TWI270822B - Battery activation circuit - Google Patents

Battery activation circuit Download PDF

Info

Publication number
TWI270822B
TWI270822B TW94113162A TW94113162A TWI270822B TW I270822 B TWI270822 B TW I270822B TW 94113162 A TW94113162 A TW 94113162A TW 94113162 A TW94113162 A TW 94113162A TW I270822 B TWI270822 B TW I270822B
Authority
TW
Taiwan
Prior art keywords
circuit
interrupt
code
symbol
mirror
Prior art date
Application number
TW94113162A
Other languages
Chinese (zh)
Other versions
TW200638277A (en
Inventor
Roger Green Stewart
Daniel Noah Paley
Original Assignee
Intelleflex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intelleflex Corp filed Critical Intelleflex Corp
Priority to TW94113162A priority Critical patent/TWI270822B/en
Publication of TW200638277A publication Critical patent/TW200638277A/en
Application granted granted Critical
Publication of TWI270822B publication Critical patent/TWI270822B/en

Links

Abstract

A system and method for selectively activating a device based on an activate command. A circuit, in low power mode, listens for an activate command. The activate command includes a preamplifier centering sequence, an interrupt signal, and an activate code. The circuit receives a signal that may or may not be an activate command, self-biases the signal based on the preamplifier centering in the preamp/gain control, then determines whether the interrupt signal is of the proper length in the interrupt circuit. If the interrupt is not the proper length, the process stops. If it is the proper length, the command is recognized as an activate command, and a data slicer compares the activate code to a prestored value. If the activate code matches the prestored value, the device is powered up. If they do not match, the device is not initiated.

Description

1270822 九、發明說明: 【發明所屬之技術領域】 本件發明係關於省電線路,更具體地說,本件發明係關於 可選擇性地啟動以提供省電功能之線路。 【先前技術】 自動識別(“AutcHD”)技術是用來協助機器識別物件 和自動操取資料。最早期的Aut。.丨D技術之—就是條碼,盆 使用-寬窄條紋之間隔序列,可被光學掃描驗位式轉 譯。這項技術透過統-商品條碼(upc)之指定獲得廣泛 採用與近乎全球性的接受'统一商品條碼是由一個名為統一 條碼協會的產業廣泛性團體所制訂之標準,它在節年被 正式私:,UPC是目前使用在所有實際生產之商品上非常 曰遍之錢之-’並使商品在製造、供應與經鎖之追縱上 具有極大效率。 〜旦f I竭:然需要操作人員採取人工訊問方式以掃 二:::晦母一個具有標籤之物品。這是-種視線處 許f造商二之逮度與信賴度限制。另外’ UPC條碼只容 商:產品型式之資訊被編碼成為條碼,而非特別品 it 牛奶盒上的條碼會與其它每-種相同,使 〜、^計算物件或個別檢查產品有效日期。 目七包裝紙箱係以條 _ 具有超過40種以上之^仏不。这些列印好之標籤 誤,弄縣 ^準列印格式。但可能會有列印錯 、 立置錯誤與標籤錯誤等情形。在運送過程中 這些外部標籤通常會受心在運送壯中, 才貝次遺失。而在接收時,通常貨物 拖板會導致下部破損,而每一包裝箱會被掃瞄到一企業系 統,在供應鏈上每一檢查點的錯誤率為4-18%,因此產生 出十億元明顯有問題的存貨,而這只有無線射頻識別 (“RFID”)可在實際商品之實體層上自動結合軟體應用, 以提供精確追蹤。 該新興RHD技術運用一無線射頻(“RF”)之無線連結 與超小型嵌入式電腦晶片,以克服條碼之限制。RFID技術 可使實體物品透過這些無線“標籤”被識別與追蹤。它的功能 像是可與讀取機自動溝通的條碼而不需要人工視線掃瞄或 分離物品,RFID有希望可徹底的改造零售、藥品、軍事、 和運輸產業。 R F丨D s優於條碼之好處摘錄於表一: 表一 條碼 RFID 需要視線讀取 不需視線接觸即可識別 僅可讀取 可讀取/寫入 僅有條碼編號 可儲存資料於標籤内 條碼編號固定 資料可隨時更新 標籤僅可識別貨物種類層 可識別單一貨品 級不可識別單一貨品 如條碼毀損即無法閱讀 可禁得起惡劣環境 僅可使用一次 可重複使用 成本低 成本較南 較低彈性 較高彈性/價值 1270822 如圖1所示,一 RFID系統100包括一標籤1〇2、一讀 取機104與一光學伺服器⑽。標籤102中包括一丨C晶片 與一天線。該ic晶片包括-數位解碼器以執行標籤1〇2接 收來自標籤讀取機104之電腦指令。丨c晶片也包括一電源 供應線路以操取與調節來自RF讀取機的電源;—_器以 解碼來自讀取機的信號、一反向散射調幅器;一發射器以 傳送資料回讀取機;防衝突協定線路;及至少足夠的記憶 體以儲存其EPC碼。 通信開始以-讀取機104傳送出信號尋找標藏1〇2, 當無線電波碰到標籤102 ’並且標籤102痛認後並回應讀 取機之信號,該讀取機104將程式資料解碼至標籤1〇2中, 然後該資訊會被傳送到伺服H 1Q6進行處理,藉由加標各 種不同項目,可立即並自動知悉商品性質及位置之相關資 訊。 許多阳〇系、統使用反射或“反向散射,,式無線射頻 (RF)電波從標籤102傳送資訊至讀取機]〇4上。由於被 動(Class-1和Class-2)標籤可從讀取機信號獲得所有的 電源’所以標籤只有在讀取機104的波束中才具有電力。 在自動識別中心EPC-允許之標籤類別如下所示:1270822 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD This invention relates to power saving circuits, and more particularly to a circuit that can be selectively activated to provide a power saving function. [Prior Art] Automatic identification ("AutcHD") technology is used to assist the machine in identifying objects and automatically acquiring data. The earliest Aut.丨D technology - that is, the bar code, the basin uses - the interval sequence of wide and narrow stripes, which can be translated by optical scanning. This technology is widely adopted and nearly globally accepted through the designation of the up-commodity bar code (upc). The 'unified commodity bar code is a standard set by an industry-wide group called the Unified Bar Code Association. It was officially announced in the festival year. Private: UPC is currently used in all the actual production of goods - 'and make the goods in the manufacturing, supply and lock-up tracking is extremely efficient. ~ 旦 f I exhaust: Of course, the operator needs to take the manual interrogation method to sweep two::: aunt a tagged item. This is the kind of sight and reliability limit of the manufacturer. In addition, the UPC bar code is only available: the product type information is encoded as a bar code, not a special product. The bar code on the milk carton will be the same as the other ones, so that ~, ^ calculate the object or individually check the product expiration date.目七包装箱箱条条条 _ has more than 40 kinds of 仏 仏. These printed labels are incorrect, and the county is ready to print. However, there may be situations such as printing errors, standing errors, and label errors. During the delivery process, these external labels are usually taken care of and transported, and they are lost. When receiving, usually the cargo pallet will cause the lower part to be damaged, and each box will be scanned into an enterprise system. The error rate of each checkpoint in the supply chain is 4-18%, thus generating one billion. The apparently problematic inventory, and only radio frequency identification ("RFID") can automatically combine software applications on the physical layer of the actual commodity to provide accurate tracking. The emerging RHD technology uses a radio frequency ("RF") wireless link with ultra-compact embedded computer chips to overcome bar code limitations. RFID technology enables physical items to be identified and tracked through these wireless "tags." Its function is like a bar code that automatically communicates with the reader without the need for manual line-of-sight scanning or separation of items. RFID promises to revolutionize the retail, pharmaceutical, military, and transportation industries. The advantages of RF丨D s over bar code are summarized in Table 1: Table one code RFID requires line of sight reading without line of sight to identify only readable readable/writable only bar code number can store data in tag bar code No. Fixed data can be updated at any time. Label can only identify the type of goods. It can identify a single item. Unidentifiable single item. If the barcode is damaged, it cannot be read. It can be forbidden. It can be used in a harsh environment. It can be used only once. Reusable cost. Low cost. /Value 1270822 As shown in FIG. 1, an RFID system 100 includes a tag 1, a reader 104 and an optical server (10). The tag 102 includes a C-chip and an antenna. The ic chip includes a digital decoder to execute the tag 1 〇 2 to receive computer instructions from the tag reader 104. The 丨c chip also includes a power supply line for fetching and regulating power from the RF reader; - _ to decode signals from the reader, a backscatter modulator; and a transmitter to transmit data back to read Machine; anti-collision agreement line; and at least enough memory to store its EPC code. The communication starts with the reader 104 transmitting a signal to find the label 1〇2. When the radio wave hits the tag 102' and the tag 102 acknowledges and responds to the signal of the reader, the reader 104 decodes the program data to In the label 1〇2, the information will be transmitted to the servo H 1Q6 for processing. By marking various items, the information about the nature and location of the product can be immediately and automatically known. Many impotence systems use reflection or "backscatter, radio frequency (RF) waves from the tag 102 to the reader] 〇 4. Because passive (Class-1 and Class-2) tags are available The reader signal gets all the power 'so the tag has power only in the beam of the reader 104. The EPC-allowed tag categories in the Automatic Identification Center are as follows:

Class-1 •識別標籤(RF使用者可程式化’最大範圍3公尺) .最低成本(AIDC目標:在每年—兆批量下由每單位 美金5分降到2分)Class-1 • Identification tag (RF user can be programmed 'maximum range 3 meters). Minimum cost (AIDC target: 5 points per unit US dollar down to 2 points per year - mega lot)

Class-2 •記憶標籤(8位元至128 Mbits可程式化,最大範圍 7 ⑧ 1270822 3公尺) •安全與隱私保護 •低成本(AIDC目標:在1〇億單位批量下一般為美金 10分) 又、、、Class-2 • Memory tag (8-bit to 128 Mbits can be programmed, the maximum range is 7 8 1270822 3 meters) • Security and privacy protection • Low cost (AIDC target: 10 US dollars in 100 million units of bulk) ), ,,,

Class-3 •電池標籤(256位元至64Kb ) .自我供電的反向散射(内部時脈、偵測器介面支援) • 1〇〇公尺範圍Class-3 • Battery label (256-bit to 64Kb). Self-powered backscatter (internal clock, detector interface support) • 1 〇〇 meter range

•一般價格(目標··目前為美金50元,在二年内美金 五元,在十億單位批量時美金20分)• General price (target · currently US$50, US$5 in two years, US$20 in a billion units)

Class-4 •主動標籤 •主動傳輸(容許標籤先說操作模式) •最高可達30,000公尺範圍 •較高成本(目標:在二年内美金10元,若是十億單 位批量時為美金30分)Class-4 • Active label • Active transmission (allows the label to say the operating mode first) • Up to 30,000 meters range • Higher cost (target: US$10 in two years, US$30 in one billion units)

在RHD系統中被動接收器(即ο。%」和(:|3沾_2桿 籤)能從被傳送之RF中擷取足夠的能源以提供裝置電源, 並不需要電池。在系統中當距離妨礙以這種方式提供带置 電源時,則必須使用交替式電源。對於這些“交替式”系統(又 稱為主動或半被動式),電池是最常見之電源形式,這可大 幅增加讀取範圍,與標籤讀取之信賴度,因為標籤不需來 自讀取機的電源,與Class-1所需要操作的50〇 mV比較 下,Class-3標籤僅需要來自讀取機之1〇 mV信號,這項 在電源需求上之2,500 : 1降低,可使ciass-3標籤在距離 8 -1270822 100公尺或更遠距離以外操作,與Class-1只有約3公尺距 離相比,差距甚大。 早期的現場試驗已顯示,目前可使用之被動式短距離 Class-1與ciass-2標籤通常不適合於標籤貨板和許多不同 類型之包裝箱上。當這些被動標籤與“RF不利,,材料,例如 金屬(像是湯罐)、金屬箔片(像是馬鈴薯片)、或傳導性 液體(像是飲料、洗髮精),共同使用時,問題會特別嚴重。 λ有人可持續讀取位於一堆包裝箱中的包裝箱標籤一這 發生在*倉或貨板上。現有之被動式標籤也不適於使用在 大型或快速移動的物體上,像是卡車、汽車、貨櫃車等。In the RHD system, passive receivers (ie ο.%) and (:|3 _2_2 sticks) can draw enough energy from the transmitted RF to provide power to the device, without the need for a battery. When the distance prevents the supply of the power supply in this way, an alternate power supply must be used. For these "alternating" systems (also known as active or semi-passive), the battery is the most common form of power supply, which can greatly increase the reading. Range, reliability with tag reading, because the tag does not need to be powered by the reader, the Class-3 tag only needs 1〇mV signal from the reader compared to the 50〇mV required for Class-1 operation. This 2,500:1 reduction in power requirements allows the ciass-3 tag to operate at distances of 8-1270822 100 meters or more, which is a significant difference from Class-1's distance of only about 3 meters. Early field trials have shown that passive short-range Class-1 and ciass-2 labels that are currently available are generally not suitable for label pallets and many different types of boxes. When these passive labels are "unfavorable with RF, materials such as metal( It is a soup pot), a metal foil (like a potato chip), or a conductive liquid (like a drink, shampoo). When used together, the problem is particularly serious. λ Someone can continue to read in a pile of boxes. The box label - this happens on the * bin or pallet. Existing passive tags are not suitable for use on large or fast moving objects such as trucks, cars, container trucks, etc.

Class-3標籤藉由置入電池與信號前置放大器以增加 範圍,可解決這些問題。若電源消耗管理良好,這個電池 可持續運作好幾年,但若電源消耗管理不良,可能只能使 用幾天而已,因為電池供電系統將與被動式標籤共 存,因此要小心照顧以減少電源從電池供電系統中流失。 如果一 Class-3裝置持續為“其它”裝置回應指令,例如是不 想要的Class-1指令,電池之電源將會極為迅速流失。 【發明内容】 本件發明包括一啟動電路與啟動指令結構,可使半被 動式裝置(例如’以電池供電)偵測到一特定資料序列以 指示裝置啟動。若裝置未獲得正確序列,便會忽視所接收 之指令,因此便可節省電源。電路可實施在,例如,無線 射頻識別(RFID)標籤’或任何其它需要限制電源消耗之 裝置。 ⑧ 1270822 依據一具體實施例,一啟動裝置之電路包括一中斷電 路,以決定一接收信號之中斷週期是否符合一預定多數值 或落在預定範圍内,而因此可被辨識為一啟動指令。一較 理想之啟動指令最好包括一前置放大器中心對準序列、一 中斷週期、與一啟動碼。如果中斷週期符合預定值或落在 預定範圍時,中斷電路會輸出一中斷信號。一特殊資料切 割器會將接收的啟動碼與儲存值比較,如果所接收之啟動 碼與儲存值相符,資料切割器會傳送一喚醒信號以啟動裝 • 置。 • w亥電路最好包括一自偏壓放大器,其可依據所接收之 一時脈同步序列之50%工作循環波形以設定偏壓點。這使 得電路可在適當的點上設定偏壓點以讀取進入之啟動指令 (與後續傳輸),而不管雜訊存在或是信號強度變化。 V通濾波器可將不想要之雜訊自接收的信號中排除。 該中斷電路最好包括一第一對鏡反向器,每個反向器 會被調校以供-不特定延遲時序使用,第一對鏡反向器會 _ 在特定延遲時序之間是否有-中斷脈衝之低週期。也 提供第二對的鏡反向器,每個反向器被調校以供一不特定 延遲時序使用,而第二對鏡反向器則是镇測在特定延遲時 序之間疋否有一中斷脈衝之高週期。從第一對鏡反向器輸 出第門鎖實^例及儲存反向,而從第二對鏡反向器輸出 第-閃鎖實施例及儲存反向,從第一閃鎖輸出第3閃鎖實 ⑪例及儲存。糾射包括通過閘。—邏輯閘會接收來自 第二閃鎖與第三閃鎖之輸出,而且如果中斷之高脈衝與低 ⑧ 1270822 脈衝落於延遲時序中時,該邏輯閘會輸出中斷信號。 該中斷電路最好包括-位於第一對鏡反向器和第一閃 鎖間之第-互斥或(XQR)閘、與_位於第二對鏡反向器和第 二閃鎖間之第二XOR閘。如果中斷脈衝之低週期介於第— 對鏡反向器的特定延遲時序之間時,第一 x〇R閘之輸出會 被啟動,而且如果中斷脈衝波的高週期位於第二對鏡反= 器之特定延遲時序之間時,第二x〇R閘之輸出會被啟動。 該中斷電路最好也包括介於第一對鏡反向器與第三閃 _ 狀間之-系列反向器,與介於第二對鏡反向器與第二閃 鎖之間之一系列反向器。 «輯閘也可接收直接來自輸人《之信號,該邏輯 閘因此可以是一 5個輸入之邏輯閘。 用於啟動裝置之該電路也可包括一用於控制一資料切 割器之可適應性時序電路,該可適應性時序電路可包括一 可修整之參考震盪器,一鎖相迴路震盪器(pll),一校準 電流鏡’或其它類似電路。 • ▲用於啟動一例如RFID標籤裝置之-般方法,最好是使 用别述之電路,包括在一裝置上聽取啟動指令;接收啟動 指令,而啟動指令包括一時脈同步序列,一中斷週期,與 一啟動碼;如果中斷週期符合預定值或落在預定範圍/,、 便分析啟動碼;而如果啟動碼符合在震置中之儲存值,便 啟動裝置,或是如果啟動碼和預儲值不相符,則不會啟動 裝置二然而凊注意,特殊啟動碼也能夠被實施,例如,將 -標籤啟動碼全部設定為零,會導錢個標籤會對任何及 11 ⑧ 1270822 所有由任何讀取機所傳送的啟動碼有所回應。同樣地,標 藏也可被設定以回應各種代碼。可選擇的是,該讀取機也 可發佈一快速連續之不同啟動碼,以在相同時間啟動並與 各種標籤群組溝通。 該方法可藉由幾種RFID標籤執行,而數種標籤在接收 到一特定啟動指令時便會啟動。 本件發明之其它特性與優點可經由以下詳細敘述而更 明確,其同時結合圖式,藉由具體實施例說明本件發明之 原理。 【實施方式】 以下所述是目前欲實施本件發明之最佳具體實施例。 此處之敘述是基於說明本件發明之一般原理,而非意謂限 制本件發明申請專利範圍之發明概念。 本件發明最好是在一 Class_3或更高Class晶片中實 施,圖2依據在一 RFID標籤中實施之較佳具體實施例來說 明一 Class-3晶片200之線路圖式。這個Class-3晶片可形 成RFID晶片之核心,適用於許多應用,例如貨板、包裝紙 箱、容器、車輛、或任何需要超過2 - 3公尺範圍之識別。 如圖所示,晶片200包括數種產業標準電路,其包括一電 源產生器與調節電路202、一數位指令解碼器與控制電路 204、一偵測器介面模組206, 一 C1V 2介面通信協定電路 208、與一電源(電池)210。可增加一顯示器驅動模組212 以驅動一顯示器。 一電池啟動線路214也被呈現做為一喚醒觸發器,此 ⑧ 12 -1270822 < 電路214將在下文巾詳述。簡單地說,電池啟動電路214 包括一超低電源、與一僅消耗5〇 nA靜電電流之窄頻寬前 置放大器。該電池啟動電路214也包括一自有時脈中斷電 路’並且使用’創新的16位元使用者程式化數位喚醒代 碼。該電池啟動電路214,在其休眠狀態時消耗較少電源, 並且在對抗意外和惡意不實的喚醒觸發事件有較佳之保 濩,否則將會導致Class-3標籤電池210過早耗盡。 一前向鏈結AM解碼器216,使用一簡化之鎖相迴路震 _ 盪器’需要絕對最小量之晶片區域數額。較理想之情況是, , 5亥電路216僅需要一最小串列之參考脈衝。 反向政射凋幅器區塊218最好增加反向散射調幅深 度至超過50%。 使用一單純、Fowler_Nordheim直接穿遂過氧化物裝 置220以同時將eepR〇m記憶體陣列中之寫入與抹除電 流減少至低於0·1μΑ/π丨丨。與目前所有的Rf:丨D不同之處 是,此種方法可容許標籤指定在最大範圍下操作,即使是 鲁 Μ在執行寫入與抹除操作時亦同。 晶片200也經整合成一高度簡化,但極具效率之安全 加密電路222。 只需要4個連接墊(未顯示)就能夠使晶片2〇〇作用: Vdd至電池、接地、再加上二個天線接腳以支援多元件多 方向性導向天線。用來監控溫度、震動、霞改等之侦測器 可藉被附加一產業標準的丨2C介面至核心晶片。 非常低成本的Class-2安全裝置可藉由從C|ass_3晶片 13 ⑧ 核心簡單地取消或移除喚醒模組、前置放大器、與丨F模組 被建立。 這裡所敘述的電池啟動電路214是被使用於在兩個裝 置之間通信,其中一發射器想要透過無線射頻(RF)媒體 來啟動或啟用一接收裝置,當這個電路圖預計被使用在 RFID系統中時,絕非表示只被限制在該產業,此揭示敘述 一關於RFID較佳敘述和具體實施例之啟動線路,但絕非表 示僅限於該項技術。結果,任何需要一實體(例如,發射 器)來警示另一實體(例如,讀取機)之系統,皆適用於 這項理念而不管使用之媒體為何(例如,RF、丨R、纜線等)。 為了減少電流消耗並增加電池電源的使用期限,可使 用一 Class-3 (或更高等)裝置之啟動。這個“啟動,,指令包 括三部分“指令”,第一部分是時脈同步,第二部分是中斷, 最後的部分則是一數位式使用者啟動指令代碼。這三部分 在概念上產生啟動協定,雖然實際上並不一定需要遵循這 三個處理步驟,但是步驟或方法必須充分從“其它正常”訊務 中刀離,使其能仗在Class_1或ciass_3裝置中之其它产八 中解密出啟動指令。該“啟動”指令的基本特色是:八曰7 •時脈自旋向上或同步 •一中斷’其使指令之啟動與來自"正f ”指令(例如, 在正向通信協定中之時序違反)之充分差異能同步。 .一啟動碼可容許可能選擇或總括之啟動。 圖3A顯示-啟動指令信?虎3〇〇之較佳結構,其中之四 個區段分別顯示:前置放大器中心對準3〇2,中斷咖,同 1270822 步305,與資料取樣306。 指令300每一階段之電路與敘述都詳述如下;但是, 基本原理是以摘要形式呈現。 當不在啟動模式,或是在初始啟動點時,所有裝置會“聽 取”進入信號以作為啟動指令。在聽取啟動序列上消耗非常 少的電源是需要的,消耗電源係直接與電池使用期限有關 (且因此也可能與裝置使用期限有關)。當接收到啟動指令 並處理時,電路啟動部分會與已完成之啟動指令序列一樣 多。 首先是該裝置會收到一前置放大器中心對準序列 (PreAmp Centering) 302。該中心對準最好包括一 6 KHz 50%工作循環波形之號碼。再次強調,6 KHz音之使用是特 定於較佳之方式而且並不代表所有可能之同步方法。此項 中心對準被使用以編譯這個階段所有後續指令。藉由傳送 脈衝之“一些號碼”,該接收裝置(標籤)具有足夠時間以調 整其取樣臨界點,此將容許接收器區分介於邏輯高值與低 值(1與0)。 下個程序是中斷週期(lnterrupt)304,其最好包括一 2 KHz 50%工作循環波形,藉由觀察該中斷週期,該接收器(標 籤)將瞭解其已收到一個形成良好之“啟動”指令。 下個程序是一同步信號305,其被使用於同步一適應時 脈電路(參圖11 )。在此處,該時脈電路會一直等到該裝置 偵測到適當之中斷週期304才啟動。該時脈電路然後會使 用同步信號305以設定週期。以這種方式,該震盪器412 ⑧ 15 1270822 (參圖4)便不需要為了正確地調校而不斷地運轉。 该裝置然後應該會將注意力移轉至後續所接收攔位的 解碼上,也就是數位啟動碼(資料取樣)3〇6。 數位啟動碼306是一個以一 F2F調制通信協定為基礎 之50%工作循環信號(+卜1〇% ),並其可容許發射器(讀 取機)選擇想要在-Class-3模式中啟動的接收器(標藏) 總數,該啟動碼是以16位元呈現,其允許216=65536種 可能之代碼值,而可能之代碼實際數量則減少至彳。而該 • OOOO(hex)值被用以選擇所有裝置,而不論前置程式化之 啟動碼為何。 圖3B顯示-啟動指令信號3〇〇之另一較佳結構。但 . 其波形卻更為簡單。例如’前置放大器中心對準與同 步-P刀將不再需要。注意如果有需要前置放大器中心對準 可以如® 3B巾所標註的"模式,,顯示。這個“模式,,最好是一 系列所有為0 ’例如16個〇。 取代傳送不同符號之信號(例如圖3A中之2、4、5 • > 8KHZ),只有使用二個符號信號,在這個範例中,符號 是2KHZ (邏輯1)和8KHZ (邏輯0),該2KHZ符號也作為中 斷使用。 由於只使用二個符號,蕾 仃現電路可以更為簡化,實際上, 根本不需要時脈同步。這亦可減少所需電源,同樣地’操 作可更為強動,因為區分二個符號會比四個會更為容易。 f中之一個代價収不會使用所有可能之組合。但 疋可用之、,且0數目雖無法滿足所有可能之應用,但足夠 16 ⑧ !27〇822 供絕大多數使用。 另外一項優點是進入之信號可以非同步化,換句話 說,藉由在上升邊緣的時脈,裝置便可讀取資料之非同步 散佈時脈。由於下一個資料信號可立即跟隨較短週期(例 如,8ΚΗζ符號),整體信號會更具時間效率。例如,四個 符合在一 2ΚΗζ符號(單一個1 )相同時間週期内之8ΚΗζ 記號(四個0)。藉由使用四對一方式,便不需調適性震盡 器,去除必須使用許多額外電路之需求,這也保留約5〇% 工作循環。 在操作時,#號可作為一連續性串流來傳送。一重複模 式的8ΚΗζ串流(0之組合)或其它選擇之系列便可被傳送 以容許集中該信號。 接收裝置會聽取一中斷信號,例如本實施例中一個邏 輯1 (如圖3Β的〔1〕所示)。當碰到任何邏輯]時,裝置 接著會連續地將進入之資料串流與一儲存之啟動指令作比 較。若下一個位元序列符合啟動指令,裝置便會喚醒(如 下所述),如果在序列中之位元之一不符合,則裝置會重 設,尋找下一個邏輯1,而且開始在下一個邏輯彳之後開始 監控位兀序列,因此,例如,如果第三個位元是彳,該裝置 便會瞭解這不是正確啟動指令,而將會重設,並開始再次 聽取中斷。在這個實_巾,裝置料次崎在第六個位 元以後被接收之代碼(在序列中下一個“彳”)。但是,代碼不 會相符而裝置會再重設一次。戶斤以在實施本件發明時,應 小心地選擇不會導致無意啟動之代碼,而無意啟動應时Class-3 tags address these issues by placing battery and signal preamplifiers to increase the range. If the power consumption is well managed, the battery can last for several years, but if the power consumption is poorly managed, it may only be used for a few days, because the battery-powered system will coexist with the passive tag, so take care to reduce the power supply from the battery-powered system. Loss in the middle. If a Class-3 device continues to respond to an "other" device, such as an unwanted Class-1 command, the battery's power supply will drain very quickly. SUMMARY OF THE INVENTION The present invention includes a start-up circuit and a start-up command structure that enables a semi-actuated device (e.g., 'battery-powered) to detect a particular sequence of data to indicate device activation. If the device does not get the correct sequence, the received command will be ignored, thus saving power. The circuitry can be implemented, for example, in a radio frequency identification (RFID) tag' or any other device that requires limited power consumption. 8 1270822 According to one embodiment, a circuit of an activation device includes an interrupt circuit to determine whether an interrupt period of a received signal meets a predetermined multi-value or falls within a predetermined range, and thus can be recognized as a start command. A preferred start command preferably includes a preamplifier center alignment sequence, an interrupt period, and an enable code. The interrupt circuit outputs an interrupt signal if the interrupt period meets a predetermined value or falls within a predetermined range. A special data cutter compares the received start code with the stored value. If the received start code matches the stored value, the data cutter transmits a wake-up signal to activate the device. • The whai circuit preferably includes a self-biased amplifier that sets the bias point based on the 50% duty cycle waveform of the received clock synchronization sequence. This allows the circuit to set a bias point at the appropriate point to read the incoming start command (and subsequent transmissions) regardless of the presence of noise or signal strength variations. The V-pass filter rejects unwanted noise from the received signal. Preferably, the interrupt circuit includes a first pair of mirror inverters, each of which is tuned for use with a non-specific delay timing, and the first pair of mirror inverters _ between specific delay timings - The low period of the interrupt pulse. A second pair of mirror inverters is also provided, each inverter being tuned for use by an unspecified delay sequence, and the second pair of mirror inverters is operative to detect an interruption between specific delay timings. The high period of the pulse. Outputting the first door lock from the first pair of mirror inverters and storing the reverse, and outputting the first-flash lock embodiment from the second pair of mirror inverters and storing the reverse, and outputting the third flash from the first flash lock 11 cases were locked and stored. The igniting includes passing the gate. - The logic gate will receive the output from the second and third flash locks, and if the high pulse of the interrupt and the low 8 1270822 pulse fall in the delay sequence, the logic gate will output an interrupt signal. Preferably, the interrupt circuit includes - a first-mutual exclusive or (XQR) gate between the first pair of mirror inverters and the first flash lock, and a second between the second pair of mirror inverters and the second flash lock Two XOR gates. If the low period of the interrupt pulse is between the specific delay timing of the mirror-inverter, the output of the first x〇R gate is activated, and if the high period of the interrupt pulse is at the second pair of mirrors = The output of the second x〇R gate is activated when the device is between specific delay timings. Preferably, the interrupt circuit further includes a series of inverters between the first pair of mirror inverters and the third flasher, and a series between the second pair of mirror inverters and the second flash lock Inverter. «The gate can also receive the signal directly from the input, so the logic gate can therefore be a logic gate of 5 inputs. The circuit for activating the device may also include an adaptive timing circuit for controlling a data cutter, the adaptive timing circuit may include a trimmable reference oscillator, a phase locked loop oscillator (pll) , a calibration current mirror' or other similar circuit. • ▲ is used to initiate a general method such as an RFID tag device, preferably using a circuit as described above, including listening to a start command on a device; receiving a start command, and the start command includes a clock synchronization sequence, an interrupt cycle, And a start code; if the interrupt period meets a predetermined value or falls within a predetermined range /, the start code is analyzed; and if the start code meets the stored value in the shock, the device is activated, or if the start code and the pre-stored value If it doesn't match, it won't start the device. However, please note that the special boot code can also be implemented. For example, the -tag start code is all set to zero, and the tag will be used for any and 11 8 1270822. The startup code transmitted by the machine responded. Similarly, the tag can be set to respond to various codes. Alternatively, the reader can also issue a quick and continuous different activation code to initiate and communicate with various tag groups at the same time. The method can be performed by several RFID tags, and several tags are activated upon receipt of a particular boot command. Other features and advantages of the present invention will become more apparent from the detailed description of the invention. [Embodiment] The following is a description of the best embodiment of the present invention. The description herein is based on the general principles of the invention, and is not intended to limit the inventive concept of the invention. This invention is preferably implemented in a Class 3 or higher Class wafer, and Figure 2 illustrates a circuit diagram of a Class-3 wafer 200 in accordance with a preferred embodiment implemented in an RFID tag. This Class-3 wafer forms the core of an RFID chip and is suitable for many applications, such as pallets, packaging cartons, containers, vehicles, or any identification that requires more than 2 - 3 meters. As shown, the wafer 200 includes several industry standard circuits including a power generator and regulation circuit 202, a digital command decoder and control circuit 204, a detector interface module 206, and a C1V 2 interface communication protocol. Circuit 208, and a power source (battery) 210. A display drive module 212 can be added to drive a display. A battery enable line 214 is also presented as a wake-up trigger, and this circuit 12 -1270822 <RTIgt; Briefly, battery enable circuit 214 includes an ultra low power supply and a narrow bandwidth preamplifier that consumes only 5 〇 nA of electrostatic current. The battery enable circuit 214 also includes a self-timer interrupt circuit and uses the innovative 16-bit user to program the digital wake-up code. The battery enable circuit 214 consumes less power during its sleep state and is better protected against accidental and malicious false wake-up trigger events that would otherwise cause the Class-3 tag battery 210 to be depleted prematurely. A forward link AM decoder 216, using a simplified phase locked loop oscillator, requires an absolute minimum amount of wafer area. Ideally, the 5H circuit 216 requires only a minimum of series of reference pulses. The reverse political beam eliminator block 218 preferably increases the backscatter amplitude modulation depth to over 50%. A simple, Fowler_Nordheim direct permeation peroxide device 220 was used to simultaneously reduce the write and erase currents in the eepR〇m memory array to less than 0.1 μM/π丨丨. The difference from all current Rf:丨D is that this method allows the label to be specified to operate at the maximum range, even if it is executed during the write and erase operations. Wafer 200 is also integrated into a highly simplified, yet highly efficient, secure encryption circuit 222. Only four connection pads (not shown) are required to enable the wafer 2 to function: Vdd to battery, ground, plus two antenna pins to support multi-element multi-directional steering antennas. Detectors for monitoring temperature, vibration, and swaying can be attached to the core chip by an industry standard 丨2C interface. A very low cost Class-2 security device can be created by simply removing or removing wake-up modules, preamplifiers, and 丨F modules from the C|ass_3 chip 13 8 core. The battery activation circuit 214 described herein is used to communicate between two devices, one of which wants to activate or enable a receiving device through a radio frequency (RF) medium, when the circuit diagram is expected to be used in an RFID system. In the meantime, it is by no means meant to be limited only to the industry. This disclosure describes a preferred description of the RFID and the starting circuit of the specific embodiment, but by no means is meant to be limited to this technology. As a result, any system that requires an entity (eg, a transmitter) to alert another entity (eg, a reader) is suitable for this concept regardless of the media used (eg, RF, 丨R, cable, etc.) ). In order to reduce current consumption and increase the life of the battery power, a Class-3 (or higher) device can be used for startup. This "start," instruction consists of three parts of "instructions", the first part is clock synchronization, the second part is interrupt, and the last part is a digital user-initiated instruction code. These three parts conceptually generate a startup agreement. Although it is not necessary to actually follow these three processing steps, the steps or methods must be adequately removed from the "other normal" traffic, so that it can decrypt the start command in the other eight of the Class_1 or ciass_3 devices. The basic features of the "start" command are: gossip 7 • clock spin up or sync • an interrupt 'which causes the instruction to start with a sequence from the "positive f' (for example, timing in a forward communication protocol) The full difference of violations can be synchronized. A start code can allow for possible selection or general startup. Figure 3A shows a preferred structure for the -instruction command letter, which shows four stages: preamplifier center alignment 3〇2, interrupt coffee, same as 1270822 step 305, and data sampling 306. The circuits and descriptions of each stage of instruction 300 are detailed below; however, the basic principles are presented in summary form. When not in the start mode or at the initial start point, all devices will "listen" to the incoming signal as a start command. It is desirable to consume very little power on the listening sequence, and the power consumption is directly related to the battery life (and therefore may also be related to the device life). When a start command is received and processed, the circuit start portion is as much as the completed start command sequence. First, the device receives a preamp center alignment sequence (PreAmp Centering) 302. The center alignment preferably includes a 6 KHz 50% duty cycle waveform number. Again, the use of 6 KHz sound is specific to the preferred approach and does not represent all possible synchronization methods. This center alignment is used to compile all subsequent instructions at this stage. By transmitting the "some numbers" of the pulses, the receiving device (tag) has sufficient time to adjust its sampling threshold, which will allow the receiver to distinguish between logical high and low values (1 and 0). The next program is an interrupt period 304, which preferably includes a 2 KHz 50% duty cycle waveform. By observing the interrupt period, the receiver (tag) will know that it has received a well-formed "start". instruction. The next program is a sync signal 305 which is used to synchronize an adaptive clock circuit (see Figure 11). Here, the clock circuit will wait until the device detects the appropriate interrupt period 304. The clock circuit then uses the sync signal 305 to set the period. In this way, the oscillator 412 8 15 1270822 (see Figure 4) does not need to be constantly operating for proper tuning. The device should then shift its focus to the decoding of the subsequent received block, which is the digital start code (data sample) 3〇6. The digital start code 306 is a 50% duty cycle signal (+Bu 1%) based on an F2F modulation communication protocol, and it allows the transmitter (reader) to select the desired start in the -Class-3 mode. The total number of receivers (labeled), which is presented in 16-bit units, which allows 216 = 65536 possible code values, and the actual number of possible codes is reduced to 彳. The • OOOO(hex) value is used to select all devices regardless of the preprogrammed startup code. Fig. 3B shows another preferred configuration of the -start command signal 〇〇. However, its waveform is simpler. For example, the 'preamplifier center alignment and sync-P knife will no longer be needed. Note that if there is a need for the center of the preamp, it can be displayed as the "mode, as indicated by the ® 3B. This "mode, preferably a series of all 0's, for example 16 〇. Instead of transmitting signals of different symbols (eg 2, 4, 5 • > 8KHZ in Figure 3A), only two symbol signals are used, In this example, the symbols are 2KHZ (logic 1) and 8KHZ (logic 0), and the 2KHZ symbol is also used as an interrupt. Since only two symbols are used, the current circuit can be simplified, in fact, no clock is needed at all. Synchronization. This also reduces the power required, and the same 'operation can be more powerful, because it is easier to distinguish two symbols than four. One of the f costs will not use all possible combinations. Available, and the number of 0 does not meet all possible applications, but enough for 16 8 !27 〇 822 for most use. Another advantage is that the incoming signal can be asynchronous, in other words, by rising At the edge of the clock, the device can read the asynchronous spread of the data. Since the next data signal can immediately follow a shorter period (for example, 8 ΚΗζ symbol), the overall signal will be more time efficient. For example, four Combine a 2 ΚΗζ symbol (single 1) with 8 ΚΗζ marks (four 0s) in the same time period. By using the four-to-one method, there is no need to adapt the shock absorber, eliminating the need to use many additional circuits. Also retains approximately 5〇% of the duty cycle. In operation, ## can be transmitted as a continuous stream. A repeating pattern of 8ΚΗζ streams (combination of 0) or other selected series can be transmitted to allow for concentration The receiving device will listen to an interrupt signal, such as a logic 1 in this embodiment (as shown in [1] of Figure 3). When any logic is encountered, the device will continuously stream incoming data. A stored start command is compared. If the next bit sequence matches the start command, the device wakes up (as described below). If one of the bits in the sequence does not match, the device resets to find the next logic. 1, and start monitoring the bit sequence after the next logic, so, for example, if the third bit is 彳, the device will know that this is not the correct start command, but will reset, and Start listening again for interrupts. In this real snippet, the device is expected to receive the code after the sixth bit (the next "彳" in the sequence). However, the code will not match and the device will reset again. In the implementation of this invention, the user should carefully select the code that does not cause unintentional activation, and does not intend to start the time.

17 • 1270822 很少發生。請注意代碼可被預定以避免預定與指定之無意 啟動,其同樣適用於先前正確中斷之位元。 請注意該啟動指令300可被傳送數次以確保代碼標籤 啟動。同時,數種不同啟動指令可被連續傳送以啟動多個 標籤。17 • 1270822 Rarely occurs. Please note that the code can be scheduled to avoid unintentional activation of the subscription and designation, which also applies to the previously correctly interrupted bits. Please note that the start command 300 can be transmitted several times to ensure that the code tag is activated. At the same time, several different start commands can be continuously transmitted to initiate multiple tags.

熟知先前技術者將可瞭解,以下線路將可與在圖3A參 考敘述之信號作用。以下之裝置,當與圖3B所示之一信號 使用時,並不需要裝置之某些特定部分(例如,電壓控制 震盪器〔圖11〕、時脈區段〔圖12〕、資料切割器〔圖13〕、 DAC〔圖 14〕)。 執行較佳啟動功能方法之系統4〇〇區塊圖式如圖 4所示,系統棚會在—RF|D標籤裝置前端被發現,該進 之L遽則由天線402所接收並被傳送到一波封偵測器 禮波封摘測器4〇4提供帶通遽波與放大功㉟,放大階 & 406之制亦在時脈調校相位時被設定。該前置放大器 ”大|^又406之增盈控制具有一個自偏產電路(討論如As will be appreciated by those skilled in the art, the following lines will function with the signals described in the reference of Figure 3A. The following devices, when used with one of the signals shown in Figure 3B, do not require certain parts of the device (e.g., voltage controlled oscillators (Fig. 11), clock segments (Fig. 12), data cutters [ Figure 13], DAC [Fig. 14]). The system block diagram of the method for performing the preferred start function is shown in Figure 4. The system shed is found at the front end of the -RF|D tag device, and the incoming L 遽 is received by the antenna 402 and transmitted to A wave-blocking detector, the wave-sealing and measuring device 4〇4 provides a band-pass chopping and amplifying function 35, and the system of the amplification stage & 406 is also set when the phase is adjusted by the clock. The preamplifier "large|^ and 406 gain control has a self-produced circuit (discussed as

下),其可容許電路自我調整信號臨界值以說明在信號中之 任何雜訊。 下面數個區奴處理收集該被過濾與被放大之信號,並 i試符合進入資訊與啟動指令。在中斷電路408中,進 入1訊之觀察會與中斷週期 • Φ ^ m4J比h ’以便觀察到之信號符合 雳、η 一 果成功,一中斷信號會被傳送至電麈 震盪益與資料切割器區段,盤 rm . . 5不匕們有一進入之數位啟動 石馬。在提升週期,震盪考 盈益调4父器410被用於調校vc〇(電 壓控制震盪器)412從一“預設,,值到該作用期間所需值。這 個所需值可被儲存在閂鎖中,而VCO則關閉以節省電源。 該資料切割器區段414被使用以觀察啟動指令並且比較接 收值與標籤之儲存值。如果值符合時,標籤(裝置)會傳送一 “喚醒”信號,並將標籤變成一完全啟動狀態(電池供電)。 後續之電路則是使用“電流鏡”,在檢查電流鏡之功能 時’其作用在於限制在操作或邏輯功能中電流消耗量。 圖5顯示使用一電流鏡5〇〇以創造一低電源反向器。 電流鏡是在一積體電路中用以調節電流之裝置;不論負載 為何都保持固定。中央之二個電晶體502、504包括一典型 反向器。藉由在輸入端放置一邏輯電壓或高電壓,底部電 晶體504會被放在作用區域並且驅動輸出信號至一邏輯〇 或低電壓位階。如果低電壓(邏輯〇)是被放在輸入信號上, 該頂部電晶體502將會開啟,因此,可驅動輸出信號至高 電壓(邏輯1)。當在開啟一個電晶體與關閉其他電晶體之 間切換時,會存在一個問題,當二個電晶體同時開啟時, 會驅使電流接地,這將會是非常大之電流降,而且會使用 大量電池電源。 藉由增加主要電流鏡,二個電晶體5〇6、508被使用於 限制流經反向器之電流量。 圖6顯示依據一具體實施例之電流鏡6〇〇範例。從圖6 中’電晶體Ql被連接,因此具有固定電流流過;其實際上 動作像是一個前向偏壓二極體,而且該電流是由電阻Rl所 決定。在電路中有Ql來取代一規律二極體是很重要的,因 為此二個電晶體會相符合,因此該電路之二個分支將具有 類似特性。第二個電晶體Q2會改變其自身之阻抗,所以在 電路第二分支上之全部阻抗會與第一分支上之全部阻抗相 同,而不論負載電阻R2。由於在每個分支之總阻抗相同, 而且被連接到相同的電源供應Vs+上,因此在每一分支上 之電流量相同。 心值可視需要以變更流經R2的電量。由於R2可隨時 變更,而且流經它之電流維持相同,因此電流鏡不只是一 電流調節器,也更被視為是固定電流來源,這也是它在積 體電路中使用之方法。 在通信協定中之第一個部分是天線與波封偵測區段 402、404。此電路700如圖7所示。 在電路700上有數個部分,有二個重要項目來自天線 402:第一項是資訊存在信號,而第二項則是RF發射功率。 發射功率是被分開處理的,然後該資訊(信號)會被一低通濾 波器過濾,從這個區域,該信號會送至放大與自偏壓電路 406,如圖8所示。 該電路406之第一個部分是一高通濾波器,此結合前 一階段之低通濾波器以產生一帶通濾波器。如圖9所示, 此帶通區域900大約是7KHz並具有一在兩側之 12db/octivate下降。該帶通濾波器被使用於排除大多數不 需要之雜訊。 這二個階段放大器之優點是容許作為輸出信號之調校 與自偏壓。一信號將會從圖8所示之左邊進入,然後被電 •1270822 容器電阻(RC)電路過濾。其可允許過濾不需要之信號(高 通)。由於回饋組態可容許自偏壓情況,該信號然後會進入 操作放大設計,與背景相關之雜訊會導致偏壓點從一最佳 位置移到更遠範圍以外之點。因為該信號是一 5〇%工作循 環波形(50%高和50%低),臨界值將會移向平均值,並自 己集中在想要之偏壓點上。如果接收到雜訊,電阻會洩放 某些彳5说’猎由強制工作循環50%,DC程度會永遠在二 個信號之間尋求一中繼點,而導致自己集中在接收之信號 上,而不管雜訊數量或信號之強度,而且雖然不需要之雜 訊可能實際上會落入帶通濾波器所容許之範圍,雜訊將不 會顯示一 50%工作循環波形之特性,如果波形不是5〇%, 則偏壓點將會實際地向適當位階移動。 如果接收到一雜訊信號,以致放大器也收到一個非常 不平衡之高電壓非50%工作循環時,偏壓點會移到一個較 咼之輸入電壓(相同之論點也存在於相反狀況與一較低之輸 入電壓)。在此實施例中,其在帶通濾波器範圍内顯示5〇 %工作循環之一 “真實”信號會被呈現至前置放大之輸入,它 可具有一不同之電壓臨界值。藉由允許數種循環發生,5〇 %工作循環將會調整偏壓點,降低或提升電壓位階以適應 “真實”信號作為對抗“雜訊”信號(背景、干擾、或其它前 置放大之輸出應該是1V均方根(RMS)數位“輸入,,至下一個 區段,此二個區段是中斷電路與啟動碼電路。 在此時,電路已經協助調校時脈,而且臨界值也已經 設定。現在,便需要識別中斷,該中斷具有一特定低週期 21 -1270822 與一特定高週期,如果該低週期與高週期落在一預定範圍 内,该電路便知道去尋找啟動碼。 忒中斷電路408如圖1〇所示,該前置放大器4〇6之輸 出會在如圖10所示中斷電路之左手邊進人作為數位輸 入電壓,然後它會通過一弱反饋閂鎖1〇〇2,它會維持數位 值直到輸入改變為止。下一區段(鏡反向器)1〇〇4會符合低 與高週期之時間並附隨於中斷週期,此中斷週期會對應先 前啟動指令之第二區段。 母一平行對等區段包括二反向器1〇〇6、1Q08、1〇1〇、 1012,其受限於中斷間隔之高週期與低週期之延遲週期。 該電路之上半部擷取或符合中斷脈衝之低週期,而下半部 則擷取脈衝之高週期。圖式二個部份對信號顯示一 12〇卟 與一 2 ms之界限,這可透過相符合之鏡反向器1〇〇6、 1008、1010、1012 產生。這些反向器 1〇〇6、1〇〇8、1〇1〇、 1012母個都包含一電流鏡以限制電流汲極。每一個反向 器1006、1008、1〇1〇、彻2都被調校以供特定延遲時序 使用。一反向器(在該電路之各一半内)會被調校為12〇 ps,而其它則被調校為2 ms,以便延遲可介於這些間隔之 間。該中斷間隔形式上設定為256 ,其為介於2邮與 120 με間之週期時序;其為具有-135卟至+ 1 74 ms容限 之脈衝間隔。 該鏡反向器1006、1〇〇8、101〇、1〇12係類似於圖5 所示。但是,為完成所需之長時間延遲時序(例如,2ms), 會提供數種獨特特色。該P-Side電晶體(圖5之5〇2)之通 1270822 道寬度會被減至最小(例如,〇·6μΓΤ1),而該p-side電晶體 之通道長度則會延長(例如,2〇 )以進一步降低電流通 過。因為長通道的長度會增加臨界值,電流會更緩慢,使 電流很難開啟電晶體。另外,電晶體會因為其尺寸而有更 多容量,而使信號更為減弱。為進一步延伸時序延遲,由 鏡電壓驅動之鏡電晶體(圖5之5〇6與5〇8)會增加。另 外鏡電晶體也是非對稱式的,該p-Side鏡電晶體具有類似 於P side電晶體之通道尺寸。但是,鏡電晶體會被B), which allows the circuit to self-adjust the signal threshold to account for any noise in the signal. The following areas of the slave process collect the filtered and amplified signals, and the i test meets the entry information and the start command. In the interrupt circuit 408, the observation into the 1st signal and the interruption period • Φ ^ m4J ratio h ' so that the observed signal conforms to the 雳, η success, an interrupt signal is transmitted to the power oscillating benefit and data cutter Section, disk rm . . 5 Do not have a number to enter the start of the stone horse. During the boost cycle, the oscillating test 4 is used to adjust the vc 〇 (voltage controlled oscillator) 412 from a "preset, value to the desired value during the action. This required value can be stored. In the latch, the VCO is turned off to save power. The data cutter section 414 is used to observe the start command and compare the received value with the stored value of the tag. If the value matches, the tag (device) transmits a "wake up" "Signal and turn the tag into a fully activated state (battery-powered). Subsequent circuits use a "current mirror" which, when checking the function of the current mirror, acts to limit the amount of current consumed in the operation or logic function. 5 shows the use of a current mirror 5〇〇 to create a low power inverter. The current mirror is a device used to regulate the current in an integrated circuit; it remains fixed regardless of the load. The two central transistors 502, 504 A typical inverter is included. By placing a logic voltage or a high voltage at the input, the bottom transistor 504 is placed in the active region and drives the output signal to a logic or low voltage level. If a low voltage (logic 〇) is placed on the input signal, the top transistor 502 will turn on, thus driving the output signal to a high voltage (logic 1). When turning on a transistor and turning off other transistors When switching, there is a problem. When the two transistors are turned on at the same time, it will drive the current to ground. This will be a very large current drop and a large amount of battery power will be used. By adding the main current mirror, the two transistors 5 〇 6, 508 is used to limit the amount of current flowing through the inverter. Figure 6 shows an example of a current mirror 6 依据 according to an embodiment. From Figure 6 'the transistor Q1 is connected, thus having a fixed current flow The actual action is like a forward biased diode, and the current is determined by the resistor R1. It is important to have Ql in the circuit to replace a regular diode because the two transistors Will match, so the two branches of the circuit will have similar characteristics. The second transistor Q2 will change its own impedance, so all the impedance on the second branch of the circuit will be the same as on the first branch. The same resistance, regardless of the load resistance R2. Since the total impedance at each branch is the same and is connected to the same power supply Vs+, the amount of current on each branch is the same. The heart value can be changed to flow through R2 as needed. Since R2 can be changed at any time, and the current flowing through it remains the same, the current mirror is not only a current regulator, but also a fixed current source, which is also the method used in integrated circuits. The first part of the communication protocol is the antenna and wave seal detection sections 402, 404. This circuit 700 is shown in Figure 7. There are several parts on the circuit 700, and two important items come from the antenna 402: first The item is the information presence signal, and the second item is the RF transmission power. The transmission power is processed separately, and then the information (signal) is filtered by a low-pass filter. From this area, the signal is sent to the amplification and Self-biasing circuit 406, as shown in FIG. The first portion of the circuit 406 is a high pass filter which combines the low pass filter of the previous stage to produce a band pass filter. As shown in Figure 9, this bandpass region 900 is approximately 7 kHz and has a 12 db/octivate drop on both sides. This bandpass filter is used to eliminate most of the unwanted noise. The advantage of these two stage amplifiers is that they allow for regulation and self-biasing of the output signal. A signal will enter from the left as shown in Figure 8 and then be filtered by the electric 1276022 container resistor (RC) circuit. It allows filtering of unwanted signals (high pass). Since the feedback configuration allows for self-biasing, the signal then enters the operational amplification design, and background-related noise causes the bias point to move from an optimal position to a point beyond the farther range. Since the signal is a 5〇% duty cycle waveform (50% high and 50% low), the threshold will move to the average and concentrate on the desired bias point. If noise is received, the resistor will bleed some 彳5 saying that 'hunting is 50% of the forced duty cycle, and the DC level will always seek a relay point between the two signals, causing itself to concentrate on the received signal. Regardless of the amount of noise or the strength of the signal, and although the unwanted noise may actually fall within the range allowed by the bandpass filter, the noise will not show the characteristics of a 50% duty cycle waveform, if the waveform is not 5〇%, the bias point will actually move to the appropriate level. If a noise signal is received, so that the amplifier also receives a very unbalanced high voltage non-50% duty cycle, the bias point will move to a lower input voltage (the same argument exists in the opposite case and Lower input voltage). In this embodiment, it displays one of the 5 〇 % duty cycles within the bandpass filter. The "real" signal is presented to the preamplifier input, which can have a different voltage threshold. By allowing several cycles to occur, the 5〇% duty cycle will adjust the bias point, lowering or boosting the voltage level to accommodate the “real” signal as an output against the “noise” signal (background, interference, or other preamplifier) It should be a 1V rms digital "input, to the next segment, which is the interrupt circuit and the start code circuit. At this point, the circuit has assisted in tuning the clock, and the threshold has been Setting. Now, it is necessary to identify an interrupt having a specific low period 21 -1270822 and a specific high period, and if the low period and the high period fall within a predetermined range, the circuit knows to look for the start code. As shown in FIG. 1A, the output of the preamplifier 4〇6 will enter the digital input voltage on the left hand side of the interrupt circuit as shown in FIG. 10, and then it will pass a weak feedback latch 1〇〇2. , it will maintain the digital value until the input changes. The next segment (mirror inverter) 1 〇〇 4 will meet the low and high cycle time and accompany the interrupt cycle, this interrupt cycle will correspond to the previous start command The second parallel segment includes two inverters 〇〇6, 1Q08, 1〇1〇, 1012, which are limited by a high period and a low period delay period of the interrupt interval. The upper half captures or matches the low period of the interrupt pulse, while the lower half captures the high period of the pulse. The two parts of the pattern show a boundary between 12 and 2 ms, which is transparent. Mirror inverters 1〇〇6, 1008, 1010, 1012 are produced. These inverters 1〇〇6, 1〇〇8, 1〇1〇, 1012 mothers all contain a current mirror to limit the current drain Each of the inverters 1006, 1008, 1〇1, and 2 are calibrated for use with a particular delay sequence. An inverter (within each half of the circuit) is tuned to 12 〇ps. The others are tuned to 2 ms so that the delay can be between these intervals. The interrupt interval is formally set to 256, which is the periodic timing between 2 and 120 με; it has -135卟 to + 1 74 ms tolerance pulse interval. The mirror inverters 1006, 1〇〇8, 101〇, 1〇12 are similar to the one shown in Figure 5. However, to complete The long-delay timing required (for example, 2ms) provides several unique features. The width of the 1270822 channel of the P-Side transistor (5〇2 of Figure 5) is minimized (for example, 〇·6μΓΤ1) The channel length of the p-side transistor is extended (for example, 2 〇) to further reduce the current flow. Because the length of the long channel increases the critical value, the current will be slower, making it difficult for the current to turn on the transistor. The transistor will have more capacity due to its size, which will make the signal weaker. To further extend the timing delay, the mirror transistor driven by the mirror voltage (5〇6 and 5〇8 in Figure 5) will increase. The mirror transistor is also asymmetric, and the p-Side mirror transistor has a channel size similar to that of the P side transistor. However, the mirror transistor will be

設定為只在臨界值之上mV2 1〇s。請注意其中N_s丨·拍鏡 電晶體(圖5之508)是選擇性的,因為N_sjde電晶體(圖 5之504)是一全尺寸裝置而且可非常快速地切換。 因為鏡反向器是作為時序電路,具有非常大的容量, 而且信號隨後會位於錯誤區域很長一段時間,即緩慢斜 波。為使目前具有邊界或已過濾的信號邊緣變得更銳利, 在上半部之每一個反向器1〇〇6、1〇〇8之輸出,有一半會進 入互斥或(XOR)閘1014 +,然後再經過反向器之數個階段 以到達-通過~”〇18。每一“階段,,都會將信號邊緣變得更 為銳利,放大並且清除信號以提供具有_快速傳送時間之 而F代表一快速鏡反向 信號。請注意Μ代表一鏡反向器 器。 相同之處理在圖式之下半部之高週期也是真實的,透 過數個反向器,高週期界限於是再次通過—x〇R閘1〇彳6, 並且到達通過閘1020。上部和下部通過閘1〇18、忉汕二 者均可用作為關使n項不同點是上部通道有; 23 外之通過閘1022,以容許一種移位暫存器以同步時脈與次 序。由於低時間會比高時間超前半個時脈週期,低有效信 號必須被維持以便供此額外時間使用以對準高週期有效信 號。該互斥或閘1014、1016則被使用於選擇該中斷協定之 作用部分。由於有效週期之時脈落在12〇 μ5至2 ms週期 之間,該鏡反向器1006、1008之輸出將會啟動xqr閘1〇14 之輸出,導出真實之結果。這個信號會以正確之極性由通 過閘1018依序地擷取,被同步作為一閂鎖使用。如果中斷 協定之序列是“有效,,,然後邏輯(例如,反及)閘1〇24之輸 出會變低,因此,會產生一中斷輸出之信號,該邏輯閘1〇24 具有五個輸入:四個來自鏡反向器1〇〇6、1〇〇8、1〇1〇、1〇12 輸出與一個來自反饋閂鎖1002之輸出。 這個中斷輸出信號然後會被傳送至最終區塊11〇〇,如 圖11所不,其為圖4所示之啟動電路4〇〇之第二半部。這 個區段包括4個分離區塊;一自由運轉時脈彳1 〇2,一電壓 控制時脈412,資料切割與比較區塊414,與一 6位元數位 至類比轉換器1104。 在圖12顯不-時脈電路12〇〇之圖式,圖12被區分為 二個部分··第-是電壓控制時脈412,而第二是自由運轉時 脈1102 ’它包含二個電晶體,其結合在—起以提供一震盡 器組態。由於組態之性質’它會提供—自由震盪參考以傳 达至中斷電路上。圖12之第二半部處理電壓控制時脈 412。有三個基本輸人至電路中,第—個是參考電壓,第二 個是重設,而最後-個則是_自我修正自偏壓時脈輸入, -1270822 其被使用於結合輸入資料以校正時脈邊緣至進入信號。 該頻率控制輸入來自於數位至類比轉換器11〇4,而且 是被使用於調整電壓控制時脈區段412。藉由提昇或降低搭 配。亥t说的電壓,震蘯器速度是可變化的。此項調整會影 響鏡反向器1202、1204以加速或降低震盪速度,然後該輸 出會作為供資料切割區域之參考。因為亦有需要調整時脈 週期以正確地對準校正進入資料信號,一自我修正自偏壓 輸入也被用於調整時脈邊緣。如果邏輯〇被放置於此輸入 上,它便會開啟上部電晶體而關閉下部電晶體(輸入至鏡 反向器上)。然後會將邏輯1放在時脈參考輸出上。其結果 是,相反之情形亦可為真實,邏輯彳被放在此輸入上將會 關閉上邛電晶體而開啟下部電晶體。這將可判定邏輯〇位 ;夺脈參考輸出上。最後之輸入是中斷輸入,其可被用於 重設時脈電路,停止震m因而節省電源。在很類似之 方法中’當一邏輯1從自我修正自偏壓輸入下被使用時, 中斷/重設輸人也同樣是真實的。這種組態之—項優點就是 震盪器只有在調校間隔時,才需要運作。 、最後,一通過閘會被使用以調節中斷/重設值(爲保持清 晰並未顯示於圖式中)。該通過閘之功能是從自我修正輸入 或電壓控制時脈輸人來選擇,而該閘之輸出至資料切割區 段以作為選擇時脈。 圖13 5兒明可適應之資料切割區段414。這個區域414 曰,進入M料串流解碼,然後決定進人的f2F資料編碼是 否符口内部預先程式化之啟動碼值。資料輸人來自放大與 25 •1270822 帶通濾波器階段區塊406,並且運作至通過閘1302上。從 來自電壓控制震盪器計時之通過閘1302,資料值是由一衰 弱反饋閂鎖1304所維持。在結合時脈邊緣之每一次資料輸 入轉換,一計數器1306會被計時。此計數器1306是被使 用以處理16位元EEPROM 1308。該計數器1306是從接 收通信協定之中斷部分被重設。在該中斷之後,該計數器 1306開始處理後續的EEPROM位址。這些EEPROM位址 持有這個裝置之“啟動碼”。在每一個時脈間隔,在進入資料 輸入值與啟動碼的儲存值之間之比較會被完成。如果有不 符合,互斥或閘1310將會設定一 16位元累計登錄器1312 之一區段,此將會依序避免喚醒信號判定。如果沒有錯誤, 則16位元累計登錄器1312沒有區段設定,而且會判定這 個符合之信號,然後更進一步計數器限定到達最後時,這 個值會被偵測,且當它發生時,將會判定符合之完成信號。 該符合之完成信號限定符合或所有〇之〇R閘1314之輸 出。如果〇R閘1314被判定,然後喚醒信號之輸出也會被 判定。二個值可能會導致一喚醒;一儲存啟動碼之符合或 是一特殊代碼,例如所有〇。該所有〇值被使用於企圖用來 符合來自任何讀取機之啟動碼。例如,所有〇值可指引所 有標籤以回應所有讀取機,因此提供標籤在不同環境中之 相互操作性。 注意特殊的啟動碼可以是除了所有〇之外的其它值之 序列,像是所有1,或1與〇之第二序列,可能需要額外之 邏輯及/或記憶體以識別及/或符合這些其它值。Set to mV2 1 〇s above the critical value only. Note that the N_s丨• Mirror transistor (508 of Figure 5) is optional because the N_sjde transistor (504 of Figure 5) is a full-scale device and can be switched very quickly. Because the mirror inverter is used as a sequential circuit, it has a very large capacity, and the signal will then be in the wrong area for a long time, that is, a slow ramp. In order to make the edge of the current boundary or filtered signal sharper, half of the output of each of the inverters 1〇〇6, 1〇〇8 in the upper half will enter the mutual exclusion or (XOR) gate 1014. +, then go through several stages of the inverter to reach - pass ~" 〇 18. Each "stage" will sharpen the edges of the signal, amplify and clear the signal to provide _ fast transfer time F represents a fast mirror reverse signal. Please note that Μ represents a mirror inverter. The same process is also true in the lower half of the lower half of the figure. Through several inverters, the high cycle limit then passes through the -x〇R gate 1〇彳6 and reaches the pass gate 1020. The upper and lower passes through the gates 1〇18 and 忉汕2 can be used as the closing so that the n different points are the upper channel; 23 the outer pass gate 1022 to allow a shift register to synchronize the clock and the order. Since the low time will be one half clock cycle ahead of the high time, the low valid signal must be maintained for this extra time to align with the high cycle valid signal. The mutex or gates 1014, 1016 are then used to select the active portion of the interrupt protocol. Since the clock of the active period falls between 12 〇 μ5 and 2 ms cycles, the output of the mirror inverters 1006, 1008 will initiate the output of the xqr gate 1 〇 14 to derive the true result. This signal is sequentially captured by gate 1018 with the correct polarity and is used synchronously as a latch. If the sequence of interrupt agreements is "valid, then the logic (eg, reverse) gate 1 〇 24 output will go low, therefore, an interrupt output signal will be generated, which has five inputs: Four are from the mirror invertor 1〇〇6, 1〇〇8, 1〇1〇, 1〇12 output and an output from the feedback latch 1002. This interrupt output signal is then transmitted to the final block 11〇 〇, as shown in Fig. 11, which is the second half of the starting circuit 4〇〇 shown in Fig. 4. This section includes four separate blocks; a free running pulse 彳2, a voltage control The pulse 412, the data cutting and comparison block 414, and a 6-bit digit to the analog converter 1104. In Fig. 12, the pattern of the clock circuit 12 is shown in Fig. 12, and Fig. 12 is divided into two parts. - is the voltage control clock 412, and the second is the free running clock 1102 'which contains two transistors that are combined to provide a shocker configuration. Due to the nature of the configuration 'it will provide - free The oscillating reference is communicated to the interrupt circuit. The second half of Figure 12 handles the voltage control clock 412. The three basic inputs into the circuit, the first one is the reference voltage, the second is the reset, and the last one is the _ self-correcting self-biased clock input, -1270822 which is used to combine the input data to correct The clock edge is connected to the incoming signal. The frequency control input is from the digital to analog converter 11〇4 and is used to adjust the voltage control clock segment 412. By boosting or lowering the collocation. The speed of the device is variable. This adjustment affects the mirror inverters 1202, 1204 to accelerate or reduce the oscillating speed, and then the output is used as a reference for the data cutting area. Because there is also a need to adjust the clock cycle to correctly The alignment correction enters the data signal, and a self-correcting self-bias input is also used to adjust the edge of the clock. If the logic is placed on this input, it turns on the upper transistor and turns off the lower transistor (input to the mirror) Then, the logic 1 is placed on the clock reference output. The result is that the opposite can also be true. If the logic is placed on this input, the upper transistor will be turned off. Open the lower transistor. This will determine the logic clamp; the pulse reference output. The last input is the interrupt input, which can be used to reset the clock circuit, stop the oscillation and thus save power. In a very similar way 'When a logic 1 is used from a self-correcting self-biased input, the interrupt/reset input is also true. The advantage of this configuration is that the oscillator only needs to operate when the interval is adjusted. Finally, a pass gate is used to adjust the interrupt/reset value (not shown in the figure for clarity). The pass gate function is selected from the self-correcting input or voltage control clock input. The gate is output to the data cutting section as the selection clock. Fig. 13 shows the adaptable data cutting section 414. This area is 414 曰, enters the M stream stream decoding, and then determines the incoming f2F data encoding. Whether the pre-programmed startup code value inside the symbol. The data input is from the amplification and 25 • 1270822 bandpass filter stage block 406 and operates through the pass gate 1302. From the pass gate 1302 from the voltage controlled oscillator timing, the data value is maintained by a weak feedback latch 1304. A counter 1306 is clocked in conjunction with each data input transition at the edge of the clock. This counter 1306 is used to process the 16-bit EEPROM 1308. The counter 1306 is reset from the interrupt portion of the receiving communication protocol. After the interrupt, the counter 1306 begins processing subsequent EEPROM addresses. These EEPROM addresses hold the "boot code" for this device. At each clock interval, a comparison between the incoming data input value and the stored value of the activation code is completed. If there is a non-conformity, the mutex or gate 1310 will set a segment of the 16-bit cumulative register 1312, which will avoid the wake-up signal decision in sequence. If there is no error, the 16-bit cumulative register 1312 has no segment setting, and will determine the match signal, and then further counter limit will be detected when it reaches the end, and when it occurs, it will be determined. Comply with the completion signal. The coincidence completion signal defines the output of either or all of the R gates 1314. If 〇R gate 1314 is asserted, then the output of the wake-up signal is also asserted. Two values may result in a wakeup; a match to store the boot code or a special code, such as all 〇. This devaluation is used in an attempt to match the boot code from any reader. For example, all thresholds can direct all tags in response to all readers, thus providing interoperability of tags in different environments. Note that a special startup code may be a sequence of values other than all 〇, such as all 1, or a second sequence of 〇, may require additional logic and/or memory to identify and/or conform to these other value.

26 1270822 最後之區段是如圖14所示數位至類比轉換器11〇4。這 個區域1104之基本操作是將電壓控制時脈4彳2最佳化。這 疋藉由VCO 412使用一儲存在RQM 1402中之固定“調校,, 值做為最初啟動操作來完成。這個值一般形式設定值為 24,其會選擇經揀選之加權或適當尺寸之電晶體以提供— 固定電壓至VCO 412上。藉由調整該主動電晶體,電壓輪 出被修正,可向上或向下。此修正可藉由6位元計數器彳4〇4 來完成。在主動調校週期,VC〇4彳2的速度會藉由開啟或 關閉電晶體之不同組合而被增加或減少。 對計數器之時脈是來自VCO 412,而且對計數器的重 設來自在濾波與放大階段406中之操作放大輸出。該調校 發生在啟動指令之最初階段。從圖3,我們發現到啟動指令 之第一部份是一 6 KHz調校週期,其為一使用於調整在計 數器1404中使用值之調校週期,而且因此該電晶體之值與 數里已被開啟,此將依序調整“頻率控制”信號之值。 圖15A-B顯示該中斷電路408之一較佳具體實施例與 —說明性中斷指令信號1500。該中斷電路4〇8偵測一啟動 指令信號1500,類似於圖3B所示。但是,在此電路4〇8 中,四個(或更多)資料路徑會被呈現以偵測在進入信號 中之一“中斷叢集”1502,其中該中斷叢集是被電路識別為一 中斷之一系列符號。在此處,該中斷叢集是一資料1-1。再 一次地,當偵測到適當之中斷叢集時,該電路接著會比較 後續接收之啟動指令1504,並且將其與儲存在裝置中之值 比赛^ 〇 ⑧ 1270822 關於在圖15A所示之啟動指令信號1500,最好是兮^ 號1500之啟動指令部分1504不包含任何二個連續】之序 列,在一 16位元代碼1504中,大約有一百萬種可能的組 合,而在一 32位元代碼1504中,則大約有4〇億種可能組 合。 匕、、、 該電路之第一部分是可偵測中斷叢集之一間隔偵測電 路1505。資料路徑A偵測中斷叢集之第一上升邊緣15〇6, 在延遲時間( 250 與1 ms)之後的Y,代表鏡反向器 1508、1510回應上升邊緣彳5〇6。 第一鏡反向器1508會緩慢地回應第一上升邊緣,例 如,在256 内,而第二反向器則會需花更長時間回應, 例如,1 ms。該二種動作結合在一起產生一種負脈衝1512 (由於反向器)以回應至正時脈邊緣1506。該脈衝會變低 並持續250μκ ] ms。該f訊—旦最初被取樣後,便會透 過剩餘邏輯以類似一移位暫存器般計時。在本具體實施例 中,該資料會通過數個邏輯一閂鎖,例如,第一啟用閘1514 會在50G 下降以娜_邏輯彳。該信號接著會穿過額外 閂鎖、反向器與暫存器而最後到達一邏輯AND閘。在資料 路徑A之其它閂鎖會類似地回應第一閂鎖1514,除了那些 在落下邊緣標有“§,,之擷取資料。 身料路徑B功能與資料路徑A實質上相同,唯一例外 的疋鏡反向器會回應第—落下邊緣1516,就如在延遲時間 ,後的f所不。另—項差異則是資料路徑B具有較少的邏 輯凡件,因為它回應邊緣1516在時間上會較晚。 28 -1270822 在 > 料路桎C和D中也是一樣。最終結果就是來自每 一負料路徑之信號會在相同時間到達中斷閘1518 ( AND 閘)。 如果中斷叢集正確,則進入中斷閘1518之輸入全部為 1 ’包括沿著線路1520之輸入(有如來自上升邊緣彳522 之結果),當所有的1都是進入中斷閘1518之輸入時,中 斷閘1518會輸出一脈衝以啟動一 5位元計數器1524與設 定一閂鎖1526。 $ 這時電路408會知道去尋找一 32位元啟動碼1504, 使用一週期偵測器電路1530,可重設在時脈上升邊緣上之 時序’以及用於比對啟動指令與一預儲值之比較線路1532。 週期偵測器電路153◦只關心符號的長度(例如,上升 邊緣至上升邊緣,或落下邊緣至落下邊緣)。因此,具有正 確工作循環較不重要。當進入信號在上升邊緣由低到高 時’它會通過一第一反向器1534與一第二反向器1538, 同時會開啟第一與第三閂鎖1536、1552。該信號會通過第 • 一閂鎖1536而儲存在一電容器1540上,該信號接著會進 入一延遲電路1542並結合至一 P裝置1544。該延遲電路 1542會在一預定時間之後輸出一脈衝,例如250 μ5,其可 啟動電晶體1546並容許資料儲存在電容器1504以進入一 第二閂鎖1548。該第二閂鎖1548會在落下邊緣開啟,並 容許信號到達NOR閘1550,在那裡會與儲存的啟動指令 相比較。 現在轉至比較電路,當一中斷信號從AND閘1518收 29 1270822 到時,計數器1524會啟動。一記憶體1554儲存一預定啟 動碼,而該啟動碼在計數器1524之控制下從記憶體1554 被饋送至NOR閘1550。因為該計數器1524與第三閂鎖 1552是在相同時脈信號上,該NOR閘可用正確時序來比 對儲存代碼序列與進入資料序列。如果進入代碼與被儲存 代碼相符,一第二AND閘1560會輸出一啟動脈衝以喚醒 該標籤。 再一次地,如前所述,若中斷符合而且後續啟動指令 為0時,電路亦知道要啟動。 如前所述,在某些例子中,該標籤可能必須偵測多個 代碼,例如,一公共啟動碼、私人啟動碼、特定類別標籤 或項目之代碼,與標籤之特定代碼。例如,一階層式結構 亦可被使用,其中一個代碼會在倉儲中啟動所有標籤,另 一個代碼啟動清除補給標藏,而第三個代碼則特定供每一 標籤使用。一熟悉先前技術者將能瞭解,當可以使用多種 代碼時,對設計者與使用者而言,將會有許多選擇。 為使多個代碼可以使用,電路之啟動指令比較部分 1532之部分可被複製(以其他儲存在記憶體中之代碼),熟 悉先前技術者亦當可瞭解。 同時應特別注意,電路408是自有時脈,線路1520提 供一時脈信號至計數器1524,該計數器使用輸入電壓作為 時脈信號。 因此,在圖10與圖15中所示之電路408都是自有時 脈電路(當未呈現時脈時)。因此,兩種方式已被顯示在不 1270822 需要呈現時脈信號下如何彳貞測一中斷。一熟悉先前技術者 將會瞭解,其它電路設計可被用來實施本件發明。 雖然各種具體實施例已如前所述,但應瞭解它們是以 實施例之方式被呈現,而非受限於此。因此,一較佳具體 實施例之幅度與範疇應不受限於上述之任何具體實施範 例,而只應限定於所依據之下列申請專利範圍及其附屬項。 【圖式簡單說明】 為了更進一步瞭解本件發明之本質與優點,以及較佳之使用模式,下 列詳細敘述應配合所附圖式一併閱讀作為參考。 圖1是一 RFID系統之系統圖式。 圖2是用於在RFID標籤内執行之一積體電路(IC)晶片之系統 圖式。 圖3A是依據一具體實施例之啟動指令說明。 圖3B是依據另一具體實施例之啟動指令說明。 圖4是依據一具體實施例之啟動電路圖式。 圖5是依據一具體實施例之鏡反向器之電路圖式。 圖6是依據一具體實施例之示範性電流鏡之電路圖式。 圖7是依據一具體實施例之圖4之啟動電路之天線和波封檢測區 段之電路圖式。 圖8是依據一具體實施例之圖4之啟動電路之自偏壓前置放大器 之電路圖式。 圖9說明藉由啟動電路之高與低通濾波器過濾信號之帶通區域。26 1270822 The last section is the digit to analog converter 11〇4 as shown in Figure 14. The basic operation of this region 1104 is to optimize the voltage control clock 4彳2. This is done by the VCO 412 using a fixed "tuning" stored in the RQM 1402, which is done as the initial starting operation. This value is generally set to 24, which will select the weighted or appropriately sized battery. The crystal is supplied with a fixed voltage to the VCO 412. By adjusting the active transistor, the voltage turn is corrected to go up or down. This correction can be done by a 6-bit counter 彳4〇4. During the calibration cycle, the speed of VC〇4彳2 is increased or decreased by turning on or off different combinations of transistors. The clock to the counter is from VCO 412, and the reset of the counter comes from the filtering and amplification stage 406. The operation is amplified and output. This adjustment occurs in the initial stage of the start command. From Figure 3, we find that the first part of the start command is a 6 KHz tuning cycle, which is used for adjustment in counter 1404. The calibration period of the value, and thus the value of the transistor, has been turned on, which will adjust the value of the "Frequency Control" signal in sequence. Figures 15A-B show a preferred embodiment of the interrupt circuit 408 andAn illustrative interrupt command signal 1500. The interrupt circuit 4〇8 detects a start command signal 1500, similar to that shown in Figure 3B. However, in this circuit 4〇8, four (or more) data paths are presented. To detect an "interrupt cluster" 1502 in the incoming signal, wherein the interrupt cluster is a series of symbols recognized by the circuit as an interrupt. Here, the interrupt cluster is a data 1-1. Again, when Upon detection of the appropriate interrupt cluster, the circuit then compares the subsequent received start command 1504 and matches it to the value stored in the device. 12 8 1270822 Regarding the start command signal 1500 shown in Figure 15A, preferably The start command portion 1504 of the 1500^ 1500 does not contain any two consecutive sequences. In a 16-bit code 1504, there are approximately one million possible combinations, and in a 32-bit code 1504, There are about 400 million possible combinations. The first part of the circuit is one of the detectable interrupt clusters. The interval detection circuit 1505. The data path A detects the first rising edge of the interrupt cluster 15〇6, at the delay. time( After 250 and 1 ms), Y represents mirror invertors 1508, 1510 in response to rising edge 彳5〇6. First mirror inverter 1508 will slowly respond to the first rising edge, for example, within 256, and second The inverter will take longer to respond, for example, 1 ms. The two actions combine to produce a negative pulse 1512 (due to the inverter) in response to the positive clock edge 1506. The pulse will go low and For 250μκ] ms, the signal will be clocked through the remaining logic like a shift register after the initial sampling. In this embodiment, the data will be latched by several logic ones, for example The first enabled gate 1514 will drop at 50G with Na_Logic. This signal then passes through additional latches, inverters and registers and finally reaches a logical AND gate. The other latches in data path A will similarly respond to the first latch 1514, except those that are marked with "§," on the falling edge. The body path B function is substantially the same as the data path A, with the exception of The 疋 mirror reverser will respond to the first drop edge 1516, as in the delay time, after the f is not. The other difference is that the data path B has fewer logical parts because it responds to the edge 1516 in time. It will be later. 28 -1270822 is the same in > Feeds C and D. The end result is that the signal from each negative path will arrive at the interrupt gate 1518 (AND gate) at the same time. If the interrupt cluster is correct, then The inputs to the interrupt gate 1518 are all 1 'including the input along line 1520 (as a result of rising edge 彳 522). When all 1 are input to the interrupt gate 1518, the interrupt gate 1518 outputs a pulse. A 5-bit counter 1524 is activated and a latch 1526 is set. At this point, circuit 408 will know to look for a 32-bit enabler code 1504, which can be reset on the rising edge of the clock using a one-cycle detector circuit 1530. Timing 'and a comparison line 1532 for comparing the start command with a pre-stored value. The period detector circuit 153 only cares about the length of the symbol (eg, rising edge to rising edge, or falling edge to falling edge). It is less important to have the correct duty cycle. When the incoming signal is low to high on the rising edge, it will pass through a first inverter 1534 and a second inverter 1538, and the first and third latches 1536 will be turned on at the same time. 1552. The signal is stored on a capacitor 1540 via a first latch 1536, which in turn enters a delay circuit 1542 and is coupled to a P device 1544. The delay circuit 1542 outputs a predetermined time. A pulse, such as 250 μ5, activates transistor 1546 and allows data to be stored in capacitor 1504 to enter a second latch 1548. The second latch 1548 opens at the falling edge and allows the signal to reach NOR gate 1550, where Will be compared with the stored start command. Now go to the comparison circuit, when an interrupt signal from the AND gate 1518 receives 29 1270822, the counter 1524 will start. A memory 1554 storage A predetermined start code is fed from the memory 1554 to the NOR gate 1550 under the control of the counter 1524. Since the counter 1524 and the third latch 1552 are on the same clock signal, the NOR gate can be used with the correct timing. To compare the stored code sequence with the incoming data sequence. If the incoming code matches the stored code, a second AND gate 1560 outputs a start pulse to wake up the tag. Again, as previously described, if the interrupt is met and subsequently When the start command is 0, the circuit also knows to start. As mentioned earlier, in some instances, the tag may have to detect multiple codes, such as a public activation code, a private activation code, a code for a particular category tag or item, and a specific code for the tag. For example, a hierarchical structure can also be used where one code starts all tags in the warehousing, another code initiates the purge replenishment tag, and the third code is specific to each tag. Those skilled in the art will appreciate that there are many options for designers and users when multiple codes are available. In order for a plurality of codes to be usable, portions of the start command comparison portion 1532 of the circuit can be copied (to other code stored in the memory), as will be appreciated by those skilled in the art. At the same time, it should be noted that circuit 408 is self-timer and line 1520 provides a clock signal to counter 1524 which uses the input voltage as the clock signal. Thus, the circuits 408 shown in Figures 10 and 15 are both self-timer circuits (when the clock is not present). Therefore, two methods have been shown to detect an interruption under the clock signal that does not need to be presented. One familiar with the prior art will appreciate that other circuit designs can be used to implement the invention. While the various specific embodiments have been described above, it is to be understood that they are presented Therefore, the scope and scope of a preferred embodiment should not be limited to any specific embodiments described above, but only to the scope of the following claims and their dependents. BRIEF DESCRIPTION OF THE DRAWINGS In order to further understand the nature and advantages of the present invention, and the preferred mode of use, the following detailed description should be read in conjunction with the accompanying drawings. Figure 1 is a system diagram of an RFID system. Figure 2 is a system diagram for performing an integrated circuit (IC) chip within an RFID tag. FIG. 3A is a description of a startup command in accordance with an embodiment. Figure 3B is an illustration of a startup command in accordance with another embodiment. 4 is a startup circuit diagram in accordance with an embodiment. Figure 5 is a circuit diagram of a mirror inverter in accordance with an embodiment. 6 is a circuit diagram of an exemplary current mirror in accordance with an embodiment. Figure 7 is a circuit diagram of an antenna and a wave seal detection section of the start-up circuit of Figure 4, in accordance with an embodiment. Figure 8 is a circuit diagram of a self-biased preamplifier of the startup circuit of Figure 4, in accordance with an embodiment. Figure 9 illustrates the bandpass region of the signal filtered by the high and low pass filters of the startup circuit.

31 1270822 圖10是依據一具體實施例之圖4之啟動電路之中斷電路圖式。 圖11是依據一具體實施例之圖4之啟動電路之電壓控制震盪器 和資料切割器之電路圖式。 圖12是依據一具體實施例之圖11之時脈區段之電路圖式。 圖13疋依據一具體實施例之圖11之資料切割區段之電路圖式。 圖14是依據一具體實施例之圖彳彳之數位至類比轉換器之電路 圖式。31 1270822 FIG. 10 is an interrupt circuit diagram of the startup circuit of FIG. 4 in accordance with an embodiment. Figure 11 is a circuit diagram of a voltage controlled oscillator and data cutter of the start-up circuit of Figure 4 in accordance with an embodiment. Figure 12 is a circuit diagram of the clock segment of Figure 11 in accordance with an embodiment. Figure 13 is a circuit diagram of the data cutting section of Figure 11 in accordance with an embodiment. Figure 14 is a circuit diagram of a digital to analog converter of the Figure according to an embodiment.

圖15A是依據一具體實施例之啟動指令說明。 圖15B是依據一具體實施例之圖4之啟動電路之中斷電路之電 路圖式。 【主要元件符號說明】 100 RFID 系統 1〇2 標籤 104 讀取機 106 光學伺服器 200 Class-3 晶片 202 電源產生器與調節電路 204 數位指令解碼器與控制電路 206 偵測器介面模組 208 C1V 2介面通信協定電路 210 電源(電池) 212 顯示器驅動模組 214 電池啟動線路 32 ⑧ 1270822 216 前向鏈結AM解碼器 218 反向散射調幅器區塊 220 Fowler-Nordheim直接穿遂過氧化物裝置 222 安全加密電路 300 啟動指令信號 302 前置放大器中心對準序列 304 中斷週期 305 同步信號 306 數位啟動碼 400 用以執行較佳啟動功能方法之系統 402 天線 404 波封偵測器 406 前置放大器、放大與自偏壓電路、放大與帶通濾波 器階段區塊、濾波與放大階段 408 中斷電路 410 震盪器調校器 412 電壓控制震盪器、電壓控制時脈 414 資料切割區段、資料切割與比較區段 500 電流鏡 502 電晶體 504 電晶體 506 電晶體、鏡電晶體 508 電晶體、鏡電晶體 600 電流鏡 700 電路 900 帶通區域 1002 反饋閂鎖 (§) 33 1270822 1004 鏡反向器 1006 電流鏡反向器 1008 電流鏡反向器 1010 電流鏡反向器 1012 電流鏡反向器 1014 互斥或閘 1016 互斥或閘 1018 通過閘 1020 通過閘 1022 通過閘Figure 15A is an illustration of a startup command in accordance with an embodiment. Figure 15B is a circuit diagram of an interrupt circuit of the start-up circuit of Figure 4, in accordance with an embodiment. [Main component symbol description] 100 RFID system 1〇2 tag 104 reader 106 optical server 200 Class-3 chip 202 power generator and adjustment circuit 204 digital command decoder and control circuit 206 detector interface module 208 C1V 2 interface communication protocol circuit 210 power supply (battery) 212 display drive module 214 battery start line 32 8 1270822 216 forward link AM decoder 218 backscatter amplitude modulator block 220 Fowler-Nordheim direct through peroxide device 222 Security Encryption Circuit 300 Startup Command Signal 302 Preamplifier Center Alignment Sequence 304 Interrupt Period 305 Synchronization Signal 306 Digital Activation Code 400 System 402 for Performing a Better Startup Function Method Antenna 404 Wave Seal Detector 406 Preamplifier, Amplification And self-biasing circuit, amplification and bandpass filter stage block, filtering and amplification stage 408 interrupt circuit 410 oscillator tuner 412 voltage control oscillator, voltage control clock 414 data cutting section, data cutting and comparison Section 500 Current Mirror 502 Transistor 504 Transistor 506 Transistor, Mirror Transistor 508 Transistor Mirror transistor 600 Current mirror 700 Circuit 900 Bandpass region 1002 Feedback latch (§) 33 1270822 1004 Mirror inverter 1006 Current mirror inverter 1008 Current mirror inverter 1010 Current mirror inverter 1012 Current mirror reversal 1014 Mutually exclusive or gate 1016 mutually exclusive or gate 1018 through gate 1020 through gate 1022 through gate

1024 邏輯閘 1100 最終區塊 1102 自由運轉時脈 1104 6位元數位至類比轉換器 1200 時脈電路 1202 鏡反向器 1204 鏡反向器 1302 通過閘 1304 反饋閂鎖 1306 計數器1024 Logic Gate 1100 Final Block 1102 Free Running Clock 1104 6-Bit Digit to Analog Converter 1200 Clock Circuit 1202 Mirror Inverter 1204 Mirror Inverter 1302 Pass Gate 1304 Feedback Latch 1306 Counter

1308 16 位元 EEPROM 1310 互斥或閘 1312 16位元累計登錄器 1314 OR 閘1308 16-bit EEPROM 1310 Mutually exclusive or gate 1312 16-bit cumulative register 1314 OR gate

1402 ROM 1404 6位元計數器 1500 中斷指令信號、啟動指令信號 1502 中斷叢集 1504 啟動指令、啟動碼、電容器 ⑧ 34 -1270822 1505 間隔偵測電路 1506 第一上升邊緣 1508 鏡反向器 1510 鏡反向器 1512 負脈衝 1514 第一啟用閘、第一閂鎖 1516 第一落下邊緣 1518 中斷閘(AND閘) 1520 線路 1522 上升邊緣1402 ROM 1404 6-bit counter 1500 interrupt command signal, start command signal 1502 interrupt cluster 1504 start command, start code, capacitor 8 34 -1270822 1505 interval detection circuit 1506 first rising edge 1508 mirror inverter 1510 mirror inverter 1512 Negative pulse 1514 First enable gate, first latch 1516 First drop edge 1518 Break gate (AND gate) 1520 Line 1522 Rising edge

1524 5位元計數器 1526 閂鎖 1530 週期偵測器電路 1532 比較線路、啟動指令比較部分 1534 第一反向器 1536 第一閂鎖 1538 第二反向器 1540 電容器 1542 延遲電路 1544 P裝置 1546 電晶體 1548 第二閂鎖 1550 NOR 閘 1552 第三閂鎖 1554 記憶體 1560 第二 AND 閘 351524 5-bit counter 1526 latch 1530 period detector circuit 1532 compare line, start command compare portion 1534 first inverter 1536 first latch 1538 second inverter 1540 capacitor 1542 delay circuit 1544 P device 1546 transistor 1548 Second Latch 1550 NOR Gate 1552 Third Latch 1554 Memory 1560 Second AND Gate 35

Claims (1)

* 1270822 十、申請專利範圍: 1. 一種用於啟動裝置之電池啟動電路,該電路包括·· 一中斷電路,用以決定接收信號之一中斷週期是否符合預定多數 值’或落在預定範圍内,如果中斷週期符合預定值或落在預定範圍, 該中斷電路會輸出一中斷信號;及 一資料切割器,用於比對接收到之啟動碼與一儲存值,若接收到之 啟動碼符合儲存值,資料切割器會傳送一喚醒信號以啟動裴置。* 1270822 X. Patent application scope: 1. A battery starting circuit for starting device, the circuit comprising: an interrupt circuit for determining whether an interruption period of one of the received signals meets a predetermined multi-value ' or falls within a predetermined range If the interrupt period meets the predetermined value or falls within the predetermined range, the interrupt circuit outputs an interrupt signal; and a data cutter for comparing the received start code with a stored value, if the received start code is in accordance with the storage Value, the data cutter will send a wake-up signal to activate the device. 2. 如申請專利顧第1項所述之電路,其中電路係在無線射頻識別 (RFID)標籤中使用。 3. 如申請專利範圍第彳項所述之電路,其中更進一步包括一自偏壓放 大器’其基於接收之前置放大器中心對準序列之5〇%工作循環波形 設定一偏壓點。 V 4. =申請專利範圍第j項所述之電路,其中更進—步包括一帶職波 器從接收之信號排除不想要之雜訊。 5·如申請專利範圍第彳項所述之電路’其中該中斷電路包括一具有五 個輸入之邏輯閘。 八 6·如申請專利範圍第1項所述之電路,其中該中斷電路包括: 一第一對鏡反向器’每-個反向H都經調校以提供不同之特定延遲 時序’第一對鏡反向器會侧-中斷脈衝之低週期是否介於特定延 遲時序之間; 一第二對鏡反向器’每-個反向器都經調校以提供不同之特定延遲 時序使用’第二對鏡反向器會侧-中斷脈衝之高週蚁特 定延遲時序之間; , 、 —第一閂鎖,取樣與儲存來自第一對鏡反向器之輪出. —第二閂鎖,取樣與儲存來自第二對鏡反向器之輪出. 36 ⑧ 1270822 一第:閂鎖’取樣與儲存來自第一閂鎖之輪出;及 第二_第_,,其 7·如申請專利範圍第6項所述之電路 -對鏡反向器與第—関mR :=:广之第_ 幹出合之特定延遲時序之間時,則第一職間的 輸出“被啟動,如果該中斷脈衝之高週期是介2. The circuit of claim 1, wherein the circuit is used in a radio frequency identification (RFID) tag. 3. The circuit of claim 2, further comprising a self-bias amplifier </ RTI> which sets a bias point based on a 5 〇 duty cycle waveform of the center sequence of the preamplifier. V 4. = Circuitry as claimed in item j of the patent application, wherein further steps include a band-of-sense wave machine to exclude unwanted noise from the received signal. 5. The circuit of claim </RTI> wherein the interrupt circuit comprises a logic gate having five inputs. 8. The circuit of claim 1, wherein the interrupt circuit comprises: a first pair of mirror inverters - each of the reverse H is calibrated to provide a different specific delay timing 'first For the mirror inverter side - the low period of the interrupt pulse is between the specific delay timing; a second pair of mirror inverter 'per-inverter is tuned to provide different specific delay timing use' The second pair of mirror inverters will be side-interrupted pulses between the high-cycle ant-specific delay timings; , - the first latch, sampling and storing the wheel from the first pair of mirror inverters. - the second latch , sampling and storing the wheel from the second pair of mirror inverters. 36 8 1270822 one: the latch 'sampling and storing the wheel from the first latch; and the second _ _,, its 7 · as applied When the circuit-to-mirror inverter described in item 6 of the patent scope is between the specific delay timing of the first-off mR:=: wide _ dry-out, then the output of the first job is "started, if The high period of the interrupt pulse is 特定延遲時序之間時,二XOR閉之輪出會被啟動。 8_如申請專利範圍第6項所述之電路,其中更進一步包括介於第一對 鏡反向器與第三閂鎖之間之一系列反向器。 9.如申請專利範圍第6項所述之電路,其中更進—步包括介於第二對 鏡反向器和第二閂鎖之間之一系列反向器。 1〇·如申請專利範圍第6項所述之電路,其中該閃鎖包括通過閉。 11·如申請專利範圍第6項所述之電路’其中該邏輯閘也接收來自一用 於儲存伴隨中斷脈衝之值之反饋閃鎖之輸出。 12. 如申請專利範圍第i項所述之電路,其中更進一步包括一可適應性 時序電路以控制資料切割器。 13. 如申請專利範圍第]項所述之電路’其中更進一步包括適應性時序 電路以供啟動與調整-後續處理之時脈,該適應性時計電路之—輪 出值是被儲存在-閃鎖中,其中在閃鎖中儲存適應性時序電路之^ 出值時,適應性時序電路會關閉。 14. 如申請專利範圍第彳項所述之電路,其中該接收信號是一包括前置 放大器中心對準序列、中斷週期、與啟動碼之啟動指令。 37 ⑧ 1270822 15. 1用於啟動裝置之電池啟_路,該電路包括·· 預定多數 在預定範 中斷電路,用以決定_接收信號之中斷週期是否符合 值’或洛在預定範咖,如果射斷週期符合預定值或落 圍’中斷電路會輸出-帽健; 1 財斷祕接时_號,該軸_序電路 Τ啟用並__時脈以供後續處理使用;及 一用以調校適應性時序電路之調校器。When there is a specific delay between the timings, the two XOR closed rounds will be activated. The circuit of claim 6, further comprising a series of inverters between the first mirror reverser and the third latch. 9. The circuit of claim 6 wherein the step further comprises a series of inverters between the second mirror reverser and the second latch. The circuit of claim 6, wherein the flash lock comprises a pass. 11. The circuit of claim 6 wherein the logic gate also receives an output from a feedback flash lock for storing a value associated with the interrupt pulse. 12. The circuit of claim i, further comprising an adaptive timing circuit to control the data cutter. 13. If the circuit described in the scope of the patent application is further including an adaptive timing circuit for starting and adjusting - the clock of subsequent processing, the round-out value of the adaptive timepiece circuit is stored in -flash In the lock, when the value of the adaptive sequential circuit is stored in the flash lock, the adaptive sequential circuit is turned off. 14. The circuit of claim 2, wherein the received signal is a start command comprising a preamplifier center alignment sequence, an interrupt period, and a start code. 37 8 1270822 15. 1 is used to start the battery of the device, the circuit includes: · a predetermined majority of the predetermined interrupt circuit to determine whether the interrupt cycle of the received signal meets the value 'or The injection cycle meets the predetermined value or the finalization 'interrupt circuit will output-cap health; 1 financial interface _ number, the axis _ sequence circuit Τ enable and __ clock for later processing; and one to adjust Calibration device for school adaptive timing circuits. 16.如申請專利範圍第15項所述之電路,其中更進一步包括一 對接收啟動碼與—儲存值,如果接收啟動碼與儲存值2 Y ,该資料切割器會傳送一喚醒信號以啟動裝置。 17· —種用於識別一中斷之電路,該電路包括: 一第一對鏡反向器,每-個反向器都經調校以提财同之特定延遲 時序使用,第一對鏡反向器賴測一中斷脈衝之低週 定延遲時序之間; 丨於特 一第二對鏡反向器,每―個反向器都經調校以提供柯之特定延遲16. The circuit of claim 15, further comprising a pair of receiving activation code and a stored value, and if receiving the activation code and the stored value 2Y, the data cutter transmits a wake-up signal to activate the device. . 17. A circuit for identifying an interrupt, the circuit comprising: a first pair of mirror inverters, each of the inverters being tuned for use with a specific delay timing, the first pair of mirrors The comparator measures the low-cycle delay between the interrupt pulses; in the second-pair mirror inverter, each of the inverters is tuned to provide a specific delay 時序使用’帛二對鏡反向器會_ 一中斷脈衝之高週期是否介 定延遲時序之間; 、 一第一閂鎖,取樣與儲存來自第一對鏡反向器之輸出; 第一閃鎖,取樣與儲存來自第二對鏡反向器之輸出· 一第二閂鎖,取樣與儲存來自第一閂鎖之輸出;及 一邏輯閘,接收來自第二閃鎖與第三閃鎖之輸出,其中來自邏輯閑 之輸出表示一中斷之成功識別。 18·如申請專利範圍第17項所述之電路,其中更進—步包括一位於第 -對鏡反向器與第-閃鎖之間之第- X0R閘,及一位於第二對鏡 38 (D • 1270822 :?:=二閃鎖之間之第二X0R閉,其中如果中斷脈衝之低週 =於^對鏡蝴之特梅時序之,第—職間之 19. =a被啟動,如果射斷脈衝之_是介於第二對鏡反向器之 寺疋延遲畴之_,娜二職閘之輪岭被啟動。 二1專_第17項所述之電路,射電路可在-無_識 別(RFID)標籤内實施。 2〇·如申請專利制第17項所述之電路,其作馳括通過間。Timing uses '帛 二 对 对 对 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Locking, sampling and storing the output from the second pair of mirror inverters; a second latching, sampling and storing the output from the first latch; and a logic gate receiving the second and third flash locks The output, where the output from the logic idle represents the successful identification of an interrupt. 18. The circuit of claim 17, wherein the further step comprises a first -X0R gate between the first-to-mirror inverter and the first-flash lock, and a second pair of mirrors 38. (D • 1270822 :?:= The second X0R is closed between the two flash locks, where if the low cycle of the interrupt pulse = ^ is the timing of the mirror, the first job is 19. = a is activated, If the _ _ _ _ is the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - Implemented in the no-identification (RFID) tag. 2. The circuit described in claim 17 is used as a pass-through. 1·如申請專利細第17項所述之電路,其中邏輯閘也接收來自一用 於儲存伴隨巾斷脈衝之值之反綱鎖之輸出。 22·如申請專利範圍第17項所述之電路,其中更進一步包括介於第一 對鏡反向器與第三閃鎖之間之一系列反向器。 23·如申明專利範圍第17項所述之電路,其中更進一步包括介於第二 對鏡反向器與第二問鎖之間之一系列反向器。 24· -種用電路啟動褒置之方法,該方法包括·· 在裝置上聽取一啟動指令;1. The circuit of claim 17, wherein the logic gate also receives an output from an inverse lock for storing a value associated with the burst pulse. The circuit of claim 17, further comprising a series of inverters between the first pair of mirror inverters and the third flash lock. The circuit of claim 17, further comprising a series of inverters between the second pair of mirror inverters and the second question lock. 24 - a method for starting a device with a circuit, the method comprising: - listening to a start command on the device; 接收該啟動指令,該啟動指令包括-前置放大器中心對準序列、一 中斷週期、與一啟動碼; 如果中斷週崎合—預定值或是落在歉細内,齡析啟動碼; 及 如果啟動碼符合在裝置中之儲存值,則啟動該裝置。 25·如申請專利範圍帛24項所述之方法,其中該方法是以一無線賴 識別(RRD)標籤實施。 26.如申請專利範圍第24項所述之方法,其中該方法可藉由不同的 RFID標籤來執行,一但接收一特定啟動指令,數個標籤會被啟動。 39 ⑧ -1270822 27_如申料概M 24賴述之方法,其中該方法可在綠裝置實 施0 28. 如申請專利範圍第a項所述之方法,其中該特殊啟動碼會指引裝 置以回應所有詢問裴置。 29. 如申請專利範圍第24項所述之方法,其中該裝置會回應多個啟動 碼0 30·如申請專利範圍第24項所述之方法,其中該前置放大器中心對準 序列是一 50%工作循環波形。Receiving the start command, the start command includes a preamplifier center alignment sequence, an interrupt period, and an activation code; if the interrupted Zhouqihe-predetermined value or falls within the apology, the aging initialization code; and if The activation code matches the stored value in the device and the device is activated. 25. The method of claim 24, wherein the method is implemented as a wireless RID tag. 26. The method of claim 24, wherein the method is executable by a different RFID tag, and upon receipt of a particular activation command, a plurality of tags are activated. 39 8 -1270822 27_ The method of claim 4, wherein the method can be implemented in a green device. 28. The method of claim a, wherein the special activation code directs the device to respond All inquiry settings. 29. The method of claim 24, wherein the device is responsive to a plurality of activation codes. The method of claim 24, wherein the preamplifier center alignment sequence is a 50. % work cycle waveform. 31·如申請專利細第24項所述之方法,其中—中斷電路觀於決定 =中斷週蚁否符合狀值或是落在取顧内,該情電路包 第對鏡反向益,每一個反向器都經調校以提供不同之特定延遲 轉使用,該第-對鏡反向刚測—中斷脈衝之倾期是否介於 特疋延遲時序之間; -第二對鏡反向器,每一個反向器都經調校以提供不同之特定延遲 2使用’該第二對鏡反向刚測—中斷脈衝之高週期是否位在 特定延遲時序之間; 一第一閃鎖,取樣觸存來自第—對鏡反向器之輸出,· 一第二_,取樣觸縣自第二_反向ϋ之輸出; —第三f-Ι鎖’取樣與儲存來自第一問鎖之輪出·及 -邏輯間,接收來自第二簡與第三_之輸出, 其中來自邏觸之輸岐—中斷信號。 一用 如申請專利範圍第31項所述之古本 ^ 辑软方法,其中邏輯間也接收來自 於館存伴隨情脈衝之值之反朗鎖之輸出。 32. 33. —種使用啟動碼以啟動裝置之方法,該方法包括: 在裝置上接收一啟動碼; 比對啟動碼與預儲值; 如果啟動碼符合預儲值,則會啟動裝置;及 如果啟動碼與預儲值不符,則不會啟動裝置。 34·如申請專利範圍第33項所述之方法,其中該方法是以一無線射頻 識別(RFID)標籤實施。 35·如申請專利範圍第33項所述之方法,其中該方法可由數個RF|D 標籤執行,當接收一特定啟動指令時,會啟動數個標籤。 36·如申請專利範圍第33項所述之方法,其中該方法是由數個RHD 私籤執行,當接收一特定啟動碼時,該標籤可回應多個讀取機。 37_如申請專利範圍第33項所述之方法,其中一特定啟動碼會啟動所 有裝置。 38. 如申請專利範圍第33項所述之一方法,其中一特定啟動碼會繞過 該啟動電路。 39. 如申請專利範圍第33項所述之方法,其中更進一步包括同步一時 脈與確認-表示啟動指令之中斷it期,其中該啟動碼會被接收作為 啟動指令之一部份。 40. 如申請專利範圍f 33項所述之方法,其中該啟動電路會比對啟動 碼與預儲值,並且如果該啟動碼符合預儲值時,會啟動該裝置。 41. 如申請專利範圍第33賴述之方法,其中該啟動碼為啟動指令之 一部份,而該啟動指令更進一步包括一前置放大器中心對準序列與 一中斷週期’該啟動碼並不會與預儲值比對,除非中斷週期落在一 預定範圍内。 -1270822 42·如申請專利範圍第33項所述之方法,其中該啟動碼會被接收作為 資料符號之串流之一部份,其中只有二種符號信號類型會出現在資 料符號之串流中。 43. —種使用啟動碼以啟動裝置之方法,該方法包括·· 接收一符號之串流; 嘗试確認一符號或符號組合作為一中斷;在一被確認中斷之後比對 所接收之一符號序列與一預儲值; 如果在該中斷之後所接收到符號序列符合預儲值時,至少一部份裝 g 置會啟動;及 - 如果在該中斷之後所接收到之符號序列並不符合預儲值時,至少一 部份裝置不會啟動。 44·如申請專利範圍第43項所述之方法,其中更進一步包括當決定符 旒序列不符合預儲值時,則停止比對與重複該方法。 45. 如申請專利範圍第43項所述之方法,其中只有二種符號信號之類 型會出現在資料符號之串流中。 46. 如申請專利範圍第43項所述之方法,其中符號之串流是非同步的。 # 4?·如申請專利範圍第46項所述之方法,其中只有二種符號信號之類 型會出現在資料符號之串流中,其中該符號信號之第一類型具有四 倍於該符號信號之第二類型之持續時間。 48. —種啟動多個選定裝置之方法,該方法包括: 傳送多種不同啟動指令至遠端裝置,每—個遠端裳置會分析啟動指 令’以決定啟動指令其巾之—是否包括符合儲存在特找置中之值 之啟動碼;及 如果其中之—啟動碼符合在裝置中之儲存值,則啟動該褒置。 42 ⑧ 'l27〇822 49.如申請專利範圍帛48項所述之方法,更進一步包括與啟動裝置同 時通信。 5〇· —種啟動多個選定裝置之方法,該方法包括·· 以資料符號序列來接收一資料串流; 從該資料串流中偵測一特定符號叢集; 其中該符號叢集在資料串流中確認一相關之資料序列, 其中該符號包含二個或更多符號, 其中該符號叢集並未出現在相關之資料序列中,以作為符號叢集之 φ 一識別特性。 - 51·如申請專利範圍第50項所述之方法,其中該符號叢集是一中斷。 5之_如申明專利範圍第50項所述之方法,其中該符號叢集可啟動一連 續資料串流之比對。 53. 如申請專利範圍帛5〇項所述之方法,纟中才曙之資料序列是一啟 動碼。 54. 如申請專利範圍第5〇項所述之方法,其中在資料串流中之符號是 基於與持續間隔基礎有關之二個符號類型,其中該符號類型其中之 _ —疋另—個符號類型持續賴之_部份,而其巾在符號之間存在足 夠之差異以區分一符號類型與另一個符號類型。 55· —種使用持續時間參數以編碼資料之方法,該方法包括·· 產生與以持續時間間隔為基礎有關係之二個符號類型之資料串流, 其中符號類型其中之一是另一符號類型之持續時間之一部份,而其 中在符7虎之間存在足夠之差異以區分一符號類型與另一個符號類 型。 56.如申請專利範圍第55項所述之方法,其中部分關係是一整數。 43 ⑧ 1270822 57.如申請專利範圍第55項所述之方法,其中部分關係非一整數。31. The method of claim 24, wherein the interrupt circuit is determined to determine whether the interrupted ant is in conformity or falls within the care, and the circuit package is reversed, each of which The inverters are tuned to provide different specific delays for use, the first pair of mirrors are just reversed—whether the ramp of the interrupt pulse is between the special delay timings; the second pair of mirror inverters, Each inverter is tuned to provide a different specific delay 2 using 'the second pair of mirrors is just back-tested—whether the high period of the interrupt pulse is between a particular delay timing; a first flash lock, sample touch Save the output from the first-to-mirror inverter, · a second _, sample the output from the second _ reverse ;; - the third f- Ι lock' sample and store the round from the first question lock Between the and the logic, the output from the second and third _ is received, which is from the input of the logic-interrupt signal. One uses the soft method described in the 31st patent application scope, in which the logic also receives the output of the anti-language lock from the value of the library accompanying pulse. 32. 33. A method of using a boot code to activate a device, the method comprising: receiving a boot code on the device; comparing the boot code with a pre-stored value; if the boot code meets a pre-stored value, the device is activated; If the boot code does not match the pre-stored value, the device will not be booted. 34. The method of claim 33, wherein the method is implemented as a radio frequency identification (RFID) tag. 35. The method of claim 33, wherein the method is executable by a plurality of RF|D tags, and when a particular start command is received, a plurality of tags are activated. 36. The method of claim 33, wherein the method is performed by a plurality of RHD private tags, the tag being responsive to a plurality of readers when receiving a particular activation code. 37. The method of claim 33, wherein a specific activation code activates all devices. 38. The method of claim 33, wherein a particular activation code bypasses the startup circuit. 39. The method of claim 33, further comprising synchronizing a clock and confirming - indicating an interrupted period of the start command, wherein the start code is received as part of the start command. 40. The method of claim 53, wherein the initiating circuit compares the activation code with a pre-stored value and activates the device if the activation code meets a pre-stored value. 41. The method of claim 33, wherein the activation code is a part of a start command, and the start command further comprises a preamplifier center alignment sequence and an interrupt period 'the start code is not It will be compared to the pre-stored value unless the interruption period falls within a predetermined range. -1270822 42. The method of claim 33, wherein the activation code is received as part of a stream of data symbols, wherein only two symbol signal types are present in the stream of data symbols. . 43. A method of using a boot code to initiate a device, the method comprising: receiving a stream of a symbol; attempting to acknowledge a symbol or combination of symbols as an interrupt; comparing a received symbol after an acknowledged interrupt a sequence and a pre-stored value; if the received symbol sequence after the interrupt meets the pre-stored value, at least a portion of the device is enabled; and - if the received symbol sequence after the interrupt does not conform to the pre- At least some of the devices will not start when the value is stored. 44. The method of claim 43, wherein the method further comprises: stopping the comparison and repeating the method when the determined sequence does not conform to the pre-stored value. 45. The method of claim 43, wherein only two types of symbol signals are present in the stream of data symbols. 46. The method of claim 43, wherein the stream of symbols is asynchronous. #4? The method of claim 46, wherein only two types of symbol signals are present in the stream of data symbols, wherein the first type of the symbol signal has four times the signal of the symbol The duration of the second type. 48. A method of initiating a plurality of selected devices, the method comprising: transmitting a plurality of different activation commands to a remote device, each remote device analyzing the startup command to determine whether the activation command is to be included in the device The activation code of the value in the special find; and if the start code meets the stored value in the device, the device is activated. 42 8 'l27〇822 49. The method of claim 48, further comprising communicating with the activation device at the same time. 5. A method of initiating a plurality of selected devices, the method comprising: receiving a data stream by a sequence of data symbols; detecting a particular symbol cluster from the data stream; wherein the symbol cluster is in a data stream A related data sequence is identified, wherein the symbol contains two or more symbols, wherein the symbol cluster does not appear in the associated data sequence as the φ-identification characteristic of the symbol cluster. The method of claim 50, wherein the symbol cluster is an interruption. The method of claim 50, wherein the symbol cluster initiates an alignment of consecutive data streams. 53. If the method of patent application 帛5〇 is applied, the data sequence of 纟中曙 is a start-up code. 54. The method of claim 5, wherein the symbol in the data stream is based on two symbol types related to a continuous interval basis, wherein the symbol type is _ 疋 another symbol type Continue to rely on the _ part, and its towel has enough difference between the symbols to distinguish one symbol type from another symbol type. 55. A method of encoding data using a duration parameter, the method comprising: generating a data stream of two symbol types related to a duration interval, wherein one of the symbol types is another symbol type One part of the duration, and there is enough difference between the 7 tigers to distinguish one symbol type from another symbol type. 56. The method of claim 55, wherein the partial relationship is an integer. 43 8 1270822 57. The method of claim 55, wherein the partial relationship is not an integer.
TW94113162A 2005-04-25 2005-04-25 Battery activation circuit TWI270822B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94113162A TWI270822B (en) 2005-04-25 2005-04-25 Battery activation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94113162A TWI270822B (en) 2005-04-25 2005-04-25 Battery activation circuit

Publications (2)

Publication Number Publication Date
TW200638277A TW200638277A (en) 2006-11-01
TWI270822B true TWI270822B (en) 2007-01-11

Family

ID=38430290

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94113162A TWI270822B (en) 2005-04-25 2005-04-25 Battery activation circuit

Country Status (1)

Country Link
TW (1) TWI270822B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740838B (en) * 2008-11-12 2012-07-25 凹凸电子(武汉)有限公司 Battery pack, method for monitoring battery pack and electronic system
TWI638315B (en) * 2017-05-03 2018-10-11 九齊科技股份有限公司 Method and device for transmission of radio-frequency signal

Also Published As

Publication number Publication date
TW200638277A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
TWI437497B (en) Selective rf device activation
US7604178B2 (en) Smart tag activation
EP1692883B1 (en) Battery activation circuit
US8098159B2 (en) RF device comparing DAC output to incoming signal for selectively performing an action
US9087226B2 (en) System, method and computer program product for calibrating interrogator signal strength and/or tag response range setting
US8390433B2 (en) Method and system for low cost, power efficient, wireless transponder devices with enhanced functionality
US8421601B2 (en) Active/passive RFID transponder control function
US20080150695A1 (en) Rf systems and methods for tracking and singulating tagged items
US20070290791A1 (en) Rfid-based security systems and methods
AU2011253514B2 (en) Method and system for radio frequency identification tag using reduced set communication protocol
JP2008017307A (en) Rfid system and reader/writer
TWI270822B (en) Battery activation circuit
JP5428364B2 (en) Non-contact communication device and decoding unit thereof
WO2006117866A1 (en) Ic tag
JP2940562B2 (en) Electronic system and method for remote identification of coded articles and the like
JP2001175814A (en) Transcribing method for information and information processing system
JPH05346978A (en) Data carrier and discrimination system
CN108804960B (en) Radio frequency transmission method and device
WO2006126246A1 (en) Rfid tag apparatus
KR101018681B1 (en) System for Authenticating RFID Readers by Using Flags in RFID Tag
Isaeed et al. Radio Frequency Identification technology on libraries
JPH0293882A (en) Information card reading device
JP2008022327A (en) Communication system, reader/writer, and communication method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees