TWI272907B - Electric reel - Google Patents

Electric reel Download PDF

Info

Publication number
TWI272907B
TWI272907B TW092110039A TW92110039A TWI272907B TW I272907 B TWI272907 B TW I272907B TW 092110039 A TW092110039 A TW 092110039A TW 92110039 A TW92110039 A TW 92110039A TW I272907 B TWI272907 B TW I272907B
Authority
TW
Taiwan
Prior art keywords
reel
tension
winding
duty ratio
diameter
Prior art date
Application number
TW092110039A
Other languages
Chinese (zh)
Other versions
TW200403025A (en
Inventor
Hiroaki Kuriyama
Original Assignee
Shimano Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimano Kk filed Critical Shimano Kk
Publication of TW200403025A publication Critical patent/TW200403025A/en
Application granted granted Critical
Publication of TWI272907B publication Critical patent/TWI272907B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K89/00Reels
    • A01K89/015Reels with a rotary drum, i.e. with a rotating spool
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K89/00Reels
    • A01K89/015Reels with a rotary drum, i.e. with a rotating spool
    • A01K89/017Reels with a rotary drum, i.e. with a rotating spool motor-driven
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K91/00Lines
    • A01K91/20Line length or depth measuring devices

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)

Abstract

An electric reel is capable of being adjusted to a constant tension in order to inhibit the increase of the electric power consumption by inhibiting the buzzing sound. An electric reel is mounted on a fishing rod and comprises: a reel body, a spool, a motor, a switch, a PWM driving circuit, a tension data memory region, and a spool control part. The tension on the reel is set to multiple tiers mainly by the switch. The PWM driving circuit drives the motor by a pulse-width modulation circuit with a variable idle rate. The tension data memory region memorizes the data of idle rate vs. tension at each stage for various cord diameters. The spool control part uses the data for displaying the water depth to calculate the cord diameter. The PWM driving circuit is open-loop-controlled according to the cord diameter calculated and the idle rate data read from the tension data memory region at a specified tension stage.

Description

1272907 (1) 玖、發明說明 【發明所屬之技術領域】 本發明是關於電動捲線器,特別是關於安裝在釣竿上 以馬達捲取釣線的電動捲線器。 【先前技術】 於一般上,用馬達來執行捲線時線盤旋轉的電動捲線 器,經常是爲從船上垂釣回游在水深5 0 m以上的魚時所 使用。此種電動捲線器具備有:捲線器本體;安裝在捲線 器本體上的線盤;線盤旋轉用的把手;及,可使線盤往捲 線方向旋轉的馬達。於捲線器本體上面,安裝著已設有水 深等顯示的顯示器或進行各種輸入等的切換扭的顯示操作 面板。 如此般的電動捲線器,習知,已知有並不是在事先設 定捲線速度而是將釣線張力設定成複數階段,使張力維持 在所設定階段中的任一階段。雖然張力於一般是視捲線的 力矩而定進行變化,但若捲線直徑爲不同時即使捲線的力 矩爲一定則張力還是會變化。因此,先前的技術是視捲線 力矩而定對捲線力矩進行修正以維持一定的張力。如此, 將作用於釣線的張力保持一定,就可防止因拖拉設定或魚 種不同造成的哈里斯斷線或割口。 先前技術爲維持成一定張力,是測定出張力相對應的 電流値將該値設定成各階段的目標値。具體而言,是在釣 線前端安裝張力測定裝置,針對每個指定張力對馬達流入 -5- 1272907 (2) 電流,來對馬達正要停止時流入在線盤的線捲胴部的胴徑 和最大捲線直徑中的馬達電流値進行測定。接著,以流動 在捲胴部和最大捲線直徑的電流値爲基準分別算出這之間 捲線直徑的電流値以求得各階段的電流値,將所求得的電 流値當做目標値使電流値檢測結果成爲目標値地執行閉環 控制來使張力維持成一定。於該控制時,是將所檢測出的 模擬電流値A/D變換成數字値。 【發明內容】 [發明欲解決之課題] 於上述習知的電動捲線器,是爲要維持成一定張力, 而以流動在捲胴部和最大捲線直徑的電流値爲基準分別算 出這之間捲線直徑的電流値以求得各階段的電流値,將所 求得的電流値當做目標値執行閉環控制使電流値檢測結果 成爲目標値。但是,當藉由閉環控制將所檢測出的電流値 控制成接近目標電流値時,因A/D變換成數字値會不穩 ,恐怕在產生有嗚聲的同時也會因嗚聲造成電消耗的增加 〇 本發明的課題,是於張力可控制成一定的電動捲線器 中,以抑制嗚聲來抑制電消耗的增加。 [用以解決課題之手段] 發明1相關之電動捲線器,是爲安裝在釣竿上的捲線 器,具備有:捲線器本體、電動馬達、佔空率設定手段、 -6- 1272907 (3) 張力選擇操作手段、捲線直徑檢測手段、佔空率修正手段 、馬達控制手段。捲線器本體,是安裝在釣竿上。線盤是 做爲捲線用,可轉動自如地安裝在捲線器本體。電動馬達 ,是將線盤往捲線方向進行旋轉驅動的馬達。馬達驅動部 ,是以佔空率會變化的脈寬調製訊號來驅動電動馬達。佔 空率設定手段,是視作用在線盤釣線上的複數階段張力而 定可設定成複數階段的佔空率。張力選擇操作手段,是對 複數階段張力中選擇其一的操作手段。捲線直徑檢測手段 ,是對捲在線盤上的釣線捲線直徑進行檢測的手段。佔空 率修正手段,是將視所選擇的張力而定的佔空率來對應於 捲線直徑檢測手段所檢測出的捲線直徑進行修正的手段。 馬達控制手段,是以佔空率修正手段修正後的佔空率來對 馬達驅動部進行控制的手段。 於該電動捲線器中,當透過張力選擇操作手段選出複 數階段中任一階段的張力時,所選擇階段的張力佔空率就 會被設定,然後以該佔空率來控制馬達驅動部。當捲線直 徑有所變化時,則會視所檢測出的捲線直徑來修正佔空率 ,然後以修正後的佔空率來控制馬達驅動部。於此,因不 是要檢測出馬達驅動部於控制時的電流値使其成爲目標的 電流値來進行控制,而是設定佔空率然後以該佔空率來控 制執行的開環控制,所以於控制中並不使佔空率成上下變 動而只是視捲線直徑而定來使佔空率慢慢變增加而已。因 此,可抑制張力一定控制時的線盤旋轉速度的上下變動, 可抑制嗚聲以抑制電消耗的增加。再加上並不對現在的張 1272907 (4) 力例如力矩等進行檢測所以控制系統的構成也可變簡單。 發明2相關的電動捲線器,是於發明1所記載的捲線 器中,其佔空率設定手段,是具有複數階段的每個張力的 視複數捲線直徑而定的佔空率記憶用佔空率記憶手段;其 * 佔空率修正手段,是視張力選擇手段所選出的張力和捲線 · 直徑檢測手段所檢測出的捲線直徑而定來讀取佔空率記憶 手段所記憶的佔空率。於該狀況時,因只要讀取事先已記 憶在記憶手段中的資料就可修正佔空率,所以控制就變簡 φ 單。 發明3相關的電動捲線器,是於發明2所記載的捲線 器中,其佔空率記憶手段中,是記憶有複數階段張力分別 作用在線盤上時其於正要停止的線盤胴徑和最大捲線直徑 上所測得的複數捲線直徑對應的佔空率。於該狀況時,因 是使用實際測出的線盤胴徑和最大捲線直徑上的佔空率來 獲得各捲線直徑的資料,所以可精度良好地控制一定的張 力。 籲 發明4相關的電動捲線器,是於發明1至發明3任一 發明所記載的捲線器中,其捲線直徑檢測手段,具有··線 盤旋轉位置資料檢測用的旋轉位置資料檢測手段;根據所 檢測出的旋轉位置資料來算出從上述線盤送出的釣線長度 ’ 或捲回線盤的釣線長度的釣線長算出手段;利用所算出的 釣線長度和上捲在線盤上的釣線全長及線盤胴徑來算出釣 線被捲在上述線盤上的捲線直徑的捲線直徑算出手段。於 該狀況時,利用根據線盤旋轉位置資料所算出的釣線長度 -8- 1272907 (5) ’即釣餌的水深顯示用資料可簡單算出捲線直徑,所以可 容易進行捲線直徑的檢測。 【實施方式】 [發明之實施形態] 根據本發明一實施形態的電動捲線器是如第1圖表示 ’主要具備安裝在釣竿R的捲線器本體1;配置在捲線器 本體1側方的線盤旋轉用的把手2,及配置在把手2的捲 線器本體1側的牽引調節用星形牽引器3。 捲線器本體1具有左右一對側板7a、7b與連結該等 的複數連結構件8所構成的框體7,及覆蓋框體7左右的 左右的側蓋9a、9b。把手2側(第1圖右側)的側蓋9b自 由轉動支撐把手2的轉軸。後部的連結構件8設置連接外 部電源連接用電源線用的連接線1 9。 捲線器本體1的內部自由轉動支撐連結把手2上的線 盤1 〇。線盤1 0的內部配置使線盤1 〇朝著捲線方向旋轉 驅動的値流驅動馬達12。並且,捲線器本體1的把手2 側的側面配置啓動把手2及馬達1 2與線盤1 0的驅動傳達 之離合器的操控桿 11。一旦啓動該離合器時,可藉著釣 餌本身重量進行線的拋出中,停止釣線拋出動作。 捲線器本體1的上部固定有計數器盒4。計數器盒4 是配置在捲線器本體1的上部,上面形成有顯示窗20。 計數器盒4上部鄰接著從水面與底部的2個基準顯示釣餌 水深及架位置用的液晶顯示器所構成的顯示部5,顯示部 -9 - 1272907 (6) 5的周圍設有操控按鍵6。 顯示部5如第2圖表示’具有··配置在中央的4位數 的7分段顯示的水深顯示領域5a;配置在其下方的3位 數的底架水深顯示領域5 b ;配置水深顯示領域5 a的第2 圖右側的速度段數顯示領域5 c ;及配置水深顯示領域5 a 的第2圖右下部的張力段數顯示領域5d。速度段數顯示 領域5 c是以5階段的分段圖形顯示根據操孔按鍵6進行 操控的現在速度。張力段數顯示領域5 d是以卜5的5階 段數字顯示操控按鍵6進行操作的線在張力。另外’水深 顯示領域5a的上方顯示有表示著顯示模式的「從底部」 的文字。並且顯示有顯示速度模式與張力模式等控制模式 的「速度、張力」等文字其中之一。另外,也可以顯示「 學習」、「指定」、「下捲線」、「停止捲線」、「〇設 定」等5種文字。「從底部」的文字是顯示水深顯示模式 從底部的模式時。從底部的模式是以底部基準顯示釣餌水 深的模式。並且,通常是以水面基準(從上方的模式)顯示 釣餌的水深。又,「學習」〜「下捲線」的文字是表示捲 線模式的種類,選擇性選擇其中之一時可顯示出所選擇的 捲線模式的文字。 操控按鍵部6,具有:在顯示部5的第1圖右側上下 並排配置的變換開關SK及馬達開關Pw,及上下並排於 左側配置的馬達模式開關VT、切換捲線模式用的捲線模 式開關MD及設定底部或架的記憶開關TB。 馬達開關PW爲啓動馬達12用的開關,開啓操控馬 1272907 (7) 達開關PW時可轉動馬達1 2進行連續捲繞的開關。 變換開關SK是增減驅動馬達12的速度或者扭力用 的開關,具有上下2個開關。一旦按下變換開關SK的上 開關SK1時增加速度或張力,按下開關SK2時則減少速 度或張力。 馬達模式開關VT爲切換張力控制著控制馬達1 2的 模式的張力模式與速度控制的速度模式用的開關,在每次 按下開關切換控制模式。並且,初期設定中可設定控制模 式的模式。 捲線模式按鍵MD爲設定3種捲線模式的開關,例如 按下1次時設定學習模式,連續按下2次時爲指定模式, 連續按下3次時爲下捲線模式,等分別設定捲線模式。其 中,學習模式是將線徑或長度未知的釣線捲繞在線盤1〇 時所使用的捲線模式,學習捲線最終部分的線盤轉數與線 盤每轉動1次的線長之間的關係,求得釣線全長的線盤轉 數與每轉動1次的線長所使用的模式。指定模式是將記憶 部46內所準備的號數與長度的釣線捲繞在線盤時所使用 的模式。下捲線模式是重新指定捲線直徑爲止捲繞下釣線 後捲繞未知的釣線時所使用的模式。該下捲線模式基本上 只在捲線直徑不同時以學習模式相同的方法進行學習。 記憶開關TB是釣餌到達底部時按下,或到達架位置 時按下用的開關,設定此時的水深爲底部或架的深度。將 此底記憶開關SM按下預定時間以上時,釣線等切斷時可 重新設定水深顯示的0點位置。 -11 - 1272907 (8) 捲線器控制部3 0含有配置在計數器4內的C P U、 RAM、ROM、I/O介面等的微電腦,捲線器控制部30根 據控制程式實行顯示部5的顯示控制或馬達控制等的各種 控制動作。捲線器控制部3 0如第3圖表示,連接有操控 按鍵部6的各種開關、線盤感測器4 1及線盤計數器42。 · 並且,捲線器控制部30連接有蜂鳴器44、PWM驅動電路 45、顯示部46及其他輸出入部。 線盤感測器4 1爲前後並排配置的2個簧片開關所構 φ 成,任意的簧片開關首先發出檢測脈波時可檢測線盤1 0 的轉動方向。線盤計數器42爲計測線盤感測器4 1的啓動 次數的計數器,利用該計測値獲得線盤轉數的相關位置資 料。線盤計數器42當線盤10正轉(拋線方向的旋轉)時減 少計測値,反轉時則是增加計測値。蜂鳴器44是在發出 警報聲音時使用。PWM驅動電路45是PWM驅動馬達12 之用,利用捲線器控制部3 0控制佔空率可變動扭力驅動 馬達1 2。 · 記憶部46例如爲EEPROM等的永久性記憶體所構成 。記憶部46如第4圖表示,設置:記憶架位置等的顯示 資料的顯示資料記憶區域5 0 ;記億顯示實際線長與線盤 轉數關係的學習資料的學習資料記億區域5 1 ;記憶對應 速度段速SC之線盤1〇的捲繞速度(rpm)上限値的速度資 料記憶區域52 ;記憶每5階段張力例如對應1 〇階段捲線 直徑的馬達1 2的佔空率的張力資料記憶區域5 3及記憶種 種資料的資料記憶區域54。 •12- 1272907 Ο) 速 速 〇 線 資 25 80 線 測 據 力 的 獲 數 線 在 速度資料記憶區域5 2,分別記憶例如段數S C在1 時上限的速度資料SS = 25 7rpm、2速時SS = 3 69rpm、3 時 SS = 503rpm、4 速時 SS = 665rpm、5 速時 S S = 1 OOOrpm 另外,張力資料記憶區域5 3內儲存線盤胴徑與最大捲 直徑之間各張力段數對應複數階段捲線直徑的佔空率的 料,例如以張力段數TC爲1段時的佔空率(%)TS = 17〜 、2段時TS = 27〜4 0、3段時TS = 40〜60、4段時TS = 53〜 、5段時TS = 67〜100的範圍分別記憶線盤胴徑至最大捲 直徑之間的1 0個階段値。 該等佔空率的値,例如分別在5階段的張力作用時 定停止瞬間前的線盤胴徑與最大捲線直徑的佔空率,根 所獲得的測定結果來決定。具體而言,藉著相同階段張 作用時的線盤胴徑與最大捲線直徑的2個佔空率的資料 使佔空率與捲線直徑的關係近似一次直線,從近似獲得 一次算出其中間的複數捲線直徑的佔空率,儲存對應所 得各階段的捲線直徑的佔空率。 資料記憶區域54儲存所設定的速度段數或張力段 TC等的各種暫時性資料。 其次,說明本實施型態的線長算出方法的槪略如下 本發明中,利用使線盤1每1旋轉時的線長Y與 盤轉數X的關係近似一次直線而算出線長L。 將粗細與全長未知的釣線從捲線直徑B呈層狀捲繞 線盤1 〇上,c旋轉完成所有釣線的纏繞。其次,從其狀 態延伸出Smm釣線時,設定線盤1 0爲d旋轉。 1272907 (10) 現在,線盤轉數X與線盤每1旋轉的線長Y的關係 ,以橫軸爲線盤轉數X,縱軸爲線盤每1旋轉的線長時, 可定義一次直線,Α‘爲斜度時可以下式表示。 Υ = ΑΧ + Β π 因此,表示線盤轉數X與線盤每1旋轉的線長Υ的 · 關係的圖表如第5圖表示。 現在,設定線盤1 〇進行C旋轉時的線盤1每1旋轉 的線長爲Y(C),C旋轉的捲繞後,伸出預定長度S旋轉時 φ 的線盤每1次旋轉的線長爲Y(c-d)時,可以下式表示。 Y (c) = A · c-f Β π ……(2) Y(c-d) = A · (c-d) + B^ ...... (3) 第5圖表示的圖表中,陰影線表示的梯形面積是相當 於捲繞完成後的釣線伸出長度S,線伸出長度S的表示如 下。 S = d · { Y(c) + Y(c-d)}/2 ......(4) (4)式中代入(2)、(3)式時, φ S = d · {A · c + B 7Γ + A · (c-d) + B π } /2 =d · {A · (2c-d) + 2B7T }/2 ...... (5) 以(5)式解斜度A時,其結果如下。 A = 2(S-B π d)/d(2c-d) ......(6) 因此,將4個資料S、B、c、d代入(6)式內可以求得 一次直線的斜度A。 例如,線盤10從捲繞開始捲繞2000旋轉完後,伸出 10m時線盤旋轉60次時,線盤10的胴徑(捲線直徑)爲 -14- 1272907 (11) 3 0mm時,一次直線的斜度A形成如下。 A = 2(l 0000-94.2*60)/60(2*2000-60) = 0.0368 並且,一旦決定斜度A、切片Β π之近似的一次直線 時,線盤每旋轉一次進行一次直線的積分處理(面積算出 處理),可求得從捲繞開始至捲繞爲止的例如線盤每旋轉 - 一次的線長L 1〜LN。並且,將捲繞完成時線盤轉數c時的 水深LX設定爲「〇」,由其算出捲繞開始爲止的水深 LX( = LN)與線盤轉數 X 的關係例如以地圖形式 ® (LX = MAP(X))記憶在記憶部46的學習資料記憶區域51內 〇 實際釣魚時旋轉線盤1 〇時,根據此時線盤感測器4 1 檢測出的線盤轉數X,從記憶部46的地圖讀取線長LX, 根據讀取線長LX將釣餌的水深(釣線前端的水深)顯示在 顯示部5內。 其次,根據第6圖以後的控制流程圖說明利用捲線器 控制部3 0進行的具體控制處理如下。 · 電動捲線器經由電源線連接外部電源時,在第6圖的 步驟S 1中進行初始設定。該初始設定係再設定線盤計測 器42的測數値,或再設定各種變數或旗標,使馬達控制 模式形成速度模式,從顯示模式加以模式化。 其次,步驟S2進行顯示處理。顯示處理可進行水深 顯示等的各種顯示處理。其中,速度模式時,在速度段數 顯示領域5c顯示變更開關SK操作的速度段數,張力模 式時,則在張力段數顯示領域5 d顯示張力段數。並且, -15- 1272907 (12) 顯示速度模式與張力模式的任意控制模式。 步驟S3 .中,判斷是否按壓操控按鍵6的任一開關。 並在步驟S4中判斷線盤1 〇是否旋轉。此一判斷是根據線 盤感測器4 1的輸出進行判斷。步驟S 5中判斷是否有其他 指令或輸入等。 按下開關時從步驟S 3移至步驟S 6實行按鍵輸入處理 。並且在檢測線盤1 0的旋轉時從步驟S4移至步驟S7。 步驟S7中實行各動作模式處理。其他指令或輸入時從步 驟S 5移至步驟S 8實行其他的處理。 步驟S 6的按鍵輸入處理是以第7圖的步驟判斷是否 按下馬達控制模式開關VT。步驟S 1 2判斷是否按下捲線 模式開關MD。步驟S13判斷是否按下馬達開關PW。步 驟S14判斷是否按下變換開關SK的上開關SK1。步驟 S15判斷是否按下變換開關SK的下開關SK2。步驟S16 判斷是否進行其他開關的操控。其他的開關操控包含記憶 開關TB等的操控。 按下馬達模式開關VT時從步驟S 1 1移至步驟S 1 7。 步驟S 1 7是判斷馬達控制模式是否爲速度模式。速度模式 中按下馬達模式開關VT是爲了釣者進行張力模式之用, 因此移至步驟S 1 9將控制模式設定爲張力模式。藉此,對 應變換開關SK的操控進行扭力控制。張力模式而非速度 模式時從步驟S 1 7移至步驟S 1 8,將馬達速度模式設定爲 速度模式。 按下捲線模式開關MD從步驟S 12移至步驟20。步 1272907 (13) 驟S20中判斷是否設定學習模式。藉著捲線模式開關MD 的1次操控設定學習模式時從步驟S2〇移至步驟S21實行 後述的學習模式處理。藉捲線模式開關MD的複數次操控 設疋指疋模式或下捲線模式等其他的捲線模式時,從步驟 S20移至步驟S22實行所設定的其他捲線模式。 按下馬達開關PW時,從步驟S13移至步驟S23。步 驟S23判斷馬達12是否已經開啓(已旋轉)。馬達旋轉中 按下馬達開關PW是由於釣者準備停止馬達1 2之用,因 此移至步驟S 2 5關閉馬達1 2。馬達停止中的場合從步驟 S32移至步驟S24啓動馬達12。 按下變換開關S K的上開關S K 1時,從步驟S丨4移至 步驟S26。步驟S26判斷控制模式是否爲速度模式。爲速 度模式時,從步驟S26移至步驟S27,進行後述的張力增 加處理。其中,按下上開關SK1時進行速度增加或張力 增加處理,因此結果在僅按下上開關SK1的時間進行該 等的增加處理。 按下變換開關SK的下開關SK2時,從步驟S15移至 步驟S29。步驟S29判斷控制模式是否爲速度模式。如爲 張力模式時,從步驟S29移至步驟S30,進行後述的張力 減少處理。其中,同樣按壓下開關SK2時進行速度減少 或張力減少處理,因此結果在僅按壓下開關SK2的時間 進行該等的減少處理。 進行其他的開關輸入時,從步驟S 1 6移至步驟S 3 2, 例如進行對應設定在現在水深底架値等進行操作之開關輸 1272907 (14) 入的其他按鍵輸入處理。 步驟S21的學習處理是判斷第8圖的步驟S40是否開 始捲線。此一判斷是利用線盤感測器4 1檢測·線盤1 〇的開 始旋轉來判斷。步驟S4 1是判斷是否捲線終了。此一判斷 是判斷是否進行預定的按鍵操控(例如記憶按鍵B進行預 定時間以上的操控)。捲線終了後,例如伸出i 0m的釣線 學習線盤轉數與線盤每一旋轉長度的關係,但是步驟S42 是判斷其1 〇 m的釣線是否終了。此一判斷同樣是判斷是 否進行預定的按鍵操控。並且,對於釣線例如以每1 〇m 著以不同的顏色時,雖進行上述伸出操控,但是釣線有形 成未著色的部分。以上的場合,可以將1 0m的釣線前端 打結並捲繞1 〇m的釣線。未完成伸出的場合則回到步驟 S40 〇 捲線開始時從步驟S40移至步驟S43。步驟S43中對 應線盤計測器4 2增加線盤轉數X。例如,線盤感測器4 1 在線盤每旋轉一次時輸出1 0脈衝,線盤計測器4 2在線盤 每旋轉一次各增加1 0時,線盤計測器4 2增加1 〇時即增 加1次線盤轉數X。 捲線終了停止線盤1 0的旋轉時從步驟S4 1移至步驟 S44。步驟S44將捲線完後的線盤轉數X設定爲總轉數c 。此一減算與步驟S43同樣地,例如線盤計測器42各減 少1 〇時即減少1次線盤轉數X。 線伸出終了時從步驟S42移至步驟S46。步驟S46從 線盤總轉數c減去伸出時減少的線盤轉數X ’將減算値設 -18· 1272907 (15) 疋爲伸出轉數d。此一伸出轉數d爲1 0 m釣線伸出時的線 盤1〇的轉數。步驟S47從記憶部46讀取捲線直徑Β 7Γ及 伸出長度S。將該等2的資料重新寫入記憶部46。 步驟S46藉著所獲得的4個資料c、d、Β 7Γ、S以上 述(6)式求得近似一次直線的斜度A,算出一次近似直線 。藉此決定線徑及長度爲未知釣線的全長間線盤1旋轉長 度Y與線盤轉數X間的關係。並使用該線盤1旋轉長度 Y求得捲線直徑SD(Y/tt ),從張力模式時的記憶部46的 張力資料記憶區域53,進行對應所設定階段的張力捲線 直徑的佔空率的讀取而形成一定的張力。 步驟S49積分處理所獲得的一次直線算出從捲線開始 至捲線完成後的線盤轉數X與線長N的關係。並且,將 捲線完成設定爲水深〇線長LN轉換爲水深LX。藉此決 定線盤轉數X與水深LX的關係。 步驟S 5 0以地圖形式將所獲得的線盤轉數X與水深 LX的關係記憶在記憶部46回到主路徑。藉此實行上述的 學習處理,不須進行釣線整體的學習只以最終部分的學習 即可修正因釣線直徑而變化的線盤轉數與線長的關係。該 等的處理終了時回到按鍵輸入路徑。 步驟S28的速度增加處理是以第9圖的步驟S51從資 料記憶區域54讀出前面設定的速度段數SC。其中,資料 記憶區域5 4中每增加或減少速度段數S C時記憶該値。 或者當電源切入時及按下馬達開關PW停止馬達12時’ 將速度段數SC設定爲「〇」,記憶在資料記憶區域54內 -19- 1272907 (16) 步驟S52提高1段所讀取的速度段速SC。此時增加 的速度段數SC在顯示處理中顯示於速度段數顯示領域5c 的同時,記憶於資料記憶區域5 4。並且,按下馬達開關 PW的隨後,將速度段數SC提高1段而設定爲「1」。並 且,速度段數SC設定爲「5」時以上即不能再增加。 步驟S 5 3讀出設定對應從速度資料區域5 2所增加速 度段數SC的速度資料SS。步驟S54從線盤感測器41的 輸出讀入線盤10的速度資料SP。 步驟S 5 5是判斷讀入的速度資料S P是否形成對應所 設定速度段數SC的速度資料以上。速度資料SP小於速 度資料SS時,從步驟S55移至步驟S56。步驟S56從資 料記億區域54讀出現在的佔空率D。資料記憶區域54在 設定佔空率D時記憶所設定的佔空率〇。 步驟S5 7是判斷從資料記憶區域54讀出的線在佔空 率D是否形成最大佔空率Du。此一最大佔空率Du 一般爲 「1〇〇」’但是也可以對應速度段數SC或馬達12的負載 等變更佔空率Du。佔空率D小於佔空率Du時,從步驟 S57移至步驟S58,設定使佔空率D增加預定的增量⑴ 。將此一新設定的佔空率D記憶在資料記憶區域54內。 並且,此一增重D1例如爲「5」。步驟s 5 7 一旦判斷佔 空率D爲最大佔空率Du以上時移至步驟s59。步驟s59 將佔空率D設定爲最大佔空率Du。 另—方面,以步驟S55判斷速度資料sp在速度資料 -20- 1272907 (17) s S以上時,不作任何處理回到按鍵輸入處理。並且,完 成步驟S58或S59的處理時回到按鍵輸入處理。 該速度增加處理中,只在按下上開關SK1的時間提 高速度段數S C,將線盤1 0的速度增加到對應所提高速度 段數SC的捲繞速度爲止。另外,一旦停止對上開關SK1 - 的按壓時,再次至按下上開關SK1或下開關SK2爲止不 再進行速度增加處理或速度減少處理,因此可維持速度增 加結果的速度段數S C,維持其捲繞速度。 鲁 步驟S27的張力增加處理中,並非進行變更佔空率的 閉合電路控制以檢測速度使其速度形成速度模式,在所設 定的各張力階段TC更於每捲線直徑SD設定佔空率TS,1272907 (1) Field of the Invention The present invention relates to an electric reel, and more particularly to an electric reel that is attached to a fishing rod and that winds a fishing line by a motor. [Prior Art] Generally, an electric reel which uses a motor to perform a reel rotation when winding a wire is often used for fishing from a ship to swim in a fish having a water depth of 50 m or more. The electric reel includes: a reel body; a reel mounted on the reel body; a handle for rotating the reel; and a motor for rotating the reel in the winding direction. On the upper side of the reel body, a display having a display such as a water depth or a display operation panel for switching between various inputs and the like is mounted. In such a motorized reel, it is known that the tension of the line is set to a plurality of stages instead of setting the winding speed in advance, and the tension is maintained at any stage in the set stage. Although the tension varies depending on the torque of the winding line, if the diameter of the winding is different, the tension will change even if the torque of the winding is constant. Therefore, the prior art has corrected the winding torque to maintain a certain tension depending on the winding torque. In this way, the tension acting on the fishing line is kept constant, and the Harris disconnection or cutting due to the drag setting or the different fish species can be prevented. In the prior art, in order to maintain a certain tension, it is determined that the current corresponding to the tension is set to the target 各 of each stage. Specifically, a tension measuring device is attached to the front end of the fishing line, and a current of -5 - 1272907 (2) is applied to the motor for each specified tension to flow into the winding portion of the coil of the wire when the motor is about to stop. The motor current 中 in the maximum winding diameter is measured. Next, the current 値 between the winding diameters is calculated based on the current 流动 flowing in the winding portion and the maximum winding diameter to determine the current 各 in each stage, and the obtained current 値 is taken as the target 値 current 値 detection As a result, the closed loop control is performed to maintain the tension constant. In this control, the detected analog current 値A/D is converted into a digital 値. [Problem to be Solved by the Invention] In the above-described conventional electric reel, the winding is calculated based on the current 流动 flowing in the winding portion and the maximum winding diameter in order to maintain a constant tension. The current of the diameter is used to obtain the current 各 at each stage, and the obtained current 値 is taken as the target, and the closed loop control is performed to make the current 値 detection result a target 値. However, when the detected current 値 is controlled to be close to the target current 藉 by closed-loop control, the A/D conversion into a digital 値 will be unstable, and it is feared that the squeaking will also cause electrical consumption due to squeaking. The problem of the present invention is to suppress an increase in electric power consumption by suppressing click noise in a motorized reel which can be controlled to a constant tension. [Means for Solving the Problem] The electric reel according to the invention 1 is a reel attached to a fishing rod, and includes a reel body, an electric motor, a duty ratio setting means, and a -6- 1272907 (3) tension. The operation means, the winding diameter detecting means, the duty ratio correcting means, and the motor control means are selected. The reel body is mounted on the fishing rod. The reel is used for winding, and is rotatably mounted on the reel body. The electric motor is a motor that rotationally drives the reel in the winding direction. The motor drive unit drives the electric motor with a pulse width modulation signal whose duty ratio changes. The duty ratio setting means is a duty ratio that can be set to a plurality of stages depending on the plurality of stages of tension on the line fishing line. The tension selection operation means is an operation means for selecting one of the plurality of stages of tension. The winding diameter detecting means is a means for detecting the diameter of the fishing line winding on the winding tray. The duty ratio correction means is a means for correcting the diameter of the winding detected by the winding diameter detecting means in accordance with the duty ratio determined by the selected tension. The motor control means is a means for controlling the motor drive unit by the duty ratio corrected by the duty ratio correction means. In the electric reel, when the tension of any one of the plurality of stages is selected by the tension selecting operation means, the tension duty ratio of the selected stage is set, and then the motor driving portion is controlled by the duty ratio. When the winding diameter changes, the duty ratio is corrected depending on the detected winding diameter, and then the motor driving portion is controlled by the corrected duty ratio. In this case, since it is not necessary to detect the current at the time of control of the motor drive unit, the target current is controlled, and the duty ratio is set, and then the open loop control executed by the duty ratio is controlled. In the control, the duty ratio is not changed up and down, but only the diameter of the winding wire is used to gradually increase the duty ratio. Therefore, it is possible to suppress fluctuations in the rotational speed of the reel at the time of constant tension control, and it is possible to suppress clicks to suppress an increase in electric power consumption. In addition, it is not simple to detect the current tension of the 1272907 (4) force such as the torque. According to a second aspect of the invention, in the cord reel according to the first aspect of the invention, the duty ratio setting means is a duty ratio memory duty ratio which is determined by a complex complex winding diameter of each tension in a plurality of stages. The memory means; the * duty ratio correction means is to read the duty ratio memorized by the duty ratio memory means in accordance with the tension selected by the tension selecting means and the winding diameter detected by the winding and diameter detecting means. In this case, since the duty ratio can be corrected by reading the data that has been previously memorized in the memory means, the control is simplified by φ. According to a third aspect of the invention, in the cord reel according to the second aspect of the invention, in the duty ratio memory means, the coil diameter and the spool are being stopped when the plurality of stages of tension are applied to the spool. The duty ratio corresponding to the diameter of the plurality of windings measured on the maximum winding diameter. In this case, since the actual winding diameter and the duty ratio on the maximum winding diameter are used to obtain the data of the diameter of each winding, it is possible to accurately control a constant tension. The electric reel according to any one of Inventions 1 to 3, wherein the winding reel detecting means has a rotational position data detecting means for detecting a rotational position data of the reel; The detected rotation position data is used to calculate the length of the fishing line sent from the reel or the line length calculation means for reeling the reel length of the reel; using the calculated length of the fishing line and the fishing line on the reel The full length and the coil diameter are used to calculate the winding diameter calculating means of the winding diameter of the fishing line wound on the reel. In this case, the line length -8 - 1272907 (5) ′ calculated from the rotation position data of the reel is used to easily calculate the winding diameter, so that the winding diameter can be easily detected. [Embodiment] [Embodiment of the Invention] An electric reel according to an embodiment of the present invention has a reel main body 1 mainly provided with a fishing rod R, and a reel disposed on the side of the reel body 1 as shown in Fig. 1 . The handle 2 for rotation and the star retractor 3 for traction adjustment disposed on the side of the reel body 1 of the handle 2. The reel body 1 has a pair of left and right side plates 7a, 7b and a frame 7 formed by connecting the plurality of connection members 8, and left and right side covers 9a, 9b covering the left and right of the frame 7. The side cover 9b on the side of the handle 2 (the right side of Fig. 1) freely rotates to support the rotation shaft of the handle 2. The rear connecting member 8 is provided with a connecting wire 19 for connecting an external power supply connecting power supply line. The inside of the reel body 1 is freely rotatably supported to engage the bobbin 1 上 on the handle 2. The internal configuration of the reel 10 causes the reel 1 to drive the choke driving motor 12 in the winding direction. Further, the side surface of the reel body 1 on the side of the handle 2 is provided with a lever 11 for activating the clutch of the handle 2 and the motor 12 and the drive of the reel 10. Once the clutch is activated, the line can be thrown by the weight of the bait itself to stop the line throwing action. The counter box 4 is fixed to the upper portion of the reel body 1. The counter box 4 is disposed at an upper portion of the reel body 1 and has a display window 20 formed thereon. The upper portion of the counter case 4 is adjacent to the display unit 5 including a liquid crystal display for displaying the water depth of the bait and the position of the rack from the two reference surfaces of the water surface and the bottom, and the control unit 6 is provided around the display unit -9 - 1272907 (6) 5. As shown in Fig. 2, the display unit 5 shows a water depth display field 5a having a 4-digit 7-segment display arranged in the center, and a 3-digit chassis water depth display field 5b disposed below the display unit 5; The number of speed segments on the right side of the second graph of the field 5 a shows the field 5 c ; and the number of tension segments in the lower right portion of the second map of the water depth display field 5 a shows the field 5d. The number of speed segments is displayed. Field 5 c is the current speed at which the five-stage segmentation graph is displayed according to the manipulation button 6. The tension segment display field 5 d is the line tension of the operation of the manipulation button 6 by the 5th-order number of the bu 5 . Further, a character "from the bottom" indicating the display mode is displayed above the water depth display area 5a. Also, one of the words "Speed, Tension" such as the display mode such as the speed mode and the tension mode is displayed. In addition, you can display five types of characters, such as "Learning", "Designation", "Down Roll", "Stop Rolling", and "Setting". The text "From the bottom" is displayed when the water depth display mode is from the bottom mode. The mode from the bottom shows the pattern of the depth of the bait as a bottom reference. Also, the water depth of the bait is usually displayed on the water surface reference (from the upper mode). Further, the text of "learning" to "lower winding" indicates the type of the winding mode, and when one of the selections is selectively selected, the character of the selected winding mode can be displayed. The control button unit 6 includes a changeover switch SK and a motor switch Pw arranged side by side on the right side of the first figure of the display unit 5, a motor mode switch VT arranged side by side on the left side, a winding mode switch MD for switching the winding mode, and Set the bottom or shelf memory switch TB. The motor switch PW is a switch for starting the motor 12, and the switch 1120907 (7) can be turned on when the switch PW is turned on. The changeover switch SK is a switch for increasing or decreasing the speed or torque of the drive motor 12, and has two switches up and down. The speed or tension is increased as soon as the upper switch SK1 of the changeover switch SK is pressed, and the speed or tension is reduced when the switch SK2 is pressed. The motor mode switch VT is a switch for controlling the tension mode of the mode of the motor 12 and the speed mode of the speed control for switching the tension, and switches the control mode every time the switch is pressed. Also, the mode of the control mode can be set in the initial setting. The winding mode button MD is a switch for setting three types of winding modes. For example, the learning mode is set when the pressing is performed once, the designated mode is pressed twice, and the lower winding mode is set when the pressing is performed three times in succession, and the winding mode is set separately. Among them, the learning mode is a winding mode used when winding a fishing line whose wire diameter or length is unknown is wound on the wire tray, and learning the relationship between the number of rotations of the final portion of the winding wire and the length of the wire for each rotation of the wire. The mode used to determine the number of reels of the full length of the line and the length of the line per rotation. The designated mode is a mode used when the number of lines and the length of the line prepared in the memory unit 46 are wound onto the disk. The lower winding mode is a mode used when winding an unknown fishing line after re-specifying the diameter of the winding and winding the unknown fishing line. The lower winding mode basically learns in the same manner as the learning mode only when the winding diameters are different. The memory switch TB is a switch that is pressed when the bait reaches the bottom or when it reaches the rack position, and the water depth at this time is set to the bottom or the depth of the rack. When the bottom memory switch SM is pressed for a predetermined time or longer, the 0 o'clock position of the water depth display can be reset when the fishing line or the like is cut. -11 - 1272907 (8) The reel control unit 30 includes a microcomputer such as a CPU, a RAM, a ROM, an I/O interface, and the like disposed in the counter 4, and the reel control unit 30 performs display control of the display unit 5 or the control program according to the control program. Various control actions such as motor control. As shown in Fig. 3, the reel control unit 30 is connected to various switches of the control button unit 6, a reel sensor 41, and a reel counter 42. Further, the cord reel control unit 30 is connected to the buzzer 44, the PWM drive circuit 45, the display unit 46, and other input/output sections. The reel sensor 4 1 is formed by two reed switches arranged side by side in front and rear, and any reed switch can detect the rotation direction of the reel 10 when first detecting the pulse wave. The reel counter 42 is a counter for measuring the number of starts of the reel sensor 41, and the position information of the number of reels of the reel is obtained by using the measurement 値. The reel counter 42 reduces the measurement 値 when the reel 10 is rotating forward (rotation in the direction of the line), and increases the measurement 反转 when reversing. The buzzer 44 is used when an alarm sound is emitted. The PWM drive circuit 45 is used for the PWM drive motor 12, and the winder control unit 30 controls the duty ratio variable torque drive motor 12. The memory unit 46 is constituted by, for example, a permanent memory such as an EEPROM. As shown in FIG. 4, the memory unit 46 is provided with a display data storage area of the display data such as the position of the memory shelf, and a learning data of the learning data of the actual line length and the number of rotations of the disk. The velocity data memory area 52 of the upper limit of the winding speed (rpm) of the reel corresponding to the speed segment speed SC 1 is memorized; the tension data of the duty ratio of the motor 1 2 corresponding to the winding diameter of the 1 〇 stage is memorized. The memory area 53 and the data memory area 54 of the memory species data. • 12- 1272907 Ο) The speed line of the speed line is 80. The line of the force is measured in the speed data memory area 5 2, and the speed data such as the number of stages SC is 1 at the time of SS = 25 7 rpm, 2 speeds. SS = 3 69 rpm, SS = 503 rpm at 3, SS = 665 rpm at 4 speeds, SS = 1 OOO rpm at 5 speeds, and the number of tension segments between the storage coil diameter and the maximum roll diameter in the tension data memory area 5 3 The material of the duty ratio of the winding diameter of the plurality of stages, for example, the duty ratio (%) when the number of tension segments TC is 1 (TS) = 17~, TS = 27 to 4 0 when 2 segments, TS = 40 when 3 segments In the 60th and 4th stages, TS = 53~, and the range of TS = 67~100 in the 5th segment, respectively, the memory coil diameter to the maximum volume diameter of 10 stages. The enthalpy of the duty ratios is determined, for example, by the duty ratio of the coil diameter and the maximum winding diameter before the stop timing in the five-stage tension action, and the measurement result obtained by the root. Specifically, the relationship between the duty ratio and the diameter of the winding is approximated by a straight line by the data of the two diameters of the coil diameter and the maximum winding diameter when the same stage is applied, and the intermediate number is calculated from the approximate one. The duty ratio of the winding diameter stores the duty ratio corresponding to the winding diameter of each stage obtained. The data memory area 54 stores various temporary data such as the set number of speed segments or the tension segment TC. Next, a description will be given of a method of calculating the line length in the present embodiment. In the present invention, the line length L is calculated by approximating the relationship between the line length Y and the number of disk rotations X per one rotation of the reel 1 by a straight line. The thickness and the fishing line of unknown length are wound from the winding diameter B in a layered manner on the reel 1 ,, and the c rotation completes the winding of all the fishing lines. Next, when the Smm fishing line is extended from its state, the setting wire 10 is d rotated. 1272907 (10) Now, the relationship between the number of rotations of the reel X and the length Y of the rotation of the reel, the horizontal axis is the number of rotations of the reel X, and the vertical axis is the length of the rotation of the reel for one rotation. A straight line, when Α' is a slope, can be expressed as follows. Υ = ΑΧ + Β π Therefore, a graph showing the relationship between the number of revolutions of the reel X and the length of the line per 1 rotation of the reel is shown in Fig. 5. Now, the wire length of the reel 1 when the reel 1 is set to C rotation is Y (C), and after the winding of the C rotation, the rotation of the reel φ is rotated once every time. When the line length is Y (cd), it can be expressed by the following formula. Y (c) = A · cf Β π ......(2) Y(cd) = A · (cd) + B^ (3) In the graph shown in Fig. 5, the trapezoid is represented by a hatched line. The area is equivalent to the extension length S of the fishing line after completion of winding, and the line extension length S is expressed as follows. S = d · { Y(c) + Y(cd)}/2 (4) When substituting (2) and (3) in equation (4), φ S = d · {A · c + B 7Γ + A · (cd) + B π } /2 =d · {A · (2c-d) + 2B7T }/2 (5) Deviation A with (5) The results are as follows. A = 2(SB π d)/d(2c-d) (6) Therefore, by substituting four data S, B, c, and d into equation (6), a straight line oblique can be obtained. Degree A. For example, when the reel 10 is rotated from the winding start 2000 and the reel is rotated 60 times when the reel is extended 10 m, the winding diameter (winding diameter) of the reel 10 is -14 - 1272907 (11) 30 mm, once. The slope A of the straight line is formed as follows. A = 2(l 0000-94.2*60)/60(2*2000-60) = 0.0368 Also, once the straight line of the slope A and the slice Β π is determined, the line is integrated once per rotation. In the processing (area calculation processing), for example, the line lengths L 1 to LN per one rotation of the reel from the start of winding to the winding can be obtained. Further, the water depth LX when the number of revolutions of the reel is completed at the time of winding completion is set to "〇", and the relationship between the water depth LX (= LN) and the number of revolutions X of the reel X is calculated, for example, in the form of a map ( LX = MAP(X)) memory in the learning data memory area 51 of the memory unit 46, when the actual reeling is performed while the reel 1 〇, according to the number of reels X detected by the reel sensor 4 1 at this time, The map reading line length LX of the memory unit 46 displays the water depth of the fishing lure (the water depth at the tip end of the fishing line) in the display unit 5 based on the reading line length LX. Next, the specific control processing by the reel control unit 30 will be described below based on the control flowcharts in Fig. 6 and later. • When the electric reel is connected to the external power supply via the power cord, the initial setting is made in step S1 of Fig. 6. The initial setting resets the number of measurements of the reel counter 42 or sets various variables or flags to cause the motor control mode to form a speed mode, which is patterned from the display mode. Next, step S2 performs display processing. The display processing can perform various display processing such as water depth display. In the speed mode, the number of speed segments of the change switch SK operation is displayed in the speed segment number display field 5c, and the tension segment number is displayed in the tension segment number display field 5d in the tension mode. Also, -15- 1272907 (12) shows the arbitrary control mode of the speed mode and tension mode. In step S3., it is judged whether or not any switch of the manipulation button 6 is pressed. It is judged in step S4 whether or not the reel 1 旋转 is rotated. This determination is made based on the output of the disk sensor 41. In step S5, it is judged whether there are other commands or inputs or the like. When the switch is pressed, the process proceeds from step S3 to step S6 to perform key input processing. And, when detecting the rotation of the reel 10, the process moves from step S4 to step S7. Each operation mode process is executed in step S7. When other commands or inputs are made, the process proceeds from step S5 to step S8 to perform other processing. The key input processing of step S6 is based on the step of Fig. 7 to determine whether or not the motor control mode switch VT is pressed. Step S1 2 judges whether or not the winding mode switch MD is pressed. Step S13 determines whether or not the motor switch PW is pressed. At step S14, it is judged whether or not the upper switch SK1 of the changeover switch SK is pressed. Step S15 judges whether or not the lower switch SK2 of the changeover switch SK is pressed. Step S16 determines whether or not the manipulation of other switches is performed. Other switch controls include controls such as the memory switch TB. When the motor mode switch VT is pressed, the process moves from step S1 1 to step S17. Step S17 is to determine whether the motor control mode is the speed mode. In the speed mode, the motor mode switch VT is pressed for the angler mode, so the process proceeds to step S1 9 to set the control mode to the tension mode. Thereby, the torque control is performed in accordance with the manipulation of the changeover switch SK. In the tension mode instead of the speed mode, the process proceeds from step S17 to step S1, and the motor speed mode is set to the speed mode. The winding mode switch MD is pressed to move from step S12 to step 20. Step 1272907 (13) In step S20, it is judged whether or not the learning mode is set. When the learning mode is set by the one-time manipulation of the winding mode switch MD, the process proceeds from step S2 to step S21 to execute the learning mode processing which will be described later. When the plurality of winding modes of the winding mode switch MD are set to other winding modes such as the finger mode or the lower winding mode, the process proceeds from step S20 to step S22 to execute the other winding mode set. When the motor switch PW is pressed, the process proceeds from step S13 to step S23. Step S23 judges whether or not the motor 12 has been turned on (rotated). When the motor is rotated, the motor switch PW is pressed because the fisherman is ready to stop the motor 12, so the process moves to step S25 to close the motor 12. When the motor is stopped, the process proceeds from step S32 to step S24 to start the motor 12. When the upper switch S K 1 of the change-over switch S K is pressed, the flow proceeds from step S4 to step S26. Step S26 determines whether the control mode is the speed mode. In the speed mode, the process proceeds from step S26 to step S27, and a tension increasing process to be described later is performed. Here, when the upper switch SK1 is pressed, the speed increase or the tension increase processing is performed, so that the increase processing is performed at the time when only the upper switch SK1 is pressed. When the lower switch SK2 of the changeover switch SK is pressed, the process proceeds from step S15 to step S29. Step S29 determines whether the control mode is the speed mode. In the case of the tension mode, the process proceeds from step S29 to step S30, and a tension reduction process to be described later is performed. Here, when the lower switch SK2 is pressed, the speed reduction or the tension reduction processing is performed. Therefore, the reduction processing is performed at the time when only the lower switch SK2 is pressed. When another switch input is performed, the process proceeds from step S16 to step S3 2, and for example, another key input process corresponding to the switch input 1272907 (14) that is operated in the current water depth chassis or the like is performed. The learning process of step S21 is to determine whether or not the winding is started in step S40 of Fig. 8. This determination is made by detecting the start rotation of the reel 1 · by the reel sensor 4 1 . Step S4 1 is to judge whether or not the winding is finished. This judgment is to judge whether or not predetermined button manipulation is performed (for example, the memory button B is operated for a predetermined time or longer). After the winding is completed, for example, the fishing line extending out of i 0m learns the relationship between the number of revolutions of the reel and each rotation length of the reel, but step S42 is to determine whether or not the fishing line of 1 〇 m is finished. This judgment is also to judge whether or not the predetermined button manipulation is performed. Further, when the fishing line is colored differently for every 〇m, for example, the above-described extension manipulation is performed, but the fishing line has an uncolored portion. In the above case, the front end of the fishing line of 10 m can be knotted and wound with a fishing line of 1 〇m. If the extension is not completed, the process returns to step S40. When the winding line starts, the process proceeds from step S40 to step S43. In step S43, the number of revolutions of the reel X is increased corresponding to the reel measuring instrument 4 2 . For example, the reel sensor 4 1 outputs 10 pulses per rotation of the reel, and the reel 4 2 increases by 10 each time the reel is rotated. When the reel 4 2 increases by 1 增加, it increases by 1. The number of rotations of the secondary line is X. When the winding end stops the rotation of the reel 10, the flow proceeds from step S4 to step S44. In step S44, the number of reels X after the winding is completed is set as the total number of revolutions c. In the same manner as in step S43, for example, when the spool measuring device 42 is reduced by one turn, the number of reels X is reduced once. When the line is extended, the process moves from step S42 to step S46. In step S46, the number of revolutions of the reel X' which is reduced from the total number of revolutions of the reel and the reduction of the number of reels X' is reduced, and the reduction is set to -18·1272907 (15) 疋 as the number of extensions d. This extension number d is the number of revolutions of the reel 1 m when the fishing line is extended. The step S47 reads the winding diameter Β 7 Γ and the extension length S from the memory unit 46. These 2 pieces of data are rewritten into the memory unit 46. In step S46, the inclination A of the approximate straight line is obtained by the obtained four pieces of data c, d, Β 7 Γ, S and the above equation (6), and an approximate straight line is calculated. Thereby, the relationship between the wire length and the length is the relationship between the rotation length Y of the reel 1 and the number of reels X of the entire length of the unknown fishing line. The winding diameter SD (Y/tt) is obtained by using the rotation length Y of the reel 1, and the reading of the duty ratio of the tension winding diameter corresponding to the set stage is performed from the tension data memory area 53 of the memory unit 46 in the tension mode. Take a certain tension. The first straight line obtained by the integration processing in step S49 calculates the relationship between the number of reel rotations X and the line length N from the start of the winding to the completion of the winding. Also, the winding completion is set to the water depth line length LN converted to the water depth LX. This determines the relationship between the number of revolutions of the reel X and the water depth LX. In step S50, the relationship between the obtained number of reel rotations X and the water depth LX is stored in the form of a map, and the memory unit 46 returns to the main path. By performing the above-described learning process, it is possible to correct the relationship between the number of reels of the reel and the line length which is changed by the diameter of the fishing line without learning the entire fishing line. At the end of the processing, the process returns to the key input path. The speed increase processing of step S28 reads out the previously set speed segment number SC from the data memory area 54 in step S51 of Fig. 9. Among them, the data memory area 54 stores the 每 every time the number of speed segments S C is increased or decreased. Or when the power is cut in and when the motor switch PW is pressed to stop the motor 12, 'the number of speed segments SC is set to "〇", and it is stored in the data memory area 54 - 19 - 1272907 (16). Step S52 is increased by one segment. Speed section speed SC. The number of speed segments SC added at this time is displayed in the data segment area 5c while being displayed in the speed segment number display field 5c in the display processing. Then, after the motor switch PW is pressed, the number of speed segments SC is increased by one step and set to "1". Also, if the number of speed segments SC is set to "5", the above cannot be increased. The step S 5 3 reads out the speed data SS corresponding to the number of speed segments SC added from the speed data area 52. Step S54 reads the velocity data SP of the reel 10 from the output of the reel sensor 41. In step S5 5, it is judged whether or not the read speed data S P is formed above the speed data corresponding to the set number of speed segments SC. When the speed data SP is smaller than the speed data SS, the process proceeds from step S55 to step S56. In step S56, the current duty ratio D is read from the material count area 54. The data memory area 54 memorizes the set duty ratio 在 when the duty ratio D is set. In step S57, it is judged whether or not the line read from the data memory area 54 forms the maximum duty ratio Du at the duty ratio D. The maximum duty ratio Du is generally "1"", but the duty ratio Du may be changed in accordance with the number of speed segments SC or the load of the motor 12. When the duty ratio D is smaller than the duty ratio Du, the process proceeds from step S57 to step S58, and the duty ratio D is set to increase by a predetermined increment (1). This newly set duty ratio D is stored in the data memory area 54. Further, this weight gain D1 is, for example, "5". Step s 5 7 When it is judged that the duty ratio D is greater than the maximum duty ratio Du, the process moves to step s59. In step s59, the duty ratio D is set to the maximum duty ratio Du. On the other hand, when it is judged in step S55 that the speed data sp is above the speed data -20 - 1272907 (17) s S , no processing is returned to the key input processing. Then, when the processing of step S58 or S59 is completed, the key input processing is returned. In the speed increase processing, the speed segment number S C is increased only when the upper switch SK1 is pressed, and the speed of the reel 10 is increased to the winding speed corresponding to the increased number of speed segments SC. Further, when the pressing of the upper switch SK1 - is stopped, the speed increase processing or the speed reduction processing is not performed until the upper switch SK1 or the lower switch SK2 is pressed again, so that the number of speed segments SC of the speed increase result can be maintained, and the speed can be maintained. Winding speed. In the tension increasing process of step S27, the closed circuit control for changing the duty ratio is not performed to detect the speed so that the speed forms the speed mode, and the duty ratio TS is set for each winding diameter SD in each of the set tension stages.

利用其佔空率TS進行開環控制。張力增加處理以第1 0圖 的步驟S 6 1從資料記憶區域5 4中讀出前面所設定的張力 段數TC。其中,每增加或減少張力段數TC時將其記憶 在資料記憶區域 5 4。並且,切入電源時及按下馬達開關 P W停止馬達1 2時,將張力段數TC設定爲「0」,記憶 H 於資料記憶區域5 4。 步驟S62提高1段所讀出的張力段數TC。此時所增 加的張力段數TC在顯示處理中顯示在張力段數顯示領域 5d的同時,記億於資料記憶區域54內。並且,在按下馬 ‘ 達開關PW的隨後,提高1段張力段數TC設定爲「1」。 另外’張力段數TC設定設定爲「5」時則不再增加。 步驟S63進行捲線直徑SD的算出處理。捲線直徑算 出處理中,以第11圖的步驟S71讀入線盤轉數X。步驟 -21 - 1272907 (18) S 72中與線盤轉數X同時從表示學習處理所獲得的線 旋轉長度Y與線盤轉數X的關係的一次式算出線盤 轉長度Y。步驟S73是以所獲得的線盤1旋轉長度除 算出捲線直徑S D。 步驟S64從張力資料記憶區域53讀出對應算出 線直徑S D與增加後的張力段數T C的佔空率T S,設 PWM驅動電路45。藉此,以捲線直徑SD修正所設 佔空率TS,使作用釣線的張力形成可接近經常設定 力。 該張力增加處理只在按下上開關SK1的時間提 力段數T C,讀出對應捲線直徑的佔空率τ S使其形成 提高後的張力段數TC。並且,停止按下上開關SK1 再次至按下上開關SK1或下開關SK2爲止不再進行 增加處理或張力減少處理,因此可維持張力增加結果 力段數TC,維持其張力。其結果,負載大時減緩速 負載小時則增加速度。因此,負載小的釣餌回收時等 高速回收釣餌,增加反轉速度。並且可對應捲線直徑 佔空率TS,形成一定作用於釣線的張力。因此捲線 容易產生細線切斷或缺口的同時不需要進行牽引器的 〇 步驟S31的速度減少處理中,以第12圖的步驟 從資料記憶區域5 4讀出前面所設定的速度段數S C。 S 82使讀出的速度段數SC下降1段。此時減少的速 數SC在顯示處理中顯示在速度段數顯示領域5c的同 盤1 1旋 以7Γ 的捲 定爲 定的 的張 局張 對應 時, 張力 的張 度, 可以 設定 時不 調整 S8 1 r h- ESt 度段 時, 1272907 (19) 記憶在資料記憶區域5 4內。並且,速度段數S C降低爲 「1」時不會再減少。步驟s 8 3從速度資料記憶區域5 2讀 出對:應所減少速度段數s c的速度資料s s °步驟s 8 4從線 盤感測器41的輸出讀入線盤1 〇的速度資料sp ° 步驟S85是判斷所讀入的速度資料SP是否形成對應 所設定速度段數SC的速度資料SS以下。速度資料SP超 過速度資料SS時,從步驟S85移至步驟S86。步驟S86 從資料記憶區域84讀出現在的佔空率D。 步驟S 8 7判斷從資料記憶區域5 4讀出的現在佔空率 D是否形成最小的佔空率DL以上。此一最小佔空率DL通 常爲「40」。佔空率D超過最小佔空率DL時,從步驟 S57移至步驟S88,將佔空率D減少至預定的減量D1設 定。將此設定的佔空率D記億在資料記憶區域54。並且 ,該減量D 1例如爲「5」。以步驟S89判斷佔空率D 1爲 最小佔空率DL時移至步驟S89。步驟S89中,將佔空率 D設定爲最小佔空率Dl。 另一方面,步驟S 8 5判斷讀入的速度資料S P形成對 應所設定速度段數S C的速度資料S S以下時不作任何處 理回到按鍵輸入處理。並且完成步驟S88或S89處理時回 到按鍵輸入處理。 該減速處理爲下降按壓下開關SK2的時間速度段數 SC ’減少線盤10的捲繞速度以至對應下降速度段數sc 的捲繞速度。並且,一旦停止按壓下開關SK2時,再次 按壓上開關ski或下開關SK2爲止不進行速度增加處理 1272907 (20) 或速度減少處理,因此可維持速度減少結果的速度段 s C,維持其捲繞速度。 步驟S30的張力減少處理是以第13圖的步驟S91 資料記憶區域54讀出前面所設定的張力段數TC。其中 資料記憶區域5 4記憶著張力段數TC每一增加或減少 値。另外,投入電源時及按下馬達開關PW使馬達1 2 止時,張力段數TC設定爲「0」,記憶在資料記憶區 54內。 步驟S92將讀出的張力段數TC下降1段。此時減 的張力段數TC在顯示處理中顯示於張力段數顯示領域 的同時,記億在資料記憶區域54內。並且,按下馬達 關PW的隨後,提高1段張力段數TC設定爲「1」。另 ,張力段數TC 一旦設定爲「1」時不會再減少。 步驟S93是進行捲線直徑SD的算出處理。第1 1 表示的捲線直徑算出處理與張力增加處理相同省略其說 。步驟S94是從張力資料記憶區域53讀出對應算出的 線直徑SD與減少後的張力段數TC的佔空率TS,設定 PWM驅動電路45。藉此,使設定的佔空率形成以捲線 徑SD修正,使作用釣線的張力形成可接近經常設定的 力。 該張力減少處理只在按壓下開關SK2的時間提高 力段數TC,讀出對應捲線直徑的佔空率TS使其形成對 下降後的張力段數TC。並且,停止按壓下開關SK2時 再次至按壓上開關SK1或下開關SK2爲止不再進行張 數 從 的 停 域 少 5d 開 外 圖 明 捲 於 直 張 張 應 力 1272907 (21) 增加處理或張力減少處理,因此可維持張力減少結果的張 力段數TC,維持其張力。其結果’負載大時減緩速度, 負載小時則增加速度。因此,負載小的釣餌回收時等可以 高速回收釣餌,增加反轉速度。並且可對應捲線直徑設定 佔空率T S,形成一定作用於釣線的張力。因此捲線時不 容易產生細線切斷或缺口的同時不需要進行牽引器的調整 〇 步驟S7的各動作模式處理是以第14圖的步驟S101 判斷線盤1 〇的旋轉方向是否爲釣線伸出方向。此一判斷 是藉著線盤感測器4 1的任意簧片開關是否發出先前的脈 波來判斷。一旦判斷線盤1 〇的旋轉方向爲釣線伸出方向 時從步驟S101移至步驟S102。步驟S102中,每減少線 盤轉數時從線盤轉數讀出記憶在記憶部46的資料算出水 深。以步驟S 2的顯示處理顯示此一水深。步驟S 1 (3 3是判 斷是否與所獲得的水深一致,即釣餌是否到達底面。當釣 餌到達底面時按下記憶開關TB將底面位置記憶在記憶部 46內。步驟S104判斷是否爲其他模式。不是其他模式時 ,完成各動作模式處理回到主路徑。 水深與底部位置一致時從步驟S103移至步驟S105, 使蜂鳴器44發聲告知釣餌到達底部。其他模式的場合, 從步驟S104移至步驟S106,實行所指定其他的模式。 判斷線盤1 〇的旋轉爲捲線方向時從步驟S 1 0 1移至步 驟S 107。步驟S1 07從線盤轉數讀出記憶在記憶部46的 資料算出水深。該水深是以步驟S2的顯示處理顯示。步 -25- 1272907 (22) 驟S 1 0 8判斷水ί朱是否與船緣停止位置一致。尙未捲繞至 船緣停止位置時,回到主路徑。到達船員停止位置時從步 驟S108移至步驟S109。步驟S109使蜂鳴器44發聲告知 釣餌位在船緣的位置。步驟S 1 1 0關閉馬達1 2。可以在魚 上鉤時配置容易取得魚的位置。該船緣停止位置設定例如 水深6m以內停止預定時間以上的線盤1 〇。 該電動捲線器從馬達控制磨是開關VT選擇張力模式 時,控制馬達1 2使各張力段數形成一定張力。因此,捲 線時不易產生切斷或缺口。並且,藉開環控制控制在一定 的張例’因此控制中佔空率不會上下變動可對應捲線直徑 只微緩增加佔空率。因此,可抑制張力一定控制時線盤轉 數的上下變動,抑制嗚聲抑制耗費電力的增加。並且,例 如不需要以扭力等檢測現在的張力可形成簡單控制系的構 成。 〔其他實施形態〕 (a )上述實施形態中,構成以變換開關SK的上開 關或下開關的操作時間增減速度或扭力的段數,但是也可 以對應操控次數增加。 (b )上述實施形態中,藉按鍵式的變換開關Sk進 行段數的增減操控,但是利用可自由擺動安裝在捲線器本 體1的操控桿進行段數的增減操控。此時,也可以對應該 操控桿的擺動角度只進行段數的增減操作,或者以此操控 桿進行段數的增減操控與馬達的開關操控。 -26- 1272907 (23) (c )上述實施形態中,雖然在張力資料記憶區域5 3 儲存各張力階段對應捲線直徑的佔空率,但是也可以只記 憶各張力階段的預定捲線直徑(/例如線盤胴徑)的佔空率, 對應算出或檢測該佔空率的捲線直徑進行修正處理。 (d )上述實施形態中,雖是利用線長學習結果的資 料算出捲線直徑,但是也可以將線長檢測器等安裝在電動 捲線§&上’根據其所學習的結果檢測捲線直徑。或者可以 使用光感測器或超音波感測器等的捲線直徑檢測器直接檢 測捲線直徑。 〔發明效果〕 根據本發明,控制馬達驅動部時不須進行電流値得檢 測來控制構成目標的電流値,只要設定佔空率以其佔空率 進行控制的開環控制,因此控制中佔空率不須上下變動只 須對應捲線直徑微緩增加佔空率。因此,可抑制張力一定 控制時線盤轉數的上下變動,抑制嗚聲抑制耗費電力的增 加。並且,例如不需要以扭力等檢測現在的張力可形成簡 單控制系的構成。 【圖式簡單說明】 第1圖是採用本發明一實施型態的電動捲線器的上視 圖。 第2圖爲其電動捲線器的顯示部周邊的上視圖。 第3圖爲其電動捲線器的控制方塊圖。 -27- 1272907 (24) 第4圖是表示記憶部的儲存內容圖。 第5圖是表示線盤旋轉與線盤每1旋轉線長的關係圖 表。 第6圖是表示其電動捲線器的主路徑的流程圖。 第7圖是表示按鍵輸入處理副路徑的流程圖。 第8圖是表示學習處理副路徑的流程圖。 第9圖是表示速度增加處理副路徑的流程圖。 第1 〇圖是表示張力增加處理副路徑的流程圖。 第1 1圖是表示捲線直徑算出處理副路徑的流程圖。 第1 2圖是表示速度減少處理副路徑的流程圖。 第1 3圖是表示張力減少處理副路徑的流程圖。 第1 4圖是表示各動作模式處理副路徑的流程圖。 [圖號說明] 1 捲線器本體 10 線盤 12 馬達 30 捲線器控制器 4 1 線盤感測器 45 PWM驅動電路 46 記憶部 52 速度資料記憶區域 53 張力資料記憶區域 P W 馬達開關 SK 變換開關 -28·Open loop control is performed using its duty ratio TS. The tension increasing process reads the previously set number of tension segments TC from the data memory area 54 in step S6 1 of Fig. 10. Among them, each time the number of tension segments is increased or decreased, it is stored in the data memory area 5 4 . When the power is turned on and the motor switch P W is pressed to stop the motor 12, the number of tension segments TC is set to "0", and H is stored in the data memory area 54. Step S62 increases the number of tension segments TC read in one segment. The number of tension segments TC added at this time is displayed in the display period of the tension segment number display field 5d, and is recorded in the data memory region 54. Then, after pressing the horse _ switch PW, the number of tension segments TC is increased to "1". In addition, when the number of tension segments TC is set to "5", it will not increase. Step S63 performs a process of calculating the winding diameter SD. In the winding diameter calculation process, the number of revolutions of the reel X is read in step S71 of Fig. 11. Step -21 - 1272907 (18) In S 72, the reel length Y is calculated from the one-time equation indicating the relationship between the line rotation length Y and the number of reels X obtained by the learning process, simultaneously with the number of revolutions of the reel X. Step S73 is to calculate the winding diameter S D by dividing the obtained rotation length of the reel 1. In step S64, the duty ratio T S corresponding to the calculated line diameter S D and the increased number of tension segments T C is read from the tension data memory area 53, and the PWM drive circuit 45 is provided. Thereby, the duty ratio TS is corrected by the winding diameter SD so that the tension of the action line can be brought close to the regular setting force. This tension increasing process reads out the duty ratio τ S of the corresponding winding diameter to form the increased number of tension segments TC only when the number of stages T C of the upper switch SK1 is pressed. Further, when the upper switch SK1 is stopped and the up switch SK1 or the lower switch SK2 is pressed again, the increase processing or the tension reduction processing is not performed, so that the tension increase result TC number can be maintained and the tension can be maintained. As a result, when the load is large, the speed is slowed down and the speed is increased. Therefore, when the small load is recovered, the fishing bait is recovered at a high speed, and the reversal speed is increased. And it can correspond to the winding diameter duty ratio TS to form a certain tension acting on the fishing line. Therefore, the winding is liable to cause the wire to be cut or notched, and the tractor is not required. In the speed reduction processing of step S31, the number of speed segments S C set in the front side is read from the data memory area 54 in the step of Fig. 12 . S 82 lowers the number of read speed segments SC by one. At this time, the reduced speed SC is displayed in the display processing, and when the same number of positions of the speed segment display area 5c is set to 7Γ, the tension degree can be set without adjustment. In the case of S8 1 r h-ESt, 1272907 (19) is stored in the data memory area 5 4 . Also, the number of speed segments S C is reduced to "1" and will not decrease. Step s 8 3 reads out from the speed data memory area 5 2: speed data ss of the number of speed segments to be reduced sc s 8 4 reads the speed data sp of the reel 1 from the output of the reel sensor 41 Step S85 is to determine whether or not the read speed data SP is equal to or less than the speed data SS corresponding to the set number of speed segments SC. When the speed data SP exceeds the speed data SS, the process proceeds from step S85 to step S86. Step S86 reads out the current duty ratio D from the data memory area 84. The step S 8 7 judges whether or not the current duty ratio D read from the data memory area 504 is equal to or larger than the minimum duty ratio DL. This minimum duty ratio DL is usually "40". When the duty ratio D exceeds the minimum duty ratio DL, the process proceeds from step S57 to step S88, and the duty ratio D is decreased to a predetermined decrement D1. The duty ratio D of this setting is recorded in the data memory area 54. Further, the decrement D 1 is, for example, "5". When it is judged in step S89 that the duty ratio D 1 is the minimum duty ratio DL, the operation proceeds to step S89. In step S89, the duty ratio D is set to the minimum duty ratio D1. On the other hand, if it is judged in step S85 that the read speed data S P is formed below the speed data S S corresponding to the set number of speed segments S C , no processing is returned to the key input processing. And when the processing of step S88 or S89 is completed, the key input processing is returned. This deceleration processing is to decrease the winding speed of the reel 10 and the winding speed corresponding to the number of descending speed segments sc by the number of time-speed segments SC' of the lower pressing switch SK2. When the lower switch SK2 is stopped, the speed increase processing 1272907 (20) or the speed reduction processing is not performed until the upper switch ski or the lower switch SK2 is pressed again, so that the speed segment s C of the speed reduction result can be maintained, and the winding can be maintained. speed. The tension reduction processing of step S30 is to read the number of tension segments TC set in the foregoing by the data memory area 54 in step S91 of Fig. 13. Among them, the data memory area 504 memorizes the increase or decrease of the number of tension segments TC. Further, when the power is turned on and the motor switch PW is pressed to stop the motor 12, the number of tension segments TC is set to "0" and stored in the data memory area 54. In step S92, the number of tension segments TC read is decreased by one step. The number of tension segments TC reduced at this time is displayed in the field of the number of tension segments in the display process, and is recorded in the data memory region 54. Then, when the motor is turned off PW, the number of tension sections TC of one stage is increased to "1". In addition, the number of tension segments TC will not decrease once it is set to "1". Step S93 is a process of calculating the winding diameter SD. The winding diameter calculation process shown in the first aspect is the same as the tension increase process. In step S94, the duty ratio TS corresponding to the calculated line diameter SD and the reduced number of tension segments TC is read from the tension data memory area 53, and the PWM drive circuit 45 is set. Thereby, the set duty ratio is corrected by the winding diameter SD, and the tension of the action line is made close to the force that is set frequently. This tension reducing process reads the duty ratio TS of the corresponding winding diameter only when the lowering switch SK2 is pressed, and reads the duty ratio TS of the corresponding winding diameter to form the number of tension sections TC after the lowering. When the lower switch SK2 is stopped, the number of stops is no longer performed until the upper switch SK1 or the lower switch SK2 is pressed. The stoppage is less than 5d. The open-frame tension is 1272907 (21) Increased processing or tension reduction processing Therefore, the tension TC of the tension reduction result can be maintained, and the tension is maintained. As a result, the speed is slowed down when the load is large, and the speed is increased when the load is small. Therefore, when the fishing bag with a small load is recovered, the fishing bait can be recovered at a high speed, and the reversal speed can be increased. Further, the duty ratio T S can be set corresponding to the winding diameter to form a tension which acts on the fishing line. Therefore, it is not easy to generate a thin wire cut or a notch at the time of winding, and it is not necessary to perform the adjustment of the tractor. The operation mode processing of step S7 is to determine whether the rotation direction of the reel 1 为 is the fishing line in step S101 of Fig. 14 direction. This determination is made by whether or not any reed switch of the reel sensor 4 1 emits a previous pulse. When it is judged that the rotation direction of the reel 1 为 is the fishing line extending direction, the process proceeds from step S101 to step S102. In step S102, the water depth is calculated by reading the data stored in the memory unit 46 from the number of revolutions of the reel when the number of revolutions of the reel is reduced. This water depth is displayed by the display processing of step S2. Step S1 (3 3 is to determine whether or not the water depth is consistent with the obtained water depth, that is, whether the fishing bait reaches the bottom surface. When the fishing bait reaches the bottom surface, the memory switch TB is pressed to memorize the bottom surface position in the memory portion 46. Step S104 determines whether it is another mode. When it is not in other modes, the processing of each operation mode is completed and returned to the main path. When the water depth coincides with the bottom position, the process proceeds from step S103 to step S105, and the buzzer 44 is sounded to inform the bait to reach the bottom. In other modes, the process proceeds from step S104 to In step S106, the specified other mode is executed. When it is judged that the rotation of the reel 1 为 is the winding direction, the process proceeds from step S 1 0 1 to step S 107. Step S1 07 reads the data stored in the memory unit 46 from the number of reels. Calculate the water depth. The water depth is displayed in the display process of step S2. Step -25 - 1272907 (22) Step S 1 0 8 to determine whether the water is in the same position as the ship's edge stop. When the wind is not wound to the ship's edge stop position, Returning to the main path, the process proceeds from step S108 to step S109 when the crew stop position is reached. Step S109 causes the buzzer 44 to sound to inform the position of the fishing lure at the rim. Step S1 1 0 turns off the motor 1 2. When the hook is hooked, the position of the fish is easily arranged. The rim stop position is set, for example, within a water depth of 6 m or less for a predetermined time or longer. The electric reel controls the motor 12 when the motor control mill is the switch VT to select the tension mode. The number of tension segments forms a certain tension. Therefore, it is not easy to produce a cut or a gap when winding the wire. Moreover, the open loop control is controlled in a certain number of cases. Therefore, the duty ratio does not change up and down in the control, and the diameter of the coil is only slightly increased. Therefore, it is possible to suppress an increase in the number of revolutions of the reel when the tension is controlled, and to suppress an increase in the power consumption of the click suppression. Further, for example, it is not necessary to detect the current tension by a torque or the like to form a simple control system. Other Embodiments (a) In the above-described embodiment, the number of stages of the increase/decrease speed or the torque of the operation time of the upper switch or the lower switch of the changeover switch SK is configured, but the number of times of control may be increased. (b) In the above embodiment The button type shift switch Sk is used to increase or decrease the number of segments, but is mounted on the reel body 1 by freely swinging. The lever controls the increase and decrease of the number of segments. At this time, it is also possible to increase or decrease the number of segments of the control lever only by the number of segments, or to increase or decrease the number of segments and the switch operation of the motor. 26- 1272907 (23) (c) In the above embodiment, the duty ratio corresponding to the winding diameter is stored in the tension data storage area 5 3 in each tension stage, but only the predetermined winding diameter (for example, the line) of each tension stage may be memorized. The duty ratio of the disk diameter is corrected in accordance with the diameter of the winding which calculates or detects the duty ratio. (d) In the above embodiment, the winding diameter is calculated using the data of the line length learning result, but the wire diameter may be calculated. A long detector or the like is mounted on the electric winding §&' to detect the winding diameter based on the results of the learning. Alternatively, the winding diameter can be directly detected using a winding diameter detector such as a photo sensor or an ultrasonic sensor. [Effect of the Invention] According to the present invention, when the motor drive unit is controlled, it is not necessary to perform current detection to control the current 构成 constituting the target, and the open-loop control in which the duty ratio is controlled by the duty ratio is set, so that the control is occupied. The rate does not have to be changed up and down, only the diameter of the winding wire is slightly increased to increase the duty ratio. Therefore, it is possible to suppress the up and down fluctuation of the number of revolutions of the reel when the tension is controlled constant, and to suppress the increase in the electric power consumption by the click sound suppression. Further, for example, it is not necessary to detect the current tension by a torque or the like to form a simple control system. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a top plan view of an electric reel according to an embodiment of the present invention. Fig. 2 is a top view of the periphery of the display portion of the electric reel. Figure 3 is a control block diagram of its electric reel. -27- 1272907 (24) Fig. 4 is a view showing the storage contents of the memory unit. Fig. 5 is a graph showing the relationship between the rotation of the reel and the length of one rotation of the reel. Fig. 6 is a flow chart showing the main path of the electric reel. Fig. 7 is a flow chart showing the sub-path of the key input processing. Fig. 8 is a flow chart showing the learning processing sub-path. Fig. 9 is a flow chart showing the sub path of the speed increase processing. The first diagram is a flowchart showing the sub path of the tension increase processing. Fig. 1 is a flow chart showing the sub-path for calculating the winding diameter. Fig. 12 is a flow chart showing the sub path of the speed reduction processing. Fig. 13 is a flow chart showing the sub path of the tension reduction process. Fig. 14 is a flow chart showing the processing of the sub-paths for each operation mode. [Description of the figure] 1 Reel body 10 Reel 12 Motor 30 Reel controller 4 1 Reel sensor 45 PWM drive circuit 46 Memory 52 Speed data memory area 53 Tension data memory area PW Motor switch SK change switch - 28·

Claims (1)

1272907 (1) 拾、申請專利範圍 1 · 一種電動捲線器,爲安裝在釣竿上的捲線器,具備 有: 安裝在釣竿上的捲線器本體; 可自由轉動地安裝在上述捲線器本體的捲線用線盤; - 將上述線盤往捲線方向進行旋轉驅動的電動馬達; 以佔空率變化的脈寬調製訊號來驅動電動馬達的馬達 驅動部; 鲁 可設定對應作用於捲繞在線盤釣線上的複數階段張力 之複數階段佔空率的佔空率設定手段; 對複數階段張力中選擇其一操作手段張力的選擇操作 手段; 對捲在線盤上的釣線捲線直徑進行檢測的捲線直徑檢 測手段; 將視所選擇的張力設定的佔空率對應捲線直徑檢測手 段所檢測出的捲線直徑進行修正的佔空率修正手段;及 肇 以佔空率修正手段修正後的佔空率來對馬達驅動部進 行控制的馬達控制手段。 2 ·如申請專利範圍第1項記載的電動捲線器,其中上 述佔空率設定手段具有上述複數階段的每個張力的對應複 - 數捲線直徑設定的佔空率記憶用佔空率記憶手段, 上述佔空率修正手段視上述張力選擇手段所選出的張 力和上述捲線直徑檢測手段所檢測出的捲線直徑而設定讀 取佔空率記億手段所記憶的佔空率。 -29- 1272907 (2) 3 ·如申請專利範圍第2項記載的電動捲線器,其中上 述佔空率記憶手段中,儲存有上述複數階段張力分別作用 在線盤上時其於正要停止的線盤胴徑和最大捲線直徑上所 測得的複數捲線直徑對應的佔空率。 4 ·如申請專利範圍第1至3項中任一記載的電動捲線 · 器,其中上述捲線直徑檢測手段,具有: 上述線盤旋轉位置資料檢測用的旋轉位置資料檢測手 段; _ 根據上述所檢測出的旋轉位置資料來算出從上述線盤 送出的釣線長度或捲繞於線盤的釣線長度的釣線長算出手 段; 利用上述所算出的釣線長度和上捲在線盤上的釣線全 長及線盤胴徑來算出釣線被捲在上述線盤上的捲線直徑的 捲線直徑算出手段。 -30-1272907 (1) Pickup, Patent Application No. 1 · An electric reel for a reel mounted on a fishing rod, comprising: a reel body attached to the fishing rod; and a winding wire rotatably attached to the reel body a reel; an electric motor that rotationally drives the reel to the winding direction; a motor drive unit that drives the electric motor with a pulse width modulation signal that changes in duty ratio; and a setting that corresponds to the winding of the electric fishing line a duty ratio setting means for a duty cycle of a complex phase of a plurality of stages; a selection operation means for selecting a tension of the operation means for the plurality of stages; and a winding diameter detecting means for detecting a diameter of the line of the fishing line on the roll; a duty ratio correction means for correcting a winding diameter determined by the selected tension corresponding to the winding diameter detected by the winding diameter detecting means; and a duty ratio corrected by the duty ratio correcting means to the motor driving section Motor control means for control. The electric reel according to claim 1, wherein the duty ratio setting means has a duty ratio memory duty ratio memory means for setting a corresponding complex-number winding diameter for each tension of the plurality of stages. The duty ratio correction means sets the duty ratio memorized by the reading duty ratio means based on the tension selected by the tension selecting means and the winding diameter detected by the winding diameter detecting means. The electric reel according to the second aspect of the invention, wherein the duty ratio memory means stores the line which is about to stop when the plurality of stages of tension are applied to the disk respectively. The duty ratio corresponding to the diameter of the plurality of windings measured on the diameter of the disk and the diameter of the largest winding. The electric winding device according to any one of claims 1 to 3, wherein the winding diameter detecting means includes: a rotational position data detecting means for detecting the rotational position data of the reel; _ detecting according to the above The rotation position data of the outlet is calculated by calculating the length of the fishing line sent from the reel or the length of the fishing line wound around the reel; and using the calculated length of the fishing line and the fishing line on the reel The full length and the coil diameter are used to calculate the winding diameter calculating means of the winding diameter of the fishing line wound on the reel. -30-
TW092110039A 2002-06-18 2003-04-29 Electric reel TWI272907B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177303A JP4141186B2 (en) 2002-06-18 2002-06-18 Electric reel

Publications (2)

Publication Number Publication Date
TW200403025A TW200403025A (en) 2004-03-01
TWI272907B true TWI272907B (en) 2007-02-11

Family

ID=29996490

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092110039A TWI272907B (en) 2002-06-18 2003-04-29 Electric reel

Country Status (4)

Country Link
JP (1) JP4141186B2 (en)
KR (1) KR100970863B1 (en)
CN (1) CN100482070C (en)
TW (1) TWI272907B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477738B (en) * 2009-11-04 2015-03-21 Shimano Kk The line length display device of the fishing reel
TWI595832B (en) * 2011-08-31 2017-08-21 Shimano Kk Tension display device for double bearing winder
TWI757713B (en) * 2019-09-17 2022-03-11 日商太平洋工業股份有限公司 Electric reel and electric reel control device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134990B2 (en) * 2008-01-31 2013-01-30 株式会社シマノ Electric reel motor control device
JP5654270B2 (en) * 2010-06-25 2015-01-14 株式会社シマノ Fishing reel
KR101650205B1 (en) * 2010-07-07 2016-08-22 엘에스산전 주식회사 Open loop winding system having hold of diameter calculation and torque limit selection
JP5755083B2 (en) * 2011-08-31 2015-07-29 株式会社シマノ Electric reel control device
JP6606327B2 (en) * 2014-12-05 2019-11-13 株式会社シマノ Electric reel
JP7257202B2 (en) * 2019-03-19 2023-04-13 株式会社シマノ Electric reel for fishing, its mode transition control method, and mode transition control program
CN110583593B (en) * 2019-09-23 2021-05-11 黄光佐 Design and implementation method for preventing water drop from being blown into wire by wheel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3515881B2 (en) 1997-07-29 2004-04-05 ダイワ精工株式会社 Fishing reel
JP3993709B2 (en) * 1998-11-04 2007-10-17 株式会社シマノ Electric reel
JP3519962B2 (en) 1998-11-20 2004-04-19 ダイワ精工株式会社 Electric reel for fishing
JP4427126B2 (en) 1999-04-20 2010-03-03 株式会社シマノ Electric reel
JP3762615B2 (en) * 2000-05-31 2006-04-05 ダイワ精工株式会社 Fishing electric reel
JP2002125546A (en) * 2000-10-27 2002-05-08 Shimano Inc Motor controller for electric reel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477738B (en) * 2009-11-04 2015-03-21 Shimano Kk The line length display device of the fishing reel
TWI595832B (en) * 2011-08-31 2017-08-21 Shimano Kk Tension display device for double bearing winder
TWI757713B (en) * 2019-09-17 2022-03-11 日商太平洋工業股份有限公司 Electric reel and electric reel control device

Also Published As

Publication number Publication date
CN1466874A (en) 2004-01-14
KR100970863B1 (en) 2010-07-20
KR20030097670A (en) 2003-12-31
TW200403025A (en) 2004-03-01
CN100482070C (en) 2009-04-29
JP4141186B2 (en) 2008-08-27
JP2004016136A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
KR101687524B1 (en) Motor control device for motor drive fishing reel
JP5525795B2 (en) Fishing reel thread length display device
TWI272907B (en) Electric reel
KR101698345B1 (en) Fishing reel
TWI595833B (en) Control apparatus for electrical reel
JP4054540B2 (en) Electric reel
JP2013048593A (en) Controller of electric reel
JP2011097831A5 (en)
JP2010239931A5 (en)
JP4427126B2 (en) Electric reel
JP4307656B2 (en) Electric reel motor control device
TWI633838B (en) Display apparatus for electrical fishing reel
JP7227877B2 (en) motor controller
JP2002051674A (en) Motor control circuit of electric reel
JP4039887B2 (en) Electric reel
JP2015159758A5 (en)
JP3682949B2 (en) Fishing reel thread length measuring device
JP3797815B2 (en) Fishing reel thread length measuring device
JP3534623B2 (en) Motor control device for electric reel
JP3448439B2 (en) Electric reel rotation speed control device
JP2002065127A (en) Apparatus for measuring line length of reel for fishing
JP3361428B2 (en) Water depth display device for fishing reels
JP3361453B2 (en) Fishing reel line length measuring device
JP2001161232A (en) Line length measuring device of reel for fishing
JP2000300130A (en) Motor control system for electric reel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees