l23〇78〇 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種壓電管掃瞄平面定位之誤差修正 裝置與方法,尤指一種適用於奈米級量測之壓電管掃瞄平 面定位之誤差修正裝置與方法。 【先前技術】 10 15 如圖la與lb所示,將壓電管11〇之固定端lu固定, 其管壁通常分割成四個電極,χ方向及¥方向各有一對電 極120與130,在相對應之兩電極施以高電壓,壓電管 本身會因壓電效應而變形,使可動端112產生位移,因此 可當作微型平面掃描器,由於其具有體積小、效率高、不 發熱、驅動容易等優點,因此普遍應用在掃描探針:微儀 之探針掃描定位,由於壓電管先天具有遲滞(咖㈣叫、 潛變(creep)等非線性效應,會使得掃描得到的圖像變形或 失真,解決的方法包括··一、將得到的圖像做後處理修正, 二、、預先補償®電管掃描器控制電壓以產生正確的圖像, 此法屬於開迴路式補償法,三、預先修正麼電管位移回饋 感測裝置的誤差,再以閉迴路控制架構修正定位精度,以 20上三種方法都需要預先修正得到正確的位移參考資訊。 上述之壓電管的平面定位誤差修正系統,在實際^卄 上必須考慮以下數點,一、空間尺度及負荷的安裝ΙΓ, 由於壓電管本身為管狀結構且體積很小,可承受的負載也 非常有限,因此在結構設計上難度相當高;二、必須可達 6 1230780 到奈米級定位精度,由於壓電管本身掃描行程很小,大約 只有數十至數百微米,因此其解析度多要求到奈米等級; 三、必須考慮到誤差修正過程的合理及實用性,以利於低 及生產便利為重點’例如誤差修正裝置拆換便利、誤 差修正程序容易等。 ίο 15 過去修正微小位移誤差的方式以採用雷射干涉儀最普 ^但其讀值容易受環境溫度的影響而產生漂移,如圖2 =以X方向與γ方向之雷射干涉儀21〇與咖修正壓 ,摇器230平面位移,對於壓電管掃描器230而言, 空間尺寸及負載等諸多限制,其可動端232難以安 ^適的反射鏡24〇’即使如圖2所示將反射鏡安裝 、可動端232,完成修正後如何不損害職電管23〇及反 射鏡240的情況下,順利拆換反射鏡240也是一大難題, ::由於雷射干涉儀之前置調整程序非常繁雜,每次修正 别都必須化許多日夺間仔細調整雷射光路系、统。 =3為另-種常用於掃描探針系統的麼電管掃描器咖 式’乃利用掃描探針系統本身的表面形貌掃描 it:經過嚴謹半導體製程做出之間距相同的標 用探針32G加以掃描,由得到的表面形貌圖像 二:可广X方向或?方向的位移資訊,此位移資訊可當作 U之標準’再與待修正位移f料加以比 掃描探針顯微系統而言,此—方法具㈣ 只 U ’但其修正精度受限於標準試片的間距大 …IM吏可以使用數值内插法再細分,仍無法保證其精確 20 1230780 1:目,製程所能做出的標準試片間距最小约 除了η片之:疋°兄’此法的修正有效精度頂多只有100nm, 二探針顯微系統本身的設計也會影響位 5 10 15 i二::對於那些並非用於掃_針顯微系統的 位移修正而言,此-方法並不切實際。 2明所提出的壓電管掃描器平面定位誤差修正裝 置,可用以修正壓電管掃描器之定位 同時又具有安裝及拆換容易之優點。…解析度’ 【發明内容】 之誤要目的係在提供一 電管掃猫平面定位 »、; 4置’俾能提供奈米級解析度,且由於此誤差 知正裝置體積輕薄,因此容易安置於遷電管掃描器上。 本七月之另-目的係在提供一種壓電管掃瞒平面定位 之誤差修正方法用來修正壓電管掃描器之定位,使直達 2級解=度’同時誤差修正過程容易且實用,可應用於 …、’面位私回饋感測裝置(0pen丨叫之壓電管 資料後處理或用在具有平面位移回饋感測裝置(closrd loop)之壓電管掃描器的即時控制修正。 為達成上述目的,本發明之壓電管掃目苗平面定位之誤 差修正裝置,係用以修正—壓電管掃描器之平面定位, 差,該壓電管掃描器具有一活動端與一固定端,並利用;; 高壓驅動單元驅動使該活動端沿二軸方向做平面運動,古亥 誤差修正裝置包括:—組位移修正模組,其包含—具有°固 20 Ϊ230780 疋栅距之二維光栅片以及一讀取該二維光栅片二維位移訊 唬的光學式讀取頭,該二維光栅片係安裝於該壓電管掃描 器之該活動端,該光學式讀取頭係固定於該二維光栅片之 一側,並與該二維光栅片維持一間距;一訊號處理單元, 5係與該位移修正模組之該光學式讀取頭相接連,以擷取該 ,學式讀取頭之訊號;一運算處理單元,係與該訊號處理 單元相接連,以將忒訊號處理單元之訊號做數值運算,得 到該壓t管掃目苗器+面定位之誤差修正參考以及一平 面知描控制單元,係與該壓電管掃描器之該高壓驅動單元 ίο相連,用以控制該高壓驅動單元。 15 ,為達成上述目的,本發明之壓電管掃瞄平面定位之言拜 ^修正方法,其步驟包括:提供-壓電管掃描器,盆且有、 :高壓驅動單心該壓電管掃描器並具有—活動端與;;固 定端;安裝一具有一固定柵距之二維光柵片於該壓電管掃 描器之該活動端,並固定-光學式讀取頭於該二維光椒片 之一側,並使該三維光㈣與該光學柄取頭間維持 :二該::式讀取頭係與一訊號處理單元相接,該二 號處理以再與-運算處理單元相接;調㈣二维 ==取頭之該間距與位置;利用高厂堅驅動翠元驅 沿一弟一軸向方向位移,使-光線經由 =、准光柵片之繞射送達該光學式讀取頭,並產生… S訊f處理單元擷取傳送至該運算處理單4理得到;: :第=向方向之一誤差修正參考值:以及利‘ 早-驅動該壓電管掃描器沿一第二轴向方向位 1 20 !230780 由紅維光柵4之繞射送達該光料讀取頭,並產生 號處理單元娜傳送至該運 得到沿該第二軸向方向之—誤差修正參考值。μ處理 5【實施方式】 -般壓電管掃瞄如圖la與lb所示,係將壓電管一端 固定’管壁分割成四個電極,x方向及¥方向各有一對電 極,在相對應之兩電極施以高電壓,壓電管本身會因壓電 效應而㈣’使可動端產生位移,由電腦系統計算並輸出 掃描軌跡命令信號,如圖4a、4b所示,分別對χ轴及y 轴輸出預先規劃之執跡信號,經過高磨 可以⑽電管在ΧΥ平面上產生如圖4。之三角:運 動。但由於電壓與壓電管掃目苗位移之關係通常並不呈線性 關係,通常會加入一平面位移感測單元作為壓電管掃瞄使 15用時(例如··掃瞄探針顯微鏡進行影像掃瞄)之即時彳立移 偵測裝置。 一般之平面位移感測單元,其採用應變計(3的匕 gauge)’將應變計41〇依圖5a之配置黏貼於壓電管42〇管 壁,X、Y軸各有四個應變計接成如圖5b之惠斯頓電橋, 20當對壓電管同一軸之兩組電極施以極性不同的高壓時,受 到正南壓的一邊管壁會伸展,另一邊受到負高壓的管壁會 收縮,壓電管會因此變形而在可動端產生位移,黏貼在管 壁上的應變計也因此有伸長或縮短,其阻值也隨之變化, 將四個應變計接成如圖5b之全橋式(惠斯頓電橋)的設計可 1230780 以得到最佳的靈敏度;由於應變計黏貼在壓電管上當作位 移感測裝置之設計,可使整個微型掃描器之體積縮^最小 且其.仏/則電路架構間單,因此成為麼電管掃描器設計之主 流0 本發明中之壓電管掃瞄平面定位之誤差修正裝置可直 接修正該平面掃描控制單元之輸入電壓值(亦即軌跡命令 訊號)、亦可修正平面位移感測單元之量測訊號值(亦即待 修正之位移資料)’以得到精確之壓電管掃瞄平面定位。 10 15 本發明之誤差修正裝置在電壓驅使掃描器運動而產生 相對位移之情況下,因光源人射二維光柵片,使光學式讀 取頭分別產生代表X方向及¥方向位移之兩組相位差9〇。 正交弦波信號,此正交弦波信號之週期代表光栅之間距, 故以目前製作光柵之技術’其可達到數百或數千奈米。若 再將此錢經過N倍電子細分料元處理,可韓得 始光柵柵距再更細分N倍之平面位移資訊,一般而古,可 以取得奈米級解析度平面位„訊,將此資訊(㈣誤差 修:=值)當作標準再與壓電管本身之平面位移感測單 待修正之位移資料或平面掃描控制單元之軌跡命令, 比對’例如將應變計視為平面位移感測單元黏貼於 壓電管壁當作平面位移回饋$ —、 ' 位移資訊,再利用數值方置’感測得到原始平面 …51工 (如利用線性迴歸)等加以計 π,侍到平面位移回饋感測裳 正程序。本發明中之訊,處2之:差修正參數而完成修 電子細分割單元,此不限於但較佳為使用 L電子細分割單元處理來自光學式 20 Ϊ230780 讀取頭之訊號,以形成一週期等於二維光柵片之柵距以之 #號,此信號可為方波或數位化資料等,需視電子細分叫 單元所使用之演算法或元件結構而定。而電子細分割單^ 所分割之極限需視訊號與雜訊比而決定。此外,本發明中 5並不限於但較佳為裝置一平面位移感測單元於壓電管上。 本發明中之壓電管掃描器並不限定但包含使用於掃据 探針顯微鏡,凡需使用微型平面掃描器之裝置均可使用此 壓電管掃描器。本發明中在得到誤差修正參考值後,其後 之修正方法並無限制,可為無平面位移回饋感測裝置(〇卿 10 loop)(亦即無平面位移感測單元)之壓電管掃描器位移資 料後處理,例如採用壓電管當作平面掃描器之掃描探針顯 微儀的圖像資料修正(0ff_line),或用在具有平面位移回饋 ^^J^£(Closed loop)^Mf f ? 亦可為無平面位移回饋感測裝置之平面掃描控制單元之輸 15入電壓資料修正等。 20l23〇78〇 玖, description of the invention: [Technical field to which the invention belongs] The present invention relates to an error correction device and method for the positioning of a piezoelectric tube scanning plane, especially a piezoelectric tube scanner suitable for nanometer-level measurement. Device and method for correction of sight plane positioning error. [Prior art] As shown in Figs. 1a and 1b, the fixed end lu of the piezoelectric tube 11 is fixed. The tube wall is usually divided into four electrodes. There are a pair of electrodes 120 and 130 in the χ direction and the ¥ direction. When the corresponding two electrodes are applied with high voltage, the piezoelectric tube itself will be deformed due to the piezoelectric effect, causing the movable end 112 to be displaced. Therefore, it can be used as a micro planar scanner. Because of its small size, high efficiency, no heat, Easy to drive and other advantages, so it is widely used in scanning probes: micro-probe probe positioning, because the piezoelectric tube inherently has non-linear effects such as hysteresis (creep, creep) and other non-linear effects, it will make the scanned image Image distortion or distortion, the solution methods include: First, the post-processing correction of the obtained image, second, pre-compensation ® tube scanner control voltage to produce the correct image, this method belongs to the open-loop compensation method Third, the error of the electric tube displacement feedback sensing device is corrected in advance, and the positioning accuracy is corrected by the closed-loop control architecture. The above three methods need to be corrected in advance to obtain the correct displacement reference information. The plane positioning error correction system must consider the following points in practice. First, the space scale and the installation of the load ΙΓ. Because the piezoelectric tube itself is a tubular structure and has a small volume, the load it can withstand is also very limited, so The structural design is quite difficult. Second, it must reach 6 1230780 to nanometer-level positioning accuracy. Because the scanning stroke of the piezoelectric tube itself is very small, only about tens to hundreds of microns, its resolution requires nanometers. Level; Third, the reasonableness and practicability of the error correction process must be taken into consideration, with emphasis on low costs and ease of production. For example, the error correction device is easy to replace and the error correction process is easy. Ίο 15 In the past, the method of correcting small displacement errors was adopted. The laser interferometer is the most popular, but its reading is easily affected by the ambient temperature and drifts, as shown in Figure 2 = the laser interferometer 21 in the X and γ directions and the correction pressure of the coffee, the plane displacement of the shaker 230, As for the piezoelectric tube scanner 230, the space size and the load have many restrictions, and the movable end 232 is difficult to fit the reflecting mirror 24 ′. Mirror installation, movable end 232, how to successfully remove the mirror 240 without damage to the power tube 23 and the mirror 240 after completion of the correction: :: Because the laser interferometer pre-adjustment procedure is very Complicated, each correction must take many days to carefully adjust the laser light path and system. = 3 is another-a type of tube scanner commonly used in scanning probe systems, using the scanning probe system itself Surface topography scan it: After rigorous semiconductor manufacturing process, the same distance between the standard probe 32G is used to scan, and the resulting surface topography image is two: the displacement information in the X direction or the? Direction can be widened. This displacement information can be As the standard of U ', and compared with the material to be corrected, the scanning probe microscopy system, this method has only U', but its correction accuracy is limited by the distance between the standard test pieces ... IM officials can use The numerical interpolation method is further subdivided, and its accuracy is still not guaranteed. 20 1230780 1: mesh, the minimum standard sample interval that can be made by the process is about η pieces: 疋 ° brother 'The effective accuracy of this method is only 100nm at most. Two-probe microscopy system Also affect the design of the bit body :: 5 10 15 i two displacement correction for those not used to sweep the needle _ microscopy system is concerned, this - and impractical method. The planar positioning error correction device proposed by the Ming Dynasty for the piezoelectric tube scanner can be used to correct the positioning of the piezoelectric tube scanner and has the advantages of easy installation and replacement. "Resolution" [Abstract] The main purpose of the error is to provide an electric tube scanning cat plane positioning »,; 4 set '俾 can provide nano-level resolution, and because of this error, the device is light and thin, so it is easy to install Relocate to the tube scanner. The other purpose of this July is to provide an error correction method for the positioning of the piezo tube concealment plane to correct the positioning of the piezo tube scanner, so that the direct 2-level solution = degree 'and the error correction process is easy and practical. Applied to ..., 'Positive position feedback sensor device (0pen 丨 called piezoelectric tube data post-processing or real-time control correction of piezoelectric tube scanner with planar displacement feedback sensor device (closrd loop). To achieve For the above purpose, the error correction device for the plane positioning of the piezoelectric tube sweeping seedling of the present invention is used to correct the plane positioning of the piezoelectric tube scanner. The piezoelectric tube scanner has a movable end and a fixed end, and Utilize; The high-voltage drive unit drives the movable end to make a plane movement along the two-axis direction. The Guhai error correction device includes:-a group of displacement correction modules, including-a two-dimensional grating with a solid pitch of 20 Ϊ230780 疋 and An optical reading head for reading the two-dimensional displacement signal of the two-dimensional grating plate is installed on the movable end of the piezoelectric tube scanner, and the optical reading head is fixed on the two dimension One side of the grating sheet and maintains a distance from the two-dimensional grating sheet; a signal processing unit, 5 is connected to the optical reading head of the displacement correction module to capture the learning reading head A signal processing unit, which is connected to the signal processing unit to perform numerical calculations on the signals of the signal processing unit to obtain the error correction reference for the pressure tube scanning device + surface positioning and a plane map The control unit is connected to the high-voltage driving unit of the piezoelectric tube scanner, and is used to control the high-voltage driving unit. 15. In order to achieve the above-mentioned object, the positioning method of the scanning plane of the piezoelectric tube of the present invention is modified. The steps include: providing a piezo tube scanner, a pot, and: a high-voltage driven single-core piezo tube scanner having a movable end and a fixed end; installing a two-dimensional grating with a fixed grid pitch The film is located at the movable end of the piezoelectric tube scanner, and a fixed-optical reading head is located on one side of the two-dimensional light pepper sheet, and the three-dimensional light beam is maintained between the optical head and the optical pickup: : Type read head system and a signal processing sheet Connected, the second processing is connected to the-operation processing unit again; adjust the two-dimensional == to take the distance and position of the head; use Gao Changjian to drive the Cuiyuan drive to move in the axial direction of one brother, so that- The light reaches the optical reading head through the diffraction of the quasi-grating lens, and generates ... S signal f processing unit captures and transmits to the operation processing unit 4 :: one of the = direction error correction reference values : And Lee 'early-drive the piezo tube scanner along a second axial direction position 1 20! 230780 by the diffraction of the red dimension grating 4 to the optical material reading head, and generate the number processing unit Na to send to the An error correction reference value along the second axial direction is obtained. ΜProcess 5 [Embodiment]-The general piezoelectric tube scanning is shown in Figs. Four electrodes, one pair each in the x direction and the ¥ direction. High voltage is applied to the corresponding two electrodes, and the piezoelectric tube itself will be displaced by the piezoelectric effect, which will cause the movable end to be displaced. The computer system will calculate and output the scan. The trajectory command signals, as shown in Figures 4a and 4b, are output in advance for the x-axis and y-axis, respectively. The planned tracking signal can be generated on the XY plane as shown in Fig. 4 after high grinding. Triangle: Movement. However, because the relationship between voltage and displacement of the piezoelectric tube scanning lens is usually not linear, a plane displacement sensing unit is usually added as a piezoelectric tube scanning for 15 hours (for example, scanning the probe microscope for imaging) Scan) real-time vertical motion detection device. A general plane displacement sensing unit uses a strain gauge (3 gauge) to attach the strain gauge 41 ° to the wall of the piezoelectric tube 42 as shown in Figure 5a. Four strain gauges are connected to each of the X and Y axes. As shown in Figure 5b of the Wheatstone bridge, when two sets of electrodes on the same axis of the piezoelectric tube are applied with different polarities of high voltage, one side of the tube subjected to positive south pressure will stretch, and the other side will be subjected to negative high voltage. Will shrink, the piezoelectric tube will deform due to displacement at the movable end, and the strain gage adhered to the tube wall will therefore be extended or shortened, and its resistance will change accordingly. Connect the four strain gages as shown in Figure 5b The design of full bridge (Whiston bridge) can be 1230780 to get the best sensitivity. Because the strain gauge is attached to the piezoelectric tube as a displacement sensing device, the volume of the entire micro-scanner can be minimized and Its. 仏 / The circuit structure is single, so it becomes the mainstream of the tube scanner design. 0 The error correction device for the positioning of the piezoelectric tube scanning plane in the present invention can directly correct the input voltage value of the planar scanning control unit (also Ie track command signal), can also be repaired Plane displacement measurement signal value of the sensing unit (i.e. the displacement to be corrected data) 'to obtain a precise positioning of the plane of the piezoelectric scan tube. 10 15 According to the error correction device of the present invention, in the case of relative displacement caused by voltage driving the scanner, the light source emits two-dimensional gratings, so that the optical read head generates two sets of phases representing displacements in the X direction and ¥ direction, respectively. Poor 90. Orthogonal sine wave signal. The period of this orthogonal sine wave signal represents the distance between gratings. Therefore, it can reach hundreds or thousands of nanometers with the current technology of making gratings. If this money is further processed by N times the electronic subdivision material, Han Deshi grating grating pitch can be further subdivided by N times the plane displacement information. Generally, ancient times, you can get nano-level resolution plane bits. (㈣Error correction: = value) as standard and compare it with the displacement data of the piezoelectric tube itself to be corrected or the trajectory command of the plane scanning control unit. For example, consider strain gauges as plane displacement sensing. The unit is adhered to the wall of the piezoelectric tube as the plane displacement feedback. $, 'Displacement information, and then use the value of the square to detect' to obtain the original plane ... 51 workers (such as using linear regression), etc. to calculate π, and wait for the plane displacement feedback feedback. The measuring procedure is the procedure of the present invention. At the second of the invention, the electronic fine segmentation unit is modified by the difference correction parameters. In order to form a period equal to the grid pitch of the two-dimensional grating, the signal can be a square wave or digital data, and it depends on the algorithm or component structure used by the electronic subdivision unit. The limit of the sub-fine division unit ^ depends on the signal and noise ratio. In addition, 5 in the present invention is not limited to but is preferably a plane displacement sensing unit on the piezoelectric tube. The piezoelectric in the present invention The tube scanner is not limited, but includes a scanning probe microscope. Any device that requires a micro-planar scanner can use this piezoelectric tube scanner. In the present invention, after the error correction reference value is obtained, subsequent corrections are made. The method is not limited, and can be post-processing of displacement data of a piezoelectric tube scanner without a planar displacement feedback sensing device (〇 卿 10 loop) (ie, no planar displacement sensing unit), such as using a piezoelectric tube as a planar scan Image data correction (0ff_line) of the scanner's scanning probe microscopy, or used with planar displacement feedback ^^ J ^ £ (Closed loop) ^ Mf f? Can also be used for planar scanning without planar displacement feedback sensing device Control unit input 15 input voltage data correction, etc. 20
本發明中之二維光柵片可屬於隨時拆裝之外掛式,【 =可以廣泛適詩壓電f之定位誤差修i,不像標準試) 知心法只侷限應用於掃描探針系統之誤差修正;且由於4 用可輪出相位差9〇。正交弦波信號的光學讀取頭,因此有; 夠可解析的位移資訊可使用,如再經過適#的電子細分害 處理,可以達到與雷射干涉儀有相同等級的奈米級解析度 ^安裝結構設計上,誤差修4置需考量如何將光相 女、在壓電官可動端’由於二維光柵片本身既輕且薄, 且面積視實際需要裁切’因此在安裝上非常容易;另外二 12 1230780 維光拇尺的光學讀取頭之光路系統多採用光學繞射方法設 °十’具有較高之偏位容許差,因此安裝調整上較雷射干涉 儀奋易許多;在實際配置上光學式讀取頭是與壓電管完全 二離’而光栅片所佔體積很小,因此可以視情況永久置於 5壓電官可動端,較佳亦可設計一容易取置的光栅片座,在 不執仃誤差修正時,將光柵片拆下,因此在完成壓電管平 面位移誤差修正後,誤差修正裝置之拆換非常便利。故位 移修正模組之二維光柵片可為可拆卸式或固定式。 為能讓貴審查委員能更瞭解本發明之技術内容,特 ίο舉二較佳具體實施例說明如下。 苗平面t位之誤#鉻_釋 15 20 在本實施例中之壓電管掃瞄平面定位之誤差修正裝】 如圖6所不,係用以修正一壓電管掃描器之平面定位言 差’此壓電管掃描器510具有一活動端511與一固定與 512,並利用一高壓驅動單元52〇驅動使該活動端川^ ^平面運動,以及利用一平面位移感測單元53()感測肩 電官掃描器之待修正之即時平面位移訊息(例如利用應髮 =時量測該壓電管掃描器之形變,以得到之電壓信號由 异八位移訊息),此誤差修正裝置包含:一組標準位移修』 ^組具有固㈣距之二維光栅片541及可讀取光相 二二維位移訊號的光學式讀取頭⑷,—組可提昇光學^ _ M2輸出信號解析度之電子細分割單元55〇,及一 電腦糸統560,此電腦系統⑽包含位移讀取單元、運^ 13 1230780 =!元:與平面掃描控制單元,故可進行資料操取、數 ί 平面^控制等,其中該位移讀取單元用以讀取 剎移感^早疋530之資料’平面掃描控制單元用以控 5 驅520之輸入電壓,運算處理單元與電子細 二 接丨,以操取訊號並做數值運算,以得到 该平面位移感測單元之誤差修正參考值。 當高壓驅動單元驅動該壓電管掃描器沿—X軸方 γ軸方向位移時,一丼綠絲士 — 〆 、、在、,二由一、准光柵片之繞射送達光學 "U於固定式光學式讀取頭與二維光栅片保持一 ^距離’當兩者崎㈣運㈣有相對 =?別產生如圖7a所示之代表χ方向及γ方2 差90。正交弦波信號,此弦波信號之週期Τ 之栅距Ρ,此信號再經過Ν倍電子細分割單元 15 :波寻如圖%所示再細分Ν倍之相位差90。 此方波信號之週期即代表了原始光柵柵距ρ 平面位移資訊,例如代表栅距。·4”的弦 ;=:,〇〇倍電子細分後,可以達到inm的解析/ 即可:的方波信號送入電腦系統加以計數處二 卩了換一財際上誤差修正所㈣標準位移。 20 ::學讀取頭以及二維光柵片移開 式,爾後在進行壓電管掃描器平面 作铋 即時將平面位移回饋感測得到 心利用電腦系統 此可以達到精確的平面定位貝抖運鼻成正確位移,因 14 1230780 圖8a為本實施例針對二維光栅片安裝於壓電管活動 端5 11之一設計,其係在壓電管活動端5丨丨設計可拆換之 活動卡座570,此設計主要是方便使用者拆換壓電管之承 載物,活動卡座570上可以結合不同的承載物,此承載物 5可^如目8b所示之SPM探針58〇,在欲進行掃描探針測 試前,先安裝探針580模組於活動卡座57〇上,再將活動 卡座570與壓電管可動端511快速結合;此承載物亦可為 如f 8c所示之二維光柵片54卜欲進行平面定位修正前, 先安裝二維光柵片541於活動卡座57〇上,再將活動卡座 570與壓電官可動端5 u快速結合;此利用活動卡座為介 面,使誤差修正用的光柵片與掃描用的探針得以快速便利 的拆換。 本貫施例中,以應變計為平面位移感測單元時,依據 Z性力學及幾何關係的推導,惠斯頓電橋的 ί5的位移之關係式如下:。 ㈣ 20 山其中Vsig為應變計輸出之電壓信號,Δχ為壓電管活 而之位私,Vext為惠斯頓電橋之輸入偏壓,d為壓電管 之外徑’ L為壓電管之長度,Fg為應變計之應變常數 由於Vext、D、L、Fg都為常數,因此Vsig與ΔΧ呈 線性關係: hX = K^Vsig 故在執行誤差修正時’誤差修正裝置得到之應變計感 15 1230780 測信號(亦即前述之Vsig)與由誤差修正裝置經運算處理單 元所計算之位移ΔΧ之關係圖,如圖9所示,誤差修正參 數K即可算出。此關係圖或誤差修正參數κ可用在具有平 面位移回饋感測裝置(Closed loop)之壓電管掃描器的即時 5控制修正(0n-line),亦即在拆卸誤差修正裴置後,壓電管 在實際進行平面運動時,由應變計得到之即時輸出信號 ▽sig ’與由先鈾ϊ測之誤差修正參數,可以推算得到實際 位移,綜觀以上所述,將此壓電管掃描器結合應變計當做 · 回饋修正機制的設計,非常適合用在微奈米尺度之量=加 鲁 10 工上所需之高精度微型掃描器。 复列2:壓電管掃聪平而定仿正方法 15 20 在本實施例中之麼電管掃瞒平面定位之誤差修正方 法,如圖H)所其主要係採用圖6所示之壓電管掃瞒平面 定位之誤差修正裝置。首先’於步驟㈣中安裝固定光學读 取頭於壓電管掃描器之活動端下方,其中此壓電管掃描;The two-dimensional grating plate in the present invention can be attached and detached at any time. [= Can be widely used to fix the positioning error of the piezoelectric f, unlike the standard test. The method of conscientiousness is limited to the error correction of the scanning probe system. ; And because of 4 uses can be out of phase difference of 90. Optical read head for quadrature sine wave signals, so it has; enough resolvable displacement information can be used. If it is processed by appropriate electronic subdivision processing, it can reach the same level of nanometer resolution as the laser interferometer. ^ In the design of the installation structure, the error correction needs to consider how to place the photo on the movable end of the piezoelectric element. 'Since the two-dimensional grating itself is light and thin, and the area is cut according to actual needs, it is very easy to install. In addition, the optical path system of the optical pickup head of 12 1230780-dimensional optical thumb adopts the optical diffraction method to set the angle of 10 °, which has a higher deviation tolerance, so it is much easier to install and adjust than the laser interferometer; In actual configuration, the optical read head is completely separated from the piezoelectric tube and the volume occupied by the grating plate is small, so it can be permanently placed on the 5 piezoelectric official movable end according to the situation. It is also better to design an easily accessible The grating plate holder removes the grating plate when the error correction is not performed. Therefore, after the plane tube displacement error correction of the piezoelectric tube is completed, the error correction device is very convenient to replace. Therefore, the two-dimensional grating of the displacement correction module can be detachable or fixed. In order to enable your reviewing committee to better understand the technical content of the present invention, two preferred embodiments are described below. Miao plane t bit error #chrome_release 15 20 In this embodiment, the error correction device for the positioning of the piezoelectric tube scanning plane] As shown in Figure 6, it is used to correct the planar positioning of a piezoelectric tube scanner The difference is that the piezoelectric tube scanner 510 has a movable end 511 and a fixed and 512, and uses a high-voltage driving unit 52 to drive the movable end ^ ^ plane movement, and a plane displacement sensing unit 53 () Sensing the real-time plane displacement information of the shoulder electric officer scanner to be corrected (for example, the deformation of the piezoelectric tube scanner is measured with the time of sending =, so that the voltage signal obtained is different from the eighth displacement information). This error correction device includes : A set of standard displacement repairs. ^ A set of two-dimensional gratings 541 with a fixed distance and an optical read head that can read two-dimensional and two-dimensional displacement signals of optical phases. — The set can improve the resolution of optical ^ _ M2 output signals. Electronic fine segmentation unit 55, and a computer system 560, this computer system does not include a displacement reading unit, operation ^ 13 1230780 =! Yuan: and plane scanning control unit, so you can perform data manipulation, counting plane ^ Control, etc., wherein the displacement reading unit is used for reading Sense of brake ^ Early 530's data 'Plane scanning control unit is used to control the input voltage of 5 drive 520, the arithmetic processing unit is connected with the electronic fine, in order to manipulate the signal and do numerical calculations to obtain the plane displacement sensing Unit error correction reference value. When the high-voltage drive unit drives the piezoelectric tube scanner to move in the direction of the X-axis and γ-axis, a pair of green silks—〆 ,,,, and two are delivered to the optics by the diffraction of a quasi-grating lens. The fixed optical reading head and the two-dimensional grating keep a distance of ^ when the two are rugged, and there is a relative = = do not produce a representative χ direction and a γ squared difference 90 as shown in FIG. 7a. Orthogonal sine wave signal, the pitch P of the period T of this sine wave signal, and this signal passes through N times the electronic fine segmentation unit 15: The wave seek is shown in Fig.% And then the phase difference of N times is further divided by 90. The period of this square wave signal represents the original grating grating pitch ρ plane displacement information, such as the grating pitch. · 4 ”string; =: 〇〇times electronic subdivision, you can reach the analysis of inm / can be: the square wave signal is sent to the computer system for counting. Second, change the standard deviation of the financial error correction 20 :: Learn the reading head and two-dimensional grating plate removal type, and then perform the bismuth on the plane of the piezo tube scanner to instantly return the plane displacement to the sensor. Use the computer system to achieve accurate plane positioning. The nose is correctly displaced because 14 1230780 Figure 8a is designed for one of the two embodiments of the two-dimensional grating plate mounted on the movable end 5 11 of the piezoelectric tube, which is designed as a removable card at the movable end 5 丨 丨 of the piezoelectric tube. The holder 570, this design is mainly for the convenience of the user to remove the piezoelectric tube. The movable holder 570 can be combined with different supports. This support 5 can be the SPM probe 58 shown in head 8b. To perform the scanning probe test, first install the probe 580 module on the movable card holder 57 and then quickly combine the movable card holder 570 with the movable end 511 of the piezoelectric tube; this load can also be as shown in f 8c Before the two-dimensional grating 54 is used for plane positioning correction, The two-dimensional grating sheet 541 is on the movable card holder 57, and then the movable card holder 570 and the piezoelectric official movable end 5u are quickly combined; this uses the movable card holder as an interface, so that the error correction grating sheet and the scanning probe are used. The needle can be quickly and easily replaced. In the present embodiment, when a strain gauge is used as the plane displacement sensing unit, according to the derivation of the Z-mechanics and geometric relationship, the displacement relationship of ί5 of the Wheatstone bridge is as follows: ㈣ 20, where Vsig is the voltage signal output by the strain gauge, Δχ is the voltage of the piezoelectric tube, Vext is the input bias of the Wheatstone bridge, d is the outer diameter of the piezoelectric tube, and L is the piezoelectric tube. Length, Fg is the strain constant of the strain gage. Because Vext, D, L, and Fg are all constant, Vsig and ΔX have a linear relationship: hX = K ^ Vsig. 15 1230780 The relationship between the measured signal (that is, the aforementioned Vsig) and the displacement ΔX calculated by the error correction device through the arithmetic processing unit, as shown in Figure 9, the error correction parameter K can be calculated. This relationship chart or error correction parameter κ can be used with a plane displacement back The real-time 5 control correction (0n-line) of the piezoelectric tube scanner of the feedback sensing device (Closed loop), that is, after the disassembly error correction, the piezoelectric tube is obtained by the strain gage when the piezoelectric tube actually performs plane motion. The real-time output signal ▽ sig 'and the error correction parameters measured by the first uranium radon can be estimated to obtain the actual displacement. Based on the above, this piezoelectric tube scanner combined with a strain gauge is designed as a feedback correction mechanism, which is very suitable for use in Quantities in the nanometer scale = Garru 10 high precision micro-scanner required in the process. Column 2: Piezo tube sweeping and flattening method 15 20 In this embodiment, the electric tube sweeping plane The positioning error correction method is shown in Fig. H), which mainly uses the piezoelectric tube sweeping plane positioning error correction device shown in Fig. 6. First, in step 安装, a fixed optical reading head is installed below the movable end of the piezoelectric tube scanner, where the piezoelectric tube scans;
具:-高麼驅動單元以及一平面位移感測單元,而此光學 式項取頭係與一電子細分割覃亓 刀口〗早7^相接,電子細分割單元再With:-a high-me drive unit and a plane displacement sensing unit, and this optical term picking system is connected to an electronic fine division Qin Jun knife edge〗 7 ^ as early as the electronic fine division unit
^ > 一具有sfl "5虎處理之運翼I© πσ - L 逆t處理早兀相接;隨後於步 中將固定栅距之二維光柵片裁 Μ 戟切成適當大小,安裝在壓電 官掃描器之活動端;步驟63〇中調整 —二 信號與倍率,以使傳送至電子 、刀ΰ早兀之月;!級 、士由 電子細分割單元之信號可有效的 被處理,再於步驟640中調整弁風 士 μ咕偽# $ & ι九予式讀取頭與平面光柵片之 間隙與位置角度,以取得正確 的t準位移訊5虎;步驟$ 5 c 16 1230780 二::::正之平面位移感測單元的信號調整測試,以取 化待測位移信號;步驟660至步驟_是進太 差其中步驟66〇係於單線x方向做去程軌跡^ > A wing with sfl " 5 tiger processing I © πσ-L inverse t processing is connected early; then in a step the two-dimensional grating with fixed grid size M is cut into an appropriate size and installed in The active end of the piezoelectric official scanner; adjust in step 63—the two signals and the magnification, so that it is transmitted to the electronics and the knife is in the early months; The signal from the electronic fine segmentation unit can be effectively processed, and the gap and position angle between the nine-type read head and the plane grating are adjusted in step 640. Get the correct t-quasi-displacement signal 5 tigers; step $ 5 c 16 1230780 2 :::: signal adjustment test of the positive plane displacement sensing unit to obtain the displacement signal to be measured; step 660 to step _ is too bad Step 66 is to make a trajectory in the x direction of a single line
方向做L 用高麼驅動單元驅㈣電管掃描器沿X 組資訊,-二tt,670中’利用此誤差修正裝置得到兩 之光⑹: 單元處理經電子細分割單元處理 =繞射_,得到X方向標準位移(亦即誤差修正參考 ,以及一由平面位移感測單元感測之待修正 ίο 15 20 ::〇^ ㈣誤絲正;接著㈣™是將誤 6參數存入電腦系統中;最後於步驟730與740中拆除 光學讀取頭以及平面光栅片,以將二維光柵標準誤差修正 =二至此誤差修正程序完全結束,其後壓電管掃描 =二吊運作模式’使用者可以置換其他承載物,例如 置換成知描探針模組,並且將待㈣試片安置於其下方, 啟動内建有先前誤差修正參數之掃描控制修正機制,可以 得到精確的掃描定位結果。 上述實施例僅係為了方便說明而舉例而已,本發明所 主張之權利範圍自應以中請專利範圍所述為準, 於上述實施例。 【圖式簡單說明】 圖1 a係壓電管之俯視圖。 圖1 b係壓電管之側視圖。 17 1230780 圖2係習知之壓電管掃瞄平面定位之誤差修正裝置之示意 圖。 之 圖3係另一習知之壓電管掃瞄平面定位之誤差修正裝置 示意圖。 之 5圖4a係高壓驅動單元輸入該壓電管之X方向電壓對時間 關係圖。 之 圖4b係高壓驅動單元輸入該壓電管之丫方向電壓對時間 關係圖。 位 圖4c係對應於圖4⑷與4(b),_電管之X方向與γ方向 10 移之關係圖。 ^ 圖5 a係平面位移感測單元一較佳實施例配置於壓電管之示 意圖。 ’、 圖5b係為圖5a之平面位移感測單元之電路之示意圖。 圖6係本發明之塵電管掃猫平面定位之誤差修:裝置一 15 佳實施例之示意圖。 9 圖7a係本發明之誤差修正梦 之座標圖。 …置之先子式項取頭之輸出訊號 元之輸出訊 圖7b係本發明之誤差修正裝置之f子細分割單天 號之座標圖。 20圖8a係本發明之誤差修正裝置之壓電管掃 較佳實施例之示意圖。 勒知之 圖8b與8c係依據圖以之壓電管掃描器活動端之承 一 較佳實施例之示意圖。 18 1230780 圖9係應變計感測信號與誤差修正裝置所計算之位移之關 係圖。 面定位之誤差修正方法一較 圖10係本發明之壓電管掃瞒平 佳實施例之流程圖。 【圖號說明】 110 120 210 232 260 310 410 510 520 542 570 壓電管 111 固定端 112 X方向電極 130 Y方向電極 X方向雷射干 220 Y方向雷射干 230 涉儀 涉儀 可動端 240 反射鏡 250 雷射光源 標準試片 320 探針 330 應變計 420 壓電管 壓電管掃描器 511 活動端 512 鬲壓驅動單元 530 平面位移感測 541 單元 光學式讀取頭 550 電子細分割單 560 元 活動卡座 580 SPM探針 可動端 壓電管掃描器 分光鏡 壓電管掃描器 固定端. 一維光柵片 電腦系統 19The direction is L. Use a high drive unit to drive the tube scanner along the X group of information.-In tt, 670, 'Use this error correction device to get two beams of light.': Unit processing is processed by electronic fine segmentation unit = diffraction_, Obtain the standard displacement in the X direction (that is, the error correction reference, and a correction to be corrected by the plane displacement sensing unit) ο 15 20 :: 〇 ^ : The error is positive; then 正 ™ stores the error 6 parameter in the computer system ; Finally, in steps 730 and 740, the optical pickup and the plane grating are removed to correct the standard error of the two-dimensional grating = two. This error correction procedure is completely completed, and then the piezoelectric tube scanning = two crane operation mode. The user can Replacing other carriers, such as the tracing probe module, and placing the test piece underneath it, and starting the scanning control correction mechanism with the previous error correction parameters built in, can obtain accurate scanning positioning results. The examples are just examples for the convenience of explanation, and the scope of the rights claimed in the present invention should be based on the scope of the patent claims in the above-mentioned embodiments. Figure 1a is a top view of a piezoelectric tube. Figure 1b is a side view of a piezoelectric tube. 17 1230780 Figure 2 is a schematic diagram of a conventional error correction device for the positioning of the scanning plane of a piezoelectric tube. Figure 3 is another conventional one Schematic diagram of the error correction device for the positioning of the scanning plane of the piezoelectric tube. Figure 5a is a graph of the X-direction voltage versus time of the piezoelectric tube input by the high-voltage driving unit. Figure 4b is the Y-direction of the piezoelectric tube input by the high-voltage driving unit. Voltage vs. time. Bitmap 4c corresponds to Figures 4⑷ and 4 (b), the relationship between the X-direction and γ-direction 10 shifts of the tube. ^ Figure 5a is a preferred embodiment of a plane displacement sensing unit 5b is a schematic diagram of the circuit of the plane displacement sensing unit of FIG. 5a. FIG. 6 is the error correction of the plane positioning of the dust tube scanning of the present invention: Device 15 Figure 7a is the coordinate diagram of the error correction dream of the present invention........... Coordinates. Figure 8a is a mistake of the present invention Schematic diagram of the preferred embodiment of the piezo tube scanner of the correction device. Known Figures 8b and 8c are schematic diagrams of the preferred embodiment of the piezo tube scanner moving end according to the figure. 18 1230780 Figure 9 is a strain gauge sensor The relationship between the measured signal and the displacement calculated by the error correction device. The error correction method for surface positioning is a flowchart of the preferred embodiment of the piezoelectric tube sweeping method of the present invention compared to FIG. 10. [Illustration of the drawing number] 110 120 210 232 260 310 410 510 520 542 570 Piezo tube 111 Fixed end 112 X-direction electrode 130 Y-direction electrode X-direction laser stem 220 Y-direction laser stem 230 Moving instrument 240 Moving mirror 240 Mirror 250 Laser light source standard test piece 320 probe 330 strain gauge 420 piezoelectric tube piezoelectric tube scanner 511 movable end 512 pressure drive unit 530 plane displacement sensing 541 unit optical read head 550 electronic fine division single 560 yuan movable card holder 580 SPM probe movable end piezoelectric Tube Scanner Beamsplitter Piezo Tube Scanner Fixed End. One-dimensional Grating Computer System 19