -17- 1274132 冷凍膨脹閥(52)和冷凍熱交換器(5 1)。冷凍熱交換器(5 1)是 鰭管式熱交換器,構成冷凍熱交換器。為將庫内保持在規 定的設定溫度而對庫内進行冷卻。該冷涞熱交換器(5 1)中, 分別進行冷媒和庫内空氣之熱交換。另一方面,冷柬膨脹 閥(52)係由電子膨脹閥構成。 增壓機組(16)之增壓壓縮機(46)是高密閉型高壓拱頂型 渴疑Μ細機’其入口連接在冷;東迴路(5 5)之冷;東熱交換5| 〜 (51)之出口。該增壓壓縮機(46),係對自冷凍熱交換器(5丄) 籲 %入之冷媒力σ以壓縮並喷出。 自冷凍陳列櫃(15)入口(53)至增壓機組(16)出口(54)的兩 段侧迴路(47)中,冷凍膨脹閥(52)入口之冷媒壓力大致和兩 段側迴路(47)入口(53)之冷媒壓力相等,增壓壓縮機(46)噴 出口之冷媒壓力大致和兩段側迴路(47)出口(54)之冷媒壓 力相等。 液側聯絡管線(18),係三處設有聯絡管線分支為兩根之 φ &支點(72, 73,74)。已分支之聯絡管線連接各冷藏陳列櫃 (12,13,14)和兩段側迴路(47)入口(23,33,43,53)。此 處,按離室外機組(11)由近及遠之順序,假定各個分支點分 • W為第—分支點(叫、第二分支點(73)以及第三分支點(^。 液側聯絡管線(18)係由以下幾部份管線構成。即自室外 機組(11)出口(71)至第一分支點(72)的主管線⑴、自第一分 支點(72)至第二分支點(73)的第一連接管線㈣、自第二分 支點(73)至第三分支點(74)的第二連接管線(2b)、自第一二 支點(72)至兩段側迴路(47)入口 (53)的第一分支管線心 107690.doc •18- 1274132 自弟一刀支點(73)至第三冷藏陳列櫃(丨4)入口(43)的第二分 支笞線(3b)、自第二分支點(74)至第二冷藏陳列櫃(I〕)入口 (33)的第三分支管線(3c)、以及自第三分支點(7句至第一冷 藏陳列櫃(12)入口(23)的第四分支管線(3d)。也就是說,^ 自室外機組(11)出口(71)開始的送出側聯絡管線即液側聯 絡管線(18),係兩段側迴路(47)連接最上游一側,三個冷藏 陳列櫃(12, 13, 14)中庫内設定溫度最低之第三冷藏陳列樞 (14)連接最上游一側。 氣側聯絡管線(19),係三處設有兩根聯絡管線合流的合 流點(65, 66, 67),合流之聯絡管線連接各冷藏陳列櫃(12, 13,14)和兩段側迴路(47)出口(24,34,44,54)。此處, 按離室外機組(11)由近及遠之順序,假定各個合流點分別為 第一合流點(65)、第二合流點(66)、第三合流點(67)。 氣侧聯絡管線(19)係由以下幾部份管線構成。即自第一 合流點(65)至室外機組(11)入口(61)的主管線(4)、自第一合 流點(65)至第二合流點(66)的第三連接管線(5a)、自第二合 流點(66)至第三合流點(67)的第四連接管線(5b)、自兩段側 迴路(47)出口(54)至第三合流點(67)的第一合流管線(6勾、 自第三冷藏陳列櫃(14)出口(44)至第一合流點(65)的第二合 流管線(6b)、自第二冷藏陳列櫃(13)出口(34)至第二合流點 (66)的第二合流官線(6c)以及自第一冷藏陳列櫃(12)出口 (24)至第三合流點(67)的第四合流管線(6d)。也就是說,朝 著室外機組(11)入口(61)返回之返回側聯絡管線即氣側聯 絡管線(19),係兩段側迴路(47)連接最上游一側,三個冷藏 107690.doc -19- 1274132 陳列櫃(12,13,14)中庫内設定溫度最低之第三冷藏陳列櫃 (14)連接最下游一側。 此處’假定自第一冷藏陳列櫃(12)出口(24)至室外機組 (11)入口(6 1)的聯絡管線長度是乙1,該長度L丨是主管線 (4)、第二連接管線(5a)、第四連接管線(5b)以及第四合流管 線(6d)長度之合計。假定自第二冷藏陳列櫃(13)出口(34)至 室外機組(11)入口(61)的聯絡管線長度是L2,該長度匕是主 管線(4)、第三連接管線(5a)、第三合流管線(6c)長度之合 計。假定自第三冷藏陳列櫃(14)出口(44)至室外機組(11)入 口(61)的聯絡管線長度是L3,該長度L3是主管線(4)、第二 合流官線(6b)長度之合計。假定自兩段側迴路(47)出口(54) 至至外機組(11)入口(61)的聯絡管線長度是L4,該長度以 疋主官線(4)、第三連接管線(5a)、第四連接管線(5b)以及第 一合流管線(6a)長度之合計。 自各個冷藏陳列櫃(12,13,14)及兩段側迴路(47)出口 (24, 34, 44 , 54)至室外機組(11)入口(61)的聯絡管線長度, 按L3、L2、LI、L4之順序依次變短。也就是說,係該聯絡 ’ H)之設定溫度越低,自In the cold invention of the second invention; the east device (10), due to the return side communication line from the outlets (24'34'44) of the unit 02' 13' 14) to the inlet (8) of the heat source unit (11) from the respective single-stage sides ( 19) The resulting refrigerant pressure loss is the lower the set temperature in the above-mentioned plurality of single-stage side units (12, 13, 14) connected to the communication line. In the cold beam device (4) of the third invention, the length of the communication line from the outlet (24, 34'44) of the unit (12, 13' 14) to the inlet (61) of the heat source unit (1) is connected from the respective single-stage side. The return side communication line of the plurality of single-stage side units (12, U, 14) having the lowest set temperature in the above-mentioned warehouse is the shortest. In the refrigerating apparatus (30) of the fourth invention, the length of the communication line from the outlet (24', 13' 44) of the unit (12' 13, 14) to the inlet (61) of the heat source unit (u) is used from the respective single-stage side, The lower one of the plurality of single-stage side utilization units (12, 13, 14) connected to the communication line is shorter as the set temperature is lower. According to a fifth aspect of the invention, in any one of the first to fourth inventions, the outlet (24, 34, 44) of the single-stage side use unit (24, 34, 14) and the inlet of the heat source unit (11) are connected ( 61) In the return side communication line (19), the plurality of single-stage side use units (12, 13, 14) are connected to the most downstream side of the lowest set temperature in the storage unit. 107690.doc 1274132 The invention of the fifth invention is connected to the outlet (71) of the heat source unit (11) and the inlet (23, 43) of the unit (12, 13, 14) of the single-stage side as described above. In the delivery side communication line (18), the plurality of single-stage side uses, and (I] 14) the lowest temperature in the library is connected to the most upstream side. According to a seventh aspect of the invention, the invention of any one of the first to sixth aspect of the invention, comprising: a cold part hot-replacer (51) for cooling the inside of the library in order to maintain the inside of the storage at a predetermined set temperature The two-stage side uses a two-stage side circuit (47) in which the unit (15) and the booster compressor (46) are connected in series. In the refrigerant circuit, the two-stage side circuit (47) and the single-stage side utilization unit (12, 13, 14) are connected in parallel with the heat source unit (丨丨) by the liaison official line (18, 19). The refrigerant is circulated between the unit (15) and the heat source unit (11) on the two side sides to perform a two-stage compression refrigeration cycle. According to a seventh aspect of the invention, in the seventh invention, the single-stage side utilization unit (12' 13, 14) and the two-stage side circuit (47) outlets, 34, 44, 54) and the other heat source unit (11) are connected. In the return side communication line (19) of the inlet (61), the two-stage side circuit (47) is connected to the most upstream side. According to a ninth aspect of the present invention, in the eighth aspect of the invention, the outlet (71) of the heat source unit (11) and the unit (12, 13, 14) of the single-stage side and the inlet (47) of the two-stage side circuit (47) are connected. In the delivery side communication line (i 8) of '43, 5 3), the two-stage side circuit (47) is connected to the most upstream side. In the first invention described above, the plurality of single-stage side utilization units (12, 13, 14) have the lowest refrigerant pressure at the outlet (44) of the single-stage side utilization unit (14) having the lowest temperature in the storage unit. The single-stage side uses the refrigerant evaporation pressure 107690.doc -10- 1274132 in the unit (12, 13, 14), which is mainly used on the single-stage side (24, 13, 14) outlet (24, μ, 44). The refrigerant pressure is equal. In other words, the single-stage side uses the unit (12 ' 13, 14) to make the evaporation pressure and evaporation temperature of the refrigerant, which is the low refrigerant pressure # of the outlet (Μ, μ, 44) of the unit (12, 13, 14). The more 16. Because of the fact, the single-stage side in which the temperature is set to the lowest in the library and the refrigerant evaporation temperature in the branch group (14) are the lowest among the plurality of single-stage side utilization units (12, 13, 14).于 In the second invention, the refrigerant pressure of the plurality of single-stage side utilization units (12, 13, 14) outlets (24, 34, 44) is in descending order of the set temperature in the library. low. Therefore, the evaporation pressure and evaporation temperature of the refrigerant in the unit (12, 13, 14) on each single-stage side are also in descending order of the temperature in the library from high to low. The pressure loss caused by the contact line is roughly proportional to the length of the tie line. Therefore, in the foregoing third invention, since the outlets (24, 34, 44) of the unit (12, 13, 14) are used from the respective single-stage sides to the return side communication line of the inlet φ (61) of the heat source unit (11) ( 19) The resulting refrigerant pressure loss is due to the fact that the value of the return side contact line of the lowest one of the above-mentioned plurality of single-stage side utilization units (12, 13, 14) is the smallest. In the foregoing fourth invention, the return side communication line (19) is caused by the outlet (24, 13, 44) of the unit (12, 13, 14) from the aforementioned single-stage side to the inlet (61) of the heat source unit (11). The refrigerant pressure loss is the smaller the lower the set temperature in the above-mentioned plurality of single-stage side enthalpy units (12, 13, 14) connected to the communication line. In the fifth invention, the single-stage side utilization unit with the lowest set temperature in the library is 107690.doc • 11 - 1274132 (14) 'system connection return side communication line 〇9) is located at the most downstream - (4) is close to the heat source unit (11) One side. In the above description, the invention is connected to the single-segment side using the unit (14) with the lowest set temperature in the lowermost side of the heat source unit (11) at the most downstream of the connection side of the return-side communication line (丨9). The most upstream side of the side communication line (18) is also near the heat source unit (11). In other words, on the return side contact line (丨9), the refrigerant medium is easy to return to the state of the heat source unit (11). The single-stage side utilization unit (14) with the lowest set temperature in the warehouse is connected, and the refrigerant is easily supplied to the delivery side contact line (18). Incoming state connection. Therefore, compared with other single-stage side utilization units (12, 13), the single-segment side utilization unit (14) that requires higher cooling capacity and the lowest set temperature in the warehouse is compared with other single-stage side utilization units (12, Η). Easy to flow in more liquid refrigerant. According to the seventh invention, the refrigerant flowing from the refrigerant flowing out of the heat source unit (U) into the single-stage side-peripheral units (12, 13, 14) is evaporated after the refrigerating heat exchanger (2 i, 31, 41) Return to the heat source unit (11). On the other hand, the refrigerant flowing into, for example, the two-stage use unit (15) is evaporated in the refrigeration heat exchanger (5 丨), compressed in the booster compressor (46), and returned to the heat source unit (11). Therefore, since the pressure from the two-stage side using the refrigerant of the unit (15) to the outlet of the second-stage side circuit (47) is increased, the pressure of the booster compressor (46) is improved, so that the two-stage side utilization unit (15) can The evaporation pressure and evaporation temperature of the refrigerant are set lower than that of the single-stage side utilization unit (12, 13, 14). In the eighth invention described above, the two-stage side circuit (47) to which the booster compressor (46) is connected is connected upstream of the return-side communication line (19). The refrigerant pressure loss from the two-stage side circuit (47) to the heat source unit (11) is compared to the single-stage side utilization unit 107690.doc -12- 1274132 group (12, 13, 14) to the heat source unit (ii) The pressure loss between the refrigerants is large. However, in the second-stage side circuit (47), the refrigerant evaporated by the unit (15) on the two-stage side is compressed by the booster compressor (46) and then sent out. Therefore, the evaporation temperature of the unit (15) on the two-stage side is lower than that of the single-stage side utilization unit (12, 13, 14). In the ninth invention, the two-stage side circuit (47) connected to the unit (15) on the two-stage side is connected to the upstream side of the supply-side liquid-side communication line (18) where the refrigerant easily flows. Therefore, the liquid refrigerant easily flows into the two-stage side utilization unit (15) which can set the refrigerant evaporation pressure and the evaporation temperature to be lower than the single-stage side utilization unit (12, 13, 14). According to the first aspect of the invention, the refrigerant evaporating temperature in the single-stage side utilization unit (14) having the lowest set temperature in the storage unit is the lowest among the plurality of single-stage side utilization units (12' 13 '' 14). Therefore, it is possible to set the minimum refrigerant evaporation temperature of the refrigeration heat exchanger (41) of the unit (14) on the single-stage side where the set temperature in the warehouse is the lowest to correspond to the set temperature in the storage. Thereby, the unit (14) can be effectively cooled by the single-stage side. According to the second invention described above, the refrigerant evaporating temperature in each of the single-stage side utilization units (12, 13, 14) is from south to low in accordance with the order in which the set temperature in the chamber is high to low. Therefore, the refrigerant evaporation temperature of the refrigerating heat exchangers (21, 31, 41) of the single-stage side utilization units (12, 13, 14) can be set from high to low in accordance with the order in which the set temperature in the library is high to low. To correspond to the set temperature in the library. Therefore, it is possible to effectively cool the inside of the storage by the unit (12, 13, 14) from each single-stage side. 107690.doc •13· 1274132 13 of the third invention '胄' from the single-segment side using the unit (12, ) exit (24, 34, 44) to the heat source unit (u) inlet (61) of the contact pipe ' And because the return side communication line (I" caused by the outlet (24, /4) of the unit (12, 13, 14) from the single-stage side to the inlet (61) of the heat source unit (11) is caused by the loss of the medium C Connecting the plurality of single-segment side utilization units (a, 13 1 ^ 4), the return-side communication line having the lowest set temperature in the library causes the value to be small. Therefore, the use of the single-stage side with the lowest set temperature in the library is utilized. It is very advantageous when the unit (14) is effectively cooled in the storage tank. According to the fourth invention, the outlets (24, 13, 44) of the unit (12, 13, 14) are supplied from the respective single-stage sides to the heat source unit ( 11) The length of the communication line of the inlet (1) is due to the return side communication line from the outlet (24, 34 ' 44) of the unit (12, 13, 14) to the inlet (61) of the heat source unit (61) from each single-stage side ( The refrigerant pressure loss caused by IQ) is the single-stage side utilization unit (12 ' 13, 14) connected to the communication line. The lower the internal set temperature, the easier it is to become a smaller value. It is very advantageous when it is used in a cooling chamber that is efficiently used by the unit (14) in the single-stage side where the temperature is set to the lowest in the library. According to the sixth invention described above, The other single-stage side utilization unit (12, 13) is required to have a higher cooling capacity, the single-stage side utilization unit (14) with the lowest set temperature in the warehouse, and the gas side communication line (19) on the return side is easy to return to the outdoor. The state of the unit (11) is connected in a state where the refrigerant from the outdoor unit (11) is easily flowed in the liquid side communication line (18) on the delivery side, compared with the first and second refrigerating display cases (12, 13). It is easy to inflow more refrigerant. Therefore, the third refrigerating showcase (14) can exhibit sufficient cooling capacity in order to maintain the inside of the storage at a predetermined set temperature. 107690.doc -14- 1274132 According to the seventh invention described above, Even if the two-stage side utilization unit (15) uses the refrigerant evaporation pressure and the evaporation temperature set to be lower than the single-stage side utilization unit (12, 13, 14), the refrigerant from the two-stage side utilization unit (15) can be used. Enter the second side The outlet of the road (47) is compressed in the booster compressor (46) to increase the pressure of the refrigerant. Therefore, in the case of not affecting the evaporation temperature and evaporation pressure of the single-stage side utilization machine (12, 13, 14), The segment side utilization unit (15) can exert a higher cooling capacity than the single-stage side utilization unit (12, 13, 14). According to the ninth invention, the evaporation pressure and the evaporation temperature of the refrigerant can be set to be relatively single. The two-stage side utilization unit (15) in which the unit (12, 13, 14) is a low value is connected in a state where the refrigerant is easily flowed in the delivery side communication line (18). Therefore, since the two-stage side utilization unit (15) easily injects more liquid refrigerant, even if the unit-set side temperature setting unit is set to be lower than the single-stage side utilization unit (12, 13, 14), it can be exerted. It is capable of sufficiently maintaining the cooling capacity of the inside of the library at a predetermined set temperature. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First Embodiment of the Invention The refrigeration system (30) of the present embodiment is installed in a convenience store or the like to perform cooling in a showcase. As shown in Fig. 1, the refrigerating apparatus (30) of this embodiment includes a heat source unit, that is, an outdoor unit (11), four showcases (12, 13, 14, 15), and a booster unit (16). The four showcases (12, 13, 14, 15) are used as the first refrigerated display case (12), the second refrigerated display case (13) and the third refrigerated display case (14) as a freezer. The refrigerated display case (15) is constructed. Outdoor unit 107690.doc -15- 1274132 (11) is installed outdoors, and any of the four showcases (12, 13, 14, 15) are installed in convenience stores and other stores. The set temperatures in the four display cases (12, 13, 14, 15) are determined separately. The set temperature of the first refrigerated display case (12) is determined to be 1 〇. 〇, the set temperature of the second refrigerated display case (13) is determined to be 5, the temperature of the third refrigerated display case (14) is determined to be 2 ° C, and the set overflow of the cold display case (15) is The decision is -20C. The outdoor unit (11) is provided with an outdoor circuit (28); the first refrigerating display case (12) has a first refrigerating circuit (25); and the second refrigerating display case (13) is provided with a second refrigerating circuit ( 35); the third refrigerating display cabinet (14) is provided with a third refrigerating circuit (45) 'The cold retracting display cabinet (15) is provided with a cold image circuit (55); the supercharger unit (16) is provided with a supercharging system Loop (65). A booster compressor (46) is provided in the booster circuit (65). The cold beam loop (55) and the boost loop (65) are connected in series. The inlet (53) of the cold image circuit (55) to the outlet (54) of the boost circuit (65) constitutes a two-stage side circuit (47). In the freezing device (30), the refrigerating circuit (25, 35, 45) and the two-stage side circuit (47) are connected in parallel with each other by the liquid side communication line (18) and the gas side communication line (19) with respect to the outdoor circuit (28). The connection 'constitutes the refrigerant circuit (2〇). Each refrigerated display cabinet (12 ‘ 13, 14) constitutes a single-segment side utilization unit, and the cold-beam display cabinet (i 5) constitutes a two-stage side utilization unit. The outdoor circuit (28) is provided with a compressor (29) and an outdoor heat exchanger (丨7). The compressor (29) is a high-sealed high-pressure dome-type scroll compressor. The compressed refrigerant is compressed and ejected by the compressor (29)'. The outdoor heat exchanger (17) is a fin and tube heat exchanger that constitutes a heat source side heat exchange 107690.doc -16 - l274l32. From the 忒 to the external hot parent (17), the hot parent is exchanged between the refrigerant and the outdoor air. In the outdoor unit (11), the refrigerant pressure at the inlet of the compressor (29) is approximately equal to the refrigerant pressure at the inlet (61) of the external unit (11). The refrigerant pressure at the outlet of the outdoor heat exchanger (J7) is approximately equal to the refrigerant pressure at the outlet (7丨) of the outdoor unit (11). In each of the above-described refrigerating circuits (25, 35, 45), refrigerating expansion valves (22, 32, 42) and refrigerating heat exchangers (21, 31, 41) are provided in this order from the liquid side end toward the gas side end. The refrigerating heat exchanger (21, 31, 41) is a fin-and-tube heat exchanger and constitutes a refrigerating heat exchanger. The inside of the library is cooled to maintain the library at a predetermined set temperature. In these refrigerating heat exchangers (21, 3 1, 41), heat exchange between the refrigerant and the air in the reservoir is performed, respectively. On the other hand, the refrigerating expansion valves U2, 32, 42) are constituted by an electronic expansion valve. In the first refrigerated display case (12), the refrigerant pressure at the inlet of the refrigerating expansion valve (22) and the refrigerant pressure at the inlet (23) of the first refrigerating display case (12) are substantially equal; the refrigerant pressure at the outlet of the refrigerating heat exchanger (21) The refrigerant pressure at the outlet (24) of the first refrigerated display case (12) is substantially equal. In the second refrigerating display cabinet (13), the refrigerant pressure at the inlet of the refrigerating expansion valve (32) and the refrigerant pressure at the inlet (33) of the second refrigerating display cabinet 3) are substantially equal; the refrigerant pressure at the outlet of the refrigerating heat exchanger (31) and The refrigerant pressure at the outlet (34) of the second refrigerated display case (13) is approximately equal. In the third refrigerating display cabinet (14), the refrigerant pressure at the inlet of the refrigerating expansion valve (42) and the refrigerant pressure at the inlet (43) of the third refrigerating display cabinet (14) are substantially equal; the refrigerant pressure at the outlet of the refrigerating heat exchanger (41) The refrigerant pressure at the outlet (44) of the third refrigerated display case (14) is substantially equal. In the refrigeration circuit (55), a 107690.doc -17-1274132 refrigerating expansion valve (52) and a refrigerating heat exchanger (5 1) are provided in this order from the liquid side end toward the gas side end. The refrigeration heat exchanger (5 1) is a fin-and-tube heat exchanger and constitutes a refrigeration heat exchanger. The interior of the library is cooled to maintain the library at the specified set temperature. In the cold heading heat exchanger (51), heat exchange between the refrigerant and the air in the chamber is performed. On the other hand, the cold-expansion expansion valve (52) is composed of an electronic expansion valve. The booster compressor (46) of the booster unit (16) is a high-sealed high-pressure dome-type thirst quenching machine 'its inlet is connected in cold; the east loop (5 5) is cold; east heat exchange 5| ~ ( 51) Export. The booster compressor (46) is configured to compress and eject the refrigerant force σ from the refrigerating heat exchanger (5 丄). From the inlet (53) of the refrigerating display cabinet (15) to the two-stage side circuit (47) of the outlet (54) of the booster unit (16), the refrigerant pressure at the inlet of the refrigerating expansion valve (52) is substantially equal to that of the two-stage side circuit (47). The refrigerant pressure at the inlet (53) is equal, and the refrigerant pressure at the discharge port of the booster compressor (46) is substantially equal to the refrigerant pressure at the outlet (54) of the two-stage side circuit (47). The liquid side communication line (18) is provided with three φ & fulcrums (72, 73, 74). The branched communication line connects the refrigerated display cases (12, 13, 14) and the two side side circuit (47) inlets (23, 33, 43, 53). Here, in the order of near and far from the outdoor unit (11), it is assumed that each branch point is divided into a first branch point (called, a second branch point (73), and a third branch point (^. liquid side contact) The pipeline (18) is composed of the following partial pipelines, that is, from the outlet (71) of the outdoor unit (11) to the main line (1) of the first branch point (72), from the first branch point (72) to the second branch point a first connecting line (4) of (73), a second connecting line (2b) from the second branch point (73) to a third branch point (74), a first two fulcrum (72) to a two-stage side circuit (47) The first branch line of the inlet (53) 107690.doc • 18-1274132 The second branch line (3b) from the first fulcrum point (73) to the third refrigerated display case (丨4) inlet (43) a second branch line (74) to a third branch line (3c) of the inlet (33) of the second refrigerated display case (I), and a third branch point (7 sentences to the first refrigerated display case (12) entrance ( 23) The fourth branch line (3d). That is, the liquid side contact line (18) from the outlet side contact line from the outlet (71) of the outdoor unit (11) is a two-stage side circuit (47) On the most upstream side, the third refrigerated display hinge (14) with the lowest set temperature in the three refrigerated display cases (12, 13, 14) is connected to the most upstream side. The gas side communication line (19) is set up in three places. There are two confluence points (65, 66, 67), and the confluence communication line connects the refrigerated display cabinets (12, 13, 14) and the two side circuit (47) outlets (24, 34, 44, 54). Here, in the order of near and far from the outdoor unit (11), it is assumed that the respective junctions are the first junction point (65), the second junction point (66), and the third junction point (67). The side communication line (19) is composed of the following parts: the main line (4) from the first junction point (65) to the inlet (61) of the outdoor unit (11), from the first junction point (65) to a third connecting line (5a) of the second joining point (66), a fourth connecting line (5b) from the second joining point (66) to the third joining point (67), and an outlet from the two-stage side circuit (47) (54) a first confluence line (6b) to the third junction point (67), a second confluence line (6b) from the outlet (44) of the third refrigerating display cabinet (14) to the first junction point (65), a second merged official line (6c) from the outlet (34) of the second refrigerated display cabinet (13) to the second junction (66) and an outlet (24) from the first refrigerated display cabinet (12) to a third junction (67) The fourth confluence line (6d), that is, the return side communication line that is returned toward the inlet (61) of the outdoor unit (11), that is, the gas side communication line (19), which is the two-stage side circuit (47) connected most. On the upstream side, three refrigerated 107690.doc -19- 1274132 showcases (12, 13, 14) have the lowest temperature setting of the third refrigerated display case (14) connected to the most downstream side. Here, it is assumed that the length of the communication line from the outlet (24) of the first refrigerated display case (12) to the entrance (61) of the outdoor unit (11) is B1, and the length L丨 is the main line (4), the second connection The total length of the pipeline (5a), the fourth connecting pipeline (5b), and the fourth joining pipeline (6d). It is assumed that the length of the communication line from the outlet (34) of the second refrigerating display cabinet (13) to the inlet (61) of the outdoor unit (11) is L2, which is the main line (4), the third connecting line (5a), the first The total length of the triple junction line (6c). It is assumed that the length of the communication line from the outlet (44) of the third refrigerating display cabinet (14) to the inlet (61) of the outdoor unit (11) is L3, which is the length of the main line (4) and the second confluence line (6b). The total. It is assumed that the length of the communication line from the outlet of the two-stage side circuit (47) (54) to the inlet (61) of the outer unit (11) is L4, which is the main line (4), the third connection line (5a), The total length of the fourth connecting line (5b) and the first joining line (6a). The length of the communication line from the refrigerated display cabinets (12, 13, 14) and the two side circuit (47) outlets (24, 34, 44, 54) to the outdoor unit (11) inlet (61), according to L3, L2 The order of LI and L4 is shortened in turn. In other words, the lower the set temperature of the contact 'H), since

組(11)入口(61)的聯絡管線(丨9)中之任一個為長 於該冷媒迴路(20),返回側氣側聯絡管線(19)中各部份 管線所連接之冷藏陳列櫃(12,13, 各個冷藏陳列櫃(12,13,14)出口 < (11)入口(61)的聯絡管線長度越短。 107690.doc -20· 1274132 (4〜6)之管徑,係根據各個部份中冷媒流量決定。因此,由 於返回側氣側聯絡管線(19)導致之冷媒壓力損失,在任一個 聯絡管線皆係單位長度值大致相等。結果係,由於自各個 冷藏陳列櫃(12, 13, 14)之出口(24,34,44)至室外機組⑴) 入口(61)之返回側的聯絡管線導致之冷媒壓力損失,係該聯 絡官線長度越短越小;該聯絡管線所連接之冷藏陳列櫃 (13 14)的。又疋溫度越低越小。而且,由於自兩段側迴 路(47)出口(54)至室外機組(11)入口(61)的聯絡管線導致之 冷媒壓力損失,係較由於自各個冷藏陳列櫃(12,13,14) 之出口(24,34,44)至室外機組(11)入口(61)的聯絡管線導 致之冷媒壓力損失中之任一個皆為大。 運轉操作 說明該實施型態之冷凍裝置(3〇)的工作情況。該冷凍裝 置(3 0)中’冷媒在室外機組(u)與各個冷藏陳列櫃(12,13, 14)之間循環,各個冷藏陳列櫃(12,π,ι4)之冷藏熱交換 器(21 ’ 31,41)係作為蒸發器進行單段壓縮冷凍循環,冷媒 還在室外機組(11)與兩段側迴路(47)之間進行循環,冷凍陳 列樞(15)之冷凍熱交換器(5丨)作為蒸發器進行兩段壓縮冷 凍循環。 若使室外機組(11)之壓縮機(29)運轉,則在該壓縮機(29) 壓縮之冷媒便經由室外迴路(28),流入室外熱交換器(17)。 於遠室外熱交換器(17),冷媒向室外空氣放熱而冷凝。於室 外熱父換器(17)冷凝之冷媒,從室外機組(11)流出,再流入 構成液側聯絡管線(18)的主管線(1)。之後,流入主管線(i) 107690.doc -21- 1274132 之冷媒,係從各個分支點(72,73,74)流入各個冷藏迴路 (25,35,45)與冷凍迴路(5 5)。 流入各個冷藏迴路(25,35,45)之冷媒,係於各個冷藏 膨脹閥(22, 32, 42)減壓後,又被導入至各個冷藏熱交換器 (21 31 41)。於各個冷滅熱交換器(21 ’ 31,41),冷媒自 庫内空氣吸熱而蒸發。於第一冷藏陳列櫃(12),係將於冷藏 熱交換器(21)冷卻之庫内空氣供給至庫内,將庫内溫度大致 保持於設定溫度(l〇°C)。於第二冷藏陳列櫃(13),係將於冷 藏熱交換器(31)冷卻之庫内空氣供給至庫内,將庫内溫度大 致保持於沒疋溫度(5°c )。於第三冷藏陳列櫃(丨4),係將於 冷藏熱交換器(41)冷卻之庫内空氣供給至庫内,將庫内溫度 大致保持於設定溫度(VC)。於各個冷藏熱交換器(21,31, 41)蒸發之冷媒,係流入第二至第四各合流管線(6b, 6d)。 流入冷凍迴路(55)的冷媒,係於冷凍膨脹閥(52)減壓後, 又被導入至冷凍熱交換器(51)。於冷凍熱交換器,冷媒 自庫内空氣吸熱而蒸發。於冷凍陳列櫃(15),係將於冷凍熱 乂換器(51)冷卻之庫内空氣供給至庫内,將庫内溫度大致保 持於叹疋溫度(_20。〇。於冷凍熱交換器(51)蒸發之冷媒係 自冷康迴路(55)流入增遷迴路(65)。流入增壓迴路(65)的冷 媒係被吸入增壓壓縮機(46),在該增壓壓縮機(46)被壓縮 並喷出。從增壓壓縮機(46)噴出之冷媒,係流入第一合流管 線(6a)。 由於自各個冷藏陳列櫃〇2,13,14)之出口(24,34,44) 107690.doc -22- 1274132 至室外機組(11)入口(61)之返回側的聯絡管線(19)導致之冷 媒壓力損失,係由於第三冷藏陳列櫃(丨4)之聯絡管線導致之 值最小,其次是第二冷藏陳列櫃(13),最後是第一冷藏陳列 櫃(12)。於是,因為各個冷藏陳列櫃(丨2,丨3,丨4)中冷媒之 蒸發溫度,係按照第三冷藏陳列櫃(14)、第二冷藏陳列櫃 (13)弟冷藏陳列櫃(12)之順序逐漸降低,故於各個冷藏 陳列櫃(12,13,14)庫内設定溫度得以保持。 冷凍陳列櫃(15)之冷媒蒸發溫度,係被設定得較冷藏陳 列櫃(12, 13, 14)之為低,但因為能夠在達到兩段側迴路(47) 出口之前在增壓壓縮機(46)中將來自冷凍陳列櫃(15)之冷 媒壓縮而使冷媒壓力提高,故在不影響冷藏陳列櫃(12, 13 ’ 14)之蒸發溫度、蒸發壓力的情況下,在冷凍陳列櫃(15) 中能夠發揮出很高的冷卻能力而進行庫内之冷卻。 流入至各個合流管線(6a,6b, 6e,6d)之冷媒,係在各個 合點(65, 66, 67)合流,流經主管線(4)後流入室外迴路(28)。 流入室外迴路(28)的冷媒,被吸入至壓縮機(29),在該壓縮 機(29)中被壓縮再次被噴出。於冷媒回路(2〇),重複進行如 此之冷媒循環。 第一實施型態之效果 於前述第一實施型態,由於自各個冷藏陳列櫃(12,13, 14)之出口(24,34,44)至室外機組(11)入口(61)之返回側的 聯絡官線(19)導致之冷媒壓力損失,係該氣側聯絡管線(19) 所連接之冷藏陳列櫃(12,. 13,14)的設定溫度越低越小。於 是,便能夠按照庫内設定溫度由高至低之順序,將冷藏陳 107690.doc -23- 1274132 列櫃(12,13,14)的冷藏熱交換器dm)之冷媒蒸發 溫度設定得由高至低,以使得分別相對庫内之設定溫度適 田 果疋此夠利用各個冷藏陳列櫃(12,13,14)有效 的進行庫内之冷卻。 於月)述第實靶型悲’與第一及第二冷藏陳列櫃(η,") 相比所而要的冷卻旎力較高的、冑内設定溫度最低的第三 冷藏陳列櫃(14),係在返回側之氣側聯絡管線冷媒容易 t回至外钱組(11)的狀態、在送出側之液側聯絡管線(1 8) 來自室外機組(11)之冷媒容易流入的狀態下連接,與第一及 第二冷藏陳列櫃(12, 13)相比,容易流入更多的冷媒。因此, 第三冷藏陳列櫃(14),為了將庫内保持在規定之設定溫度而 能夠發揮出充分之冷卻能力。 於前述第一實施型態,即使將冷凍陳列櫃(丨5)中冷媒之 蒸發壓力、蒸發溫度設定得較冷藏陳列櫃(12,13,14 )之為 低,亦能在到達兩段側迴路(47)出口之前在增壓壓縮機(46) 中將來自冷凍陳列櫃(1 5)之冷媒壓縮而使冷媒壓力提高。於 是,在不影響冷藏陳列櫃(12,13,14)之蒸發溫度、蒸發壓 力的情況下,冷凍陳列櫃(15)便能夠發揮出較冷藏陳列櫃 (12,13)為高之冷卻能力。 於第一實施型態,蒸發溫度、蒸發壓力設定的較冷藏陳 列櫃(12,13)為低之冷凍陳列櫃(15),係於送出側液側聯絡 管線(18)冷媒容易流入之狀態連接。於是,因為較多的液冷 媒容易流入冷凍陳列櫃(15),故能夠發揮出用以將庫内保持 為規定之設定溫度的充分的冷卻能力。 107690.doc -24· 1274132 第一實施型態之變形例1 對第一實施型態之變形例1加以說明。該變形例1,係改 變第一實施型態中第一冷藏陳列櫃(12)、第二冷藏陳列櫃 (13)之設定溫度、第四連接管線(5b)及第四合流管線(6d)之 粗度(内徑)而獲得者。 於該變形例1,第一冷藏陳列櫃(12)之設定溫度被決定為 5°C ’第二冷藏陳列櫃(π)之設定溫度被決定為10°C。決定 " 苐四連接管線(5b)及第四合流管線(6d)之粗度,係使得由於 ® 该第四連接管線(5b)及第四合流管線(6d)導致之冷媒壓力 損失之合計較由第三合流管線(6C)導致之值為小。是以,由 於自第一冷藏陳列櫃(12)出口(24)至室外機組(11)入口(6 的聯絡管線導致之冷媒壓力損失,係較來自第二冷藏陳列 櫃(13)出口(34)之值為小。結果是,與第一實施型態一樣, 由於自各個冷藏陳列櫃(12,13,14)出口(24 , 34,44)至室 外機組(11)入口(6 1)的氣側聯絡管線(丨9)導致之冷媒壓力損 _ 失’係該聯絡管線(19)所連接之冷藏陳列櫃(12,13,14) 之没定溫度越低越小。 根據該變形例1,雖然自各個冷藏陳列櫃(12,Π,14)出 口(24,34,44)至室外機組(11)入口(61)的返回側聯絡管線 (1 9)長度,並非是該聯絡管線所連接之冷藏陳列櫃(12 , 1 3, 14)的設定溫度越低越短,然而,藉由調節該聯絡管線之粗 度,便能使由於自各個冷藏陳列櫃(12,13,ι4)出口(24, 34,44)至室外機組(11)入口(61)的該聯絡管線導致之冷媒 壓力損失,係該聯絡管線所連接之冷藏陳列櫃(12, 13, 14) 107690.doc -25- 1274132 之設定溫度越低越低。因此,無論室外機組(1丨)、各個冷藏 陳列櫃(12 ’ 13,14)之配置情況如何,若調節由於自各個a 藏陳列櫃(12,13,14)出口(24,34,44)至室外機組(u)入 口(6 1)的聯絡管線導致之冷媒壓力損失,便能夠按照庫内設 定溫度由高至低之順序,將冷藏陳列櫃(12,13,14)的冷藏 熱交換器(21,31,41)之冷媒蒸發溫度設定得由高至低,以 使得分別相對庫内之設定溫度適當化。因而能夠利用各個 冷藏陳列櫃(12,13,14)有效的進行庫内之冷卻。 第一實施型態之變形例2 對第一實施型態之變形例2加以說明。該變形例2之冷束 裝置(3 0)概略構成圖顯示於圖2。該冷凍裝置(3〇),與第一 實施型態不同,未設置冷凍陳列櫃(15)與增壓機組(16)。 具體而言,該變形例2之冷凍裝置(30),係包括··室外機 組(11)與二個冷藏陳列櫃(12,13,14)。與第一實施型態一 樣,來自至外機組(11)出口(7丨)之送出側聯絡管線即液側聯 絡管線(18)中,三個冷藏陳列櫃(12,13,14)中庫内設定溫 度最低之第三冷藏陳列櫃(14)連接最上游一側;朝向室外機 組(11)入口(61)之返回側聯絡管線即氣側聯絡管線(19)中, 二個冷藏陳列櫃(12, 13, 14)中庫内設定溫度最低之第三冷 藏陳列櫃(14)連接最下游一側。 發明的第二實施型態 本發明第二實施型態所關係之冷凍裝置(30)顯示於圖 3。或冷/東裝置(30),與第一實施型態不同,在返回側之氣 側聯絡官線(19) ’兩段側迴路(47)連接最下游。以下,具體 107690.doc •26- 1274132 說明與第一實施型態不同之處。Any one of the communication lines (丨9) of the group (11) inlet (61) is a refrigerated display case (12) longer than the refrigerant circuit (20) and the return side gas side communication line (19). 13, the outlet of each refrigerated display case (12, 13, 14) < (11) the shorter the length of the communication line of the entrance (61). The diameter of the 107690.doc -20· 1274132 (4~6) is based on each Part of the refrigerant flow rate is determined. Therefore, due to the loss of refrigerant pressure caused by the return side gas side communication line (19), the unit length values are approximately equal in any of the communication lines. The result is due to the various refrigerated display cases (12, 13). , 14) The outlet (24, 34, 44) to the outdoor unit (1)) The return line on the return side of the inlet (61) causes the refrigerant pressure loss, which is the shorter the length of the liaison line; the connection line is connected Refrigerated display case (13 14). The lower the temperature, the lower the temperature. Moreover, the refrigerant pressure loss due to the communication line from the outlet of the two-stage side circuit (47) (54) to the inlet (61) of the outdoor unit (11) is due to the fact that since each refrigeration display case (12, 13, 14) Any of the refrigerant pressure losses caused by the communication line from the outlet (24, 34, 44) to the inlet (61) of the outdoor unit (11) is large. Operation Operation The operation of the refrigeration unit (3〇) of this embodiment will be described. In the freezing device (30), 'refrigerant circulates between the outdoor unit (u) and each refrigerating display case (12, 13, 14), and the refrigerating heat exchanger (12, π, ι4) of each refrigerating display case (21) '31,41) is a single-stage compression refrigeration cycle as an evaporator, and the refrigerant is also circulated between the outdoor unit (11) and the two-stage side circuit (47) to refrigerate the display heat exchanger (5)丨) A two-stage compression refrigeration cycle as an evaporator. When the compressor (29) of the outdoor unit (11) is operated, the refrigerant compressed by the compressor (29) flows into the outdoor heat exchanger (17) via the outdoor circuit (28). In the outdoor heat exchanger (17), the refrigerant releases heat to the outdoor air and condenses. The refrigerant condensed by the outdoor heat exchanger (17) flows out of the outdoor unit (11) and then flows into the main line (1) constituting the liquid side communication line (18). Thereafter, the refrigerant flowing into the main line (i) 107690.doc -21 - 1274132 flows from each branch point (72, 73, 74) into each of the refrigerating circuits (25, 35, 45) and the refrigerating circuit (5 5). The refrigerant flowing into each of the refrigerating circuits (25, 35, 45) is depressurized by each of the refrigerating expansion valves (22, 32, 42), and is introduced into each of the refrigerating heat exchangers (21 31 41). At each of the cold-eliminating heat exchangers (21 ' 31, 41), the refrigerant absorbs heat from the interior of the reservoir and evaporates. In the first refrigerating display cabinet (12), the air in the refrigerator which is cooled by the refrigerating heat exchanger (21) is supplied to the storage chamber, and the temperature in the storage chamber is maintained at a set temperature (10 ° C). In the second refrigerated display case (13), the air in the refrigerator which is cooled by the cold heat exchanger (31) is supplied to the storage, and the temperature inside the storage is maintained at the temperature (5 ° C). In the third refrigerating display case (丨4), the air in the refrigerator which is cooled by the refrigerating heat exchanger (41) is supplied to the inside of the storage, and the temperature in the interior is maintained substantially at the set temperature (VC). The refrigerant evaporated in each of the refrigerating heat exchangers (21, 31, 41) flows into the second to fourth confluent lines (6b, 6d). The refrigerant that has flowed into the refrigeration circuit (55) is depressurized by the refrigeration expansion valve (52), and is introduced into the refrigeration heat exchanger (51). In the refrigeration heat exchanger, the refrigerant absorbs heat from the reservoir and evaporates. In the refrigerated display case (15), the air in the library which is cooled by the refrigerating heat exchanger (51) is supplied to the storage, and the temperature in the storage is maintained at approximately the sigh temperature (_20. 〇. in the freezing heat exchanger ( 51) The evaporated refrigerant flows from the cold circuit (55) into the relocation circuit (65). The refrigerant flowing into the boost circuit (65) is sucked into the booster compressor (46), where the booster compressor (46) Compressed and ejected. The refrigerant ejected from the booster compressor (46) flows into the first confluence line (6a). Since the outlets of the refrigerated display cabinets ,2, 13, 14) (24, 34, 44) 107690.doc -22- 1274132 The loss of refrigerant pressure caused by the communication line (19) on the return side of the inlet (61) of the outdoor unit (11) is due to the minimum value of the communication line of the third refrigerated display case (丨4) Next, the second refrigerated display case (13), and finally the first refrigerated display case (12). Therefore, because of the evaporation temperature of the refrigerant in each of the refrigerated display cases (丨2, 丨3, 丨4), according to the third refrigerated display case (14), the second refrigerated display case (13), the refrigerated display case (12) The order is gradually lowered, so that the set temperature is maintained in each of the refrigerated display cases (12, 13, 14). The refrigerant evaporation temperature of the refrigerated display case (15) is set lower than that of the refrigerated display case (12, 13, 14), but because it can be used in the booster compressor before reaching the exit of the two-stage side circuit (47) ( 46) The compressor compresses the refrigerant from the refrigerating display cabinet (15) to increase the pressure of the refrigerant, so that the refrigerating display cabinet (15) is not affected by the evaporation temperature and evaporation pressure of the refrigerated display cabinet (12, 13' 14). In the middle of the system, it can perform high cooling capacity and perform cooling in the library. The refrigerant flowing into each of the merged lines (6a, 6b, 6e, 6d) merges at each of the joints (65, 66, 67), flows through the main line (4), and flows into the outdoor circuit (28). The refrigerant that has flowed into the outdoor circuit (28) is sucked into the compressor (29), and is compressed and discharged again in the compressor (29). The refrigerant cycle is repeated in the refrigerant circuit (2〇). The effect of the first embodiment is in the first embodiment described above, since the return side (24, 34, 44) from each refrigerated display case (12, 13, 14) to the return side (61) of the outdoor unit (11) The pressure loss of the refrigerant caused by the liaison official line (19) is the lower the set temperature of the refrigerated display case (12, . 13, 14) connected to the gas side communication line (19). Therefore, the refrigerant evaporation temperature of the refrigerated heat exchanger dm) of the refrigerated Chen 107690.doc -23- 1274132 cabinet (12, 13, 14) can be set high by the order of the set temperature in the library. So low, so that the set temperature relative to the inside of the library is sufficient to effectively cool the interior of the warehouse by using each of the refrigerated display cases (12, 13, 14). In the month of the month, the third target refrigerated showcase with the lowest cooling capacity and the lowest set temperature in the ( is compared with the first and second refrigerated display cases (η,") 14), in the state of the gas side communication line on the return side, the refrigerant is easily returned to the state of the foreign money group (11), and the liquid side communication line on the delivery side (18). The refrigerant from the outdoor unit (11) is easily inflowed. The lower connection makes it easier to flow more refrigerant than the first and second refrigerated display cases (12, 13). Therefore, the third refrigerating showcase (14) can exhibit sufficient cooling capacity in order to maintain the inside of the storage at a predetermined set temperature. In the first embodiment described above, even if the evaporation pressure and the evaporation temperature of the refrigerant in the refrigerating display case (丨5) are set lower than that of the refrigerated display case (12, 13, 14), the two-stage side circuit can be reached. (47) The refrigerant from the refrigerating display case (15) is compressed in the booster compressor (46) before the outlet to increase the refrigerant pressure. Therefore, the refrigerating display case (15) can exhibit a higher cooling capacity than the refrigerated display case (12, 13) without affecting the evaporating temperature and evaporating pressure of the refrigerating display case (12, 13, 14). In the first embodiment, the refrigerating display cabinet (12, 13) with the evaporating temperature and the evaporating pressure is set to be a low refrigerating display cabinet (15), and is connected to the side of the sending side liquid side communication line (18). . Therefore, since a large amount of liquid refrigerant easily flows into the refrigerating showcase (15), sufficient cooling capacity for maintaining the inside of the storage to a predetermined set temperature can be exhibited. 107690.doc -24· 1274132 Modification 1 of First Embodiment A modification 1 of the first embodiment will be described. The first modification is to change the set temperature of the first refrigerating showcase (12), the second refrigerating showcase (13), the fourth connecting line (5b) and the fourth joining line (6d) in the first embodiment. Obtained by the thickness (inner diameter). In the first modification, the set temperature of the first refrigerating showcase (12) is determined to be 5 ° C. The set temperature of the second refrigerating showcase (π) is determined to be 10 °C. The thickness of the determination of the fourth connection line (5b) and the fourth junction line (6d) is such that the total pressure loss of the refrigerant due to the fourth connection line (5b) and the fourth junction line (6d) is greater. The value caused by the third merge line (6C) is small. Therefore, due to the loss of refrigerant pressure caused by the communication line from the outlet (24) of the first refrigerated display case (12) to the inlet of the outdoor unit (11), the outlet from the second refrigerated display case (13) (34) The value is small. As a result, as in the first embodiment, due to the gas from the outlets (24, 34, 44) of the respective refrigerated display cabinets (12, 13, 44) to the inlet (6 1) of the outdoor unit (11) The refrigerant pressure loss caused by the side communication line (丨9) is the lower the indefinite temperature of the refrigerated display case (12, 13, 14) to which the communication line (19) is connected. According to the modification 1, Although the length from the exit (24, 34, 44) of each refrigerated display case (12, 34, 44) to the return side contact line (19) of the inlet (61) of the outdoor unit (11) is not the connection of the communication line. The lower the set temperature of the refrigerated display case (12, 1 3, 14), the shorter the distance, however, by adjusting the thickness of the communication line, it is possible to export from each refrigerated display case (12, 13, ι4) (24 , 34, 44) to the outdoor unit (11) inlet (61) of the communication line caused by the refrigerant pressure loss, is the communication line The set temperature of the connected refrigerated display case (12, 13, 14) 107690.doc -25- 1274132 is lower. Therefore, regardless of the configuration of the outdoor unit (1丨) and each refrigerated display case (12' 13,14) In the case of the situation, if the refrigerant pressure loss caused by the communication line from the outlets (24, 34, 14) of the respective display cabinets (12, 13, 14) to the inlet (6 1) of the outdoor unit (u) is adjusted, The temperature in the library is set from high to low, and the refrigerant evaporation temperature of the refrigerating heat exchanger (21, 31, 41) of the refrigerated display case (12, 13, 14) is set from high to low, so that the relative libraries are respectively The set temperature in the interior is appropriately adjusted. Therefore, it is possible to efficiently perform cooling in the interior of each of the refrigerating display cases (12, 13, 14). Modification 2 of the first embodiment Modification 2 of the first embodiment will be described The schematic configuration of the cold beam device (30) of the second modification is shown in Fig. 2. The freezing device (3〇) is different from the first embodiment in that a refrigerating display case (15) and a booster unit are not provided ( 16) Specifically, the freezing device (30) of the second modification includes The external unit (11) and the two refrigerated display cases (12, 13, 14). As in the first embodiment, the delivery side contact line from the outlet (7丨) to the outer unit (11) is the liquid side communication line ( 18), the third refrigerated display case (14) with the lowest set temperature in the three refrigerated display cases (12, 13, 14) is connected to the most upstream side; toward the return side of the inlet (61) of the outdoor unit (11) In the communication line, that is, the gas side communication line (19), the third refrigerated display case (14) having the lowest set temperature in the two refrigerated display cases (12, 13, 14) is connected to the most downstream side. Second Embodiment of the Invention The refrigeration apparatus (30) according to the second embodiment of the present invention is shown in Fig. 3. Or the cold/east device (30), unlike the first embodiment, the two-stage side circuit (47) on the return side of the gas side contact official line (19) is connected to the most downstream. Hereinafter, the specific 107690.doc • 26-1274132 description differs from the first embodiment.

氣側聯絡管線(19),係由以下幾部份管線構成。即自第 一合流點(65)至室外機組(11)入口(61)的主管線(4)、自第一 合流點(65)至第二合流點(66)的第三連接管線(5a)、自第二 合流點(66)至第三合流點(67)的第四連接管線(5b)、自兩段 側迴路(47)出口(54)至第一合流點(65)的第一合流管線 (6a)、自第三冷藏陳列櫃(14)出口(44)至第二合流點(66)的 第二合流管線(6b)、自第二冷藏陳列櫃(13)出口(34)至第三 合流點(67)的第三合流管線(6c)以及自第一冷藏陳列櫃〇2) 出口(24)至第二合流點(67)的第四合流管線(6幻。也就是 況,朝著至外機組(11)入口(6丨)返回之返回側聯絡管線即氣 側聯絡管線(19)中’係、兩段側迴路(47)連接最下游,三個冷 藏陳列櫃(12, 13, 14)中庫内設定溫度最低之第三冷藏陳列 櫃(14)連接最下游一側。 自冷藏陳列櫃(12, 13, 14)出口(24,34,44)至室外機組 (11)入ϋ (61)的耳葬絡管線長度,係該聯、絡管線所連接之冷藏 陳歹J櫃(12’ 13’ 14)之设定溫度越低越短。自兩段侧迴路(π) 出口(54)至室外機組⑴)人口(61)之聯时線長度,係較自 冷藏陳列櫃(12,13,14)出口(24,34,44)至室外機組⑴) 入口 (61)的聯絡管線(19)中任一個之長度為短。 該冷媒回路(20)中,返㈣氣側聯絡管線(19)中各部份 (4〜6)之管徑,係根據各個部份中冷媒流量決定。因此,由 聯絡管線皆係單位長度值大致㈣。結果係,由於自各個 107690.doc -27- 1274132 冷藏陳列櫃02 ’ 13,14)出口(24,34,44)至室外機組(11) 入口(61)之返回側的聯絡管線導致之冷媒壓力損失,係該聯 絡管線長度越短越小;該聯絡管線所連接之冷藏陳列櫃 (12,13,14)的設定溫度越低越小。而且,由於自兩段側迴 路(47)出α (54)至室外機組⑴)入口(61)的聯絡管線導致之 冷媒壓力損失,係較由於自各個冷藏陳列櫃(12 , 13,14) 出口(24 ’ 34 ’ 44)至室外機組(u)入口(61)的聯絡管線導致 之冷媒壓力損失中之任一個皆為小。 第二實施型態的效果 於所述第二實施型態,與所述第一實施型態一樣,由於 自各個冷藏陳列櫃(12,13,14)出口(24,34,44)至室外機 組(11)入口(61)之返回侧的聯絡管線(19)導致之冷媒壓力損 失,係該聯絡管線所連接之冷藏陳列櫃(丨2 ,丨3,丨4)的設定 溫度越低越小。於是,便能夠按照庫内設定溫度由高至低 之順序,由尚至低的設定冷藏陳列櫃(12 , 13,14)的冷藏熱 父換器(2 1 ’ 3 1,41)之冷媒蒸發溫度,而分別與庫内之設定 溫度相適應。結果是,能夠利用各個冷藏陳列櫃(12, 13, 14)有效的進行庫内之冷卻。 於第二實施型態,各個冷藏陳列櫃,13,14)及兩段 側迴路(47)出口(24,34,44,54)至室外機組(11)入口(61) 的返回側氣側聯絡管線(19)導致之冷媒壓力損失,係由於連 接冷凍陳列櫃(15)之返回側氣側聯絡管線(丨9)導致之值為 最小’所以各個冷藏陳列櫃(12,13,14)及兩段側迴路(47) 出口(24,34,44,54)中兩段側迴路(47)出口(54)之冷媒壓 107690.doc -28- 1274132 力最低。於是,能夠將冷凍陳列櫃(15)出口(54)之冷媒壓力 亦即增壓壓縮機(46)之喷出壓力抑制得很低,而能夠使增壓 遷縮機(46)出人口之麼力差小—些。因此,能夠將增壓壓縮 機(46)中之功耗抑制得很低。 其他實施型態 於前述實施型態,可以採取以下做法,即在送出側液側 聯絡管線(18)、返回側氣側聯絡管線(19),不是象前述實施 型態一樣將冷凍陳列櫃(15)配置在最上游或者最下游,而是 將冷來陳列櫃(15)配置在冷藏陳列櫃(12,π,ι4)之間。 於前述實施型態,可使冷藏陳列櫃(12,13,14)之間的 庫内設定溫度相同。此時,較佳者,係由於自各個冷藏陳 列櫃(12 ’ 13,14)出口(24,34,44)至室外機組(u)入口(6 〇 的返回側聯絡管線導致之冷媒壓力損失大致相等。 於前述實施型態,可以於冷媒迴路(2〇)設置四台或者四 台以上的冷藏陳列櫃,亦可與室外機組(11)並列連接四台或 者四台以上的冷藏陳列櫃。 於則述實施型態,可於冷媒迴路(2〇)設置空調機組。此 時,較佳者,係以與液側聯絡管線(18)、氣側聯絡管線(19) 不同的聯絡管線連接空調機組與室外機組(1丨)。 另外’以上實施型態係較佳之例。本發明並不限制其應 用物、或者是其用途範圍。 工業實用性 綜上所述,本發明係對複數個利用機組並列連接熱源機 組的冷凍裝置有用。 107690.doc -29- 1274132 圖式簡單說明】 、圖1係本發明第一實施型態所關係之冷凍裝置的概略構 成圖。 圖2係本發明第一實施型態變形例2所關係之冷凍裝置的 概略構成圖。 成圖 圖3係本發明第二實施型態所關係之冷凍裝置的概略構 【主要元件符號說明】 11 室外機組(熱源機組) 12 第一冷藏陳列櫃(單段侧利用機組) 13 第二冷藏陳列櫃(單段側利用機組) 14 第二冷藏陳列櫃(庫内設定溫度最低之單段 側利用機組) 15 冷;東陳列樞(兩段側利用機組) 18 液側聯絡管線(送出側聯絡管線) 19 氣側聯絡管線(返回側聯絡管線) 20 冷媒迴路 21 第一冷藏陳列櫃之冷藏熱交換器(冷卻熱交 換器) 23 第一冷藏陳列櫃入口(單段側利用機組入口) 24 第一冷藏陳列櫃出口(單段側利用機組出口) 29 壓縮機 30 冷凍裝置 31 第二冷藏陳列櫃之冷藏熱交換器(冷卻熱交 107690.doc -30- 1274132 換器) 33 第二冷藏陳列櫃入口(單段側利用機組入口) 34 第二冷藏陳列櫃出口(單段側利用機組出口) 41 第三冷藏陳列櫃之冷藏熱交換器(冷卻熱交 換器) 43 第^三冷藏陳列櫃入口(單段側利用機組入口) 44 第三冷藏陳列櫃出口(單段側利用機組出口) 46 增壓壓縮機 47 二段側迴路 51 冷凍熱交換器(冷卻熱交換器) 53 兩段側迴路入口 54 兩段側迴路出口 61 室外機組入口(熱源機組入口) 71 室外機組出口(熱源機組出口) 107690.doc -31 -The gas side communication line (19) is composed of the following partial lines. That is, the main line (4) from the first junction point (65) to the inlet (61) of the outdoor unit (11), the third connection line (5a) from the first junction point (65) to the second junction point (66) a fourth connecting line (5b) from the second junction point (66) to the third junction point (67), a first junction from the two-stage side loop (47) outlet (54) to the first junction point (65) The pipeline (6a), the second junction line (6b) from the outlet (44) of the third refrigerating display cabinet (14) to the second junction point (66), and the outlet (34) from the second refrigerating display cabinet (13) to the first The third confluence line (6c) of the triple junction point (67) and the fourth confluence line from the outlet (24) of the first refrigerating display cabinet 〇2) to the second junction point (67) (6 illusion. At the return side of the inlet (6) of the external unit (11), the return side communication line, that is, the gas side communication line (19), the 'system, the two-stage side circuit (47) is connected to the most downstream, three refrigerated display cases (12, 13) , 14) The third refrigerated display case (14) with the lowest temperature set in the middle of the warehouse is connected to the most downstream side. From the exit of the refrigerated display case (12, 13, 14) (24, 34, 44) to the outdoor unit (11) ϋ (61) ear burial tube The length of the line is the shorter the set temperature of the refrigerated Chenji J cabinet (12' 13' 14) connected to the joint and the pipeline. From the two-stage side circuit (π) outlet (54) to the outdoor unit (1) The length of the line (61) is the length of the contact line (19) from the exit (24, 34, 14) of the refrigerated display case (12, 13, 14) to the outdoor unit (1). The length is short. In the refrigerant circuit (20), the diameter of each part (4 to 6) in the (four) gas side communication line (19) is determined according to the flow rate of the refrigerant in each part. Therefore, the length of the unit by the contact line is roughly (four). As a result, the refrigerant pressure is caused by the communication line from the outlet (24, 34, 44) of each 107690.doc -27-1274132 refrigerated display case 02' 13, 14 to the return side of the inlet (61) of the outdoor unit (11). The loss is the shorter and shorter the length of the communication line; the lower the set temperature of the refrigerated display case (12, 13, 14) connected to the communication line is. Moreover, the refrigerant pressure loss caused by the communication line from the α (54) to the outdoor unit (1) inlet (61) from the two-stage side circuit (47) is due to the exit from each refrigerated display case (12, 13, 14). (24 ' 34 ' 44) Any one of the refrigerant pressure losses caused by the communication line to the outdoor unit (u) inlet (61) is small. The effect of the second embodiment is in the second embodiment, as in the first embodiment, since the outlets (24, 34, 44) from the respective refrigerated display cabinets (12, 13, 44) to the outdoor unit (11) The refrigerant pressure loss caused by the communication line (19) on the return side of the inlet (61) is the lower the set temperature of the refrigerated display case (丨2, 丨3, 丨4) to which the communication line is connected. Therefore, it is possible to evaporate the refrigerant of the refrigerated hot parent (2 1 ' 3 1,41) of the refrigerated display case (12, 13, 14) which is set to the lowest in the order from the highest to the lowest in the library. The temperature is adapted to the set temperature in the library. As a result, it is possible to efficiently perform cooling in the interior of each of the refrigerated display cases (12, 13, 14). In the second embodiment, the refrigerating display cabinets, 13, 14) and the two side circuit (47) outlets (24, 34, 44, 54) are connected to the return side gas side of the outdoor unit (11) inlet (61). The refrigerant pressure loss caused by the pipeline (19) is the minimum value due to the connection side gas side communication line (丨9) connected to the refrigerated display cabinet (15), so each refrigerated display cabinet (12, 13, 14) and two The refrigerant pressure of the two-stage side circuit (47) outlet (54) in the outlet side (47) outlet (24, 34, 44, 54) is 107690.doc -28- 1274132. Therefore, the refrigerant pressure at the outlet (54) of the refrigerating showcase (15), that is, the discharge pressure of the booster compressor (46) can be suppressed to be low, and the booster retractor (46) can be made into a population. The force difference is small - some. Therefore, the power consumption in the booster compressor (46) can be suppressed to be low. In other embodiments, in the foregoing embodiment, the side liquid side contact line (18) and the return side air side contact line (19) may be taken, and the refrigerated display case (15) is not the same as the foregoing embodiment. ) Configured at the most upstream or downstream, the cold showcase (15) is placed between the refrigerated display cases (12, π, ι4). In the foregoing embodiment, the set temperature in the refrigerator between the refrigerating display cases (12, 13, 14) can be made the same. At this time, it is preferable that the refrigerant pressure loss is caused by the outlet (24, 34, 44) of each refrigerated display cabinet (12' 13, 14) to the inlet of the outdoor unit (u) (the return side of the 6 〇) In the above embodiment, four or more refrigerated display cases can be installed in the refrigerant circuit (2〇), or four or more refrigerated display cases can be connected in parallel with the outdoor unit (11). In the embodiment, the air conditioning unit can be installed in the refrigerant circuit (2〇). At this time, preferably, the air conditioning unit is connected to a different communication line from the liquid side communication line (18) and the gas side communication line (19). And the outdoor unit (1丨). In addition, the above embodiment is a preferred example. The invention is not limited to the application or the scope of its application. Industrial Applicability In summary, the present invention is directed to a plurality of units. Fig. 1 is a schematic configuration diagram of a refrigeration apparatus according to a first embodiment of the present invention. Fig. 2 is a first embodiment of the present invention. 107690.doc -29- 1274132 BRIEF DESCRIPTION OF THE DRAWINGS FIG. type Fig. 3 is a schematic view of a refrigeration system according to a second embodiment of the present invention. [Main component symbol description] 11 Outdoor unit (heat source unit) 12 First refrigerating Showcase (single-segment side use unit) 13 Second refrigerated display case (single-segment side use unit) 14 Second refrigerated display case (single-segment side use unit with the lowest set temperature in the library) 15 Cold; East display pivot (two sections) Side use unit) 18 Liquid side contact line (supply side contact line) 19 Air side contact line (return side contact line) 20 Refrigerant circuit 21 Refrigerated heat exchanger of the first refrigerated display case (cooling heat exchanger) 23 First refrigerating Showcase entrance (single-segment side use unit inlet) 24 First refrigerated display cabinet exit (single-segment side use unit outlet) 29 Compressor 30 Freezer 31 Refrigerated heat exchanger of second refrigerated display case (cooling heat exchange 107690.doc -30- 1274132 Converter) 33 Second refrigerated display cabinet entrance (single-segment side use unit inlet) 34 Second refrigerated display cabinet exit (single-segment side utilization machine Export) 41 Refrigerated heat exchanger of the third refrigerated display case (cooling heat exchanger) 43 Entrance of the third refrigerated display case (single-segment side use unit inlet) 44 Third refrigerated display case exit (single-segment side use unit outlet) 46 Booster compressor 47 Two-stage side circuit 51 Refrigeration heat exchanger (cooling heat exchanger) 53 Two-stage side circuit inlet 54 Two-stage side circuit outlet 61 Outdoor unit inlet (heat source unit inlet) 71 Outdoor unit outlet (heat source unit outlet) ) 107690.doc -31 -

Claims (1)

1274132 十、申請專利範圍: 1 _ 一種冷凍裝置,其包括··複數台具有為了將庫内保持在 規定的設定溫度而對庫内加以冷卻之冷卻熱交換器(21, 31,41)的單段側利用機組(12,13,14),以及一台具有 壓縮機(29)的熱源機組(11),於複數台前述單段側利用機 組(12,13,14)藉由聯絡管線(18,19)相對前述熱源機組 (11)並聯連接之冷媒迴路(20),冷媒於前述單段側利用機 組(12 ’ 13 ’ 14)與如述熱源機組(11)之間循環而進行單段 壓縮冷凍循環,其特徵在於: 由於自前述各單段側利用機組(12,13,14)出口(24, 34,44)至前述熱源機組(11)入口(61)之返回侧聯絡管線 (19)導致之冷媒壓力損失,係由於連接前述複數台單段側 利用機組(12,13,14)中庫内設定溫度最低者的返回側聯 絡管線導致之值為最小。 2.1274132 X. Patent application scope: 1 _ A refrigerating device comprising: a plurality of cooling heat exchangers (21, 31, 41) having cooling chambers for maintaining the inside of the storage at a predetermined set temperature The section side utilizes the unit (12, 13, 14) and a heat source unit (11) having a compressor (29), and the unit (12, 13, 14) is used by the plurality of units (12, 13, 14) through the communication line (18). 19) a refrigerant circuit (20) connected in parallel with the heat source unit (11), wherein the refrigerant is circulated in a single-stage compression between the unit (12 '13' 14) and the heat source unit (11) as described above. a refrigeration cycle characterized by: a return side communication line (19) from the outlet (24, 34, 44) of the unit (12, 13, 14) to the inlet (61) of the heat source unit (11) from the aforementioned single-stage side The resulting refrigerant pressure loss is minimized due to the return side communication line connecting the plurality of single-stage side utilization units (12, 13, 14) having the lowest set temperature in the storage unit. 2. 一種冷凍裝置,其包括:複數台具有為了將庫内保持在 規定的設定溫度而對庫内加以冷卻之冷卻熱交換器(2 i, 31,41)的單段側利用機組(12,13,14),以及—台具有 壓縮機(29)的熱源機組(11),於複數台前述單段側利用機 組(12,13,14)藉由聯絡管線(18,19)相對前述熱源機組 (11)並聯連接之冷媒迴路(20),冷媒於前述單段側利用機 組(12,13,14)與前述熱源機組(11)之間循環而進行單严 壓縮冷凍循環,其特徵在於: 由於自前述各單段側利用機組(12,13,14)出口(24 34,44)至前述熱源機組(11)入口(61)之返回側聯絡管線 107690.doc 1274132 (19)導致之冷媒壓力損失,係該聯絡管線所連接之前述複 數口單段側利用機組(12 ’ 13,14)中庫内設定溫度越低越 小 〇 3· 一種冷凍裝置,其包括:複數台具有為了將庫内保持在 規定的設定溫度而對庫内加以冷卻之冷卻熱交換器(2 i, 31,41)的單段側利用機組(12,13,14),以及一台具有 壓縮機(29)的熱源機組(n),於複數台前述單段側利用機 組(12,13,14)藉由聯絡管線(18,19)相對前述熱源機組 (11)並聯連接之冷媒迴路(20),冷媒於前述單段侧利用機 組(12, 13, 14)與前述熱源機組(11)之間循環而進行單段 壓縮冷凍循環,其特徵在於: 自前述各單段側利用機組(12,13,14)出口(24,34, 44)至前述熱源機組(11)入口(61)之聯絡管線長度,係連接 前述複數台單段侧利用機組(12,13,I4)令庫内設定溫产 最低者的返回侧聯絡管線為最短。 4· 一種冷凍裝置,其包括··複數台具有為了將庫内保持在 規定的設定溫度而對庫内加以冷卻之冷卻熱交換琴(2 1, 31,41)的單段側利用機組(12,13,14),以及一台具有 壓細機(29)的熱源機組(11 ),於複數台前述單段側利用機 組(12,13,14)藉由聯絡管線(18,19)相對前述熱源機組 (11)並聯連接之冷媒迴路(20),冷媒於前述單段側利用機 組(12,13,14)與前述熱源機組(11)之間循環而進行單p 壓縮冷;東循環,其特徵在於: 自前述各單段側利用機組(12,13,14)出口(24,34 107690.doc 1274132 44)至前述熱源機組(i i)入口(6ι) 之聯絡官線長度,係該聯 絡管線所連接之前述複數台單段側利用機組(ΐ2, η,μ) 中庫内設定溫度越低越短。 5 ·如申請專利範圍第1至第4項中之杯 ύέ ^ ^ ^ 貝T之任一項申請專利範圍所 記載之冷凍裝置,其特徵在於: 連接前述各單段侧利用機組⑴^^⑷出口…以, 44)與前述熱源機組⑴)入口(61)之返回侧聯絡管線A refrigerating apparatus comprising: a plurality of single-stage side utilization units (12, 13) having cooling heat exchangers (2 i, 31, 41) for cooling the interior of the storage chamber in order to maintain the storage chamber at a predetermined set temperature 14), and a heat source unit (11) having a compressor (29), which is connected to the heat source unit (11, 19) by a communication line (18, 19) on the single-stage side of the plurality of units (11, 19) a refrigerant circuit (20) connected in parallel, wherein the refrigerant is circulated between the unit (12, 13, 14) and the heat source unit (11) on the single-stage side to perform a single-strength compression refrigeration cycle, which is characterized in that: Each unit side uses the unit (12, 13, 14) outlet (24 34, 44) to the heat source unit (11) inlet (61) return side contact line 107690.doc 1274132 (19) caused by refrigerant pressure loss, The above-mentioned plurality of single-segment side utilization units (12' 13, 14) connected to the communication line are set to have a lower temperature in the library. The refrigeration system includes: a plurality of units having a plurality of units in order to maintain the inside of the library. Cooling the library while setting the temperature The single-stage side utilization unit (12, 13, 14) of the cooling heat exchanger (2 i, 31, 41) and the heat source unit (n) having the compressor (29) are on the single-stage side of the plurality of units The refrigerant circuit (20) connected in parallel with the heat source unit (11) by the communication line (18, 19) is connected to the unit (12, 13, 14) by the unit on the single-stage side. The heat source unit (11) is circulated to perform a single-stage compression refrigeration cycle, wherein: the unit (12, 13, 14) outlets (24, 34, 44) are used from the respective single-stage sides to the heat source unit (11). The length of the communication line at the entrance (61) is the shortest connection to the return side contact line of the above-mentioned plurality of single-stage side utilization units (12, 13, I4) to set the lowest temperature production in the library. 4. A refrigerating apparatus comprising: a plurality of single-stage side utilization units (12, 31, 41) having cooling and cooling chambers (2, 31, 41) for cooling the interior of the storage chamber at a predetermined set temperature. , 13, 14), and a heat source unit (11) having a press (29), the plurality of units (12, 13, 14) on the single-stage side of the plurality of units are connected to each other by a communication line (18, 19) The heat source unit (11) is connected in parallel to the refrigerant circuit (20), and the refrigerant is circulated between the unit (12, 13, 14) and the heat source unit (11) on the single-stage side to perform single-p compression cold; The characteristic is: the length of the contact official line from the outlet of the unit (12, 13, 14) (24, 34 107690.doc 1274132 44) to the inlet (6) of the heat source unit (6) from the aforementioned single-stage side, which is the communication line The lower one of the plurality of single-stage side utilization units (ΐ2, η, μ) connected to the unit is set to have a shorter temperature in the library. 5) The refrigerating device according to any one of the patent applications of the first to fourth aspects of the patent application, which is characterized in that: the connection unit (1)^^(4) Exit...to, 44) with the return side of the inlet (61) of the heat source unit (1)) 中,前述複數台單段側利用機組(12, 13, 14)中庫内設定 溫度最低者連接最下游一側。 6·如申請專利範圍第5項所記載之冷凍裝置,其特徵在於: 連接前述熱源機組(11)出口(71)與前述各單段側利用 機組(12, 13, 14)入口(23, 33, 43)之送出側聯絡管線(18) 中’前述複數台單段側利用機組(12,13 , 14)中庫内設定 溫度最低者連接最上游一側。 7·如申請專利範圍第1至第4項中之任一項申請專利範圍所 記載之冷;東裝置,其特徵在於: 包括·具有為了將庫内保持在規定的設定溫度而對庫 内加以冷卻之冷卻熱交換器(5丨)的兩段側利用機組(丨5) 與增壓壓縮機(46)係串聯連接之兩段側迴路(47); 於前述冷媒迴路(20),前述兩段側迴路(47)與前述單段 侧利用機組(12,13,14)藉由聯絡管線(18,19)相對前述 熱源機組(11)並聯連接,冷媒於前述兩段側利用機組(15) 與前述熱源機組(11)之間循環而進行兩段壓縮冷;東循環。 8·如申請專利範圍第7項所記載之冷凍裝置,其特徵在於: 107690.doc 1274132 連接4述各單段側利用機組(12,13,14)及兩段側迴路 (47)出口(24,34,44,54)與前述熱源機組(11)入口(61) 之返回側聯絡管線(19)中,前述兩段側迴路(47)連接最上 游一側。 9 ^ 由I • 〇曱請專利範圍第8項所記載之冷凍裝置,其特徵在於·· 連接前述熱源機組出口(71)與前述各單段側利用 機組 Π ?,1 Ο t 、〇 V 13,丨4)及兩段側迴路(47)入口(23,33,43,53) 之送出側聯絡管線(18)中,前述兩段側迴路(47)連接最上 游一側。 107690.docIn the above-mentioned plurality of single-segment side use units (12, 13, 14), the lowest temperature setting is connected to the most downstream side. 6. The refrigerating apparatus according to claim 5, characterized in that: the outlet (71) of the heat source unit (11) and the inlet (12, 13, 14) of each of the single-stage side use units (23, 33) are connected. , 43) The delivery side contact line (18) in the 'multiple single-stage side utilization unit (12, 13, 14) is the lowest upstream side of the set temperature in the library. 7. The cold device according to any one of claims 1 to 4 of the patent application, wherein the device includes: a built-in library for holding the inside of the library at a predetermined set temperature The two-stage side of the cooling cooling heat exchanger (5丨) is a two-stage side circuit (47) connected in series with the booster compressor (46) by a unit (丨5); in the refrigerant circuit (20), the two The segment side circuit (47) is connected in parallel with the aforementioned single-stage side utilization unit (12, 13, 14) via the communication line (18, 19) with respect to the heat source unit (11), and the refrigerant uses the unit (15) on the two sides. Circulating with the aforementioned heat source unit (11) to perform two-stage compression cooling; 8. The refrigerating apparatus according to claim 7, wherein: 107690.doc 1274132 is connected to each of the single-stage side utilization units (12, 13, 14) and the two-stage side circuit (47) outlet (24). , 34, 44, 54) In the return side communication line (19) of the inlet (61) of the heat source unit (11), the two-stage side circuit (47) is connected to the most upstream side. 9 由 • • • 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 冷冻 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 In the delivery side communication line (18) of the inlet (23, 33, 43, 53) of the two-stage side circuit (47), the two-stage side circuit (47) is connected to the most upstream side. 107690.doc
TW094147040A 2004-12-28 2005-12-28 Refrigerating apparatus TWI274132B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004381015 2004-12-28
JP2005303502A JP3894222B2 (en) 2004-12-28 2005-10-18 Refrigeration equipment

Publications (2)

Publication Number Publication Date
TW200624738A TW200624738A (en) 2006-07-16
TWI274132B true TWI274132B (en) 2007-02-21

Family

ID=36614801

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094147040A TWI274132B (en) 2004-12-28 2005-12-28 Refrigerating apparatus

Country Status (8)

Country Link
US (1) US20080110199A1 (en)
EP (1) EP1835241A4 (en)
JP (1) JP3894222B2 (en)
KR (1) KR100865842B1 (en)
CN (1) CN101076696B (en)
AU (1) AU2005320723A1 (en)
TW (1) TWI274132B (en)
WO (1) WO2006070684A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101900272B1 (en) * 2018-05-15 2018-09-19 주식회사 이수에어텍 Gas Engine Driven Heat Pump Apparatus having Multiple Function of Air-Conditioning, Refrigeration and Freezing
CN110878995A (en) * 2019-12-10 2020-03-13 珠海格力电器股份有限公司 Showcase refrigeration system and control method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3085296B2 (en) * 1998-12-25 2000-09-04 ダイキン工業株式会社 Refrigeration equipment
US6477848B1 (en) * 1999-03-02 2002-11-12 Daikin Industries, Ltd. Refrigerating apparatus
US6739143B1 (en) * 1999-03-02 2004-05-25 Daikin Industries, Ltd. Refrigerating device
JP2003172553A (en) * 2001-12-06 2003-06-20 Denso Corp Refrigerating cycle device and vehicular air-conditioner
JP2003207220A (en) * 2002-01-11 2003-07-25 Sanyo Electric Co Ltd Cooling device
JP2003314909A (en) * 2002-04-22 2003-11-06 Daikin Ind Ltd Refrigerating machine
DE10260350B4 (en) * 2002-07-04 2015-11-26 Lg Electronics Inc. A method of controlling operation of a dual evaporator cooling system
JP3775358B2 (en) * 2002-07-12 2006-05-17 ダイキン工業株式会社 Refrigeration equipment
US7010936B2 (en) * 2002-09-24 2006-03-14 Rini Technologies, Inc. Method and apparatus for highly efficient compact vapor compression cooling

Also Published As

Publication number Publication date
KR100865842B1 (en) 2008-10-29
CN101076696A (en) 2007-11-21
EP1835241A4 (en) 2013-03-06
US20080110199A1 (en) 2008-05-15
CN101076696B (en) 2011-07-20
KR20070087124A (en) 2007-08-27
WO2006070684A1 (en) 2006-07-06
AU2005320723A1 (en) 2006-07-06
JP2006207991A (en) 2006-08-10
EP1835241A1 (en) 2007-09-19
JP3894222B2 (en) 2007-03-14
TW200624738A (en) 2006-07-16

Similar Documents

Publication Publication Date Title
EP2261570B1 (en) Refrigerating apparatus
JP5791807B2 (en) Air conditioner
TW200403417A (en) Refrigeration equipment
JP2007528979A (en) Multi temperature cooling system
CN107366621B (en) Rolling rotor compressor with three-stage air supplement and air conditioning system
WO2011105270A1 (en) Refrigeration cycle device
US20120198878A1 (en) Heating device with irreversible thermodynamic cycle for heating installations having high delivery temperature
JP2011214753A (en) Refrigerating device
TWI274132B (en) Refrigerating apparatus
JP5237157B2 (en) Air heat source turbo heat pump
JP6253370B2 (en) Refrigeration cycle equipment
JP2010078165A (en) Refrigeration and air conditioning device
JP2009229021A (en) Refrigerating device
JP6091567B2 (en) Refrigerator and refrigeration equipment
JP2006003023A (en) Refrigerating unit
JP2006029714A (en) Ejector cycle
WO2010041453A1 (en) Refrigeration device
KR101497813B1 (en) Vapor injection heat pump system
JP2010255884A (en) Heat source machine and method of controlling the same
JP2010236833A (en) Air heat source turbo heat pump and method for controlling the same
JP2010282337A (en) Vending machine
JP5555212B2 (en) Turbo refrigerator
JP2003322424A (en) Refrigerating unit and cooling method
JP2014088974A (en) Refrigerator and refrigeration device
JP2013245857A (en) Refrigeration device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees