TWI271737B - MRAM memory cell - Google Patents

MRAM memory cell Download PDF

Info

Publication number
TWI271737B
TWI271737B TW093100189A TW93100189A TWI271737B TW I271737 B TWI271737 B TW I271737B TW 093100189 A TW093100189 A TW 093100189A TW 93100189 A TW93100189 A TW 93100189A TW I271737 B TWI271737 B TW I271737B
Authority
TW
Taiwan
Prior art keywords
layer
magnetic
memory cell
magnetic layer
mram memory
Prior art date
Application number
TW093100189A
Other languages
Chinese (zh)
Other versions
TW200425138A (en
Inventor
Evangelos Stavrou
Manfred Proell
Stephan Schroeder
Joerg Kliewer
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of TW200425138A publication Critical patent/TW200425138A/en
Application granted granted Critical
Publication of TWI271737B publication Critical patent/TWI271737B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

The invention relates to an MRAM memory cell in which the magnetic layers (ML1, ML2) separated by an intermediate layer (ZS) at least partly comprise a ferrimagnetic material.

Description

1271737 九、發明說明: 本發明係有關包含兩磁性層之MRAMb憶胞元,其被非 磁性中介層分隔,其第一磁性層呈現硬磁性行為而另外第二磁 ! 生^王現|人磁性行為,使資訊得以藉由第二磁性層之磁化狀態 對第一磁性層之磁化狀態來儲存。 、有時MRAMS(磁性隨機存取記憶體)已被討論做為動態半 導體冗憶體(半導體DRAMs)之替代,係因其與半導體DRAMs 2較具有特定伽··與半導體DRAMs她,MRAMs係為不 需^留資訊之更新操作之雜電性記紐。再者,MRAMs具 有含非常清楚結構之記憶胞元,纟包含被中介層彼此分隔之兩 磁性層。最後,MRAMs可抗輻射,也就是說即使輻射入射, 其亦可確保資訊保留。 、第二圖顯示具有第一磁性層Ml,第二磁性層M2及中介 層ZS之慣用MRAM記憶胞元。第一磁性層如係被堅固耦 合至反鐵磁層AF,且類似第二磁性^ M2係、包含鐵磁。中介 層ZS係為非磁性且包含如二氧化石夕,銅等等之氧化物。秦 鐵化合物可被用於兩磁性層M1及體,而用於反鐵磁層af 之適田物吳係為如氧化鎳或鐵_鎳_猛。各例中兩磁性層驢及 M2之層厚度約為1〇公厘,而中介層zs相當薄,具有工至〕 公厘之層厚度。反鐵磁層AF具有50公厘之層厚度。 斤由於耦合至反鐵磁層AF,磁性層M1係呈現硬磁性行為, 而第二磁性層M2之行為係為軟磁性。 以垂直方向流經第二圖具反鐵磁層AF,磁性層M1,中 介層ZS及第二磁性層M2之磁性層束之電流,係視兩磁性層 '1271737 及Μ2中之磁化疋否彼此平行或非平行而經歷不同之電 阻。因此,若這兩磁化平行,則電阻較低,若這磁化非平行, 則電阻較高。 中介層ZS可控制兩磁性層M1及Μ2之麵合及磁性 所提供之電阻值。 第三圖描_观元Z1至Ζ4如何減[側於互連 u ’ L2 ’另一側於互連L3 ’ L4之間。例如,電流η流經互 連u,而電流13通過互連L3。記憶胞元Z1位於互連L1及 u之間一。為了簡化’該記憶胞元Zl及記憶胞元0至以圖 示僅顯示磁性層Ml,中介層Zs及磁性層M2。反鐵磁層Αρ 同樣地可依縣來纽。細,若雜層M1具錢應硬磁性 特性,則其可被消除。 右磁性層Ml接著被以軟磁性型式配置,則不用說其亦可 提供硬磁性特性給磁性層M2。 飢經互連L1之電流η係產生磁場H1,而經由互連乙3 ,傳达之電流13係產生磁場H3。兩磁場m及出係被彼此 fe加於磁性層M2巾。磁性層M2中之被疊加磁場強度及方 向,係視互連L1中之電流π及互連L3中之電流13之強度及 方向而定。磁性層M2中之磁化係以平行或非平行磁性層吣 中之磁化預定方向之方式被對鍵立。此依序意指磁性層吣 及M2中之磁化平行指向例中出現相當低電阻之磁性層束,而 該磁化非平行指向例中出現較高電阻之磁性層束。視磁性層 M2中之磁化方向而定可區分”丨,’及”〇,,,一二進位值被分派至 低電阻值,而另一二進位值被分派至高電阻值。 1271737 記憶胞兀ζι可藉助次臨界電流來讀取,例如其流經互連 k L1,記憶胞元Z1及互連L3。由於此次臨界電流,電阻值可視 · 磁性層M2中之磁化狀態方式來偵測。 此MRAM概念可以相當低技術支出來理解,且與dram 概念例中之電子儲存相較下具有藉助視磁性層M2磁化方向 之儲存為非依電性而消除更新操作之頗佳優點。 現今MRAMs之缺點制與㈣存資訊敎性及儲存密 度有關: 因此,被形成自鐵磁物質之磁性層M1及M2之矯頑場強馨 度He係非常低。雖然此具有當寫入記憶體時,規程電流^ 及13可分別被麟相當低之優點,但軟雖或枝合磁性層 M2中之資訊可能因外在影響缺乏穩定性而漏失。此係因雖 層M2之磁化可改變,因為低矯頑場強度例中之該改變可於對-應外在影響下立即實現。 、 > 再者,本質可現之高度縮小化,也就是高儲存密度例中, 寫入鄰近記憶胞元結果係使串音完美可行。此係相當低橋頑場 強度He及其製造指令變異所致。記憶胞元間過小距離例中,參 此寫入鄰近記憶胞元之_期效應可額外藉由鐵磁位元磁性 雙極交互作用來增強。 如所知’亦應注意亞鐵磁物質具有不同於鐵磁物質之磁性 特性。 首先,亞鐵磁物質具有小於鐵磁物質之磁矩。亞鐵磁物質 之飽和磁化Msatoation仙溫度τ增加叫低並接著降至俗 稱Curie ,點Tcurie處之〇值,也就是磁矩消失時之臨界溫度。 1271737 亞鐵磁例中之Tcurie大致明顯低於鐵磁例中者。 此做為溫度τ函數之飽和磁化Msaturati〇n輪廊係被繪圖 於第四圖。再者,亞鐵磁物質例中,續頌場強度Hc僅於We 點TCurie附近很低,當溫度降低時其增加。也就是說,溫度丁 增加時續稱強度He降低,且最後_ Curie點伽也處之 〇值。相對地,滯後迴路輪廓於Curie點Tcurie區域中相當高 處很乍,而该迴路於低溫處較寬。此做為温度T函數之橋 頑場強度He係被繪圖於第五圖。 本發明目的係提供-種可藉由被儲存資訊特別高穩定性 及大可能儲存密度來區分MRAM記憶胞元。 介紹中提及之MRAM記憶胞元類型例中,依據本發明之 此f的係藉由至少兩磁性層之—至少部份包含亞鐵磁物質之 事實來達成。較佳是,兩磁性輕少部份包含亞鐵磁物質。铁 而,其亦可以此法僅配置這些層其中之一,並以傳統方式具體 化其他層。 本赉明之具優點發展特別出自申請專利範圍子項中。 依據本發明之MRAM記憶胞元係藉由以下特徵被明確區 分: 除了鐵磁物質,亞鐵磁物f亦可至少部份制於磁性層。 再者,各例中複數層係被提供用於磁性層。也就是說,磁 性層係藉由各包含複數個別層之複數層被形成或僅個別形 成’使各磁性層之雜特質可藉由改變該侧層之層厚度比率 及/或改變該個別層之層厚度總和合來控制。 最後’磁性層之亞鐵磁物質溫度表現係被用於依據本發明 1271737 之mram記憶胞元。也就是說,亞鐵磁物質之熱磁行為 估用於資訊寫入項目。 因為亞鐵磁物質具有遠小於鐵磁物質之磁矩,所以鄰接記 憶胞元間之磁性雙極交互作用實務上不重要。也就是說,鄰接 胞元間之干擾效應可大部份被排除。 再者,Curie點Tcurie鄰接之亞鐵磁物質例中,磁化反轉 及寫入或覆寫可以非常簡單方式來實施。然而,因為矯頌場強 f He僅於Curie點如也附近非常低,也就是說寫入範圍中, 當其於低溫增加時,記憶胞元之資訊於記憶胞元操作溫度或鄰 接記憶胞元寫入期間維持非常穩定。再者,藉由個別磁性層之 複數層結構’矯娜強度He可經由個德學組成被^ 於固定溫度。 本發明係芩考附圖被更詳細解釋如下。 第二至五圖已被解釋於介紹中。圖中,相同參考符號於夂 例中係被祕相骑應結構部件。 ° 第圖頒不互連L1上之依據本發明之記憶胞元Ζ1實施 〇尤己1:¾胞元具有反鐵磁層AF上之磁性層ML1,中介層 zs及中介層zs上之第二磁性層Mu。 曰 反鐵磁層AF,磁性層Mu及磁性層ML2各包含一複數 :束也就心兄’反鐵磁層AF包含層配對入,磁性層 具有層配對λ 1,而磁性層Mu係被建構層配對久2。層配對 λ包含個別層Aa,Ab,層配對入1具有個別層;Ua,;Ub,層 =對λ 2係由個別層λ 2a,λ %建構。個別層λ u係分別具 tl及t2之層厚度’個別層λ 1&,又化係分別具有⑴及似 1271737 之層厚度,而個別層又2U2b係分別具有⑵及⑵之層厚度。 所例如,I可被選為用於個別層Aa,Ala及b之適當^勿 質’鐵可作為Λ b,λ lb及Λ 2b之適當物質。也就是說,此田/鐵 之一元組合係適用於個別複數層束。 各例中之磁性特性在可以藉由改變反鐵磁層af,磁性 層ML1及磁性層ML2之·2,tll/U2及個別層厚度 比率之預期方式來建立。同樣可改變個別層厚度總合,也就是 反鐵磁層AF中之層配對又為tl+t2,第一磁性層觀中之層 配對又1為tll+tl2,第二磁性層Mu巾之層配對又^ t21+t22。也就是說’藉由改變個別層厚度比率或個別層厚度 總合’個別層,也就是反鐵磁層AF,磁性層MU及磁性層 ML2中之化學組成可以預期方式被建立。 曰 層厚度配對;I之適當值係為2·5奈米大小之階,而^及· 入2為1.5奈米大小之階,兩個別層各具有大約相同之層厚· 度使tl/t2-tll/tl2 = t/21/t22=l為真。然而,當然從此導出 之值亦為可能。再者,反鐵磁層AF,磁性層ML1及磁性層 ML2中之層厚度比率可於各例中彼此導出。當然,同樣亦可馨 應用至層厚度。 第一磁性層ML1之總層厚度及第二磁性層ML2之總層厚 度可為達ίο奈米大小之階。若層配對被假設為丨奈米及15 奈米間之層厚度,則各例中第一磁性層ML1及第二磁性層 ML2係具有總共約五層配對之堆疊。 反鐵磁層AF之典型厚度係介於30及50奈米之間,而較 仏為35及奈米之間。例如約ι5層配對a在此可被提供。 10 1271737 依據本發明之MRAM記憶胞元最重要是反鐵磁層AF, 磁性層ML1及磁性層ML2之不同磁性特性,係可藉由改變個 別層厚度tl/t2,tll/t12及t/21/t22,也就是最終藉由改變化學 組成’及/或改變層厚度tl+t2,tll+tl2及t21+t22,也就是層 配對之層厚度來建立。 有了兩基本物質,也就是如釓,鐵,也就是說塗敷裝設中 之兩來源或目標,依據本發明之MRAM記憶胞元可以具有不 同磁性特性之磁性層來製造。此目的所需係對個別層個別採用 塗敷時間,及藉由各複數層束中之兩物質來更替塗敷。 依據本發明之MRAM記憶胞元可具有優點地視寫入操作 期間反鐵磁物質(釓鐵)使用較大溫度··傳統MRAM中僅被感 應磁場被用來寫入(比較第三圖中之H1及H3),而記憶胞元之 電流及電阻被用來讀出,依據本發明2MRAM記憶胞元中, 熱觀點於寫入處理期間被明癌使用。此係因若電流通過金屬, 則後者被加熱,其原則上亦被施加至前導至記憶胞元之互連。 此例中,用於控制溫度之被操縱變數係為電流及互連之幾何範 圍。特別是極薄層具有頗多發熱。 依據本發明之MRAM記憶胞元例中,互連範圍可被建立 使後者被加熱。若具有軟磁性特性之磁性層ML2接著被加熱 至Curie點Tcurie附近之溫度,則該磁性層ML2中之磁化可 以非常簡單方式來改變。也就是說,立即可寫人或重複寫入記 憶胞元。 寫入刼作後,也就是寫入電流衰減後,記憶胞元再次冷 部,藉此明頭較咼矯頑力確保被儲存資訊之更大穩定性(比較 1271737 第五圖)。 有了依據本發明之MrAM記憶胞元,可拉 :極小範圍之被寫入位元更大穩定性。胞元二;二 【圖式簡單說明】 第一圖頒示依據本發明之MRAM記憶胞元圖示。 第一圖顯示傳統MRAM記憶胞元圖示。 第二圖顯示記憶胞元陣列中之複數MRAM記憶胞元剖 面0 第四圖顯示用於亞鐵磁物質做為溫度T函數之飽和磁化1271737 IX. DESCRIPTION OF THE INVENTION: The present invention relates to an MRAMb memory cell comprising two magnetic layers separated by a non-magnetic interposer, the first magnetic layer exhibiting a hard magnetic behavior and the second magnetic layer The behavior is such that information can be stored by the magnetization state of the second magnetic layer on the magnetization state of the first magnetic layer. MRAMS (Magnetic Random Access Memory) has sometimes been discussed as an alternative to dynamic semiconductor DRAMs (semiconductor DRAMs) because it has specific gamma and semiconductor DRAMs compared to semiconductor DRAMs 2. MRAMs are There is no need to keep the information update operation of the hybrid memory. Furthermore, MRAMs have memory cells with a very clear structure and contain two magnetic layers separated by interposer layers. Finally, MRAMs are radiation resistant, which means that even if the radiation is incident, it ensures information retention. The second figure shows a conventional MRAM memory cell having a first magnetic layer M1, a second magnetic layer M2, and an interposer ZS. The first magnetic layer is strongly coupled to the antiferromagnetic layer AF, and is similar to the second magnetic system, including ferromagnetic. The interposer ZS is non-magnetic and contains an oxide such as cerium oxide, copper or the like. The Qin iron compound can be used for the two magnetic layers M1 and the body, and the suitable field for the antiferromagnetic layer af is, for example, nickel oxide or iron-nickel. In each case, the thickness of the layers of the two magnetic layers M and M2 is about 1 mm, and the interposer zs is quite thin, having a thickness of up to 〜4 mm. The antiferromagnetic layer AF has a layer thickness of 50 mm. The magnetic layer M1 exhibits a hard magnetic behavior due to coupling to the antiferromagnetic layer AF, and the behavior of the second magnetic layer M2 is soft magnetic. The current flowing through the second layer of the antiferromagnetic layer AF, the magnetic layer M1, the interposer ZS and the second magnetic layer M2 in the vertical direction depends on whether the magnetizations in the two magnetic layers '1271737 and Μ2 are mutually Parallel or non-parallel and experience different electrical resistance. Therefore, if the two magnetizations are parallel, the resistance is low, and if the magnetization is non-parallel, the resistance is high. The interposer ZS can control the surface resistance of the two magnetic layers M1 and Μ2 and the resistance value provided by the magnetic layer. The third figure shows how the viewing elements Z1 to Ζ4 are reduced [side to the interconnection u ′ L2 ′ and the other side is between the interconnections L3 ′ L4. For example, current η flows through interconnect u and current 13 passes through interconnect L3. Memory cell Z1 is located between interconnects L1 and u. In order to simplify the memory cell Z1 and the memory cell 0 to show only the magnetic layer M1, the interposer Zs and the magnetic layer M2. The antiferromagnetic layer Αρ can also be used in the county. Fine, if the hybrid layer M1 has a hard magnetic property, it can be eliminated. The right magnetic layer M1 is then arranged in a soft magnetic pattern, and it goes without saying that it can also provide hard magnetic properties to the magnetic layer M2. The current η of the hunger interconnect L1 generates a magnetic field H1, and the current 13 transmitted through the interconnection B3 generates a magnetic field H3. The two magnetic fields m and the output are added to each other by the magnetic layer M2. The intensity and direction of the superimposed magnetic field in the magnetic layer M2 depends on the intensity and direction of the current π in the interconnect L1 and the current 13 in the interconnect L3. The magnetization in the magnetic layer M2 is aligned in a predetermined direction of magnetization in the parallel or non-parallel magnetic layer 吣. This in turn means that the magnetic layers in the magnetic layers 吣 and M2 are parallel-oriented, and a magnetic layer bundle having a relatively low resistance appears in the example, and the magnetization non-parallel pointing is a magnetic layer bundle having a higher resistance in the example. Depending on the direction of magnetization in the magnetic layer M2, it is possible to distinguish between "丨," and "〇,,, a binary value is assigned to a low resistance value, and another binary value is assigned to a high resistance value. The 1271737 memory cell can be read by means of a sub-critical current, for example, it flows through the interconnect k L1 , the memory cell Z1 and the interconnect L3. Due to the critical current, the resistance value can be detected by the magnetization state in the magnetic layer M2. This MRAM concept can be understood with relatively low technical expenditure, and has the advantage of eliminating the update operation by the non-electrical storage of the magnetization direction of the magnetic layer M2 compared to the electronic storage in the dram concept. The shortcomings of MRAMs today are related to (4) information storage and storage density: Therefore, the coercive field strength of the magnetic layers M1 and M2 formed from ferromagnetic substances is very low. Although this has the advantage that the program currents ^ and 13 can be relatively low when written into the memory, the information in the soft or branched magnetic layer M2 may be lost due to the lack of stability of the external influence. This is because the magnetization of layer M2 can be changed because the change in the case of low coercive field strength can be achieved immediately under the influence of external influence. Furthermore, the essence can be reduced in height, that is, in the case of high storage density, the result of writing adjacent memory cells makes the crosstalk perfect. This is due to the relatively low bridge strength of He and its manufacturing instructions. In the case of a small distance between memory cells, the _phase effect of writing adjacent memory cells can be additionally enhanced by the magnetic bipolar interaction of ferromagnetic bits. As is known, it should also be noted that ferrimagnetic materials have magnetic properties different from ferromagnetic materials. First, the ferrimagnetic material has a magnetic moment smaller than that of the ferromagnetic substance. The saturation magnetization of the ferrimagnetic material Msatoation increases the temperature τ and then drops to the common value of Curie, the point at which Tcurie is the critical temperature at which the magnetic moment disappears. 1271737 The Tcurie in the ferromagnetic case is roughly lower than that in the ferromagnetic case. This is the saturation magnetization of the temperature τ function. The Msaturati〇n wheel corridor is shown in the fourth figure. Further, in the case of the ferrimagnetic substance, the continuous field strength Hc is only low near the Wec point of the We point, and it increases as the temperature decreases. That is to say, when the temperature D is increased, the continuous strength He is lowered, and the final _ Curie point gamma is also depreciated. In contrast, the hysteresis loop profile is quite high in the Tcurie region of the Curie point, which is wider at low temperatures. This is the bridge of the temperature T function. The coercive field He is plotted in the fifth figure. SUMMARY OF THE INVENTION It is an object of the present invention to provide for distinguishing MRAM memory cells by the particularly high stability and high possible storage density of stored information. In the example of the MRAM memory cell type mentioned in the introduction, the f according to the present invention is achieved by the fact that at least two magnetic layers - at least partially containing ferrimagnetic material. Preferably, the two magnetically light portions contain ferrimagnetic material. Iron, it is also possible to configure only one of these layers in this way and to embody the other layers in a conventional manner. The development of this advantage is particularly derived from the scope of the patent application. The MRAM memory cell according to the present invention is clearly distinguished by the following features: In addition to the ferromagnetic material, the ferrimagnetic material f can be at least partially fabricated in the magnetic layer. Further, in each of the examples, a plurality of layers are provided for the magnetic layer. That is, the magnetic layer is formed by a plurality of layers each comprising a plurality of individual layers or only individually formed 'the characteristics of the magnetic layers can be changed by changing the layer thickness ratio of the side layer and/or changing the individual layers. The sum of the layer thicknesses is combined to control. Finally, the ferromagnetic material temperature profile of the magnetic layer is used in the mram memory cell according to the invention 1271737. That is to say, the thermomagnetic behavior of ferrimagnetic materials is estimated to be used in information writing projects. Since the ferrimagnetic material has a magnetic moment much smaller than that of the ferromagnetic substance, the magnetic bipolar interaction between adjacent memory cells is not practical. That is to say, the interference effects between adjacent cells can be largely excluded. Further, in the case of the ferrisite adjacent to the Curie point Tcurie, magnetization reversal and writing or overwriting can be carried out in a very simple manner. However, since the turbulence field strength f He is only very low near the Curie point, that is, in the writing range, when it is increased at a low temperature, the memory cell information is at the memory cell operating temperature or the adjacent memory cell. The write period is maintained very stable. Furthermore, the multiple layer structure by the individual magnetic layers 'the intensity of He can be set to a fixed temperature via a German composition. The invention is explained in more detail below with reference to the accompanying drawings. The second to fifth figures have been explained in the introduction. In the figure, the same reference symbols are used in the example to ride the structural components. The figure shows that the memory cell Ζ1 according to the present invention is not interconnected with L1. The 31:3⁄4 cell has a magnetic layer ML1 on the antiferromagnetic layer AF, the interposer zs and the second on the interposer zs. Magnetic layer Mu. The antiferromagnetic layer AF, the magnetic layer Mu and the magnetic layer ML2 each comprise a complex number: the beam is also the heart of the 'antiferromagnetic layer AF containing layer pairing, the magnetic layer has a layer pairing λ 1, and the magnetic layer Mu is constructed Layer pairing is long. Layer pairing λ comprises individual layers Aa, Ab, layers paired into 1 with individual layers; Ua,; Ub, layer = pair λ 2 are constructed from individual layers λ 2a, λ %. The individual layers λ u have the layer thicknesses of t1 and t2 respectively, the individual layers λ 1 & and the layers have thicknesses of (1) and 1271737, respectively, and the individual layers and 2U2b have layer thicknesses of (2) and (2), respectively. For example, I may be selected as the appropriate material for the individual layers Aa, Ala and b, as the appropriate materials for Λ b, λ lb and Λ 2b. That is to say, this field/iron combination is suitable for individual multiple layers. The magnetic properties in each case can be established by changing the ratio of the antiferromagnetic layer af, the magnetic layer ML1 and the magnetic layer ML2, 2, tll/U2 and individual layer thickness ratios. The thickness of the individual layers can also be changed, that is, the layer pairing in the antiferromagnetic layer AF is tl+t2, and the layer pairing in the first magnetic layer is 1 is tll+tl2, and the layer of the second magnetic layer Mu towel Pairing again ^ t21 + t22. That is to say, the chemical composition in the magnetic layer MU and the magnetic layer ML2 can be established in a desired manner by changing the individual layer thickness ratio or the individual layer thickness sum of the individual layers, that is, the antiferromagnetic layer AF. The thickness of the tantalum layer is matched; the appropriate value of I is the order of the size of 2.5 nanometers, and the sum of 2 and 1.5 is the order of 1.5 nanometers, and the two layers each have approximately the same layer thickness and degree to make tl/ T2-tll/tl2 = t/21/t22=l is true. However, of course, the values derived therefrom are also possible. Further, the layer thickness ratios in the antiferromagnetic layer AF, the magnetic layer ML1 and the magnetic layer ML2 can be derived from each other in each case. Of course, it can also be applied to the layer thickness. The total layer thickness of the first magnetic layer ML1 and the total layer thickness of the second magnetic layer ML2 may be a step of a size of ίοN. If the layer pairing is assumed to be the layer thickness between 丨 nanometer and 15 nm, the first magnetic layer ML1 and the second magnetic layer ML2 in each case have a stack of about five pairs in total. The typical thickness of the antiferromagnetic layer AF is between 30 and 50 nm, compared to between 35 and nanometer. For example, about ι5 layer pair a can be provided here. 10 1271737 The most important MRAM memory cell according to the present invention is the antiferromagnetic layer AF, the magnetic properties of the magnetic layer ML1 and the magnetic layer ML2, which can be changed by changing the thickness of the individual layers tl/t2, tll/t12 and t/21 /t22, which is ultimately established by changing the chemical composition 'and/or changing the layer thickness tl+t2, tll+tl2 and t21+t22, that is, the layer thickness of the layer pair. With two basic materials, i.e., two sources or targets in the coating, that is, in the coating installation, the MRAM memory cells according to the present invention can be fabricated with magnetic layers having different magnetic properties. This purpose is required to apply the coating time individually to the individual layers and to alternate the coating by two of the plurality of layers. The MRAM memory cell according to the present invention can advantageously have a large temperature for the antiferromagnetic material (ferromagnetic) during the write operation. · Only the induced magnetic field is used for writing in the conventional MRAM (compare the third figure) H1 and H3), and the current and resistance of the memory cell are used for reading. According to the 2MRAM memory cell of the present invention, the thermal point of view is used for the cancer during the writing process. This is because if the current passes through the metal, the latter is heated, which in principle is also applied to the interconnection leading to the memory cell. In this example, the manipulated variable used to control the temperature is the geometric range of current and interconnection. In particular, very thin layers have a lot of heat. In the case of the MRAM memory cell according to the present invention, the interconnection range can be established such that the latter is heated. If the magnetic layer ML2 having soft magnetic properties is then heated to a temperature near the Curie point Tcurie, the magnetization in the magnetic layer ML2 can be changed in a very simple manner. That is to say, the person can be written immediately or repeatedly written to the memory cell. After writing, that is, after the write current is attenuated, the memory cell is cooled again, so that the coercive force of the head ensures greater stability of the stored information (cf. 1271737, fifth figure). With the MrAM memory cell according to the present invention, it is possible to pull a very small range of bits to be written with greater stability. Cell 2; 2 [Simple Description of the Drawings] The first figure presents a representation of the MRAM memory cell in accordance with the present invention. The first figure shows a graphical representation of a traditional MRAM memory cell. The second figure shows the complex MRAM memory cell section in the memory cell array. The fourth figure shows the saturation magnetization for the ferrimagnetic material as a function of temperature T.

Msaturation 輪庵。 第五圖顯示用於亞鐵磁物質做為溫度T函數之矯頑場強 度He輪廊。 【主要元件符號說明】Msaturation rim. The fifth graph shows the coercive field strength He wheel for the ferrimagnetic material as a function of temperature T. [Main component symbol description]

Ml具硬磁性之層性層 M2 具軟磁性之層性層 ML1具硬磁性之複數層磁性層 ML2具軟磁性之複數層磁性層 ZS中介層 AF反鐵磁層 λ 反鐵磁層之層配對 入1 複數層磁性層ML1之層配對 λ 2 複數層磁性層ML2之層配對Ml with hard magnetic layer M2 with soft magnetic layer ML1 with hard magnetic layer magnetic layer ML2 with soft magnetic multiple layer magnetic layer ZS interposer AF antiferromagnetic layer λ antiferromagnetic layer layer pairing Layer 1 paired with multiple layers of magnetic layer ML1 paired with λ 2 layered with multiple layers of magnetic layer ML2

Aa、Ab、Ala、Alb、A2a、A2b 個別層 12 1271737 tl、t2、t21、t22、til、tl2 個別層厚度 U、L2、L3、L4 互連 Z;l、Z2、Z3、Z4 記憶胞元 II、13 寫入電流 HI、H3 磁場Aa, Ab, Ala, Alb, A2a, A2b Individual layers 12 1271737 tl, t2, t21, t22, til, tl2 individual layer thickness U, L2, L3, L4 interconnect Z; l, Z2, Z3, Z4 memory cells II, 13 write current HI, H3 magnetic field

Msaturati〇n飽和磁化Msaturati〇n saturation magnetization

Tcurie Curie 點Tcurie Curie point

He矯頑場強度He coercive field strength

1313

Claims (1)

1271737 十、申請專利範圍: - 種MRAM 0己丨思胞元,其包含了由一非磁性中介層(zs) 所分隔之一第一磁性層與一第二磁性層(ML1,ML2),其 :亥第磁性層(ML1)呈現硬磁性,而該第二磁性層(ML2) f現軟磁性,使資訊可藉由該第二磁性層(ML2)之磁化狀 恶相對於該第-磁性層(ML1)之磁化狀態而加以儲存,該 MRAM記憶胞元的特徵在於: 該第一磁性層(ML1)與該第二磁性層(ML2)皆包含 一多層次層,該多層次層是各由互相改變之個別層(, φ 入比;A2a,;l2b)之配對(λ1,λ2)所形成,並包含一 亞鐵磁物質; 在各多層次層中,可藉由改變形成該配對的個別層(λ la’ Alb,;l2a’ ;l2b)之一層厚度比率(τΐ1/Τ12;Τ21/Τ22) 及/或藉由改變個別層(;Ua,Alb ; A2a,A2b)之一層 · 厚度總和(tll+tl2 ; t21+t22)來控制磁性質; 該第一磁性層(ML1)具有一反鐵磁層(AF);以及 該反鐵磁層(AF)亦由一反鐵磁多層次層所形成。 H 2·如申請專利範圍第1項之MRAM記憶胞元,其中該反鐵磁 多層次層的厚度為35至40奈米。 3·如申請專利範圍第1項或第2項所述之MRAM記憶胞元, 其中’在該反鐵磁多層次層中具有包含互相改變之個別層 (Aa,Ab)的一酉己對(λ )。 4·如申請專利範圍第3項所述之MRAM記憶胞元,其中,在 該反鐵磁多層次層中的該配對之厚度係約2.5奈米。 14 -1271737 5·如申請專利範圍第3項所述2MRAMb憶胞元,其中該配 ’ 對(人)的兩個別層的厚度(tl,t2)約為相同。 - 6.如申請專利範圍第1項或第2項所述之MRAM記憶胞元, 其中,在磁性之該多層次層中的配對之厚度係1至丨.5奈米。 7·如申請專利範圍第1項或第2項所述之MRAM記憶胞元, 其中該第一磁性層(ML1)與該第二磁性層(ML2)之厚度 係各小於10奈米。 8·如申請專利範圍第丨項或第2項所述之MRAM記憶胞元, 其中該第一磁性層(ML1)與該第二磁性層(ML2)包含一 _ 釓/鐵。 9·如申請專利範圍第1項或第2項所述之MRAM記憶胞元, 其中該反鐵磁層包含一乳/鐵。 10·如申請專利範圍第1項或第2項所述之MRAM記憶胞 · 元,其中該對該記憶胞元之線路(Ll,L2,L3,L4)係被製 · 成使流經其之電流可加熱該第二磁性層(ML2)至恰進入其 Curie溫度(Tcurie)之區域。 151271737 X. Patent application scope: - A MRAM 0 hexameric cell comprising a first magnetic layer and a second magnetic layer (ML1, ML2) separated by a non-magnetic interposer (zs) : the first magnetic layer (ML1) exhibits hard magnetic properties, and the second magnetic layer (ML2) f is soft magnetic, so that information can be magnetized by the second magnetic layer (ML2) relative to the first magnetic layer The magnetic state of (ML1) is stored, and the MRAM memory cell is characterized in that: the first magnetic layer (ML1) and the second magnetic layer (ML2) both comprise a multi-layer layer, and the multi-level layer is a pair of alternating layers (, φ in ratio; A2a, ; l2b) formed by a pair (λ1, λ2) and containing a ferrimagnetic substance; in each multi-layer layer, an individual forming the pair can be changed by a layer thickness ratio of λ la' Alb;;l2a';l2b) (τΐ1/Τ12; Τ21/Τ22) and/or by changing the sum of layers and thicknesses of individual layers (Ua, Alb; A2a, A2b) ( Tll+tl2; t21+t22) to control the magnetic properties; the first magnetic layer (ML1) has an antiferromagnetic layer (AF); and the opposite Magnetic layer (AF) increased from a multi-layered antiferromagnetic layer is formed. H 2 . The MRAM memory cell of claim 1, wherein the antiferromagnetic multi-layer layer has a thickness of 35 to 40 nm. 3. The MRAM memory cell according to claim 1 or 2, wherein 'the antiferromagnetic multi-layer has a pair of individual layers (Aa, Ab) that change each other ( λ ). 4. The MRAM memory cell of claim 3, wherein the thickness of the pair in the antiferromagnetic multi-layer is about 2.5 nm. 14 - 1271737 5. The 2MRAMb memory cell as described in claim 3, wherein the thickness (tl, t2) of the two separate layers of the pair is approximately the same. 6. The MRAM memory cell according to claim 1 or 2, wherein the thickness of the pair in the multi-layer layer of magnetic is 1 to 奈.5 nm. 7. The MRAM memory cell of claim 1 or 2, wherein the thickness of the first magnetic layer (ML1) and the second magnetic layer (ML2) are each less than 10 nm. 8. The MRAM memory cell of claim 2, wherein the first magnetic layer (ML1) and the second magnetic layer (ML2) comprise a _ 釓/iron. 9. The MRAM memory cell of claim 1 or 2, wherein the antiferromagnetic layer comprises a milk/iron. 10. The MRAM memory cell described in claim 1 or 2, wherein the memory cell line (L1, L2, L3, L4) is made to flow through it. The current can heat the second magnetic layer (ML2) to a region just entering its Curie temperature (Tcurie). 15
TW093100189A 2003-01-14 2004-01-05 MRAM memory cell TWI271737B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10301092A DE10301092B4 (en) 2003-01-14 2003-01-14 MRAM memory cell

Publications (2)

Publication Number Publication Date
TW200425138A TW200425138A (en) 2004-11-16
TWI271737B true TWI271737B (en) 2007-01-21

Family

ID=32602521

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093100189A TWI271737B (en) 2003-01-14 2004-01-05 MRAM memory cell

Country Status (3)

Country Link
DE (1) DE10301092B4 (en)
TW (1) TWI271737B (en)
WO (1) WO2004075197A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10301092B4 (en) * 2003-01-14 2006-06-29 Infineon Technologies Ag MRAM memory cell
DE102004042338B4 (en) * 2004-09-01 2006-09-07 Infineon Technologies Ag MRAM with improved memory and readout characteristics
EP2506265B1 (en) * 2011-03-28 2019-06-05 Crocus Technology Magnetic random access memory cell with a dual junction for ternary content addressable memory applications

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712612A (en) * 1996-01-02 1998-01-27 Hewlett-Packard Company Tunneling ferrimagnetic magnetoresistive sensor
JPH11161921A (en) * 1997-12-01 1999-06-18 Nec Corp Magneto-resistance effect element and its production
JP3679593B2 (en) * 1998-01-28 2005-08-03 キヤノン株式会社 Magnetic thin film element, magnetic thin film memory element and recording / reproducing method thereof
JP3559722B2 (en) * 1999-04-16 2004-09-02 キヤノン株式会社 Magnetoresistive element, solid-state memory
JP3891540B2 (en) * 1999-10-25 2007-03-14 キヤノン株式会社 Magnetoresistive memory, method for recording / reproducing information recorded in magnetoresistive memory, and MRAM
DE60110944T2 (en) * 2000-01-07 2006-04-27 Sharp K.K. Magnetoresistive device and magnetic storage element using the same
DE10113853B4 (en) * 2000-03-23 2009-08-06 Sharp K.K. Magnetic storage element and magnetic memory
US6587370B2 (en) * 2000-11-01 2003-07-01 Canon Kabushiki Kaisha Magnetic memory and information recording and reproducing method therefor
US6538919B1 (en) * 2000-11-08 2003-03-25 International Business Machines Corporation Magnetic tunnel junctions using ferrimagnetic materials
US6385082B1 (en) * 2000-11-08 2002-05-07 International Business Machines Corp. Thermally-assisted magnetic random access memory (MRAM)
JP2002151757A (en) * 2000-11-09 2002-05-24 Alps Electric Co Ltd Thin film magnetic element and its manufacturing method
US6603678B2 (en) * 2001-01-11 2003-08-05 Hewlett-Packard Development Company, L.P. Thermally-assisted switching of magnetic memory elements
JP3667244B2 (en) * 2001-03-19 2005-07-06 キヤノン株式会社 Magnetoresistive element, memory element using the same, magnetic random access memory, and method for recording / reproducing magnetic random access memory
DE10128964B4 (en) * 2001-06-15 2012-02-09 Qimonda Ag Digital magnetic memory cell device
US6430084B1 (en) * 2001-08-27 2002-08-06 Motorola, Inc. Magnetic random access memory having digit lines and bit lines with a ferromagnetic cladding layer
WO2003054886A2 (en) * 2001-12-20 2003-07-03 Koninklijke Philips Electronics N.V. Increased magnetic stability devices suitable for use as sub-micron memories
US6667897B1 (en) * 2002-06-28 2003-12-23 International Business Machines Corporation Magnetic tunnel junction containing a ferrimagnetic layer and anti-parallel layer
DE10301092B4 (en) * 2003-01-14 2006-06-29 Infineon Technologies Ag MRAM memory cell

Also Published As

Publication number Publication date
TW200425138A (en) 2004-11-16
WO2004075197A2 (en) 2004-09-02
DE10301092B4 (en) 2006-06-29
DE10301092A1 (en) 2004-07-29
WO2004075197A3 (en) 2005-03-03

Similar Documents

Publication Publication Date Title
TW541529B (en) Cladded read conductor for a pinned-on-the-fly soft reference layer
TW432671B (en) Memory-cells arrangement and its production method
TW591813B (en) Magnetoresistive effect element and magnetic memory having the same
CN108886062A (en) Spin current magnetizes rotating element, magneto-resistance effect element and magnetic memory
US7285835B2 (en) Low power magnetoelectronic device structures utilizing enhanced permeability materials
TWI233199B (en) Magnetic memory device having yoke layer and its manufacturing method
KR101145690B1 (en) Magnetic random access memory array with free layer locking mechanism
CN104241286B (en) Memory element, storage device, the method and magnetic head for manufacturing memory element
KR100624762B1 (en) Synthetic-ferrimagnet sense-layer for high density mram applications
JP2006303159A (en) Spin injection magnetic domain moving element and device using this
JP5786341B2 (en) Memory element and memory device
JP2002110938A (en) Magnetic memory device
TWI514637B (en) Memory elements and memory devices
JP2004193595A (en) Magnetic cell and magnetic memory
JP2005150482A (en) Magnetoresistance effect element and magnetic memory device
CN108886061A (en) Spin current magnetizes rotating element, magneto-resistance effect element and magnetic memory
JP2006041537A (en) Magnetic tunnel junction, magnetic random access memory, method for forming vortex magnetization state, and method for switching vortex magnetization state
TW201143179A (en) Magnetic memory element and magnetic memory device
JP2012059808A (en) Storage element and memory unit
JP2003188358A (en) Magneto-resistive device having magnetically soft reference layer
JP2012151213A (en) Storage device and memory unit
JP2012160681A (en) Memory element, memory device
JP6226779B2 (en) Magnetic memory, magnetic memory device, and method of operating magnetic memory
CN109427963A (en) The method of magnetic junction, magnetic storage and offer magnetic junction
JP2012064624A (en) Storage element and memory unit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees