TWI224210B - Method for fabricating a micro-lens array and fabrication apparatus for the same - Google Patents

Method for fabricating a micro-lens array and fabrication apparatus for the same Download PDF

Info

Publication number
TWI224210B
TWI224210B TW92118965A TW92118965A TWI224210B TW I224210 B TWI224210 B TW I224210B TW 92118965 A TW92118965 A TW 92118965A TW 92118965 A TW92118965 A TW 92118965A TW I224210 B TWI224210 B TW I224210B
Authority
TW
Taiwan
Prior art keywords
microlens
scope
patent application
item
injection
Prior art date
Application number
TW92118965A
Other languages
Chinese (zh)
Other versions
TW200502583A (en
Inventor
Chin-Tai Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW92118965A priority Critical patent/TWI224210B/en
Application granted granted Critical
Publication of TWI224210B publication Critical patent/TWI224210B/en
Publication of TW200502583A publication Critical patent/TW200502583A/en

Links

Abstract

A method for fabricating a micro-lens array. The method includes the steps of providing a media substrate with a thin film formed thereon. Then, a patterned region with/without thin film is formed by exposing and stripping. Finally, a micro fluid droplet is disposed on the region with/without thin film to form a micro-lens array.

Description

發明所屬之技術領域: ^明係有關於微透鏡之製作方法及其製造裝置,特 關於種利用微流體佈著製作微透鏡及微透鏡陣列 的方法及其製造裝置。 先前技術: 在微光電零件成品領域上,由於光學透鏡具有允許光 、、「二越及改變光程路徑的基礎功能,因此以逐漸地應用於 士光通吼」和數位影像」等光電產品方面。於上述運用 ^此微型被動光學元件在微封裝(micro-package)階段 時,多是以黏膠等方式再貼合於主系統(maj〇r system body)上,14種兩階段式(two_pass)封裝做法經常是微光 電產品(mi cro_opto-electric product)製程失誤的主要 因素。因此,本發明提供一無需再貼合之單階段式 (one-pass)方法,可以直接精確地將微透鏡製作在所預定 的媒介基底(media substrate)上。 習知之喷墨核心技術(ink jet -based technology)具 有可控制微液滴產生之能力,其液滴體積大小多約略介於 5 pico-liter(縮寫pi)至12 pi之間,其相對應之液滴直 徑大小則介於10 //m至50 /zm之間。近年來,如此微米級的 流體產生技術已經開始運用在生醫領域的生物晶片、& $ 領域的液晶顯示器彩色濾光片以及半導體領域的有機電晶 體等重要領域。在此些元件主要作用區域之特徵尺寸 M (characteristic dimension)方面,可以歸納其單一線徑The technical field to which the invention belongs: The Ming system relates to a method for manufacturing microlenses and a manufacturing device thereof, and more particularly to a method for manufacturing microlenses and a microlens array using a microfluid cloth and a manufacturing device therefor. Previous technology: In the field of finished micro-optical components, because optical lenses have the basic function of allowing light, "Ni-Etsu and changing the optical path, they are gradually applied to optoelectronic products such as Shiguangtonghao and digital imaging" . In the above application, when the micro-passive optical element is in the micro-package stage, it is mostly bonded to the main system body by means of adhesive, etc., 14 types of two-pass (two_pass) Packaging practices are often the main cause of manufacturing errors in micro-opto-electric products. Therefore, the present invention provides a one-pass method without the need for lamination, which can directly and accurately fabricate microlenses on a predetermined media substrate. The conventional ink jet-based technology has the ability to control the generation of micro-droplets, and its droplet volume is about 5 pico-liter (abbreviated pi) to 12 pi, which corresponds to The droplet diameter is between 10 // m and 50 / zm. In recent years, such micron-scale fluid generation technology has begun to be used in important fields such as biochips in the biomedical field, color filters for liquid crystal displays in the field of amps, and organic electro-crystals in the field of semiconductors. In terms of the characteristic dimension M (characteristic dimension) of the main active areas of these components, a single wire diameter can be summarized

1224210 五、發明說明(2) =多介於1〇_至100㈣間,而線徑厚度則不大w ” m 、^述特徵尺寸之單一寬度與現今噴墨核心技術之微液 滴直經大小有密切關係,特別是液滴直徑不可以大於線徑 寬度之基本原則。同時,微液滴的組成中多數為常溫下可 蒸(揮)發溶劑,故線徑厚度大多為小於1微米。因此,當 我們應用此尺寸分析(dimensi〇nai anaiySis)在微透鏡 (jnicro-lens)製程方面上,可以發現到其特徵尺寸之圓半 ,可以從幾十個微米至幾百個微米之間,這基本上是大致 落於微液滴直徑大小可形成的寬度範圍内。然而不幸地,麵| 在特徵尺寸的高度方面卻並非如此。例如,對於半圓形微 透鏡(semi-spherical lens)而言,其高度值(t)可以由數 學式R=[tH(D/2)2]/(2t)來求取獲得;此處,r值表示其曲 率半徑,而D值表示其圓直徑。並且,此曲率半徑r值可以 由物理關係式f = R / ( n — 1 )來求取獲得;此處,f值代表其透 鏡聚焦半徑(focal length),而n值表示其光線折射率 (refractive index)。如此,當我們使用一般玻璃 (11=1· 5)欲製造一聚焦半徑(f)為45〇 之微透鏡時,其聚 焦半徑R值估算約為2 2 5 // m ;那麼,當此透鏡之圓半徑 (D/2)為180//m時,則可以計算出其高度t值將高達 m。明顯地,這個透鏡高度已經遠大於前面所述普通情形 小於1微米的基本原則,這便造成一大製造問題。 美國專利第5,4 3 4,8 7 6號揭示一種以微顯影技術 (photo 1 ithography-based technology)為基礎之製造方1224210 V. Description of the invention (2) = Mostly between 10 and 100 ㈣, and the diameter of the wire diameter is not large w ”m, the single width of the characteristic size and the size of the micro-droplet of the current inkjet core technology There is a close relationship, especially the basic principle that the diameter of the droplet cannot be larger than the width of the wire diameter. At the same time, the composition of the micro-droplets is mostly a solvent that can be evaporated (evaporated) at room temperature, so the thickness of the wire diameter is mostly less than 1 micron. When we apply this dimension analysis (dimensionai anaiySis) on the micro lens (jnicro-lens) process, we can find that the half of its characteristic size can be from tens of microns to hundreds of microns, this Basically it falls within the width that can be formed by the diameter of the micro-droplet. Unfortunately, the surface | is not the same in terms of the height of the feature size. For example, for a semi-spherical lens , Its height value (t) can be obtained by the mathematical formula R = [tH (D / 2) 2] / (2t); here, the r value represents its curvature radius, and the D value represents its circle diameter. , The value of this curvature radius r can be determined by the physical relationship f = R / ( n — 1) to obtain; here, the f value represents the focal length of its lens (focal length), and the n value represents its refractive index (refractive index). Therefore, when we use ordinary glass (11 = 1 · 5 ) When a microlens with a focus radius (f) of 45 is to be manufactured, the value of the focus radius R is estimated to be about 2 2 5 // m; then, when the circle radius (D / 2) of this lens is 180 // m At this time, it can be calculated that the height t value will be as high as m. Obviously, the height of this lens is already far greater than the basic principle of the general case less than 1 micron, which causes a major manufacturing problem. US Patent No. 5, 4 3 No. 4, 8 7 6 reveals a manufacturing method based on photo 1 ithography-based technology

0338-10214TW( N1); P08920036; j amngwo. p t d 第 5 頁 1224210 五、發明說明(3) 法’來製作一微透鏡陣列(micr〇_lens array)。微顯影技 術雖具有高位置精度之優勢,但在塗佈光阻高度方面卻有 曝光能量相關之製造限制。 美國專利第5, 644, 4 31號揭示一種以擠型及模造技術 (extruding & m〇iding technology),將一般光學塑膠材 料(plast ic,例如ρρ、ρρτ)利用特定模具(mask)製作一張 微透鏡陣列(micro-lens array sheet)。此技術具有高度 生產之優勢’但在製作尺寸及精度上存在製造限制。 特別值得注意的是,上述方法皆需利用到事前製作樣 式(光罩或模具)來生產,如此變造成微透鏡位置彈性變化4 的困難和成本的提高。 美國專利第5,498,444以及5,707,684號揭示利用喷墨 頭來製造光學透鏡的方法,主要以喷墨技術為核心來製造 微光學元件。然而其揭露的喷墨技術内容止於如何做出各 種形狀的光學元件,但卻未探討說明如何在一媒介基底 (media subs trate)上做出精確定位且系統化之方法。同 時亦忽略了,在單一透鏡液滴(lens droplet)的高度遠大 於1微米時’因相鄰透鏡液滴間距縮小所導致相互干擾 (cross-talking in-between drops)的問題 。 進一步言之,當討論到透鏡液滴的液體(1 iquid 囑_ flow)在空氣中被注入媒介基底的表面時,其中液、固、 氣相界面線(interfacial line)最終將達成一接觸角度平 衡狀態,此物理關係式可以由Young-Laplace方程式之 rLVc〇s(0)= rsv- rLS 以及△P^pghrLs (i/ri + 1/r2)來0338-10214TW (N1); P08920036; j amngwo. P t d p. 5 1224210 V. Description of the invention (3) Method 'to make a microlens array (micr0_lens array). Although micro-development technology has the advantage of high position accuracy, it has manufacturing restrictions related to exposure energy in terms of coating photoresist height. U.S. Patent No. 5,644,31 discloses an extruding & molding technology, which uses a general optical plastic material (such as ρρ, ρρτ) to make a A micro-lens array sheet. This technology has the advantage of high production ', but there are manufacturing limitations in terms of manufacturing size and accuracy. It is particularly worth noting that the above methods all need to be produced in advance (photomask or mold) for production, which causes difficulties in the elastic change of the microlens position4 and increases the cost. U.S. Patent Nos. 5,498,444 and 5,707,684 disclose methods for manufacturing optical lenses by using inkjet heads, mainly using inkjet technology to manufacture micro-optical elements. However, the disclosed inkjet technology is limited to how to make various shapes of optical elements, but it has not explored how to make precise positioning and systematic methods on a media subrate. At the same time, it ignored the problem of cross-talking in-between drops caused by the narrowing of the distance between adjacent lens droplets when the height of a single lens droplet is much larger than 1 micron. Furthermore, when it is discussed that the liquid of the lens droplet (1 flow) is injected into the surface of the medium substrate in the air, the liquid, solid, and gas phase interfacial lines will eventually reach a contact angle balance State, this physical relationship can be obtained by rLVc〇s (0) = rsv- rLS and △ P ^ pghrLs (i / ri + 1 / r2) of the Young-Laplace equation

1224210 五、發明說明(4) 求取;此處,0值代表液固相界面線之接觸角度(con tact angle),rLV、7SV、rLs值分別表示液氣、固氣、液固相 界面之表面能(surface energy),ΔΡ值表示液體内外之 壓力差,P值表示液體密度’g值表示重力加速度,t值表 示液體之最大高度,以及qh值分別表示液體在固體表 面二方向的曲率半徑。由此可發現,當分別給定某、 rsv、rLS數值時,液固相界面線之接觸角0值即可經由計 异求得;同時’又假設液體在固體表面兩方向的曲率半徑 完全相同(即於方向性差異之圓弧,η = r2 = r)且液體體積 (V )、密度、重力加速度皆已知,則此t值及r值則可進一 4 步由數學關係式V = 7Γ / 6 X [ t3 + 3 r21 ]計算求得。演繹至此得 知,可以利用此液氣、固氣、液固向界面之表面能性質來 精確控制液體在媒介基底表面的位置與成型結果。易言 之’可依據所要之透鏡位置及大小,在媒介基底表面進行 製作親水性與疏水性之圖案化區域(hydrophi 1 ic or hydrophobic patterning),如此液體便可以被精準控制 在媒介基底表面的特定位置以及完成透鏡物件之成型 (formation of shape) 〇 然而’必須進一步考慮液體在達成接觸角度平衡狀態 月ίι的動態情況(f 1 u i d d y n a m i c s )。當運用喷墨技術來喷注 液體時’具質量(m)之微流體在到達媒介基底表面之前具 有運動速度(v) ’這便賦予該微流體具慣性動量(m〇mentum of inert ia ’ P)和能量(energy,e);其中,慣性動量p值 可以由物理關係式p:=mv來表示,而能量E值可以φΕ = 1/2><1224210 V. Explanation of the invention (4) Calculate; Here, 0 value represents the contact angle of the liquid-solid phase interface line (con tact angle), and rLV, 7SV, rLs values represent the liquid-gas, solid-gas, liquid-solid interface Surface energy, ΔP value represents the pressure difference between the inside and outside of the liquid, P value represents the density of the liquid, 'g value represents the acceleration of gravity, t value represents the maximum height of the liquid, and qh value represents the radius of curvature of the liquid in two directions on the solid surface . It can be found that when a certain value is given, rsv, rLS, the contact angle 0 of the liquid-solid phase interface line can be obtained by calculating the difference; at the same time, 'the curvature radii of the liquid in both directions on the solid surface are exactly the same. (That is, in the circular arc with directional difference, η = r2 = r) and the liquid volume (V), density, and acceleration of gravity are all known, the t value and r value can be further increased by 4 steps from the mathematical relationship V = 7Γ / 6 X [t3 + 3 r21]. The deduction thus far shows that the surface energy properties of the liquid-gas, solid-gas, and liquid-solid interfaces can be used to precisely control the position and molding results of the liquid on the surface of the media substrate. Easy to say 'can be used to make hydrophilic and hydrophobic patterned areas (hydrophi 1 ic or hydrophobic patterning) on the surface of the media substrate according to the desired lens position and size, so that the liquid can be precisely controlled on the specific surface of the media substrate The position and the formation of the shape of the lens object. However, 'the dynamic conditions (f 1 uiddynamics) of the liquid in achieving the equilibrium state of the contact angle must be further considered. When inkjet technology is used to inject liquid, 'microfluids with mass (m) have a speed of movement (v)' before reaching the surface of the medium substrate. This gives the microfluids with inertia momentum (m0mentum of inert ia 'P ) And energy (energy, e); where the value of inertia momentum p can be expressed by the physical relationship p: = mv, and the value of energy E can be φΕ = 1/2 > <

1224210 五、發明說明(5) 來表示動能。如此,動量變化Λρ質便產生 ,言 1便由液體的黏滯性(viscosity)在闳 I 14 力(Γ )和液體表面能的張力(σ )來多 i王手k ^ ^ ^ ^ ^ 兄服阻止。由於微流體 -,^ 』 、便传微流體必須經歷約 数十从秒(micro-second ’ /zs)至赵丰古 <丨 双丁宅秒 (mini-second,ms)的時間才能達到卜、+、> ν τ 抵处Τ/ /上 „ J丄迷之Young-Laplace ☆此短暫期間液體在媒介基底表面之動 怨接觸圓半徑(rt) ’有時候可能會大於靜平衡圓半沿值1224210 V. Description of invention (5) to represent kinetic energy. In this way, the momentum change Λρ quality is generated, and Yan 1 is multiplied by the viscosity of the liquid at the 闳 I 14 force (Γ) and the tension of the surface energy of the liquid (σ). ^^ ^ ^ ^ ^ prevent. Due to the microfluidic, the microfluid must pass through the time from micro-second '/ zs to Zhao Fenggu < 丨 mini-second (ms) to reach Bu 、 +, ≫ ν τ is at Τ // / „J 丄 迷 的 Young-Laplace ☆ During this short period of time, the fluid's dynamic contact angle on the surface of the substrate of the contact circle radius (rt) 'Sometimes may be larger than the semi-equilibrium circle half-edge value

Cover-size),有時候亦可能會小於靜 . 取十衡圓半徑r值 、去义%里、。 1 rt —r | /r)值可以是高 達25/G以上,這便使得相鄰透鏡液滴間出現相互干擾 (ci^osslklng)的現象而導致混合變形,因而無‘達到 預定之靜態平衡位置。注意到,這種黏彈性(visc〇si”) 動向之來回振盪(oscillating)微液體的基本現象,將持 績進行直到其能量E直接轉換成熱能而全部消散為止。在 靜態平衡達成後,此時液體必須透過冷卻之相變化或蒗 (揮)發、,進一步轉化成固相,最後形成所欲之微透鏡物 件。攻類由液體轉化成固相(無流動性)之相變化過程,发 時間必須經歷約數秒至數分鐘之間;在使其間内,雖然其 圓半徑變化量值約略保持不變,但仍因外在其、 他物體的接觸而造成形狀改變(def〇rmation)。 發明内容Cover-size), sometimes it may be less than static. Take the value of the radius of ten equilibria, the meaning of%. The value of 1 rt —r | / r) can be as high as 25 / G or more, which causes the phenomenon of mutual interference (ci ^ osslklng) between the adjacent lens droplets, resulting in mixed deformation, so no 'reach a predetermined static equilibrium position . It is noted that this basic phenomenon of viscoelasticity (oscillating) micro-liquids oscillating back and forth, will continue until its energy E is directly converted into thermal energy and completely dissipated. After the static equilibrium is reached, this At this time, the liquid must pass through the cooled phase change or swell (volatilize), and further transform into the solid phase, and finally form the desired microlens object. The process of phase change from the liquid to the solid phase (no flow) Time must pass between several seconds and several minutes; in the meantime, although the change in the radius of the circle remains approximately the same, the shape is still changed due to the contact of external and other objects. content

1224210 五、發明說明(6) 有鑑於此,本發明的目的在於提供一種利用微流體佈 著製作微透鏡及微透鏡陣列的方法,可以克服上述討論的 重大問題。並以喷墨技術為基礎,然後發展一可以準確定 位住(1 ocal i z i ng)微液滴之親(疏)水性圖案化區域 (patterning) 〇 本發明的另一目的在於提供一種藉由交錯佈著 (interlaced deposition)的喷注法則來達成所欲之透鏡 的製造成形。主要利用「時間(timing)」及「位置 (locating)」分開來之交錯佈著(interlaceci deposition)的喷注法則(jetting methodology);如此,^ 在達成上述之靜態平衡期間,甚至在達成固體相變化期間 内,相鄰透鏡液體之成型,可以確保不受相互干擾 (cross-talking)的現象影響而正常完成。 根據上述目的,一種微透鏡之製作方法,包括下列步 驟:提供一媒介基底;形成一薄膜於該媒介基底上;圖案 化该薄膜’以形成具微透鏡圖案之一無(有)薄膜區域在該 媒介基底上;以及進行微流體佈著步驟,將一微流體佈著 於該無(有)薄膜區域,以形成一微透鏡物件。 根據上述目的,本發明亦提供一種微透鏡之製作方 法,適用於以交錯佈著方式製作透鏡陣列,包括下列步錢圓 驟:提供一媒介基底;形成一薄膜於該媒介基底上^案 化該薄膜,以形成具微透鏡圖案之一無(有)薄膜區域^該 媒介基底上;以及以交錯佈著方式進行微流體佈著步驟, 將一微流體佈著於該無(有)薄膜區域。1224210 V. Description of the invention (6) In view of this, the object of the present invention is to provide a method for fabricating microlenses and microlens arrays using microfluidic cloth, which can overcome the major problems discussed above. Based on inkjet technology, and then develop a water-based patterning area that can accurately locate (1 ocal izi ng) micro-droplets. Another object of the present invention is to provide The injection rule of interlaced deposition is used to achieve the desired lens manufacturing. It mainly uses the interlaceci deposition jetting methodology separated from "timing" and "locating"; so, during the above-mentioned static equilibrium, even during the solid phase During the change period, the forming of the liquid of the adjacent lens can ensure that it is normally completed without being affected by the phenomenon of cross-talking. According to the above purpose, a method for manufacturing a microlens includes the following steps: providing a media substrate; forming a thin film on the media substrate; and patterning the thin film 'to form a microlens pattern without a (area) film area in the On the medium substrate; and performing a microfluid distribution step to apply a microfluid to the film-free area to form a microlens object. According to the above object, the present invention also provides a method for manufacturing a microlens, which is suitable for fabricating a lens array in a staggered arrangement, including the following steps: providing a media substrate; forming a thin film on the media substrate; Forming a thin film to form a non-existing (existing) film area with a microlens pattern on the medium substrate; and performing a microfluidic disposing step in a staggered manner to apply a microfluid to the (existing) film area.

1224210 五、發明說明(7) 根據本發明之一較佳實施方式,其中,該交錯佈著方 式以時間劃分為四次並配合位置劃分四區域來完成,更包 括下列步驟:定義一第一起始點,進行第一時間喷注,於 X及Y方向以兩倍於間距p值之Ρι為喷注間距,進行交錯佈 著,完成第一區域微流體圖樣佈著;定義一第二起始點, 進行第二時間喷注,再以Pi為喷注間距,於X及Y方向進行 交錯佈著,完成第二區域微流體圖樣佈著;定義一第三起 始點,進行第三時間喷注,再以Pl為噴注間距,於X及γ方 向進行父錯佈著,完成第三區域微流體圖樣佈著;以及定 義一第四起始點,進行第四時間喷注,再以P1為喷注間 4 距,於X及Y方向進行交錯佈著,完成第四區域微流體圖樣 佈著;其中,該第二起始點相對第一起始點位置在X及γ方 向移轉P,該第三起始點相對第一起始點位置在X方向移轉 p ’該第四起始點相對第一起始點位置在γ方向移轉P。 根據本發明另一較佳實施方式,其中,該交錯佈著方 式以時間劃分為二次並配合位置劃分二區域來完成,更包 括下列步驟:定義一第一起始點,進行第一時間喷注,於 X方向以兩倍於間距P值之Ρι為喷注間距並於γ方向以二分之 一間距p值為喷注間距,進行交錯佈著,完成第一區域微 流體圖樣佈著;以及定義一第二起始點,進行第二時間喷 注’於X方向以兩倍於間距p值之Ρι為噴注間距並於γ方向以 二分之一間距P值為喷注間距,進行交錯佈著,完成第二 區域微流體圖樣佈著;其中,同一 Y方向内的全部喷注流 體自然疊合成為一體,以獲得一具弧度之長條圓柱鏡列;1224210 V. Description of the invention (7) According to a preferred embodiment of the present invention, the staggered layout is completed by dividing time into four times and dividing into four regions according to the position, and further includes the following steps: defining a first start Point, for the first time injection, in X and Y direction with twice the pitch p value as the injection pitch, staggered layout, complete the first area microfluidic pattern layout; define a second starting point The second time injection is performed, and Pi is used as the injection interval, and the X and Y directions are staggered to complete the second area microfluid pattern layout. A third starting point is defined to perform the third time injection. , And then use Pl as the injection pitch, and perform parental misalignment in the X and γ directions to complete the third area microfluid pattern layout; and define a fourth starting point, perform the fourth time injection, and then use P1 as The spray booths are spaced 4 times apart, staggered in the X and Y directions to complete the microfluidic pattern layout in the fourth area. Among them, the second starting point is shifted by P in the X and γ directions relative to the first starting point. The third starting point is in the X direction relative to the first starting point Forwarding p 'relative to the first starting point of the fourth transfer starting position in the γ direction P. According to another preferred embodiment of the present invention, the staggered layout is completed by dividing time into two times and dividing the two areas according to the position, and further includes the following steps: defining a first starting point and performing the first time injection. , In the X direction, P1, which is twice the pitch P value, is the injection pitch, and in the γ direction, the P value, which is one-half the pitch, is the injection pitch, staggered to complete the first area microfluid pattern layout; and A second starting point is defined, and the second time injection is performed. In the X direction, P1 is twice the pitch p value as the injection interval, and in the γ direction, the half interval P value is the injection interval. Cloth, complete the micro-fluid pattern layout in the second area; among them, all the injected fluids in the same Y direction are naturally superimposed into a whole to obtain a long cylindrical column array with radians;

〇338·1021卿(N1) ;_2_; j am_.ptd 1224210 五、發明說明(8) 其起始點相對第-起始點位置在X方向移轉p。 置,白紅· 月再提供一種微透鏡之製造裝 置包括:一微流體喷注單元^裝泣裝 注;一噴注# 乂進仃微透鏡材料之喷 喷注產生;二運動平台,勺f f該喷注單元進行微流體之 體噴注單元運g括一媒介基底座,協同該微流 單元,IT 進仃微流體之交錯佈驅動栌制 電腦控制單Ϊ繫平台之運動座標位L·以;一 單元;_第一弁瑪·一 ,、中更包括·一脈波計時 制驅使脈波計時單元以及噴、、主;制早疋%繫閃頻式光源控 觀看任-時刻的微流體;」第早;^用來;間協調-致地 源控制單元開啟第-弁嗎f第一攝影機,透過第二光 來檢看微透鏡結果。 乂據上述目的,本發明又再提供一種微透鏡之製 驟,I用於製作立體影像之微透鏡光柵片,包括下列牛 驟·提供一媒介物件,具有一第一 一 · v 噴墨滴喷印於媒介物件的第一 一面,將彩色 像;利用-加熱單元加;;燥;色;-彩色平面圖 二祀你杉色平面圖像以定住彩辛承 Κί,流體材料喷注於媒介物件的第二面, 以產生-微透鏡陣列;此第一面及第二 片面圖像及微透㈣列㈣介物件即為具有立體影像〇338 · 1021 Qing (N1); _2_; j am_.ptd 1224210 V. Description of the invention (8) The starting point is shifted by p in the X direction relative to the-starting point position. White, red, and red provide a microlens manufacturing device including: a microfluidic injection unit ^ installed cry filling; a spray injection # 乂 进 仃 microlens material spray injection production; two motion platform, spoon ff The injection unit performs a microfluidic body injection unit including a media-based base, and in cooperation with the microfluidic unit, the IT enters the microfluid's staggered cloth to drive a computer-controlled single-axis platform's motion coordinate position L · to A unit; _ The first 弁 ··, the middle and more include a pulse wave timing system to drive the pulse wave timing unit and the spray, the main; the system is made of early-instantaneous% flash-based light source to control the micro-fluid at any time "" Early; ^ Used for; the inter-coordination-to-ground source control unit turns on the first camera and inspects the microlens results through the second light. According to the above purpose, the present invention further provides a microlens manufacturing process. A microlens grating sheet for producing a stereoscopic image includes the following steps: Provide a media object with a first one. Printed on the first side of the media object, the color image is used; the heating unit is added; dry; color;-the color floor plan II sacrifice your cedar color plane image to hold the color Xin Cheng K, the fluid material is sprayed on the media object The second side of the lens is used to generate a micro-lens array; the first side and the second one-sided image and the micro-transmissive array object are stereo images.

0338-10214TWF( Nl); P08920036; j amngwo. p t d 第11頁 1224210 ^ 五、發明說明(9) 根據上述目的,本發明 置’適用於以微流體佈二主=-種微透鏡之製造裝 光柵片,包括 Γ 式製作立體影像之微透鏡 ί:進方向傳A ; -彩色喷墨印表頭,Ϊ —媒介物件 墨滴嘴印於媒介物#,以形成一彩圖:以將彩色喷 以將印有圖像之媒介物件反像以:反轉滾 喷注早I,用卩將微透鏡流體材料 微透鏡 產生-微透鏡陣列。 矸卄嘴左於媒介物件反面’ 明。以下配合圖式以及較佳實施例,卩更詳細地說明本發 實施方式: 二:詳兒明本發明之具體實施技術及…首先, 提出一單顆微透浐夕m 1 技術方法,發明者 所示。 透鏡基本結構,做為技術基礎,如第1圖 參閱第1圖’提供一具有一表面2之媒介基底 substrate)以及一微透鏡3(micr〇_lens),兩個主要物 件,其中,微透鏡3貼合接觸於媒介基底1之表面2之上。 在此’明#定義單顆微透鏡之基本結構尺[包括媒介基 底1的高度Η、媒介基底〗之折射率n(refractive index 〇f media substrate)、微透鏡之圓直徑1)、微透鏡之曲率半 徑R以及微透鏡之厚度t。若以此微透鏡做為光學透鏡0338-10214TWF (Nl); P08920036; j amngwo. Ptd Page 11 1224210 ^ V. Description of the invention (9) According to the above purpose, the present invention is suitable for the manufacture of micro-fluid cloth with two main lenses =-microlens manufacturing Film, including Γ-type micro-lens for making stereoscopic image ί: forward direction A;-color inkjet print head, Ϊ — media object ink droplet nozzle printed on the medium #, to form a color image: to spray color to The media object with the image printed on it is reversely sprayed into the early stage I, and the microlens fluid material and microlens are generated with a micro-lens array. Pouting to the left of the media object. The following describes the implementation of the present invention in more detail with reference to the drawings and preferred embodiments: Second: The specific implementation technology of the present invention will be described in detail and ... First, a single micro-transmission technique m 1 is proposed, the inventor As shown. The basic structure of the lens is used as the technical basis. For example, refer to Fig. 1 'Providing a media substrate with a surface 2' and a micro lens 3 (micr0_lens), two main objects, of which the micro lens 3 fits in contact with the surface 2 of the medium substrate 1. Here, '明 #' defines the basic structure rule of a single microlens [including the height of the media substrate 1, the refractive index n (refractive index 0f media substrate) of the media substrate, the circle diameter 1 of the microlenses, and The radius of curvature R and the thickness t of the microlenses. If this micro lens is used as an optical lens

12242101224210

(optical lens),該微透锫 .,, .u 鏡必需具有允許光線穿越 (transm 11 tance )及改轡伞加从 + 从坡奸丄处• 先程路捏(chanSinS 〇f ray p a t h )的基礎功月匕,例如將 . .n . 將—束入射之平行光聚集穿越某 t UN L y ntJ> 上,此焦、距f 值(focus length ),可由以下公式1电銲 ^ . 亦可由公式i求得。 求传。同時,微透鏡3之體積值 (1) (2) f = R/(n- 1) V= 7t/6x [t3 + 3r2t] ^ r = D/2 其中,R=[t2 + r2]/(2t) 進一步地,在此擴張提出一多顆微透鏡基本結構做 技術基礎,如第2圖所示。參閱第1圖,提供一媒介基底工 (media substrate)以及複數個微透鏡(micr〇-lensf包括 微透鏡3、微透鏡4、微透鏡5等複數個主要物件。類似前 述地’在次明確定義多顆微透鏡之基本結構尺寸,包括媒 介基底1的高度Η、媒介基底1之折射率n (refractive index of media substrate)、微透鏡之圓半徑!《、微透鏡 之曲率半徑R以及微透鏡之厚度t。此外,仍需加入關於該 些透鏡陣列間的相對位置關係中,透鏡間彼此之中心間距 值p (pitch of lens)。其中,微透鏡3和微透鏡4之間隙 值6,以及微透鏡3與微透鏡5之間隙值7,此二間隙值w (未圖式)可以是大於或等於零。如此,對於多顆微透鏡之 擴張陣列而言,必需留意以下公式3所規範之透鏡陣列相 對位置關係。 (3) 2 X r+ w = p,w^0(optical lens), the micro-transparent lens,., .u lens must have the basis to allow light to pass through (transm 11 tance) and change the umbrella plus from + from the slope. • chanSinS 〇f ray path For example, the .n beam will be collimated by a beam of incident parallel light passing through a t UN L y ntJ >. The focal length and focus f value can be welded by the following formula 1 ^. i find it. Seek to pass. Meanwhile, the volume value of the microlens 3 (1) (2) f = R / (n- 1) V = 7t / 6x [t3 + 3r2t] ^ r = D / 2 where R = [t2 + r2] / ( 2t) Further, in this expansion, the basic structure of a plurality of microlenses is proposed as the technical basis, as shown in Figure 2. Referring to FIG. 1, a media substrate and a plurality of microlenses (micr0-lensf including a plurality of main objects such as a microlens 3, a microlens 4, a microlens 5 and the like are provided. Similar to the foregoing, the definition of the second time is clearly defined The basic structural dimensions of multiple microlenses, including the height of the media substrate 1, the refractive index n (refractive index of media substrate) of the media substrate 1, the radius of the circle of the microlens !, the radius of curvature R of the microlens, and the radius of the microlens Thickness t. In addition, the relative positional relationship between the lens arrays still needs to include the value of the center distance p (pitch of lens) between the lenses. Among them, the gap value 6 of the microlens 3 and the microlens 4, and The gap value 7 between the lens 3 and the microlens 5 can be greater than or equal to zero. Therefore, for an expanded array of multiple microlenses, it is necessary to pay attention to the lens array specified by the following formula 3. Relative positional relationship (3) 2 X r + w = p, w ^ 0

0338-10214TW( N1); P08920036; j amngwo. p t d 第13頁 1224210 五、發明說明(11) 針對微尺寸之標的物件而言,此微透鏡之圓半徑r值 及焦距f大多界定於幾十微米至幾百微米之間。舉例來 說’假設給定一玻璃透鏡(η = 1·5)之圓半徑r值為18()//111及 焦距f值為4 5 0 v m,如此可利用公式1及公式2分別計算出 所需之聚焦半徑R值,約為225/zm,高度t值為9〇em,以 及體積V值估算微4.96 nano-liter (nl)。至次為止,本 發日^以對單顆微透鏡極多顆微透鏡做出足夠完備之基本結 構定義。此後’將詳細闡述如何以微流體來製作此等微透 鏡之技術方法、流程、及設備架構等内容。 patterning deposition 步驟流程。 為了達成微透鏡在媒介基底之準確定位(precise deposition),本發明提供利用微顯影(Hth〇graphy 縮寫LP)方法及微流體佈著(micr〇 —f luidic 縮寫MD)來達成此目的,如第3圖所示之製作 請參閱第3圖,首先提供一清潔無污染之一媒介基底 1 (media substrate);然後,在步驟“^中,利用物理氣 相沉積法(PVD)或濕式塗佈法(wet dep〇siti〇n by spin or si i coat ing)在媒介基底}正面製作一薄膜8 ; 一般而 言,該薄膜8之材料為具疏水性之光阻材料 (phot〇reS1St,縮寫PR),例如鐵氟龍(Tefl〇n)、聚氣乙 烯(PVC)、聚乙烯醇(PVA)或石夕膠光阻,厚度可以是介於約 10奈米至約1微米之間'然後’在步驟S3-2中,利用一具 目同之光罩,進行曝光與顯影,例如I-線365 nm/5mW |燈光源進杆昭私,扁•屮你_丄 疋订照射,如此便可在媒介基底1之表面0338-10214TW (N1); P08920036; j amngwo. Ptd page 13 1224210 V. Description of the invention (11) For micro-sized objects, the circle radius r value and focal length f of this microlens are mostly defined in the tens of microns To several hundred microns. For example, 'assuming a glass lens (η = 1 · 5) has a circle radius r value of 18 () // 111 and a focal length f value of 4 5 0 vm, this can be calculated using Equation 1 and Equation 2, respectively. The required focus radius R value is about 225 / zm, the height t value is 90em, and the volume V value is estimated to be 4.96 nano-liter (nl). Until this time, the basic definition of a single microlens and a very large number of microlenses was sufficiently complete. Hereafter, the technical methods, processes, and equipment architecture of how to make these microlenses with microfluidics will be explained in detail. patterning deposition step flow. In order to achieve precise positioning of microlenses on the media substrate, the present invention provides the use of micrography (Hthography abbreviation LP) method and microfluid distribution (micr0-fluidic abbreviation MD) to achieve this objective, as described in the section For the production shown in Fig. 3, please refer to Fig. 3. First, a clean and non-polluting media substrate 1 is provided. Then, in step "^, a physical vapor deposition method (PVD) or wet coating is used. Method (wet dep0siti〇n by spin or si i coat ing) to produce a thin film 8 on the front side of the medium substrate}; Generally speaking, the material of the thin film 8 is a hydrophobic photoresist material (photoreS1St, abbreviated PR ), Such as Teflon, polyvinyl chloride (PVC), polyvinyl alcohol (PVA), or stone gum photoresist, the thickness can be between about 10 nanometers and about 1 micron 'then' In step S3-2, a similar mask is used for exposure and development, such as I-line 365 nm / 5mW. On the surface of media substrate 1

0338-10214TW(Nl);P08920036;jamngw〇.ptd 第14頁 1224210 五、發明說明(12) 上獲得所欲之微透鏡平面樣式。於此同時,將媒介基底1 之表面區隔為一有薄^8a區域及一無薄膜讣區域,而有薄 膜8a區域與微透鏡材料(例如,聚乙烯丁醛樹脂 (0〇17111^1-1)1^乂1^1,1^8)/固化顆物({^1^1〇:11131^ Matter )、乙酸乙二醇丁 _ 酯(pr〇py【ene g i y c〇 夏 mono methyl ether ace tate,pGMEA))之間界面為相疏性 但無薄膜8b區域與微透鏡材料之間界面為相親性,亦即媒 介基底1與微透鏡材料同為親水性或同為疏水性之材料所 構成=舉例來說,光罩之微透鏡平面樣式的圓半徑值為r 且間隙值為W,則無薄膜8b區域的寬度為w且有薄膜83區域 的寬度為2x r-D。最後,在步驟33-3中,將微流體佈著 (micro fluidic depositing)於無薄膜8b區域而形成所欲 之透鏡物件3。值得特別注意的《,此實施方式之媒介基 底與微透鏡材料之界面本質上為相親性,亦即媒介基底1 與微透鏡材料同為親水性或同為疏水性之材料所構成。如 同先前所述,在透鏡流體達到靜態平衡時(staUc ,其將由於媒介基底1表面之相親(疏)性圖 案化區域,而得到自然力驅使的準確定位。除此之外,第 3插圖上圖樣可以是⑽ 種成何形狀,端視所欲之微透鏡樣式而定。 第4圖係顯示與第3圖相反的製作方法流程,揭露另一 ΪίΪΠϊ,較適合應用於媒介基底1表面與微透鏡材 免人雙β W ρρ^為相疏性的情形,例如,媒介基底1為共 U丙WPP)、聚乙:醇對笨二甲酸酯(㈣㈣…㈣0338-10214TW (Nl); P08920036; jamngw.ptd page 14 1224210 V. Description of the invention (12) The desired microlens plane style is obtained. At the same time, the surface of the media substrate 1 is separated into a thin 8a region and a thin film-free region, and a thin film 8a region and a microlens material (for example, polyvinyl butyral resin (0〇17111 ^ 1- 1) 1 ^ 乂 1 ^ 1, 1 ^ 8) / cured particles ({^ 1 ^ 1〇: 11131 ^ Matter), ethylene glycol butyl acetate (prOpy [ene giyc〇 夏 monomethyl ether ace tate, pGMEA)) is sparse, but the interface between the non-film 8b region and the microlens material is affinity, that is, the medium substrate 1 and the microlens material are both hydrophilic or hydrophobic materials. = For example, if the circle radius value of the micro lens plane pattern of the photomask is r and the gap value is W, the width of the area without the film 8b is w and the width of the area with the film 83 is 2x rD. Finally, in step 33-3, micro fluidic depositing is performed on the non-film 8b area to form the desired lens object 3. It is worth noting that the interface between the media substrate and the microlens material in this embodiment is essentially compatible, that is, the media substrate 1 and the microlens material are both hydrophilic or hydrophobic materials. As mentioned earlier, when the lens fluid reaches a static equilibrium (staUc), it will be accurately positioned by natural forces due to the blind (sparse) patterned areas on the surface of the media substrate 1. In addition, the pattern on the third illustration It can be in any shape, depending on the desired microlens style. Figure 4 shows the process of the production method opposite to Figure 3, and reveals another Ϊ ΪΠϊ, which is more suitable for the surface of the substrate 1 and the micro lens. In the case where the material-free double β W ρρ ^ is sparse, for example, the media substrate 1 is co-propylene (PP), polyethylene: alcohol versus stearic acid (㈣㈣ ... ㈣

1224210 五、發明說明(13) terephthalate,PET)等材料。其中,請參閱第4圖,在 步驟S4-1中,利用與第3圖之步驟S 3-1相同之方法來做出 一薄膜9,一般而言,該薄膜之材料係一般具親水性之材 料(例如’ S i 〇2、T i 02 ),厚度可以是介於約1 〇奈米至約1微 米之間。然後,在步驟S 4 - 2中,利用一具微透鏡樣式相同 之光罩片,進行曝光成像與顯影,例如I-線36 5 nm/5mW汞 燈光源進行照射,如此便可在媒介基底1之表面上獲得所 欲之微透鏡平面樣式。於此同時,將媒介基底1之表面區 隔為一無薄膜9a區域及一有薄膜9b區域,而無薄膜9a區域 與微透鏡材料(例如,聚乙烯丁醛樹脂 (poly- vinyl - but yral,PVB) / 固化顆物(particulate Matter,PM)、乙酸乙二醇丁 謎酉旨(propylene glycol mono methyl ether acetate,PGME A))之間界面為相疏性 (hydrophobi c)但有薄膜9b區域與微透鏡材料之間界面為 相親性。最後,在步驟S4-3中,將微流體佈著 (micro-fluidic depositing)於有薄膜9b區域而形成所欲 之透鏡物件3。再次如同先前所述,在透鏡流體達到靜態 平衡時(static equilibrium),其將由於媒介基底!表面 之相親(疏)性圖案化區域,而得到自然力驅使的準確定 位。除此之外,第4圖所示之圖樣可以是長條形、方形、 圓形、橢圓形等各種幾何形狀,端視所欲之微透鏡樣式而 定。 在此處’我們應該特別注意到’上述之「相親(疏)性 圖案化區域(pat tern ing)」方法之作用是限制了所欲之微1224210 V. Description of the invention (13) terephthalate (PET) and other materials. Among them, please refer to FIG. 4. In step S4-1, a thin film 9 is made by the same method as step S 3-1 in FIG. 3. Generally, the material of the thin film is generally hydrophilic. The thickness of the material (for example, 'S i 02, T i 02) can be between about 10 nanometers and about 1 micrometer. Then, in step S 4-2, a photomask with the same microlens pattern is used for exposure imaging and development, for example, irradiation with an I-line 36 5 nm / 5mW mercury lamp light source, so that the medium substrate 1 can be exposed. The desired microlens planar pattern is obtained on the surface. At the same time, the surface of the media substrate 1 is divided into a non-film 9a area and a thin film 9b area, and the non-film 9a area and a microlens material (for example, poly-vinyl butyral, PVB) / Particulate Matter (PM), propylene glycol mono methyl ether acetate (PGME A)) interface is hydrophobic (hydrophobi c) but there is a thin film 9b area and The interface between the microlens materials is affinity. Finally, in step S4-3, micro-fluidic depositing is performed on the area with the thin film 9b to form the desired lens object 3. Once again, as mentioned earlier, when the lens fluid reaches a static equilibrium, it will be due to the media base! Blind (sparse) patterned areas on the surface, resulting in quasi-locations driven by natural forces. In addition, the pattern shown in Figure 4 can be a variety of geometric shapes such as strips, squares, circles, ovals, etc., depending on the desired microlens style. Here, we should pay special attention to the effect of the above-mentioned "patterning (patterning)" method is to limit the desired

0338-10214TWF(Nl);P08920036;jamngwo.ptd 第 16 頁 1224210 五、發明說明(14)0338-10214TWF (Nl); P08920036; jamngwo.ptd page 16 1224210 V. Description of the invention (14)

透鏡之圓直徑(D)大小;換言之,對於某一具體積v之微流 液滴’而欲獲得更大的高度t值,則上述方法顯得尚不足 夠達成這目的。另一方面,許多種類之微流液滴(f luid) 主要是由溶質以及溶劑兩種成份所組成之溶劑。一般而 言,假設溶質成份含量為s,則溶劑成份含量為1〇〇%_s。 在此情形條件下’雖然微透鏡之圓直徑(D )大小不會改 變,但是微透鏡之最終體積將會縮減為V x s(或者說,減 少了 1 0 0 % - s)。舉例而言’倘若某一體積v之微流液滴由百 分之六十(亦即,s = 60%)的溶質聚乙烯丁醛樹脂 (poly-viny卜butyral,PVB)以及百分之四十(亦即, 100%-s = 40%)的溶劑乙酸乙二醇丁謎酯(pr〇pyiene giyc〇i mono methyl ether acetate,PGMEA),所組成溶液,則 其形成之微透鏡之最終固化形成體積將縮減為VX 6〇%(或 者說,減少了 4 0 %)。 因此’在下面我們進一步擴展上述步驟S4-3中之微流 體佈著(micro-fluid deposition)來獲得調整及提高t值The circle diameter (D) of the lens; in other words, for a micro-flow droplet ′ of a specific product v to obtain a higher height t value, the above method does not appear to be sufficient for this purpose. On the other hand, many types of microfluids are mainly composed of a solute and a solvent. In general, assuming that the content of the solute component is s, the content of the solvent component is 100% _s. In this case, the size of the microlens's circle diameter (D) will not change, but the final volume of the microlens will be reduced to V x s (or reduced by 100%-s). For example, 'if the microfluid droplets of a certain volume v consist of 60% (ie, s = 60%) of solute polybutyral resin (PVB) and 4% Ten (ie, 100% -s = 40%) of solvent propylene glycol monomethyl ether acetate (PGOMA), the solution formed, the final curing of the formed microlenses The formation volume will be reduced to 60% VX (or 40% reduction). Therefore, in the following, we further expand the micro-fluid deposition in step S4-3 to obtain the adjustment and increase the value of t.

的方法,如第5圖之剖面圖所示。請參閱第5圖,更具體、 細節地描述以多重液滴(mu 11 i p 1 e drops )及微流體疊加佈 著(stacking micro-fluidic deposition ,縮寫SMD)方式 製作微透鏡的實施步驟。首先,一具直徑大小為Φ (體積 Υφ 即為7^/6 χ φ3)之第一微流液滴5a,被喷注於一具圖 案化(即,微透鏡樣式為圓直徑D)之媒介基底表面;然 後,經過步驟S 5-1之佈著步驟及步驟s 5-2之固化成形步驟The method is shown in the sectional view of Fig. 5. Please refer to FIG. 5 for a more specific and detailed description of the implementation steps of manufacturing microlenses by multiple droplets (mu 11 i p 1 e drops) and stacking micro-fluidic deposition (abbreviation SMD). First, a first microfluid droplet 5a having a diameter of Φ (volume Υφ is 7 ^ / 6 χ φ3) is sprayed onto a patterned medium (ie, the microlens pattern is a circle diameter D). The surface of the substrate; then, the cloth forming step of step S 5-1 and the curing forming step of step s 5-2

1224210 五、發明說明(15) 而微透鏡之第一層(1st stack.,亦為底層(bottom ^ ,其南度為t (未圖示)。類似地,第二微流液滴5b 接β地噴注在原處(與第一微流液滴5a喷注於相同位置); 然後丄經過步驟S5-3之佈著步驟及步驟S5-4之固化成形步 驟而凡成微透鏡之第二層(2nd stack,亦為中間層(middle = ,其咼度為Ϊ2(未圖示)。最後,第三微流液滴5c接 、、’地喷注在原處(與第一微流液滴5 a以及第二微流液滴5 b 喷注於相同位置);然後,經過步驟S5-5之佈著步驟及步 驟S5-6之固化成形步驟而完成微透鏡之第三層(3rd stack ’亦為上層(t〇p stack)),其高度為%(未圖示)。此 刻’我們亦完成了一具有圓直徑值D(及圓半徑值r)、高度 值t及體積值V之微透鏡。顯然地,我們可以獲得t = + t2 + ts及V = 3 χνΦ :並且,此處定義每一層的平均高度為 tave ’則南度值t亦可表示為t = 3 X tave。此際回顧第1式,倘 若圓半徑值r (定值)大於高度值t許多(亦即,r > > ti、t2 及扒),則每一層的高度增加約略相等,皆與液滴的體積 V♦成正比。此外,當考慮到微流液滴在固化成形步驟的 體積縮小因子s時,則進一步修正為高度值t = s X 3 X tave及 體積值V = s x 3 χ νΦ 。舉例如下:將聚乙烯丁醛樹脂 (0〇1丫-¥111乂1-1)11七7『31,?\^)/乙酸乙二醇丁醚酯 (propylene glycol mono methyl ether acetate , PGMEA)光學材料溶液(其中s值為67%)以直徑大小φ為12〇1224210 V. Description of the invention (15) The first layer of the microlens (1st stack., Which is also the bottom layer, bottom ^, its south degree is t (not shown). Similarly, the second microfluid droplet 5b is connected to β It is sprayed in place (the same position as the first microfluid droplet 5a is sprayed); and then the second layer of the microlens is formed after the clothing step of step S5-3 and the curing forming step of step S5-4. (2nd stack, which is also the middle layer (middle =, its degree is Ϊ2 (not shown). Finally, the third microfluid droplet 5c is sprayed in the same place as the first microfluid droplet 5 a and the second microfluid droplet 5 b are sprayed at the same position); then, the third layer of the microlens is completed through the step of laying out step S5-5 and the curing step of step S5-6 (3rd stack 'also (Top stack)), its height is% (not shown). At this moment 'we have also completed a microlens with a circle diameter value D (and circle radius value r), a height value t and a volume value V Obviously, we can get t = + t2 + ts and V = 3 χνΦ: And, here we define the average height of each layer as tave ', then the value of south degree t can also be expressed t = 3 X tave. Looking back at Formula 1, if the circle radius value r (fixed value) is greater than the height value t (ie, r > > ti, t2, and 扒), the height of each layer increases approximately Equal, both are proportional to the volume V of the droplet. In addition, when the volume reduction factor s of the microfluidic droplet in the solidification step is considered, it is further corrected to the height value t = s X 3 X tave and the volume value V = sx 3 χ νΦ. An example is as follows: Polyvinyl butyral resin (0〇1 丫-¥ 111 乂 1-1) 11 7 7 "31,? \ ^) / propylene glycol monobutyl ether (propylene glycol mono methyl ether acetate (PGMEA) optical material solution (where s value is 67%) with a diameter of φ12.

1224210 五、發明說明(16) 之微流液滴(體積νφ約為〇·9〇5 ni)噴注入具圓半徑Γ 值為180圖樣化之媒介基底表上;如此,可獲得單層佈著 高度t 值約為17 //in(亦即,卜(〇. 905 nl X 2)/(疋 X 18〇 X 180 = 17 em),當經過總共三層佈著步驟後則高度七 值增加為51 /zm(亦即,t=3 x 17 ^)。考慮到微流 液滴在固化成形步驟的體積縮小因子s為6 7 %時,則進一步 修正高度t值為34 /zm(亦即,t = 67%x 3χ 17 __ _)。 如此,我們便可以製造出一具有曲率半徑[^值約略為49 3 # m(即,R -(34 //mx 34 /zm + 180 //mx 180 //m)/(2x 34 // m) = 493 y m)及焦距f值約略為986 (即,f = 493 " d m/(l· 5 -1 ) = 9 86 ,假設n=i· 5)之微透鏡物件。 於是,在此可提出一包括有微顯影(Hth〇graphy patterning,縮寫LP)方法及微流體疊加佈著(SMD)方法之 微流體製造透鏡方法,如第6圖之製作方法流程所示。請 參閱第6圖,首先提供一清潔無污染之媒介基底i ;然後, 在步驟S6-1中,利用物理氣相沉積法(pvD)或濕式塗佈法 ^wet deposition by spin or slit c〇ating)在媒介基底 1正面製作一薄膜8 ; —般而言,該薄膜之材料為具疏水性 之光阻材料(photoresist,縮寫PR),例 i (油⑽)、聚氣乙稀(PVC)、聚乙埽醇则^夕龍膠光阻,«丨 厚度可以是介於約10奈米至約!微米之間。然後,在步驟 S6-2中,利用一具微透鏡樣式相同之光罩,進行曝光與顯 影,例如I-線365 nm/5mW汞燈光源進行照射,如此便可在1224210 V. Description of the invention (16) The micro-fluid droplets (volume νφ about 0.95 ni) are sprayed onto the medium substrate surface with a circle radius Γ value of 180; thus, a single-layer cloth can be obtained. The value of the height t is about 17 // in (that is, BU (.905 nl X 2) / (疋 X 18〇X 180 = 17 em). After a total of three layers of laying steps, the height seven value increases to 51 / zm (that is, t = 3 x 17 ^). Considering that the volume reduction factor s of the microfluidic droplets during the solidification step is 67%, the height t value is further corrected to be 34 / zm (that is, t = 67% x 3χ 17 __ _). In this way, we can produce a radius of curvature [^ value is approximately 49 3 # m (that is, R-(34 // mx 34 / zm + 180 // mx 180 // m) / (2x 34 // m) = 493 ym) and the focal length f value is approximately 986 (ie, f = 493 " dm / (l · 5 -1) = 9 86, assuming n = i · 5 ). Therefore, a microfluidic lens manufacturing method including a micro-patterning (LP) method and a microfluidic overlay (SMD) method can be proposed here, as shown in FIG. 6. The method flow is shown. Please refer to Figure 6, first provide a Clean the uncontaminated media substrate i; then, in step S6-1, a physical vapor deposition method (pvD) or wet coating method (wet deposition by spin or slit coating) is made on the front surface of the media substrate 1. Film 8; In general, the material of the film is a hydrophobic photoresist (PR), for example, i (oil), polyvinyl chloride (PVC), and polyethylene glycol ^ Xilong Photoresist, «丨 thickness can be between about 10nm and about! Between micrometers. Then, in step S6-2, a mask with the same microlens pattern is used for exposure and development, for example, irradiation with an I-line 365 nm / 5mW mercury lamp light source.

1224210 五、發明說明(17) 媒介基底1之表面上獲得所欲之微透鏡平面樣式。於此同 時,將媒介基底1之表面區隔為一有薄膜8a區域及一無薄 膜8b區域,而有薄膜8a區域與微透鏡材料(例如,聚乙缚 丁 齡樹脂(poly-vinyl-butyral,PVB) / 固化顆物 (Particulate Matter,PM)、乙酸乙二醇丁醚酯 (propylene glycol mono methyl ether acetate 5 PGMEA))之間界面為相疏性但無薄膜8b區域與微透鏡材料 之間界面為相親性。舉例來說,光罩之微透鏡平面樣式的 圓半徑值為r且間隙值為w,則無薄膜8b區域的寬度為w真 有薄膜8a區域的寬度為2xr = D。最後,在步驟S6-3中,將 微流體5a佈著(micro - fluidic depositing)於無薄膜8b隱 域而形成所欲之第一層佈著6a。值得特別注意的是,此實 施方式之媒介基底1與微透鏡材料之界面本質上為相親 ’亦即媒介基底1與微透鏡材料同為親水性或同為疏水 性之材料所構成。如同先前所述,在透鏡流體達到靜態乎 衡時(static equilibrium),其將由於媒介基底i表面厶 相親(疏)性圖案化區域,而得到自然力驅使的準確定位。 最後,在步驟S6-4中,我們運用微流體疊加佈著(SMD)方 法,再將微流液滴5b、及5c依序注入原處而形成所欲之第| 二層佈著6b及第三層佈著6c,如同先前所述;如此,在少 驟S6-5中,即可獲得所欲之微透鏡。除此之外,第6圖所 不之圖樣可以是長條形、方形、圓形、橢圓形等各種幾何 形狀’端視所欲之微透鏡樣式而定。 類似地,第7圖揭露另一種微顯影方式,較適合應讳1224210 V. Description of the invention (17) The desired microlens plane pattern is obtained on the surface of the medium substrate 1. At the same time, the surface of the media substrate 1 is divided into a region with a film 8a and a region without a film 8b, and the region with the film 8a and a microlens material (for example, poly-vinyl-butyral, PVB) / Particulate Matter (PM), propylene glycol mono methyl ether acetate 5 PGMEA) interface is sparse but the interface between the 8b area without film and the microlens material Blindness. For example, if the circle radius value of the micro lens plane pattern of the photomask is r and the gap value is w, then the width of the area without the film 8b is w and the width of the area with the film 8a is 2xr = D. Finally, in step S6-3, micro-fluidic depositing is performed on the hidden area of the non-film 8b to form a desired first-layer coating 6a. It is worth noting that the interface between the media substrate 1 and the microlens material in this embodiment is essentially a blind date, that is, the media substrate 1 and the microlens material are both hydrophilic or hydrophobic materials. As mentioned earlier, when the lens fluid reaches a static equilibrium, it will be accurately positioned due to natural forces due to the intimate (sparse) patterned areas on the surface of the media substrate i. Finally, in step S6-4, we use the microfluidic superposition (SMD) method, and then inject the microfluid droplets 5b and 5c in sequence to form the desired second layer 6b and the second layer Three layers are covered with 6c, as previously described; thus, in step S6-5, the desired microlens can be obtained. In addition, the patterns shown in Fig. 6 can be various geometric shapes such as strips, squares, circles, ovals, and so on, depending on the desired microlens style. Similarly, Figure 7 reveals another micro-development method, which is more suitable for taboos.

12242101224210

五、發明說明(18) 於媒介基底1表面與微透鏡材料之界面本質上為相疏性的 情形,例如,PP、PET等材料之製作方法流程。請參閱第7 圖,在第1步驟中(step 1),利用與第3圖之步驟S3 一丨相同 之步驟S7-1來做出一薄膜9,一般而言,該薄膜之材料係 一般具親水性之材料(例如,S i 〇2、τ i 〇2),厚度可以是介 於約1 0奈米至約1微米之間。然後,在步驟3了_2中,利用 一具微透鏡樣式相同之光罩片,進行曝光成像與顯影,例 如I-線3 6 5 nm/5mW汞燈光源進行照射,如此便可在媒介基 底1之表面上獲彳于所欲之微透鏡平面樣式。於此同時,將 媒介基底1之表面區隔為一無薄膜9a區域及一有薄膜gb區儀^ 域,而無薄膜9a區域與微透鏡材料(例如,聚乙烯丁醛樹V. Description of the invention (18) In the case where the interface between the surface of the media substrate 1 and the microlens material is sparse in nature, for example, the manufacturing process of materials such as PP and PET. Please refer to FIG. 7. In the first step (step 1), the same step S7-1 as that in step 3 of FIG. 3 is used to make a thin film 9. Generally speaking, the material of the thin film is generally The thickness of the hydrophilic material (for example, S i 〇2, τ i 〇2) can be between about 10 nanometers and about 1 micron. Then, in step 3_2, a mask with the same microlens pattern is used for exposure imaging and development, for example, irradiation with an I-line 3 6 5 nm / 5mW mercury lamp light source, so that it can be exposed on the media substrate. The surface of 1 is obtained from the desired microlens plane pattern. At the same time, the surface of the media substrate 1 is separated into a thin film-free region 9a and a thin film gb region, and the thin film-free region 9a and the microlens material (for example, polyvinyl butyral tree)

Matter ,ΡΜ)、乙酸乙二醇丁醚醋(pr〇pylene glyc〇1 mono methyl ether acetate,PGMEA))之間界面為相親性 但有薄膜9 b區域與微透鏡材料之間界面為相疏性。最後, 在步驟S7-3中’將微流體5a佈著(micro- fluidic deposi ting)於有薄膜9b區域而形成所欲之第一層佈著 7a。注意到,此實施方式之媒介基底1與微透鏡材料本質 為相疏性。再次如同先前所述,在透鏡流體達到靜態平衡 時(static equilibrium),其將由於媒介基底1表面之相 親(疏)性圖案化區域,而得到自然力驅使的準確定位。最 後,在步驟S7-4中,我們運用微流體疊加佈著(SMD)方 法,再將微流液滴5b、及5c依序注入原處而形成所欲之第 二層佈著7b及第三層佈著7c,如同先前所述;如此,在步Matter (PM), prOpylene glyco1 mono methyl ether acetate (PGMEA)) is compatible with the interface but there is a thin layer between the 9b region of the film and the microlens material . Finally, in step S7-3, the microfluidic 5a is coated (micro-fluidic deposi ting) on the area of the thin film 9b to form a desired first-layer coating 7a. It is noted that the medium substrate 1 and the microlens material of this embodiment are inherently different. Once again, as mentioned previously, when the lens fluid reaches a static equilibrium, it will be accurately positioned by natural forces due to the intimate (sparse) patterned areas on the surface of the media substrate 1. Finally, in step S7-4, we use the microfluidic overlay (SMD) method, and then inject the microfluid droplets 5b and 5c in order to form the desired second layer of spread 7b and third. Layer 7c, as previously described; so, in step

0338-10214TWF(Nl);P08920036;jamngwo.ptd 第 21 頁 12242100338-10214TWF (Nl); P08920036; jamngwo.ptd page 21 1224210

驟S7 5中即可獲传所欲之微透鏡。除此之外,第7圖所 示之圖樣可以是長條形、方形、圓形、橢圓形等各種幾何 形狀,端視所欲之微透鏡樣式而定。 在此,值得特別一提的是,在上述第5圖、第6圖以及 第7圖等實施例中,其中微流體疊加佈著(SMD)方法的疊加 層數並不限制於二層。在最普遍之可能性裡,其疊加層數 值為整數m,則為流體佈著高度值疊加層數亦約略為m ❿^ 2)。 至此,本發明揭示了一種LP加上MD或LP加上SMD之微 流體製造透鏡方法,可應用於單顆微透鏡及多顆微透鏡陣· 列。除此之外,仍然必須進一步考慮液體在達成平衡角度 狀態則的動悲情況(f 1 u i d dynam i cs )。當運用喷墨技術 (inkjet-based technology)來喷注液體時,微液滴產生 器(droplet actuator)所擊發出之微流體具有慣性 (inertia)與動量(momentum),亦因此提供微液滴在仙或 SMD步驟過程中具有外擴張(Sprea(jing)之能力。然而,此 微流體由外擴伸張至到達靜態平衡,可能必須經歷約數十 微秒(// s)至數十毫秒(ms)間;在此短暫時間内,在媒介 基底1表面之瞬間動態接觸圓半徑rt可能會大於靜態平衡圓 半徑r值’然而此變化量值(Ar/r: |rt-r |/r)可以是高達❿ 2 5%以上。值此之際,回顧公式3所示之透鏡陣列相對位置 關係中,其明確規範出給定之透鏡圓半徑r值、間距p值以 及間隙w值’有鑑於此,倘若某^一時刻接觸圓半徑q與平衡 圓半徑r之差值的二倍大於間隙w值,亦即圓半徑匕的二倍The desired micro lens can be obtained in step S7 5. In addition, the patterns shown in Figure 7 can be various geometric shapes such as strips, squares, circles, ovals, etc., depending on the desired microlens style. Here, it is worth mentioning that in the above-mentioned embodiments of FIG. 5, FIG. 6, and FIG. 7, the number of superimposed layers of the microfluidic superposition (SMD) method is not limited to two. In the most common possibility, the number of superimposed layers is an integer m, and the number of superimposed layers is the height of the fluid. The number of superimposed layers is also approximately m ❿ ^ 2). So far, the present invention discloses a microfluid manufacturing method of LP plus MD or LP plus SMD, which can be applied to a single microlens and multiple microlens arrays. In addition, we must further consider the tragic situation of the liquid when it reaches the equilibrium angle state (f 1 u i d dynam i cs). When inkjet-based technology is used to inject liquid, the microfluid fired by the droplet actuator has inertia and momentum, and therefore provides micro-droplets in the Sin or SMD steps have the ability to expand (Sprea (jing)). However, this microfluidic may have to go from tens of microseconds (// s) to tens of milliseconds (ms) from the expansion to the static equilibrium. In this short period of time, the instantaneous dynamic contact circle radius rt on the surface of the medium substrate 1 may be larger than the static equilibrium circle radius r value. However, this variation value (Ar / r: | rt-r | / r) may It is as high as ❿ 2 5% or more. On this occasion, when reviewing the relative positional relationship of the lens array shown in Equation 3, it clearly specifies the given lens circle radius r value, distance p value, and gap w value. If the difference between the contact circle radius q and the equilibrium circle radius r at a certain moment is greater than the gap w, that is, twice the circle radius dagger

1224210 五、發明說明(20) 大於間距p值,如此則將造成相鄰透鏡液滴間可能出現相 互干擾(cross talking)而混合變形,因而無法達到預定 之靜平衡位置。因此,本發明提出利用「時間(t i m i ng )」 及「位置(locating)」分開來之交錯佈著(interlaced deposition,ID)的喷注法則(jetting methodology),如 以下所詳述。 第8圖具體描繪了 一種交錯佈著(interlaced deposi t ion,ID)的噴注法則。首先,設想滿足上述公式3 相對位置關係之微透鏡陣列,亦即符合各個透鏡圓半徑Γ 值、間距p值以及間隙w值之尺寸要求。因而將以「時間 (timing)」分四次來完成及「位置(i〇cating)」分四區域 交錯佈著。在第一次喷注時刻裡,定義一第一起始點並以 兩倍於間距p值之Pl為喷注間距(X、γ二方向皆如此),然後 完成(A ) Ist之微流體圖樣1 〇佈著;然後於第二次喷注時 刻裡,在「位置(locating)」方面轉移間距p2 (X、Y二方 向皆如此),定義一第二起始點並以兩倍於間距p值之Pl為 喷注間距(X、Y二方向皆如此),然後完成(B ) 2nd之微流 體圖樣11佈著。其中,圖樣1〇與圖樣Η之間的透鏡間距^^ 值增加為0.828r + 1.414w (亦即, (及x(4r + 2w)-4厂)/2 =(、及-l)X2r + V^Wi« 0.828r + 1.414w )。在此情況 下,即使令間距W值為零,任二相鄰透鏡液滴間的瞬時動 態接觸圓半徑rt可以允許大至82%之圓透鏡半徑r值,如此 便可以避免其相互干擾(c r 0 s s t a 1 k i n g)而混合變形。相1224210 V. Description of the invention (20) is larger than the p value of the distance. In this case, cross talk may occur between adjacent lens droplets and cause mixed deformation, so the predetermined static equilibrium position cannot be achieved. Therefore, the present invention proposes a jetting methodology using interlaced deposition (ID) separated by “time” and “locating”, as described in detail below. Fig. 8 illustrates an injection law of interlaced depositon (ID). First, imagine a microlens array that satisfies the relative positional relationship of Formula 3 above, that is, it meets the size requirements of the circle radius Γ value, the distance p value, and the gap w value of each lens. Therefore, “timing” will be completed in four times and “location” will be divided into four areas. At the time of the first injection, define a first starting point and use Pl twice as the interval p value as the injection interval (both in the X and γ directions), and then complete the (A) Ist microfluidic pattern 1 〇 cloth; then at the second injection time, in the "locating" transfer distance p2 (both in X and Y directions), define a second starting point and double the distance p value Pl is the injection pitch (both in the X and Y directions), and then the (B) 2nd microfluidic pattern 11 is laid out. Among them, the value of the lens distance ^^ between pattern 10 and pattern 增加 is increased to 0.828r + 1.414w (that is, (and x (4r + 2w) -4 factory) / 2 = (and -l) X2r + V ^ Wi «0.828r + 1.414w). In this case, even if the distance W is set to zero, the instantaneous dynamic contact circle radius rt between any two adjacent lens droplets can allow a circle lens radius r value of up to 82%, so as to avoid mutual interference (cr 0 ssta 1 king) and mixed deformation. phase

0338-10214TWF(N1) ;P08920036;jamngwo.ptd 第23頁 1224210 五、發明說明(21) 同地,繼續於第三次喷注時刻裡,在「位置(1〇cat ing)」 方面轉移間距P2 (X方向),定義一第三起始點並以兩倍於 間距p值之p!為噴注間距(X、γ二方向皆如此),完成(C) 3rd 圖樣1 2佈著的結果。並且,於第四次喷注時刻裡,在「位 置(locating)」方面轉移間距P2 (γ方向),定義一第四起 始點並以兩倍於間距p值之Pl為喷注間距(X、γ二方向皆如 此)’完成(D ) 4th圖樣1 3佈著的結果。此後兩次喷注之間 佈著的結果’明顯地與前兩次完全一至且無相互干擾。當 然,應更進一步指出在每一次之喷注圖樣佈著之間,可以 允許一段乾燥(dry ing)時間來進一步減少其相互干擾所造‘ 成混合變形的可能性。特別是,在第三次完成(c) 3rd圖 樣1 2與圖樣1 1之間以及在第四次完成(D) 4th圖樣丨3與圖 樣12之間。 ’、 當然’在此必須特別強調的是,上述實施例並不以四 次交錯佈著為限,而是以四次交錯佈著為優;例如,如同 上述地,其亦可普遍化的擴展「時間(timing)」至9次、 16次、25次........或K2次(例如,K為2、3、4、5等),並 相對地配合來分割「位置(locating)」為9次、16次、25 次........或K2次(例如,Κ為2、3、4、5等)。或者除上述 之外,其可擴展至最普遍化之5次、6次、7次、或j次(J屬續_ 於整數)。在此特別強調地是,愈多的「時間(timing)」 及「位置(locating)」間的交錯佈著是愈能確保無相互干 擾的問題發生,然而,其相對地將需要更多的時間來完 全部的喷注圖樣。0338-10214TWF (N1); P08920036; jamngwo.ptd Page 23 1224210 V. Description of the invention (21) At the same time, continue to shift the distance P2 in terms of "position (10cating)" at the same time as the third injection. (X direction), define a third starting point and use p! Twice the pitch p value as the injection pitch (both in X and γ directions), and complete the result of (C) 3rd pattern 12 layout. And, at the fourth injection time, the pitch P2 (in the γ direction) is shifted in terms of "locating", a fourth starting point is defined, and Pl, which is twice the pitch p value, is the injection pitch (X The same is true for both directions of γ and γ) 'Completed (D) 4th pattern 13 results. The result, 'between the two subsequent injections, was clearly completely consistent with the previous two without interference. Of course, it should be further pointed out that between each spray pattern layout, a drying time can be allowed to further reduce the possibility of mixed deformation caused by mutual interference. In particular, between the third completion (c) 3rd pattern 12 and pattern 11 and between the fourth completion (D) 4th pattern 丨 3 and pattern 12. ', Of course', it must be particularly emphasized that the above embodiment is not limited to the four-time interlaced layout, but the four-time interlaced layout is preferred; for example, as described above, it can also be universally extended "Timing" to 9 times, 16 times, 25 times ......... or K2 times (for example, K is 2, 3, 4, 5, etc.), and cooperate with each other to separate "position ( "locating)" is 9 times, 16 times, 25 times ... or K2 times (for example, K is 2, 3, 4, 5, etc.). Or in addition to the above, it can be extended to the most generalized 5 times, 6 times, 7 times, or j times (J is a continuation_integer). It is particularly emphasized here that the more the interlacing between "timing" and "locating" is, the more it can ensure that there is no mutual interference. However, it will take more time. Here comes the complete spray pattern.

1224210 五、發明說明(22) 於IίI上述此類透鏡陣列之外,本發明另提供一種適用 一;長條式透鏡陣列的交錯佈著的喷注法則,如第9圖所 :陆首先,再度設想滿足上述公式3相對位置關係之微透 '歹亦即付合各個透鏡圓半徑r值、間距Ρ值以及間隙 Ί /「尺寸要求。因而將以「時間(timing)」分二次來完 、 位置(locatlng)」分二區域交錯佈著。在第一次噴 =产γ刻裡,疋義一第一起始點,以兩倍於間距13值之ρι為噴 1 、方向之間距’然後完成(A) Ist之微流體圖樣1 4佈 者。注意到,此刻所欲得的是具弧狀的長條圓柱 (cylender),故須運用到SMD方法在γ方向以二分之一間距 Ρ值之王。卩噴注流體來疊合(〇verlap t〇託自然成為 一體。然,,繼續完成(B)之微流體乾燥至靜態平衡位置 圖樣15佈著,可能必須經歷約數十微秒("s)至數十毫秒 (ms)間。於第二次喷注時刻裡,在「位置(i〇cating)」之 X方向方面轉移間距P2,並以兩倍於間距h為X方向之噴注 間距,然後同上述步驟運用到SMD方法在γ方向以二分之一 間距P值之全部喷注流體來疊合(overlap to merge),完 成(C) 2 之微流體圖樣1 6佈著。最後,再度經過(j))之微 流體乾燥至靜態平衡位置圖樣丨7佈著。如此,便完成全部 的噴注圖樣以獲得一長條式透鏡陣列。上述實施例中,並 微流體疊加佈著(SMD)方法不限制於Y方向以二分之一間距 ρ值之全^部噴注流體來疊合(〇verUp t〇託;^…。在最普 遍之可能性裡,其Y方向以整數m分之一間距ρ值之全部噴 注流體來疊合(overlap t〇 merge),其中m (m ^2)。 '1224210 V. Description of the invention (22) In addition to the above-mentioned lens arrays, the present invention provides another applicable one; the staggered spraying rule of long lens arrays, as shown in Figure 9: Lu first, again It is assumed that the micro-transparency '歹 that satisfies the relative positional relationship of the above formula 3, that is, the radius r value, the distance P value, and the gap 付 / "size requirements of each lens circle radius are combined. Therefore," timing "will be completed in two times. "Locatlng" is staggered into two areas. In the first spraying, the first starting point is defined, and spraying is performed at a pitch twice as long as the value of 13 and the distance between the directions', and then the (A) Ist microfluidic pattern is distributed. It is noted that what is desired at this moment is an arc-shaped long cylinder (cylender), so the SMD method must be applied to the king of the P value at a half pitch in the γ direction.卩 Inject fluid to overlap (〇verlap t〇 托 naturally become one. However, continue to complete the microfluidic drying of (B) until the static equilibrium position pattern 15 is distributed, it may have to experience about tens of microseconds (" s ) To several tens of milliseconds (ms). At the second injection time, the pitch P2 is shifted in the X direction of the "position (IOcating)", and the injection pitch in the X direction is twice the pitch h. Then, the same steps as above are applied to the SMD method to overlap to merge all the injection fluids with a half pitch P value in the γ direction to complete the microfluidic pattern 16 of (C) 2. Finally, After the microfluid of (j)) is dried again to the static equilibrium position pattern, the cloth is distributed. In this way, the entire injection pattern is completed to obtain a long lens array. In the above embodiments, the microfluidic superimposed distribution (SMD) method is not limited to superimposing the entire fluid by injecting the fluid in the Y direction at a half pitch ρ value (0verUp t0 Torr; ^ .... In the general possibility, the entire injection fluid in the Y direction at an integer m interval of ρ overlaps (t (m ^ 2)).

1224210 五、發明說明(23) 當然’在此必須特別強調的是,上述實施例並不以二 次交錯佈著為⑯,而是以二次交錯佈著為優;例如,如同 上述地其亦可普遍化的擴展「時間(timing)」至4次、8 次、...............例如,L為2、3、4等),並相對 地配合來分割「位置(1〇cat ing)」為4次、8次、Η 人 或2次(例如,L為2、3、4等)。或者除上述之 可/ 擴Λι至最普遍化之3次、5次、6次、或1次(ι屬於 正數)。在此特別強調地是,愈多的「時間(timing)」及 「位置(locating)」之間的交錯佈著是愈能確保無相互干 擾的問題發生;然而,其相對地將需要更 全部的喷注圖樣。 為了貫施上述微流體佈著(MD)法或疊加佈著 法’本發明運用以下所述之喷注設備架構來進行,如 圖所不。貫先此噴注設備架構包括_χγ運動平台(χγ 2 = 2 18/ t其可猎由一電腦控制單元(PC)19透過聯繫驅動 控制早兀(stage driver)2〇來運動其座標位置(例如,χ、 Y )並且1:,控制單元! 9可以透過聯繫噴注控制單元 (head啟動微流體噴注單元(jet head)24進 n=r】:?piet)29之噴注產生。為了瞭解檢測 u之喷:產生疋否正常,上述電腦控制單元19可以透 過聯繫一脈波t時單元22來驅使—閃頻式光源控制 driver )23(:來控制第一光源23,)以及喷注控制單元2ι, 並藉由時間^ -致地由—第一攝影機(came -時刻的微流體29。注意到,第-攝影卿最好能1224210 V. Description of the invention (23) Of course, it must be particularly emphasized that the above embodiment does not use the second interlaced arrangement as a pretext, but the second interlaced arrangement is preferred; for example, as described above, it also The "timing" can be universally extended to 4 times, 8 times, ......... For example, L is 2, 3, 4, etc.), and cooperate to relatively The division "location (10cating)" is 4 times, 8 times, people, or 2 times (for example, L is 2, 3, 4, etc.). Or in addition to the above, it can be expanded / expanded to the most general 3 times, 5 times, 6 times, or 1 time (ι is a positive number). It is particularly emphasized here that the more the interlacing between "timing" and "locating" is, the more it can ensure that no mutual interference occurs; however, it will relatively require more comprehensive Spray pattern. In order to carry out the above-mentioned microfluidic coating (MD) method or superimposed coating method, the present invention is performed by using the following injection equipment structure, as shown in the figure. This injection equipment architecture has previously included a _γ motion platform (χγ 2 = 2 18 / t which can be controlled by a computer control unit (PC) 19 to control the stage driver 2 through a drive to move its coordinate position ( For example, χ, Y) and 1: control unit! 9 can be generated by contacting the injection control unit (head to start the microfluid injection unit (jet head) 24 into n = r]:? Piet) 29. In order to Understand whether the spray of u is detected: it is normal or not, the above-mentioned computer control unit 19 can be driven by contacting a pulse t-time unit 22-flashing light source control driver) 23 (: to control the first light source 23,) and injection The control unit 2m, and by time ^-due to-the first camera (came-time microfluidics 29. It is noted that the first-photography secretary can best

1224210 五、發明說明(24) 度Z方向及角度0方位的調整以觀看不同位置之微流體結 果。此外,為了瞭解檢測微流體噴注在媒介基底1表面之 微透鏡成形30是否正常,本設備架構最好具有一第二攝影 機25在透過一第二光源控制早元27開啟一第二光源26來監 看微透鏡成形30結果。當然’該第二攝影機25最好亦能夠 做咼度Z方向及角度0方位的調整以觀看不同位置之微流 體結果。如此’便可以運用此喷注設備架構來進行微流體 佈著的實施’並且完成臨場(in-si tu)監看並檢測微流體 喷注及透鏡成形的結果。當然,本發明之喷注設備竿構並 非以此為限,若本喷注設備架構無上述之攝影機等部分,參 仍然可以完成上述之MD法及SMD法的製程。但是,本喷注 設備架構以具有上述之攝影機等部分來進行線上檢測為/ 優0 农後’本發明之製程方法亦可做為現今立體影像之實 施應用;亦即利用上述微流體佈著(MD)法或疊加佈著 只 (SMD)法,來進行現今立體影像之微透鏡光柵片 (lenticular lens sheet)之製作,如圖u所示。首先, 此喷印系統架構包括一組進給前輪eed r〇l ier)32。接 著’將一預定之媒介物件(media)31向前進方向33傳入。 然後’利用一彩色喷墨印頭單元(c 〇 1 〇 r i m a g e jet-heads)34將彩色墨滴35喷印於媒介物件31,形成一彩 色平面圖像37。此際,為了加速乾燥彩色平面影像37 好是運用一加熱單元(heat dryer) 36將其快速烤乾來定住 影像。接著,利用一反轉滾輪(reverse r〇Her)38,將此1224210 V. Description of the invention (24) Adjust the Z direction and the 0 direction of the angle to view the microfluidic results at different positions. In addition, in order to understand whether the microlens forming 30 of the microfluid injection onto the surface of the medium substrate 1 is normal, the device architecture preferably has a second camera 25 that controls a pre-light source 27 through a second light source to turn on a second light source 26 to Monitor the microlens forming 30 results. Of course, it is better that the second camera 25 can also adjust the Z direction and the angle 0 direction to view the microfluidic results at different positions. In this way, “the injection device architecture can be used to implement the implementation of microfluidic distribution” and the in-situ monitoring and inspection of microfluid injection and lens formation results are completed. Of course, the structure of the injection equipment of the present invention is not limited to this. If the structure of the injection equipment does not include the aforementioned camera and other parts, the participants can still complete the above-mentioned processes of the MD method and the SMD method. However, the injection device architecture is based on the above-mentioned camera and other parts for online detection as / excellent. 0 The farmer's process method of the present invention can also be used for the implementation of today's stereoscopic images; that is, using the above microfluidic cloth ( MD) method or superimposed cloth only (SMD) method is used to produce the lenticular lens sheet of current stereoscopic images, as shown in Fig. U. First, the printing system architecture includes a set of feed front wheels 32. Next, a predetermined media object 31 is introduced in the forward direction 33. Then, a color ink droplet 35 is sprayed onto the media object 31 using a color inkjet print head unit (c 〇 〇 r i m a g e jet-heads) 34 to form a color flat image 37. At this time, in order to accelerate the drying of the color flat image 37, it is better to use a heat dryer 36 to quickly dry it to hold the image. Then, using a reverse roller (reverse rOHer) 38, this

1224210 五、發明說明(25) 一微透鏡 生一微透 sheet) 系統將具 •由移出 述LP方法 喷注微透 進給滾輪 之第3及4 製程來調 以確保無 印有圖像之媒介物件面反轉朝下;然後,在運用 喷注單元39進行微透鏡流體材料4〇之喷注,以產 鏡陣列41 ’此即為具有光柵片(ienticuia]r iens 之立體影像成品(lenticular image)。最後,本 有光柵片(lenticular lens sheet)之媒介物件 方向42遞出光柵片,即完成全部製造過程。 注意到’上述媒介物件3 1可以是事先利用上 先行完成某特定區域圖樣化。如此便能將往後之 鏡陣列41精準定位;換言之,在媒介物件31進入 (feed rolle〇32之前已完成LP製程(請參閱前述 圖)。此外,此喷注過程可以運用上述之MD或⑽!) 整增加微透鏡的高度,以及利用I D法來交錯佈著 相鄰流體相互干擾的問題產生。 [本案特徵及效果] 本發明之特徵與效果在於本發明提供一無需再貼合之 單階段式(one-pass)方法,可以直接精確地將微透鏡製作 在所預定的媒介基底(media substrate)上。並以喷墨技 術為基礎,然後發展一可以準確定位住(local i zing)微液 滴之親(疏)水性圖案化區域(patterning)。 此外’本發明藉由交錯佈著(interlaced deposi t ion)的噴注法則來達成所欲之透鏡的製造成形。 主要利用「時間(timing)」及「位置(locating)」分開來 之交錯佈著(interlaced deposition)的喷注法則1224210 V. Description of the invention (25) A micro-lens generates a micro-sheet) The system will have the 3rd and 4th processes of injecting the micro-transmission feed roller by removing the LP method to adjust to ensure that there are no media objects printed with images The surface is reversed downward; then, the microlens fluid material 40 is injected by using the injection unit 39 to produce a lens array 41 ', which is a lenticular image with a lenticular lens (ienticuia) and iens. . Finally, the original lens object with a lenticular lens sheet in the direction 42 is handed over the grating sheet, and the entire manufacturing process is completed. Note that 'the above-mentioned media object 31 can be patterned in a specific area by using the previous one first. So Then the mirror array 41 can be accurately positioned in the future; in other words, the LP process has been completed before the media object 31 enters (feed rolle 32) (see the previous figure). In addition, this injection process can use the above MD or ⑽! The problem of increasing the height of the microlenses, and using the ID method to stagger adjacent fluids to interfere with each other arises. [Features and Effects of the Case] The features and effects of the present invention reside in the present invention. Provide a one-pass method without further bonding, which can directly and accurately make micro lenses on a predetermined media substrate. Based on inkjet technology, then develop a method that can accurately Local i zing water droplet patterning of local droplets. In addition, the present invention achieves the desired lens manufacturing by the injection rule of interlaced depositon. Forming: Interlaced deposition, which is separated from "timing" and "locating", is mainly used.

0338-10214TW( Nl); P08920036; j amngwo. p t d 第28頁 ^224210 五、發明說明(26)0338-10214TW (Nl); P08920036; j amngwo. P t d p. 28 ^ 224210 V. Description of the invention (26)

Getting methodology);如此,在上述之達成靜態平衡 期間’甚至在達成固體相變化期間内,相鄰透鏡液體之成 裂’可以確保不受相互干擾(cr〇ss_ ing)的現象影響 而正常完成。 , 還有’由於本發明使用多重液滴(mu 11 i p 1 e dr ops )及 ,流體叠加佈著(stacking micr〇_fluidic dep〇sitic)n, j寫SMD)方式製作為透鏡的實施步驟,重複進行微流體佈 =步驟,持續堆疊以增加最終透鏡物件在媒介基底上的厚 限定;;i發:月佳實施例揭露如上,然其並非用以 神和範“,者’在不脫離本發明之精 當視後附之申請專利範圍所界定者:J本發明之保護範圍Getting methodology); In this way, during the above-mentioned static equilibrium period, even during the solid phase change, the cracking of adjacent lens liquids can be normally completed without being affected by the phenomenon of mutual interference (crossing). There are also 'implementation steps for making the lens using multiple droplets (mu 11 ip 1 e dr ops) and stacking micr〇_fluidic depοsitic n, j write SMD) method, Repeat the microfluidic cloth = step, and continue to stack to increase the thickness limit of the final lens object on the media substrate; i hair: the Yuejia embodiment is disclosed as above, but it is not used as a god and a fan. Defined by the scope of patent application attached to the following: J. The scope of protection of the present invention

12242101224210

第1圓係顯示根據本發明所提出一單顆微透鏡之基本 結構做為技術基礎; 第2圖係根據本發明所提出一多顆微透鏡基本結構做 為技術基礎; 第3圓係顯示本發明利用微顯影(Hth〇graphy patterning,縮寫LP)方法及微流體佈著(micr〇 — fluidic deposition ’縮寫MD)方式製作微透鏡的實施步驟; 第4圖係顯示本發明第3圖之相反的實施步驟; 第$圖係顯示本發明以多重液滴(mu 11 i p 1 e drops )及 微流體叠加佈著(stacking micro-fluidic deposition, 縮寫SMD)方式製作微透鏡的實施步驟; 第6圖係顯示本發明一種微顯影方式,較適合應用於 媒介基底1表面與微透鏡材料之界面本質上為相親性 (hydrophi 1 ic)的情形; 第7圖係顯示本發明第7圖揭露另一種微顯影方式,較 適合應用於媒介基底1表面與微透鏡材料之界面本質上為 相疏性(hydrophob ic)的情形; 第8圖係顯示本發明一種交錯佈著(interlaced deposi tion,ID)的喷注法則; 第9圖係顯示本發明另提供一種適用於長條式透鏡陣 列的交錯佈著的喷注法則; 第1 〇圖係顯示本發明實施微流體佈著(MD)法或疊加佈 著(SMD )法所使用之喷注設備架構;以及 第11圖係顯示本發明利用微流體佈著(MD )法或疊加佈The first circle system shows the basic structure of a single micro lens according to the present invention as the technical basis; the second circle system shows the basic structure of a plurality of micro lenses according to the present invention as the technical basis; the third circle system shows this The invention uses the micro-patterning (LP) method and the microfluidic deposition (abbreviation MD) method to make micro-lenses; Figure 4 shows the opposite of Figure 3 of the present invention. Implementation steps; FIG. $ Shows the implementation steps of the present invention to make microlenses by multiple droplets (mu 11 ip 1 e drops) and stacking micro-fluidic deposition (SMD); FIG. 6 shows Shown is a micro-development method of the present invention, which is more suitable for the case where the interface between the surface of the media substrate 1 and the micro-lens material is essentially hydrophi 1 ic; FIG. 7 is a view showing another micro-development according to FIG. 7 of the present invention. Method, which is more suitable for the case where the interface between the surface of the medium substrate 1 and the microlens material is essentially hydrophobic (ic); FIG. 8 shows a staggered layout of the present invention. interlaced deposition (ID); Figure 9 shows the present invention provides another spraying rule suitable for staggered arrays of long lens arrays; Figure 10 shows the microfluidic layout of the present invention (MD) method or superimposed distribution (SMD) method of the injection equipment architecture; and FIG. 11 shows the present invention using the microfluidic (MD) method or superimposed distribution

0338-10214TW(Nl);P08920036;jamngwo.ptd 第30頁 1224210 圖式簡單說明 著(SMD)法,來進行現今立體影像之微透鏡光柵片 (lenticular lens sheet)之實施步驟及裝置。 [符號說明] 1〜媒介基底; 2〜表面; 3〜微透鏡; Η〜媒介基底1的高度; η〜媒介基底1之折射率; D〜微透鏡之圓直徑; R〜微透鏡之曲率半徑; t〜微透鏡之厚度; P〜透鏡間彼此之中心間距值; r〜微透鏡之圓半徑; 6〜微透鏡3和微透鏡4之間隙值; 7〜微透鏡3與微透鏡5之間隙值; 8、9〜薄膜; 8a、9b〜有薄膜區域; 8b、9a〜無薄膜區域; Φ〜微液滴的直徑大小; 5 a、5 b、5 c〜第一、二、三微流液滴; 6a、6b、6c〜第一、二、三層微流體佈著; 7a、7b、7c〜第一、二、三層微流體佈著;0338-10214TW (Nl); P08920036; jamngwo.ptd Page 30 1224210 The figure briefly explains the (SMD) method to implement the current lenticular lens sheet of stereo images and the implementation steps and devices. [Description of symbols] 1 ~ media substrate; 2 ~ surface; 3 ~ microlenses; Η ~ height of medium substrate 1; η ~ refractive index of medium substrate 1; D ~ circle diameter of microlenses; R ~ curvature radius of microlenses T ~ thickness of microlens; P ~ center distance between lenses; r ~ circle radius of microlens; 6 ~ gap value of microlens 3 and microlens 4; 7 ~ gap of microlens 3 and microlens 5 Values: 8, 9 ~ thin film; 8a, 9b ~ with thin film area; 8b, 9a ~ no thin film area; Φ ~ diameter of micro-droplet; 5 a, 5 b, 5 c ~ first, second, third micro flow Liquid droplets; 6a, 6b, 6c ~ first, second, and third layers of microfluids; 7a, 7b, 7c ~ first, second, and third layers of microfluids;

0338-10214TW( N1); P08920036; j amngwo. p t d 第31頁 1224210 圖式簡單說明0338-10214TW (N1); P08920036; j amngwo. P t d p. 31 1224210 Schematic description

Pi〜兩倍於間距p值; P2〜轉移間距; 1 0、11、1 2、1 3〜交錯佈著喷注圖樣; 14、15、16、17〜交錯佈著喷注圖樣; 1 9〜電腦控制單元; 20〜驅動控制單元; 2卜喷注控制單元; 2 2〜脈波計時單元; 2 3〜閃頻式光源控制; 2 3 ’〜第一光源; _ 2 4〜喷注單元; 2 5〜第二攝影機; 2 6〜第二光源; 2 7〜第二光源控制單元; 2 8〜第一攝影機; 2 9〜微液滴; 3 0〜微透鏡成形; 3 1〜媒介物件; 32〜進給前輪; 3 3〜前進方向; 3 4〜彩色喷墨印頭單元; 3 5〜彩色墨滴; 3 6〜加熱單元; 3 7〜彩色平面圖像;Pi ~ double the pitch p value; P2 ~ transfer pitch; 1 0, 11, 1 2, 1 3 ~ staggered spray pattern; 14, 15, 16, 17 ~ staggered spray pattern; 1 9 ~ Computer control unit; 20 ~ drive control unit; 2 injection control unit; 2 2 ~ pulse timing unit; 2 3 ~ flash frequency light source control; 2 3 '~ first light source; _ 2 4 ~ injection unit; 2 5 ~ second camera; 2 6 ~ second light source; 2 7 ~ second light source control unit; 2 8 ~ first camera; 2 9 ~ micro-droplet; 3 0 ~ micro lens forming; 3 1 ~ medium object; 32 ~ feed front wheel; 3 3 ~ forward direction; 3 4 ~ color inkjet print head unit; 3 5 ~ color ink drop; 36 ~ heating unit; 37 ~ color flat image;

0338-10214TW( N1); P08920036; j amngwo. p t d 第32頁 1224210 圖式簡單說明 3 8〜反轉滾輪; 39〜微透鏡喷注單元; 4 0〜微透鏡流體材料; 41〜微透鏡陣列; 42〜移出方向42 ; 5 3 - 1〜3〜實施步驟; S 4 -1〜3〜實施步驟; S 5 - 1〜6〜實施步驟; 56- :1〜5〜實施步驟; 57- :l〜5〜實施步驟。 ❶0338-10214TW (N1); P08920036; j amngwo. Ptd page 32 1224210 Brief description of the drawing 3 8 ~ reverse roller; 39 ~ microlens injection unit; 40 ~ microlens fluid material; 41 ~ microlens array; 42 ~ moving direction 42; 5 3-1 ~ 3 ~ implementation steps; S 4 -1 ~ 3 ~ implementation steps; S 5-1 ~ 6 ~ implementation steps; 56-: 1 ~ 5 ~ implementation steps; 57-: l ~ 5 ~ Implementation steps. ❶

0338-10214TWF(N1);P08920036;j amngwo. ptd 第 33 頁0338-10214TWF (N1); P08920036; j amngwo.ptd page 33

Claims (1)

六、申請專利範圍 1· 一種微透鏡之製作方 提供一媒介基底; 包括下列步驟: 形成一薄膜於該媒介基底上; 圖案化該薄膜,以形成一旦檄 在該媒介基底上;以及 /、微透鏡圖案之無薄膜區域 將 微流體佈著於該無薄膜區 進行微流體佈著步驟 域,以形成一微透鏡物件 2.如申請專利範圍第1 3·如申請專利範圍第j 1本負上為相親性。 其中該薄膜材料具疏之微透鏡之製作方法, 4 ·如申請專利範圍篦q馆 其中該薄膜材料係鐵氟龍(Tefl之微透鏡之製作方法’ 乙歸醇(m)切膠光阻龍(TefUn)、聚氣乙卿)、聚 苴中5,=:利?圍第1項所述之微透鏡之製作方法, 其中该薄膜材料的厚度介於1〇奈米至1微来之間。 請專利範圍第1項所述之微透鏡之製作方法’ /、中δ亥被W體係包括一透鏡材料。 7.如申請專利範圍第6項所述之微透鏡之製作方法, 其中該微透鏡材料係聚乙烯丁路樹脂 (poly-vinyl-butyral,PVB)/ 固化顆物(particulate Matter,PM)、乙酸乙二醇丁醚醋(pr〇pylene glyc〇1 mono methyl ether acetate , PGMEA) ° 8 ·如申請專利範圍第l項所述之微透鏡之製作方法,6. Scope of Patent Application 1. A producer of a microlens provides a media substrate; includes the following steps: forming a film on the media substrate; patterning the film to form a film once it is on the media substrate; and / The thin film-free area of the lens pattern distributes the microfluid to the thin-film-free area, and performs the microfluid distribution step field to form a micro-lens object. Blindness. Wherein the film material has a sparse microlens manufacturing method, such as the scope of patent application 篦 q Hall where the film material is Teflon (Tefl's microlens manufacturing method 'Ethyl alcohol (m) cut glue photoresist dragon (TefUn), Ju Qi Yi Qing), Ju Ju Zhong 5, =: Lee? The method for making a microlens as described in item 1, wherein the thickness of the film material is between 10 nanometers and 1 micrometer. The method for manufacturing a microlens described in item 1 of the patent scope ', the medium δHW system includes a lens material. 7. The method for manufacturing a microlens as described in item 6 of the scope of the patent application, wherein the microlens material is poly-vinyl-butyral (PVB) / particulate Matter (PM), acetic acid Ethylene glycol butyl ether vinegar (prOpylene glyco1 mono methyl ether acetate (PGMEA)) ° 8 · The method for making microlenses as described in item 1 of the scope of patent application, 12242101224210 中該微流體佈著於該媒介基底表面上的靜態直徑與該 膜區域的直徑尺寸實質上相等 9.如申請專利範圍第丨項所述之微透鏡之製作方法, 其中更包括重複進行該微流體佈著步驟,持續堆疊以增加 最終透鏡物件在該媒介基底上的厚度;其中,其疊加層數 值為整數,,則為流體佈著高度值疊加層數亦約略為奴“ 2 ) 〇 1 〇 · —種微透鏡之製作方法,包括下列步驟 提供一媒介基底; 形成一薄膜於該媒介基底上; 圖案化該薄膜 在該媒介基底上; ,以形成具微透鏡圖案之一有薄膜區域 以及 進行微流體佈著步驟,將一微流體佈著於該有薄膜區 域,以形成一微透鏡物件。 / 、 11·如申請專利範圍第1 0項所述之微透鏡之製作方 法,其中該媒介基底與該微透鏡材料之界面本質^為相疏 12·如申請專利範圍第1 〇項所述之微透鏡之製作方 法,其中該薄膜材料具親水性之材料。 13·如申請專利範圍第1 2項所述之微透鏡之製作方 法,其中該薄膜材料係Si〇2或丁1〇2。 14·如申請專利範圍第1〇項所述之微透鏡之製作方 法,其中該薄膜材料的厚度介於1 〇条米至1微米之間。 15·如申請專利範圍第1〇項所述之微透鏡之製作方The static diameter of the microfluid disposed on the surface of the medium substrate is substantially equal to the diameter size of the film region. 9. The method of making a microlens as described in item 丨 of the patent application scope, which further includes repeatedly performing the micro The fluid distribution step is continuously stacked to increase the thickness of the final lens object on the medium substrate. Among them, the value of the superimposed layer is an integer, and the number of superimposed layers of the fluid distribution height is also approximately "2" 〇1 〇 -A method for manufacturing a microlens, including the following steps: providing a media substrate; forming a film on the media substrate; patterning the film on the media substrate; forming a film region with a microlens pattern and performing The microfluid distribution step is to apply a microfluid to the thin film area to form a microlens object. 11. The method for manufacturing a microlens as described in item 10 of the patent application scope, wherein the medium substrate The nature of the interface with the microlens material is sparse. 12. The method for making a microlens as described in item 10 of the scope of patent application, wherein the film material Materials with hydrophilic properties 13. The method for making a microlens as described in item 12 of the scope of the patent application, wherein the thin film material is Si02 or D102. 14. As the place of the patent scope 10 The manufacturing method of the microlens described above, wherein the thickness of the film material is between 10 meters and 1 micron. 15. The manufacturing method of the microlens as described in item 10 of the scope of patent application 1224210 六、申請專利範圍 法’其中該微流體係包括一透鏡材料。 16·如申請專利範圍第15項所述之微透鏡之製作方 法,其中該微透鏡材料係聚乙烯丁醛樹脂 (P〇ly-vinyl -butyral,PVB)/ 固化顆物(Particulate Matter,PM)、乙酸乙二醇丁醚酯(pr0pyiene glyc〇1 mono methyl ether acetate , PGMEA)。 17·如申請專利範圍第1 0項所述之微透鏡之製作方 法’其中該微流體佈著於該媒介基底表面上的靜^直徑鱼 該無薄膜區域的直徑尺寸實質上相等。 玉’、 18·如申請專利範圍第10項所述之微透鏡之製作方 法,其中更包括重複進行該微流體佈著步驟,持 增加最終透鏡物件在該媒介基底上的厚度;其中,复ς 層數值為整數m,則為流體佈著高度值疊加層數約、/加 m(m 22)。 、。岭馬 19. 一種微透鏡之製作方法,適用於以交錯佈 製作透鏡陣列,包括下列步驟: 方式 提供一媒介基底; 形成一薄膜於該媒介基底上;1224210 VI. Scope of Patent Application Method 'wherein the microfluidic system includes a lens material. 16. The method for manufacturing a microlens as described in item 15 of the scope of the patent application, wherein the microlens material is polyvinyl butyral (PVB) / Particulate Matter (PM) 1, ethylene glycol butyl ether acetate (pr0pyiene glyc〇1 monomethyl ether acetate (PGMEA). 17. The method for making a microlens as described in item 10 of the scope of the patent application, wherein the diameter of the static fluid on the surface of the substrate of the microfluid is substantially equal to the diameter of the non-film region. Jade ', 18. The method for making a microlens as described in item 10 of the scope of patent application, which further includes repeating the microfluid laying step to increase the thickness of the final lens object on the medium substrate; The layer value is an integer m, which is the height of the fluid distribution layer and the number of layers is approximately plus / m (m 22). . Ling Ma 19. A method for manufacturing a microlens, suitable for fabricating a lens array in a staggered pattern, including the following steps: providing a medium substrate; forming a thin film on the medium substrate; 圖案化該薄膜,以形成具微透鏡圖 在該媒介基底上;以及 茶之一無薄臈區域 以交錯佈著方式進行微流體佈著步驟, & 著於該無薄膜區域。 ’將一微流體佈 20·如申請專利範圍第19項所述之微 , 法,其中該媒介基底與該微透鏡材料 鏡之製作方 4之界面本質上為相親Patterning the film to form a microlens pattern on the media substrate; and one of the tea-free areas of the tea is subjected to a microfluid coating step in a staggered pattern, & ′ A microfluidic cloth 20 · The micro method as described in item 19 of the scope of application for a patent, wherein the interface between the media substrate and the micro lens material lens 4 is essentially a blind date 0338-10214TWF(N1);P08920036;j amngwo.p t d0338-10214TWF (N1); P08920036; j amngwo.p t d 12242101224210 六、申請專利範圍 性〇 21·如申請專利範圍第19項所述之微透鏡之製作方 法’其中該薄膜材料具疏水性之材料。 22.如申請專利範圍第21項所述之微透鏡之製作方 法’其中該薄膜材料係鐵氟龍(Tef 1 on)、聚氣乙烯 (PVC)、聚乙烯醇(pVA)或矽膠光阻。 23·如申請專利範圍第19項所述之微透鏡之製作方 法’其中該薄膜材料的厚度介於幾十奈米至1微米之間。 24 ·如申請專利範圍第1 9項所述之微透鏡之製作方 法’其中該微流體係包括一透鏡材料。 2 5 .如申請專利範圍第2 4項所述之微透鏡之製作方 法’其中該微透鏡材料係聚乙烯丁酸樹脂 (P〇 ly-viny l-butyral,PVB) / 固化顆物(Particulate Matter ’PM)、乙酸乙二醇丁醚醋(propylene glyc〇i mono methyl ether acetate , PGMEA) o 26 ·如申請專利範圍第i 9項所述之微透鏡之製作方 法,其中該透鏡陣列具有每個透鏡圓半徑r值、間距p值以 及間隙w值。 2 7 ·如申請專利範圍第2 6項所述之微透鏡之製作方 法,其中該交錯佈著方式以時間劃分為四次並配合位置气 分四區域來完成,更包括下列步驟: 定義一第一起始點,進行第一時間喷注,於X及γ方向 以兩倍於間距p值之Pi為喷注間距,進行交錯佈著,完成第 一區域微流體圖樣佈著;6. Scope of Patent Application 21. The method of making a microlens as described in item 19 of the scope of patent application, wherein the film material is hydrophobic. 22. The method for manufacturing a microlens as described in item 21 of the scope of the patent application, wherein the film material is Teflon, polyvinyl chloride (PVC), polyvinyl alcohol (pVA), or silicon photoresist. 23. The method for manufacturing a microlens as described in item 19 of the scope of the patent application, wherein the thickness of the film material is between tens of nanometers and 1 micrometer. 24. The method of making a microlens as described in item 19 of the scope of the patent application, wherein the microfluidic system includes a lens material. 25. The method for manufacturing a microlens as described in item 24 of the scope of the patent application, wherein the microlens material is a polyvinyl butyric resin (PVB) / cured particulate (Particulate Matter) 'PM), propylene glycoi mono methyl ether acetate (PGMEA) o 26. The method for manufacturing a microlens as described in item i 9 of the scope of patent application, wherein the lens array has each Lens circle radius r value, pitch p value, and gap w value. 2 7 · The manufacturing method of the microlens as described in item 26 of the scope of the patent application, wherein the staggered arrangement is divided into four times in time and is completed in accordance with the four areas of the position, and further includes the following steps: At a starting point, the first time injection is performed, and in the X and γ directions, Pi which is twice the pitch p value is used as the injection interval, and the interlacing is performed to complete the first area microfluidic pattern deployment; 1224210 六、申請專利範圍 ——----- '一 、 定義一第二起始點,進行第二時間喷注,再以Ρι為喷 注間距,於X及γ方向進行交錯 完成第二區域微流體 圖樣佈著; 有 、定義一第三起始點,進行第三時間喷注,再以P1為喷 注間距,於X及Y方向進行交錯佈著,完成第三區域微流體 圖樣佈著;以及 疋義一第四起始點,進行第四時間喷注,再以Pi為喷 注間距,於X及γ方向進行交錯佈著,完成第四區域微流體 圖樣佈著;1224210 VI. Scope of patent application ------- 'I. Define a second starting point, perform the second time injection, and then use P1 as the injection interval to stagger in the X and γ directions to complete the second area Microfluid pattern layout; Yes, define a third starting point, perform the third time injection, and then use P1 as the injection pitch, staggered in the X and Y directions to complete the third area microfluid pattern layout ; And Yiyi a fourth starting point, the fourth time injection, and then Pi as the injection pitch, staggered in the X and γ directions to complete the fourth area microfluidic pattern layout; 其中,該第二起始點相對第一起始點位置在X及γ方向 移轉P ’該第三起始點相對第一起始點位置在X方向移轉 P,該第四起始點相對第_起始點位置在γ方向移轉p。 2 8 ·如申請專利範圍第2 γ項所述之微透鏡之製作方 法’其中該交錯佈著方式以時間劃分為K2次並配合位置劃 分K2區域來完成;其中,κ等於2、3、4、5或整數。 2 9 ·如申請專利範圍第2 7項所述之微透鏡之製作方 法’其中該交錯佈著方式以時間劃分為J次並配合位置割 分J區域來完成;其中,j等於5、6、7或整數。Wherein, the second starting point is shifted in the X and γ directions relative to the first starting point position P ′, the third starting point is shifted in the X direction relative to the first starting point position P, and the fourth starting point is relative to the first _ The starting position is shifted by p in the γ direction. 2 8 · The manufacturing method of the microlens as described in the 2nd item of the scope of the patent application 'wherein the staggered pattern is divided into K2 times in time and the K2 area is divided according to the position; where κ is equal to 2, 3, 4 , 5 or integer. 2 9 · The manufacturing method of microlenses as described in item 27 of the scope of the patent application, wherein the staggered pattern is divided into J times in time and is divided into J regions with the position; where j is 5, 6, 7 or integer. 30 ·如申請專利範圍第2 7項所述之微透鏡之製作方 法,其中更包括重複進行該微流體怖著步驟,持續堆疊以 增加最終透鏡物件在該媒介基底上的厚度;其中,其疊加 層數值為整數m,則為流體佈著高度值叠加層數亦約略為 m(m — 2 ) 〇 31.如申請專利範圍第26項所述之微透鏡之製作方30. The method for making a microlens as described in item 27 of the scope of patent application, which further includes repeating the microfluidic step and continuously stacking to increase the thickness of the final lens object on the medium substrate; wherein, it is superimposed The layer value is an integer m, which is the height of the fluid cloth. The number of superimposed layers is also approximately m (m-2). 31. The method of making the microlens described in item 26 of the scope of patent application 0338-10214TWF(N1);P08920036;j amngwo.ptd 第 38 頁 1224210 六、申請專利範圍 法,其中該交錯佈著方式以時間劃分為二次並配合位置劃 分二區域來完成,更包括下列步驟: 定義一第一起始點,進行第一時間喷注,於X方向以 兩倍於間距P值之Pi為喷注間距並於γ方向以二分之一間距P 值為喷注間距,進行交錯佈著,完成第一區域微流體圖樣 佈著;以及 定義一第二起始點,進行第二時間喷注,於X方向以 兩倍於間距p值之Pi為喷注間距並於Y方向以二分之一間距p 值為噴注間距,進行交錯佈著,完成第二區域微流體圖樣 佈著;其中,同一Y方向内的全部喷注流體自然疊合成為 φ 一體,以獲得一具弧度之長條圓枉鏡列; 其中,該第二起始點相對第一起始點位置在X方向移 轉P 〇 32 ·如申請專利範圍第3 1項所述之微透鏡之製作方 法,其中該交錯佈著方式以時間劃分為2L次並配合位置劃 分2L區域來完成;其中,L等於2、3、4或整數。 33 ·如申請專利範圍第3 1項所述之微透鏡之製作方 法,其中該交錯佈著方式以時間劃分為1次並配合位置劃 分I區域來完成;其中,I等於3、5、6或整數。 34 ·如申請專利範圍第3 1項所述之微透鏡之製作方 _ 法,其中Y方向以整數m分之一間踉p值、為喷注間距,重複 進行該微流體佈著步驟,持續堆燊以增加最終透鏡物件在 該媒介基底上的厚度;其中, 35· —種微透鏡之製作方法,適用於以父錯佈著方式0338-10214TWF (N1); P08920036; j amngwo.ptd Page 38 1224210 6. Application for Patent Scope Method, where the staggered layout is divided into two areas in time and coordinated with the location to divide the two areas, and includes the following steps: A first starting point is defined, and the first time injection is performed. Pi is twice the pitch P value in the X direction as the injection pitch, and half the pitch P value in the γ direction is the injection pitch. To complete the layout of the microfluidic pattern in the first area; and define a second starting point for the second time injection, with Pi twice the pitch p value in the X direction as the injection interval and two in the Y direction. The p-value of one-half interval is the injection interval, which is staggered to complete the layout of the microfluidic pattern in the second region. Among them, all the injection fluids in the same Y direction are naturally superimposed into φ to obtain a radian. A long round mirror row; wherein the second starting point is shifted in the X direction relative to the first starting point position P 032 · The method for manufacturing a microlens as described in item 31 of the patent application scope, wherein the staggering The layout is divided into 2 by time It is done L times and divided into 2L regions according to the position; L is equal to 2, 3, 4, or an integer. 33. The method of making a microlens as described in item 31 of the scope of the patent application, wherein the staggered arrangement is completed by dividing time into 1 and matching the position to divide the I area; where I is equal to 3, 5, 6, or Integer. 34. The method for making a microlens as described in item 31 of the scope of the patent application, in which the Y direction is an integer p between an integer m and the injection interval, and the microfluid distribution step is repeated, continuously Stacked to increase the thickness of the final lens object on the media substrate; of which, 35 · —a method of making microlenses, is suitable for the method of parental staggering 0338- 10214TWF(N1) ;P08920036;j amngwo. ptd 第 39 頁 12242100338- 10214TWF (N1); P08920036; j amngwo. Ptd page 39 1224210 六、申請專利範圍 製作透鏡陣列’包括下列步驟: 提供一媒介基底; 形成一薄膜於該媒介基底上; 圖案化該薄膜,以形成具微透鏡圖案之一 威 在該媒介基底上;以及 、 以交錯佈著方式進行微流體佈著步驟,將一泣體佈 著於該有薄膜區域,已形成一微透鏡陣列物件。μ 36 ·如申請專利範圍第3 5項所述之微透鏡之製作方6. The scope of the patent application for making a lens array includes the following steps: providing a media substrate; forming a film on the media substrate; patterning the film to form a micro lens pattern on the media substrate; and, The microfluid distribution step is performed in a staggered pattern, and a thin body is spread on the filmed area to form a microlens array object. μ 36 · The manufacturer of the microlens as described in item 35 of the scope of patent application 法,其中該媒介基底與該微透鏡材料之界面本質上為相疏 性0 … 37 ·如申請專利範圍第3 5項所述之微透鏡之製作方 法,其中該薄膜材料為具親水性之材料。 3 8 ·如申請專利範圍第3 7項所述之微透鏡之製作方 法,其中該薄膜材料係Si〇2或丁丨〇2。 3 9 ·如申請專利範圍第3 5項所述之微透鏡之製作方 法,其中該薄膜材料的厚度介於丨〇奈米至i微米之間。 40·如申請專利範圍第35項所述之微透鏡之製作方 法,其中該微流體係包括一透鏡材料。The method in which the interface between the media substrate and the microlens material is essentially sparse. 0 · 37 · The method for making a microlens as described in item 35 of the patent application scope, wherein the film material is a hydrophilic material . 38. The method for manufacturing a microlens as described in item 37 of the scope of patent application, wherein the thin film material is Si02 or Ding 02. 39. The method for manufacturing a microlens as described in item 35 of the scope of patent application, wherein the thickness of the thin film material is between 0 nm and 1 micron. 40. The method of making a microlens as described in claim 35, wherein the microfluidic system includes a lens material. 4 1 ·如申請專利範圍第4 〇項所述之微透鏡之製作方 法,其中該微透鏡材料係聚乙烯丁醛樹脂 (poly - vinyl - butyral ,PVB) / 固化顆物(Particulate Matter,PM)、乙酸乙二醇丁醚醋(propylene glyc〇i mono methyl ether acetate , PGMEA) ° 4 2 ·如申請專利範圍第3 5項所述之微透鏡之製作方4 1 · The method for manufacturing a microlens as described in item 40 of the scope of the patent application, wherein the microlens material is a poly-vinyl butyral (PVB) / Particulate Matter (PM) Propylene glyceoi mono methyl ether acetate (PGMEA) ° 4 2 · The method of making microlenses as described in the 35th item of the patent application scope 0338- 10214TWF(N1) ;P08920036; j amngwo.ptd 第40頁 1224210 六、申請專利範圍 法’其中該透鏡陣列具有每個透鏡圓半徑Γ值、間距p值以 及間隙w值尺寸要求。 4 3 ·如申請專利範圍第4 2項所述之微透鏡之製作方 法’其中該交錯佈著方式以時間劃分為四次並配合位置劃 分四區域來完成,更包括下列步驟: 疋義一第一起始點,進行第一時間喷注,於X及γ方向 以兩倍於間距P值之Pl為喷注間距,進行交錯佈著,完成第 一區域微流體圖樣佈著; 定義一第二起始點,進行第二時間喷注,再以P1為喷 /主間距,於X及γ方向進行交錯佈著,完成第二區域微流體痛I 圖樣佈著; 定義一第三起始點,進行第三時間噴注,再以Ρι為喷 注間距,於X及Y方向進行交錯佈著,完成第三區域微流體 圖樣佈著;以及 定義一第四起始點,進行第四時間噴注,再以P1為喷 注間距,於X及Y方向進行交錯佈著,完成第四區域微流體 圖樣佈著; 其中,該第二起始點相對第一起始點位置在X及γ方向 移轉P,該第三起始點相對第一起始點位置在义方向移轉 P,該第四起始點相對第一起始點位置在γ方向移轉p。 44·如申請專利範圍第43項所述之微透鏡之製作方 法’其中δ亥父錯佈者方式以時間劃分為π次並配合位置劃 分Κ2區域來完成;其中,κ等於2、3、4、5或整數^。 45 ·如申請專利範圍第4 3項所述之微透鏡之製作方0338-10214TWF (N1); P08920036; j amngwo.ptd page 40 1224210 VI. Patent Application Method ′ Wherein the lens array has the size of each lens circle radius Γ value, pitch p value, and gap w value. 4 3 · The method of making microlenses as described in item 42 of the scope of the patent application, wherein the staggered pattern is divided into four times and divided into four areas in accordance with the position, and further includes the following steps: At the starting point, the first time injection is performed, and in the X and γ directions, Pl, which is twice the pitch P value, is used as the injection pitch, and the interlaced layout is completed to complete the first area microfluidic pattern layout; define a second start Point, perform the second time injection, and then use P1 as the spray / main distance, staggered in the X and γ directions to complete the second area microfluidic pain I pattern layout; define a third starting point, and proceed to the first Three-time injection, and then use Pa as the injection interval, staggered in the X and Y directions to complete the micro-fluid pattern layout in the third area; and define a fourth starting point, perform the fourth time injection, and then Using P1 as the injection pitch, staggered the distribution in the X and Y directions to complete the microfluidic pattern layout in the fourth region; where the second starting point is shifted by P in the X and γ directions relative to the first starting point position, The third starting point is located relative to the first starting point at Transferring direction P, the fourth starting position relative to the first starting point p in the transfer direction γ. 44. The method of making a microlens as described in item 43 of the scope of the patent application, wherein the delta-height method is divided into π times and divided into κ2 regions in accordance with the position; where κ is equal to 2, 3, and 4 , 5 or integer ^. 45 · The manufacturer of the microlens as described in item 43 of the scope of patent application 0338-10214TWF(N1);P08920036;j amngwo.p t d 第41頁 1224210 六、申請專利範圍 法,其中該交錯佈著方式以時間劃分為J次並配合位置劃 分J區域來完成;其中,j等於5、6、7或整數。 4 6 ·如申請專利範圍第4 3項所述之微透鏡之製作方 法,其中更包括重複進行該微流體佈著步驟,持續堆疊以 增加最終透鏡物件在該媒介基底上的厚度;其中,其疊加 層數值為整數m,則為流體佈著高度值疊加層數亦約略為 m(m - 2 )。 4 7 ·如申請專利範圍第4 2項所述之微透鏡之製作方 法,其中該交錯佈著方式以時間劃分為二次並配合位置劃 分二區域來完成,更包括下列步驟: 定義一第一起始點,進行第〆時間喷注,於X方向以 兩倍於間距p值之Pi為喷注間距並於Y方向以二分之一間距p 值為喷注間距,進行交錯佈著,完成第一區域微流體圖樣 佈著;以及 定義一第二起始點,進行第二時間噴注,於X方向以 兩倍於間距p值之Pi為喷注間距並於γ方向以二分之一間距P 值為喷注間距,進行交錯佈著,完成第一區域微流體圖樣 佈著;其中,同一Y方向内的全部喷注流體自然疊合成為 一體,以獲得一具弧度之長條圓枉鏡列; 其中,該第二起始點相對第一起始點位置在X方向移 轉P 〇 48.如申請專利範圍第47項所述之微透鏡之製作方 法,其中該交錯佈著方式以時間劃分為2L次並配合位置劃 分2L區域來完成;其中,L等於2、3、4或整數。0338-10214TWF (N1); P08920036; j amngwo.ptd Page 41 1224210 VI. Application for Patent Scope Method, where the staggered layout is divided into J times with time and J area is coordinated with position; where j equals 5 , 6, 7, or integer. 4 6 · The method of making a microlens as described in item 43 of the scope of the patent application, which further includes repeating the microfluid laying step and continuously stacking to increase the thickness of the final lens object on the medium substrate; The value of the superimposed layer is an integer m, which means that the height of the superimposed layer is approximately m (m-2). 4 7 · The manufacturing method of microlenses as described in item 42 of the scope of patent application, wherein the staggered arrangement is completed by dividing time into two and matching the position with two areas, and further includes the following steps: Starting point, the first time injection is performed. Pi is twice the pitch p value in the X direction as the injection pitch, and half the pitch p value in the Y direction is the injection pitch. An area of microfluidic pattern is laid out; and a second starting point is defined, and the second time injection is performed, with Pi twice the pitch p value as the injection interval in the X direction and a half interval in the γ direction. The P value is the jetting pitch, staggered to complete the microfluidic pattern layout in the first area; among them, all jetting fluids in the same Y direction are naturally superimposed into a whole to obtain a long round mirror. Column; wherein, the second starting point is shifted in the X direction relative to the position of the first starting point by P 〇 48. The method of making a microlens as described in item 47 of the patent application scope, wherein the staggered arrangement is divided by time Divide 2L times and match position 2 L region to complete; where L equals 2, 3, 4, or an integer. 0338-10214TWF( N1); P08920036; j amngwo. p t d 第 42 頁 1224210 六、申請專利範圍 49 ·如申請專利範圍第47項所述之微透鏡之製作方 法’其中該交錯佈著方式以時間劃分為I次並配合位置劃 分I區域來完成;其中,1等於3、5、6或整數。 50·如申請專利範圍第47項所述之微透鏡夂製作方 法’其中Y方向以整數m分之一間距p值為喷注間距,重複 進行該微流體佈著步驟,持續堆疊以增加最終透鏡物件在 邊媒介基底上的厚度;其中,2。 51· —種微透鏡之製造裝置,包括: 一微流體贺注單元,以進行微透鏡材料之喷注; 一喷注控制單元,用來控制該喷注單元進行微流體之4 喷注產生; 押—一運動平台,包括一媒介基底座,協同該微流體噴注 單元運動,以進行微流體之交錯佈著; 、 一驅動控制單元,用來連繫控制該運動平台之運動 標位置;以及 一電腦控制單元,用來聯繫該喷注控制單元以及爷 動控制單元。 w 5 2 ·如申請專利範圍第5 1項所述之一種微透鏡之制、生 裝置,更包括: 一脈波計時單元; 一第一光源; 一閃頻式光源控制,用來控制該第一光源; 一第一攝影機,協同該電腦控制單元聯^該閃 源控制驅使該脈波計時單元以及該噴注單元,用來护 “ τ間協0338-10214TWF (N1); P08920036; j amngwo. Ptd Page 42 1224210 VI. Application for patent scope 49 · Method of making microlenses as described in Item 47 of the scope of patent application 'where the interlaced arrangement is divided into This is done once and divided into I regions with the location; where 1 is equal to 3, 5, 6, or an integer. 50. The micro lens 微 manufacturing method described in item 47 of the scope of the patent application 'where the Y direction is an integer m-pitch p value is the injection pitch, repeat the microfluid deployment step, and continue stacking to increase the final lens The thickness of the object on the edge media substrate; where 2. 51 · A microlens manufacturing device comprising: a microfluid injection unit for injecting microlens material; an injection control unit for controlling the injection of microfluid by the injection unit;押 —a motion platform, including a media-based base, which cooperates with the microfluid injection unit to move the microfluids staggered; and a drive control unit for controlling the position of the motion target of the motion platform; and A computer control unit is used to contact the injection control unit and the motion control unit. w 5 2 · A microlens manufacturing and producing device as described in item 51 of the scope of patent application, further comprising: a pulse wave timing unit; a first light source; a flashing light source control for controlling the first A light source; a first camera, in cooperation with the computer control unit ^ the flash source control drives the pulse timing unit and the injection unit to protect 0338-10214TWF(N1);P08920036;j amngwo.pt d 第43頁 1224210 六、申請專利範圍 調一致地觀看任一時刻的微流體; 一第二光源; 一 ί::制二元,用來控制該第二光源;以及 示攝^/機’透過該签一出 光源,來檢看微透鏡結果。一 λ、控制單元開啟該第二 53 · —種微透鏡之製作方法,適用於之 微透鏡光柵片,包括下列步驟·· 、衣作立體&像之 提供一媒介物件,具有一第一面 將彩色喷墨滴喷印於兮财人心 弟一面, -彩色平面圖像,· 亥媒,,物件的該第-面,以形成 利用一加熱單元加速乾 色平面圖像,·以及 钇各忒杉色千面圖像以定住該彩 將微透鏡流體材料嘖彡主 產生-微透鏡陣列;该媒,件的該第二面,以 色平面圖像及該微透鏡陣 ^及5亥弟二面分別印有該彩 像之光栅片。 ^列的«介物件即為具有立體影 54· —種微透鏡之製造 ^ 邙方彳制你fr胂旦> 你 我置’適用於以微流體佈著噴 庄方式衣作立體景Μ象之微_ 者育 一組進給滾輪,用以將猫h I秸 傳入; 、預疋之一媒介物件往前進方向 一彩色喷墨印表頭單分 媒介物件,以形成一彩色平而用以將彩色喷墨滴喷印於該 「圖像, 一加熱單元,用以加讳私 ^ 像; 速乾燥該彩色平面圖像來定住影 I ΙΙΒϋ 0338-10214TWF (Ν1); Ρ08920036; j amngwo. p t d 第44頁 1224210 六、申請專利範圍 一反轉滾輪,用以將印有圖像之該媒介物件反轉朝 下;以及 一微透鏡喷注單元,用以將微透鏡流體材料喷注於該 媒介物件反面,產生一微透鏡陣列。0338-10214TWF (N1); P08920036; j amngwo.pt d p. 43 1224210 VI. The scope of the patent application can be used to view the microfluid at any time; a second light source; a d :: binary system for controlling The second light source; and the camera / camera 'inspecting the microlens result through the checked out light source. A λ, the control unit turns on the second 53. A method for making a microlens, which is suitable for a microlens grating, including the following steps. A three-dimensional image is provided to provide a media object with a first surface. Color inkjet droplets are printed on the side of the rich man's heart,-a color plane image, · a medium, the first side of the object to form a dry color plane image accelerated by a heating unit, and yttrium. The cedar image is used to hold the color micro-lens fluid material to produce a micro-lens array; the medium, the second side of the piece, a color plane image and the micro-lens array Rasters of the color image are printed on the surfaces, respectively. ^ Column «Medium object is a stereoscopic lens 54 · ——manufacturing of a kind of micro lens ^ 彳 方 胂 制 你 fr & 丹 > You and Me Set'Suitable for the use of micro-fluid cloth spraying clothes for three-dimensional scenes M The micro _ bred a set of feed rollers, used to introduce the cat h I straw; one of the media objects in the forward direction a color inkjet print head to separate the media objects to form a color flat and use A color inkjet droplet is printed on the "image, a heating unit for adding a private image; the color flat image is quickly dried to hold the image I ΙΙΒϋ 0338-10214TWF (N1); 0890896; j amngwo. ptd page 44 1224210 VI. Patent application scope-an inversion roller for inverting the media object printed with the image downward; and a microlens injection unit for injecting microlens fluid material into the The opposite side of the media object creates a microlens array. 0338- 10214TW(N1) ;P08920036; j amngwo .ptd 第45頁0338- 10214TW (N1); P08920036; j amngwo.ptd p. 45
TW92118965A 2003-07-11 2003-07-11 Method for fabricating a micro-lens array and fabrication apparatus for the same TWI224210B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92118965A TWI224210B (en) 2003-07-11 2003-07-11 Method for fabricating a micro-lens array and fabrication apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92118965A TWI224210B (en) 2003-07-11 2003-07-11 Method for fabricating a micro-lens array and fabrication apparatus for the same

Publications (2)

Publication Number Publication Date
TWI224210B true TWI224210B (en) 2004-11-21
TW200502583A TW200502583A (en) 2005-01-16

Family

ID=34568424

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92118965A TWI224210B (en) 2003-07-11 2003-07-11 Method for fabricating a micro-lens array and fabrication apparatus for the same

Country Status (1)

Country Link
TW (1) TWI224210B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI413585B (en) * 2010-10-13 2013-11-01 Univ Nat Kaohsiung Applied Sci Method of manufacturing microelements using inkjet technology
TWI829458B (en) * 2022-12-08 2024-01-11 友達光電股份有限公司 Microlens structure, manufaturing method thereof and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI413585B (en) * 2010-10-13 2013-11-01 Univ Nat Kaohsiung Applied Sci Method of manufacturing microelements using inkjet technology
TWI829458B (en) * 2022-12-08 2024-01-11 友達光電股份有限公司 Microlens structure, manufaturing method thereof and display device

Also Published As

Publication number Publication date
TW200502583A (en) 2005-01-16

Similar Documents

Publication Publication Date Title
CN101573659A (en) Method for expelling gas positioned between a substrate and a mold
TWI244973B (en) Micro lens and making method thereof, optical device, optical transmitting device, head for laser printer and laser printer
WO2017104610A1 (en) Porous film, method for manufacturing porous film, microlens array, microreactor, and bio-device
JPWO2012164824A1 (en) Fine structure manufacturing method and fine structure mold
TWI289683B (en) Method for fabricating microlens arrays
KR20210109452A (en) Exposure apparatus for uniform light intensity and methods of using the same
US11443940B2 (en) Apparatus for uniform light intensity and methods of using the same
Luo et al. Rapid fabrication of curved microlens array using the 3D printing mold
US11107678B2 (en) Wafer process, apparatus and method of manufacturing an article
US10754078B2 (en) Light source, a shaping system using the light source and an article manufacturing method
TWI224210B (en) Method for fabricating a micro-lens array and fabrication apparatus for the same
US20060134562A1 (en) Method of forming micro-pattern
Olivieri et al. Fabrication of polymer lenses and microlens array for lab-on-a-chip devices
TWI817064B (en) Planarization apparatus, planarization method, and method of manufacturing an article
KR102547578B1 (en) System and method for illuminating edges of an imprint field with a gradient dosage
CN1265212C (en) Manufacturing method and device for microlens
KR101769749B1 (en) Manufacturing method of double-sided pattern with horizontally controlled-refractive index and double-sided pattern thereby
Huang et al. Organic selective-area patterning method for microlens array fabrication
EP4165470A1 (en) Surface treatment for replication
WO2013094710A1 (en) Method for manufacturing optical member
TWI748051B (en) Optical layers and imprint lithography method of configuring optical layers
CN111399092B (en) Preparation method of micro-lens array structure and protective film
KR101846236B1 (en) Manufacturing method of double-sided pattern and Transfer tape using double-sided pattern thereby
KR102628261B1 (en) Methods for making efficiency-improved meta-surface using nanoimprint lithography
JP2006035394A (en) Manufacturing method for die for forming micro lens