TWI220875B - Stage equipment for precision processing - Google Patents

Stage equipment for precision processing Download PDF

Info

Publication number
TWI220875B
TWI220875B TW92124873A TW92124873A TWI220875B TW I220875 B TWI220875 B TW I220875B TW 92124873 A TW92124873 A TW 92124873A TW 92124873 A TW92124873 A TW 92124873A TW I220875 B TWI220875 B TW I220875B
Authority
TW
Taiwan
Prior art keywords
table body
aforementioned
movable table
coil
electromagnetic
Prior art date
Application number
TW92124873A
Other languages
Chinese (zh)
Other versions
TW200510108A (en
Inventor
Yoshio Kano
Junichi Onozaki
Original Assignee
Tamura Seisakusho Kk
Japan Science & Tech Corp
Yoshio Kano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002065069A external-priority patent/JP4139608B2/en
Priority claimed from JP2002071994A external-priority patent/JP4139612B2/en
Application filed by Tamura Seisakusho Kk, Japan Science & Tech Corp, Yoshio Kano filed Critical Tamura Seisakusho Kk
Application granted granted Critical
Publication of TWI220875B publication Critical patent/TWI220875B/en
Publication of TW200510108A publication Critical patent/TW200510108A/en

Links

Abstract

A movable table, which supports the processed articles, allows the movement towards any direction in a plane caused by a table-holding mechanism. In addition said movable table offers a transport in said plane by means of an electromagnetic driving means. In addition, said movable table is stopped at any position in said plane by means of an electromagnetic braking mechanism. In said electromagnetic driving means, the transport of said movable table is occurred by means of a mutually magnetic interaction between the driven magnet and the driving coil. Said electromagnetic braking mechanism includes a braking magnet and a non-magnetic, conductive braking plate. In the combination of said braking magnet and said braking plate, the braking force is occurred based on the magnetic action between the magnetic force of said braking magnet and the magnetic force caused by the eddy current occurred in the braking plate accompanied with the movement of the movable table.

Description

1220875 玖、發明說明: 【發明所屬之技術領域】 本發明係有關於一種精密加工用座台裝置,特別是有 關於一種在1C或LSI等半導體生產程序中之精密加工、 配線工作或是其檢查等所使用的精密加工用座台裝置。 【先前技術】 過去,在半導體產業等之中,在1C或LSI等生產程序 中用以將被加工物配設、維持在精密加工或是檢查等位置 上,較多係使用具備有可精密移動之可動桌體的加工用座修 台裝置.。 在此種情況下,用以始可動桌體精密移動至X-Y面上 之任意位置中,通常較多係具備有如下述之雙重重疊構造 的移動體維持機構的方向,其係爲,首先以X方向移動 機構而將可動桌體整體於X方向上移動,其次(或是同 時),將該可動桌體以及X方向移動機構之整體藉由Y方 向移動機構而在Y方向上移動。 此外,此種加工用座台裝置係爲,當進行將可動桌體鲁 朝向X方向以及Y方向之移動控制之際,較多係已裝備 有可藉由較低的速度進行驅動、且機械性的致動機構者。 然而,前述習知技術裝置係爲,在移動可動桌體之際, 如前所述,爲具備有將朝x方向移動之x方向移動機構 與朝Y方向移動之γ方向移動機構進行交叉的雙重構造 之移動體維持機構,特別是在需要精密之抵接移動部分爲 具備有滑動接合構造,因此,在加工上係較費工,或是在 6 1220875 組裝時之精密調整方面亦需要較爲熟練的不佳情況。因 此,造成生產性惡化,多數則造成裝置整體形成爲價格較 高之物。 再者,在將有關於該桌體移動之系統的自動化時,在 前述雙重構造之驅動機構之連結以及位置感測器之裝備等 係佔有較多的空間,而具有裝置全體爲大型化的不佳情 況。 此外,前述習知例之裝置係爲,較多爲在可動桌體上 倂設有恢復原始位置用之回復彈簧。在此情況下,在停止 可動桌體之際,起因於附加至該可動桌體之加速或是減速 的驅動力而在該可動桌體上容易於停止位置處產生往復微 小動作。因此,造成爲不可或缺在停止可動桌體時爲利用 摩擦的機械性的控制裝置。 另一方面,此種機械性的摩擦致動係容易在作動時產 生微小振動,因此,在微米單位之精密移動方面係造成停 止時之動作的不穩定。此外,藉由該機械性的致動機構之 倂設而將裝置整體進行大型化,經常爲伴隨於可搬動性之 惡化、在保守性亦爲惡化的不佳情況。 本發明之目的係爲提供一種精密加工用座台裝置,爲 具備有在同一面上圓滑地使精密加工用之可動桌體精密移 動在指定方向上的機能,同時,可大幅改善組裝作業以及 裝置整體的小型輕量化,再者,可有效地抑制可動桌體停 止時之往復動作或微小振動等,藉此,獲得形成爲更加迅 速、且圓滑的該可動桌體之精密移動。 7 1220875 【發明內容】 爲了達成上述目的,有關本發明之精密加工 置係採用如下所述之構造。 具有:可動桌體,係被組裝至本體部,且支 物;桌體維持機構,係被組裝置前述本體部,且 述可動桌體朝同一面內之任意方向來移動;電 置’係被組裝置前述本體部,爲賦予在前述可動 行前述同一面內的傳送;電磁致動機構,係爲產 前述可動桌體停止在前述同一面內之任意位置 力; 前述電磁驅動裝置係爲,具有多數之被驅動 及用以藉由通電方向而產生作用於前述被驅動磁 的驅動線圈,藉由前述被驅動磁鐵與前述驅動線 互磁性作用,而產生前述可動桌體之傳送; 前述被驅動磁鐵與前述驅動線圈之內,係被 方爲被固定在一定位置,而另一方則可在前述可 體性移動狀; 前述電磁致動機構係包含有相互面對且與前 體之動作爲同步、而相對性進行移動的致動用磁 非磁性與導電性之致動平板; 前述致動用磁鐵與前述致動平板之內’係被 方爲被固定在一定位置,而另一方則設置成可與 桌體之動作爲同步移動,該致動用磁鐵與該致動 間的組合,係採用產生有致動力之構造’該致動 用座台裝 撐被加工 容許將前 磁驅動裝 桌體中進 生用以使 上的致動 磁鐵、以 鐵之磁力 圈間之相 設置成一 動桌體一 述可動桌 鐵,以及 設置成一 前述可動 用平板之 力係爲基 8 1220875 於伴隨於前述可動桌體之移動而藉由在該致動平板中所產 生之渦電流所造成的磁力與該致動用磁鐵之磁力間之相互 磁性作用。 若藉由本發明時,在作動前述電磁驅動裝置後,首先, 爲在該電磁驅動裝置之驅動線圈與被驅動磁鐵之間產生相 互磁性作用,藉由該相互磁性作用而可將朝向指定方向之 傳送賦予至前述可動桌體。在此情況下,可動桌體係藉由 前述桌體維持機構而容許在同一面內的移動,因此,將不 至上下作動而於指定方向圓滑的移動。特別是,當前述可鲁 動桌體係使恢復原始位置之力賦予至該可動桌體的情況 下,係爲被移動至取得該恢復原始位置之力與電磁驅動裝 置之磁力間之平衡的位置(亦即,指定之移動停止位置)。 在此,前述可動桌體係爲,在進行移動之際,係以藉 由電磁驅動裝置、或是藉由賦予至可動桌體之恢復原始位 置之力來急速加速的情況爲佔多數。當前述可動桌體之移 動範圍例如爲微米單位的情況下,係形成爲在維持前述急 速加速的情況下而被急速減速、停止。從而,當在始可動鲁 桌體停止之際,將由於前述可動桌體之慣性力與前述桌體 維持機構之恢復原始位置之力,而容易在可動桌體之停止 時產生微小地往復動作。 在本發明中,當將前述可動桌體急速移動之後,前述 電磁致動機構之致動用磁鐵與非磁性以及導電性之致動zp 板,係與前述可動桌體之移動同步、且成相對性的變位。 並且,前述電磁致動機構係爲,在前述致動平板上產生與 9 1220875 前述可動桌體之移動速度成比例大小的渦電流,基於產生 在該致動平板上之渦電流所造成之磁力以及前述致動用磁 鐵之磁力間之相互磁性作用而產生致動力。承受該電磁致 動機構之致動力,而使前述可動桌體之微小往復動作在短 時間內被聚合。 從而,縮短用以使前述可動桌體停止在所期望之位置 的停止時間,甚至是縮短用以使前述可動桌體在同一面內 移動所需要之整體的時間,而可提升作業效率。 在本發明中,前述電磁致動機構係可爲將致動施加至鲁 前述可動桌體之機構、或是可將致動施加至前述可動桌體 以及前述桌體維持機構之機構。 從而,藉由前述電磁致動機構而將致動力施加至前述 可動桌體,係可如上所述的縮短可動桌體之致動時間。再 者,藉由電磁致動機構而將致動力施加至前述可動桌體以 及前述電磁致動機構之雙方,而可更加縮短可動桌體之驅 動時間。 此外,在本發明中,前述電磁致動機構係爲一種包含· 如下所述之簡單的構造,即,包含有相互面對且與前述可 動桌體之動作爲同步、並相對性進行移動的致動用磁鐵, 以及非磁性與導電性之致動平板。 從而,係可將裝置整體小型化以及輕量化。因此,無 須使前述可動桌體之慣性力增加,亦不至阻礙前述可動桌 體之之動作。此外,即使在進行組裝作業之際,亦無須特 別的熟練,因此,在作業性方面亦形成爲良好狀,在該種 10 1220875 特點之中,相較於習知之具備有雙重構造的移動機構之 物,係可將生產性大幅度的提高。 此外,電磁致動機構之致動用磁鐵係爲,亦可使用構 成前述電磁驅動裝置之被驅動磁鐵,或是形成爲與前述被 驅動磁鐵爲另件狀。 從而,在將前述電磁致動機構之致動用磁鐵由前述被 驅動磁鐵所形成的情況下,前述致動用平板係爲,將匝連 以前述電磁驅動裝置之驅動線圈所形成之磁通量的部分爲 進行與線圈同等之機能,因此,構成與變壓器之二次側電鲁 路爲同等的電路,同時,該二次側電路係經由致動用平板 之電氣電阻成分(產生渦電流損)而構成爲經常短路的型 態。 因此,在構成此種情況之二次電路的致動平板方面, 係有渦電流流動,抵消驅動電流所作成之磁通量,將毫無 變形地產生僅由原始之驅動磁鐵的磁通量所形成之驅動 力。此外,致動平板係產生與發聲圈馬達(voice coil motor )之短環(short-link )爲相同的效果,且縮小觀測® 由電源所見之一次電路之阻抗,相較於二次側電路在解除 狀態之情況下(未有致動平板的情況),係可無相位延遲 地以較大的電流來進行通電。從而,在與被驅動磁鐵之間, 相較於未存在有該致動用平板的情況下,係可無相位延遲 地進行較大電磁力的輸出。 此外’前述致動用平板係爲,即使作爲加熱板亦有其 機能,在該種特點中,係可有效地抑制伴隨於驅動線圈之 11 1220875 連續運轉所產生之高溫下的電阻增加與通電電流之降低 (亦即,電磁驅動力之降低),且可將通電電流設定成長 時間爲略成一定位準狀。因此,以由電磁驅動裝置所輸出 之磁力而可藉由穩定的狀態而維持對於驅動力之來自外部 的電流控制,爲可有效地抑制老化變化(因熱所造成之絕 緣破壞)。因此,可提升裝置整體之耐久性、甚至是裝置 整體之信賴性。 此外,前述電磁致動機構係爲,較期望爲以設置在前 述可動桌體之中央部者爲佳。倘若藉此,係可藉由電磁致 動機構而將致動力毫無偏移狀、且均勻的施加至可動桌體 上,形成可將停止可動桌體時之往復動作抑制在短時間 內。 此外,前述電磁致動機構之致動用平板係爲,亦可形 成爲對於多數之致動用磁鐵爲設爲單一的平板。藉此,係 可縮短致動用平板之組裝中所需要的時間,而可提升組裝 作業之效率性。 此外,前述可動桌體係經由與該可動桌體成平行、且 成一體狀連結的輔助桌體,或是亦可直接的維持在前述桌 體維持機構的構造。 如此,係可將可種桌體藉由桌體維持機構來適當的選 擇所維持的關係,利用可動桌體或輔助桌體,係爲組裝有 可有效的發揮電磁致動機構之致動力的態樣。 此外,前述桌體維持機構係藉由下述構件所構成,即: 至少三根的一方之棒狀彈性構件,係在前述可動桌體之周 12 1220875 端部的同一圓周上隔有指定間隔,並且一端部係爲植設於 該可動桌體上;至少三根的另一方之棒狀彈性構件,爲對 應於前述一方之各個棒狀彈性構件,並且在該各個棒狀彈 性構件之外側上,爲於相同圓周上隔有指定間隔、且配置 成平行狀,而一端部係爲維持在前述本體部上而爲相同長 度;中繼構件,係將前述一方與另一方之各個棒狀彈性構 件之另一端部維持成平行狀態,同時維持成一體狀。 前述桌體維持機構之三組的各個棒狀彈性構件,係可 採用藉由以分別爲相同強度、相同長度之鋼琴線等棒狀彈鲁 性構件所構成的態樣。 如此,藉由將桌體維持機構作爲連結機構,而不至使 可動桌體在同一面內上下作動,即使在以微米單位來移動 時,亦可正確的使可動桌體移動。 如以上所述,當將前述桌體維持機構作爲連結機構來 構成的情況下,在前述電磁致動機構之前述致動用磁鐵與 前述致動平板間之內,爲期望一方係被設置成與前述可動 桌體成一體性的移動、另一方則被設置在前述本體部上。鲁 此外’前述電磁致動機構之前述致動用磁鐵與前述致 動平板間之內,一方係被設置成與前述可動桌體成一體性 的移動、另一方則被設置在前述本體部上,再者,在前述 電磁致動機構之前述致動用磁鐵與前述致動平板間之內, 亦可將一方設置成與前述中繼構件成一體性的移動、另一 方則被設置在前述本體部上。 如此,藉由將前述電磁致動機構適當的設置在可動桌 13 1220875 體、桌體維持機構之中繼構件上,而可有效地將電磁致動 機構之致動力施加至可動桌體上。 此外,前述電磁致動機構之前述致動用磁鐵係由前述 被驅動磁鐵所形成,或是可藉由與前述被驅動磁鐵成另件 所構成。藉此,係可適當的選擇前述電磁致動機構之設置 位置,而可將電磁致動機構設置在可藉由電磁致動機構來 有效的發揮致動力的位置。 此外,前述電磁致動機構之前述致動用磁鐵係可由永 久磁鐵或是電磁鐵之任一方所形成。藉此,係可將電磁驅春 動珠帳之被驅動磁鐵的構造進行各種變更。再者,將前述 被驅動磁鐵藉由電磁鐵來形成,而可使可動桌體之驅動控 制進行各種變化。例如,在可動桌體之移動時之加速/減 速之際,係爲驅動控制驅動線圈與前述電磁鐵之雙方而可 使可動桌體移動,爲可迅速地變化可動桌體之移動方向。 此外,前述桌體維持機構亦可爲具備有使前述可動桌 體恢復成原始位置的恢復原始位置之力。藉此,相較於以 與桌體維持機構成另件方式設置恢復原始位置機構的情況· 下,係可將裝置之構造簡潔化。 此外,前述被驅動磁鐵較期望者係爲,將通過設定在 移動前述可動桌體之面內之原點的一條軸線作爲基準,而 分別配置在圓周方向等分所形成之多數的軸線上。在此種 情況下,前述多數之軸線係設定成作爲通過、正交於移動 前述可動桌體之面內所設定之原點的多數軸線。或者是, 前述多數軸線係被設定爲,將設定在移動前述可動桌體之 14 1220875 面內的原點作爲中心、而朝向放射方向的多條軸線。 此外,前述可動桌體爲藉由前述桌體維持機構而恢復 的原始位置係爲,較佳爲設定成與形成設定在移動前述可 動桌體之面內的軸線基點的原點成一致狀。 藉此,以前述桌體維持機構所達成之前述可動桌體之 恢復位置、以及形成爲用以移動前述可動桌體之起點的位 置爲一致狀,而可使該可動桌體正確的定位、移動。 此外,形成前述電磁驅動裝置之多數的被驅動磁鐵係 爲,以與由前述原點爲等距離之位置而配置在前述各個軸馨 線上,形成前述電磁驅動裝置之多數的驅動線圈係爲,較 期望爲以配置成對應於前述多數之被驅動磁鐵。 從而,爲了將形成電磁驅動裝置之被驅動磁鐵以及驅 動線圈配置在軸線上,係可排除多餘的旋轉力施加至可動 桌體上,爲可進行可動桌體之正確的位置控制。藉由將配 置在前述軸線上之多數的被驅動磁鐵以線對稱之位置關係 來進行配置,係可確實的排除造成妨礙可動桌體之移動的 力量。 · 另外,電磁致動機構係以配置在前述軸線上者爲佳, 不過,亦可爲前述被驅動磁鐵與前述驅動線圈間之組合爲 配置成對於前述軸線爲偏移之位置。即使是將前述被驅動 磁鐵與前述驅動線圈間之組合的設置位置自由地進行變更 之情況下,使用電磁致動機構之致動力而亦可使可動桌體 停止在指定之位置上,而可提供一種極富泛用性之座台裝 置。 15 1220875 此外,前述電磁驅動裝置之被驅動磁鐵係藉由永久磁 鐵所形成’或者是亦可藉由電磁鐵來形成。 藉由將電磁驅動裝置以永久磁鐵來形成,係形成爲無 須如電磁鐵般的通電電路,而由於該部分,係可迴避在組 裝時以及維修時的作業繁雜性。 當前述電磁驅動裝置之被驅動磁鐵爲藉由電磁鐵所形 成的情況下,爲使對於該被驅動磁鐵之通電與對於前述驅 動線圈之通電爲同步,而選擇性的控制成順向或是逆向。 藉此,係可在可動桌體之驅動控制中具有各種地變化。此 外’分別控制對於多數之驅動線圈的通電,可將藉由電磁 力而賦予至可動桌體之傳送的程度進行自由的變更。 此外,則述驅動線圈係具有線圈片,該線圈片係用以 產生作用於前述被驅動磁鐵之磁力的磁力。在此情況下, 前述驅動線圈之線圈邊係形成爲十字狀或是直線狀之形 狀,或者係期望爲被配置成沿著配置前述被驅動磁鐵之前 述軸線的姿勢。藉此,係可在驅動線圈之線圈邊與被驅動 磁鐵之間確實地產生相互磁性作用。此外,藉由將前述線 圈邊形成爲選擇十字狀或是直線狀,而可任意地選擇在與 被驅動磁鐵之間所產生的相互磁性作用之方向性,爲可將 各種的變化賦予至可動桌體之作動。 此外,前述驅動線圈係可爲不同尺寸、且由配置在內 外之多數線圈所形成。藉此,係可成倍數增加產生在驅動 線圈與被驅動磁鐵間的相互磁力,使可動桌體之傳送力提 昇,而可成倍數增加藉由可動桌體所達成之可搬送力。 16 1220875 在此種情況下’前述驅動線圈之直線狀線圈邊係期望 爲以沿著已配置有前述驅動磁鐵之前述軸線、或是以橫切 姿勢來配置。藉此,爲任意地選擇產生在驅動線圈與被驅 動磁鐵間之相互磁性作用,而可使對於可動桌體之驅動力 進行各種變化。 此外,前述驅動線圈係爲,將獨立且組合被通電之多 數的小線圈所形成,係爲可將前述十字狀或是直線狀之線 圈邊形成在該各個小線圈之突接部上。藉此,係爲可容易 地將線圈邊形成在驅動線圈上。 在此種情況下,前述小線圈係形成爲角形形狀,特別 是較期望爲以四角形、三角形、五角形、或是扇形之任一 種形狀。此外,驅動線圈之角形形狀係爲,由用以容易地 形成線圈邊的裝置來判斷,並非被限制在四角形、三角形、 五角形、或是扇形形狀。 此外,前述驅動線圈之外形尺寸係期望爲設定成大於 前述被驅動磁鐵的外型尺寸。藉此,係可將產生在多數之 驅動線圈與被驅動磁鐵之間的電磁驅動力,經常地產生在 由可動桌體之起始位置至朝向外側的方向,而該等電磁驅 動力之合力亦可一定的產生在由可動桌體之起始位置而朝 向於外側的方向。 此外,前述電磁驅動裝置係具備有動作控制系統’係 爲控制對於前述驅動線圈之通電,而使前述可動桌體進行 直線移動、或是直線移動以及旋轉移動之裝置。藉此’係 可在可動桌體之動作上具有變化。 17 1220875 此外,前述動作控制系統係可構成爲包 動控制裝置,爲將IU述電磁驅動裝置之驅動 馬達而進行通電控制;程式記憶部,係記憶 定前述控動桌體之移動方向、旋轉方向、以 的多數之控制程式;資料記憶部,係記億有 個控制程式之實施時所使用的指定之座標資 令輸入部,係在前述線圈驅動控制裝置中, 述驅動線圈之指定的控制動作之指令。 在此情況下,前述動作控制系統之控制 下:第一至第四控制模式,爲將前述正交之 爲原點,而用以使前述可動桌體移動至各軸 第五至第八控制模式,係用以使前述可動桌 前述正交之二軸所區隔的各個象限內之方向 之各個控制模式,係在藉由前述正交之二 內,用以使前述可動桌體旋轉於順時針方向 向。 在前述構造中,爲基於來自動作指令輸 作動線圈驅動控制裝置,由程式記憶部以及 出異動方向端之資訊以及一動用之指定的 時,基於此,爲驅動控制前述之電磁驅動裝置 藉此而使可動桌體於指定之方向移動。 從而,預先記憶驅動線圈之控制模式 驅動線圈進行驅動控制,且可迅速的對應於 輸入部之指令。 含有:線圈驅 線圈依據控制 有用以特別指 及其動作量等 在實施前述各 料等;動作指 進行有對於前 碼係構成爲如肇 二軸的交點作 的正負方向; 體移動至藉由 ;第九至第十 軸所形成的面 或是逆時針方 入部之指令而_ 資料記憶部取 控制模式,同 之驅動線圈, 基於此而可將 來自動作指令 18 1220875 此外,前述動作控制系統係可構成爲,加上如上述;^ 構造,而可倂設有:多數之位置檢測感測器,爲檢測、輸 出至外部的前述可動桌體之移動資訊;位置資訊演算電 路,爲基於以前述位置檢測感測器所檢測而出之資訊來進 行指定的運算,特別指定前述可動桌體之移動方向以及其 變化量,且作爲位置資訊而進行外部輸出。 從而,可在即時的將可動桌體之移動資訊以及移動後 之位置資訊輸出至外部,而可動桌體之移動方向或是移動 後之位置偏移等,操作員(operator )係可由外部容易的魯 掌握、獲得。 因此,係可以高精度且迅速地進行可動桌體之移動作 此外,前述電磁驅動裝置係亦可採用具備有如下述之 動作控制系統的構造,即,係個別的控制因應於來自外部 之指令所作動之該電磁驅動裝置所具有的驅動線圈與被驅 動磁鐵,而使前述可動桌體移動至指定之移動方向。 藉此,朝向於可動桌體之移動方向,係可選擇、作動® 有效地且功能性的一或二以上的被驅動磁鐵,而可使可動 桌體確實的移動至指定之方向。 前述動作控制系統係可構成具有:通電方向設定機能, 爲將對於前述驅動線圈之通電方向設定、維持在一方之方 向上;線圈通電控制機能,係可變更設定對於前述驅動線 圈之通電方向的大小;磁極可變設定機能,爲因應對於前 述驅動線圈之通電方向來進行作動,且將對於前述各個驅 19 1220875 動磁鐵的磁極爲成個別的設定、維持·,磁力強度設定機能, 係將前述各個被驅動磁鐵之磁力強度因應於來自外部的指 令’而可個別地進行變更設定;桌體動作控制機能,爲使 該等各個機能適度地進行作動,而對於可動桌體來進行移 送方向以及移送力的調整。 藉此,係可具體且確實的將可動桌體於指定之方向上 進行移動控制。 【實施方式】 以下,基於所附圖面說明本發明之實施例。 〔第一實施例〕 將本發明之第一實施例揭示於第1圖至第1 8圖。在第 1圖至第1 8圖中,符號1係表示可動桌體,符號2係表 示桌體維持機構。該桌體維持機構2係如第1圖所示,係 被配設在外殻本體(本體部)3之下方部分。該桌體維持 機構2係被構成爲容許使前述可動桌體1在同一面內朝任 意方向移動、同時在已將恢復原始位置之力施加至該可動 桌體1之狀態下來維持該可動桌體1。 此種桌體維持機構2係藉由作爲本體部之外殼本體來 支撐。 有關本實施例之外殼本體3係如第1圖所示,係形成 爲使上方以及下方開放的箱體狀。 符號4係表示電磁驅動裝置。該電磁驅動裝置4係爲, 使其主要部被維持在外殼本體3側上,具備有將移動力(傳 送)賦予至前述可動桌體1的機能。符號3A所示係爲被 20 1220875 突設於外殼本體3之內壁部周圍之內側方向的本體側突出 部。 有關本實施例之電磁驅動裝置4係爲被配設在可動桌 體1與後述之輔助桌體5之間。 輔助桌體5係爲,由磁性材料所形成,對向於前述可 動桌體1、且隔有指定間隔,並且成平行狀地連結裝設在 該可動桌體1上。並且,前述桌體維持機構2係被裝設在 該輔助桌體5側,且被構成爲經由該輔助桌體5而維持可 動桌體1。 籲 前述電磁驅動裝置4爲具備有:四個正方形形狀之被 驅動磁鐵6,爲被固定裝設在輔助桌體5之指定位置;田 字形驅動線圈7,爲具有對向於該各個被驅動磁鐵6而配 置成十字狀線圈邊,並且與該各個被驅動磁鐵6進行協 動,而賦予有在前述可動桌體1上沿著指定移動方向的磁 力所達成的指定之移動力(傳送);固定平板8,爲將該 田字形驅動線圈7維持在一定位置的同時,且被裝設在前 述輔助桌體5之可動桌體1側。該固定平板8,係由磁性® 構件所形成。此外,驅動線圈7係爲,爲了強調捲繞端部 之形狀而在圖所表示出如同閉合電路狀,不過,此種驅動 線圈7係爲一種捲繞成螺旋狀、且在兩端具備有通電用之 兩個端子,而形成爲藉由通電來產生磁力的構造。此種驅 動線圈之圖示方法即使在以下說明之各個實施例中均爲相 同。 再者,前述多數之田字形驅動線圈7係爲,在與前述 21 1220875 被驅動磁鐵6對面之端面側上分別具備有由非磁性金屬構 件(例如,電氣電阻較少之銅製構件)致動用平板9,該 致動用平板9係接近於對面之被驅動磁鐵6之磁極面。該 種致動用平板9係被固著在前述固定平板8側。 以下,將其進行更加詳細的說明。 《可動桌體與輔助桌體》 在第1圖至第4圖中,係使可動桌體1形成爲圓形形 狀,而輔助桌體5則被形成四角形狀。該種輔助桌體5係 對向於可動桌體1、並且隔有指定間隔而被配置成平行狀, 經由其中心部之連結支柱1 〇而以一體性的連結至前述可 動桌體1。因此,該可動桌體1係獲得與輔助桌體5維持 平行狀態、一體性的移動,並且形成爲一體性旋轉狀。 連結支柱1 〇係爲,在連結如前所述之可動桌體1與輔 助桌體5的連結構件中,所形成之斷面工字狀係在兩端部 上具備有鍔部1 〇A、1 0B,在其兩端部外側中央上,係設 有突起10a、10b,該突起10a、10b係卡合至被形成在可 動桌體1與輔助桌體5間之各個中心部上的定位孔1 A、 5A。 可動桌體1與輔助桌體5,係藉由突起l〇a、10b與鍔 部10A、1 0B來定位,且一體化的被固著在該連結支柱1〇 上。在將其一體化之際,於本實施例中雖爲採用接著劑, 不過,亦可藉由熔接來部分性的接合,或是將突起1 〇a、 1 〇b部分壓入至定位孔1 A、5 A、而其他部分則是藉由接 著劑或是熔接等來進行一體化。此外,亦可將可動桌體1 22 1220875 或是輔助桌體5之任何一方藉由螺絲固定,而成裝卸自如 狀地固著在前述連結支柱1〇之鍔部10A或是10B。在此 種情況下’在鎖緊螺絲後,亦可將多根頂出銷(kn0Ck pin ) 作爲定位固定用來卡合、以釘入在兩者之間(未圖示)。 如此’係可確實的將可動桌體i與輔助桌體5進行一體化。 《桌體維持機構》 有關本實施例之桌體維持機構2係爲,具有維持可動 桌體1的同時,不至將該可動桌體1改變其高度位置而朝 可在同一面上之任一方向來自由移動的機能,且爲一種經馨 由輔助桌體5來實施該種機能的機構。 此種桌體維持機構2係爲一種將連結機構應用在三次 元空間之機構,將隔有指定間隔所設置之兩根鋼琴線設爲 一組’預定對應於輔助桌體5之端部周圍的角隅部分而準 備四組,將該四組之鋼琴線於每組而在四角形狀之中繼平 板2G的各個四隅部分上區分、且分別朝向上方向而植設。 前述桌體維持機構2係形成構成爲,藉由位於內側之四根 鋼琴線2A而由下方維持輔助桌體5,且藉由位於外側之® 四根鋼琴線2 B由本體部3成搖動自如狀地吊掛中繼平板 2G。此外,兩根鋼琴線係爲,只要是具備有充分支撐可 動桌體1以及輔助桌體5的適度剛性之棒狀彈性線材時, 亦可爲其他構件。 藉此,使輔助桌體5 (亦即可動桌體1 )藉由中繼平板 2G與各個四根之鋼琴線2A、2B而維持在於空中穩定的 狀態,其水平面內之移動係形成爲如後所述,爲維持同一 23 1220875 高度位置 '並且無論在任何方向上均可自由地移動。在輔 助桌體5 (亦即,可動桌體1 )之同一面內之旋轉動作亦 可同樣地形成相同狀。 將其更加詳細敘述。 前述桌體維持機構2係具備有:四根之桌體側之鋼琴 線2A,爲由輔助桌體5之周端部之四隅部分而分別朝向 第1圖下方來植設;中繼平板2G,爲被裝備在於該各個 桌體側之鋼琴線2A之第1圖中的下端部上;本體側之鋼 琴線2B,係被裝備在前述桌體側之鋼琴線2A之外側,而肇 構成爲將該中繼平板2G由本體部3側吊掛狀。 該四根桌體側之鋼琴線2A係爲,使在第1圖中之上端 部固著在輔助桌體5,且使下端部固著在中繼平板2G。 符號5A、5B表示被設置在輔助桌體5之下面側之二處的 下方突出部。藉由該下方突出部5A、5B而設定桌體側之 鋼琴線2 A之固定位置。 在該四根之各個桌體側之鋼琴線2A之外側上,係隔有 指定間隔S,而使本體側之鋼琴線2B分別、個別且平行® 狀地配設。此種本體側之鋼琴線2B係爲,其下端部爲與 前述桌體側之鋼琴線2A同樣地爲被固著在中繼平板2G 上,其上端部則是固著在設於外殼本體3之內壁部。 該等之各個鋼琴線2A、2B係藉由棒狀彈性線材所形 成,該棒狀彈性線材爲具備有可充分支撐如前所述之可動 桌體1以及輔助桌體5的適度之剛性。 藉此,前述可動桌體1係爲’與輔助桌體5同時在中 24 1220875 繼平板2G上藉由內側之四根桌體側之鋼_ 在該四根桌體側之鋼琴線2A的彈性限度 機構之原理,而形成爲容許其平行移動以 的狀態。 另一方面,中繼平板2G係爲,因藉由 2G上之外側的四根桌體側之鋼琴線2B來 出部3 B上,因此,對於外殼本體3,其 內中之旋轉係形成爲同樣被容許的狀態。 因此,輔助桌體5 (亦即,可動桌體) 力而在面內移動或是旋轉後,如同後述之 的爲使桌體側以及外殻本體側之各個鋼琴 地進行彈性變形,將中繼平板2G維持成 作動。並且,當輔助桌體5 (亦即,可動 外力而在面內移動或是旋轉後,其高度位 中繼平板2G之高度爲藉由上下變動所吸斗 藉此,即使可動桌體1承受外力而移 線2A、2B之彈性限度內,係可形成爲即 向亦可維持相同高度且進行移動。 在此,桌體側以及外殼本體側之各個鋼 爲採用具備有相同直徑、且具備有相同彈 長度L係分別全部被設定爲相同狀。此外 之各個鋼琴線2 A、2 B係例如如同第1圖 係爲沿著左右方向來配設,不過,倘若是 對於X軸以及Y軸爲被配設成分別形成線 I線2A所支撐, 內,爲依據連結 及在面內之旋轉 位在該中繼平板 吊掛至本體側突 平行移動以及面 係爲,當承受外 第1 7圖中所示 線2A、2B同時 平行狀態且上下 桌體1 )爲藉由 置之變動係爲, ί ° 動,在各個鋼琴 使是朝向任何方 琴線2 A、2 Β係 性之物,其時效 ,有關本實施例 、第3圖所示, 可在X-Y面上 對稱的位置時, 25 1220875 則亦可配設成如第2圖所示之位置以外的位置。 可動桌體1之移動時,在各個鋼琴線2A、2B方面,係 分別產生均勻的彈性應力,因此,係可獲得包含有可動桌 體1之恢復原始位置而獲得可圓滑地移動可動桌體1的優 點。 如此,前述桌體維持機構2係爲,例如當輔助桌體5 全體以同一方向滑動移動之後,各組之各個鋼琴線2A、2B 係全數形成爲以同一狀態變形。在此情況下,本體側之鋼 琴線2B係爲,在以維持其端部之狀態下進行彈性變形, 因此,藉由同樣地進行彈性變形之桌體側之鋼琴線2A的 變形動作,而使得輔助桌體5之高度位置形成不變,取而 代之的是變動在兩鋼琴線2A、2B中所共通支撐的中繼平 板2G 〇 換言之,此種中繼平板2G爲形成吸收以兩鋼琴線2A、 2B之變形所產生之高度位置的變動,藉此,輔助桌體5(亦 即,可動桌體1 )係不至變更整體性的高度而形成爲可在 同一面內進行滑動移動。在此情況下,當由輔助桌體5開 放外力後,該輔助桌體5係藉由各個鋼琴線2A、2B之彈 簧作用(恢復力)而呈一直線的恢復成原始位置。 此外,即使是當輔助桌體5 (亦即,可動桌體1 )在同 一面內被旋轉驅動的情況下,也由於同等的理由,而使得 輔助桌體5 (亦即,可動桌體1 )係整體性的維持略爲相 同之高度、同時在同一面內進行旋轉動作。即使在此種情 況下,當由輔助桌體5而開放外力之後,輔助桌體5係藉 26 1220875 由各個鋼琴線2 A、2 B之彈簧作用(恢復 的恢復成原始位S。 《電磁驅動裝置》 可雲力桌體1與輔助桌體5之間係如前 磁驅動裝置(參照第1圖),其係經由輔ί 可動桌體1賦予指定之移動力。 有關於本實施例之電磁驅動裝置4係 驅雲力磁鐵(在本實施例中係爲使用永久磁 設在輔助桌體5上;四個田字形驅動線圈 個被驅動磁鐵6,而在可動桌體1上朝向 而產生指定的電磁力;固定平板8,係爲 形驅動線圈7。 固定平板8係如第1圖所示,係被裝 之可動桌體1側(在輔助桌體5與可動堯 周圍係被固著裝設在外殼本體3上。在此 平板8,亦可構成爲只有第丨圖之左右兩 設在外殼本體3上。在該固定平板8之中 有容許在前述連結支柱1 0之指定範圍內 通孔8 A。有關於本實施例之貫通孔8 A雖 狀,不過,亦可爲四角形或是其他形狀。 板8之貫通孔8 A若是可容許連結支柱ί 時,則任何形狀均可。 前述固定平板8係如前述,其周圍整 體側突出部3。在此情況下,固定桌體8 力)而呈一直線 述,爲裝設有電 Ϊ力桌體5而對於 具備有:四個被 U戴)6,係被裝 7,爲經由該各 指定之移動方向 維持該各個田字 設在輔助桌體5 :體1之間),其 ,針對於該固定 端部爲被固定裝 央部上,係形成 之平行移動的貫 被形成爲圓形形 主要的是固定平 .0之動作的形狀 體爲被維持在本 與本體側突出部 27 1220875 3 A係將其一體化爲更加的牢固化,因此,在螺絲鎖固後 係可藉由頂出銷(knock pin)而一體化、或是亦可藉由 熔接等而一體化。如此,即使是對於可動桌體1之微米(# ) 單位的變位或移動,固定平板8係產生有可對應成對於外 殻本體3爲不至產生位置偏移、且圓滑化的優點。 有關本實施例之前述四個被驅動磁鐵係如第2圖、第3 圖所示,爲由對向於驅動線圈7之對向面係形成四角形狀 的永久磁鐵所形成。 在此,爲了控制可動桌體1之位置移動,將通過設定馨 在移動可動桌體1之同一面內之原點一個軸線作爲基準、 在圓周方向等分而設定多數之軸線。在本實施例之情況 下,前述原點係設定成使其與固定平板8之中心部爲一 致。 在於第2圖以及第3圖所不之本實施例中’係將通過 設定在移動可動桌體1之同一面內之原點一個軸線作爲基 準、而在圓周方向以每隔90°之角度進行四等分,而設定 四根軸線。並且,通過前述原點,而將相互於相反方向上# 延伸之2根軸線之組分別設爲X軸與Y軸,且將與X軸、 Y軸一致之方向假定爲X方向、Y方向。從而,所謂的該 等X方向與γ方向係以前述原點而正交。 此外,形成可動桌體1之移動起點位置係爲,設定成 在本體部3上不至使可動桌體1承受外力、而以自由狀態 下存在時的連結支柱1 0之中心位置,亦即設定成可動桌 體1之中心位置,使該中心位置與交叉前述X - Y方向的 28 1220875 原點在固定平板8之中心位置上被一致化。 如第2圖以及第3圖所示,前述四個被驅動磁鐵6係 分別被配設固著在前述輔助桌體5上之前述X-Y方向(四 根軸線上)、且由前述原點起爲等距離之位置上。 在對向於該四個被驅動磁鐵6之位置上,田字形驅動 線圈7係對應於前述四個被驅動磁鐵6、而被固著裝設在 固定平板8上之指定位置。前述田字形驅動線圈7係爲, 在其中央部上具有沿著前述X-Y軸之十字狀的線圈邊, 並且藉由以通電所產生之磁力與各個被驅動磁鐵6之磁力 間的相互磁性作用,在前述可動桌體1上沿著指定之移動 方向而賦予移動力(傳送)。 在此情況下,四個被驅動磁鐵6之朝向係爲,面對於 田字形驅動線圈7側之磁極在本實施例中、於X軸上之 物係設定爲N極,而在Y軸上之物則被設定爲S極(參 照第2圖、第3圖)。 因此,發生在於驅動線圈7之十字狀線圈邊之縱向或 是橫向之磁力與被驅動磁鐵6之磁力間的實力,爲經常地 在X軸方向或是Y軸方向統一,且被設定成使其合力經 常的形成爲最大値。因此,可將發生之磁力設成效率爲佳 的對於可動桌體1的驅動力來輸出。 此外,有關於前述田字形驅動線圈7係爲,其大小係 被設定成具有內側之十字狀線圈邊之長度爲容許前述被驅 動磁鐵6之最大移動範圍的尺寸。 因此,產生在四個被驅動磁鐵6之間之田字形驅動線 29 1220875 圏7的電磁力係爲,藉由使該田字形驅動線圈7被固定在 固定平板8上之指定位置,而形成爲經由該被驅動磁鐵6、 作爲對於輔助桌體5而朝指定方向地移動力來確實的輸 出。 《田字形驅動線圈》 形成電磁驅動裝置4之主要部的田字形驅動線圈7係 力如如同第5圖所示,爲藉由分別獨立、且可通電之四個 角形小線圈7a、7b ' 7c、7d所構成。並且,四個角形小 線圈7a、7b、7c、7d內側之相互突接至十字狀地線圈部 分爲形成有前述十字狀之線圈邊。 因此,以後述之各個角形小線圈7a至7d之通電方向 的動作控制系統,而由外部來進行切換控制,藉此,係形 成爲例如可將流入田字形驅動線圈7內部之十字狀部分的 電流,限定在圖中之縱向或是橫向之任何一方來進行放電 (包含有正或逆向),相對於藉此對應而所配置之被驅動 磁鐵6,爲依據夫來明(Fleming )之左手定律,係可輸 出將該各個被驅動磁鐵6朝指定之方向按壓的電磁力(反 力)。 藉由組合在該四個角形小線圈7a至7d上產生之電磁 力的方向,於位在前述田字形驅動線圈7之內側的十字狀 之線圈邊部分上,係被設定成朝向縱向或是橫向等任一方 之通電狀態,藉此,爲在對應之被驅動磁鐵6中使朝向指 定方向的電磁驅動力被輸出。並且,藉由在前述四個被驅 動磁鐵6中產生之電磁驅動力的合力,對於輔助桌體5係 30 1220875 形成爲朝向包含在χ-γ軸上的旋轉動作之任意方向而賦 予移動力。 有關對於該等四個角形小線圈7 a至7 d之一連串的通 電控制之手法,係在後述之程式記憶部22之說明處(第 6圖、第8圖)中進行詳述。 此外,該四個角形小線圈7 a至7 d係亦可爲中空的線 圈,亦可爲在內側已充塡有肥粒鐵等之被導電性磁性構件 之構造。在第5圖中,線圈內側之斜線部分係表示磁通匝 連區域。 符號9係表示靠近對向於被驅動磁鐵6、且被固定裝設 在田字形驅動線圈7側的致動用平板。 《位置檢測感測機構》 藉由前述電磁驅動裝置4所驅動之輔助桌體5 (亦即, 可動桌體1 )的移動狀態,係藉由位置檢測感測機構2 5 所檢測。 於第6圖所示之位置檢測感測機構25係形成爲具備有 下述構造,即:電容感測器群26,係具備有靜電電容型 之多數的檢測電極(在本實施例係爲八個);位置資訊演 算電路27,係將以該電容感測器群26所檢測之多數的電 容變化成分來進行電壓轉換,同時,進行指定之演算、作 爲位置變化資訊,而傳送至後述之桌體驅動控制裝置2 1。 前述位置資訊演算電路27係構成如下:信號轉換電路 部27A,係將以前述電容感測器群26所檢測之多數的電 容變化成分以個別性地進行電壓轉換;位置信號演算電路 31 1220875 部27B,爲將施加至以該信號轉換電路部27所轉換之多 數之電容變化成分的電壓信號,藉由指定之演算,而轉換 成表示在X-Y座標上之位置的X方向位置信號VX以及Y 方向之位置信號VY,而再演算、輸出旋轉角信號0。 前述多數之電容感測器群2 6係如第1圖至第4圖所示, 爲藉由下述構件所構成:八個角形之電容檢測電極26X1、 26X2、26X3、26X4、26Y1、26Y2、26Y3、26Y4,係對向 於輔助桌體5之周圍的下面部分,並且被配置在前述本體 側突出部3 B之上面而隔有指定間隔·,寬度較寬之共通電 極(未圖示),爲與上述電極對應、且被設定在前述輔助 桌體5之周圍的下面部分。並且,前述各個電容檢測電極 26X1、26X2、26X3、26X4、26Υ1、26Υ2、26Υ3、26Υ4 之內,電容檢測電極26X1、26X2係在第2圖、第3圖之 右端部中爲被裝設成沿著上下、且隔有指定間隔,相對於 此,電容檢測電極26X3、26X4係在第2圖、第3圖之左 端部中爲被裝設成沿著上下、且隔有指定間隔。 此外,前述各個電容檢測電極26Χ卜26X2、26X3、26X4、H 26Y1、26Y2、26Y3、26Y4 之內,電容檢測電極 26Y1、26Y2 係在第2圖、第3圖之上端部中爲被裝設成沿著左右、且 隔有指定間隔,而電容檢測電極26Y3、26Y4係在第2圖、 第3圖之下端部中爲被裝設成沿著左右、且隔有指定間 隔。 並且,例如爲使前述輔助桌體5 (亦即,可動桌體1 ) 爲藉由電磁驅動裝置4來賦予傳送,而在如第7A圖所示 32 1220875 之箭頭F方向(於圖中爲右上方向)進行移動動作的情況 下,於本實施例中,藉由位於輔助桌體5兩側(以及上下 方向)之一方的電容檢測電極26X1、26X2 ( 26Y1、26Y2) 與另一方之26X3、26Χ4(26Υ3、26Υ4)所檢測而出的電 容變化成分,係被構成爲在以信號轉換電路27Α來電壓 轉換後,被傳送至位置信號演算電路27Β,而在該位置信 號演算電路2 7Β爲輸入前述各個變化電壓、作爲X方向 位置信號VX-Y方向位置信號VY而進行差動輸出。 前述輔助桌體5爲承受以電磁驅動裝置4所達成之傳^ 送,在如第7Β圖所示而於箭頭方向上已進行旋轉動作的 情況下,於本實施例中,爲與前述之情況相同的作動各部、 進行同樣的機能,且被構成爲使變化成分進行電壓轉換而 設爲指定之旋轉角信號0來進行差動輸出。 因此’在本實施例中,係可將同時施加至第3圖之左 右(以及上下)之各個電容檢測電極的雜訊,藉由差動輸 出(例如,係指在取得配置在X軸方向之一端部與另一 端部的電容檢測電極中所檢測的電容變化之差之意;外部· 雜訊排除機能)而抵消,同時,當使測定値進行電壓轉換 後,係使其變化量額被合計、輸出(將已減少之量額設爲 負量額而進行減算,例如,如同Α —(一 A )= 2 Α所示), 因此’藉此爲具有可高感度的輸出輔助桌體5 (可動桌體 1 )之位置資訊的優點。 《動作控制系統》 ‘ 在本實施例中’於前述電磁驅動裝置4方面係倂設有 33 1220875 動作控制系統2 0 (參照第6圖),其係爲個別性的驅動控 制則述多數之田字形驅動線圈7、限制前述可動桌體1之 移動或是旋轉動作。 此種動作控制系統20係如第6圖所示,爲具備有:桌 體驅動控制裝置2 1,爲將前述電磁驅動裝置4之多數的 各個田字形驅動線圏7依據指定之控制模式來個別的進行 驅動’且將前述可動桌體於指定的方向進行移動控制;程 式記憶部2 2,所記憶之多數的控制程式,係有關於特別 指定倂設在該桌體驅動控制裝置21之前述可動桌體1之 移動方向、旋轉方向、以及其動作量等的多數之控制模式; 資料記憶部2 3,係記億有在該等各個控制程式實施之際 所使用之指定的資料等。 在桌體驅動控制裝置21方面,係倂設有動作指令輸入 部24,係下達對於多數之田字形驅動線圏7的指定之控 制動作之指令。在此種桌體驅動控制裝置2 1之中,前述 可動桌體1之移動中以及移動後的位置資訊係形成爲送 入、且以藉由前述位置檢測感測機構25所檢測出之後述 高感度狀地進行演算處理。 有關本實施例之前述桌體驅動控制裝置2 1係具有主要 控制部2 1 A與線圈驅動控制部2 1 B。主控制部2 1 A爲具 有如下述之機能,即,由程式記憶部22選擇基於來自動 作指令輸入部24之指令而作動的指定之控制模式’且在 前述多數之各個田字形驅動線圈7中進行通電控制。線圈 驅動控制部2 1 B則具有如下述之機能’即’依據以前述主 34 1220875 要控制部2 1 A所設定之控制模式,將指定之四個各個田 字形驅動線圈7、7…同時或個別性地進行驅動控制之機 能。 主要控制部2 1 A係附加前述機能,而亦同時兼具有下 述之機能,該機能係爲,基於來自檢測桌體位置之位置檢 測感測機構2 5的輸入資訊,而計算前述可動桌體1之位 置、或是進行其他各種的演算。 符號4 G所示係爲在前述電磁驅動裝置4之多數的各個 田字形驅動線圈7中通電有指定之電流的電源電路部。 前述桌體驅動控制裝置21係具備有:位置偏移演算機 能,爲輸入來自前述位置檢測感測機構25之資訊而進行 指定的演算,據此,預先算出與以動作指令輸入部24所 設定之移動端的基準位置資訊間之偏移;桌體位置補正機 能,爲基於該已算出之位置偏移資訊,驅動電磁驅動裝置 4,而將該可動桌體1移送控制至預先設定之移動端的基 準位置上。 因此,在本實施例中,當可動桌體1之移動方向由於 干擾等而偏移的情況下,係一面修正該偏移而形成爲將可 動桌體1移送控制至指定的方向,藉此,該可動桌體1係 形成爲迅速且高精度的移送至預先設定的目標位置上。 《程式記憶部》 前述桌體驅動控制裝置2 1係爲,依據在程式記憶部22 中所預先記憶的指定之控制程式(指定之通電模式以及作 爲其選擇組合之指定的控制模式),而形成爲將前述電石兹 35 1220875 驅動裝置4之四個田字形驅動線圈7構成爲以個別的來進 行驅動控制。 亦即,在本實施例中,於前述程式記憶部22爲記憶有 用以對於前述四個各個田字形驅動線圈7、7…實施基本之 四個通電模式的程式(參照第6圖、第8圖)。 在第8圖係分別揭示對於田字形驅動線圈7(固定件側) 之四個角形小線圈7 a、7 b、7 c、7 d的四種種類之通電模 式A、B、C、D、在此時產生於各個田字形驅動線圈之十 字邊附近的電流之朝向,以及對應於此而產生在可動件側 之被驅動磁鐵(永久磁鐵)6的電磁驅動力(推力)之朝 向。 在第8圖中,於通電模式A之情況下,爲分別將通電 控制成對於一方之角形小線圈7a、7b爲左旋之電流、而 對於另一方之角形小線圈7 c、7 d則爲右旋之電流,藉此, 在位於中央部之十字狀地線圈邊部分上,爲整體性地使輸 出至外部的磁通量相加或是相抵消,其結果,爲形成與僅 有通電X軸之正方向的電流IA爲相等之狀態。 於通電模式B中,分別如圖所示地將各個角小線圈7 a 至7 c個別地進行通電控制,藉此,爲形成與僅有通電X 軸之負方向的電流IB爲相等之狀態。在通電模式c中, 分別如圖所示地將各個角小線圈7a至7c個別地進行通電 控制,藉此,爲形成與僅有通電Y軸之正方向的電流IC 爲相等之狀態。同樣地,在通電模式D中,分別如圖所 示地將各個角小線圈7a至7c個別地進行通電控制,藉此, 36 1220875 爲形成與僅有通電Y軸之負方向的電流ID爲相等之狀 態。前述四個通電模式A、B、C、D係爲,形成以基於預 先被記憶在程式記憶部2 2之指定的控制程式來實施。 如第8圖所示之白色箭頭係分別表示對應於該等通電 模式A、B、C、D而產生在與可動件側之被驅動磁鐵(永 久磁鐵)6之間的電磁驅動力(推力)之朝向。 在此情況下,對應之各個電磁力爲藉由夫來明之左手 定律而產生在田字形驅動線圈7之通電線圈邊部分,不 過,由於係使該田字形驅動線圈7固定在固定平板8上, 因此,其反力係作爲電磁驅動力(推力)、朝向於被驅動 磁鐵(永久磁鐵)6側而產生。 於第8圖所示之白色箭頭係爲表示其反力(電磁驅動 力)之物。因此,其反力(電磁驅動力)係藉由被驅動磁 鐵6之磁極N、S的種類來反轉其方向。 在程式記憶部22中,係記憶有關於下述各個動作的程 式,即:第一至第四控制模式,爲假定將前述固定平板8 上之中央部設爲原點,而在X-Y平面上使可動桌體1分 別移動至X軸之正負二方向以及Y軸之正負二方向;第 五至第8控制模式,係使可動桌體1移動至設定在X-Y 平面上的各個象限內之指定方向;第九至第十之各個控制 模式,爲使可動桌體1以指定位置而在順時針方向或是逆 時針方向上進行旋轉動作。 在弟9圖至弟1 3圖中》分別表不在實施有關於則述桌 一至第十之各個控制模式的動作程式之情況下,所產生之 37 1220875 各個田字形驅動線圈7之機能以及輔助桌體(可動桌體1 ) 之動作狀態之一例。 第9A圖、第9B圖所示係爲實施第一控制模式之情況 下的狀態。如該圖所示,在該第一控制模式中,X軸上之 兩個田字形驅動線圏7、7係分別藉由電流模式D之手法 而被通電控制,Y軸上之兩個田字形驅動線圈7、7係分 別藉由電流模式C之手法而被通電控制。在第9A圖中, 記號N、S係表示各個被驅動磁鐵(永久磁鐵)6之磁極 的種類。 其結果,在該第一控制模式中,相對於各個被驅動磁 鐵(永久磁鐵)6,係在箭頭FX1、FX2、FX3、FX4之方 向上產生電磁驅動力,藉此,爲形成朝向X軸上之正方 向(箭頭+ FX )而使輔助桌體5被驅動。 第9B圖所示係爲在X-Y座標上例示在各個田字形驅動 線圈7、7…中爲已產生有相同之電磁驅動力之情況下的方 向。藉此,在將輔助桌體5移送至X軸上之正方向的情 況下,特別是使得在Y軸上之各個田字形驅動線圈7、7 上產生有相同大小之驅動力者爲形成重要。 第二控制模式之情況下爲依種將輔助桌體5移送至X 軸上之負方向(未圖示)之情況者,不過,相較於在前述 第一控制模式之情況爲將電流模式通電至各個田字形驅動 線圈7、7…,亦可設爲完全相反狀。 亦即,在此種第二控制模式中,係分別藉由電流模式C 之手法而使得X軸上之兩個田字形驅動線圈7、7分別被 38 1220875 通電控制,且分別藉由電流模式D之手法而使得Y軸上 之兩個田字形驅動線圈7、7分別被通電控制。藉此,係 使輔助桌體5圓滑的移動至X軸上之負方向(未圖示)。 第10Α圖、第10Β圖所示係爲實施第三控制模式之情 況下的狀態。如該圖所示,在該第三控制模式中,係形成 爲X軸上之兩個田字形驅動線圈7、7係分別藉由電流模 式Α而被通電控制,且Υ軸上之兩個田字形驅動線圏7、 7係分別藉由電流模式B之手法而被通電控制。 其結果,在該第三控制模式中,相對於各個被驅動磁♦ 鐵(永久磁鐵)6,係在箭頭FY1、FY2、FY3、FY4之方 向上產生電磁驅動力,藉此,爲形成朝向Y軸上之正方 向(箭頭+ FY )而使輔助桌體5被驅動。1220875 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a pedestal device for precision processing, and more particularly to a precision processing, wiring work, or inspection thereof in a semiconductor production program such as 1C or LSI And other precision machining platform devices. [Prior technology] In the past, in the semiconductor industry, etc., in the production process of 1C or LSI, it is used to configure and maintain the processed object at a position such as precision processing or inspection. Table repair device for processing of movable table body. .  In this case, It is used to precisely move the movable table body to any position on the X-Y plane, Usually, it is the direction of a moving body holding mechanism having a double overlapping structure as follows, This is, First, move the mechanism in the X direction to move the entire movable table body in the X direction. Secondly (or at the same time), The entire movable table body and the X-direction moving mechanism are moved in the Y direction by the Y-direction moving mechanism.  In addition, This processing platform device is, When moving the movable table body in the X direction and the Y direction, Many are equipped with lower speeds, And mechanical actuation mechanism.  however, The aforementioned conventional technical device is: As you move the table,  As mentioned before, A moving body holding mechanism having a double structure that intersects the x-direction moving mechanism that moves in the x direction and the γ-direction moving mechanism that moves in the Y direction, In particular, the sliding contact structure is required for the abutting and moving parts that require precision. therefore, More labor-intensive in processing, Or in the case of precision adjustment during assembly of 6 1220875, a more proficient situation is required. Therefore, Cause productivity degradation, Most of them cause the whole device to be expensive.  Furthermore, When there will be automation of the system for the movement of the table, The connection of the aforementioned dual structure of the driving mechanism and the equipment of the position sensor occupy a lot of space. On the other hand, there is a case where the entire device is large.  In addition, The device of the aforementioned conventional example is, Mostly, there is a return spring on the movable table body to restore the original position. In this situation, When stopping the movable table, Due to the acceleration or deceleration driving force attached to the movable table body, it is easy to generate a reciprocating small motion at the stop position on the movable table body. therefore, It is indispensable to use a mechanical control device that uses friction when stopping the movable table.  on the other hand, This mechanical friction actuation system is prone to generate small vibrations during operation. therefore, The precision movement in micrometer units causes instability in the operation at the stop. In addition, By setting up the mechanical actuation mechanism, the entire device is enlarged, Often accompanied by deterioration in portability, In poor situations where conservativeness is also worsening.  The object of the present invention is to provide a seating device for precision machining, In order to have the function of smoothly moving the movable table body for precision machining in a specified direction on the same surface, Simultaneously, It can greatly improve the assembly work and the size and weight of the entire device. Furthermore, It can effectively suppress the reciprocating action or small vibration when the movable table is stopped. With this, Get formed more quickly, And the precise movement of the movable table body is smooth.  7 1220875 [Abstract] In order to achieve the above purpose, The precision machining apparatus according to the present invention has a structure as described below.  have: Movable table, Is assembled to the body, And branch Table maintenance mechanism, It is the aforementioned main body part of the device, And the movable table body moves in any direction within the same plane; Electric device ’is the main body of the device, In order to confer on the aforementioned mobile in the same plane; Electromagnetic actuator Is to produce the force that the movable table body stops at any position within the same plane;  The electromagnetic driving device is: There are a plurality of driving coils which are driven and are used to generate the above-mentioned driven magnets by the direction of energization, By the magnetic interaction between the driven magnet and the driving wire, And the transmission of the aforementioned movable table body;  Within the driven magnet and the driving coil, The quilt is fixed in a certain position, While the other party can move in the aforementioned physical form;  The aforementioned electromagnetic actuating mechanism includes: Non-magnetic and conductive actuation plates for actuation that move relative to each other;  The inside of the actuating magnet and the actuating plate is fixed to a certain position, While the other party is set to move synchronously with the movement of the table, The combination of the actuation magnet and the actuation, It adopts a structure that generates an actuating force. The actuating table support is processed, allowing the front magnetic drive to be installed in the table body for the actuating magnets, Set the moving table body with the magnetic phase of the iron. And the force provided as a movable plate is based on the relationship between the magnetic force caused by the eddy current generated in the actuating plate and the magnetic force of the actuating magnet accompanying the movement of the movable table body. Mutual magnetic interaction.  When using the present invention, After the aforementioned electromagnetic driving device is activated, First of all,  In order to generate a mutual magnetic effect between the driving coil and the driven magnet of the electromagnetic driving device, By the mutual magnetic effect, transmission in a predetermined direction can be given to the movable table body. In this situation, The movable table system allows movement in the same plane by the aforementioned table body maintaining mechanism, therefore, It will not move up and down and move smoothly in the specified direction. especially, When the aforementioned movable table system gives the movable table body the force to restore the original position, Is a position that is moved to a balance between the force that takes the restored original position and the magnetic force of the electromagnetic drive (ie, Specified movement stop position).  here, The aforementioned movable table system is: As we move, By means of electromagnetic drives, Or, the situation of rapid acceleration by the force given to the movable table body to restore the original position is the majority. When the movable range of the movable table body is, for example, a micrometer unit, The system is formed to be rapidly decelerated while maintaining the aforementioned rapid acceleration, stop. thereby, When the table stopped at the beginning, The inertia force of the movable table body and the force of the original table maintaining mechanism to restore the original position, It is easy to produce a slight reciprocating motion when the movable table is stopped.  In the present invention, When the movable table body is rapidly moved, The actuating magnet of the aforementioned electromagnetic actuating mechanism and the non-magnetic and conductive actuating zp plate, Is synchronized with the movement of the movable table, And become a relative displacement.  and, The aforementioned electromagnetic actuation mechanism is: An eddy current proportional to the moving speed of the movable table body of 9 1220875 is generated on the aforementioned actuating plate, An actuation force is generated based on a magnetic force caused by an eddy current generated on the actuation plate and a mutual magnetic effect between the magnetic forces of the aforementioned actuation magnets. Bearing the driving force of the electromagnetic actuating mechanism, The small reciprocating action of the movable table body is aggregated in a short time.  thereby, Shortening the stopping time for stopping the movable table body at a desired position, Or even shorten the overall time required to move the movable table in the same plane, And can improve the efficiency of operations.  In the present invention, The aforementioned electromagnetic actuation mechanism may be a mechanism for applying an actuation to the aforementioned movable table body, Alternatively, an actuation mechanism can be applied to the aforementioned movable table body and the aforementioned table maintenance mechanism.  thereby, The actuation force is applied to the movable table body by the electromagnetic actuation mechanism, This can shorten the actuation time of the movable table body as described above. Furthermore, The actuation force is applied to both the movable table body and the aforementioned electromagnetic actuation mechanism by an electromagnetic actuation mechanism, It can further shorten the driving time of the movable table.  In addition, In the present invention, The aforementioned electromagnetic actuating mechanism has a simple structure including: which is, Contains actions that face each other and synchronize with the aforementioned movable table, And actuating magnets that move relative to each other,  And non-magnetic and conductive actuation plates.  thereby, It can reduce the overall size and weight of the device. therefore, It is not necessary to increase the inertial force of the movable table body, It will not hinder the movement of the movable table. In addition, Even during assembly operations, No special skill is required, therefore, It is also good in terms of workability, Among the characteristics of this 10 1220875, Compared to the conventional thing with a double-structured moving mechanism, System can greatly improve productivity.  In addition, The actuating magnet of the electromagnetic actuating mechanism is, It is also possible to use a driven magnet constituting the aforementioned electromagnetic driving device, Alternatively, it is formed separately from the driven magnet.  thereby, When the actuating magnet of the electromagnetic actuating mechanism is formed of the driven magnet, The actuation plate is: The part connected with the magnetic flux formed by the driving coil of the aforementioned electromagnetic driving device has the same function as the coil. therefore, The circuit is equivalent to the secondary circuit of the transformer. Simultaneously, This secondary-side circuit is configured to be often short-circuited by the electrical resistance component of the actuation plate (which generates eddy current loss).  therefore, With regard to the actuation plate constituting the secondary circuit in this case,  Eddy current flow, Cancel the magnetic flux created by the drive current, A driving force generated by only the magnetic flux of the original driving magnet will be generated without deformation. In addition, Actuating the plate system produces the same effect as the short-link of the voice coil motor. And narrow the observation ® the impedance of the primary circuit seen by the power supply, Compared to the case where the secondary circuit is in the disengaged state (without activating the plate) The system can be energized with a large current without a phase delay. thereby, Between and the driven magnet,  Compared with the case where the actuation plate is not present, The system can output large electromagnetic force without phase delay.  In addition, the aforementioned actuation plate is: Even as a heating plate, it has its function, In this characteristic, It can effectively suppress the increase in resistance and decrease in energizing current at high temperatures caused by the continuous operation of the 11 1220875 driving coil (that is, Reduction of electromagnetic driving force), In addition, the growth time of the energized current can be set to be slightly aligned. therefore, The magnetic force output by the electromagnetic driving device can maintain the current control of the driving force from the outside in a stable state. In order to effectively suppress the aging change (the insulation damage caused by heat). therefore, Can improve the overall durability of the device, Even the reliability of the device as a whole.  In addition, The aforementioned electromagnetic actuation mechanism is: It is more preferable that the central part of the movable table is provided. If you take this, The electromagnetic actuating mechanism can make the actuating force without deviation, And evenly applied to the movable table, The formation can restrain the reciprocating action when stopping the movable table body in a short time.  In addition, The actuation plate of the electromagnetic actuation mechanism is: It is also possible to form a single flat plate for many actuating magnets. With this, It can shorten the time required for assembling the actuation plate, This can improve the efficiency of assembly operations.  In addition, The aforementioned movable table system is parallel to the movable table body, And form an integrated auxiliary table body, Or it can be directly maintained in the structure of the aforementioned table maintenance mechanism.  in this way, The relationship that can be planted by the table maintenance mechanism is appropriately selected by the table maintenance mechanism, Using a movable table or auxiliary table, It is an assembled state that can effectively exert the driving force of the electromagnetic actuating mechanism.  In addition, The aforementioned table maintenance mechanism is constituted by the following components, which is:  One of at least three rod-shaped elastic members, At the same circumference on the end of the 12-1220875 end of the movable table body, there is a specified interval, And one end is planted on the movable table body; At least three other rod-shaped elastic members, In order to correspond to each of the rod-shaped elastic members described above, And on the outer side of each of these rod-shaped elastic members, For a specified interval on the same circumference, And arranged in parallel, The one end portion is the same length to be maintained on the main body portion; Relay component, The other end of each rod-shaped elastic member of the aforementioned one and the other is maintained in a parallel state, At the same time, it remains in one piece.  Each of the three rod-shaped elastic members of the three sets of table body maintaining mechanisms, Can be used by using the same strength, The appearance of a rod-shaped elastic member such as a piano wire of the same length.  in this way, By using the table maintenance mechanism as a link mechanism, Instead of moving the table up and down in the same plane, Even when moving in micron units, It can also correctly move the movable table body.  As mentioned above, When the table maintenance mechanism is configured as a connection mechanism, Between the actuating magnet and the actuating plate of the electromagnetic actuating mechanism, In order to make it possible for one of the systems to be moved and integrated with the movable table body, The other side is provided on the main body. 鲁 Furthermore, between the actuating magnet and the actuating plate of the electromagnetic actuating mechanism, One side is provided to move, The other side is placed on the main body, Furthermore, Between the actuating magnet and the actuating plate of the electromagnetic actuating mechanism,  One may be provided to move integrally with the relay member, The other is provided on the main body.  in this way, By appropriately setting the aforementioned electromagnetic actuating mechanism on the movable table 13 1220875, On the relay component of the table maintenance mechanism, And can effectively apply the actuating force of the electromagnetic actuating mechanism to the movable table body.  In addition, The actuating magnet of the electromagnetic actuating mechanism is formed by the driven magnet, Alternatively, it may be constituted by being separate from the aforementioned driven magnet. With this, The position of the electromagnetic actuating mechanism can be appropriately selected. The electromagnetic actuating mechanism can be set at a position where the electromagnetic actuating mechanism can effectively exert the actuating force.  In addition, The actuating magnet of the electromagnetic actuating mechanism may be formed of either a permanent magnet or an electromagnet. With this, Various changes can be made to the structure of the driven magnet of the electromagnetic drive spring beads. Furthermore, The aforementioned driven magnet is formed by an electromagnet, Various changes can be made to the drive control of the movable table. E.g, When accelerating / decelerating the movable table, It is used to drive and control both the driving coil and the electromagnet to move the movable table body, In order to quickly change the moving direction of the movable table body.  In addition, The table maintenance mechanism may be provided with a force to restore the original position to the original position of the movable table. With this, Compared with the case where a mechanism for restoring the original position is provided as a separate component from the table maintenance machine, The structure of the device can be simplified.  In addition, The aforementioned driven magnet is more desirable than Using an axis set by the origin in the plane of the movable table body as a reference, And they are respectively arranged on a plurality of axes formed by dividing in the circumferential direction. In this case, The axis of the majority is set to pass, Orthogonal to most axes that move the origin set in the plane of the movable table. or,  Most of the aforementioned axis systems are set as With the origin set in the 14 1220875 plane of the movable table body as the center, And there are multiple axes facing the radiation direction.  In addition, The original position of the movable table body restored by the aforementioned table maintaining mechanism is, It is preferable to set it to coincide with the origin which forms the base point of the axis set in the plane which moves the said movable table body.  With this, The restoring position of the movable table achieved by the aforementioned table maintaining mechanism, And the positions formed to move the starting point of the movable table are consistent, So that the movable table can be positioned correctly, mobile.  In addition, The driven magnets forming the majority of the aforementioned electromagnetic driving devices are Are arranged on the respective axis lines at a position equidistant from the origin, The driving coils forming the majority of the aforementioned electromagnetic driving devices are: It is more desirable to have driven magnets arranged so as to correspond to most of the foregoing.  thereby, In order to arrange the driven magnet and the driving coil forming the electromagnetic driving device on the axis, It can eliminate the excessive rotation force applied to the movable table. For accurate position control of the movable table. By arranging a plurality of driven magnets arranged on the aforementioned axis in a linearly symmetrical positional relationship, It is possible to positively eliminate the force that causes the movement of the movable table body.  · In addition, The electromagnetic actuating mechanism is preferably arranged on the aforementioned axis.  but, The combination between the driven magnet and the driving coil may be arranged to be offset from the axis. Even if the installation position of the combination between the driven magnet and the driving coil is freely changed, Using the actuating force of the electromagnetic actuating mechanism can also stop the movable table body at the designated position, It can provide a very versatile platform device.  15 1220875 In addition, The driven magnet of the aforementioned electromagnetic driving device is formed of a permanent magnet 'or may be formed of an electromagnet.  By forming the electromagnetic drive device with a permanent magnet, It is formed without the need for an energized circuit like an electromagnet, And because of this part, The system can avoid the complicated operation during assembly and maintenance.  When the driven magnet of the electromagnetic driving device is formed by an electromagnet, In order to synchronize the energization of the driven magnet with the energization of the driving coil, The selective control is either forward or reverse.  With this, The system can have various changes in the drive control of the movable table body. In addition, the respective control of the energization of the plurality of driving coils, The degree of transmission imparted to the movable table body by electromagnetic force can be freely changed.  In addition, The drive coil system has a coil piece, The coil piece is used to generate a magnetic force acting on the magnetic force of the driven magnet. In this situation,  The coil side of the driving coil is formed into a cross shape or a straight shape. Alternatively, it is desirable that the posture be arranged in a posture along the axis before the driven magnet is arranged. With this, The system can surely generate mutual magnetic effect between the coil side of the driving coil and the driven magnet. In addition, By forming the aforementioned coil side to select a cross shape or a straight shape, The directionality of the mutual magnetic interaction between the magnet and the driven magnet can be arbitrarily selected. In order to bring various changes to the action of the movable table.  In addition, The aforementioned drive coil systems can be of different sizes, It is formed by most coils arranged inside and outside. With this, Can multiply the mutual magnetic force generated between the driving coil and the driven magnet, Increase the transmission force of the movable table, It can multiply the transportable force achieved by the movable table body.  16 1220875 In this case, it is desirable that the linear coil side of the aforementioned driving coil is aligned along the aforementioned axis on which the aforementioned driving magnet is disposed, Or arrange in a cross-cut posture. With this, In order to arbitrarily select the mutual magnetic effect between the driving coil and the driven magnet, Various changes can be made to the driving force of the movable table.  In addition, The driving coil is: Will be independent and combined by a large number of small coils, The cross-shaped or linear coil edge can be formed on the protruding portion of each small coil. With this, It is easy to form the coil side on the driving coil.  In this case, The small coil system is formed in an angular shape, In particular, it is more desirable to triangle, pentagon, Or any shape of a sector. In addition, The angular shape of the drive coil is, Judging by the device used to easily form the coil edges, Not limited to a quadrilateral, triangle,  pentagon, Or a fan shape.  In addition, The external dimension of the driving coil is desirably set to be larger than the external dimension of the driven magnet. With this, It can generate the electromagnetic driving force between most of the driving coils and the driven magnets. It often occurs in the direction from the starting position of the movable table to the outside, The combined force of these electromagnetic driving forces can also be generated in a certain direction from the starting position of the movable table body toward the outside.  In addition, The electromagnetic drive device is provided with an operation control system 'to control the energization of the drive coil, And make the movable table move linearly, Or a device that moves linearly and rotates. In this way, the movement of the movable table body can be changed.  17 1220875 In addition, The aforementioned motion control system may be configured as a motion control device. Energizing control for driving motor of IU electromagnetic driving device; Program memory The memory determines the moving direction of the control table, turn around, Control program with majority Data Memory Department, It is a designated coordinate asset input unit used in the implementation of the control program. In the aforementioned coil drive control device,  The instructions for the specified control action of the drive coil are described.  In this situation, Under the control of the aforementioned motion control system: First to fourth control modes, To make the aforementioned orthogonality the origin, The fifth to eighth control modes are used to move the movable table body to each axis. Each control mode is used to make the directions in the quadrants separated by the aforementioned orthogonal two axes of the movable table, Within the orthogonal two, It is used to rotate the movable table body in a clockwise direction.  In the aforementioned configuration, In order to drive a coil drive control device based on an input from an operation command, When it is specified by the program memory and the information on the direction of the abnormal movement and when it is used, Based on, In order to drive and control the aforementioned electromagnetic driving device, the movable table body is moved in a specified direction.  thereby, The control mode of the drive coil is memorized in advance. And can quickly correspond to the instructions of the input section.  contain: Coil drive Coil based control is used to specifically refer to the amount of its movements, etc. Action refers to the positive and negative directions for the intersection of the former code system and the intersection of the two axes.  Body moves to by; The surface formed by the ninth to tenth axes or the counter-clockwise entry section and the _ data memory section take the control mode, With the same drive coil,  Based on this, it can be transferred from action command 18 1220875 In addition, The operation control system may be configured as follows: Plus as above; ^ Construction, And may have: Most position detection sensors, For detection, Output the movement information of the aforementioned movable table to the outside; Location information calculation circuit, To perform a specified operation based on the information detected by the aforementioned position detection sensor, Specifically specify the moving direction of the aforementioned movable table body and the amount of change, It is externally output as position information.  thereby, You can output the mobile table ’s mobile information and the mobile ’s position information to the outside in real time. The moving direction of the movable table body or the position shift after moving, etc. The operator is easily grasped by external obtain.  therefore, Can move the movable table with high accuracy and speed. The electromagnetic drive device may have a structure including an operation control system as described below. which is, The individual control is based on the driving coils and driven magnets of the electromagnetic driving device, which are actuated in response to external commands. The movable table body is moved to a specified moving direction.  With this, Towards the direction of movement of the movable table, Department can choose, Actuating® one or two or more driven magnets effectively and functionally, This allows the movable table to move to the specified direction.  The aforementioned motion control system may be configured with: Power-on direction setting function,  In order to set the energizing direction to the drive coil, Stay in one's direction; Coil power control function, It can change the size of the energizing direction of the aforementioned drive coil; Variable magnetic pole setting function, In order to operate in accordance with the direction of energization of the drive coil described above, And the magnetic poles of each of the aforementioned driving magnets are set individually, maintain·, Magnetic force setting function,  The magnetic strength of each of the aforementioned driven magnets can be individually changed and set according to an external command '; Table body motion control function, In order for these various functions to operate properly, For the movable table body, the transfer direction and the transfer force are adjusted.  With this, It can control the movement of the movable table in a specific direction.  [Embodiment] The following, Embodiments of the present invention will be described based on the drawings.  [First Embodiment] The first embodiment of the present invention is disclosed in Figs. 1 to 18. In Figures 1 to 18, The symbol 1 indicates a movable table body, The symbol 2 indicates a table maintenance mechanism. The table maintenance mechanism 2 is shown in Fig. 1, The system is disposed below the casing body (body portion) 3. The table body maintaining mechanism 2 is configured to allow the movable table body 1 to move in any direction within the same plane, At the same time, the movable table body 1 is maintained in a state where the force for restoring the original position has been applied to the movable table body 1.  This table body maintenance mechanism 2 is supported by a case body serving as a body portion.  The housing body 3 of this embodiment is shown in FIG. 1, The system is formed in a box shape which is opened above and below.  Reference numeral 4 denotes an electromagnetic drive device. The electromagnetic drive device 4 is  So that its main part is maintained on the housing body 3 side, It has a function of applying a moving force (transmission) to the movable table body 1. The reference numeral 3A shows a body-side protruding portion protruding inward from the inner wall portion of the casing body 3 by 20 1220875.  The electromagnetic driving device 4 according to this embodiment is disposed between the movable table 1 and an auxiliary table 5 to be described later.  The auxiliary table 5 is Made of magnetic material, Opposing the aforementioned movable table body 1, At specified intervals, The movable table 1 is connected and mounted in parallel. and, The aforementioned table maintenance mechanism 2 is installed on the side of the auxiliary table 5, The auxiliary table body 5 is configured to maintain the movable table body 1.  The aforementioned electromagnetic driving device 4 is provided with: Four square shaped driven magnets 6, It is fixedly installed at the designated position of the auxiliary table body 5; Tian Zigzag drive coil 7, In order to have a cross-shaped coil side facing each of the driven magnets 6, In cooperation with each of the driven magnets 6, And given a predetermined moving force (transmission) achieved by the magnetic force on the movable table body 1 along the specified moving direction; Fixed plate 8, In order to maintain the field-shaped driving coil 7 at a certain position, And it is installed on the movable table body 1 side of the auxiliary table body 5 mentioned above. The fixed plate 8, Made of magnetic® construction. In addition, The drive coil 7 is, In order to emphasize the shape of the winding end, it is shown as a closed circuit in the figure. but, The driving coil 7 is a spiral wound, And there are two terminals for power supply at both ends, It is formed into a structure that generates a magnetic force by applying electricity. The illustration method of this driving coil is the same even in each of the embodiments described below.  Furthermore, The majority of the field-shaped drive coils 7 are, Each of the end faces opposite to the aforementioned 21 1220875 driven magnet 6 is provided with a non-magnetic metal member (for example, Copper member with less electrical resistance) Actuating plate 9, The actuation plate 9 is close to the magnetic pole surface of the opposite driven magnet 6. The actuation plate 9 is fixed to the fixed plate 8 side.  the following, This will be explained in more detail.  "Movable table and auxiliary table" In Figures 1 to 4, The movable table body 1 is formed in a circular shape, The auxiliary table body 5 is formed in a quadrangular shape. The auxiliary table 5 is opposite to the movable table 1, And are arranged in parallel with a specified interval,  It is integrally connected to the aforementioned movable table body 1 via a connecting pillar 10 at its center. therefore, The movable table body 1 is maintained in parallel with the auxiliary table body 5, Integral movement, In addition, it is formed into an integral rotating shape.  The connection pillar 1 〇 is, In the connecting member that connects the movable table body 1 and the auxiliary table body 5 as described above, The formed I-shaped cross-section is provided with a crotch 10A on both ends, 1 0B, On the outer center of its two ends, Is provided with protrusions 10a, 10b, This protrusion 10a, 10b is engaged with the positioning holes 1 A formed at each central portion between the movable table body 1 and the auxiliary table body 5,  5A.  Movable table 1 and auxiliary table 5, Because of the protrusion 10a, 10b and 10A, 1 0B to locate, The integrated pillar is fixed to the connecting pillar 10. As they integrate, Although an adhesive is used in this embodiment,  but, It can also be partially joined by welding, Or the protrusion 1 〇a,  1 〇b part press into the positioning hole 1 A, 5 A, The other parts are integrated by adhesives or welding. In addition, You can also fix either the movable table body 1 22 1220875 or the auxiliary table body 5 with screws. It is detachably fixed to the crotch portion 10A or 10B of the aforementioned connecting pillar 10. In this case ’after tightening the screws, Multiple knockout pins (kn0Ck pin) can also be used as positioning and fixing to engage, To nail in between (not shown).  In this way, the movable table body i and the auxiliary table body 5 can be reliably integrated.  "Desk body maintenance mechanism" The table body maintenance mechanism 2 related to this embodiment is, While maintaining the movable table body 1, The movable table body 1 does not change its height position and can move freely in any direction on the same surface. And it is a mechanism that implements this function by the auxiliary table body 5 through Jingxin.  This table maintenance mechanism 2 is a mechanism that applies a connection mechanism to a three-dimensional space. Set two piano wires set at a specified interval into a group of ‘predetermined to correspond to the corners around the end of the auxiliary table body 5 and prepare four groups, The four sets of piano wires are distinguished in each set on each quadrangular part of the quadrangular relay plate 2G. And they are respectively planted facing upward.  The table maintenance mechanism 2 is formed as follows: The auxiliary table body 5 is maintained from below by four piano wires 2A on the inside, And with the four piano wires 2 B located on the outside, the relay plate 2G can be hung freely from the main body 3. In addition, The two piano wires are, As long as it is provided with a rod-shaped elastic wire having a moderate rigidity that sufficiently supports the movable table body 1 and the auxiliary table body 5,  Other components are also possible.  With this, Make the auxiliary table body 5 (that is, the movable table body 1) through the relay plate 2G and each of the four piano wires 2A, 2B is maintained in a stable state in the air, The movement in the horizontal plane is formed as described later, To maintain the same 23 1220875 height position 'and to move freely in any direction. In the auxiliary table 5 (that is, The rotating movements in the same plane of the movable table body 1) can also be formed in the same shape.  This will be described in more detail.  The aforementioned table maintenance mechanism 2 is provided with: Four-piece table side piano wire 2A, It is planted to face the lower part of the first figure from the four part of the peripheral end of the auxiliary table body 5; Relay tablet 2G, To be equipped on the lower end of the first line of the piano wire 2A on the side of each table body; Steel piano wire 2B on the body side, It is equipped outside the piano wire 2A on the table side, On the other hand, the relay plate 2G is suspended from the main body 3 side.  The four piano wires 2A on the side of the table are: The upper end of the first figure is fixed to the auxiliary table body 5, The lower end portion is fixed to the relay plate 2G.  Symbol 5A, 5B indicates a lower protrusion provided at two places on the lower surface side of the auxiliary table body 5. With this lower protrusion 5A, 5B and set the fixed position of the piano wire 2 A on the table side.  On the outside of the piano wires 2A on the side of each of the four tables, Is separated by a designated interval S, And make the piano line 2B on the body side, Individually and parallelly arranged. This type of piano wire 2B is, Its lower end is fixed to the relay plate 2G like the piano wire 2A on the table side, The upper end portion is fixed to an inner wall portion provided on the casing body 3.  Each of these piano wires 2A, 2B is formed by rod-shaped elastic wire, The rod-shaped elastic wire is provided with moderate rigidity that can sufficiently support the movable table body 1 and the auxiliary table body 5 as described above.  With this, The aforementioned movable table body 1 is the same as the auxiliary table body 5 in the middle 24 1220875 following the flat plate 2G by the four table side steels on the inside _ the elastic limit mechanism of the piano line 2A on the four table sides principle, It is formed in a state allowing parallel movement.  on the other hand, The 2G relay board is Because 4G piano wires 2B on the outside of 2G are on the 3B, therefore, For the housing body 3, The rotation system is formed in a similarly permitted state.  therefore, Auxiliary table 5 (that is, (Movable table body) After moving or rotating in-plane with force, As described later, in order to elastically deform each piano on the table side and the case body side, The relay panel 2G is maintained in operation. and, When auxiliary table 5 (that is, After being moved in the plane or rotated by external force, The height of the relay plate 2G is the height of the suction bucket. Even if the movable table 1 is subjected to an external force, the line 2A, Within the elastic limit of 2B, The system can be formed to move while maintaining the same height.  here, Each of the steel on the table side and the shell side has the same diameter, In addition, all of the L systems having the same elastic length are set to the same shape. In addition, each piano line 2 A, The 2 B system is, for example, as shown in FIG. 1. but, If the X-axis and Y-axis are supported by being arranged to form the lines I and 2A, respectively,  Inside, In accordance with the connection and the rotation in the plane, the relay plate is hung to the side protrusion of the body, and the parallel movement and surface are When subjected to the line 2A shown in Figure 17 2B at the same time in a parallel state and up and down the table body 1)  ί ° move, On each piano so that it is facing any square line 2 A, 2 Beta-type things, Its limitation, Related to this embodiment, As shown in Figure 3,  When it can be symmetrical on the X-Y plane,  25 1220875 can also be set to a position other than the position shown in Figure 2.  When the movable table body 1 moves, In each piano line 2A, 2B, System produces uniform elastic stress, therefore, It is possible to obtain the advantage of returning the original position including the movable table 1 to smoothly move the movable table 1.  in this way, The aforementioned table body maintenance mechanism 2 is: For example, when the entire auxiliary table body 5 slides in the same direction, Each piano line of each group 2A, All 2B systems are deformed in the same state. In this situation, The body piano wire 2B is, Elastically deformed while maintaining its ends,  therefore, By performing the deformation action of the piano wire 2A on the table body side similarly elastically deformed, So that the height position of the auxiliary table body 5 is unchanged, Replaced by a change in the two piano wires 2A, The relay board 2G commonly supported in 2B 〇 In other words, This relay plate 2G is formed by absorbing two piano wires 2A,  The change in height position caused by the deformation of 2B, With this, Auxiliary table 5 (that is, The movable table body 1) is formed so as to be capable of sliding movement within the same plane without changing the overall height. In this situation, When the external force is released by the auxiliary table body 5, The auxiliary table body 5 is connected to each of the piano wires 2A, The 2B spring acts (restoring force) to restore the original position in a straight line.  In addition, Even when the auxiliary table 5 (that is, When the movable table body 1) is rotationally driven in the same plane, For the same reason, And makes the auxiliary table 5 (that is, The movable table body 1) is maintained at a slightly same height, Simultaneously rotate in the same plane. Even in this case, When the external force is released by the auxiliary table body 5, The auxiliary table body 5 is borrowed from 26 1220875 by each piano line 2 A, 2 B's spring action (restoration returns to original position S.  "Electromagnetic drive device" The magnetic drive device can be connected between Yunli table 1 and auxiliary table 5 (see Figure 1) It is given a designated moving force via the auxiliary movable table body 1.  The electromagnetic drive device 4 related to this embodiment is a cloud-driving magnet (in this embodiment, it is provided on the auxiliary table 5 using a permanent magnet; Four field-shaped driving coils, one driven magnet 6, Orienting on the movable table body 1 generates a specified electromagnetic force; Fixed plate 8, The system is shaped as a driving coil 7.  The fixed plate 8 is shown in Fig. 1, At the side of the movable table body 1 (around the auxiliary table body 5 and the movable table body), it is fixedly installed on the casing body 3. Here tablet 8, Alternatively, only the left and right sides of the first and second figures may be provided on the casing body 3. The fixing plate 8 has a through hole 8 A which is allowed within the specified range of the aforementioned connecting pillar 10. Regarding the shape of the through hole 8 A of this embodiment, but, It can also be quadrangular or other shapes.  If the through hole 8 A of the plate 8 is allowable to connect the pillars ί, Any shape is fine.  The aforementioned fixed plate 8 is as described above, The surrounding body-side protrusion 3 is provided. In this situation, Fixed table body 8 force) and described in a straight line, To equip the electric table 5 with: Four are worn by U) 6, 系 装 装 7, In order to maintain the respective field characters through the designated moving direction, set on the auxiliary table body 5: Body 1), Its, For the fixed end is fixed on the central part, The parallel movement of the system is formed into a circular shape, mainly fixed flat. The shape of the 0 operation is maintained by the body and the main body side protrusion 27 1220875 3 The A system integrates it to make it more secure. Therefore, it can be locked by a knock pin after the screw is locked. It may be integrated, or it may be integrated by welding or the like. In this way, even for the displacement or movement of the micrometer (#) unit of the movable table body 1, the fixed flat plate 8 has the advantages of being able to correspond to the housing body 3 without causing positional displacement and smoothness. As shown in FIG. 2 and FIG. 3, the aforementioned four driven magnet systems related to this embodiment are formed by permanent magnets having a quadrangular shape facing the opposing surface system of the drive coil 7. Here, in order to control the movement of the position of the movable table body 1, a plurality of axes are set in the circumferential direction by setting an axis of the origin in the same plane of the movable table body 1 as a reference, and dividing it equally in the circumferential direction. In the case of this embodiment, the aforementioned origin is set so as to coincide with the center portion of the fixed flat plate 8. In this embodiment shown in FIG. 2 and FIG. 3, 'the axis is set at an angle of every 90 ° in the circumferential direction by using an origin and an axis set on the same plane of the movable table 1 as a reference. Divide by four, and set the four axes. In addition, through the aforementioned origin, the groups of the two axes extending in opposite directions to each other are set as the X axis and the Y axis, respectively, and the directions that coincide with the X axis and the Y axis are assumed to be the X direction and the Y direction. Therefore, the so-called X-direction and γ-direction are orthogonal to the aforementioned origin. In addition, the starting position of the movement to form the movable table body 1 is set to the center position of the connecting pillar 10 when the movable table body 1 does not receive external force on the main body portion 3 and exists in a free state, that is, set The center position of the movable table body 1 is made, so that the center position and the origin of the 28 1220875 crossing the X-Y direction mentioned above are unified at the center position of the fixed plate 8. As shown in FIG. 2 and FIG. 3, the four driven magnets 6 are respectively arranged and fixed in the XY direction (on four axes) on the auxiliary table body 5, and are from the origin Equidistant position. At a position facing the four driven magnets 6, a field-shaped driving coil 7 corresponds to the aforementioned four driven magnets 6 and is fixedly mounted on a fixed position on the fixed flat plate 8. The field-shaped driving coil 7 has a cross-shaped coil side along the XY axis at a central portion thereof, and a magnetic interaction between a magnetic force generated by current application and the magnetic force of each driven magnet 6 is provided. The movable table 1 is provided with a moving force (transmission) in a predetermined moving direction. In this case, the orientation of the four driven magnets 6 is such that the magnetic poles facing the field-shaped drive coil 7 side are set to N poles in the present embodiment, and The object is set to the S pole (see Figures 2 and 3). Therefore, the strength between the longitudinal or lateral magnetic force of the cross-shaped coil side of the driving coil 7 and the magnetic force of the driven magnet 6 is constantly unified in the X-axis direction or the Y-axis direction, and is set so that The resulting force is often the largest. Therefore, it is possible to output the generated magnetic force as a driving force for the movable table body 1 with a good efficiency. In addition, the field-shaped driving coil 7 is set to have a size such that the length of the side of the cross-shaped coil having the inner side is such that the maximum moving range of the driven magnet 6 is allowed. Therefore, the electromagnetic force of the field-shaped driving wire 29 1220875 圏 7 generated between the four driven magnets 6 is formed by fixing the field-shaped driving coil 7 to a predetermined position on the fixed flat plate 8 and forming The driven magnet 6 is used as a force to move the auxiliary table body 5 in a predetermined direction to reliably output the force. "Tian-shaped driving coil" As shown in Fig. 5, the force of the T-shaped driving coil 7 forming the main part of the electromagnetic driving device 4 is four small angular coils 7a, 7b '7c which are independent and can be energized. , 7d. In addition, the inner sides of the four small angular coils 7a, 7b, 7c, and 7d project into the cross-shaped coil portions, and the cross-shaped coil sides are formed. Therefore, the operation control system for the energizing direction of each of the small angular coils 7a to 7d described below is switched and controlled externally, thereby forming, for example, a current flowing into a cross-shaped portion of the field-shaped driving coil 7 The discharge is limited to either the vertical or horizontal direction in the figure (including the positive or negative direction), and the driven magnet 6 configured according to this is based on Fleming's left-hand law, It is possible to output an electromagnetic force (reaction force) that presses each of the driven magnets 6 in a predetermined direction. By combining the directions of the electromagnetic forces generated on the four small angular coils 7a to 7d, the cross-shaped coil side portion located inside the aforementioned square-shaped drive coil 7 is set to be oriented vertically or horizontally. By waiting for either of the energized states, an electromagnetic driving force directed to a predetermined direction is output to the corresponding driven magnet 6. The auxiliary force of the auxiliary table 5 30 30 1220875 is formed to give a moving force to an arbitrary direction of the rotation motion included on the χ-γ axis by the combined force of the electromagnetic driving forces generated by the four driven magnets 6. A series of power-on control methods for one of the four small angular coils 7 a to 7 d is described in detail in the description section (FIG. 6 and FIG. 8) of the program memory section 22 described later. In addition, the four small angular coils 7a to 7d may be hollow coils, or may be a structure of a conductive magnetic member filled with ferrous iron and the like inside. In Fig. 5, the hatched part inside the coil indicates the magnetic flux continuity region. Reference numeral 9 denotes an actuation plate which is close to the driven magnet 6 and is fixedly mounted on the side of the field-shaped driving coil 7. << Position Detection and Sensing Mechanism >> The movement state of the auxiliary table body 5 (ie, the movable table body 1) driven by the aforementioned electromagnetic driving device 4 is detected by the position detection and sensing mechanism 2 5. The position detection and sensing mechanism 25 shown in FIG. 6 is formed to have a structure in which a capacitance sensor group 26 is provided with a plurality of detection electrodes of electrostatic capacitance type (in this embodiment, eight The position information calculation circuit 27 performs voltage conversion based on most of the capacitance change components detected by the capacitance sensor group 26, and performs a specified calculation as position change information and transmits it to a table described later. Body drive control device 2 1. The position information calculation circuit 27 is structured as follows: the signal conversion circuit unit 27A performs voltage conversion individually by using a plurality of capacitance change components detected by the capacitance sensor group 26; the position signal calculation circuit 31 1220875 unit 27B In order to convert the voltage signal applied to the majority of the capacitance change components converted by the signal conversion circuit unit 27 into specified X-direction position signals VX and Y-direction by a specified calculation, The position signal VY is calculated and the rotation angle signal 0 is output. Most of the aforementioned capacitive sensor groups 2 to 6 are shown in Figs. 1 to 4 and are composed of the following components: eight angular capacitance detection electrodes 26X1, 26X2, 26X3, 26X4, 26Y1, 26Y2 26Y3 and 26Y4 are the common electrodes (not shown) facing the lower part around the auxiliary table body 5 and arranged above the main body side protruding part 3 B with a specified interval and a wide width. It is a lower part which corresponds to the said electrode and is set around the said auxiliary table body 5. In addition, among the aforementioned capacitance detection electrodes 26X1, 26X2, 26X3, 26X4, 26Υ1, 26Υ2, 26Υ3, 26Υ4, the capacitance detection electrodes 26X1, 26X2 are installed along the right ends of Figs. The capacitance detection electrodes 26X3 and 26X4 are arranged along the upper and lower sides and are spaced apart from each other by a predetermined interval on the upper and lower sides of the capacitor detection electrodes 26X3 and 26X4. In addition, among the aforementioned capacitance detection electrodes 26 × 26X2, 26X3, 26X4, H 26Y1, 26Y2, 26Y3, 26Y4, the capacitance detection electrodes 26Y1, 26Y2 are installed in the upper ends of Figs. 2 and 3 Capacitance detection electrodes 26Y3 and 26Y4 are arranged along the left and right sides at predetermined intervals along the left and right sides of the lower ends of FIGS. 2 and 3. And, for example, in order to make the aforementioned auxiliary table 5 (that is, the movable table 1) to be conveyed by the electromagnetic driving device 4, it is in the direction of arrow F of 32 1220875 (top right in the figure) as shown in FIG. 7A. (Direction)) in the case of moving, in this embodiment, the capacitor detection electrodes 26X1, 26X2 (26Y1, 26Y2) located on one side of the auxiliary table 5 (and the up-down direction) and the other 26X3, 26 × 4 The capacitance change component detected by (26Υ3, 26 电容 4) is configured to be converted to the position signal calculation circuit 27B after voltage conversion by the signal conversion circuit 27A, and the position signal calculation circuit 2 7B is input to the aforementioned Each of the varying voltages is differentially output as the X-direction position signal VX-Y-direction position signal VY. The auxiliary table body 5 is to receive the transmission achieved by the electromagnetic driving device 4. In the case where the rotating operation has been performed in the direction of the arrow as shown in FIG. 7B, in this embodiment, it is the same as the foregoing case. Each unit operates the same, performs the same function, and is configured to perform voltage conversion on a change component and set it to a specified rotation angle signal 0 to perform differential output. Therefore, in this embodiment, the noise that can be applied to each of the capacitance detection electrodes on the left and right (and up and down) of Figure 3 at the same time can be obtained by differential output (for example, The difference between the capacitance change detected by the capacitance detection electrode at one end and the other end; external noise removal function), and the measurement volume is converted after the voltage is converted. , Output (the reduced amount is reduced to a negative amount, for example, as shown in A — (One A) = 2 A), so 'this is an auxiliary table body with high sensitivity output 5 ( Advantages of the position information of the movable table body 1). "Action Control System" 'In this embodiment', 33 1220875 action control system 2 (see Fig. 6) is provided on the aforementioned four aspects of the electromagnetic drive device, which is an individual drive control. The zigzag driving coil 7 restricts the movement or rotation of the movable table body 1. As shown in FIG. 6, this operation control system 20 is provided with: a table body drive control device 21, and a plurality of field-shaped drive lines 圏 7 of most of the aforementioned electromagnetic drive devices 4 are individually determined according to a specified control mode. And drive control of the movable table body in a specified direction; the program memory section 22, most of the stored control programs are related to the aforementioned movable devices specially designated to be installed in the drive control device 21 of the table body. Most control modes of the movement direction, rotation direction, and the amount of movement of the table body 1; the data memory section 23 is the designated data used by Yiyou in the implementation of each of these control programs. With respect to the table driving control device 21, an operation command input unit 24 is provided to issue a command for controlling the operation of a plurality of field-shaped driving lines 圏 7. In such a table driving control device 21, the position information of the movable table 1 during movement and after the movement is formed to be fed in and described later by the position detection sensor 25 Perform arithmetic processing with sensitivity. The aforementioned table body drive control device 21 related to this embodiment has a main control section 2 1 A and a coil drive control section 2 1 B. The main control unit 2 1 A has a function that the program memory unit 22 selects a designated control mode to be operated based on a command from the operation command input unit 24. Perform power-on control. The coil drive control section 2 1 B has the following function 'that is,' according to the control mode set by the aforementioned main 34 1220875 to the control section 2 1 A, four designated field-shaped drive coils 7, 7, ... at the same time or The function of individual drive control. The main control unit 2 A is added with the aforementioned functions and also has the following functions. The function is to calculate the movable table based on the input information from the position detection and sensing mechanism 25 that detects the position of the table body. Position of the body 1, or perform various other calculations. Indicated at 4G is a power supply circuit section in which a predetermined current is applied to each of the field-shaped drive coils 7 of the electromagnetic drive device 4 described above. The above-mentioned table driving control device 21 is provided with a position offset calculation function for performing a specified calculation for inputting information from the position detection and sensing mechanism 25, and based on this, it is calculated in advance and set by the operation instruction input unit 24. The offset between the reference position information of the mobile end; the table position correction function drives the electromagnetic drive device 4 based on the calculated position offset information, and transfers the movable table body 1 to the preset reference position of the mobile end on. Therefore, in this embodiment, when the moving direction of the movable table body 1 is shifted due to interference or the like, the offset is corrected to form the movable table body 1 to a specified direction, thereby, The movable table body 1 is formed to be quickly and accurately transferred to a preset target position. << Program memory part >> The aforementioned table body drive control device 21 is formed in accordance with a specified control program (a specified power-on mode and a specified control mode as a selection combination) stored in the program memory 22 in advance. The four field-shaped driving coils 7 of the aforementioned calcium carbide 35 1220875 driving device 4 are configured to individually perform drive control. That is, in the present embodiment, the program memory section 22 is used to memorize programs for implementing the four basic energization modes for the four individual field-shaped drive coils 7, 7 ... (refer to FIGS. 6 and 8). ). Figure 8 shows the four types of energizing modes A, B, C, D, and D for the four angular small coils 7 a, 7 b, 7 c, and 7 d of the field-shaped drive coil 7 (on the fixing member side). At this time, the direction of the current generated near the cross side of each of the field-shaped driving coils and the direction of the electromagnetic driving force (thrust) of the driven magnet (permanent magnet) 6 generated on the movable member side corresponding to this. In FIG. 8, in the case of the energization mode A, the energization is controlled so that the current is left-handed for one of the small angular coils 7 a and 7 b and the right is for the small angular coils 7 c and 7 d of the other. As a result, the rotating current is added to or cancels out the magnetic flux output to the outside on the cross-shaped ground coil side portion located at the central portion as a whole. The currents IA in the directions are equal. In the energization mode B, each of the small angular coils 7 a to 7 c is individually energized as shown in the figure, whereby a state equal to the current IB in the negative direction with only the energized X axis is formed. In the energization mode c, each of the small-angle coils 7a to 7c is individually energized as shown in the figure, whereby a state equal to the current IC in the positive direction with only the energized Y-axis is formed. Similarly, in the energization mode D, each of the small angular coils 7a to 7c is individually energized as shown in the figure, whereby 36 1220875 is formed to have the same current ID as the negative direction of the energized Y-axis only. Of the state. The four power-on modes A, B, C, and D are implemented based on a predetermined control program stored in the program memory 22 in advance. The white arrows shown in FIG. 8 indicate the electromagnetic driving forces (thrust) generated between the driven magnets (permanent magnets) 6 corresponding to the current-carrying modes A, B, C, and D, respectively. Its orientation. In this case, the corresponding electromagnetic forces are generated on the side of the current-carrying coil 7 of the field-shaped driving coil 7 by Fleming's left-hand law. However, since the field-shaped driving coil 7 is fixed on the fixed flat plate 8, The reaction force is generated as an electromagnetic driving force (thrust) toward the driven magnet (permanent magnet) 6 side. The white arrow shown in Fig. 8 indicates the reaction force (electromagnetic driving force). Therefore, the reaction force (electromagnetic driving force) is reversed by the type of the magnetic poles N and S of the driven magnet 6. The program memory section 22 stores programs for each of the following operations, that is, the first to fourth control modes. In order to assume that the central portion on the fixed plate 8 is set to the origin, the program is performed on the XY plane. The movable table body 1 is moved to the positive and negative two directions of the X axis and the positive and negative two directions of the Y axis; the fifth to eighth control modes are used to move the movable table body 1 to a specified direction within each quadrant set on the XY plane; In each of the ninth to tenth control modes, the movable table body 1 is rotated in a clockwise direction or a counterclockwise direction at a specified position. In Fig. 9 to Fig. 13 in Fig. 3, respectively, it is shown that in the case of implementing the operation programs of the control modes of Tables 1 to 10, 37 1220875 functions of the field-shaped driving coils 7 and auxiliary tables are generated. An example of the movement state of the body (movable table body 1). Figures 9A and 9B show the state when the first control mode is implemented. As shown in the figure, in this first control mode, the two field-shaped driving lines 圏 7 and 7 on the X axis are respectively controlled by the current through the method of the current mode D, and the two field-shaped driving lines on the Y-axis are controlled. The driving coils 7 and 7 are controlled by being energized by the method of the current mode C, respectively. In Fig. 9A, symbols N and S indicate the types of magnetic poles of each driven magnet (permanent magnet) 6. As a result, in this first control mode, an electromagnetic driving force is generated in the directions of arrows FX1, FX2, FX3, and FX4 with respect to each of the driven magnets (permanent magnets) 6, thereby forming a direction toward the X axis. The positive direction (arrow + FX) causes the auxiliary table 5 to be driven. The direction shown in Fig. 9B is an example in which the same electromagnetic driving force has been generated in each of the field-shaped driving coils 7, 7, ... on the X-Y coordinate. Therefore, when the auxiliary table body 5 is moved to the positive direction on the X axis, it is important to make the driving force of the same size on the field-shaped driving coils 7 and 7 on the Y axis particularly important. In the case of the second control mode, the auxiliary table body 5 is moved to the negative direction (not shown) on the X axis according to the type. However, compared with the case of the first control mode, the current mode is energized. Each of the field-shaped driving coils 7, 7,... May be set to be completely opposite. That is, in this second control mode, the two field-shaped driving coils 7, 7 on the X axis are respectively controlled by 38 1220875 energization by the method of the current mode C, and are respectively controlled by the current mode D This method causes the two field-shaped driving coils 7 and 7 on the Y axis to be controlled by being energized, respectively. Thereby, the auxiliary table body 5 is smoothly moved to the negative direction on the X axis (not shown). Figures 10A and 10B show the state when the third control mode is implemented. As shown in the figure, in this third control mode, two field-shaped driving coils 7 and 7 formed on the X axis are respectively controlled by being energized by the current mode A, and two fields on the y-axis are controlled. The zigzag driving lines 、 7 and 7 are respectively controlled by energization by the method of the current mode B. As a result, in this third control mode, an electromagnetic driving force is generated in the directions of arrows FY1, FY2, FY3, and FY4 with respect to each of the driven magnets (permanent magnets) 6, thereby forming a direction Y The positive direction (arrow + FY) on the axis causes the auxiliary table body 5 to be driven.

第10B圖所示係爲在X-Y座標上例示在各個田字形驅 動線圈7、7…中爲已產生有相同之電磁驅動力之情況下的 合力之方向。藉此,在將輔助桌體5移送至 Y軸上之正 方向的情況下,特別是使得在X軸上之各個田字形驅動 線圈7、7上產生有相同大小之驅動力者爲形成重要。 第四控制模式之情況下爲依種將輔助桌體5移送至Y 軸上之負方向(未圖示)之情況者,不過,相較於在前述 第三控制模式之情況爲將電流模式通電至各個田字形驅動 線圈7、7…,亦可設爲完全相反狀。 亦即,在此種第四控制模式中,係分別藉由電流模式B 之手法而使得X軸上之兩個田字形驅動線圈7、7分別被 通電控制,且分別藉由電流模式A之手法而使得Y軸上 39 1220875 之兩個田字形驅動線圈7、7分別被通電控制。藉此,係 使輔助桌體5圓滑的移動至γ軸上之負方向(未圖示)。 第1 1 A圖、第1 1 B圖所示係爲實施第五控制模式之情 況下的狀態。如該圖所示,在該第五控制模式中,係形成 爲X軸上之兩個田字形驅動線圈7、7係分別藉由電流模 式D而被通電控制,且Y軸上之兩個田字形驅動線圈7、 7係分別藉由電流模式B之手法而被通電控制。 其結果,在該第五控制模式中,相對於X軸上之兩個 被驅動磁鐵(永久磁鐵)6,係在箭頭FX1、FX3之方向· 上產生電磁驅動力,且對於Y軸上之兩個被驅動磁鐵(永 久磁鐵)6,係在箭頭FY2、FY4之方向上產生電磁驅動 力,藉此,爲使輔助桌體5被驅動成由X-Y軸上之中心 點朝向第一象限方向(箭頭FXY )的方向。 第1 1B圖所示係爲在X-Y座標上例示有在各個田字形 驅動線圈7、7…上產生相同之電磁驅動力之情況的合力之 朝向。藉此,當將輔助桌體5由X-Y軸上之中心點朝向 第一象限方向(箭頭FXY )而驅動的情況下’藉由將在各· 個田字形驅動線圈7、7…中所通電之電流値的大小進行適 當的設定,而可變化其移動方向。該通電電流之大小係以 前述主要控制部2 1 A所設定控制。 在第六控制模式之情況下,係爲將輔助桌體5由χ-γ 軸上之中心點朝向第三象限方向(未圖示)而驅動的情況, 因此,相較於在前述第五控制模式之情況爲將電流模式通 電至各個田字形驅動線圈7、7…,亦可設爲完全相反狀。 40 1220875 亦即,在此種第六控制模式中,係分別藉由電流模式c 之手法而使得X軸上之兩個田字形驅動線圈7、7分別被 通電控制,且分別藉由電流模式B之手法而使得Y軸上 之兩個田字形驅動線圈7、7分別被通電控制。藉此,係 使輔助桌體5圓滑的由X-Y軸上之中心點朝向第三象限 方向來進行移送(未圖示)。Fig. 10B shows the direction of the resultant force when the same electromagnetic driving force has been generated in each of the field-shaped driving coils 7, 7, ... on the X-Y coordinate. Therefore, when the auxiliary table body 5 is moved to the positive direction on the Y axis, it is particularly important to generate driving forces of the same size on the field-shaped driving coils 7 and 7 on the X axis. In the case of the fourth control mode, the auxiliary table body 5 is moved to the negative direction (not shown) on the Y axis according to the type. However, compared with the case of the third control mode, the current mode is energized. Each of the field-shaped driving coils 7, 7,... May be set to be completely opposite. That is, in this fourth control mode, the two field-shaped driving coils 7 and 7 on the X axis are respectively energized and controlled by the method of the current mode B, and the methods of the current mode A are respectively used. As a result, the two field-shaped driving coils 7 and 7 on the Y-axis 39 1220875 are respectively controlled by energization. Thereby, the auxiliary table body 5 is smoothly moved to the negative direction (not shown) on the γ axis. Figures 11A and 11B show the state when the fifth control mode is implemented. As shown in the figure, in this fifth control mode, two field-shaped driving coils 7, 7 formed on the X-axis are respectively controlled by being energized by the current mode D, and two fields on the Y-axis are controlled. The zigzag driving coils 7 and 7 are respectively controlled by energization by the method of the current mode B. As a result, in this fifth control mode, an electromagnetic driving force is generated in the directions and directions of the arrows FX1 and FX3 with respect to the two driven magnets (permanent magnets) 6 on the X axis, and the two on the Y axis are two The driven magnets (permanent magnets) 6 generate electromagnetic driving forces in the directions of the arrows FY2 and FY4, so that the auxiliary table 5 is driven from the center point on the XY axis to the first quadrant direction (arrow FXY). Fig. 11B shows the direction of the resultant force in which the same electromagnetic driving force is generated in each of the field-shaped driving coils 7, 7, ... on the X-Y coordinate. With this, when the auxiliary table body 5 is driven from the center point on the XY axis toward the first quadrant direction (arrow FXY), 'by energizing the electric current in each of the field-shaped driving coils 7, 7, ... The magnitude of the current 値 can be set appropriately, and its moving direction can be changed. The magnitude of this energizing current is controlled by the above-mentioned main control section 2 1 A. In the case of the sixth control mode, the auxiliary table body 5 is driven from the center point on the χ-γ axis toward the third quadrant direction (not shown). Therefore, compared with the fifth control mode, In the case of the mode, the current mode is energized to each of the field-shaped driving coils 7, 7. 40 1220875 That is, in this sixth control mode, the two field-shaped drive coils 7 and 7 on the X axis are respectively energized and controlled by means of the current mode c, and the current mode B is used respectively. This method causes the two field-shaped driving coils 7 and 7 on the Y axis to be controlled by being energized, respectively. Thereby, the auxiliary table body 5 is moved smoothly from the center point on the X-Y axis toward the third quadrant direction (not shown).

第12A圖、第12B圖所示係爲實施第七控制模式之情 況下的狀態。如該圖所示,在該第七控制模式中,係形成 爲X軸上之兩個田字形驅動線圈7、7係分別藉由電流模 式C而被通電控制,且Y軸上之兩個田字形驅動線圈7、 7係分別藉由電流模式B之手法而被通電控制。Figures 12A and 12B show the state when the seventh control mode is implemented. As shown in the figure, in the seventh control mode, two field-shaped driving coils 7 and 7 formed on the X axis are respectively energized and controlled by the current mode C, and two fields on the Y axis are controlled. The zigzag driving coils 7 and 7 are respectively controlled by being energized by the current mode B method.

其結果,在該第七控制模式中,相對於X軸上之兩個 被驅動磁鐵(永久磁鐵)6,係在箭頭一 FX1、一 FX3之方 向上產生電磁驅動力,且對於Y軸上之兩個被驅動磁鐵 (永久磁鐵)6,係在箭頭FY2、FY4之方向上產生電磁 驅動力,藉此,爲使輔助桌體5被驅動成由X-Y軸上之 中心點朝向第二象限方向(箭頭FYX )的方向。 第12B圖所示係爲在X-Y座標上例示有在各個田字形 驅動線圈7、7…上產生相同之電磁驅動力之情況的合力之 朝向。藉此,當將輔助桌體5由X-Y軸上之中心點朝向 第二象限方向(箭頭FYX )而驅動的情況下,藉由將在各 個田字形驅動線圈7、7…中所通電之電流値的大小進行適 當的設定,而可變化其移動方向。該通電電流之大小係以 前述主要控制部2 1 A所設定控制。 41 1220875 在第八控制模式之情況下,係爲將輔助桌體5由Χ-Υ 軸上之中心點朝向第四象限方向(未圖示)而驅動的情況, 因此,相較於在前述第七控制模式之情況爲將電流模式通 電至各個田字形驅動線圏7、7…,亦可設爲完全相反狀。 亦即,在此種第八控制模式中,係分別藉由電流模式 D之手法而使得X軸上之兩個田字形驅動線圈7、7分別 被通電控制,且分別藉由電流模式Α之手法而使得Υ軸 上之兩個田字形驅動線圈7、7分別被通電控制。藉此, 係使輔助桌體5圓滑的由X-Y軸上之中心點朝向第四象編^ 限方向來進行移送(未圖示)。 第13A圖、第13B圖所示係爲實施第九控制模式之情 況下的狀態。如該圖所示,在該第九控制模式中,爲使輔 助桌體5 (亦即,可動桌體1 )以指定角度(9量額來進行 旋轉運動,而在控制動作中,爲在指定之容許範圍內使不 具有中心軸之輔助桌體5進行左旋之圓周運動、而可靜止 在指定位置之動作。 以及,在該第1 3 A圖所示之第九控制模式中,爲分別W 將X軸之正軸上之田字形驅動線圈7藉由電流圖形A之 手法來進行通電控制、將X軸之負軸上之田字形驅動線 圈7藉由電流圖形B之手法來進行通電控制、將γ軸之 正軸上之田字形驅動線圈7藉由電流圖形D之手法來進 行通電控制、將Y軸之負軸上之田字形驅動線圈7藉由 電流圖形C之手法來進行通電控制。 其結果,在該第九控制模式中,在對應於各個田字形 42 1220875 驅動線圈7、7…之各個被驅動磁鐵(永久磁鐵)6上係產 生有電磁驅動力,該電磁驅動力係分別朝向如第1 1圖所 示之沿著左旋方向而正交於各軸的方向FY1、— FX2、一 FY3、或是 FX4。 因此,如第1 3 A圖所示,藉由將在該各個被驅動磁鐵 (永久磁鐵)6產生之電磁驅動力之大小分別設定控制爲 相同的大小P,輔助桌體5係爲在指定之容序範圍內,即 使是未具有中心軸之狀態下,亦可進行左旋之圓周運動而 靜止在指定位置的動作。 在此情況下,圓周運動後之停止位置係形成爲藉由整 體之電磁驅動力與前述桌體維持機構2之彈簧作用所造成 之恢復原始位置間之平衡點(指定角度0量額、已旋轉之 位置),該位置係預先實驗性地被特別指定在作爲設定旋 轉角度與前述電磁驅動力間之關係,已形成可檢索狀地進 行圖表化(映像化)、而被記憶在前述資料記憶部23中。 第1 3B圖所示係爲在X-Y座標上例示有在各個田字形 驅動線圈7、7…上產生相同之電磁驅動力之情況的合力之 朝向。藉此,當將X-Y軸上之中心點Ο設爲旋轉中心, 輔助桌體5 (亦即,可動桌體1 )係形成爲僅左旋旋轉指 定角度0而停止。 在此情況下,設定旋轉後之停止位置的旋轉角度0之大 小係藉由將在各個田字形驅動線圈7、7…中所通電之電流 値的大小進行適當的設定,而訂定其旋轉角度0。該通電 電流之大小係以前述主要控制部2 1 A所設定控制。 43 1220875 第十控制模式之情況係爲使輔助桌體5 (亦即,可動桌 體1 )成右旋旋轉之情況。因此,在該第十控制模式中, 亦可將在各個田字形驅動線圏7、7…中所通電之同一電流 的朝項設定爲逆向。 亦即,將X軸之正軸上之田字形驅動線圈7藉由電流 圖形B之手法來進行通電控制將X軸之負軸上之田字形 驅動線圈7藉由電流圖形A之手法來進行通電控制、將γ 軸之正軸上之田子形驅動線圈7藉由電流圖形C之手法來 進行通電控制、將Y軸之負軸上之田字形驅動線圈7藉 由電流圖形D之手法來進行通電控制。 藉此,在X-Y軸上,輔助桌體5係形成爲在右旋中僅 以指定角度0量額而進行圓滑地旋轉控制(未圖示)。 有關於該等各個通電模式以及各個控制動作的動作程 式,係亦可輸出狀地被記憶在倂設於桌體驅動控制裝置2 1 內的動作程式記憶部2 2中。並且,桌體驅動控制裝置2 1 係基於來自動作指定輸入部24之指令,選擇前述各個動 作程式中之任何程式,基於此而形成爲驅動控制前述電磁 驅動裝置4。 《電磁致動機構》 電磁致動機構係爲,包含有相互面對、且與可動桌體! 之動作同步而進行相對性移動的致動用磁鐵與非磁性以及 導電性之致動平板9。使前述致動用磁鐵與前述致動平板 9之中的任一方爲被固定在固定位置上,另一方則是被設 置成可與前述可動桌體1之動作爲同步的移動,該致動用 44 1220875 磁鐵與該致動平板9間之組合係形成產生致動力的構造, 該致動力係伴隨於前述可動桌體1之移動、而依據於以產 生在該致動平板9之渦電流所造成之磁力與該致動用磁鐵 之磁力間的磁性作用所產生。 作爲有關本實施例之電磁致動機構的前述致動用磁 鐵,係使用被驅動磁鐵6。在對向於前述四個各個田字形 驅動線圈7之被驅動磁鐵6側之端面部分上,爲如第1 4 圖所示,由非磁性構件所形成之金屬製的致動用平板9係 以與周圍絕緣之狀態下,分別固著裝設於對向、靠近至各 個被驅動磁鐵6之磁極面。 前述電磁致動機構係具備有下述機能,即,對於輔助 桌體5 (可動桌體1 )之急速地移動動作爲將其進行抑制 的同時,使該輔助桌體5 (可動桌體1 )緩慢地進行移動 之機能。 在此,第14A圖係爲表示第1圖之致動用平板9之部 分的局部斷面圖。此外,第1 4 B圖係爲沿著第1 4 a圖之 箭頭A-A線所觀看的平面圖。 當已裝備有四個被驅動磁鐵6之輔助桌體5或是可動 桌體1爲進行激烈的移動動作之情況下,在該各個被驅動 磁鐵6以及與其對應之各個致動用平板9之間,係有電磁 致動(渦電流煞車;eddy-current brake)作動。藉此,車甫 助桌體5 (亦即,可動桌體〇係使激烈的移動動作受到 控制,而形成爲緩慢的移動。 在第1 5 A圖、第1 5 B圖中,針對前述電磁驅動(渦電 45 1220875 流煞車)之產生而進行圖示。 在本圖中,致動用平板9係對向於被驅動磁鐵6之N 極、且被固著至田字形驅動線圈7之端部。 現在,當使輔助桌體5於圖之右方以速度v1來急速地 移動後,金屬製之致動用平板9 (係由於已被固定)而形 成爲相對性地在圖之左方爲藉由同一的速度v2(=vl) 來急速地移動後。藉此,在致動用平板9內爲依據夫來明 右手定律,在第15B圖所示之方向(圖中係爲向上之方向) 產生與速度 v2成比例之大小的電動勢(electromotive force ) EV,藉此,在相同箭頭之方向上爲流動有左右對 向之渦電流。 其次,在電動勢EV之產生區域中係由於存在有來自N 極之磁通量,因此,在該被驅動磁鐵6之磁通量與致動用 平板9內之(電動勢EV方向之)渦電流間,係依據夫來 明左手定律,而在移動用平板9內(朝向圖中之右方)產 生指定之移動力Π。 另一方面’致動用平板9係被固定在固定平板8上, 因此’移動力Π之反力f2係在被驅動磁鐵6上作爲致動 力而產生,其朝向係與移動力fl之朝向形成相逆。亦即, 該種致動力f2係形成爲與被驅動磁鐵6 (亦即輔助桌體5 ) 最初之急速地移動方向爲相逆之方向,此外,其大小係形 成爲與該輔助桌體5之移動速度成比例之大小,因此,係 使該輔助桌體5藉由其急速地移動所抑制,而形成爲以穩 定之狀態來圓滑地進行移動。 46 1220875 即使是其他致動用平板9之處亦全數同樣地產生有指 定之致動力f2。 因此,在已具備備驅動磁鐵6之輔助桌體5中,例如, 在急速地停止動作之際,雖然容易在該停止處上產生往復 動作,不過,相對於此的動作係形成爲被適當的受到抑制、 且圓滑而緩慢地移動。因此,在整體性方面,該各個致動 用平板9係有效地作用其機能,而可在穩定輔助桌體5 (可 動桌體1 )之狀態下使其移動。此外,即使在藉由來自外 部之振動而使得輔助桌體5有往復微小振動的情況下,亦y 可發揮同樣地機能而有效地抑制往復微小振動。 被裝設在該各個田字形驅動線圈7之端面部分、且由 非磁性構件所形成之金屬製的各個致動用平板9係如第16 圖所示,在與各個田字形驅動線圈7間之關係爲構成變壓 器之二次側控制電路,並且,經由指定之低電阻r (產生 渦電流)而構成被短路的型態。 在第1 6圖中,K1係揭示表示田字形驅動線圈7之一 次側捲線,K2係揭示相當於致動用平板9之二次側捲線。¥ 第16A圖所示係爲經由致動用平板9內之電氣電阻成分 (低電阻r :產生渦電流損失)而使得該二次側捲線部分 受到短路的狀態。在此情況下,於致動用平板9內係流動 有與二次側捲線之短路狀態爲相等的電流(亦即,與驅動 線圈7之磁通量大小成比例之渦電流)。即使是附加其他 致動用平板9之處亦完全形成爲同樣的狀態。此外,第1 6 B 圖所示係爲無致動用平板9之狀態(二次側捲線部分爲被 47 1220875 開放的狀態)。 因此,構成此種情況之一次側電路的各個田字形驅動 線圈7係爲,在啓動時之立起時(過渡狀態),即使是因 爲線圈之電感成分而造成有較大電阻存在,係可藉由二次 側短路而有效地減低其影響。在此點方面,係可由啓動時 通電有較大地電流,相較於在前述被驅動磁鐵間並無該致 動用平板9之情況,係可迅速的輸出電磁驅動力。 前述各個致動用平板9係兼具有將在各個田字形驅動 線圈7之驅動時產生的熱釋出的機能。在該特點中,爲有 效地抑制伴隨於驅動線圈之連續運轉而產生之高溫下的電 阻增加、以及通電電流値之降低(亦即,電磁驅動力之降 低),爲可將通電電流設定爲長時間爲一定位準。因此, 對於由電磁驅動裝置所輸出之電磁驅動力,係可持續穩定 來自外部之電流控制,而可有效地抑制長期變形(因爲熱 所造成之絕緣破壞)。藉此,係可提高裝置整體之耐久性、 甚至是裝置整體之信賴性。 此外,在本實施例中,前述致動用平板9係例示爲分 別裝備在作爲致動用平板的各個田字形驅動線圈7中之情 況’不過,亦可將此種致動用平板9形成爲在兩個以上之 田字形驅動線圈7中作爲共同地進行作用的單一之致動用 平板,或是亦可構成爲使多數之田字形驅動線圈7面對於 該單一之致動用平板。 《前述實施例之整體性的動作》 其次,針對於前述第一實施例之整體性的動作進行說 48 1220875 明。 在第6圖中,首先,在由動作指令輸入部24輸入用以 使可動桌體1移動至指定位置的動作指令後,桌體驅動控 制裝置2 1之主要控制部2 1 A係立即作動,基於該動作指 令而由資料記憶部2 3選擇移動端之基準位置資訊,同時 由動作程式記憶部2 2選擇有關於與其對應之指定控制模 式的控制程式,接著,使線圈選擇驅動控制部2 i B作動, 將電磁驅動裝置4之四個田字形驅動線圈7基於指定之控 制模式而驅動控制。 在第1 7圖、第1 8圖中所示之作動狀態係爲,以將可 動桌體1朝X軸之正方向之指定位置移動爲主旨的指令 由動作指令輸入部24來輸入,基於該指令而作動裝置整 體的狀態。 在此實例中,作爲控制模式係選擇於第9圖所揭示之 第一控制模式,係表示據此對於各四個田字形驅動線圈7 而分別於第9圖所示之狀態中選擇通電模式,依據於此而 進行動作。 在此情況下,於前述桌體維持機構2中,當輔助桌體5 爲藉由電磁驅動裝置4而賦予傳送至圖中的右方後,該輔 助桌體5係對抗於各個鋼琴線2A、2B之彈性力(恢復原 始位置之力)而移動。並且,該彈性桌體5 (亦即,可動 桌體1 )係在停止在各個鋼琴線2A、2B之彈性恢復力與 施加至該輔助桌體5之電磁驅動裝置4之電磁驅動力間之 平衡點(移動目標位置)。 49 1220875 在第17圖、第18圖中,符號T係表示已移動之距離。 在第1 8圖中,斜線部分係表示藉由輔助桌體5之移動 而減少前述另一方之電容檢測電極26Χ3、26X4之電容成 分的部分,交叉斜線部分係表示已增加前述一方之電容檢 測電極26X1、26X2之電容成分的部分。此外,在第18 圖中,係表示並無朝向Υ軸方向偏移位置的情況。 動作中,當由於干擾而造成輔助桌體5之移動位置由 木雕位置偏移的情況下,基於該種電容檢測電極26X1、 26X2、26X3、26X4之電容成分之增加減少的資訊而檢測 出實際之移動後的位置,以形成爲進行防止位置偏移用的 反饋(feedback)控制。 另一方面,在由該種狀態而使施加至輔助桌體5的電 磁驅動力被開放後,爲使鋼琴線2A、2B之彈性恢復力賦 予至輔助桌體5而恢復成原始位置。 在該一連串的動作中,輔助桌體5之移動動作係爲, 一般即使在電磁驅動力之施加控制或是開放控制之任何情 況下均會急速地進行。因此,在輔助桌體5(或是可動桌 體1 )中,在移動端之停止時或是於恢復原始位置時之停 止位置上,爲產生有起因於慣性力以及彈簧力的反覆動作 (往復動作)。 然而,在本實施例中,該種反覆動作(往復動作)係 爲藉由產生在致動用平板與被驅動磁鐵間的電磁致動(渦 電流煞車)而受到控制,而朝向指定位置圓滑地移動、以 穩定之狀態來進行停止控制。 50 1220875 即使在由動作指令輸入部24而輸入有用以使可動桌體 1朝向前述以外之其他指定位置的動作指令之情況下,亦 與前述情況相同的,爲即可作動桌體驅動控制裝置2 1之 主要控制部2 1 A,基於該動作指令而由資料記憶部2 3選 擇移動端之基準位置資訊。與其同時地,爲由動作程式記 憶部22而選擇有關於與其對應之指定控制模式的控制程 式。接著,賦予線圈選擇驅動控制部2 1 B,將電磁驅動裝 置4之四個田字形驅動線圈7基於指定之控制模式來進行 驅動控制。 並且,即使是在此種情況下,爲藉由與前述情況相同 的控制動作以及致動用平板來實施致動動作,輔助桌體5 (可動桌體1 )係朝向指定位置而圓滑地移動、且以穩定 之狀態來進行停止控制。 如此,在前述第一實施例中,係無須使用在習知之情 況下所必要的厚重之雙重構造的X-Y軸移動維持機構, 而使將輔助桌體5 (可動桌體1 )由中心位置(在指定範 圍內)維持同一高度位置,同時即使是對於X-Y平面上 之任何方向均可實施圓滑地移動、或是實施在同一面內地 旋轉驅動。 因此,在藉由前述第一實施例後,因爲構造簡單而形 成爲可將裝置整體小型化、輕量化,而在該種特點中’不 僅是可顯著的改善可搬送性,亦具有相較於習知例爲減少 構件數目的優點。再者,有關於減少構件數目方面’係可 使耐久性顯著地提昇,且由於在組裝時之調整無須特別熟 51 1220875 練,因此,係可提高生產性。 即使已裝設有被驅動磁鐵6之輔助桌體5 (可動桌體1 ) 有急速的動作變化,在該被驅動磁鐵6與由非磁性金屬構 件所形成之致動用平板9之間係有與急速變化成比例之大 小的電磁致動(渦電流煞車)力在作動,因此,可動桌體 1係使其急速動作受到抑制,而可在穩定於指定方向之狀 態下進行圓滑地移動。 有關於此種致動用平板9係爲具有在對應於各個被驅 動磁鐵6之狀態下爲個別性地裝設在田字形驅動線圈7的· 簡單構造,或是裝設有亦將產生電磁驅動力之電磁驅動裝 置4裝設在輔助桌體5之被驅動磁鐵6、以及與其對向而 在固定平板8上裝設田字形驅動線圈7之簡單地構造,因 此,係形成爲可進行裝置整體的小型化以及輕量化,不僅 是形成爲良好的可搬送性,即使在組裝作業時亦無須特別 熟練,因此,亦形成爲良好的作業性。 再者,被裝設在驅動線圈7之前述被驅動磁鐵6側之 端面部分上、且由非磁性材料所形成之金屬製的致動用平® 板9係爲,在與驅動線圈7間之關係方面,爲構成與變壓 器之二次側電路爲相等的電路,並且構成爲經由致動用平 板9之電氣電阻成分(產生渦電流損失)而短路的型態。 因此,相較於在開放二次側電路之狀態的情況下,構 成此種情況之一次側電路的田字形驅動線圈7係可通電較 大的電流。藉此’相較於在前述被驅動磁鐵之間並無該致 動用平板9之情況下,係可輸出較大的電磁力。 52 1220875 此外,此種致動用平板9亦具有作爲釋熱板之機能, 因此係可有效地抑制伴隨於田字形驅動線圈7之連續運轉 的長期變形(由熱所造成之絕緣破壞)。藉此,係可增大 裝置整體之耐久性,其結果,爲可提升裝置整體之信賴性。 此外,在前述第一實施例中,雖然爲例示將被驅動磁 鐵6裝設在輔助桌體5之情況,不過,亦可將被驅動磁鐵 裝設在可動桌體1側的同時,爲在與其對向而於固定平板 8上之指定位置上配設有前述各個田字形驅動線圈7。在 此情況下,爲在已貫通固定桌體8之狀態下裝設各個田字 形驅動線圈7,同時,亦可對向於該種各個田字形驅動線 圈7,而將被驅動磁鐵6裝設在可動桌體1側與輔助桌體 5側之雙方。 再者,於前述第一實施例中,作爲驅動線圈雖然係例 示已裝設有田字形驅動線圈7之情況,不過,在本發明中 並非將驅動線圈限定在田字形驅動線圈,若是具有同等機 能時,亦可爲其他型態之驅動線圈。 〔第二實施例〕 將第二實施例揭示於第1 9圖至第20圖。於第1 9圖至 第20圖所示之第二實施例係爲下述特徵,即,刪除在前 述第一實施例中所裝設之輔助桌體5,而將可動桌體31 以桌體維持機構直接地進行維持,同時’藉由電磁驅動裝 置4而構成爲直接驅動可動桌體31。 在該第19圖至第20圖中,符號31係表示四角形之可 動桌體。該種可動桌體31係在上面具有圓形之平坦作業 53 1220875 面 3 1 A。 符號2係表示與在前述第一實施例中之桌體維持機構 相同的桌體維持機構。此種桌體維持機構2係與前述第一 實施例相同的爲配設在第1 9圖之下方部分,爲容許朝向 在可動桌體31之同一面內的移動,同時,在將恢復原始 位置之力附加至該可動桌體31而得之狀態下,維持該可 動桌體31。 亦即,在該第二實施例中,可動桌體31係經由配設在 作爲本體部之外殼本體33之內側的前述桌體維持機構2, 而被組裝至前述外殻本體3 3。 另外,在前述可動桌體31與外殼本體33之後述驅動 裝置維持部(本體側突出部)33A之間,經常地檢測出可 動桌體3 1之移動位置的電容型之位置檢測感測器係裝設 成與第一實施例相同之情況。 亦即,於可動桌體31之第19圖中之下面(底面)的 端部周圍上,爲裝設有已具備指定寬度之平坦面的口字狀 之隔件31B。此外,對向於該共通電極31Ba、且與前述 第一實施例中之電容檢測電極爲相同的電容檢測電極 26X1、26X2、26X3、26X4、26Y1、26Y2、26Y3、26Y4 係設定成與前述第一實施例相同之情況,且被裝設在後述 之驅動裝置維持部(本體側突出部)33A之上面。 桌體維持機構2係與在前述第一實施例中之桌體維持 機構2相同的,將隔有指定間隔所設置之兩根鋼琴線(倘 若是具備有足以充分支撐可動桌體3 1的適度剛性之棒狀 54 1220875 彈性線材時,亦可爲其他構件)2A、2B設爲一組’預先 對應於可動桌體3 1之周端部而準備四組,將該四組之鋼 琴線2A、2B於每組而在四角形狀之中繼平板2G的各個 四隅部分上區分、且分別朝向上方向而植設。 並且,藉由位於內側之四根桌體側之鋼琴線2A而由下 方維持可動桌體3 1,且形成爲藉由位於外側之四根鋼琴 線2B由外殼本體33成搖動自如狀地吊掛中繼平板2G。 藉此,可動桌體3係與前述第一實施例之情況相同的, 係不會改變高度位置、並且在同一面內無論在任何方向上 均可自由地移動,而形成爲亦可同時地在所容許的範圍內 進行旋轉動作。 有關於本實施例之外殻本體(本體部)3 3係如第1 9圖 所示,上方以及下方係形成爲開放的箱體狀。 符號34係表示電磁驅動裝置。此種電磁驅動裝置34 係形成與前述第一實施例中之電磁驅動裝置4爲相同,係 配置在於可動桌體31之第19圖中之下側、且維持在外殻 本體33側上,具備有將移動力賦予至前述可動桌體31的 機能。 符號33A所示係作爲被突設於外殻本體33之內壁部周 圍之本體側突出部的驅動裝置維持部。電磁驅動裝置34 係經由該驅動裝置維持部33A而被維持在外殼本體33 上。 在該驅動裝置維持部33A之第19圖中之上面係設爲平 坦面而形成,在該平坦面上,將可動桌體3 1之位置資訊 55 1220875 輸出外部的電容檢測電極26X卜26X2、26X3、26X4、26Y1、 26Y2、26Y3、26Y4係被裝設成與前述第一實施例之情況 相同,且形成同樣的機能。 前述電磁驅動裝置34係與前述第一實施例之情況相同 的,爲具備有:四個被驅動磁鐵6,爲被固定裝設在可動 桌體31之第19圖中之下面部分的指定位置;田字形驅動 線圈7,爲具有對向於該各個被驅動磁鐵6而配置成十字 狀線圈邊,並且對於該各個被驅動磁鐵6爲沿著前述可動 桌體3 1之指定移動方向而電磁性地賦予指定的驅動力; 固定平板3 8,爲將該田字形驅動線圈7維持在一定位置 的同時。 該固定平板38係爲,在前述可動桌體31上隔有指定 間隔而配置成平行狀,且配設在可動桌體3 1之第1 9中之 下方,其周圍爲被維持在外殻本體33之驅動裝置維持部 33A。 再者,於田字形驅動線圈7之前述被驅動磁鐵6側之 端面側上,爲與前述第一實施例之情況相同的,係個別配 置成使由非磁性金屬構件所形成之致動用平板9靠近被驅 動磁鐵6之磁極面。 有關於本實施例之致動用平板9係爲,被固著在田字 形驅動線圈7之端面部分,形成爲經由該田字形驅動線圈 7而被固定在前述固定平板3 8側之狀態。 此外,有關於此種致動用平板9,亦可構成爲維持抵接 至田字形驅動線圈7之端面部分的狀態、經由其他隔件構 56 1220875 件(未圖示)而固定在固定平板38。此點亦與前述第一 實施例之情況相同。 可動桌體3 1係藉由位在內側之四根桌體側之鋼琴線2 a 來維持。符號3 1 C係爲四根之桌體側腳部,其係用以卡合 在該四根桌體側之鋼琴線2A,而在可動桌體31之第19 圖中由下面朝下方突設。經由該四根桌體側腳部3 1 C,爲 使前述可動桌體31被連結、維持在四根桌體側之鋼琴線 2A上。 在此,該四根桌體側腳部3 1 C之長度係被設定爲,位 於前述內側之四根桌體側之鋼琴線2A可獲得與位於外側 之四根鋼琴線2B在其實效長度L爲相同狀的長度。 在前述固定平板3 8之四角隅部分上,係分別形成有指 定大小的貫通孔38A。有關於本實施例之貫通孔38A雖係 形成爲四角形,不過,若是可容許獲得前述可動桌體31 之動作的大小時,則有關於其形狀亦可爲圓形或是其他形 狀。 分別個別地使前述四根桌體側角度3 1 C貫插前述貫通 孔38A,藉此,所形成之構造係爲使位在第19圖之上方 部分的可動桌體1藉由位在該圖之下方部分的桌體維持機 構2之四根桌體側之鋼琴線2A所維持。 其他之構造以及機能係形成爲與前述第一實施例之情 況爲相同。 以上說明之第二實施例係爲,除了具有略與前述第一 實施例相同之作用效果之外,特別是構成爲刪除在前述第 57 1220875 一實施例中所裝設之輔助桌體5,而使將可動桌體3直接 以桌體維持機構2來維持,同時藉由桌體驅動控制裝置2 1 而直接驅動可動桌體3 1,因此,使得構造爲更加的單純 化,而由於其量額而形成爲可達到小型輕量化。因此’係 使得可動桌體1側之重量減輕,故而不僅可達到桌體維持 機構2之耐久性提昇之目的,亦可達到裝置整體之可搬送 性之提昇。更甚者,係無須將輔助桌體5連接至可動桌體 3 1且進行組合的作業程序,因此,係可顯著地提昇生產 性以及可維修性(m a i n t a i n a b i 1 i t y ),而具有可達到裝置整· 體之成本減低的優點。 〔第三實施例〕 將第三實施例揭示於第21圖。於第2 1圖所示之第三 實施例係爲,在前述第一實施例中,所具有之特徵爲將對 向於各個被驅動磁鐡、且個別的裝設在多數之田字形驅動 線圈之端部的致動用平板9,設爲使用一片之板狀構件而 共用的構造。 在第21圖中,係表示用以取代裝設在前述第一實施例β 之四片的致動用平板9、而裝設有由相同材質所形成之— 片之致動用平板3 9的情況。 在此情況下,於致動用平板3 9之中央部方面,係形成 有貫通孔39Α,該貫通孔39Α爲具有容許下述程度之大 小,即,容許揭示於第1圖之連結支柱1 〇的插通、且_ 該連結支柱10同時在輔助桌體5(亦即可動桌體在第 21圖之正交軸Χ-Υ之平面內進行移動。 58 1220875 此外,此種致動用平板3 9係爲,在第21A圖中,係例 示以抵接至多數之各個田字形驅動線圈7之各個端部之狀 態下,經由該各個田字形驅動線圈7而裝設於固定平板8 之情況。另一方面,有關於該致動用平板3 9,係亦可構 成爲維持抵接至各個田字形驅動線圈7之端面部分的狀 態,同時經由其他隔件構件(未圖示)而被固定在固定平 板8 〇 其他構造係形成與前述第一實施例爲相同。 以上說明之第三實施例係爲,除了具有略與前述第一馨 實施例相同之作用效果之外,更可將致動用平板3 9之組 裝作業較前述第一實施例之情況而更爲顯著地單純化,且 增大致動用平板39之整體的表面積,因此,亦具有作爲 釋熱板之機能。此外,因使得構造單純化,故而可達到生 產性以及裝置之耐久性提昇的優點。 此外,該第三實施例係爲例示構成爲裝設相同材質之 一片的板狀構件的情況來取代在前述第一實施例中之多數 的致動用平板9,不過,並非限定於此。亦可構成如前述® 第二實施例,爲在已刪除輔助桌體5之構造中,將相同材 質之一片的板狀構件作爲單一之致動用平板39來裝設, 而用以取代多數之致動用平板9。 在前述第一至第三之各個實施例中,作爲被驅動磁鐵6 係例示裝設有永久磁鐵之情況,不過,亦可裝設有電磁鐵 以取代永久磁鐵。在此情況下,有關於該電磁鐵之驅動控 制係由前述桌體驅動控制裝置21來擔當,且形成爲與前 59 述各個田字形驅動線圈7之動作連動、選擇其順向、逆向、 或是通電停止狀態而成爲指定的通電控制(未圖示)。 6之情況 外,爲將 之驅動控 各個驅動 係形成爲 變化。此 因應需要 鐵之強度 之第一實 作爲致動 平板9。 電磁致動 鐵作爲致 以及取代 成如下, 裝設在固 動用磁鐵 固定裝設 因此,在裝設有電磁鐵以作爲該被驅動磁鐵 下,除了具有略與前述第一實施例相等之機能以 被驅動磁鐵作爲電磁鐵,因此,係可在可動桌體 制中具有各種的變化。 例如,在移動時之加速/減速時,爲驅動控制 線圈與電磁鐵之雙方以獲得與其對應狀,因此, 可迅速地對應相對於可動桌體之移動方向等的 外,爲將被驅動磁鐵之磁通量密度(磁鐵強度) 而可自由地設定,因此,爲具有可將該被驅動磁 因應於使用狀態來變化的優點。 〔第四實施例〕 在第22圖中揭示第四實施例。揭示於第1圖 施例中的電磁致動機構係爲,使用被驅動磁鐵6 用磁鐵,而構成爲組合該被驅動磁鐵6與致動用 相對於此,有關揭示於第2 2圖之第四實施例之 機構41係爲,將與被驅動磁鐵獨立之另件的磁 動用磁鐵來使用,而構成爲組合該致動用磁鐵、 致動用平板9之致動用平板49。 亦即,在第2 2圖中,電磁致動機構41係構 即:四片之致動用平板49,係以等間隔的固定 定平板8之上面部分的同一圓周上;四個之致 46,爲靠近、對向於該各個致動用平板49,且 60 1220875 在前述可動桌體1之下面部分。 在此,四片之各個致動用平板49與四個之各個致動用 磁鐵46係爲,任一方均被裝設在對應於前述電磁驅動裝 置4之四個各個田字形驅動線圈7以及各個被驅動磁鐵6 的位置上。 該四片之各個致動用平板49係以由非磁性材料所形成 之導電性構件(例如,爲銅製之板材)而構成。此外,四 個之各個致動用磁鐵46係被配置成將其磁極之磁性N、S 以隔一個設置成相逆狀(鄰接之磁鐵的磁性爲形成相異 狀),藉此,經由可動桌體1與固定平板8,而使得磁性 電路形成爲圓滑狀。 其他構造係形成與前述第一實施例爲相同。 以上說明之第四實施例係爲,其作用效果係可獲得略 與在第1圖中所示之第一實施例之情況爲相等的作用效 果’特別是即使針對於電磁致動機構4 1,所獲得之電磁 致動係與在第1圖(第一實施例)所示之致動用平板9與 被驅動磁鐵6間之關係所產生的電磁致動(渦電流致動) 成相等或是更大。 再者,於本實施例中,係由電磁驅動裝置4之設置區 域刪除致動用平板9,因此,係可將各個田字形驅動線圈 9與各個被驅動磁鐵6間之縫隙(間隔)設定爲較小(較 窄)。因此,相較於前述第一實施例之情況,爲具有可將 電磁驅動力設定爲更大的優點。 此外,於前述實施例中,爲例示已刪除在前述第一實 61 1220875 施例(第1圖)中之致動用平板9的情況,不過,實際上, 亦可將致動用平板9維持其裝設狀態下,再新將前述電磁 致動機構4 1以追加裝設之狀態下來使用。 有關於此種電磁致動機構4 1,爲例示特別指定致動用 磁鐵46之數目與致動用平板49之數目以及其裝設處之情 況,不過,本發明並非爲限定於此。有關於致動用磁鐵46, 即使是裝設有三個以上之任意數量、或是針對於致動用平 板49而以對應於各個致動用磁鐵46之大小來裝設指定形 狀之一片之致動用平板均可。 再者,所謂的致動用磁鐵46與致動用平板49係爲, 即使是置換其裝設位置,亦可獲得相等機能之電磁致動機 構41。 〔第五實施例〕 於第23圖中揭示第五實施例。於第23圖中揭示之第 五實施例係具備有下述特徵,即,在前述第19圖所示之 第二實施例中,爲新裝備有電磁致動機構51的同時,係 將該種電磁致動機構51與前述電磁驅動裝置34分離、且 裝設成另件(獨立)狀。 在此情況下,電磁致動機構5 1係如第2 3圖所示,係 藉由下述構件所構成,即:兩個之致動用磁鐵5 6,係被 裝設在固定平板38之上面中央部分;一片之致動用平板 59,係靠近且對向於該致動用磁鐵56,而被固定裝設在 前述可動桌體1之下面部分。 在此,一片之致動用平板59與兩個之各個致動用磁鐵 62 5 6係爲’其任一方均是以與前述電磁驅動裝置4之四個 各個田字形驅動線圈7以及各個被驅動磁鐵6爲獨立狀地 裝設。致動用平板5 9係以由非磁性材料所形成之導電性 構件(例如,鋼製之板材)所形成。此外,兩個之各個致 動用磁鐵5 6係使其磁極的磁性N、S配置成相逆狀(以 使鄰接之磁鐵的磁性形成相異),藉此,經由可動桌體1 與固定桌體3 8而使磁性電路圓滑地形成。 其他構造係形成爲略與在前述第19圖中所示之第二實 施例相同。 第5實施例係爲,除了可獲得略與在第19圖所示之第 二實施例相等之作用效果之外,再者,該第五實施例係由 電磁驅動裝置4之設置區域刪除致動用平板9,因此,係 可將各個田字形驅動線圈7與各個被驅動磁鐵6間之縫隙 (間隔)設定爲較小(較窄)狀。因此,相較於前述第二 實施例之情況,爲具有可將電磁驅動力設定爲更大的優 點。 另外,在前述第五實施例中,係例示刪除在前述第二 實施例(第19圖)中之致動用平板5 9的情況,不過,實 際上亦可維持裝設致動用平板9之狀態下來使用。 此外,針對於電磁致動機構51係爲例示特別指定致動 用磁鐵56之數目與致動用平板59之數目以及其裝設處的 情況,不過,本發明並非被限定於此。針對於致動用磁鐵 56即使是裝設三個以上之任意數目、或是針對於致動用 平板5 9爲對應於各個致動用磁鐵5 6而個別性的獨立裝設 63 1220875 均可。 〔第六實施例〕 於弟24圖中揭不第六貫施例之一例。有關於在第24 圖所示之第六實施例的電磁致動機構之特徵係爲,在於前 述第2 1圖所示之第三實施例中,用以取代致動用平板3 9, 爲具有固著安裝有擴大延伸該致動用平板39之周圍、且 由固著在外殼本體3(參照第1圖)所形成之構造的全新 之致動用平板69’同時,爲具備有已刪除固定平板8之 特點。符號6 9 A係表示形成在致動用平板6 9之中央部地 貫通孔。該貫通孔6 9 A係形成有容許連結支柱1 〇之移行 動作的大小。 在此,致動用平板6 9係以由非磁性材料所形成之導電 性構件(例如,鋼製之板材)所形成。 在該第24圖所示之第六實施例中,藉由固定平板8之 刪除,各個田字形驅動線圈7係形成爲使其下面側被維持 在致動用平板69的型態。 因此,有關於該第六實施例之電磁驅動裝置64係具備 有下述構造,即:致動用平板69 ;各個田字形驅動線圈7, 係被固著在該致動用平板69上;各個被驅動磁鐵6,爲 對應於該各個田字形驅動線圈7而經由致動用平板69以 及指定的間隙,呈現被裝設在輔助桌體5上之狀態。 此外,有關於第六實施例之電磁致動機構係由致動用 平板69與被驅動磁鐵6間之組合所構成。 再者,符號6 6所示係爲四個其他之驅動磁鐵。該四個 64 1220875 其他之驅動磁鐵66係爲,對向於前述各個田字形驅動線 圈7之第24圖中之上面(可動桌體1側之端面)且分別 被固著裝設在可動桌體1上,藉此,爲形成使電磁驅動裝 置64之驅動力強化的狀態。 在此,針對於新追加的各個被驅動電磁鐵66之磁極, 係被設定成使對向於前述各個被驅動磁鐵6之面爲形成相 異磁極(N極與S極爲對向之型態)狀。其他構造係與在 前述第2 1圖中所示之第三實施例形成相同。 即使是如此,仍具備有與前述第21圖中所示之第三實 施例相同的作用效果,特別是致動用平板69與被驅動磁 鐵6間之位置關係係被維持成與前述第三實施例(第2 n 圖)之情況爲相同狀態,因此,藉由致動用平板69所達 成之致動機能亦形成爲與前述第三實施例(第21圖)之 情況爲相同。有關於其他的作用效果,係因已刪除固定平 板8,故而具有更可將裝置整體小型化、輕量化的優點。 在此,有關於新追加之被驅動磁鐵66,例如係可藉由 以鐵材等一般的磁性構件來構成。在此情況下,取代於被 驅動磁鐵66之磁性構件係有效地作爲磁性電路形成構件 的機能。 此外,在該第六實施例中,亦可刪除有關於前述全新 之被驅動磁鐵66。如此一來,係可更加推進裝置整體之 小型化以及輕量化,而有利於更加提昇裝置之泛用性。 〔第七實施例〕 《關於驅動線圈之其他實施例》 65 1220875 表示有關於前述各個驅動線圈7之其他實施型態之例 子’表示與致動平板間之關係。在此情況下,驅動線圈以 外之其他構成部分係分別被構成爲與前述各個實施例之構 件爲相等狀,在此,係省略其說明。 (1 ) 關於田字形驅動線圈之實施例 在前述各個實施例中,係爲例示在X _ γ軸上,已限定 裝設有形成以作爲電磁驅動裝置4、3 4、6 4之主要部之驅 動線圈的田字形驅動線圈7之情況,不過,亦可如第2 5 圖所示而將田字形驅動線圈7裝設在由X-Y軸上偏移之 位置上。 在此情況下,被驅動磁鐵6 (或是6 6 )係在對應於田 字形驅動線圈7之位置上,而被固著在前述田字形驅動線 圈7側。 包含於該種第2 5圖之情況,有關於位在該田字形驅動 線圈7之內側的十字狀線圈邊之配置,在前述各個實施例 中係爲例示使其縱向或是橫向之線圈邊部分沿著前述χ-γ 軸所配置的情況,然而,本發明並非一定限定於此,亦可 配置成對於X軸或是Y軸爲具有指定之傾斜度。 有關於此種田字形驅動線圈7,在第25圖中係例示已 裝設有四個的情況,不過,若是具有相等的機能之構件時, 則亦可爲三個、亦可爲五個以上。 再者,有關於該種田字形驅動線圈7,其外徑亦可爲除 了四角形以外的形狀。 (2 ) 田字形驅動線圈以外之驅動線圈(之一) 66 1220875 在前述各個實施例中,作爲形成電磁驅動裝置之主要 部的驅動線圈,係爲例示已裝設有田字形驅動線圈7之情 況,不過,其係僅爲例示性地記載,若是具有相等之機能 時,則亦可裝設有其他驅動線圈來取代該種裝置。 第26A圖所示係爲,作爲驅動線圈,爲使用內側面積 較大的單一之口狀驅動線圈7 1,對向於該口狀驅動線圈7 1 之四標部分,磁極之N、S係以可個別地進行可變設定(亦 包含通電停止控制),而個別地配置全部之四個電磁鐵8 1, 藉此,係揭示構成電磁驅動裝置4 (或是34 )的情況。 在此種實例中,藉由適當地將朝向口狀驅動線圈7 1以 及各個電磁鐵81之通電方向以及包含通電停止之指定的 電流量進行通電控制,除了可動桌體1 (或是3 1 )之旋轉 動作,亦形成爲可對於全方向之移動動作進行驅動控制。 口狀驅動線圈7 1之形狀係亦可爲矩形、亦可爲正方形。 (3 ) 田字形驅動線圈以外之驅動線圈(之二) 第26B圖所示係爲,作爲驅動線圈,爲使用內側面積 較小的四個口狀驅動線圈7 2與八個電磁鐵8 2之實例。 在該第26B圖之實例中,爲將四個各個口狀驅動線圈72 在與χ-γ軸交叉處爲配置成例如形成爲左右對稱的位置 狀。此外,該種各個口狀驅動線圈7 2係對向於位在分別 與X軸、Y軸交叉之處的各個口狀驅動線圈72的線圈邊 部分,使磁極之N、S爲可進行可變設定(亦包含通電停 止控制)地而將全部八個電磁鐵81進行個別地配置,藉 此來構成電磁驅動裝置4 (或是3 4 )。 67 1220875 即使在此實例中亦與前述第26A圖之情況爲相同,藉 由將包含對於各個口狀驅動線圈72以及各個電磁鐵82之 通電方向與通電停止的指定之電流量進行適度的通電控 制,而形成爲對於除了可動桌體1 (或是3 1 )之旋轉動作 以外之朝向全方向之移動動作的驅動控制。即使是在此情 況下,口狀驅動線圈72之形狀係亦可爲矩形、亦可爲正 方形。 (4) 田字形驅動線圈以外之驅動線圈(之三) 第27A圖所示係爲,作爲驅動線圈,爲使用內側面積鲁 較小的四個口狀驅動線圈7 3與八個電磁鐵8 3之實例。 在該第27A圖之實例中,爲將四個之各個口狀驅動線 圈73以例如形成左右對稱狀而配置在與X-Y軸交叉之 處。此外,此種各個口狀驅動線圈7 3係對向於位在分別 未與X軸、Y軸交叉之處上的各個口狀驅動線圈73之線 圈邊部分,以可將磁極之N、S進行可變設定(亦包含通 電停止控制)而將全部之八個電磁鐵83個別地配置,藉 此,構成電磁驅動裝置4或34。 * 在此種實例中,藉由適當地將朝向口狀驅動線圈7 3以 及各個電磁鐵83之通電方向以及包含通電停止之指定的 電流量進行通電控制,爲與前述第一至第三之各個實施例 之情況相同的,係形成爲可進行旋轉動作以及對於全方向 之移動動作進行驅動控制。在此種情況下,口狀驅動線圈 7 3之形狀係亦可爲矩形、亦可爲正方形。 (5 ) 田字形驅動線圈以外之驅動線圈(之四) 68 1220875 第27B圖所示係爲,使用一種被形成單一之空心十字 狀的十字狀框形驅動線圈74與八個電磁鐵84以作爲驅動 線圈的實例。 在該第27A圖之實例中,十字狀框形驅動線圈74之縱 向以及橫向之中心線部分係以例如形成爲左右對稱狀的位 置上而配置在位於X-Y軸上之處。並且,該十字狀框形 驅動線圈74係對向於位在分別未與X軸、Y軸交叉之處 上的十字狀框形驅動線圈7 4之線圈邊部分,以可將磁極 之N、S進行可變設定(亦包含通電停止控制)而將全部 之八個電磁鐵8 4個別地配置,藉此,構成電磁驅動裝置 4 或 34 〇 即使在此種實例中,藉由適當地將朝向十字狀框形驅 動線圈74以及八個電磁鐵84之通電方向以及包含通電停 止之指定的電流量進行通電控制,爲與前述第一至第三之 各個實施例之情況相同的,係形成爲可進行旋轉動作以及 對於全方向之移動動作進行驅動控制。 並且,在前述(2 )至(5 )之各個實例中,以個別性 地抵接於各個驅動線圈7 1、7 2、7 3、或是7 4之指定線圈 邊部分、且個別性的對向於各個被驅動磁鐵6,而使前述 各個致動用平板9被固著裝設在各個被驅動磁鐵之前述驅 動線圈側上。 此外,此種情況亦與前述第三實施例之情況(參照第2 1 圖)相同的,亦可裝設有將由相同構件所形成單一的板狀 構件作爲致動用平板3 9 (未圖示),而用以取代多數之各 69 1220875 個致動用平板9。 如上述說明之前述實施例係爲,係可使支撐被加工物 之可動桌體在同一面上(並無高度位置之變化)、於指定 方向上自由且圓滑地精密移動或是恢復至原始位置,而已 裝設有利用彈性構件以在同一面內使可動桌體在任意方向 上移動之構件來作爲桌體維持機構,因此,係無須習知技 術中所必須的雙重構造之滑動機構。因此,由於不需要特 別的精密加工等,故而形成爲可大幅改善加工組裝作業、 以及達到裝置整體之小型輕量化。 再者,因已裝設有對向於構成桌體驅動用之電磁驅動 裝置之局部的多數之磁鐵、且由非磁性構件所形成之導電 性的致動平板,因此,即使在停止時由於可動桌體之往復 移動動作的重覆或是起因於周圔之振動等而造成在同一面 內的微小振動等,亦形成爲可將其有效地進行抑制。藉此, 係可圓滑地進行該可動桌體之精密移動。 如前所述,爲具備有:可動桌體,係被配設成可在同 一面上於任意之方向來移動;桌體維持機構,係容許朝向 在該可動桌體之同一面內之任意方向地移動;本體部,爲 支撐前述桌體維持機構;電磁驅動裝置,係被裝設在該本 體部側,且將移動力賦予至前述可動桌體。此外,前述桌 體維持機構係如後所述,係爲一種即使是具備有將恢復原 始位置之力附加至前述可動桌體之機能者亦可。 此外,電磁驅動裝置係被構成如下,即:多數之被驅 動磁鐵’爲至少被固定裝設在前述可動桌體側之指定位置 70 1220875 的體前 置桌, 配動外 而可此 鐵著 。 磁沿力 動爲動 驅係驅 被鐵的 個磁定 各動指 該驅予 於被賦 向個地 對各性 有該磁 具於電 爲對而 J 5 上口 _ 圈且方 線並動 動,移 驅邊定 ; 圈指 上線之 述驅動線圈係爲亦可經由固定平板、或是經由其他構件以 取代該固定平板,進而用以組裝至本體部。 此外,係使由非磁性金屬構件所形成之致動用平板接 近、配設在前述被驅動磁鐵的磁極面,藉由該致動用平板 與被驅動磁鐵之間的組合,而構成電磁致動機構。 因此,本實施例係爲,當作動檢磁驅動裝置後,首先, 爲在具備有該電磁驅動裝置之驅動線圈與被驅動磁鐵之間 產生磁力,使可動桌體被賦予有於指定方向之移動力。 在此情況下,可動桌體係藉由桌體維持機構,而藉由 容許在同一面內中朝任意方向之移動的狀態所維持,因 此,將不會有上下動作而於指定方向上圓滑地移動,且停 止在前述桌體維持機構所具有之恢復原始位置之力與電磁 驅動裝置之磁力爲取得平衡的位置(亦即,指定之移動停 止位置)。 另一方面,此種可動桌體係爲,當在其移動/停止時進 行急速加速或是急速減速後,係使可動桌體本體被急速推 進/急速停止,特別是在停止時,容易藉由與前述桌體維 持機構所具有之恢復原始位置之力間的相互作用來引起反 覆地往復移動。 在該種情況下,藉由可動桌體之急速的動作變化而在 該被驅動磁鐵與致動用平板之間有電磁致動(渦電流煞 71 1220875 車)作動,藉此,可動桌體係爲使其急速的動作得以受到 抑制’而可在指定方向上以穩定的狀態來緩慢、圓滑地進 行移動。 此外,電磁致動機構係藉由致動用平板以及被驅動磁 鐵間之組合而具有簡單的構造,電磁驅動裝置係藉由被驅 動磁鐵以及與其封向之驅動線圈間之組合而具有簡單的構 造,因此,在與具備有雙重構造之移動機構的習知構造相 較之下,爲形成可達成裝置整體之小型化以及輕量化,並 且不僅具有良好之可搬送性,即使在組裝作業時,亦無須鲁 特別需要熟練的操作,因此作業性亦形成爲良好狀,而形 成爲可提升生產性。 再者,被裝設在驅動線圈之前述被驅動磁鐵側之端面 部分、且由非磁性構件所形成之金屬製的致動用平板係構 成如下,即,在與驅動線圈間之關係爲構成相當於變壓器 之二次側電路的電路,並且經由致動用平板之電氣電阻成 分(產生渦電流損失)而構成爲被短路的型態。 因此,構成變壓器之一次側電路的驅動線圈係可,可 藉由較爲大於當二次側電路爲開放狀態之情況下的電流來 進行通電。藉此,在前述被驅動磁鐵之間,係形成爲可輸 出相較於未具有該致動用平板之情況下的較大之電磁力。 此種致動用平板亦具有作爲釋熱板之機能,在該特點 中,係可有效地抑制伴隨於驅動線圈之連續運轉的長期變 形(由熱所造成之絕緣破壞)’而可提升裝置整體之耐久 性以及信賴性。 72 1220875 此外,亦可採用如下所述之構造,即,對於可動桌體, 爲與其對向且隔有指定間隔地將輔助桌體以平行、一體性 地進行連結裝設,同時,在該輔助桌體側上爲裝設有前述 桌體維持機構,在該輔助桌體上裝設有前述被驅動磁鐵。 藉由在輔助桌體中裝設被驅動磁鐵,在組裝作業時, 係可有效地迴避可動桌體之損害事故等之產生。 此外,將驅動線圈藉由多個田字形驅動線圈所構成的 同時,亦可採用如下述之構造,即,爲將對應於位在該田 字形驅動線圈內側之十字狀部分的前述被驅動磁鐵成個別 性的配設之構造。藉此,於田字形驅動線圈之內側中所設 定之容許移動範圍內,係可使各個被驅動磁鐵(甚至是可 動桌體)於指定方向自由且精密地移動。 在此情況下,田字形驅動線圈係爲,藉由在實際上另 外所配備的驅動控制裝置,而強制性地產生在例如與對應 於X方向或是γ方向之驅動力的各個被驅動磁鐵間,將 整體進行總括控制、經由該被驅動磁鐵而形成爲可使可動 桌體移動至指定的方向。 此外,亦可採用將多數之被驅動磁鐵以永久磁鐵所構 成的構造。爲了將被驅動磁鐵作爲永久磁鐵,係無須如同 電磁鐵之通電電路,由於該部分,係可迴避在組裝時以及 維修檢測時之作業的繁雜性,從而,爲可達到生產性以及 可維修性地提昇、且可增加裝置整體的耐久性。 此外’在將前述多數之被驅動磁鐵以電磁鐵所構成, 同時’亦可構成爲將該被驅動磁鐵連動於前述驅動線圈, 73 1220875 而選擇其順向、逆向、或是通電停止狀態而進行通電控制。 因此,係可使可動桌體之驅動控制時具有各種的變化。 例如,在可動桌體之移動時之中的加速/減速方面,驅動 線圈與電磁鐵之雙方爲可藉由進行驅動控制而得以對應, 因此,對於可動桌體之移動方向等之變化係可迅速地進行 對應。亦可自由地設定被驅動磁鐵之磁通量密度(magnetic f 1 u X d e n s i t y ),因此,係可將該被驅動磁鐵之強度因應於 使用狀態來進行改變。 此外,爲將前述致動用平板對應於多數之被驅動磁鐵 而個別地進行裝設,此外,亦可用以將致動用平板固定在 各個驅動線圈側之端部。 再者,亦可將前述致動用平板形成爲,將前述多數之 被驅動磁鐵整體作爲對向而以單一之平板構件所構成,將 該單一之平板構件固著裝設在前述各個驅動線圈之各個磁 鐵側端部。 再者,藉由將致動用平板裝設在各個驅動線圈中,而 可在驅動線圈相互間進行空間的設定,以獲得維修保養作 業之圓滑化、亦即達到提昇可維修性的目的。 此外,將致動用平板構成爲將多數之被驅動磁鐵整體 作爲對向、且以單一之平板構件所構成,藉此,係可使組 裝作業單純化,而可達到裝置整體之生產性與耐久性之提 昇、以及達到降低成本的目的。 此外,亦可由驅動線圈側分離致動用平板,而與新的 其他致動磁鐵組合、而構成電磁致動機構。在此情況下, 74 1220875 係可將致動用平板形成爲裝設在與驅動線圈不同之處。 因此,形成爲可將電磁致動機構與電磁驅動裝置分離、 且設定在任意處,而可自由地設定電磁驅動力之強度。在 此情況下,在電磁驅動裝置側方面係可將驅動線圏與被驅 動磁鐵間之間隙設定爲更小値,因此,係可使在驅動線圈 與被驅動磁鐵間所產生的電磁驅動力效率爲佳的發生。 此外,將致動平板以對應於各個被驅動磁鐵的單一之 致動平板所構成,將該單一之致動平板固定在本體部上, 並且亦可形成爲藉由該單一之致動平板來維持前述驅動線 圈。 因此,不僅爲可刪除前述固定平板,藉由致動用平板 係更可維持驅動線圈。再者,係由於可刪除固定平板,因 此,係可更加的促進裝置整體之小型輕量化。藉此,爲可 提高更佳之可搬送性以及泛用性,且伴隨於構成要件的刪 減而可達到成本減低的目的。 〔第八實施例〕 於第28圖中係揭示第八實施例。揭示於第28圖之第 八實施例係爲具備有下述特徵,即,將於前述第一實施例 中之四個之各個田字形驅動線圈7以分別貫通於前述固定 平板48之孔的狀態下固著裝設在該固定平板48,同時, 個別的對應於該各個田字形驅動線圈7之端面,分別在前 述輔助桌體5以及可動桌體1上裝設被驅動磁鐵,藉此, 已構成電磁驅動裝置44。 符號48A係表示貫通孔,其係與在第1圖中之貫通孔 75 1220875 8A爲相同的容許連結支柱1 0之移動動作。此外,符號49、 5 〇係分別表示致動用平板,其係在分別抵接於各個田字 形驅動線圈7之各端面、且在固定平板8之兩面上,爲以 分別對向、且靠近於前述各個被驅動磁鐵6之狀態下所分 別固著裝設。其他的構造係形成爲與前述第一實施例爲相 同。 本實施例係具有與前述第一實施例相同的作用效果之 外,更將被驅動磁鐵6分別裝設成以上下夾持田字形驅動 線圈7之兩端面的十字狀線圈邊,因此,係可使電磁驅動 力倍增。故而可在更加迅速且穩定之狀態下將輔助桌體5 以及可動桌體1進行平面驅動,而具有可獲得提昇裝置整 體之性能以及信賴性的優點。 在此,針對有關於前述本實施例之致動用平板49、50, 係爲例示分別區隔.前述各個田字形驅動線圈7之各個端 面、在同一面上個別的獨立裝設之情況,不過,亦可與前 述第三實施例中之致動用平板3 9 (參照第2 1圖)之情況 爲相同狀,爲構成以一片之致動用平板來共通的對向於輔 助桌體5側(或是可動桌體1側)之各個被驅動磁鐵6來 進行共用。 此外’在於第28圖所示之第八實施例中,作爲電磁致 動機構之致動用磁鐵係爲使用電磁驅動裝置之被驅動磁鐵 6,不過’亦可取代該等被驅動磁鐵,而使用另件的致動 用磁鐵’組合該種致動用磁鐵與致動用平板而構成電磁致 動機構’藉由將該種電磁致動機構由電磁驅動裝置分離設 76 1220875 定,而亦可刪除致動用平板49、50。 如此一來,係可減小各個被驅動磁鐵6與對應之各個 田字形驅動線圈7間之縫隙,而具有可將在其兩者間作動 之電磁驅動力設定爲較大値的優點。 〔第九實施例〕 其次,說明關於前述田字形驅動線圈之其他構造例。the result, In this seventh control mode, Relative to the two driven magnets (permanent magnets) 6 on the X axis, Tied to arrow one FX1 One FX3 generates electromagnetic driving force in the direction, And for the two driven magnets (permanent magnets) 6 on the Y axis, Tied to arrow FY2 An electromagnetic driving force is generated in the direction of FY4, With this, In order to drive the auxiliary table body 5 from the center point on the X-Y axis toward the second quadrant direction (arrow FYX).  Fig. 12B shows the X-Y coordinate with the driving coils 7, 7 ... The direction of the resultant force in the case where the same electromagnetic driving force is generated. With this, When the auxiliary table body 5 is driven from the center point on the X-Y axis toward the second quadrant direction (arrow FYX), By driving the coils 7, 7 ... The current value 値 energized in 7… is set appropriately. The direction of movement can be changed. The magnitude of this energizing current is controlled by the above-mentioned main control section 2 1 A.  41 1220875 In the case of the eighth control mode, It is the case where the auxiliary table body 5 is driven from the center point on the X-Υ axis toward the fourth quadrant direction (not shown).  therefore, Compared with the case of the aforementioned seventh control mode, the current mode is turned on to each field-shaped driving line 圏 7, 7 ..., It can also be set to be completely opposite.  that is, In this eighth control mode, The two field-shaped driving coils 7 on the X axis are made by the current mode D, respectively. 7 are respectively controlled by power-on, And the two field-shaped driving coils 7, 7 are respectively controlled by power-on. With this,  The auxiliary table body 5 is moved smoothly from the center point on the X-Y axis toward the fourth image direction (not shown).  Figure 13A, Fig. 13B shows the state when the ninth control mode is implemented. As shown in the figure, In this ninth control mode, To assist table 5 (i.e., The movable table body 1) rotates at a specified angle (9 amounts), And in the control action, In order to make the auxiliary table body 5 without a central axis perform a left-handed circular motion within a specified allowable range, It can move at a specified position.  as well as, In the ninth control mode shown in FIG. 1A, For each W, the field-shaped driving coil 7 on the positive axis of the X-axis is controlled by the current pattern A, The field-shaped drive coil 7 on the negative axis of the X-axis is controlled by energization using the current pattern B. The field-shaped drive coil 7 on the positive axis of the γ-axis is energized by the method of the current pattern D. The field-shaped drive coil 7 on the negative axis of the Y-axis is controlled by the current pattern C.  the result, In this ninth control mode, Driven coils corresponding to each field shape 42 1220875 7, Each of the 7 driven magnets (permanent magnets) 6 generates an electromagnetic driving force, The electromagnetic driving forces are respectively oriented in directions FY1 along the left-hand direction and orthogonal to the axes as shown in FIG. 11. — FX2 A FY3, Or FX4.  therefore, As shown in Figure 1 3 A, By setting and controlling the magnitude of the electromagnetic driving force generated by each of the driven magnets (permanent magnets) 6 to the same size P, The auxiliary table body 5 is within the specified capacity sequence. Even without the central axis, It can also perform a left-handed circular motion and stand still at a specified position.  In this situation, The stop position after the circular motion is formed as a balance point between the original electromagnetic position and the restoration of the original position caused by the spring action of the table maintenance mechanism 2 (specified angle 0 amount, Rotated position), This position is experimentally specified in advance as a relationship between the set rotation angle and the aforementioned electromagnetic driving force, Graphically searchable (map), It is stored in the aforementioned data storage unit 23.  Fig. 1B shows the X-Y coordinates with the driving coils 7, 7 ... The direction of the resultant force in the case where the same electromagnetic driving force is generated. With this, When the center point 0 on the X-Y axis is set as the rotation center,  Auxiliary table 5 (that is, The movable table body 1) is formed so as to stop by a left-handed rotation by a specified angle 0.  In this situation, The rotation angle of the stop position after the rotation is set to a value of 0 is obtained by driving the coils 7, The size of the current 値 energized in 7… is set appropriately. And set its rotation angle to 0. The magnitude of this energizing current is controlled by the above-mentioned main control section 2 1 A.  43 1220875 In the case of the tenth control mode, the auxiliary table 5 (that is, The movable table body 1) is rotated to the right. therefore, In this tenth control mode,  It is also possible to connect the drive lines 田 7, The item of the same current energized in 7… is set to reverse.  that is, The field-shaped drive coil 7 on the positive axis of the X-axis is energized by the current pattern B. The field-shaped drive coil 7 on the negative axis of the X-axis is energized by the current pattern A. The field-shaped drive coil 7 on the positive axis of the γ axis is controlled by energization by the method of the current pattern C, The field-shaped drive coil 7 on the negative axis of the Y-axis is controlled by the current pattern D.  With this, On the X-Y axis, The auxiliary table body 5 is formed to perform smooth rotation control (not shown) at a specified angle of 0 during right-hand rotation.  Regarding the operation modes of each of these power-on modes and each control action, The system can also be stored in an output form in an action program memory section 2 2 provided in the table body drive control device 2 1. and, The table driving control device 2 1 is based on a command from the motion designation input unit 24, Choose any of the previous actions, Based on this, it is formed to drive and control the aforementioned electromagnetic driving device 4.  "Electromagnetic Actuating Mechanism" The electromagnetic actuating mechanism is, Including facing each other, And with the movable table body!  The actuation magnets which perform relative movement in synchronization with each other and the non-magnetic and conductive actuation plate 9 are synchronized. One of the actuating magnet and the actuating plate 9 is fixed in a fixed position, The other side is a movement that is set to be synchronized with the movement of the movable table body 1, The combination of the actuation 44 1220875 magnet and the actuation plate 9 forms a structure generating an actuation force,  The actuation force system is accompanied by the movement of the movable table body 1, It is generated based on the magnetic effect between the magnetic force caused by the eddy current generated in the actuation plate 9 and the magnetic force of the actuation magnet.  As the aforementioned actuating magnet with respect to the electromagnetic actuating mechanism of this embodiment, The system uses a driven magnet 6. On the end face portions facing the four magnet-shaped drive coils 7 on the driven magnet 6 side, As shown in Figure 1 4 The metal actuating plate 9 made of a non-magnetic member is insulated from the surroundings. Fixedly installed on the opposite side, Close to the magnetic pole face of each driven magnet 6.  The aforementioned electromagnetic actuating mechanism is provided with the following functions, which is, As for the rapid movement of the auxiliary table 5 (movable table 1) to suppress it, This auxiliary table body 5 (movable table body 1) is capable of moving slowly.  here, Fig. 14A is a partial cross-sectional view showing a portion of the actuation plate 9 of Fig. 1. In addition, Figure 14B is a plan view viewed along the arrow A-A line in Figure 14a.  When the auxiliary table body 5 or the movable table body 1 equipped with four driven magnets 6 is engaged in a fierce movement, Between the respective driven magnets 6 and respective actuation plates 9 corresponding thereto, With electromagnetic actuation (eddy current brake; eddy-current brake). With this, Che Fu Help Table 5 (that is, The movable table 〇 controls the intense movements, Instead, it forms a slow movement.  In Figure 1 5 A, Figure 1 5 B, The generation of the aforementioned electromagnetic drive (eddy current 45 1220875 flow brake) is illustrated.  In this figure, The actuation plate 9 is opposed to the N pole of the driven magnet 6, It is fixed to the end of the field-shaped driving coil 7.  right now, When the auxiliary table body 5 is rapidly moved at the speed v1 on the right side of the figure, The metal actuating plate 9 (because it has been fixed) is formed relatively quickly after moving at the same speed v2 (= vl) on the left side of the figure. With this, In the actuation plate 9, based on Fleming's right-hand law, In the direction shown in FIG. 15B (the upward direction in the figure), an electromotive force EV having a magnitude proportional to the speed v2 is generated, With this, In the direction of the same arrow, an eddy current flows in the opposite direction.  Secondly, In the area where the electromotive force EV is generated, there is a magnetic flux from the N pole, therefore, Between the magnetic flux of the driven magnet 6 and the eddy current (in the direction of the electromotive force EV) in the actuating plate 9, Is based on Fu Lai-ming's left-hand law, In the moving tablet 9 (toward the right in the figure), a specified moving force Π is generated.  On the other hand, the actuation plate 9 is fixed to the fixed plate 8,  Therefore, the reaction force f2 of the moving force Π is generated as the actuating force on the driven magnet 6, Its orientation is opposite to that of the moving force fl. that is,  This actuating force f2 is formed in a direction opposite to the rapid initial movement direction of the driven magnet 6 (that is, the auxiliary table body 5). In addition, Its size is proportional to the moving speed of the auxiliary table body 5, therefore, The auxiliary table 5 is suppressed by its rapid movement, Instead, it moves smoothly in a stable state.  46 1220875 The specified actuating force f2 is generated in the same manner even in the other actuating flat plates 9.  therefore, In the auxiliary table body 5 already equipped with the driving magnet 6, E.g,  At the moment when I stopped moving quickly, Although it is easy to generate reciprocating motion at this stop, but, In contrast, the action is appropriately suppressed,  And move smoothly and slowly. therefore, In terms of integrity, The respective actuation plates 9 are effective in functioning, The auxiliary table body 5 (movable table body 1) can be moved while being stabilized. In addition, Even in the case where the auxiliary table body 5 has a minute reciprocating vibration due to the vibration from the outside, Also, the same function can be exerted to effectively suppress reciprocating minute vibration.  Is mounted on the end face portion of each of the field-shaped drive coils 7, And each of the actuating plates 9 made of a metal formed of a non-magnetic member is shown in FIG. 16, The relationship with each field-shaped drive coil 7 is the secondary-side control circuit constituting the transformer, and, It is short-circuited by the specified low resistance r (eddy current).  In Figure 16 The K1 series reveals that one of the field-shaped driving coils 7 is a secondary winding, The K2 series reveals the secondary winding of the plate 9 for actuation. ¥ Figure 16A shows the electrical resistance components (low resistance r: Eddy current loss), and the secondary winding is short-circuited. In this situation, A current equal to the short-circuit state of the secondary winding is flowing in the actuation plate 9 (that is, Eddy current proportional to the magnitude of the magnetic flux of the drive coil 7). Even in the case where other actuation plates 9 are added, they are completely formed in the same state. In addition, Fig. 16B shows the state of the non-actuated flat plate 9 (the secondary side winding part is opened by 47 1220875).  therefore, Each of the field-shaped driving coils 7 constituting the primary circuit in this case is, When standing up (transition state) at startup, Even if there is a large resistance due to the inductance component of the coil, The effect can be effectively reduced by the secondary short circuit. In this regard, It can be powered by a large ground current at startup, Compared with the case where the actuating plate 9 is not provided between the driven magnets, The system can quickly output electromagnetic driving force.  Each of the aforementioned actuation plates 9 has a function of releasing heat generated during driving of each of the chevron-shaped drive coils 7. In this feature, In order to effectively suppress the increase in resistance at high temperatures caused by the continuous operation of the drive coil, And a reduction in energization current (ie, Reduction of electromagnetic driving force), In order to set the energization current to a long time as a standard. therefore,  For the electromagnetic driving force output by the electromagnetic driving device, Continuously stable current control from the outside, It can effectively suppress long-term deformation (insulation damage due to heat). With this, It can improve the durability of the entire device,  Even the reliability of the device as a whole.  In addition, In this embodiment, The above-mentioned actuation plate 9 is exemplified as a case in which each of the field-shaped driving coils 7 as actuation plates is separately provided ', Such an actuation plate 9 may be formed as a single actuation plate that functions together in two or more field-shaped drive coils 7, Alternatively, a plurality of field-shaped drive coils 7 may be configured to face the single actuation plate.  "Integral Action of the aforementioned embodiment" Next, The overall operation of the aforementioned first embodiment will be described 48 1220875.  In Figure 6, First of all, After an operation instruction for moving the movable table 1 to a specified position is input from the operation instruction input unit 24, The main control unit 2 1 A of the table drive control device 21 is immediately activated, Based on the action instruction, the data storage unit 23 selects the reference position information of the mobile terminal, At the same time, the control program corresponding to the designated control mode is selected by the action program memory section 2 2. then, Actuate the coil selection drive control unit 2 i B,  The four field-shaped driving coils 7 of the electromagnetic driving device 4 are driven and controlled based on a specified control mode.  In Figure 1 7 The operating state shown in Figure 18 is, The main instruction is to move the movable table 1 to a specified position in the positive direction of the X axis from the operation instruction input unit 24, Based on this command, the entire state of the device is activated.  In this example, As the control mode, the first control mode disclosed in FIG. 9 is selected. This means that for each of the four field-shaped driving coils 7, the energizing mode is selected in the state shown in FIG. 9, Operate based on this.  In this situation, In the aforementioned table maintenance mechanism 2, After the auxiliary table body 5 is transferred to the right in the figure by the electromagnetic driving device 4, The auxiliary table body 5 is opposed to each piano line 2A, 2B elastic force (force to restore the original position). and, The flexible table body 5 (that is, The movable table body 1) is stopped at each piano line 2A, The balance point (moving target position) between the elastic restoring force of 2B and the electromagnetic driving force of the electromagnetic driving device 4 applied to the auxiliary table body 5.  49 1220875 In Figure 17, In Figure 18, The symbol T indicates the distance moved.  In Figure 18, The oblique line indicates that the capacitance detection electrode 26 × 3, 26X4 capacitor component, The cross-hatched line indicates that the capacitance detection electrode 26X1 of the aforementioned one has been added. 26X2 capacitor component. In addition, In Figure 18, The system indicates that the position is not shifted in the direction of the Z axis.  In action, When the moving position of the auxiliary table body 5 is shifted from the position of wood carving due to interference, Based on this kind of capacitance detection electrode 26X1  26X2, 26X3, 26X4 information about the increase and decrease of the capacitance component to detect the actual position after movement, It is formed to perform feedback control for preventing position shift.  on the other hand, After the electromagnetic driving force applied to the auxiliary table body 5 is released from this state, To make piano line 2A, The elastic restoring force of 2B is given to the auxiliary table body 5 to return to the original position.  In this series of actions, The movement of the auxiliary table 5 is:  Generally, it is performed quickly under any circumstances in which the electromagnetic driving force is applied or controlled. therefore, In the auxiliary table 5 (or the movable table 1), When the mobile is stopped or when it is restored to its original position, To generate repetitive motion (reciprocating motion) caused by inertial force and spring force.  however, In this embodiment, This repetitive action (reciprocating action) is controlled by electromagnetic actuation (eddy current braking) generated between the actuation plate and the driven magnet, While moving smoothly towards the specified position, Stop control is performed in a stable state.  50 1220875 Even when an operation instruction is input from the operation instruction input unit 24 to move the movable table 1 toward a specified position other than the above, Also the same as before, In order to actuate the main control part 2 1 A of the table drive control device 21, Based on the motion command, the data storage unit 23 selects the reference position information of the mobile terminal. At the same time, The control program 22 selects a control program corresponding to a specified control mode by the operation program memory 22. then, Give the coil selection drive control unit 2 1 B, The four field-shaped driving coils 7 of the electromagnetic driving device 4 are driven and controlled based on a specified control mode.  and, Even in this case, In order to perform the actuation operation by the same control operation and the actuation plate as in the foregoing case, The auxiliary table body 5 (movable table body 1) moves smoothly toward the designated position, The stop control is performed in a stable state.  in this way, In the aforementioned first embodiment, It is not necessary to use the heavy double-structure X-Y axis movement maintaining mechanism necessary in the conventional case.  While maintaining the auxiliary table 5 (movable table 1) from the center position (within a specified range) to the same height position, At the same time, it can be smoothly moved even in any direction on the X-Y plane, Or they can be driven in the same plane.  therefore, After the aforementioned first embodiment, Because of its simple structure, it can be miniaturized as a whole, Lightweight, And among these characteristics, 'not only can significantly improve the transportability, It also has the advantage of reducing the number of components compared to conventional examples. Furthermore, In terms of reducing the number of components ’, the durability can be significantly improved, And because the adjustment during assembly does not need to be particularly familiar with 51 1220875, therefore, System can improve productivity.  Even if the auxiliary table body 5 (movable table body 1) equipped with the driven magnet 6 has a rapid movement change, Between the driven magnet 6 and the actuating plate 9 formed of a non-magnetic metal member, an electromagnetic actuating (eddy current braking) force of a magnitude proportional to the rapid change is acting. therefore, The movable table 1 is designed to suppress its rapid movement. However, it can move smoothly in a stable state.  Regarding such a flat plate 9 for actuation having a simple structure in which the driving coils 7 are individually mounted in a state corresponding to each of the driven magnets 6, Or it is equipped with an electromagnetic driving device 4 which will also generate an electromagnetic driving force. And the simple structure of facing the field-shaped drive coil 7 on the fixed flat plate 8, Therefore, The system is made smaller and lighter, Not only formed into good transportability, You do n’t need to be particularly skilled even during assembly operations, therefore, It also has good workability.  Furthermore, Is mounted on an end surface portion of the drive coil 7 on the side of the driven magnet 6 described above, And the metal actuating flat plate 9 made of non-magnetic material is, In terms of the relationship with the drive coil 7, In order to form a circuit equivalent to the secondary circuit of the transformer, In addition, it is configured to be short-circuited by the electric resistance component (an eddy current loss occurs) of the actuation plate 9.  therefore, Compared with the case of opening the secondary circuit, The field-shaped driving coil 7 constituting the primary circuit in this case can supply a relatively large current. As a result, compared with the case where the actuation plate 9 is not provided between the driven magnets, The system can output a large electromagnetic force.  52 1220875 In addition, Such an actuation plate 9 also functions as a heat release plate,  Therefore, it is possible to effectively suppress the long-term deformation (the insulation breakdown caused by heat) accompanying the continuous operation of the field-shaped driving coil 7. With this, Can increase the durability of the entire device, the result, To improve the reliability of the entire device.  In addition, In the aforementioned first embodiment, Although it is exemplified that the driven magnet 6 is installed on the auxiliary table body 5, but, The driven magnet can also be installed on the side of the movable table body 1, Each of the aforementioned field-shaped driving coils 7 is arranged at a predetermined position on the fixed flat plate 8 so as to oppose it. In this situation, In order to install each field-shaped driving coil 7 in a state where the fixed table body 8 has been penetrated, Simultaneously, It is also possible to face the various field-shaped drive coils 7, The driven magnet 6 is mounted on both the movable table body 1 side and the auxiliary table body 5 side.  Furthermore, In the foregoing first embodiment, Although the drive coil 7 is exemplified in the case where a field-shaped drive coil 7 is installed, but, In the present invention, the driving coil is not limited to a field-shaped driving coil, If it has the same function, It can also be other types of drive coils.  [Second Embodiment] The second embodiment is shown in Figs. 19 to 20. The second embodiment shown in FIGS. 19 to 20 has the following features, which is, Delete the auxiliary table body 5 installed in the first embodiment, And the movable table body 31 is directly maintained by the table body maintaining mechanism, At the same time, the movable table body 31 is directly driven by the electromagnetic driving device 4.  In Figs. 19 to 20, Reference numeral 31 denotes a quadrangular movable table body. This kind of movable table body 31 has a circular flat work 53 1220875 surface 3 1 A on the top.  Reference numeral 2 denotes a table body maintaining mechanism which is the same as the table body maintaining mechanism in the aforementioned first embodiment. Such a table body maintaining mechanism 2 is the same as the first embodiment described above and is arranged at the lower part of FIG. 19, To allow movement in the same plane as the movable table body 31, Simultaneously, In a state where the force for restoring the original position is added to the movable table body 31, The movable table body 31 is maintained.  that is, In this second embodiment, The movable table body 31 is provided through the aforementioned table body maintaining mechanism 2 provided inside the housing body 33 as the main body portion,  Instead, it is assembled to the aforementioned case body 3 3.  In addition, Between the movable table body 31 and the housing body 33 described later, the drive device maintaining portion (body-side protruding portion) 33A, A capacitive type position detection sensor that constantly detects the moving position of the movable table body 31 is installed in the same manner as in the first embodiment.  that is, Around the end of the lower surface (bottom surface) of the movable table 31 in FIG. 19, This is a mouthpiece 31B provided with a flat surface having a specified width. In addition, Opposite the common electrode 31Ba, And the same capacitance detection electrode 26X1 as the capacitance detection electrode in the aforementioned first embodiment. 26X2, 26X3, 26X4, 26Y1, 26Y2, 26Y3, 26Y4 is set to be the same as the first embodiment, It is mounted on the upper surface of the drive device holding portion (main body side protruding portion) 33A described later.  The table maintenance mechanism 2 is the same as the table maintenance mechanism 2 in the aforementioned first embodiment, Two piano wires set at a specified interval (if it is provided with a rod-shaped 54 542020 elastic wire of a moderate rigidity sufficient to sufficiently support the movable table 31 Can also be other components) 2A, 2B is set as a group, and four groups are prepared in advance corresponding to the peripheral end of the movable table body 31 The four sets of steel piano wires 2A, 2B is distinguished in each group on the four corners of the quadrangular relay plate 2G, And they are respectively planted facing upward.  and, The movable table body 3 1 is maintained from below by the piano wires 2A on the four table sides on the inside, Further, the relay plate 2G is formed to be freely swingable from the case body 33 by the four piano wires 2B located on the outside.  With this, The movable table body 3 is the same as that in the first embodiment described above.  Does not change the height position, And can move freely in any direction in the same plane, Instead, it is formed so that it can rotate simultaneously within the allowable range.  The housing body (body part) 3 3 related to this embodiment is shown in FIG. 19, The upper and lower portions are formed in an open box shape.  Reference numeral 34 denotes an electromagnetic drive device. Such an electromagnetic driving device 34 is formed in the same manner as the electromagnetic driving device 4 in the aforementioned first embodiment. It is located on the lower side of Figure 19 of the movable table 31. And maintained on the housing body 33 side, It has a function of applying a moving force to the movable table body 31.  Indicated at 33A is a drive device holding portion that is a main body side protruding portion that is protruded around the inner wall portion of the housing body 33. The electromagnetic drive device 34 is held on the housing body 33 via the drive device holding portion 33A.  The upper surface of the driving device maintaining portion 33A in FIG. 19 is formed as a flat surface, On this flat surface, Position information of the movable table body 3 1 55 1220875 Output external capacitance detection electrodes 26X and 26X2 26X3, 26X4, 26Y1,  26Y2, 26Y3, The 26Y4 system is installed in the same manner as in the first embodiment described above. And form the same function.  The aforementioned electromagnetic driving device 34 is the same as that in the aforementioned first embodiment. To have: Four driven magnets 6, It is fixedly installed in the designated position of the lower part of the movable table 31 in FIG. 19; Tian-shaped drive coil 7, In order to have a cross-shaped coil side facing each of the driven magnets 6, And each of the driven magnets 6 is electromagnetically given a predetermined driving force along a predetermined moving direction of the movable table body 31;  Fixed plate 3 8, This is to maintain the field-shaped driving coil 7 at a fixed position.  The fixed plate 38 is The movable table 31 is arranged in parallel with a predetermined interval therebetween. And is arranged below the 19th of the movable table body 31, The periphery is a drive device holding portion 33A held by the case body 33.  Furthermore, On the end face side of the aforementioned driven magnet 6 side of the field-shaped driving coil 7, Is the same as the case of the aforementioned first embodiment, They are individually arranged so that the actuating plate 9 formed of a non-magnetic metal member approaches the magnetic pole face of the driven magnet 6.  The actuation plate 9 according to this embodiment is: Is fixed to the end face portion of the field-shaped driving coil 7, It is formed in a state of being fixed to the fixed plate 38 by the field-shaped driving coil 7.  In addition, With regard to such an actuation plate 9, It may be configured so as to maintain a state of contact with the end face portion of the field-shaped driving coil 7, It is fixed to the fixing plate 38 via other spacer structures 56 1220875 pieces (not shown). This point is also the same as the case of the aforementioned first embodiment.  The movable table body 3 1 is maintained by the piano wires 2 a located on the inside of the four table body sides. The symbol 3 1 C is the four feet on the side of the table. It is used to engage the piano wire 2A on the side of the four tables. In the 19th figure of the movable table body 31, it is protruded from the bottom to the bottom. Via these four table side feet 3 1 C, In order to connect the movable table 31, Stay on the piano wire 2A on the side of the four tables.  here, The length of the four table-side leg portions 3 1 C is set to, The four piano wires 2A on the inner side of the aforementioned table can obtain a length equivalent to the effective length L of the four piano wires 2B on the outer side.  On the four corners of the fixed plate 38, Each of the through-holes 38A of a predetermined size is formed. Although the through hole 38A related to this embodiment is formed in a quadrangular shape, but, If it is a size that allows the movement of the movable table 31 described above, It is related to its shape can also be circular or other shapes.  Each of the four table-body-side angles 3 1 C is inserted into the through-holes 38A individually. With this, The resulting structure is such that the movable table body 1 located in the upper part of FIG. 19 is maintained by the piano wire 2A on the four table body sides of the table body maintaining mechanism 2 located in the lower part of the figure.  The other structures and functions are the same as those in the first embodiment.  The second embodiment described above is: Except that it has the same function and effect as those of the first embodiment, In particular, it is configured to delete the auxiliary table body 5 installed in the aforementioned 57th 1220875 embodiment, And the movable table body 3 is directly maintained by the table body maintenance mechanism 2, At the same time, the movable table body 3 1 is directly driven by the table body driving control device 2 1, therefore, Makes the structure more simplistic, And because of its amount, it can be made small and light. Therefore, it ’s the weight of the movable table 1 side, Therefore, it can not only achieve the purpose of improving the durability of the table maintenance mechanism 2, It can also improve the transportability of the entire device. What's more, It is not necessary to connect the auxiliary table 5 to the movable table 3 1 and perform a combined operation procedure. therefore, System can significantly improve productivity and maintainability (m a i n t a i n a b i 1 i t y), It has the advantage of reducing the cost of the entire device.  [Third embodiment] A third embodiment is disclosed in Fig. 21. The third embodiment shown in FIG. 21 is: In the aforementioned first embodiment, It has the characteristics of facing each driven magnetic coil, And the individual actuating plates 9 installed at the ends of most of the field-shaped drive coils, It has a structure common to one plate-shaped member.  In Figure 21, Means to replace the four actuation plates 9, which are provided in the aforementioned first embodiment β, In the case of a plate 39 for actuating a plate made of the same material.  In this situation, With regard to the central portion of the actuating plate 39, Is formed with a through hole 39A, The through hole 39A has a size that allows the following, which is, The insertion of the connecting pillars 10 shown in FIG. 1 is allowed, Moreover, the connecting pillar 10 is simultaneously moved in the auxiliary table body 5 (that is, the movable table body is moved in the plane of the orthogonal axis X-Y in FIG. 21).  58 1220875 In addition, Such actuation plates 3 9 are, In Figure 21A, This is an example in which the end portions of each of the field-shaped driving coils 7 are in contact with each other. When mounted on the fixed flat plate 8 via each of the field-shaped driving coils 7. on the other hand, Regarding the actuation plate 3 9, The system may be configured to maintain a state of being in contact with the end face portion of each of the field-shaped driving coils 7, At the same time, it is fixed to the fixed plate 8 via other spacer members (not shown). The other structures are the same as those of the first embodiment.  The third embodiment described above is: In addition to having the same functions and effects as those of the first embodiment, Furthermore, the assembling operation of the actuation plate 39 can be more significantly simplified than in the case of the first embodiment described above. And increase the entire surface area of the actuation plate 39, therefore, It also functions as a heat release plate. In addition, Because the structure is simplistic, Therefore, the advantages of productivity and durability improvement of the device can be achieved.  In addition, This third embodiment is exemplified in the case where a plate-shaped member configured to be provided with one piece of the same material is used instead of the majority of the actuating plate 9 in the first embodiment. but, It is not limited to this. It can also constitute the second embodiment as described above, In the structure of the deleted auxiliary table body 5, One plate-shaped member of the same material is installed as a single actuation plate 39,  Instead, it is used to replace most of the actuation plates 9.  In each of the foregoing first to third embodiments, As an example of the case where the driven magnet 6 is provided with a permanent magnet, but, An electromagnet can be installed instead of a permanent magnet. In this situation, The drive control of the electromagnet is performed by the aforementioned table drive control device 21, And it is formed in conjunction with the operation of each of the field-shaped driving coils 7 described above, Choose its direction, Reverse,  Or it is in a power-on stop state and it becomes a predetermined power-on control (not shown).  In case 6 In order to drive it, each drive system is changed. Therefore, the first reality of the strength of iron is required as the actuation plate 9.  Electromagnetically actuated iron as induced and replaced with the following,  Mounted on a fixed magnet When an electromagnet is installed as the driven magnet, In addition to having a function slightly equivalent to that of the first embodiment, the driven magnet is used as an electromagnet. therefore, The system can have various changes in the movable table system.  E.g, When accelerating / decelerating while moving, In order to drive and control both the coil and the electromagnet to obtain the corresponding shape, therefore,  It can quickly respond to the movement direction of the movable table, etc. Freely set the magnetic flux density (magnet strength) of the driven magnet, therefore, This has the advantage that the driven magnet can be changed depending on the use state.  [Fourth Embodiment] A fourth embodiment is shown in Fig. 22. The electromagnetic actuating mechanism disclosed in the embodiment in FIG. 1 is, Use magnet for driven magnet 6, It is configured to combine the driven magnet 6 and the actuator. The mechanism 41 related to the fourth embodiment shown in FIG. 22 is: Use a separate magnet for magnetization that is separate from the driven magnet, It is configured to combine the actuating magnet,  Actuation plate 49 for actuation plate 9.  that is, In Figure 22, Structure of 41 electromagnetic actuators Four pieces of actuation plate 49, On the same circumference of the upper part of the fixed fixed plate 8 at equal intervals; Four of them 46, To approach, Opposing the respective actuation plates 49, And 60 1220875 is under the aforementioned movable table body 1.  here, The four actuation plates 49 and the four actuation magnets 46 are Either one is installed at a position corresponding to the four individual field-shaped driving coils 7 and the respective driven magnets 6 of the aforementioned electromagnetic driving device 4.  Each of the four actuation plates 49 is made of a conductive member (for example, a non-magnetic material) For copper plates). In addition, Each of the four actuating magnets 46 is configured such that the magnetic N, S is arranged opposite to each other (the magnetism of adjacent magnets forms a different shape), With this, Via the movable table 1 and the fixed plate 8, This makes the magnetic circuit smooth.  The other structures are the same as those of the first embodiment.  The fourth embodiment described above is: Its effect is to obtain an effect which is slightly equivalent to that of the first embodiment shown in FIG. 1 ', especially for the electromagnetic actuating mechanism 41, The obtained electromagnetic actuation system is equal to or more than the electromagnetic actuation (eddy current actuation) generated by the relationship between the actuation plate 9 and the driven magnet 6 shown in FIG. Big.  Furthermore, In this embodiment, The actuator 9 deletes the actuating plate 9 from the installation area of the electromagnetic drive device 4, therefore, The gap (gap) between each field-shaped driving coil 9 and each driven magnet 6 can be set to be small (narrower). therefore, Compared with the case of the aforementioned first embodiment, This has the advantage that the electromagnetic driving force can be set larger.  In addition, In the foregoing embodiments, As an example, a case where the actuating plate 9 in the aforementioned first embodiment 61 1220875 (Fig. 1) has been deleted, but, Actually,  The actuation plate 9 may also be maintained in its installed state, The electromagnetic actuating mechanism 41 is newly used in a state of being additionally installed.  Related to this electromagnetic actuating mechanism 41, As an example, the number of actuating magnets 46 and the number of actuating plates 49 and their installation locations are specified. but, The invention is not limited thereto. Regarding the actuating magnet 46,  Even if it is equipped with any number of three or more, Alternatively, one plate of a predetermined shape may be provided for the actuation plate 49 in a size corresponding to the size of each actuation magnet 46.  Furthermore, The so-called actuation magnet 46 and the actuation plate 49 are such that  Even if it replaces its installation position, An equivalent electromagnetic actuator 41 can also be obtained.  [Fifth Embodiment] A fifth embodiment is shown in Fig. 23. The fifth embodiment disclosed in FIG. 23 has the following features, which is, In the aforementioned second embodiment shown in FIG. 19, While newly equipped with an electromagnetic actuator 51, This kind of electromagnetic actuating mechanism 51 is separated from the aforementioned electromagnetic driving device 34, And installed as a separate (independent).  In this situation, The electromagnetic actuating mechanism 51 is shown in FIG. 23, It consists of the following components, which is: The two actuating magnets 5 6, It is installed on the upper central part of the fixed plate 38; One tablet for actuation 59, Is close to and faces the actuating magnet 56, It is fixedly installed on the lower part of the movable table body 1.  here, One actuation plate 59 and two actuation magnets 62 5 6 are both independent of the four field-shaped drive coils 7 and each driven magnet 6 of the electromagnetic drive device 4 described above. Ground installation. The actuating plate 5 9 is a conductive member (for example, Steel sheet). In addition, Each of the two actuating magnets 5 6 has a magnetic N, S is arranged in a reversed state (so that the magnetic properties of adjacent magnets are different), With this, The magnetic circuit is smoothly formed through the movable table body 1 and the fixed table body 38.  The other structures are formed slightly the same as the second embodiment shown in the aforementioned Fig. 19.  The fifth embodiment is, In addition to obtaining an effect that is slightly equivalent to that of the second embodiment shown in FIG. 19, Furthermore, In the fifth embodiment, the actuating plate 9 is deleted from the installation area of the electromagnetic drive device 4, therefore, The gap (gap) between each field-shaped driving coil 7 and each driven magnet 6 can be set to be smaller (narrower). therefore, Compared with the case of the aforementioned second embodiment, This has the advantage that the electromagnetic driving force can be set to be greater.  In addition, In the foregoing fifth embodiment, In the case where the actuating plate 5 9 in the second embodiment (Fig. 19) is deleted, but, In fact, the state in which the actuating plate 9 is installed can be maintained and used.  In addition, Aiming at the case where the electromagnetic actuating mechanism 51 is specifically exemplified by the number of the magnets 56 for actuation, the number of the plates 59 for actuation, and their installation locations, but, The invention is not limited to this. As for the magnet 56 for actuation, any number of three or more, Alternatively, the actuation plate 5 9 may be individually installed 63 1220875 corresponding to each actuation magnet 56.  [Sixth Embodiment] An example of the sixth embodiment is not shown in FIG. 24. The feature of the electromagnetic actuator according to the sixth embodiment shown in FIG. 24 is, In the third embodiment shown in FIG. 21 described above, To replace the actuation plate 3 9,  In order to have the periphery of the actuation plate 39 fixedly mounted and extended, And a new actuation plate 69 'having a structure formed by being fixed to the housing body 3 (refer to FIG. 1), It has the characteristics of the deleted fixed plate 8. The symbol 6 9 A indicates a through-hole formed in the center of the actuation plate 69. The through-holes 6 9 A are formed to have a size allowing movement of the connecting pillars 10.  here, The actuating plate 6 9 is a conductive member (for example, Steel sheet).  In the sixth embodiment shown in FIG. 24, By deleting the fixed tablet 8, Each of the field-shaped drive coils 7 is formed so that the lower surface side thereof is maintained at the flat plate 69 for actuation.  therefore, The electromagnetic drive device 64 according to the sixth embodiment has the following structure, which is: Actuation plate 69; Each field-shaped driving coil 7,  Fastened to the actuation plate 69; Each driven magnet 6, In order to correspond to each of the field-shaped driving coils 7 via an actuation plate 69 and a designated gap, It is in a state of being mounted on the auxiliary table body 5.  In addition, The electromagnetic actuating mechanism according to the sixth embodiment is composed of a combination of an actuating plate 69 and a driven magnet 6.  Furthermore, Reference numeral 6 6 shows four other driving magnets. The four 64 1220875 other driving magnets 66 are, The upper surface (the end surface on the side of the movable table body 1) of each of the aforementioned field-shaped drive coils 7 is fixed to the movable table body 1, With this, This is to strengthen the driving force of the electromagnetic driving device 64.  here, For each newly added magnetic pole of the driven electromagnet 66,  It is set such that the surfaces facing the respective driven magnets 6 form different magnetic poles (types in which the N and S poles face each other). The other structures are the same as those of the third embodiment shown in Fig. 21 above.  Even so, Still has the same function and effect as the third embodiment shown in the foregoing FIG. 21, In particular, the positional relationship between the actuation plate 69 and the driven magnet 6 is maintained in the same state as in the case of the third embodiment (Fig. 2n). therefore, The actuation energy achieved by actuating the flat plate 69 is also formed to be the same as that in the case of the aforementioned third embodiment (Fig. 21). For other effects, Because the fixed plate 8 has been deleted, Therefore, it is possible to reduce the overall size of the device, Lightweight advantages.  here, Regarding the newly added driven magnet 66, For example, it can be constituted by a general magnetic member such as an iron material. In this situation, The magnetic member replacing the driven magnet 66 functions as a magnetic circuit forming member effectively.  In addition, In this sixth embodiment, The aforementioned new driven magnet 66 may be deleted. As a result, It can further promote the miniaturization and weight reduction of the entire device. It is helpful to further improve the universality of the device.  [Seventh Embodiment] "Other Embodiments Regarding Driving Coils" 65 1220875 shows an example of other embodiments of each of the driving coils 7 described above, and the relationship with the actuation plate. In this situation, The other components except the drive coil are respectively configured to be equal to the components of the foregoing embodiments. here, The description is omitted.  (1) Embodiments of the field-shaped driving coil In each of the foregoing embodiments, Is exemplified on the X_γ axis, It is limited to be installed as an electromagnetic driving device 4, 3 4, In the case of the field-shaped driving coil 7 of the driving coil of the main part of 6 4 but, The field-shaped driving coil 7 may be installed at a position offset from the X-Y axis as shown in Fig. 25.  In this situation, The driven magnet 6 (or 6 6) is located at a position corresponding to the field-shaped driving coil 7, Instead, it is fixed on the side of the field-shaped drive coil 7 described above.  Included in the case of Fig. 25, Regarding the arrangement of the cross-shaped coil sides located inside the field-shaped drive coil 7, In the foregoing embodiments, the case where the longitudinal or lateral coil side portions are arranged along the aforementioned χ-γ axis is illustrated. however, The invention is not necessarily limited to this, It can also be configured to have a specified inclination for the X or Y axis.  Regarding such a field-shaped driving coil 7, Fig. 25 illustrates the case where four are installed, but, For components with equivalent functions,  Can also be three, It can also be more than five.  Furthermore, Regarding the farm-shaped driving coil 7, The outer diameter may be a shape other than a quadrangle.  (2) Drive coils other than the field-shaped drive coil (one) 66 1220875 In each of the foregoing embodiments, As a driving coil forming the main part of an electromagnetic driving device, This is an example of the case where a field-shaped driving coil 7 is installed. but, It is recorded only as an example, If it has the same function, It is also possible to install other driving coils instead of this kind of device.  Figure 26A shows the system, As a drive coil, To use a single mouth-shaped drive coil 7 1 with a large inner area, Opposite the four-marked part of the mouth-shaped drive coil 7 1, N of magnetic poles, S system can be set individually (including power-on / off control), And all four electromagnets 8 1 are individually arranged,  With this, The case of the electromagnetic drive device 4 (or 34) is disclosed.  In this instance, By appropriately conducting the energization control toward the mouth-shaped drive coil 71 and the energization direction of each electromagnet 81 and a specified amount of current including energization stop, In addition to the rotating action of the movable table body 1 (or 3 1), It is also formed to be able to drive and control the movement in all directions.  The shape of the mouth-shaped driving coil 71 can also be rectangular, It can also be square.  (3) Drive coils other than the field-shaped drive coils (No. 2) Figure 26B shows: As a drive coil, This is an example of using four mouth-shaped driving coils 72 and eight electromagnets 82 having a small inner area.  In the example of FIG. 26B, The four individual mouth-shaped drive coils 72 are arranged at positions crossing the χ-γ axis, for example, in a bilaterally symmetrical position. In addition, Each of these mouth-shaped driving coils 7 2 is opposed to the X-axis, The coil edge portion of each of the mouth-shaped driving coils 72 where the Y-axis crosses, Make the magnetic poles N, S is a place where all the eight electromagnets 81 are individually configurable (including energization stop control), This constitutes the electromagnetic drive device 4 (or 3 4).  67 1220875 Even in this example, it is the same as in the case of Fig. 26A, By performing appropriate energization control including a specified amount of current for the energization direction and energization stop of each of the mouth-shaped drive coils 72 and each of the electromagnets 82, It is formed as a drive control for a movement operation in all directions other than the rotation movement of the movable table body 1 (or 3 1). Even in this case, The shape of the mouth-shaped driving coil 72 may be rectangular, It can also be square.  (4) Drive coils other than the field-shaped drive coil (No. 3) Figure 27A shows: As a drive coil, This is an example of using four mouth-shaped driving coils 7 3 and eight electromagnets 83 having a small inner area.  In the example of FIG. 27A, Each of the four mouth-shaped drive coils 73 is arranged at a position crossing the X-Y axis so as to be left-right symmetrical, for example. In addition, Each of these mouth-shaped driving coils 7 and 3 is opposed to each other and is not connected to the X-axis, The coil edge portion of each mouth-shaped driving coil 73 at the intersection of the Y axis, So that the magnetic poles of N, S makes variable settings (including power-on stop control) and arranges all eight electromagnets 83 individually, By this, Forms an electromagnetic drive device 4 or 34.  * In this example, By appropriately conducting the energization control toward the mouth-shaped drive coil 73 and the energization direction of each electromagnet 83 and a specified amount of current including energization stop, Is the same as in the first to third embodiments described above, The system is configured to perform rotation and drive control of movement in all directions. In this case, The shape of the mouth-shaped driving coil 73 can also be rectangular, It can also be square.  (5) Drive coils other than the field-shaped drive coils (No. 4) 68 1220875 Figure 27B shows: A cross-shaped frame-shaped drive coil 74 and eight electromagnets 84 formed as a single hollow cross shape are used as examples of the drive coils.  In the example of FIG. 27A, The longitudinal and lateral centerline portions of the cross-shaped frame-shaped drive coil 74 are arranged at positions on the X-Y axis, for example, at positions that are formed symmetrically to the left and right. and, The cross-shaped frame-shaped driving coil 74 is opposed to the X-axis, The cross section of the cross-shaped frame-shaped drive coil 74 at the point where the Y axis crosses, So that the magnetic poles of N, S makes variable settings (including energization stop control) and arranges all eight electromagnets 8 4 individually, With this, Forms an electromagnetic drive 4 or 34 〇 Even in this example, The energization control is performed by appropriately energizing the energizing direction toward the cross-shaped frame-shaped drive coil 74 and the eight electromagnets 84 and a specified amount of current including the energization stop, Is the same as in the first to third embodiments described above, The system is formed to perform rotation and drive control of movement in all directions.  and, In each of the foregoing (2) to (5), To individually abut each drive coil 7 1. 7 2. 7 3. Or the designated coil side part of 7 4 And individually facing each driven magnet 6, The actuation plates 9 are fixedly mounted on the drive coil side of each driven magnet.  In addition, This case is also the same as the case of the third embodiment (refer to FIG. 21), A single plate-shaped member formed of the same member may be installed as the actuation plate 3 9 (not shown), And instead of the majority of 69 1220875 actuation plates 9 each.  The foregoing embodiment as described above is, It can make the movable table supporting the processed object on the same surface (there is no change in height position), Free and smooth precision movement in the specified direction or return to the original position, As a table body maintaining mechanism, a member using an elastic member to move the movable table body in an arbitrary direction has been installed, therefore, It is a sliding mechanism of double structure which is not necessary to know the technology. therefore, Since no special precision processing is required, Therefore, it is formed to greatly improve processing and assembly operations,  And to achieve a small size and light weight of the entire device.  Furthermore, Since most of the magnets facing the part of the electromagnetic driving device for driving the table are installed, And a conductive actuation plate formed by a non-magnetic member, therefore, Even when the reciprocating movement of the movable table body is repeated or the minute vibrations caused by the vibrations of the Zhou Yi are caused in the same plane during the stop, It is also formed so that it can be effectively suppressed. With this,  It can smoothly perform the precise movement of the movable table body.  As mentioned before, To have: Movable table, Is configured to move in any direction on the same side; Table maintenance mechanism, Is allowed to move in any direction within the same plane of the movable table body; Body part, To support the aforementioned table maintenance mechanism; Electromagnetic drive, Is installed on the side of the body, A moving force is given to the movable table body. In addition, The aforementioned table maintenance mechanism is described later, Even if it has the function of adding the force which restores the original position to the said movable table body, it is good.  In addition, The electromagnetic drive system is structured as follows, which is: Most of the driven magnets' are fixed front mounted tables at least at a designated position 70 1220875 on the side of the movable table.  It can be ironed outside.  The magnetic force acting as the driving force of the driven iron is determined by the magnetic force. The driving means that the driving force is assigned to the ground pair. The magnetic tool is paired with electricity, and J 5 catches a circle and moves in parallel. , Shifting and deciding;  The ring refers to the drive coil mentioned above. Or replace the fixed plate by other components, Furthermore, it is used for assembling to the main body.  In addition, The actuation plate formed of a non-magnetic metal member is brought close to, Arranged on the magnetic pole surface of the driven magnet, With the combination between the actuation plate and the driven magnet, And constitute an electromagnetic actuation mechanism.  therefore, This embodiment is, When used as a motion detection magnetic drive, First of all,  In order to generate magnetic force between a driving coil provided with the electromagnetic driving device and a driven magnet, The movable table body is given a moving force in a specified direction.  In this situation, The movable table system maintains the mechanism by the table body, And by maintaining a state that allows movement in any direction within the same plane, Therefore, Will move smoothly in the specified direction without vertical movement, And stop at the position where the force of restoring the original position of the aforementioned table maintaining mechanism and the magnetic force of the electromagnetic driving device are in equilibrium (i.e., Specified movement stop position).  on the other hand, This movable table system is, After rapid acceleration or rapid deceleration during its movement / stop, The main body of the movable table is rapidly pushed in / stopped, Especially when stopped, It is easy to cause iterative reciprocation by interaction with the force of the aforementioned table body maintaining mechanism to restore the original position.  In that case, By the rapid movement change of the movable table body, an electromagnetic actuation (eddy current brake 71 1220875 car) is actuated between the driven magnet and the actuation plate, With this, The movable table system is to slow down its rapid movements ’, and it can be slow in a stable state in a specified direction, Move smoothly.  In addition, The electromagnetic actuation mechanism has a simple structure by a combination of an actuation plate and a driven magnet. The electromagnetic driving device has a simple structure by a combination of a driven magnet and a driving coil enclosed by the driven magnet. therefore, Compared with the conventional structure with a double-structured moving mechanism, To reduce the size and weight of the entire device, And not only has good transportability, Even during assembly operations, There is no need for special operation. Therefore, the workability is also good. Instead, it can improve productivity.  Furthermore, It is installed on the end face part of the drive magnet side of the drive coil, In addition, a metal actuation plate system made of a non-magnetic member is configured as follows, which is, The relationship with the drive coil is a circuit constituting a secondary circuit of a transformer, In addition, it is configured to be short-circuited by the electrical resistance component of the actuation plate (generating eddy current loss).  therefore, The drive coils that make up the primary circuit of the transformer are OK, The energization can be performed by a current that is larger than that in a case where the secondary circuit is in an open state. With this, Between the aforementioned driven magnets, The system is formed so as to be able to output a larger electromagnetic force than in the case where the actuating plate is not provided.  This actuation plate also functions as a heat release plate, In this feature, It can effectively suppress the long-term deformation (insulation damage caused by heat) accompanied by continuous operation of the driving coil, and can improve the durability and reliability of the entire device.  72 1220875 In addition, You can also use the structure described below, which is, For movable tables,  In order to face the auxiliary table at a specified interval, Integrated installation Simultaneously, On the side of the auxiliary table body is the aforementioned table body maintaining mechanism, The auxiliary table body is provided with the aforementioned driven magnet.  By installing a driven magnet in the auxiliary table, During assembly operations,  It can effectively avoid the occurrence of damage to the movable table.  In addition, When the driving coil is composed of a plurality of field-shaped driving coils, You can also use the following structure, which is, It is a structure in which the aforementioned driven magnets corresponding to the cross-shaped portion located inside the chevron-shaped driving coil are individually arranged. With this, Within the allowable movement range set in the inside of the field-shaped drive coil, The system allows each driven magnet (even the movable table) to move freely and precisely in a specified direction.  In this situation, The field-shaped drive coil is, With a drive control device that is actually equipped in addition, It is forcibly generated, for example, between each driven magnet corresponding to a driving force in the X direction or the γ direction, Will have overall control, The driven magnet is formed so that the movable table can be moved to a predetermined direction.  In addition, It is also possible to adopt a structure in which most of the driven magnets are permanent magnets. In order to use the driven magnet as a permanent magnet, It is not necessary to energize the circuit like an electromagnet, Because of this part, It can avoid the complexity of operations during assembly and maintenance inspection, thereby, To improve productivity and maintainability, In addition, the durability of the entire device can be increased.  In addition, when the above-mentioned majority of driven magnets are composed of electromagnets,  At the same time, it can also be configured to link the driven magnet to the driving coil,  73 1220875 and choose its forward direction, Reverse, Alternatively, the power-on control is performed when the power is stopped.  therefore, It can make various changes in the drive control of the movable table body.  E.g, In terms of acceleration / deceleration during the movement of the movable table body, Both the drive coil and the electromagnet can be controlled by driving control.  therefore, Changes in the moving direction of the movable table body can be quickly responded to. The magnetic flux density (magnetic f 1 u X d e n s i t y) of the driven magnet can also be set freely, therefore, The strength of the driven magnet can be changed according to the use state.  In addition, In order to install the actuation plates individually for most driven magnets, In addition, It can also be used to fix the actuation plate at the end of each drive coil side.  Furthermore, The aforementioned actuation plate may be formed as A plurality of the aforementioned driven magnets as a whole are constituted as a single flat plate member, The single flat plate member is fixedly mounted on each magnet-side end portion of each of the aforementioned drive coils.  Furthermore, By mounting the actuation plate in each drive coil, And the space can be set between the drive coils, To get the smoothness of maintenance jobs, That is to achieve the purpose of improving maintainability.  In addition, The actuation plate is configured to have a plurality of the driven magnets as a whole, And is composed of a single plate member, With this, System can make assembly worksheets purified, It can improve the productivity and durability of the entire device, And to achieve the purpose of reducing costs.  In addition, The actuation plate can also be separated from the drive coil side, In combination with the new other actuating magnets, And constitute an electromagnetic actuation mechanism. In this situation,  The 74 1220875 system can form the actuating plate differently from the drive coil.  therefore, Formed to separate the electromagnetic actuating mechanism from the electromagnetic driving device,  And set anywhere, The strength of the electromagnetic driving force can be freely set. In this situation, On the electromagnetic drive side, the gap between the drive line 圏 and the driven magnet can be set to a smaller 値, therefore, This makes it possible to generate the electromagnetic driving force generated between the driving coil and the driven magnet more efficiently.  In addition, The actuation plate is constituted by a single actuation plate corresponding to each driven magnet, Fix the single actuation plate on the body part,  It can also be formed to maintain the aforementioned drive coil by the single actuation plate.  therefore, Not only is it possible to delete the aforementioned fixed plate, The driving coil can be maintained by the actuating plate system. Furthermore, Because you can remove the fixed plate, Therefore, It can further promote the miniaturization and weight reduction of the entire device. With this, In order to improve the better transportability and universality, And with the reduction of constituent elements, the purpose of cost reduction can be achieved.  [Eighth Embodiment] Fig. 28 shows an eighth embodiment. The eighth embodiment disclosed in FIG. 28 is provided with the following features, which is, Each of the four field-shaped driving coils 7 in the first embodiment described above is fixedly mounted on the fixed flat plate 48 in a state of penetrating through the holes of the fixed flat plate 48, Simultaneously,  Individual end faces corresponding to the respective field-shaped driving coils 7, Driven magnets are installed on the auxiliary table body 5 and the movable table body 1 respectively, With this,  The electromagnetic driving device 44 has been configured.  The symbol 48A indicates a through hole, This is the same movement as the through-hole 75 1220875 8A in the first figure that allows the movement of the connecting pillar 10. In addition, Symbol 49,  5 〇 indicates the actuation plate, It is attached to each end face of each of the chevron drive coils 7, And on both sides of the fixed plate 8, In order to And they are fixedly mounted in a state close to each of the driven magnets 6 described above. The other structures are the same as those of the first embodiment.  This embodiment has the same functions and effects as the first embodiment described above. Furthermore, the driven magnets 6 are respectively provided with cross-shaped coil sides that clamp both ends of the field-shaped driving coil 7 above and below, therefore, The system can double the electromagnetic driving force. Therefore, the auxiliary table body 5 and the movable table body 1 can be driven in a plane in a more rapid and stable state. It has the advantage of improving the overall performance and reliability of the device.  here, Regarding the actuation plate 49 related to the foregoing embodiment, 50,  It is an example of a segmentation. In the case where each of the end faces of each of the field-shaped drive coils 7 is installed independently on the same surface, it may also be the same as the case of the actuation plate 3 9 (see FIG. 21) in the third embodiment described above. The same shape is shared by the driven magnets 6 facing the auxiliary table body 5 (or the movable table body 1 side), which are common with a single actuation plate. In addition, in the eighth embodiment shown in FIG. 28, the actuating magnet used as the electromagnetic actuating mechanism is a driven magnet 6 using an electromagnetic driving device, but it is also possible to replace such a driven magnet and use another The actuating magnet 'combines the actuating magnet and the actuating plate to form an electromagnetic actuating mechanism' By separating the electromagnetic actuating mechanism from the electromagnetic drive device and setting it to 76 1220875, the actuating plate 49 can also be deleted , 50. In this way, the gap between each driven magnet 6 and the corresponding field-shaped driving coil 7 can be reduced, and there is an advantage that the electromagnetic driving force acting between them can be set to a large value. [Ninth Embodiment] Next, another structure example of the aforementioned field-shaped driving coil will be described.

在前述第一實施例中,雖然例示四角形之物來作爲田字形 驅動線圈,不過,本發明並非必須將田字形驅動線圈限定 於此。即使是以下所示之形狀,亦可獲得作爲田字形驅動 線圈之機能。 (1 ) 外型爲菱形之田字形驅動線圈In the foregoing first embodiment, although a quadrangular shape is exemplified as the field-shaped driving coil, the present invention is not necessarily limited to the field-shaped driving coil. Even in the shape shown below, the function as a field-shaped drive coil can be obtained. (1) Rhombus-shaped drive coil

於第29圖所示之田字形驅動線圈6 1係以分別獨立、 且可通電之四個三角形之角形小線圈61a、61b、61c、61d 所構成,係爲將其整體的組合設爲菱形(爲使四角形之物 旋轉90 °之狀態),而在內側方面如具有如第29圖所示之 十字狀線圈邊。 第29圖所示係爲將如此所形成之四個之田字形驅動線 圈6 1以與前述第一實施例之情況爲相同的配置在X-Y正 交座標上之各軸上、且固著裝設在固定桌體8(未圖示) 的情況。 並且,即使是在此種情況下,被驅動磁鐵6係對應於 各個田字形驅動線圈6 1之十字狀線圈邊而形成爲被裝設 在輔助桌體5上。此外,符號5 9係表示與前述致動用平 板3 9爲相等機能的致動用平板。同樣的,符號5爲表示 77 1220875 輔助桌體。其他的構造係形成爲與前述第一實施例相 即使是如此,田字形驅動線圈6 1係作用與在前述 實施例中之田字形驅動線圈7相等的機能,而裝設有 件之精密加工用座台裝置亦可獲得與前述第一實施例 況爲相等的作用效果。 (2 ) 外型爲圓形之田字形驅動線圈 於第3 0圖所示之田字形驅動線圈62係以分別獨 且可通電之四個扇形之角形小線圈62a、62b、62c、 所構成,爲將其整體的組合設爲圓形,因此,在內側 爲具有如第29圖所示之十字狀線圈邊。 第3 0圖所示之情況係爲,將如此所形成之四個圓 田字形驅動線圈62與前述第一實施例之情況相同的 配設在X-Y正交座標上之各軸上、且固著裝設在固 體8 (未圖示)。 並且,此種情況亦形成爲將被驅動磁鐵6對應於 田字形驅動線圈62之十字狀線圈邊而裝設在輔助桌 上。此外,符號5 9係表示與在前述第三實施例中之 用平板3 9爲相同之致動用平板。同樣的,符號5爲 輔助桌體。其他的構造係形成爲與前述第一實施例相 即使是如此,圓形之田字形驅動線圈62係作用與 述第一實施例中之四角形之田字形驅動線圈7相等 能,而裝設有該構件之精密加工用座台裝置亦可獲得 述第一實施例之情況爲相等的作用效果。 (3 ) 外型爲八角形之田字形驅動線圈 同。 第一 該構 之情 立、 62d 方面 形之 ,爲 定桌 各個 體5 致動 我不 同。 在前 的機 與前 78 1220875 於第3 1圖所示之田字形驅動線圈63係以分別獨 且可通電之四個八角形之角形小線圈6 3 a、6 3 b、6 3 c、 所構成,爲將其整體的組合設爲八角形,在內側方面 有如第29圖所示之十字狀線圈邊。 第3 1圖所示之情況係爲,將如此所形成之四個八 之田字形驅動線圈6 3與前述第一實施例之情況相同 爲配設在X-Y正交座標上之各軸上、且固著裝設在 桌體8 (未圖示)。 並且,此種情況亦形成爲將被驅動磁鐵6對應於 田字形驅動線圈63之十字狀線圈邊而裝設在輔助桌 上。此外,符號5 9係表示與在前述第三實施例中之 用平板3 9爲相同之致動用平板。同樣的,符號5爲 輔助桌體。其他的構造係形成爲與前述第一實施例相! 即使是如此,八角形之田字形驅動線圈63係作用 前述第一實施例中之四角形之田字形驅動線圈7相等 能,而裝設有該構件之精密加工用座台裝置亦可獲得 述第一實施例之情況爲相等的作用效果。 如上所述,針對於在本發明中之田字形驅動線圈 若係爲在內側爲已具備有十字狀線圈邊之構造者,有 其外型之形狀並非限定在四角形狀中,若是爲具有同 能之物時,亦可爲其他的形狀。 此外,在前述各個實施例中,係以將各個田字形 線圈之內側部分(十字狀線圈邊部分)的中間區域爲 狀態的情況爲例來表示,不過,在該部分方面,亦可 立、 63d 爲具 角形 的, 固定 各個 體5 致動 表示 同。 與在 的機 與前 ,倘 關於 等機 驅動 中空 爲已 79 1220875 充塡有肥粒鐵等之非導電性磁性構件之構造。 再者,於前述實施例中,作爲被驅動磁鐵6係例示裝 設有永久磁鐵之情況,不過,作爲被驅動磁鐵6,係亦可 裝設有電磁鐵以取代永久磁鐵。在此情況下,有關於作爲 該種被驅動磁鐵6的電磁鐵之驅動控制係由前述桌體驅動 控制裝置2 1來擔當,且形成爲與前述各個田字形驅動線 圈7之動作連動、選擇其順向、逆向、或是通電停止狀態 而成爲指定的通電控制(未圖示)。 在將此種被驅動磁鐵6作爲電磁鐵的情況下,係可使 可動桌體1之驅動控制中具有各種的變化。例如,在1移 動時之加速/減速之際,係爲驅動控制各個驅動線圈與電 磁鐵之雙方、而獲得與其對應,因此,相對於可動桌體之 移動方向等變化,爲可迅速地進行對應。 亦即’在將此種被驅動磁鐵6作爲電磁鐵的情況下, 爲將被驅動磁鐵之磁通量密度(磁鐵強度)因應需要而可 自由地設定,因此,爲具有可將該被驅動磁鐵之強度因應 於使用狀態來變化的優點。 此外,在前述各個實施例中,所例示之情況係爲將四 個被驅動磁鐵6以及對應之各個田字形驅動線圈7、6 1、 62、或63分別配設在由輔助桌體5 (或是可動桌體1 )上 面中之X-Y正交座標上之原點爲等距離之位置的X軸上 以及Y軸上,不過,本發明係並非限定於此,倘若四個 之各個被驅動磁鐵6爲在取得χ-γ正交座標上之平衡位 置時,則亦可非爲由作爲原點之中心部取得相等距離的位 80 1220875 置。 針對於被驅動磁鐵6,係將其準備有偶數個(只要不是 四個均可),同時,爲將該偶數個之被驅動磁鐵6以等間 隔的配置在輔助桌體5(或是可動桌體1)之同一圓周上, 藉此,爲個別地對應已特別指定位置之各個被驅動磁鐵6, 而亦可將前述田字形驅動線圈7分別配置在前述固定平板 8上。 再者,針對於被驅動磁鐵6爲除了準備偶數個被驅動 磁鐵6以外,同時係將該偶數個之被驅動磁鐵6配置成將 例如於輔助桌體5(或是可動桌體1)之面中之X-Y正交 座標上的X軸(或是Y軸)作爲基準、以形成爲左右對 稱狀(或是上下對稱),藉此,爲個別地對應於位置被特 別指定之各個被驅動磁鐵6、而使前述田字形驅動線圈7 分別被配置在前述固定平板8上。The field-shaped driving coil 61 shown in FIG. 29 is composed of four small triangular-shaped angular coils 61a, 61b, 61c, and 61d that are independent and can be energized, and the overall combination is set to a rhombus ( In order to make the quadrilateral rotate 90 °), it has a cross-shaped coil edge as shown in Figure 29 on the inside. FIG. 29 shows the four field-shaped drive coils 61 formed in this way on the axes of the XY orthogonal coordinates in the same arrangement as in the case of the first embodiment described above, and fixedly mounted on When the table body 8 (not shown) is fixed. Further, even in this case, the driven magnets 6 are formed on the auxiliary table body 5 so as to correspond to the cross-shaped coil sides of the field-shaped driving coils 61. Reference numeral 5 9 denotes an actuation plate having a function equivalent to that of the actuation plate 39. Similarly, the symbol 5 means 77 1220875 auxiliary table body. The other structures are formed in the same manner as in the first embodiment described above. The field-shaped driving coil 61 functions as a field-shaped driving coil 7 in the foregoing embodiment, and is provided for precision machining of components. The platform device can also obtain the same effect as that of the first embodiment. (2) The field-shaped driving coil with a circular shape. The field-shaped driving coil 62 shown in FIG. 30 is composed of four small angular coils 62a, 62b, and 62c, each of which is independent and can be energized. In order to make the whole combination circular, it has a cross-shaped coil side as shown in FIG. 29 on the inside. The situation shown in FIG. 30 is that the four Martian-shaped drive coils 62 formed in this way are arranged on the axes of the XY orthogonal coordinates in the same manner as in the first embodiment, and are fixedly mounted. Set in solid 8 (not shown). Further, in this case, the driven magnet 6 is formed on the auxiliary table so as to correspond to the cross-shaped coil side of the field-shaped driving coil 62. In addition, the reference numeral 5 9 denotes an actuation plate which is the same as the use plate 39 in the aforementioned third embodiment. Similarly, the symbol 5 is an auxiliary table body. The other structural systems are formed so as to be similar to those of the first embodiment described above. The circular field-shaped driving coil 62 functions as the quadrangular field-shaped driving coil 7 in the first embodiment. The base table device for precision machining of components can also obtain the same effect as in the case of the first embodiment. (3) The shape of the octagonal field-shaped driving coil is the same. The first constructive situation is in the form of 62d, which is different for the actuation of each body of the table. The previous machine and the first 78 1220875 shown in Figure 31 are field-shaped drive coils 63 are four octagonal angular small coils that are independent and can be energized respectively 6 3 a, 6 3 b, 6 3 c, so The structure is such that the entire combination is octagonal, and has a cross-shaped coil side as shown in FIG. 29 on the inner side. The situation shown in FIG. 31 is that the four Honda field-shaped driving coils 63 formed in this way are the same as those in the first embodiment described above, and are arranged on the axes of the XY orthogonal coordinates, and It is fixedly installed on the table body 8 (not shown). Further, in this case, the driven magnet 6 is formed on the auxiliary table so as to correspond to the cross-shaped coil side of the field-shaped driving coil 63. In addition, the reference numeral 5 9 denotes an actuation plate which is the same as the use plate 39 in the aforementioned third embodiment. Similarly, the symbol 5 is an auxiliary table body. The other structural systems are formed to be similar to those of the first embodiment described above! Even so, the octagonal field-shaped driving coil 63 functions as the quadrangular field-shaped driving coil 7 in the first embodiment described above, and is provided with this The base table device for precision machining of components can also obtain the same effect as in the case of the first embodiment. As described above, if the field-shaped drive coil in the present invention is a structure that has a cross-shaped coil side on the inside, the shape of the outer shape is not limited to a quadrangular shape. It can also have other shapes. In addition, in each of the foregoing embodiments, the case where the middle area of the inner portion (cross-shaped coil side portion) of each field-shaped coil is taken as an example is shown. However, in this part, the As angular, the actuation of the fixed body 5 indicates the same. With the existing machine and the former, if the machine is driven by a hollow, it is a structure of a non-conductive magnetic member that has been filled with fat iron, etc. 79 1220875. Moreover, in the foregoing embodiment, the case where a permanent magnet is provided as the driven magnet 6 is exemplified, but as the driven magnet 6, an electromagnet may be installed instead of the permanent magnet. In this case, the drive control of the electromagnet as the driven magnet 6 is performed by the aforementioned table body drive control device 21, and is formed so as to interlock with the operations of the aforementioned field-shaped drive coils 7 and select them. The forward, reverse, or power-on state is set to a specified power-on control (not shown). When such a driven magnet 6 is used as an electromagnet, various changes can be made in the drive control of the movable table body 1. For example, in the case of acceleration / deceleration during 1 movement, both of the drive coils and the electromagnets are driven and controlled so as to correspond to them. Therefore, changes in the direction of movement of the movable table body can be quickly responded to. . That is, in the case where such a driven magnet 6 is used as an electromagnet, the magnetic flux density (magnet strength) of the driven magnet can be freely set as needed, so that it has a strength capable of driving the driven magnet 6. The advantage of changing according to the use state. In addition, in each of the foregoing embodiments, the illustrated case is that the four driven magnets 6 and the corresponding field-shaped driving coils 7, 6 1, 62, or 63 are respectively arranged on the auxiliary table body 5 (or It is a movable table body 1) The origins on the XY orthogonal coordinates in the above are on the X axis and the Y axis at equidistant positions, but the present invention is not limited to this, provided that each of the four driven magnets 6 In order to obtain the equilibrium position on the χ-γ orthogonal coordinates, it may be necessary to obtain the position 80 1220875 of equal distance by using the center part as the origin. An even number of driven magnets 6 are prepared (as long as they are not four), and the even number of driven magnets 6 are arranged at equal intervals on the auxiliary table body 5 (or the movable table). On the same circumference of the body 1), in order to individually correspond to each of the driven magnets 6 which have been specifically designated, the field-shaped driving coils 7 may be arranged on the fixed flat plates 8 respectively. In addition, for the driven magnet 6, in addition to preparing an even number of the driven magnets 6, the even number of the driven magnets 6 are arranged so as to be placed on, for example, the surface of the auxiliary table body 5 (or the movable table body 1). The X-axis (or Y-axis) on the XY orthogonal coordinates in the middle is used as a reference to form a left-right symmetry (or a vertical symmetry), thereby individually corresponding to each driven magnet 6 whose position is specifically designated. The field-shaped driving coils 7 are respectively arranged on the fixed flat plates 8.

即使如此,亦可獲得具備有與前述實施例略爲相等之 作用效果的精密加工用座台裝置。 此外,在前述各個實施例中,爲將電容感測器群26例 示成下述情況,即,爲將八個電容檢測電極26X1、26X2、 26X3、26X4、26Y1、26Y2、26Y3' 26Y4 對應於輔助桌 體5或是可動桌體1之周圍下面的口字狀之共通電極,且 在各邊(例如,在位於X-Y平面中之各軸的兩端之區域) 爲隔有指定間隔而配置成以兩個爲一組的情況,不過’亦 可將其減半,而例如僅在位於χ-γ平面中之各軸的正方 向之端部區域上隔有指定間隔而配置成兩個之構造。 81 1220875 如此,雖然將無演算部之雜訊排除機能,不過係不僅 能將構造單純化、亦可將所檢測出之資訊量減半,因此, 形成爲可更加獲得更快速的位置資訊之演算處理,而所達 到之效果係可更加獲得迅速地形成爲對於移動中之移動桌 體1之位置偏移等的修正。 再者,於前述各個實施例中,作爲桌體維持機構2爲 具備有四根之桌體側棒狀彈性構件(桌體側鋼琴線)2A、 以及與其對應之位在本體側的四根之本體側棒狀彈性構件 (本體側鋼琴線)2B,並且爲說明對應之各個棒狀彈性構· 件2A、2B爲配置在靠近位置上的情況之具體例,不過, 本發明並非必須限定於此,針對於棒狀彈性構件2A、2B 之數目,將以分別配置成平衡爲佳的狀況設爲前提,而亦 可爲分別具有三根(合計六根)之構造。此外,針對於構 成一組之桌體側以及本體側之各個棒狀彈性構件2A、2B, 係亦可並非一定要相互靠近、裝設。 即使如此,在可動桌體1之移動之際,由於各個棒狀 彈性構件2A、2B爲分別進行略爲相同之彈性變形,與其B 相對應的,在整體性方面,係可獲得與在前述各個實施例 中之桌體維持機構2之情況爲同等機能、同等之作用效 果。此外,有關於在該種桌體維持機構2中之棒狀彈性構 件2A、2B,亦可具有五組以上。 如以上說明所述,本實施例係爲具有特別指定在精密 加工用座台裝置中之田字形驅動線圈之外形形狀的特徵。 亦即,爲將各個田字形驅動線圈以分別獨立、且可通 82 1220875 電之四個之四角形的角形小線圈所構成,且將其組合的整 體形狀設爲四角形。將各個田字形驅動線圈以分別獨立、 且可通電之四個之三角形的角形小線圈所構成,將其組合 之整體形狀設爲菱形。將各個田字形驅動線圈以分別獨 立、且可通電之四個之扇形的角形小線圈所構成,將其組 合之整體形狀設爲圓型。將各個田字形驅動線圈以分別獨 立、且可通電之四個之五角形的角形小線圈所構成,將其 組合之整體形狀設爲八角形。如上所述,係形成爲可將田 字形驅動線圈進行各種的變更。 因此,係可配合可動桌體之形狀或構造之其他的環境 條件而設定與其對應之田字形驅動線圈,而可提升裝置之 泛用性。 此外,在田字形驅動線圈之被驅動磁鐵側之端面部分 上,爲將由非磁性金屬構件所形成之致動用平板靠近、配 設在前述被驅動磁鐵的磁極面,而形成爲可將該致動用平 板固定裝設在固定平板側上。 因此,在裝設有被驅動磁鐵之輔助桌體或是可動桌體 爲進行有急速地移動動作之情況下,爲在該被驅動磁鐵與 致動用平板之間有電磁致動(渦電流煞車)作動,可動桌 體係爲使其急速的動作得以受到抑制、且可緩慢地進行移 動。 此外,爲在前述電磁驅動裝置中倂設有限制將前述可 動桌體在平面內進行移動的動作控制系統,此種動作控制 系統係可形成爲如下述之構造,即,亦可作動狀而選擇性 83 1220875 地將具有前述電磁驅動裝置之多數的田字形驅動線圈之十 字狀線圈邊之至少爲縱向或是橫向之任一方進行通電控 制,以將前述可動桌體於指定之方向進行移動控制。 因此,有效的作用控制控制系統之機能、而多數之田 字形驅動線圈作動,藉此,係可使可動桌體具體的於指定 之方向移動。 此外,係形成爲可在電磁驅動裝置中,倂設有限制可 動桌體之移動或是旋轉動作的動作控制系統。並且,基於 來自此種動作控制系統之動作指令輸入部的指令而作動線# 圈驅動控制裝置,由程式記憶部以及資料記憶部取出移動 方向端之資訊以及移動用之指定的控制模式,同時,基於 該取得資訊而將前述電磁驅動裝置之多數的各個田字形驅 動線圈進行驅動控制,而形成爲可使可動桌體於指定之方 向上來移動。Even so, it is possible to obtain a precision processing table device having a function and effect which are slightly equivalent to those of the aforementioned embodiment. In addition, in each of the foregoing embodiments, the capacitance sensor group 26 is exemplified as the case where eight capacitance detection electrodes 26X1, 26X2, 26X3, 26X4, 26Y1, 26Y2, 26Y3 '26Y4 correspond to the auxiliary The table-shaped body 5 or the movable table body 1 has a mouth-shaped common electrode under the periphery, and is arranged on each side (for example, in a region located at both ends of each axis in the XY plane) so as to be separated by a specified interval. In the case of two sets, it may be halved. For example, only two end regions located in the positive direction of each axis in the χ-γ plane are arranged at a predetermined interval. 81 1220875 In this way, although the noise function of the non-calculation department is eliminated, it can not only simplify the structure, but also halve the amount of information detected. Therefore, it is formed into a calculation that can obtain faster and faster position information. Processing, and the effect achieved can be more quickly formed as a correction for the positional deviation of the moving table body 1 in movement, etc. Moreover, in each of the foregoing embodiments, the table body maintaining mechanism 2 is provided with four table-side bar-shaped elastic members (table-side piano wires) 2A, and corresponding four of the four on the body side. The body-side rod-shaped elastic member (body-side piano wire) 2B is a specific example for explaining the case where the corresponding rod-shaped elastic members 2A and 2B are arranged in close positions, but the present invention is not necessarily limited to this For the number of rod-shaped elastic members 2A and 2B, it is premised on the condition that they are arranged to be balanced, respectively, and it may have a structure having three (six in total) each. In addition, the rod-shaped elastic members 2A and 2B on the side of the table body and the side of the body constituting a group may not necessarily be close to each other and installed. Even so, when the movable table body 1 is moved, since each of the rod-shaped elastic members 2A and 2B undergoes slightly the same elastic deformation, corresponding to its B, in terms of integrity, it is possible to obtain In the case of the table body maintenance mechanism 2 in the embodiment, the functions and effects are the same. In addition, the rod-shaped elastic members 2A and 2B in the table maintenance mechanism 2 may have five or more groups. As described above, the present embodiment has a feature that the shape of the field-shaped drive coil is specified in the stand device for precision machining. That is, each field-shaped driving coil is composed of four small quadrangular angular coils that are independent and can pass electricity through 82 1220875, and the overall shape of the combination is set to a quadrangular shape. Each of the field-shaped driving coils is composed of four small triangular angular coils which are independent and can be energized, and the overall shape of the combination is a rhombus. Each field-shaped driving coil is composed of four small fan-shaped angular coils that are independent and can be energized, and the combined overall shape is set to a circular shape. Each field-shaped driving coil is composed of four small pentagonal angular coils that are independent and can be energized, and the overall shape of the combination is octagonal. As described above, the system is formed so that various changes can be made to the chevron drive coil. Therefore, the field-shaped driving coil can be set according to the shape or structure of the movable table body, and the universality of the device can be improved. In addition, on the end face portion of the driven magnet side of the field-shaped driving coil, an actuation plate formed of a non-magnetic metal member is arranged close to and disposed on the magnetic pole surface of the actuated magnet, so that it can be used for the actuation. The plate is fixedly installed on the side of the fixed plate. Therefore, when the auxiliary table body or the movable table body equipped with the driven magnet is to perform rapid movement, it is electromagnetically actuated between the driven magnet and the actuation plate (eddy current brake). The movable table system is operated so that rapid movement can be suppressed and the movement can be performed slowly. In addition, the electromagnetic drive device is provided with an action control system that restricts the movement of the movable table body in a plane. This action control system can be formed as follows, that is, it can also be selected as an action. In order to control the movement of the movable table body in a specified direction, at least one of the cross-shaped coil sides of the field-shaped driving coils having the majority of the foregoing electromagnetic driving devices is vertically or horizontally controlled. Therefore, the function of the control system is effectively controlled, and most of the Z-shaped driving coils are operated, thereby making the movable table body move in a specific direction. In addition, it is formed so that an electromagnetic drive device can be provided with an action control system that restricts the movement or rotation of the movable table body. In addition, based on an instruction from an operation instruction input section of such an operation control system, the thread #circle driving control device is operated, and the program memory section and the data memory section take out information on the movement direction end and a specified control mode for movement. Based on the obtained information, each of the field-shaped driving coils of most of the aforementioned electromagnetic driving devices is driven and controlled so that the movable table body can be moved in a specified direction.

此外,亦可採用設置一種位置資訊演算電路部之構造, 即,將檢測出可動桌體之移動資訊、且進行外部輸出的多 數之移動資訊檢測感測器分別分散、並裝設在該可動桌體 之周端部的多處上,基於以該多數之移動資訊檢測感測器 所檢測而出的資訊,進行指定之演算、特別指定前述可動 桌體之移動方向以及其變化量,作爲位置資訊而進行外部 輸出。 因此,係可將可動桌體之移動資訊或是移動後的位置 資訊同步地進行外部輸出,操作員係獲得可由外部容易的 掌握可動桌體之移動方向或是移動後的位置偏移’因此’ 84 1220875 係可迅速地掌握重作或是修正之必要性。故而形成爲可高 精度且迅速地獲得輔助桌體(亦即可動桌體)之移動作業。 此外,亦可採用設置一種位置資訊演算電路部,即, 將檢測出可動桌體之移動資訊、且進行外部輸出的多數之 移動資訊檢測感測器分別分散、並裝設在該前述輔助桌體 之多處上,基於以該多數之移動資訊檢測感測器所檢測而 出的資訊,進行指定之演算、特別指定前述可動桌體之移 動方向以及其變化量,作爲位置資訊而進行外部輸出。 因此,係可將可動桌體之移動資訊或是移動後的位置 資訊同步地進行外部輸出。此外,操作員係獲得可由外部 容易的掌握可動桌體之移動方向或是移動後的位置偏移, 因此,係可迅速地掌握重作或是修正之必要性,爲可迅速 且高精度地實施輔助桌體(亦即可動桌體)之移動作業。 此外,亦可形成爲將被驅動磁鐵以永久磁鐵所構成。 因此,形成爲無須在電磁鐵中所必要的通電電路,而 由於該部分係可使構造簡略化、而因此可達到生產性以及 可維修性之提昇,且可使該裝置整體的故障率降低,而在 該種特點中,係可達到耐久性提昇之目的。 〔第十實施例〕 在第3 2圖至第43圖中,係揭示本發明之第十實施例。 在第32圖至第34圖中,符號丨係表示精密作業用之可動 桌體。符號2係表示桌體維持機構。該種桌體維持機構2 係爲,被配設在於第32圖中之可動桌體1的下方部分, 且谷s午將則述可動桌體1朝同一面內中之任意方向進行移 85 1220875 動’同時,爲對於該可動桌體1具有恢復原始位置機能, 在獲得以經常地將恢復原始位置之力附加至該可動桌體1 的狀態下’構成爲用以維持該可動桌體i。 此種桌體維持機構2係藉由作爲本體部之外殼本體3 而被支撐。 此種外殻本體1係爲,在本實施例中,爲如第3 2圖所 示而形成爲使上方以及下方開放的箱體狀。 符號4係表示驅動可動桌體1之電磁驅動裝置。該電 磁驅動裝置4係爲,使其主要部被維持在外殼本體3側上, 具備有因應於來自外部的指令,而將指定之移動力賦予至 前述可動桌體1的機能。符號3 A所示係爲被突設於外殻 本體3之內壁部周圍之內側方向的本體側突出部。有關於 本實施例之電磁驅動裝置4係被配設在可動桌體1與後述 之輔助桌體5之間。 在可動桌體1之第32圖中之下方,爲配設有輔助桌體 5。該種輔助桌體5係對向於可動桌體1、且隔有指定間 隔’而以平行的連結裝設在所配置之可動桌體1上。並且, 藉由該輔助桌體5與前述可動桌體1而構成可動桌體部 1 5 〇 前述桌體維持機構2係被裝設在該輔助桌體5側,且 被構成爲經由該輔助桌體5而用以維持前述可動桌體1。 前述電磁驅動裝置4爲具備有:四個正方形狀之被驅 動磁鐵6A、6B、6C、6D,係被固定裝設在如後所述之輔 助桌體5的指定位置上;一個較大之四角形狀之環狀驅動 86 1220875 線圈7,係在該各個被驅動磁鐵6A至6D上作爲對向於各 個線圈邊7a、7b、7c、7d部分所配置的驅動線圈;固定 平板8,爲將該環狀驅動線圈7以指定位置來維持。 此種固定平板8係被維持在配設於如第3 2圖所示之前 述助桌體5之可動桌體1側的前述外殻本體3上。 在此,藉由環狀驅動線圈7與固定平板8,而構成作爲 前述電磁驅動裝置4之主要部分的固定件部分。 環狀驅動線圈7係爲,當被設定成作動狀態時,在與 前述各個被驅動磁鐵6A至6D之間爲產生有電磁驅動力, 該電磁驅動力係爲在將該各個被動磁鐵6A至6D正交於 各個線圈邊之方向上進行推斥驅動。因此,在未正交於各 個線圈邊7a至7d之方向(傾斜於各個線圈邊7a至7d之 方向)上移動前述可動桌體部1 5的情況下,爲如後述而 至少具有對於兩個以上之各個被驅動磁鐵6A至6D的電 磁驅動力之合力,形成爲可實施該可動桌體部15之移送。 再者,於面對於環狀驅動線圈7之前述被驅動磁鐵6A 至6D的線圈邊7a至7d部分上,爲使由非磁性金屬構件 所形成之致動用平板9靠近於各個被驅動磁鐵6A至6D 之磁極面、且個別地進行配設。該種致動用平板9係形成 爲被固定在前述環狀驅動線圈7側(在本實施例中係爲固 定平板8側)之狀態。符號9A、9B所示係爲維持致動用 平板9之隔件構件。 以下,將其進行更加詳細的說明。 《可動桌體部》 87 1220875 首先,在第32圖至第34圖中,有關於本實施例之可 動桌體1係被形成爲圓形,輔助桌體5係被形成爲四角形。 該種輔助桌體5係爲’對向於可動桌體1且隔有指定間隔 而配置成平行狀’並且經由其中心部之連結支柱1 〇而以 一體性的連結至前述可動桌體丨,藉此,以構成可動桌體 因此’該種可動桌體1係形成爲維持與輔助桌體5成 平行狀態’並且獲得一體性地移動、且一體性地旋轉。 連結支柱1 G係爲’在連結如前所述之可動桌體1與輔I# 助桌體5的連結構件中,所形成之斷面工字狀係在兩端部 上具備有鍔部1 〇 A、;[ 0B,在其兩端部外側中央上,係設 有突起l〇a、l〇b’該突起10a、1〇b係卡合至被形成在可 動桌體1與輔助桌體5間之各個中心部上的定位孔1 a、In addition, it is also possible to adopt a structure in which a position information calculation circuit section is provided, that is, a plurality of mobile information detection sensors that detect mobile information of a movable table body and output externally are separately distributed and installed on the movable table. Based on the information detected by the majority of the mobile information detection sensors at multiple locations around the end of the body, specific calculations are performed, and the moving direction of the movable table body and the amount of change are specified as position information. And external output. Therefore, it is possible to synchronize the external output of the movable table body's movement information or the position information after the movement. The operator can easily grasp the movement direction of the movable table body or the position deviation after the movement 'so' 84 1220875 can quickly grasp the need for rework or correction. Therefore, it is formed to move the auxiliary table body (that is, the movable table body) with high accuracy and speed. In addition, a position information calculation circuit unit may be provided, that is, a plurality of mobile information detection sensors that detect mobile information of a movable table body and perform external output are separately dispersed and installed in the aforementioned auxiliary table body. In many places, based on the information detected by the majority of the mobile information detection sensors, a specified calculation is performed, a movement direction of the movable table body and a change amount thereof are specifically specified, and external output is performed as position information. Therefore, it is possible to synchronize external output of the mobile table's movement information or the position information after the movement. In addition, the operator can easily grasp the moving direction of the movable table body or the position deviation after the movement. Therefore, the operator can quickly grasp the necessity of rework or correction, and can implement it quickly and with high accuracy. Assist the movement of the table body (also can move the table body). Alternatively, the driven magnet may be formed of a permanent magnet. Therefore, it is formed without a necessary current-carrying circuit in the electromagnet, and because the structure can be simplified, the productivity and maintainability can be improved, and the overall failure rate of the device can be reduced. Among these characteristics, the purpose of improving durability is achieved. [Tenth Embodiment] Figs. 32 to 43 show a tenth embodiment of the present invention. In Figures 32 to 34, the symbol 丨 indicates a movable table for precision work. The symbol 2 indicates a table maintenance mechanism. This kind of table body maintaining mechanism 2 is arranged at the lower part of the movable table body 1 in FIG. 32, and Gu Gu will describe that the movable table body 1 is moved in any direction within the same plane. 85 1220875 At the same time, in order to have the function of restoring the original position to the movable table body 1, in a state where the force of restoring the original position is constantly added to the movable table body 1, it is configured to maintain the movable table body i. Such a table body maintaining mechanism 2 is supported by a case body 3 as a main body portion. Such a housing body 1 is, in this embodiment, formed in a box shape with the upper and lower portions opened as shown in Fig. 32. Reference numeral 4 denotes an electromagnetic driving device for driving the movable table body 1. This electromagnetic drive device 4 is provided with a function of applying a specified moving force to the movable table body 1 in response to a command from the outside, with the main portion being maintained on the casing body 3 side. Indicated at 3A is a body-side protruding portion projecting from the inner direction around the inner wall portion of the casing body 3. The electromagnetic driving device 4 related to this embodiment is disposed between the movable table body 1 and an auxiliary table body 5 described later. Below the movable table 1 in Fig. 32, an auxiliary table 5 is provided. This auxiliary table body 5 is opposed to the movable table body 1 and is provided on the movable table body 1 in a parallel connection with a designated interval 'therebetween. Furthermore, the auxiliary table body 5 and the movable table body 1 constitute a movable table body portion 150. The table body maintaining mechanism 2 is installed on the auxiliary table body 5 side, and is configured to pass through the auxiliary table body 5 The body 5 is used to maintain the movable table body 1. The aforementioned electromagnetic driving device 4 is provided with: four square-shaped driven magnets 6A, 6B, 6C, and 6D, which are fixedly installed at designated positions of the auxiliary table body 5 as described later; a larger quadrangular shape The ring-shaped driving 86 1220875 coil 7 is connected to each of the driven magnets 6A to 6D as a driving coil that is arranged opposite to each coil side 7a, 7b, 7c, 7d; The shape driving coil 7 is maintained at a predetermined position. This fixed flat plate 8 is maintained on the above-mentioned case body 3 disposed on the movable table body 1 side of the auxiliary table body 5 as shown in Fig. 32. Here, the ring-shaped driving coil 7 and the fixed flat plate 8 constitute a fixing part as a main part of the electromagnetic driving device 4 described above. The ring-shaped driving coil 7 is configured to generate an electromagnetic driving force between each of the driven magnets 6A to 6D when the driving state is set to the operating state. The electromagnetic driving force is to drive each of the passive magnets 6A to 6D. The repulsive drive is performed in a direction orthogonal to each coil side. Therefore, when the movable table body 15 is moved in a direction which is not orthogonal to each coil side 7a to 7d (direction inclined to each coil side 7a to 7d), at least two or more The combined force of the electromagnetic driving forces of the respective driven magnets 6A to 6D is formed so that the movable table body portion 15 can be transferred. Furthermore, on the coil sides 7a to 7d of the aforementioned driven magnets 6A to 6D facing the ring-shaped driving coil 7, the actuation plate 9 formed of a non-magnetic metal member is brought closer to each of the driven magnets 6A to 6D. The 6D magnetic pole faces are arranged individually. This type of actuation plate 9 is formed in a state of being fixed to the aforementioned annular drive coil 7 side (in this embodiment, the fixed plate 8 side). Reference numerals 9A and 9B indicate spacer members for maintaining the flat plate 9 for actuation. This will be described in more detail below. "Movable Table Body" 87 1220875 First, in Figs. 32 to 34, the movable table body 1 of this embodiment is formed into a circle, and the auxiliary table body 5 is formed into a quadrangle. This auxiliary table body 5 is 'arranged in parallel to the movable table body 1 with a predetermined interval therebetween' and is integrally connected to the movable table body via a connecting pillar 1 0 at the center thereof, Thereby, the movable table body is constituted so that the "movable table body 1 of this kind is formed to maintain a parallel state with the auxiliary table body 5", and it moves integrally and rotates integrally. The connecting pillar 1 G is “the connecting member connecting the movable table body 1 and the auxiliary I # auxiliary table body 5 as described above, and the cross-section I-shaped system is provided with the crotch 1 on both ends. 〇A, [0B, on the outer center of both ends, protrusions 10a and 10b are provided, and the protrusions 10a and 10b are engaged to be formed on the movable table body 1 and the auxiliary table body. Positioning holes 1 a in each center of 5 rooms,

並且’所謂的可動桌體1與輔助桌體5,係藉由該突起 10a、10b與鍔部10A、10B來定位,且一體化的被固著 已定位之連結支柱1 0上。在將其一體化之際,於本實 例中雖爲採用接著劑,不過,亦可藉由熔接來部分性的接 合’或是將突起l〇a、10b部分壓入至定位孔ία、5A、而 其他部分則是藉由接著劑或是熔接等來進行一體化。 此外,亦可將可動桌體1或是輔助桌體5之任何一方 藉由螺絲固定,而成裝卸自如狀地固著在前述連結支柱i 〇 之鍔部10A或是10B。在此種情況下,在鎖緊螺絲後,亦 可將多根頂出銷作爲定位固定用來卡合、以釘入在兩者之 88 1220875 間(未圖示)。如此,係可確實的將可動桌體1與輔助桌 體5進行一體化。 《桌體維持機構》 有關本實施例之桌體維持機構2係爲,具有維持可動 桌體1的同時,不至將該可動桌體1改變其高度位置而朝 可在同一面上之任一方向來自由移動的機能,同時爲具備 有在使外力被解除的情況下,將可動桌體1強制性的恢復 至原始位置的恢復原始位置機能,且經由輔助桌體5來實 施該種機能的機構。 在此種桌體維持機構2中,係爲一種整體性地將連結 機構應用在三次元空間之機構,將隔有指定間隔所設置之 兩根作爲棒狀彈性構件之鋼琴線(桌體側之鋼琴線)2A 以及(本體側之鋼琴線)2B設爲一組,預定對應於輔助 桌體5之端部周圍的角隅部分而準備四組,將該四組之鋼 琴線2A、2B於每組而在四角形狀之作爲中繼構件之中繼 平板2 G的各個四隅部分上區分、且分別朝向上方向而植 設。有關於前述各個鋼琴線2A、2B爲使用分別具有相同 之剛性之物。 在此,針對於前述之鋼琴線2A、2B係爲,只要是具備 有充分支撐可動桌體1以及輔助桌體5的適度剛性之棒狀 彈性線材時,則亦可取代該鋼琴線而由其他素材來形成。 並且係構成爲,在前述各個鋼琴線2A、2B之內,爲藉 由位於內側之四根鋼琴線2A而由下方維持輔助桌體5, 且藉由位於外側之四根鋼琴線2B由本體部3成搖動自如 89 1220875 狀地吊掛中繼平板2 G。 藉此,可動桌體1 5 (亦即,可動桌體1與輔助桌體5 ) 係藉由中繼平板2G與各個四根之鋼琴線(棒狀彈性構件) 2A、2B而維持在於空中穩定的狀態,其水平面內之移動 係形成爲如後所述,爲維持同一高度位置、並且無論在任 何方向上均可自由地移動。在同一面內之旋轉動作亦可同 樣地形成相同狀。 前述四根之桌體側之鋼琴線2A係爲,在第32圖中之 上端部爲被固著在輔助桌體5上,而下端部係被固著在中P 繼平板2G上。符號5A、5B表示被設置在輔助桌體5之 下面側之二處的下方突出部。藉由該下方突出部5A、5B 而設定桌體側之鋼琴線2A之固定位置。 此外,在該四根之各個桌體側之鋼琴線2A之外側上, 係與其個別性地對應、且隔有指定間隔S,而使本體側之 鋼琴線2B分別、個別且平行狀地配設。此種本體側之鋼 琴線2B係爲,其下端部爲與前述桌體側之鋼琴線2A同 樣地爲被固著在中繼平板(中繼構件)2G上,其上端部β 則是固著在設於外殼本體3之內壁部的本體側突出部3 B。 該等之各個鋼琴線2 A、2B係藉由棒狀彈性線材所形 成,該棒狀彈性線材爲具備有可充分支撐如前所述之可動 桌體1以及輔助桌體5的適度之剛性。 藉此,前述可動桌體1係爲,首先,與輔助桌體5同 時在中繼平板2G上藉由內側之四根桌體側之鋼琴線2A 所支撐,在該四根桌體側之鋼琴線2A的彈性限度內,爲 90 1220875 依據連結機構之原理,而形成爲容許其平行移動以及在面 內之旋轉的狀態。 另一方面,中繼平板2G係爲,因藉由位在該中繼平板 2G上之外側的四根桌體側之鋼琴線2B來吊掛至本體側突 出部3 B上,因此,對於外殼本體3,其平行移動以及面 內中之旋轉係形成爲同樣被容許的狀態。In addition, the so-called movable table body 1 and auxiliary table body 5 are positioned by the protrusions 10a, 10b and the crotch portions 10A, 10B, and are integrally fixed to the positioning pillars 10 which have been positioned. When it is integrated, although an adhesive is used in this example, it can also be partially joined by welding 'or the protrusions 10a and 10b are partially pressed into the positioning holes ία, 5A, The other parts are integrated by adhesives or welding. In addition, either one of the movable table body 1 or the auxiliary table body 5 may be fixed by screws, and may be detachably fixed to the crotch portion 10A or 10B of the connecting pillar i 0. In this case, after the screws are tightened, multiple ejector pins can also be used as positioning and fixing to be engaged and nailed between 88 1220875 (not shown). In this way, the movable table body 1 and the auxiliary table body 5 can be reliably integrated. "Table body maintenance mechanism" The table body maintenance mechanism 2 related to this embodiment is such that, while maintaining the movable table body 1, it is not necessary to change the height of the movable table body 1 toward any one that can be on the same surface. The direction comes from the function of free movement. At the same time, it has the function of restoring the original position to forcibly restore the movable table 1 to the original position when the external force is released, and implements this function through the auxiliary table 5. mechanism. In this table body maintenance mechanism 2, it is a mechanism that applies the connecting mechanism to the three-dimensional space as a whole, and uses two piano wires that are set at specified intervals as rod-shaped elastic members. Piano wire) 2A and (Piano wire on the main body side) 2B are set as one set, and four sets are intended to correspond to the corners around the end of the auxiliary table body 5, and the four sets of piano wires 2A and 2B are provided in each set. It is divided into four quadrangular relay plates 2G, which are relay members, and each of them is planted in an upward direction. The aforementioned piano wires 2A and 2B are made of materials having the same rigidity. Here, with regard to the aforementioned piano wires 2A and 2B, as long as the piano wire 2A and 2B are provided with a rod-shaped elastic wire that has adequate rigidity to support the movable table body 1 and the auxiliary table body 5, the piano wire may be replaced by other Material to form. And it is configured such that within the aforementioned piano wires 2A and 2B, the auxiliary table body 5 is maintained from below by the four piano wires 2A located on the inside, and from the main body portion by the four piano wires 2B located on the outside. 30% Hang the relay plate 2 G with a swing of 89 1220875. With this, the movable table body 15 (ie, the movable table body 1 and the auxiliary table body 5) is maintained in the air by the relay plate 2G and the four piano wires (rod-shaped elastic members) 2A and 2B. The state of movement in the horizontal plane is formed as described later, in order to maintain the same height position and to move freely in any direction. The rotations in the same plane can also be formed in the same shape. The four piano wires 2A on the table body side are as shown in Fig. 32. The upper end portion is fixed to the auxiliary table body 5, and the lower end portion is fixed to the middle P relay plate 2G. Reference numerals 5A and 5B indicate lower protrusions provided on the lower two sides of the auxiliary table body 5. The fixed positions of the piano wires 2A on the table side are set by the lower protruding portions 5A and 5B. In addition, on the outer side of the four piano wires 2A on each table body side, the piano wires 2B on the main body side are arranged individually, individually, and in parallel, corresponding to them individually and at a specified interval S. . The main body side piano wire 2B is such that its lower end portion is fixed to the relay plate (relay member) 2G in the same manner as the above-mentioned table side piano line 2A, and its upper end portion β is fixed. A body-side protruding portion 3B provided on an inner wall portion of the case body 3. Each of these piano wires 2 A and 2B is formed by a rod-shaped elastic wire, which has a moderate rigidity that can sufficiently support the movable table body 1 and the auxiliary table body 5 as described above. Accordingly, the aforementioned movable table body 1 is firstly supported by the auxiliary table body 5 on the relay plate 2G by the piano wires 2A on the four table sides on the inside, and the piano on the four table sides Within the elastic limit of the line 2A, 90 1220875 is formed in a state allowing parallel movement and in-plane rotation according to the principle of the connecting mechanism. On the other hand, the relay plate 2G is suspended from the main body-side projection 3B by four piano-side piano wires 2B located on the outer side of the relay plate 2G. In the main body 3, the parallel movement and the in-plane rotation are formed in a similarly permitted state.

因此,輔助桌體5 (亦即,可動桌體)係爲,當承受外 力而在面內移動或是旋轉後,如同後述之第49圖中所示 的爲使桌體側以及外殼本體側之各個鋼琴線2A、2B同時 地進行彈性變形,將中繼平板2G維持成平行狀態且上下 作動。亦即,當輔助桌體5 (亦即,可動桌體1 )爲藉由 外力而在面內移動或是旋轉後,其高度位置之變動係爲, 中繼平板2G之高度爲藉由上下變動所吸收。Therefore, the auxiliary table body 5 (that is, the movable table body) is such that when it is moved or rotated in the surface under external force, as shown in FIG. 49 described below, the table body side and the housing body side Each of the piano wires 2A and 2B is elastically deformed simultaneously, and the relay plate 2G is maintained in a parallel state and moved up and down. That is, when the auxiliary table body 5 (that is, the movable table body 1) is moved or rotated in-plane by an external force, the change in its height position is that the height of the relay plate 2G is changed by up and down Absorbed.

藉此,即使可動桌體1承受外力而移動,在各個鋼琴 線2A、2B之彈性限度內,係可形成爲即使是朝向任何方 向亦可維持相同高度且進行移動。 在本實施例中,爲以略成相等間隔地裝設四組桌體側 與外殼本體側之各個鋼琴線2A、2B,係因將桌體側之鋼 琴線2A與外殻本體側之鋼琴線2B隔有指定間隔、靠近 裝設,因此,在強度方面爲取得整體的平衡,而具有可藉 以穩定之狀態來移動可動桌體1的優點。 在此,桌體側以及外殻本體側之各個鋼琴線2A、2B係 採用具備有相同直徑、相同彈性之物,其露出部分的長度 L係分別被設定爲相同値。此外,各個鋼琴線2A、2B係 91 例如如第3 2圖、第3 4圖所示,爲分別被配設成對於γ 軸而於左右方向上區分,或是對於X軸而於上下方向上 區分。 . 在此情況下,倘若各個鋼琴線2Α、2Β爲對於X軸以 及Υ軸而被配設在分別形成爲線對稱之位置上(或是, 各個鋼琴線2Α、2Β爲整體性且略均等狀)時,亦可配設 在於第3 3圖所示之位置以外的位置。 並且,藉由配置前述各個鋼琴線2Α、2Β,在可動桌體 1之移動時,在各個鋼琴線2Α、2Β上係分別均勻地產生Ρ 有彈性應力,因此,包含可動桌體1之原始位置恢復動作 而可獲得具有將可動桌體1圓滑地進行移動之優點。 如此,前述桌體維持機構2係爲,例如當輔助桌體5 全體以同一方向滑動移動之後,各組之各個鋼琴線2Α、2Β 係全數以同一狀態變形。在此情況下,本體側之鋼琴線2Β 係爲,在以維持其端部之狀態下進行彈性變形,因此,藉 由同樣地進行彈性變形之桌體側之鋼琴線2Α的變形動 作’而使得輔助桌體5之高度位置形成不變,取而代之的 是變動在兩鋼琴線2Α、2Β中所共通支撐的中繼平板2G。 換言之,此種中繼平板2G爲形成吸收以兩鋼琴線2Α、 2Β之變形所產生之高度位置的變動,藉此,輔助桌體5(亦 即’可動桌體i )係不至變更整體性的高度而形成爲可在 同一面內進行滑動移動。在此情況下,當由輔助桌體5開 放驅動力後,該輔助桌體5係藉由各個鋼琴線2A、2B之 彈簧作用而呈一直線的恢復至原始位置(原始位置恢復機 92 能的發動)。 此外,即使在使可動桌體部1 5在相同面內(指 度範圍內)被旋轉驅動的情況下,亦由於相同同的 可動桌體部1 5係形成爲在整體性方面係維持略爲 高度,同時在相同面內進行旋轉動作。並且,即使 情況下,在開放驅動力後,輔助桌體5係藉由各個 2 A、2 B之彈簧作用而呈一直線的恢復至原始位置 位置恢復機能的發動)。 在此,於前述桌體維持機構2中,係爲例示將 線2 A、2 B裝設成四組八根的情況,不過,藉由將 線2A、2B適度地配置成取得良好的平衡(例如以 狀),亦可以三組六根來構成。在此種情況下,三 之鋼琴線2A、2B係爲,將一組之鋼琴線2A、2B 相互靠近狀,同時,亦可在整體性方面將三組之 2A、2B以略微相等間隔地(於三處爲均等狀)進行 此外,亦可爲將兩鋼琴線2A、2B組合具有五組以 態。 《電磁驅動裝置》 有關於本實施例之電磁驅動裝置4係具備有: 驅動磁鐵(在本實施例中係爲使用電磁鐵)6A至 被裝設在輔助桌體5上;作爲驅動線圈之環狀驅動; 爲經由該各個被驅動磁鐵6A至6D,而在可動桌| 向指定之移動方向而賦予指定的電磁力;固定平相 爲維持該環狀驅動線圈7。 定之角 理由, 相同之 是在此 鋼琴線 (原始 兩鋼琴 兩鋼琴 等間隔 組六根 配置成 鋼琴線 配設。 上之狀 四個被 6D,係 I圈7, 1上朝 8,係 93 1220875 前述固定平板8係如第3 2圖所示,係被裝設在輔助桌 體5之可動桌體1側(輔助桌體5與可動桌體1之間), 其周圍係被固著裝設在外殻本體3上。在此,針對於該固 定平板8係亦可爲僅使第3 2圖之左右兩端部維持在外殼 本體3上的構造。 在該固定平板8之中央部上,係形成有容許在前述連 結支柱1 〇之指定範圍內之平行移動的貫通孔8A。該種貫 通孔8 A雖於本實施例中被形成爲圓形形狀,不過,亦可 爲四角形或是其他形狀。 固定平板8係爲,其周圍之局部或是全部爲被維持成 連結置本體側突出部3。在此情況下,固定桌體8與本體 側突出部3 A係將其一體化爲更加的牢固化,因此,在螺 絲鎖固後係可藉由頂出銷(knock pin )而一體化、或是 亦可藉由熔接等而一體化。Thereby, even if the movable table body 1 moves under an external force, within the elastic limits of the respective piano wires 2A and 2B, it can be formed to maintain the same height and move even if it faces in any direction. In this embodiment, four sets of piano wires 2A and 2B on the table body side and the case body side are installed at slightly equal intervals because the piano line 2A on the table side and the piano line on the case body side 2B has a designated interval and is close to the installation. Therefore, in order to achieve overall balance in strength, it has the advantage that the movable table body 1 can be moved in a stable state. Here, the piano wires 2A and 2B on the table body side and the shell body side are made of objects having the same diameter and the same elasticity, and the lengths L of the exposed portions are set to be the same. In addition, each of the piano wires 2A and 2B series 91 is, for example, as shown in FIG. 32 and FIG. 34, configured to be distinguished in the left-right direction with respect to the γ-axis or in the up-down direction with respect to the X-axis. distinguish. In this case, if the respective piano wires 2A and 2B are arranged at positions which are respectively formed as line symmetry with respect to the X-axis and the y-axis (or, the respective piano wires 2A and 2B are integral and slightly equal ), It can also be placed at a position other than the position shown in Figure 33. In addition, by disposing each of the piano wires 2A and 2B, when the movable table body 1 moves, P has elastic stress uniformly on each of the piano wires 2A and 2B. Therefore, the original position of the movable table body 1 is included. Resuming the operation has the advantage that the movable table body 1 can be smoothly moved. In this way, the aforementioned table body maintaining mechanism 2 is, for example, after the entire auxiliary table body 5 slides in the same direction, the piano wires 2A and 2B of each group are all deformed in the same state. In this case, the piano wire 2B on the main body side is elastically deformed while maintaining its end portion. Therefore, the deformation action of the piano wire 2A on the side of the table body that is elastically deformed is similarly made to The height and position of the auxiliary table body 5 are not changed, and instead, the relay flat plate 2G supported by the two piano wires 2A and 2B is changed. In other words, the relay plate 2G absorbs changes in the height and position caused by the deformation of the two piano wires 2A and 2B, and therefore, the auxiliary table body 5 (that is, the 'movable table body i') does not change the integrity. Is formed so that it can slide in the same plane. In this case, when the driving force is released by the auxiliary table body 5, the auxiliary table body 5 is restored to the original position in a straight line by the spring action of each piano wire 2A, 2B (the original position recovery mechanism 92 is activated. ). In addition, even when the movable table body portion 15 is rotationally driven in the same plane (within the range of the finger), the same movable table body portion 15 is formed to maintain a slight overall integrity. Height, while rotating in the same plane. In addition, even in the case, after the driving force is released, the auxiliary table body 5 is linearly restored to the original position by the spring action of each of 2 A and 2 B (the position recovery function is started). Here, in the aforementioned table body maintenance mechanism 2, the case where the wires 2 A and 2 B are installed in four groups of eight is exemplified. However, the wires 2A and 2B are appropriately arranged to achieve a good balance ( For example, it can be composed of three groups of six. In this case, the three piano lines 2A and 2B are such that a group of piano wires 2A and 2B are close to each other, and at the same time, the three groups of 2A and 2B can be spaced at slightly equal intervals ( It is equal at three places.) In addition, it is also possible to combine two piano wires 2A and 2B with five sets of states. << Electromagnetic driving device >> The electromagnetic driving device 4 related to this embodiment is provided with: a driving magnet (in this embodiment, an electromagnet is used) 6A to be installed on the auxiliary table body 5; and a ring of a driving coil In order to pass the respective driven magnets 6A to 6D, a predetermined electromagnetic force is applied to the movable table | in a specified moving direction; and the fixed flat phase is to maintain the annular driving coil 7. The reason for the set angle is the same as this piano line (original two pianos and two pianos with six equally spaced groups configured as a piano wire configuration. The above four are 6D, I circle 7, 1 upward 8, 8 93 1220875. As shown in FIG. 32, the fixed flat plate 8 is installed on the movable table body 1 side of the auxiliary table body 5 (between the auxiliary table body 5 and the movable table body 1), and its surroundings are fixedly installed on the casing. The main body 3. Here, the fixed flat plate 8 may be a structure in which only the left and right end portions of FIG. 32 are maintained on the housing main body 3. The central portion of the fixed flat plate 8 is formed. A through-hole 8A that allows parallel movement within the specified range of the aforementioned connecting pillar 10. Although this through-hole 8A is formed in a circular shape in this embodiment, it may be a quadrangle or other shape. The flat plate 8 is such that a part or all of its surroundings are maintained to be connected to the main body-side protruding portion 3. In this case, the fixed table body 8 and the main body-side protruding portion 3 A are integrated to be more secure. Therefore, after the screw is locked, the ejector pin (knock pin), or they can be integrated by welding or the like.

如此,即使是對於可動桌體1之微米(//)單位的變位 或移動,固定平板8係產生有可對應成對於外殼本體3爲 不至產生位置偏移、且圓滑化。 環狀驅動線圈7係爲,在將前述固定平板8上之線圈 維持面之中心部以作爲原點而假定地X-Y平面上,係被 配置成使其中心點與原點一致之狀態。並且,對應於與該 驅動線圈7之X軸以及Y軸交叉處的各個線圈邊7a、7b、 7c、7d,係個別地配置有前述各個被驅動磁鐵6A至6D。 亦即,有關於前述本實施例之四個被驅動磁鐵6A至6D 係如第3 3圖、第3 4圖所示,爲使用磁極之端面(環狀驅 94 動線圈7之各個線圈邊間之對向面)爲四角形狀的電磁 鐵,於被假設在輔助桌體5之上面的X-Y平面上,而分 別被配設、固著在距離中心部爲相等距離之位置的X軸 上以及Y軸上。 声 因此,在本實施例中,例如在開始特別指定環狀驅動 線圈7之通電方向而開始通電時,對應於此,首先,爲如 後所述的使得指定之作動電流通電至局部或是全部的被驅 動磁鐵6A至6D,因應於前述可動桌體部15之移送方向 來設定磁極(N極、S極、無磁極)。同時,使包含環狀 驅動線圈7之各個被驅動磁鐵6A至6D的磁力大小爲藉 由通電控制來調整,藉此,爲使前述可動桌體部1 5移動 至指定之方向。In this way, even when the micrometer (//) unit of the movable table body 1 is displaced or moved, the fixed flat plate 8 is produced so as to be able to correspond to the housing body 3 without causing positional displacement and smoothness. The ring-shaped driving coil 7 is arranged on the X-Y plane with the center of the coil holding surface on the fixed flat plate 8 as the origin, so that the center point coincides with the origin. The coil sides 7a, 7b, 7c, and 7d at the intersections of the X-axis and Y-axis of the driving coil 7 are individually arranged with the aforementioned driven magnets 6A to 6D. That is, the four driven magnets 6A to 6D of the foregoing embodiment are as shown in FIG. 33 and FIG. 34, and the end faces of the magnetic poles are used (between the coil sides of the annular driving 94 driving coil 7). (Opposite face) is a quadrangular electromagnet, which is arranged on the XY plane assumed to be above the auxiliary table body 5 and fixed to the X axis and Y respectively at a distance from the center On the shaft. Therefore, in this embodiment, for example, when the energization direction of the ring-shaped drive coil 7 is specifically designated and the energization is started, corresponding to this, first, the specified operating current is energized to a part or the whole as described later. The driven magnets 6A to 6D have magnetic poles (N pole, S pole, and non-magnetic pole) set in accordance with the moving direction of the movable table body 15 described above. At the same time, the magnitude of the magnetic force of each of the driven magnets 6A to 6D including the ring-shaped driving coil 7 is adjusted by energization control, thereby moving the movable table body 15 to a predetermined direction.

在此,各個被驅動磁鐵6A至6D的移動方向係爲正交 於環狀驅動線圈7之各個線圈邊7a至7d的方向(亦即, 在X-Y平面上係爲由原點朝向外方的方向),因此,並爲 形成對於可動桌體部1 5地旋轉驅動,而被限定在於同一 面內之朝向360°方向地移動。 針對於有關對於該種可動桌體部1 5之移送方向以及其 驅動移送例的電磁驅動裝置4之作動(對於環狀驅動線圈 7與四個被驅動磁鐵6A至6D之通電控制),係以第37圖 至第38圖進行詳述。在第37圖至第38圖中,係爲揭示 藉由朝向驅動線圈之通電而並無旋轉驅動之構造。 《環狀驅動線圈》 形成電磁驅動裝置4之主要部的四角形之環狀驅動線 95 1220875 圈係如第3 3圖、第34圖所示’係形成爲以將角部切落之 狀態的八角形狀’在整體性方面’係形成爲具備有四個線 圈邊7a、7b、7c、7d的角形形狀。 因此,將各個線圈邊7a至7d之通電方向藉由後述之 動作控制系統20而由外部來進行特別指定,對應於此而 將四個被驅動磁鐵6A至6D之通電方向以及通電電流之 大小進行可變控制(包含有通電停止控制),藉此,相對 於被驅動磁鐵6A至6D,爲依據夫來明(Fleming)之左 手定律,係可輸出將該各個被驅動磁鐵6A、6B、6C、6D ^ 朝指定之方向(正交於線圈邊7a、7b、7c、7d之方向) 按壓的電磁力(反力)。 此外,藉由預先選擇組合在該四個被驅動磁鐵6A至6D 上產生之電磁力的方向,係形成爲可將在該四個被驅動磁 鐵6A至6D上產生之電磁驅動力的合力配合於前述可動 桌體部15之移送方向,而可將該可動桌體部15朝向X-Y 軸平面上之任意方向而賦予移動力。 有關對於該等四個被驅動磁鐵6 A至6 D之一連串的通鲁 電控制之手法,係在後述之程式記憶部22之說明處(第 37圖、第38圖)中進行詳述。 在此,於前述環狀驅動線圈7之同一面上之外側以及 內側之中,在至少與該環狀驅動線圈7之高度(Y軸方向) 爲相同高度、且包含有前述被驅動磁鐵6A至6D之動作 範圍內的範圍中,亦可充塡裝設有肥粒鐵等磁性材料。 置 裝 測 檢 訊 資 置 位 ( 96 1220875 藉由前述電磁驅動裝置4所驅動之可動桌體部1 5的移 動位置,係可藉由位置資訊檢測裝置25所檢測。 有關本實施例之位置資訊檢測裝置25係如第3 5圖所 示,爲形成具備有下述構件之構造:電容感測器群26 (電 容檢測電極26X1至26X4之整體的總稱),係具備有靜電 電容型之多數的檢測電極;作爲演算部之位置資訊演算電 路27,爲將以該電容感測器群26所檢測之多數的電容變 化成分來進行電壓轉換,同時,進行指定之演算、作爲位 置變化資訊,而傳送至後述之動作控制系統20的桌體驅φ 動控制裝置2 1。 位置資訊演算電路(演算部)27係構成如下:信號轉 換電路部27A,係將以前述電容感測器群26所檢測之多 數的電容變化成分以個別性地進行電壓轉換;位置信號演 算電路部27B,爲將施加至以該信號轉換電路部27所轉 換之多數之電容變化成分的電壓信號,藉由指定之演算, 而轉換成表示在X-Y座標上之位置的X方向位置信號VX 以及Y方向之位置信號VY,而再演算、輸出旋轉角信號隹 Θ 〇 具備有前述多數檢測電極的電容感測器群26係如第32 圖至第34圖所示,爲藉由下述構件所構成:八個角形之 電容檢測電極 26X1、26X2、26X3、26X4、以及 26Y 卜 26Y2、 26Y3、26Y4,係對向於輔助桌體5之周圍的下面部分, 並且被配置在前述本體側突出部3 B之上面而隔有指定間 隔;寬度較寬之共通電極(未圖示),爲與上述電極對應、 97 1220875 且被設定在前述輔助桌體5之周圍的下面部分。 前述位置檢測感測器雖是由多數之電容檢測電極 26X1、26X2、26X3、26X4、以及 26Y1、26Y2、26Y3、26Y4 與共通電極(未圖示)間之組合所構成,不過,在此爲了 便利起見,係爲將電容檢測電極26X1、26X2、26X3、26X4、 以及26Y1、26Y2、26Y3、26Y4作爲位置檢測感測器來使 用。 前述各個電容檢測電極(位置檢測感測器)26X 1至 26X4、26Y1至26Y4之內,爲在第33圖、第34圖之右籲 端部而沿著上下隔有指定間隔來裝設,相對於此,爲使其 他之一對的電容檢測電極(位置檢測感測器)26X3、26X4 爲在第33圖、第34圖中之左端部而沿著上下隔有指定間 隔來裝設。 此外,前述各個電容檢測電極26X1至26X4、26Y1至 2 6 Y4之內,爲使一對之電容檢測電極(位置檢測感測器) 26Y1、26Y2在第33圖、第:34圖之上端部而沿著左右隔 有指定間隔來裝設,且使其他之一對的電容檢測電極(位鲁 置檢測感測器)26Y3、26Y4爲在第33圖、第34圖之下 端部而沿著左右隔有指定間隔來裝設。 亦即,有關於本實施例之八個之各個電容檢測電極(位 置檢測感測器)26X1至26X4、26Y1至26Y4係如第33 圖至34圖所示,相對於X軸以及Y軸爲被配設成分別線 對稱的位置。 並且,例如爲使前述可動桌體部1 5賦予至電磁驅動裝 98 1220875 置4、而在如第36圖所不之箭頭F方向(於圖中爲右上 方向)進行移動動作的情況下,於本實施例中,於圖面中 係使位於輔助桌體5兩側(以及上下方向)之一方的電容 檢測電極 26X1、26X2(26Y1、26Y2)與另一方之 26X3、 2 6X4 ( 26 Υ3、26 Υ4 )所檢測而出的電容變化成分,被構 成爲在以信號轉換電路2 7 Α來電壓轉換後,被傳送至位 置信號演算電路27B,而在該位置信號演算電路27B爲輸 入前述各個變化電壓、作爲X方向位置信號VX-Y方向位 置信號VY而進行差動輸出。 φ 在此,可動桌體部1 5爲藉由外粒或是電磁驅動裝置4 之錯誤動作而在同一面內進行旋轉動作的情況下,於本實 施例中,爲與前述之情況相同的作動各部、進行同樣的機 能,且被構成爲使變化成分進行電壓轉換而設爲指定之旋 轉角信號0來進行差動輸出。在此情況下,於實際上係形 成爲藉由後述之動作控制系統20而判斷可動桌體部1 5的 動作異常、而用以達成其修正動作。 在此,在進行可動桌體部1 5之移動的同時,八個之各鲁 個電容檢測電極(位置檢測感測器)方面,爲即時地檢測 其電容變化、輸出至位置資訊演算電路(演算部)27。在 該種位置資訊演算電路(演算部)27中,爲基於該八個 感測器資訊而特別指定可動桌體部1 5之移動方向與移動 量。 在此情況下,例如爲用以將沿著Y軸方向端與Y軸成 正交狀,在所裝設之兩對(四個)之各個位置檢測感測器 99 1220875 中於未發現到電容變化的情況下,係意味著可動桌體爲沿 著X軸(形成旋轉動作)來進行移動。同時,其移動量 爲藉由X軸方向之兩對的位置檢測感測器26X1、26X2以 及2 6X3、2 6X4之電容增減來判斷、特別指定。 此外,當X軸方向與Y軸方向之雙方的位置檢測感測 器爲檢測出例如相同之電容變化的情況下,可動桌體1係 如第36圖所示,爲意味著在第一象限內之X軸正方向上 移動(成旋轉動作)45°之方向,其移動方向係藉由各個 位置檢測感測器之電容的增減模式來判斷,此外,其移動鲁 量爲藉由各個位置檢測感測器之電容的變化量來特別指 定。 藉由該等各個位置檢測感測器之電容變化模式所達到 之移動方向的特別指定、以及各個位置檢測器之電容的變 化量與可動桌體1之移動量間的關係,係亦可例如爲預先 實驗性地被特別指定且圖表化而被記憶至記憶體等之中, 以其爲基準而來判斷位置偏移等。如此,係可達到演算處 理之迅速化。 _ 再者,於本實施例中,例如係可將同時施加至第34圖 之左右(以及上下)之各個電容檢測電極的雜訊,藉由差 動輸出(例如,係指在取得配置在X軸方向之一端部與 另一端部的電容檢測電極中所檢測的電容變化之差之意; 外部雜訊排除機能)而抵消,同時,當使測定値進行電壓 轉換後,係使其變化量額如同例如「( + vX ) — (- νχ ) =2vX」被合計、輸出。因此,爲具有可高感度的輸出輔 100 1220875 助桌體5 (可動桌體1 )之位置資訊的優點。 《動作控制系統》 在本實施例中,於前述電磁驅動裝置4方面係倂設有 動作控制系統20 (參照第3 5圖),其係爲個別性的驅動 控制前述環狀驅動線圈7以及四個之各個被驅動磁鐵6A 至6D、以限制前述可動桌體部1 5之移動或是旋轉動作。 此種動作控制系統2 0係爲具備有下述機能,即:通電 方向設定機能,爲將對於前述環狀驅動線圈7之通電方向 設定、維持在指定之方向(一方或另一方);驅動線圏通 電控制機能,係將對於該環狀驅動線圈7之通電電流的大 小進行可變設定;磁極個別設定機能,爲因應於朝向該環 狀驅動線圈7之通電方向來作動,且個別地設定、維持前 述各個被驅動磁鐵6A至6D的磁極;桌體動作控制機能, 爲將該各個被驅動磁鐵6A至6D之磁力強度因應於來自 外部的指令,在個別地進行可變設定(將通電電流藉由可 變控制來設定)的同時,爲藉此調整對於前述可動桌體部 15之移送方向以及移送力。 並且,此種動作控制系統20係爲用以實施前述各項機 能,而具備有:桌體驅動控制裝置21,爲將前述電磁驅 動裝置4之環狀驅動線圈7以及各個被驅動磁鐵6A至6D 依據指定之通電控制模式來個別的進行驅動,且將前述可 動桌體部1 5於指定的方向進行移動控制;程式記憶部22, 所記憶之多數的控制程式,係有關於特別指定倂設在該桌 體驅動控制裝置21之前述可動桌體1之移動方向以及其 101 1220875 移動量等的多數之控制模式;資料記憶部2 3,係記憶有 在該等各個控制程式實施之際所使用之指定的資料等(參 照第3 5圖)。 此外,在桌體驅動控制裝置21方面,係倂設有動作指 令輸入部24,係下達對於環狀驅動線圈7以及各個被驅 動磁鐵6A至6D的指定之控制動作之指令。再者,在此 種桌體驅動控制裝置21之中,前述可動桌體1之移動中 以及移動後的位置資訊係形成爲送入、且以藉由前述位置 檢測感測機構25所檢測出之後述高感度狀地進行演算處φ 理。 並且,前述動作控制系統20所具有之各種的控制機能, 係總合性地被包含在前述程式記憶部22之多數的通電控 制模式A1至A8中,基於經由動作指令輸入部24而由外 部所輸入的選擇指令來選擇。經由該種已被選擇之指定的 控制模式A1至A8,作動、實施前述各種控制機能,基於 外部指令,而形成爲使可動桌體1於指定的方向上移動。 將其進行更加具體之說明。 · 有關本實施例之前述桌體驅動控制裝置21係具備有主 要控制部2 1 A與線圈驅動控制部2 1 B。主控制部2 1 A爲 具有如下述之機能,即,由程式記憶部22選擇基於來自 動作指令輸入部24之指令而作動的指定之通電控制模 式,且在前述環狀驅動線圈7以及四個之各個被驅動磁鐵 6A至6D中進行通電控制。線圈驅動控制部2 1 B則具有 如下述之機能,即,依據以前述主要控制部2 1 A所設定 102 1220875 之控制模式(A 1至A 8 ),將環狀驅動線圈7以及四個之 各個被驅動磁鐵6A至6D同時或個別性地進行驅動控制 之機能。 此外,主要控制部2 1 A係亦同時兼具有下述之機能, 該機能係爲,基於來自檢測桌體位置之位置檢測感測機構 25的輸入資訊,而計算前述可動桌體1之位置、或是進 行其他各種的演算。 在此,符號4G所示係爲在前述電磁驅動裝置4之環狀 驅動線圈7以及四個之各個被驅動磁鐵6A至6D中通電籲 有指定之電流的電源電路部。 再者,前述桌體驅動控制裝置21係具備有:位置偏移 演算機能,爲輸入來自前述位置檢測感測機構25之資訊 而進行指定的演算,同時,據此預先算出與以動作指令輸 入部24所設定之移動端的基準位置資訊間之偏移;桌體 位置補正機能,爲基於該已算出之位置偏移資訊,驅動電 磁驅動裝置4,而將該可動桌體部1 5移送控制至預先設 定之移動端的基準位置上。 φ 因此,在第十實施例中,當可動桌體部15之移動方向 由於干擾等而偏移的情況下,係一面修正該偏移而形成爲 將可動桌體部1 5移送控制至指定的方向,藉此,該可動 桌體部15係形成爲迅速且高精度的移送至預先設定的目 標位置上。在此情況下,位置偏移之修正係可藉由調整通 電驅動中之各個被驅動磁鐵6A至6D的通電電流來實施。 《程式記憶部》 103 1220875 前述桌體驅動控制裝置2 1係爲,依據在程式記憶 中所預先記憶的指定之控制程式(指定之控制模式) 將前述電磁驅動裝置4之環狀驅動線圈7以及四個之 被驅動磁鐵6A至6D構成爲以具有指定之關聯性而 的進行驅動控制。 亦即,在有關本實施例之程式記憶部22中,爲記憶 驅動線圈用控制程式,係特別指定對於前述環狀驅動 7之通電方向,而將通電電流之大小進行可變設定; 之磁鐵用控制程式,爲在對於環狀驅動線圈7而使通 向被特別指定的情況下作用該機能,並且與其對應的 個之各個被驅動磁鐵(電磁鐵)之通電方向進行個別 別指定,而在特別指定磁極之N極或是S極的同時 個別性地將包含通電停止之通電電流的大小進行可 定。同時,前述各個控制程式之動作時序係被整理、 在八組之通電控制模式A 1至A 8(參照第3 7圖、第3 8 在此,有關於第十實施例中之八組的通電控制模3 至A8,爲基於第37圖至第38圖進行說明。 在第37圖中,爲朝向X軸之正向或負向、或是朝 軸之正向或負向,表示分別移送可動桌體部1 5之情 的各個通電控制模式A 1至A4之一例(已圖表化之牧 在該第37圖中,於各個通電控制模式A1至A4方 將對於環狀驅動線圈7之直流電流之通電方向如箭 所示,在本實施例中係被設定成右旋狀。 〈控制模式A1〉Here, the moving direction of each driven magnet 6A to 6D is a direction orthogonal to each coil side 7a to 7d of the ring-shaped driving coil 7 (that is, a direction from the origin to the outside on the XY plane). Therefore, in order to form a rotational drive for the movable table body portion 15, it is limited to move in the direction of 360 ° in the same plane. Regarding the movement direction of the movable table body 15 and the electromagnetic driving device 4 of its driving transfer example (the energization control of the ring-shaped driving coil 7 and the four driven magnets 6A to 6D), 37 to 38 are described in detail. Figures 37 to 38 show the structure without rotation drive by the current applied to the drive coil. "Loop-shaped driving coil" A quadrilateral ring-shaped driving wire 95 1220875 forming the main part of the electromagnetic driving device 4 is formed as an octagon with the corners being cut off as shown in Figs. 3 3 and 34. The shape 'in terms of integrity' is formed in an angular shape having four coil sides 7a, 7b, 7c, 7d. Therefore, the energizing directions of the respective coil sides 7a to 7d are specified externally by the operation control system 20 to be described later, and the energizing directions of the four driven magnets 6A to 6D and the magnitudes of the energizing currents are correspondingly determined accordingly. Variable control (including power-on and stop control), in accordance with Fleming's left-hand law with respect to the driven magnets 6A to 6D, can output the respective driven magnets 6A, 6B, 6C, 6D ^ Electromagnetic force (reaction force) pressed in the specified direction (orthogonal to the coil sides 7a, 7b, 7c, 7d). In addition, by selecting and combining the directions of the electromagnetic forces generated on the four driven magnets 6A to 6D in advance, it is formed so that the resultant force of the electromagnetic driving forces generated on the four driven magnets 6A to 6D can be matched with The moving direction of the movable table body portion 15 can be applied to the movable table body portion 15 in any direction on the XY axis plane to impart a moving force. A series of through-electric control methods for one of the four driven magnets 6 A to 6 D is described in detail in the description section (FIG. 37 and FIG. 38) of the program memory section 22 described later. Here, among the outer side and the inner side of the same surface of the ring-shaped driving coil 7, at least the same height as the height of the ring-shaped driving coil 7 (Y-axis direction), and the driven magnets 6A to 6 are included. In the range of the 6D operation range, magnetic materials such as fertile iron can also be filled. The installation test and inspection information is set (96 1220875 The moving position of the movable table body 15 driven by the aforementioned electromagnetic driving device 4 can be detected by the position information detection device 25. The position information about this embodiment As shown in FIG. 35, the detection device 25 has a structure including the following components: a capacitance sensor group 26 (general name of the entire capacitance detection electrodes 26X1 to 26X4), and a plurality of capacitance type Detection electrode; position information calculation circuit 27 as a calculation unit for transmitting voltage conversion using a plurality of capacitance change components detected by the capacitance sensor group 26, and performing a specified calculation as position change information and transmitting the same To the table body drive φ motion control device 21 of the motion control system 20 to be described later, the position information calculation circuit (calculation section) 27 is configured as follows: The signal conversion circuit section 27A is to be detected by the aforementioned capacitance sensor group 26. Most of the capacitance change components are individually converted in voltage. The position signal calculation circuit section 27B is applied to the majority converted by the signal conversion circuit section 27. The voltage signal of the capacitance change component is converted into an X-direction position signal VX and a Y-direction position signal VY indicating the position on the XY coordinates by a specified calculation, and then calculated and output a rotation angle signal 隹 Θ 〇 The capacitance sensor group 26 of most of the aforementioned detection electrodes is shown in FIGS. 32 to 34, and is composed of the following components: eight angular capacitance detection electrodes 26X1, 26X2, 26X3, 26X4, and 26Y. 26Y2, 26Y3, and 26Y4 are facing the lower part of the auxiliary table body 5 and are arranged above the main body side protruding part 3 B with a specified interval; a wider common electrode (not shown) Corresponds to the above electrodes, 97 1220875 and is set at the lower part around the auxiliary table body 5. Although the position detection sensor is composed of a plurality of capacitance detection electrodes 26X1, 26X2, 26X3, 26X4, and 26Y1, 26Y2 , 26Y3, 26Y4, and a common electrode (not shown), but for convenience, the capacitor detection electrodes 26X1, 26X2, 26X3, 26X4, and 26Y1, 26Y 2, 26Y3, 26Y4 are used as position detection sensors. The aforementioned capacitance detection electrodes (position detection sensors) 26X 1 to 26X4, 26Y1 to 26Y4 are at the right end of Figs. 33 and 34. In order to make the other two pairs of capacitance detection electrodes (position detection sensors) 26X3 and 26X4 the left end of Fig. 33 and Fig. 34 A specified interval is provided along the upper and lower intervals. In addition, each of the aforementioned capacitance detection electrodes 26X1 to 26X4, 26Y1 to 2 6 Y4 is a pair of capacitance detection electrodes (position detection sensors) 26Y1, 26Y2 in Fig. 33 and Fig. 34: The upper ends are installed at a specified interval along the left and right sides, and the capacitor detection electrodes (position detection sensors) 26Y3 and 26Y4 of the other pair are shown in Fig. 33 The bottom end of Figure 34 is installed along the left and right with a specified interval. That is, each of the eight capacitance detection electrodes (position detection sensors) 26X1 to 26X4 and 26Y1 to 26Y4 of this embodiment is as shown in FIGS. 33 to 34, and is relative to the X axis and the Y axis. They are arranged at positions which are respectively linearly symmetric. In addition, for example, in order to provide the movable table body 15 to the electromagnetic drive device 98 1220875 setting 4 and perform a movement operation in the direction of arrow F (upper right direction in the figure) as shown in FIG. 36, In this embodiment, the capacitance detection electrodes 26X1, 26X2 (26Y1, 26Y2) located on one side of the auxiliary table body 5 (and the up-down direction) and the other 26X3, 2 6X4 (26 Υ3, 26) are shown in the drawing. Υ4) The detected capacitance change component is configured to be transmitted to the position signal calculation circuit 27B after voltage conversion by the signal conversion circuit 27A, and the position signal calculation circuit 27B is used to input each of the aforementioned change voltages. The differential output is performed as the X-direction position signal VX-Y-direction position signal VY. φ Here, when the movable table body 15 is rotated in the same plane by the wrong action of the outer grain or the electromagnetic drive device 4, in this embodiment, it is the same operation as the previous case Each unit performs the same function, and is configured to perform voltage conversion on a change component and set it to a specified rotation angle signal 0 to perform differential output. In this case, in practice, it is determined that an abnormal operation of the movable table body 15 is performed by an operation control system 20 described later, and the correction operation is performed. Here, while moving 15 of the movable table body, each of the eight capacitance detection electrodes (position detection sensors) detects the capacitance change in real time and outputs it to the position information calculation circuit (calculation). Department) 27. In this kind of position information calculation circuit (calculation unit) 27, the movement direction and amount of movement of the movable table body portion 15 are specifically specified based on the eight sensor information. In this case, for example, in order to make the end along the Y-axis direction orthogonal to the Y-axis, no capacitance is found in each of the two (four) position detection sensors 99 1220875 installed. In the case of change, it means that the movable table body moves along the X axis (forming a rotation motion). At the same time, the amount of movement is specifically determined by the increase or decrease of the capacitance of the two pairs of position detection sensors 26X1, 26X2, and 2 6X3, 2 6X4 in the X-axis direction. In addition, when the position detection sensors in both the X-axis direction and the Y-axis direction detect, for example, the same capacitance change, the movable table 1 is shown in FIG. 36, which means that it is within the first quadrant The X-axis positive direction moves (in a rotation motion) in a direction of 45 °, and its moving direction is determined by the increase and decrease mode of the capacitance of each position detection sensor. In addition, its movement amount is determined by each position detection sensor. The amount of change in the capacitance of the detector is specifically specified. The specific designation of the moving direction achieved by the capacitance change mode of each of the position detection sensors, and the relationship between the amount of change in the capacitance of each position detector and the amount of movement of the movable table body 1 can also be, for example, It is experimentally specified in advance and graphed to be stored in a memory or the like, and a position shift or the like is determined based on the reference. In this way, the system can achieve rapid processing. _ Furthermore, in this embodiment, for example, the noise that can be simultaneously applied to each of the capacitance detection electrodes on the left and right (and up and down) of FIG. 34 can be transmitted by differential output (for example, when the configuration is obtained at X The difference between the capacitance changes detected in the capacitance detection electrode at one end and the other end in the axial direction; the external noise elimination function) is canceled. At the same time, after the measurement 値 is subjected to voltage conversion, the change amount is changed. For example, "(+ vX) — (-νχ) = 2vX" is added up and output. Therefore, the position information of the auxiliary table body 5 (movable table body 1) can be supplemented with a high-sensitivity output. << Operation Control System >> In this embodiment, an operation control system 20 (refer to FIG. 35) is provided on the aforementioned electromagnetic drive device 4, which individually controls and controls the aforementioned annular drive coils 7 and 4 Each of the magnets 6A to 6D is driven to restrict the movement or rotation of the movable table body 15 described above. This operation control system 20 is equipped with the following functions, namely, the energization direction setting function is to set and maintain the energization direction of the loop drive coil 7 in the specified direction (one or the other); the drive line圏 The energization control function is to variably set the energizing current of the ring-shaped drive coil 7; the magnetic pole individual setting function is to operate in response to the energization direction of the ring-shaped drive coil 7, and to individually set, The magnetic poles of each of the driven magnets 6A to 6D are maintained; the table movement control function is to individually set the magnetic strength of each of the driven magnets 6A to 6D in accordance with an external command (by energizing the current It is set by the variable control), so as to adjust the feeding direction and the feeding force to the movable table body 15. In addition, this motion control system 20 is used to implement the aforementioned functions, and includes: a table driving control device 21, a ring-shaped driving coil 7 of the electromagnetic driving device 4, and respective driven magnets 6A to 6D. Individually drive according to the specified power-on control mode, and move the aforementioned movable table body 15 in the specified direction; the program memory section 22, most of the stored control programs are related to the special designation set in The control mode of the table body driving control device 21 includes a plurality of control modes such as the moving direction of the movable table body 1 and the movement amount of 101 1220875; and the data memory section 23 stores the data used in the implementation of each of these control programs. Specified materials, etc. (refer to Figures 3 to 5). In addition, the table body drive control device 21 is provided with an operation command input section 24, which issues a command for designating a control operation for the ring-shaped drive coil 7 and each of the driven magnets 6A to 6D. Furthermore, in such a table body drive control device 21, the position information during and after the movement of the movable table body 1 is formed to be fed in and detected by the position detection and sensing mechanism 25. The calculation process φ is performed with high sensitivity as described later. The various control functions of the operation control system 20 are collectively included in most of the power-on control modes A1 to A8 of the program memory section 22, and are externally controlled based on the operation command input section 24. Enter the selection instruction to select. Based on the selected control modes A1 to A8, the aforementioned various control functions are activated and implemented, and the movable table 1 is formed to move in a specified direction based on an external command. This will be explained more specifically. The aforementioned table body drive control device 21 related to this embodiment is provided with a main control section 2 1 A and a coil drive control section 2 1 B. The main control unit 2 1 A has a function that the program memory unit 22 selects a specified energization control mode that operates based on a command from the operation command input unit 24, and that the ring-shaped drive coil 7 and four Energization control is performed in each of the driven magnets 6A to 6D. The coil drive control section 2 1 B has the following function, that is, according to the control mode (A 1 to A 8) of 102 1220875 set by the aforementioned main control section 2 1 A, the ring drive coil 7 and four Each of the driven magnets 6A to 6D performs a driving control function simultaneously or individually. In addition, the main control unit 2 A series also has the following functions. The function is to calculate the position of the movable table 1 based on the input information from the position detection and sensing mechanism 25 that detects the position of the table. Or perform various other calculations. Here, the reference numeral 4G is a power supply circuit section that energizes a predetermined current in the ring-shaped driving coil 7 of the electromagnetic driving device 4 and each of the four driven magnets 6A to 6D. In addition, the above-mentioned table driving control device 21 is provided with a position shift calculation function, which performs a specified calculation for inputting information from the position detection and sensing mechanism 25, and calculates and uses an operation command input unit in advance based on this The offset between the reference position information of the mobile terminal set at 24; the table position correction function drives the electromagnetic drive device 4 based on the calculated position offset information, and transfers the movable table body part 15 to the advance Set the reference position of the mobile end. φ Therefore, in the tenth embodiment, when the moving direction of the movable table body portion 15 is shifted due to interference or the like, the offset is corrected to form the movable table body portion 15 to a specified position. In this way, the movable table body 15 is formed to be quickly and accurately moved to a preset target position. In this case, the correction of the position shift can be performed by adjusting the energization currents of the respective driven magnets 6A to 6D in the power-on drive. << Program memory part >> 103 1220875 The aforementioned table body drive control device 2 1 is based on the specified control program (designated control mode) stored in the program memory in advance, and the annular drive coil 7 of the electromagnetic drive device 4 and The four driven magnets 6A to 6D are configured to perform drive control with a predetermined correlation. That is, in the program memory unit 22 of the present embodiment, the control program for driving the coil is stored, and the energizing direction of the ring-shaped drive 7 is specifically specified, and the magnitude of the energizing current is variably set; The control program is used to designate the function when the loop drive coil 7 is specifically designated, and to individually specify the energization direction of each of the driven magnets (electromagnets) corresponding thereto. While specifying the N pole or S pole of the magnetic pole, the magnitude of the energizing current including energization stop can be individually determined. At the same time, the operation timings of the aforementioned control programs are arranged, and the eight groups of power-on control modes A 1 to A 8 are referred to (refer to FIG. 37 and FIG. 38. Here, there are eight groups of power-on control modes in the tenth embodiment. Control modes 3 to A8 are explained based on Figs. 37 to 38. In Fig. 37, positive or negative directions toward the X-axis, or positive or negative directions toward the axis, respectively, indicate that the movable parts can be moved. An example of each of the energization control modes A 1 to A4 in the case of the table body 15 (the diagram is shown in FIG. 37. In each of the energization control modes A1 to A4, the DC current for the ring-shaped driving coil 7 is The direction of energization is shown by an arrow, and in this embodiment, it is set to be right-handed. <Control mode A1>

部22 &quot;而 各個 個別 有: 線圈 多數 電方 將四 地特 ,可 變設 記憶 圖)。 ^ A1 向Y 況下 丨)。 面, 頭A 104 1220875 在該第十實施例中之控制模式A 1係表示用以將可動桌 體1移送至X軸之正的方向之通電控制模式之一例(參 照第3 7圖)。 在該控制模式A1中,爲使Y軸上之被驅動磁鐵6B、6 S 被控制成停止通電,使對向於X軸上之被驅動磁鐵6A之 前述線圈邊7 a的端面部被設定成N極,且將對向於X軸 上之被驅動磁鐵6 C之前述線圈邊7 c的端面部設定爲S 極0 因此,在環狀驅動線圈7之線圈邊7a、7c部份中,爲_ 在該線圈邊7 a、7 c內產生於點線之箭頭所示方向的電磁 驅動力’同時,以該反力(使環狀驅動線圈7被固定)而 使得被驅動磁鐵6A、6C於實線之箭頭所示方向(圖中之 右方)被推斥驅動,藉此,使可動桌體部1 5被移送至X 軸上之正向。 〈控制模式A2〉 該種控制模式A2係爲表示用以將可動桌體1移動至X 軸之負向的控制模式之一例(參照第3 7圖)。 肇 在此種控制模式A2中,將X軸上之被驅動磁鐵6A、6C 之磁極的設定在相較於前述控制模式A1的情況係以成相 逆之點爲不同處。其他係與前述控制模式A1之情況形成 相同。 因此,在環狀驅動線圈7之線圈邊7 a、7 c部份中,藉 由與前述控制模式A 1之情況相同的原理,爲產生有與控 制模式A 1之情況爲逆向的電磁驅動力,其反力爲被推斥 105 1220875 驅動在實線之箭頭所示方向(圖中之左方),藉此,爲使 可動桌體15移送至X軸上之負向。 〈控制模式A3〉 該種控制模式A 3係爲表示用以將可動桌體1移動至Y 軸之正向的控制模式之一例(參照第3 7圖)。 在該控制模式A3中,爲使X軸上之被驅動磁鐵6A、6C 被控制成停止通電,使對向於γ軸上之被驅動磁鐵6B之 前述線圈邊7b的端面部被設定成N極,且將對向於Y軸 上之被驅動磁鐵6D之前述線圈邊7d的端面部設定爲S 極。 因此,在環狀驅動線圈7之線圈邊7b、7d部份中,爲 在該線圈邊7b、7d內產生於點線之箭頭所示方向的電磁 驅動力,同時,以該反力(使環狀驅動線圈7被固定)而 使得被驅動磁鐵6B、6D於實線之箭頭所示方向(圖中之 上方)被推斥驅動,藉此,使可動桌體部1 5被移送至γ 軸上之正向。 〈控制模式A4〉 該種控制模式A4係爲表示用以將可動桌體丨移動至γ 軸之負向的控制模式之一例(參照第3 7圖)。 在此種控制模式A4中,將Y軸上之被驅動磁鐵6B、6D 之磁極的設定在相較於前述控制模式A3的情況係以成相 逆之點爲不同處。其他係與前述控制模式A3之情況形成 相同。 因此,在環狀驅動線圈7之線圈邊7b、7d部份中,藉. 106 1220875 由與前述控制模式A3之情況相同的原理爲產生有電磁驅 動力,其反力爲被推斥驅動在實線之箭頭所示方向(圖中 之下方)’藉此,爲使可動桌體15移送至γ軸上之負向。 接著,說明將可動桌體部15朝向X-Y平面座標上之四 個象限方向之情況的各個通電控制模式A5至A8之一例 (已圖表化之物)。將其揭示於第3 8圖。 在第38圖中,於各個通電控制模式A5至A8中,係將 對於環狀驅動線圈7之直流電流的通電方向如箭頭A所 示,在本實施例中係被設定成右旋狀。 φ 〈控制模式A5〉 在該第十實施例中之控制模式A5係爲,表示用以將可 動桌體1朝向X-Y平面座標上之第一象限方向進行移送 的通電控制模式之一例(參照第3 8圖)。 在該控制模式A 5中,爲同時地使四個之各個被驅動磁 鐵6A至6D被通電控制,其磁極N、S係分別被設定成, 將對向於環狀驅動線圈7之線圈邊7a、7b之處的端面部 之磁極設爲N極,而將同樣對向於環狀驅動線圈之線圈鲁 邊7c、7d之處的端面部之磁極設爲S極。 因此,在環狀驅動線圈7之各個線圈邊7a至7d部分 上,係形成爲與同時作動前述控制模式A1以及A3之情 形爲同等的狀態,其合力係如第3 8圖之控制模式A5之 欄所揭示,爲被朝向於第一象限之方向。藉此,係使可動 桌體部15朝向X-Y平面座標上之第一象限之方向而進行 移送。 107 1220875 在此,對於x軸而朝向第一象限方向之移送角度0係 爲,使各個被驅動磁鐵6A至6D之通電電流的大小進行 可變控制,藉由使作用在各個被驅動磁鐵6A至6D之電 磁驅動力進行變化,而可自如地將其大小進行可變設定。 藉此,係可將可動桌體部1 5自由地在第一象限方向之任 意方向上進行移送控制。 〈控制模式A6〉 此種控制模式A6係爲,表示用以將可動桌體1朝向X-Y 平面座標上之第三象限方向(與第一象限方向爲相反的方φ 向)進行移送的通電控制模式之一例(參照第3 8圖)。 在該控制模式A6中,爲使四個之被驅動磁鐵6A至6D 同時地被通電控制,其磁極N、S係全數被設定成與控制 模式A5之情況爲相逆狀。 因此,在環狀驅動線圈7之各個線圈邊7a至7d部分 上,係形成爲與同時作動前述控制模式A2以及A4之情 形爲同等的狀態,其合力係如第3 8圖之控制模式A6之 欄所掲示,爲被朝向於第三象限之方向。藉此,係使可動鲁 桌體部15朝向X-Y平面座標上之第三象限之方向而進行 移送。 在此,對於X軸而朝向第三象限方向之移送角度0係 爲,使各個被驅動磁鐵6A至6D之通電電流的大小進行 可變控制,藉由使作用在各個被驅動磁鐵6A至6D之電 磁驅動力進行變化,而可自如地將其大小進行可變設定。 藉此,係可將可動桌體部1 5自由地在第三象限方向之任 108 1220875 意方向上進行移送控制。 〈控制模式A 7〉 此種控制模式A7係爲,表示用以將可動桌體1朝向X-Y 平面座標上之第二象限方向進行移送的通電控制模式之一 例(參照第3 8圖)。 在該控制模式A7中,爲同時地使四個之各個被驅動磁 鐵6A至6D被通電控制,其磁極N、S係分別被設定成, 將對向於環狀驅動線圈7之線圈邊7b、7c之處的端面部 之磁極設爲N極,而將同樣對向於環狀驅動線圈之線圈φ 邊7c、7a之處的端面部之磁極設爲S極。 因此,在環狀驅動線圈7之各個線圈邊7a至7d部分 上,係形成爲與同時作動前述控制模式A2以及A3之情 形爲同等的狀態,其合力係如第3 8圖之控制模式A7之 欄所揭示,爲被朝向於第二象限之方向。藉此,係使可動 桌體部15朝向X-Y平面座標上之第二象限之方向而進行 移送。. 在此,對於X軸而朝向第二象限方向之移送角度0係鲁 爲,使各個被驅動磁鐵6A至6D之通電電流的大小進行 可變控制,藉由使作用在各個被驅動磁鐵6A至6D之電 磁驅動力進行變化,而可自如地將其大小進行可變設定。 藉此,係可將可動桌體部1 5自由地在第二象限方向之任 意方向上進行移送控制。 〈控制模式A8〉 此種控制模式A8係爲,表示用以將可動桌體部1 5朝 109 1220875 向Χ-Υ平面座標上之第四象限方向(與第一象限方向爲 相反的方向)進行移送的通電控制模式之一例(參照第3 8 圖)。 在該控制模式Α8中,爲使四個之被驅動磁鐵6Α至6D 同時地被通電控制,其磁極Ν、S係全數被設定成與控制 模式Α7之情況爲相逆狀。 因此,在環狀驅動線圈7之各個線圈邊7a至7d部分 上,係形成爲與同時作動前述控制模式A 1以及A4之情 形爲同等的狀態,其合力係如第3 8圖之控制模式A8之鲁 欄所揭示,爲被朝向於第四象限之方向。藉此,係使可動 桌體部15朝向X-Y平面座標上之第四象限之方向而進行 移送。 在此,對於X軸而朝向第四象限方向之移送角度0係 爲,使各個被驅動磁鐵6A至6D之通電電流的大小進行 可變控制,藉由使作用在各個被驅動磁鐵6A至6D之電 磁驅動力進行變化,而可自如地將其大小進行可變設定。 藉此,係可將可動桌體部1 5自由地在第四象限方向之任鲁 意方向上進行移送控制。 《致動用平板》 在前述環狀驅動線圈7之各個線圈邊7a至7d部分上, 於對向、且靠近於前述四個之各個被驅動磁鐵6A至6D 之磁極面的位置上,爲如第3 2圖至第34圖所示,由非磁 性構件所形成之金屬製的致動用平板9係以由周圍被絕緣 的狀態下配設、且被固著裝設在各個環狀驅動線圈7側。 110 1220875 該種各個致動用平板9係具備有下述機能,即,抑制 對於可動桌體部1 5之急速地移動動作、同時使該可動桌 體部1 5緩慢地移動。在第3 9圖中係表示其動作原理。 在此,第39A圖所示係爲省略第32圖之致動用平板9 部分的局部斷面圖。此外,第3 9 B圖所示係爲沿著第3 9 A 圖之箭頭A - A線所觀看的平面圖(動作原理說明圖)。 在此情況下,在急速地移動已裝設有四個之被驅動磁 鐵6A至6D的可動桌體部1 5之情況下,爲在該各個被驅 動磁鐵6A至6D以及與其對應之各個致動用平板9之間,書 爲有以在移動速度上成一定比例大小的電磁致動(渦電流 煞車)作動。藉此,可動桌體部15係爲使其急速的動作 得以受到抑制、且可緩慢地進行移動。 將其再更具體地進行說明,於第3 9圖中,致動用平板 9係對向於被驅動磁鐵6A之N極而被固著在環狀驅動線 圈7之線圈邊7a部分。符號9A、9B係爲用以固定致動 用平板9的隔件構件。該種隔件構件9A、9B係在本實施 例中爲藉由非導電性構件所形成。 籲 現在,當使輔助桌體5於圖之右方以速度V1來急速地 移動後,金屬製之致動用平板9(係由於已被固定)而形 成爲相對性地在圖之左方爲藉由同一的速度V2(=V1) 來急速地移動後。藉此,在致動用平板9內爲依據夫來明 右手定律,在第39B圖所示之方向(圖中係爲向上之方向) 產生在該箭頭方向上流動之左右對向的渦電流。該種渦電 流之大小亦與速度V2成比例。 111 1220875 其次,在電動勢EV之產生區域中係由於存在有來自N 極之磁通量,因此,在該被驅動磁鐵6A至6D之磁通量 與致動用平板9內之(電動勢EV方向之)渦電流間,係 依據夫來明左手定律,而在移動用平板9內(朝向圖中之 右方)產生指定之移動力fl。 另一方面,致動用平板9係被固定在固定平板8上, 因此,移動力Π之反力f2係在被驅動磁鐵6A至6D上作 爲致動力而產生’其朝向係與移動力fl之朝向形成相逆。 亦即,該種致動力f2係形成爲與被驅動磁鐵6Α至6D (亦鲁 即輔助桌體5)最初之急速地移動方向爲相逆之方向,此 外,其大小係形成爲與該輔助桌體5之移動速度成比例之 大小,因此’係使該輔助桌體5藉由其急速地移動所抑制, 而形成爲以穩定之狀態來圓滑地進行移動。 即使在其他之致動用平板9之處亦全數同樣的產生有 指定的致動力f2。 因此,在已具備備驅動磁鐵6A至6D之輔助桌體5中, 例如,在急速地停止動作之際,雖然容易在該停止處上產鲁 生往復動作,不過,相對於此的動作係形成爲被適當的受 到抑制、且圓滑而緩慢地移動。亦即,在整體性方面,該 各個致動用平板9係有效地作用其機能,而可獲得可動桌 體部15之移動動作已穩定的裝置。藉由來自外部之振動 而使得可動桌體部1 5即使在有往復微小振動的情況下, 亦可發揮同樣地機能而有效地抑制往復微小振動。 此外,前述各個致動用平板9係兼具有將在環狀驅動 112 1220875 線圈7之驅動時產生的熱釋出的機能。在該特點中,爲有 效地抑制伴隨於環狀驅動線圏7之連續運轉而產生之高溫l 下的電阻增加、以及通電電流値之降低(亦即,電磁驅動 力之降低),爲可將通電電流設定爲長時間爲一定位準。 因此,對於由電磁驅動裝置所輸出之電磁驅動力,係可持 續穩定來自外部之電流控制,而可有效地抑制長期變形(因 爲熱所造成之絕緣破壞)。藉此,係可提高裝置整體之耐 久性、甚至是裝置整體之信賴性。 《整體性的動作》 φ 其次,說明在前述第十實施例中之整體性的動作。 在第3 5圖中,首先,由動作指令輸入部24將用以使 可動桌體1移動至指定位置的動作指令輸入至控制控制系 統20,之後,桌體驅動控制裝置2 1之主要控制部2 1 A便 立即進行動作,依據該動作指令而由資料記憶部23選擇 移動端之基準位置資訊,同時,由動作程式記億部22選 擇與其對應之指定的控制模式(有關於A1至A8中任一 個的控制程式)。接著,使線圈選擇驅動控制部2 1 B作動,鲁 將電磁驅動裝置4之一個環狀驅動線圈7與四個環狀被驅 動線圈7基於指定的控制模式來進行驅動控制。 在此,於前述動作控制系統2 0之中,係例如使將可動 桌體1朝X軸之正向之指定位置進行移送驅動爲主旨的 動作指令由動作指令輸入部24輸入,據此而使裝置整體 依據指定之通電控制模式而進行作動。將此種情況之作動 後的狀態例示於第40圖至第4 1圖。 113 1220875 在此貫例中,係意味著選擇在第3 7圖中所示之控制模 式A1來作爲通電控制模式,據此,而使環狀驅動線圈7 以及四個之各個被驅動線圈6 A至6 D藉由該控制模式A 1 來作動。 在此情況下,於前述桌體維持機構4中,當使輔助桌 體5藉由電磁驅動裝置4而被賦予至第32圖之右方時, 爲對抗於各個鋼琴線2A、2B之彈性力、移動該輔助桌體 5。並且,該種輔助桌體5 (亦即,可動桌體1 )係停止在 各個鋼琴線2A、2B之彈性恢復力與被施加至該輔助桌體鲁 5之電磁驅動裝置4之電磁驅動力間的平衡點(移動目標 位置)(參照第40圖、第41圖)。 在該第40圖、第41圖中,符號T係表示已移動之距 離。此外,在第4 1圖中,斜線部分係表示藉由輔助桌體 5之移動而減少前述另一方之電容檢測電極26X3、26X4 之電容成分的部分,交叉斜線部分係表示前述一方之電容 檢測電極26X1、26X2之電容成分已增加的部分。另外, 在該第41圖中,係表示並無朝向Y軸方向之位置偏移的鲁 理想狀態。 並且,在該種動作中,當由於干擾等而造成輔助桌體5 之移動位置由目標位置偏移的情況下,基於該種電容檢測 電極26X1、26X2、2 6X3、26X4之電容成分之增加減少的 資訊,如前所述地檢測出實際移動後之位置,而形成爲以 進行防止位置偏移用的反饋(feed back)控制(未圖示)。 另一方面,在由該種狀態而使施加至輔助桌體5的電 114 1220875 磁驅動力被開放後,爲使鋼琴線2A、2B之彈性恢復力賦 予至輔助桌體5而恢復成原始位置(恢復原始位置機能之 發動)。 在該一連串的動作中,輔助桌體5之移動動作係爲, 一般即使在電磁驅動力之施加控制或是開放控制之任何情 況下均會急速地進行。在該種情況下,於輔助桌體5 (或 是可動桌體1 )中,在移動端之停止時或是於恢復原始位 置時之停止位置上,爲產生有起因於慣性力以及彈簧力的 反覆之往復動作。 φ 然而’在本實施例中,該種反覆之往復動作係爲藉由 產生在致動用平板與被驅動磁鐵間的電磁致動(渦電流煞 車)而受到控制,而朝向指定位置圓滑地移動、以穩定之 狀態來進行停止控制。 即使在由動作指令輸入部24輸入有用以使可動桌體! 朝則述以外之其他指定位置移動的動作指令之情況下,亦 可同樣地使桌體驅動控制裝置21之主要控制部2 1 A立即 作動’基於該動作指令而由資料記憶部23選擇移動端之鲁 基準位置資訊,同時由動作程式記憶部2 2選擇相關於與 其對之指定之控制模式的控制程式。接著,使線圈選擇驅 動控制部2 1 B作動,基於指定之控制模式來驅動控制電磁 驅動裝置4之環狀驅動線圈7以及四個被驅動磁鐵6 A至 6D 〇 並且’即使在此種情況下,亦可藉由與前述情況爲相 同的控制動作以及致動用平板來實施致動動作,輔助桌體 115 1220875 5 (可動桌體1 )係朝向指定位置、圓滑地移動,而以穩 定的狀態來停止控制。 如此,在前述第十實施例中,爲藉由已應用連結機構 之桌體維持機構2,而在並無伴隨有滑行動作下使可動桌 體部1 5維持由中心位置(在指定範圍內)中之相同高度 位置,同時係以可朝向X-Y平面上之任一方向圓滑地移 動(或是旋轉)。 從而,在前述第十實施例中,係由於不需要在習知技 術中所必須的厚重之雙重構造之X-Y軸移動維持機構,修 故而形成可達成裝置整體之小型化以及輕量化,同時藉由 輕量化而可顯著的改善可搬送性,相較於習知例方面’爲 減少構件數目、亦可顯著地提昇耐久性。此外,因爲在組 裝時之調整亦無須特別需要熟練的操作,因此爲可提升生 產性。 此外,即使具有被驅動磁鐵6 A至6D之可動桌體部1 5 爲急速地進行動作變化,因爲在該被驅動磁鐵6A至6D 與非磁性金屬構件所形成之致動用平板9之間爲有電磁致鲁 動(渦電流煞車)作動,因此,可動桌體係藉此而使得其 急速地動作受到抑制,而可在指定方向上以穩定的狀態來 圓滑地移動。 再者,爲具有將該種致動用平板9以對向於各個被驅 動磁鐵6A至6D之狀態下而裝設環狀驅動線圈7之各個 線圈邊7a、7b、7c、7d的簡單地構造,同時,即使是用 以產生電磁區動力之電磁驅動裝置4,亦可具有將一個環 116 1220875 狀驅動線圈7裝設在與在輔助桌體5中所裝設之被驅動磁 鐵6 A至6 D對向的固定平板8上之簡單地構造。因此, 爲形成可達成裝置整體之小型化以及輕量化,並且不僅具 有良好之可搬送性,即使在組裝作業時,亦無須特別需要 熟練的操作,因此作業性亦形成爲良好狀。 再者,被裝設在驅動線圈之前述被驅動磁鐵6A至6D 側之端面部分上、且由非磁性材料所形成之金屬製的致動 用平板9係爲’在與驅動線圈7間之關係方面,爲構成與 變壓器之二次側電路爲相等的電路,並且構成爲經由致動φ 用平板9之電氣電阻成分(產生渦電流損失)而短路的型 態。 並且,在構成此種情況之一次側電路的驅動線圈之各 個線圈邊7a、7b、7c、7d中,相較於二次側電路爲開放 狀態之情況(無致動平板之情況)爲可進行較大電流的通 電。從而,藉由致動用平板9雖可大略增加驅動線圏7與 被驅動磁鐵6A至6D間之間隔,不過,也由於亦增加有 通電電流,因而在該特點之中係不致使產生的電磁驅動力鲁 降低,而形成爲可輸出相對於該被驅動磁鐵6A至6D之 較大的電磁力。 此外,該種致動用平板9係亦具有作爲釋熱板的機能, 在該特點中,爲可有效地抑制伴隨於環狀驅動線圈7之連 續運轉的長期變形(由熱所造成之絕緣破壞等)。從而, 係可提高裝置整體之耐久性、甚至是裝置整體之信賴性。 再者,於本實施例中,係因已裝設有與在電磁驅動裝 117 1220875 置4中之一個環狀驅動線圈7相對應的各個被驅動磁鐵6A 至6D,故而環狀線圈7之四個各個線圈邊7a、7b、7c、7d 係爲作動成使對應之各個被驅動磁鐵6A至6D經常地朝 正交於X-Y平面上之X軸或Y軸方向上進行按壓而作動。 因此,相對於輔助桌體5 (亦即,可動桌體1 )之電磁驅 動力係爲,即使在被移動至任何方向之情況下,亦可經常 地將其合力產生在由X-Y平面上之中心點側朝向外側的 方向。 從而,即使是變化可動桌體部1 5之移送方向,係不至 經常地伴隨著旋轉的產生而形成爲可使可動桌體1圓化地 (在容許範圍內)進行平面移動。 如此,在前述實施例中,對於一個環狀驅動線圈7與 四個被驅動磁鐵6A至6D爲藉由調整、設定通電電流而 在指定方向上得以獲得連續的輸出電磁驅動力,因此,即 使是朝向任何方向,亦可使可動桌體1連續地進行移送, 而在該特點之中係形成爲可進行微米(//)單位的精密移 動。 此外,因將驅動線圈以一個之環狀驅動線圈7所構成, 故而係使構造單純化,將亦包含有對應之被驅動磁鐵6 A 至6D之其整體以廣泛利用可動桌體部1 5之大小整體之 狀態下來裝設至該可動桌體部1 5與固定平板8之間,因 此,係可縮小空間之專有區域,而在該種特點中,係形成 可將裝置整體小型化、改善可搬送性。此外,係減少構件 數目,因此爲具有可提高生產性以及維修性之優點。 118 1220875 在此’於前述第十實施例珠,雖是例示已將被驅動磁 鐵6A至6D裝設在輔助桌體5之情況,不過,亦可將被 驅動磁鐵6A至6D裝設在可動桌體1側、同時將與其對 向之前述前述環狀驅動線圈7配設在固定平板8上之指定 位置。 此外’有關於可動桌體1係爲例示圓形形狀之情況, 不過’亦可爲四角形或是其他形狀。而有關於輔助桌體5 係爲例示四角形形狀之情況,不過,倘若獲得可實施前述 諸項機能之物時,亦可爲圓型或是其他形狀。 φ 前述桌體維持機構2係例示有關對於可動桌體部1 5爲 具備有恢復原始位置之機能之構造,不過,亦可構成爲另 行裝設相對於該種可動桌體部1 5之恢復原始位置裝置, 而去除針對於桌體維持機構2之恢復原始位置之機能地構 造。具體說明後係爲,在本發明之實施例中,作爲連結機 構係爲採用由彈簧材料所形成之鋼琴線,藉此,爲用以在 連結機構中具有可動桌體之恢復原始位置之力,不過,並 非被限定於此。亦即,亦可構成爲將連結機構、以及使可鲁 動桌體恢復至原始位置的恢復原始位置機構設成相互分 離、獨立的機構。 如前所述,當將桌體維持機構之連結機構與恢復原始 位置機構構成爲獨立的機構時,恢復原始位置機構係形成 伴隨於可動桌體之移動、作爲恢復原始位置之力的彈簧力 而進行力量積存。再者,爲具備有感測器,係檢測出可動 桌體之已移動的目前位置,該種感測器爲基於以件測出之 119 1220875 位置信號而控制在電磁驅動裝置之驅動線圈中進行通電的 電流値,藉此,爲必須要產生有反力,該反力係對向於前 述恢復原始位置機構所產生的彈簧力。 有關本實施例之致動用平板9雖例示分別裝設在各個 被驅動磁鐵6 A至6 D中的情況,不過,亦可將兩個以上 或是全部地被驅動fe鐵6 A至6 D作爲對象,以構成爲使 該等對向於一片之致動用平板的構造。 在第4 2圖中,係爲例示使該種一片之致動用平板面對 全數之被驅動磁鐵6A至6D之構造的情況。 φ 在該第42圖中,符號92、93係爲表示用以維持單一 之致動用平板9的隔件構件。在此,符號9a係爲表示貫 通孔,其係沿著固定平板8而容許支柱1 0進行往復移動。 於此種情況下,在延長致動用平板9之周圍的同時, 爲構成藉由前述外殻本體3來維持該種致動用平板9之周 圍之局部或是全部,而亦可省略該種隔件構件92、93。 此外,爲裝設提換前述各個被驅動磁鐵6A至6D與環 狀驅動線圈7,亦可將環狀驅動線圈7裝設在輔助桌體 側、或是各個將各個被驅動磁鐵6A至6D裝設在固定平 板8側。在此情況下,爲使致動用平板9亦可達到其實效 之機能,而被固定裝設在環狀驅動線圈7側。 再者,於前述第十實施例中,雖是例示在直角座標(X-Y 座標)上將四個被驅動磁鐵裝設成距原點爲相等距離狀態 的情況,不過,在多數之被驅動磁鐵中,若是該各個被驅 動磁鐵之移動方向(推斥驅動方向)爲通過座標上之原點 120 1220875 (亦可非爲直角座標)的線上時,則即使未裝設成距原點 爲相等距離狀態、被配置在由座標軸上偏移的位置上、或 是其數目不是四個均可。 如此,當藉由一個或兩個以上之各個被驅動磁鐵而將 可動桌體部1 5朝指定方向進行移動驅動的情況下,係可 預先確實的排出產生旋轉力成分的要素。此外,在將直角 座標(X-Y座標)上之四個被驅動磁鐵裝設成距原點爲相 等距離狀態之情況下,藉由動作控制系統20係可達到控 制動作之單純化。因此,爲可迅速且圓滑地將該可動桌體φ 部1 5移送至指定方向。 再者,於前述第十實施例中,作爲被驅動磁鐵係爲例 示已裝設有四個被驅動磁鐵6A至6D的情況,不過,在 本發明中,並非將被驅動磁鐵限定在四個,亦可具備有三 個或是五個以上之被驅動磁鐵。此外,該種被驅動磁鐵之 形狀亦可爲其他之形狀(例如,圓柱狀)。 此外,在已適當的裝設有多數之被驅動磁鐵的情況下, 亦可爲藉由前述動作控制系統20,朝向來自外部所指示馨 之移動方向,而在適當時機下(例如,在移送方向上位於 可達到效率較佳之機能的位置爲選擇)通電驅動多數之被 驅動磁鐵,依據該合力而構成爲使前述可動桌體部1 5朝 向由外部所指示之移動方向來進行移動。 此外,在前述第十實施例中,再設定可動桌體部15之 移送方向十,係例示區分成A 1至A 8之控制模式而驅動 控制電磁驅動裝置4的情況,不過,例如在控制模式A2 121 1220875 中,倘若具有同等於將被驅動磁鐵6A至6D之各個通電 方向設爲與控制模式A 1枏同、僅將_環狀驅動線圈7之通 電方向設定爲逆向等的機能時,亦可採用其他的驅動控制 方法。 《環狀驅動線圈之其他例》 第43A圖至第43D圖所示,係有關於分別配設在χ_γ 平面上之一個環狀驅動線圈7的其他構造例。 〈三角形之環狀驅動線圈〉 首先,在第43A圖中所示係爲將環狀驅動線圈形成爲鲁 正三角形的情況。該種正三角形之環狀驅動線圈7 1係爲, 使角部形成爲圓弧狀,且固著、維持在作爲固定件側之固 定平板(未圖示)上。 此外,對應於該種三角形之環狀驅動線圈7 1之各個線 圈邊7Aa、7Ab、7Ac,爲分別個別地配設有由電磁鐵所形 成之被驅動磁鐵6A至6C。該種各個被驅動磁鐵6A至6C 係被固著裝設在作爲可動件側之可動桌體部(未圖示)。 該種各個被驅動磁鐵6A、6B或6C係爲,在作動狀態鲁 下,爲個別地由環狀驅動線圈7 1之對應的各個線圈邊 7 1 a、7 1 b或是7 1 c而承受電磁力,朝向正交於該各個線 圈邊71a、71b或是71c之方向而被推斥驅動。 在此,各個被驅動磁鐵6A、6B或6C係被配置成對應 於前述各個線圈邊7 1 a、7 1 b或是7 1 c,以使其所驅動之 方向的中心線之延長線爲通過前述環狀驅動線圈7 1的X-Y平面上之原點。 122 1220875 並且’在裝置整體之作動時,爲與前述第十實施例的 情況同樣的作動動作控制系統,由預先特別指定之多數的 通電控制模式來選擇指定之通電控制模式,據此,而形成 爲使環狀驅動線圈71以及各個被驅動磁鐵6A、6B或6C 個別地被通電控制。其他的構造係形成爲與在前述第3 2 圖至第4 1圖所示之第十實施例的情況相同。 即使如此,以對於環狀驅動線圈71以及各個被驅動磁 鐵6 A、6 B或6 C爲形成個別狀的動作控制系統(包含零 (zero ))來進行通電控制,藉此,係可將前述可動桌體鲁 部移送至X-Y平面上之任意方向,而可獲得與前述第十 實施例之情況爲略爲相同的作用效果。 〈圓形之環狀驅動線圈〉 其次,在第43B圖中所示係爲將環狀驅動線圈形成爲 圓形的情況。該種圓形之環狀驅動線圈7 2係爲,使角部 形成爲圓弧狀,且固著、維持在作爲固定件側之固定平板 (未圖不)上。 此外,在與該圓形之環狀驅動線圈72之X-Y平面上之· X軸以及Y軸交叉之處上,爲對應於該環狀驅動線圈72 之各個線圈邊部分72a、72b、72c、72d,且分別個別的 配設有由電磁鐵所形成之被驅動磁鐵6 A、6 B、6 C、6 D。 該種各個被驅動磁鐵6A至6D係被固著裝設在作爲可動 件側之可動桌體部(未圖示)。 該種各個被驅動磁鐵6A、6B、6C或6D係爲,在作動 狀態下’爲個別地由環狀驅動線圈7 1之對應的各個線圈 123 1220875 邊72a、72b、72c或72d,而承受電磁力,朝向正交於該 環狀驅動線圈7B之處的接線之方向而被推斥驅動。 在此,各個被驅動磁鐵6A、6B、6C或6D係被配置成 對應於前述各個線圈邊72a、72b、72c或7 2d,以使其所 驅動之方向的中心線之延長線爲通過前述環狀驅動線圈7 2 的χ-γ平面上之原點。 並且,在裝置整體之作動時,爲與前述第十實施例的 情況同樣的作動動作控制系統,由預先特別指定之多數的 通電控制模式來選擇指定之通電控制模式,據此,而形成φ 爲使環狀驅動線圈72以及各個被驅動磁鐵6A、6B、6C 或6D個別地被通電控制。其他的構造係形成爲與在前述 第3 2圖至第4 1圖所示之第十實施例的情況略爲相同。 即使如此,以對於環狀驅動線圈72以及各個被驅動磁 鐵6A、6B、6C或6D爲形成個別狀的動作控制系統(包 含零(zero ))來進行通電控制,藉此,係可將前述可動 桌體部移送至X-Y平面上之任意方向,而可獲得與前述 第十實施例之情況爲略爲爲相同的作用效果。 泰 〈六角形之環狀驅動線圈〉 其次,在第4 3 C圖中所示係爲將環狀驅動線圈形成爲 正六角形的情況。該種正六角形之環狀驅動線圈73係爲, 固著、維持在作爲固定件側之固定平板(未圖示)上。 此外,對應於該種正六角形之環狀驅動線圈7 3之各個 線圈邊73a、73b、73c、73d、73e、73f,爲分別個別地配 設有由電磁鐵所形成之六個被驅動磁鐵6A、6B、6C、6D、 124 1220875 6E、6F。該種各個被驅動磁鐵6A至6F係被固著裝設在 作爲可動件側之可動桌體部(未圖示)。 該種各個被驅動磁鐵6A至6F係爲,在作動狀態下, 爲個別地由各個線圈邊73a、73b、73c、73d、73e、73f 而承受電磁力,朝向正交於該各個線圈邊73a、73b、73c、 73d、73e、73f之方向而被推斥驅動。 在此,各個被驅動磁鐵6A至6 F係被配置成對應於前 述各個線圈邊73a、73b、73c、73d、73e、73f,以使其所 驅動之方向的中心線之延長線爲通過前述環狀驅動線圈73φ 的Χ-Υ平面上之原點。 並且,在裝置整體之作動時,爲與前述第十實施例的 情況同樣的作動動作控制系統,由預先特別指定之多數的 通電控制模式來選擇指定之通電控制模式,據此,而形成 爲使環狀驅動線圏73以及各個被驅動磁鐵6Α至6F個別 地被通電控制。其他的構造係形成爲與在前述第32圖至 第4 1圖所示之第十實施例的情況相同。 即使如此,以對於正六角形之環狀驅動線圈7 3以及各鲁 個被驅動磁鐵6Α至6F爲形成個別狀的動作控制系統(包 含零(zero ))來進行通電控制,藉此,係可將前述可動 桌體部移送至X-Y平面上之任意方向,而可獲得與前述 第十實施例之情況爲略爲相同的作用效果。 〈八角形之環狀驅動線圈〉 其次,在第43D圖中所示係爲將環狀驅動線圈形成爲 正八角形的情況。該種正六角形之環狀驅動線圈74係爲, 125 1220875 固著、維持在作爲固定件側之固定平板(未圖示)上。 此外,對應於該種正八角形之環狀驅動線圈74之八個 之各個線圈邊 74a、74b、74c、74d、74e' 74f、74g、74h, 爲分別個別地配設有由電磁鐵所形成之八個被驅動磁鐵 6A、6B、6C、6D、6E、6F、6G、6H。該種各個被驅動磁 鐵6A至6H係被固著裝設在作爲可動件側之可動桌體部 (未圖示)。 該種各個被驅動磁鐵6A至6H係爲,在作動狀態下, 爲個別地由各個線圈邊74a至74h而承受電磁力,朝向正蠢 交於該各個線圈邊74a至7 4h之方向而個別地被推斥驅 動。 在此,各個被驅動磁鐵6A至6H係被配置成對應於前 述各個線圈邊74a至74h,以使其所驅動之方向的中心線 之延長線爲通過前述環狀驅動線圈74的X-Y平面上之原 並且,在裝置整體之作動時,爲與前述第十實施例的 情況同樣的作動動作控制系統,由預先特別指定之多數的鲁 通電控制模式來選擇指定之通電控制模式,據此,而形成 爲使環狀驅動線圈74以及各個被驅動磁鐵6A至6H個別 地被通電控制。其他的構造係形成爲與在前述第32圖至 弟4 1圖所不之第十貫施例的情況相同。 即使如此,以對於環狀驅動線圈74以及各個被驅動磁 鐵6A至6H爲形成個別狀的動作控制系統(包含零(zer0)) 來進行通電控制,藉此’係可將前述可動桌體部移送至X- γ 126 1220875 平面上之任意方向,而可獲得與前述第十實施例之情況爲 略爲相同的作用效果。 〔第十一實施例〕 其次,基於第44圖至第48圖來說明第十一實施例。 在該第十一實施例中,相對於在前述第十實施例中之 電磁驅動裝置4作爲驅動線圈而裝設有一個環狀驅動線圈 7 ’其係有具備電磁驅動裝置丨42之點的特徵,該電磁驅 動裝置1 4 2爲裝設有形成爲日字狀的四個之驅動線圈。同 時’爲具有取代前述動作控制系統20,而裝設有用以使鲁 該電磁驅動裝置1 4 2效率爲佳地進行動之動作控制系統 2〇2之點的特徵。 以下,將其進行更加詳細的說明。 首先,該種第十一實施例係爲,與前述第十實施例之 情況相同的,爲具備有··精密作業用之可動桌體部i 5, 爲在同一面上被配設成可於任意之方向進行移動者;桌體 維持機構2,爲容許該種可動桌體部1 5之移動,同時維 持該可動桌體部15,並且具備有對於該可動桌體部15之肇 恢復原始位置之機能;外殼本體3,係作爲支撐該桌體維 持機構2的本體部;電磁驅動裝置1 42,係被裝設在該外 殼本體3側,且因應於來自外部的指令而將朝向指定方向 之移動力賦予至可動桌體部15。 在此,可動桌體部1 5係構成如下,即:精密作業用之 可動桌體1 ;以及輔助桌體5,爲對應於該種可動桌體1 而隔有指定間隔,以平行、且在同一中心軸上呈一體狀的 127 1220875 配置。並且,如第44圖所示,桌體維持機構2係被裝設 在輔助桌體5側’係構成爲經由該輔助桌體5而維持前述 可動桌體1。 《有關於電磁驅動裝置1 42》 電磁驅動裝置1 4 2係爲,使其主要部被維持在外殼本 體3側,而具備有下述機能,即,因應來自外部之指令, 將指定之移動力(驅動力)沿著該可動桌體部1 5之移送 方向而賦予至前述可動桌體部1 5。此種電磁驅動裝置1 42 係被配設在前述可動桌體1與輔助桌體5之間。 φ 具體而言,該種電磁驅動裝置142係具備有:四個之 驅動線圈721、722、72 3、724 ;四個之被驅動磁鐵6A、 6B、6C、6D,係個別地對應於位在該各個驅動線圈721 至7 24之中央部的內側線圈邊721a至724a,且被裝設在 前述輔助桌體5上;固定平板8,爲將前述四個之驅動線 圈72 1至724維持在指定位置上。四個之驅動線圈721、 722、72 3、724係爲,以組合兩個口形狀之線圈所形成, 且使前述內側線圈邊721a至724a形成在各個線圈之突接鲁 部上。 前述各個日字狀之驅動線圈721至724係爲,使位於 其中央部之內側線圈邊721a至724a在其中央部爲分別以 個別狀的配設在前述X軸以及Y軸上,用以將固定平板8 上之中央部作爲原點而正交於所假定之X-Y平面上之X 軸或是Y軸。 此外,四個之各個被驅動磁鐵6A至6D係爲,以可由 128 1220875 外部進行通電控制的電磁鐵所構成’對應於前述各個曰字 狀之驅動線圈的內側線圈邊72 1 a至724a,而分別個別狀 的配設在X軸上以及Y軸上。 固定平板8係如第3 2圖所示’係配維持在配設於前述 輔助桌體5之可動桌體1側的前述外殼本體3上。藉由該 種日字狀之各個驅動線圈721至724與固定平板8,而構 成作爲前述電磁驅動裝置4之主要部的固定件部分。 並且,各個驅動線圈721至724係爲,當在設定爲作 動狀態後,在與前述各個被驅動磁鐵6A至6D之間爲產修 生有電磁驅動力,該電磁驅動力係爲在將該各個被驅動磁 鐵6A至6D正交於各個內側線圈邊721a至7 24a之方向 上進行推斥驅動。在此情況下,各個被驅動磁鐵6A至6D 之移動方向的中心軸線係被設定成已通過前述X - Y平面 上之中心點。此外,在未正交於各個內側線圈邊72 1 a至 724a之方向(傾斜於各個線圈邊721a至724a之方向) 上移動前述可動桌體部1 5的情況下,爲如後述而至少具 有對於兩個以上之各個被驅動磁鐵6A至6D的電磁驅動鲁 力之合力,形成爲可實施該可動桌體部15之移送。 再者,於面對於各個驅動線圈721至724之前述被驅 動磁鐵6A至6D的內側線圈邊721a至724a部分上,爲 使由非磁性金屬構件所形成之致動用平板9靠近(以幾乎 爲抵接之狀態)於各個被驅動磁鐵6A至6D之磁極面進 行配設。該種致動用平板9係在本實施例中爲使用一片狀 之物,其周圍之局部或是全部爲被固著在前述外殼本體3 129 1220875 上。 構成電磁驅動裝置1 4 2之局部的四個之被驅重 至6D係爲,在本實施例中係如第45圖所示, 面(各個驅動線圈721至7:24之各個內側線圈邊 7 24a間之對向面)爲以四角形之電磁鐵所形成 定在輔助桌體5之上面的X-Y平面上,爲分別 固著在由中心部爲成等距離之位置的X軸上以及 因此,在本實施例中,例如爲使指定之作動 個之被驅動磁鐵6A至6D之局部或是全部進行 使各個被驅動磁鐵6A至6D被設定成作動狀態 或是同時的依據後述之指定的控制模式,開始各 圈72 1至724被設定在作動狀態下之通電。並且 個驅動線圈721至724之各個被驅動磁鐵6A至 性力大小爲藉由通電控制所調整,藉此,爲使前 體部1 5移送至指定的方向。 在此情況下,針對於有關相對於可動桌體部1 方向以及其移送驅動力的電磁驅動裝置1 4 2的作 於各個驅動線圈721至724與四個之被驅動磁鐵 之通電驅動),爲藉由第47圖至第48圖進行詳 47圖以及第48圖中,並未揭示藉由朝向驅動線 所達成之旋轉驅動。 形成電磁驅動裝置1 4 2之主要部的四個曰字 線圈72 1至724係如第44圖至第45圖所示,爲 狀小線圈部Ka、Kb之組合所形成。並且,爲使線 &amp;磁鐡6A 磁極之端 ^ 7 2 1 a 至 ,在被假 被配設、 Y軸上。 電流在四 通電,而 ,之後、 個驅動線 ,包含各 6D的磁 述可動桌 5之移送 動(相對 6A 至 6D 述。在弟 圈之通電 狀之驅動 由兩個口 圈邊(內 130 1220875 側線圈邊721a至724a部分)形成在兩個口狀小線圈部 Ka、Kb之抵接部分上,在該線圈邊(內側線圈邊72 1 a至 724a部分)上,係形成爲經常地將電流流動於相同方向 (在抵接部分之一方與另一方之各個線圈邊內係經常的流 動有相同朝向的電流)。因此,在變更其朝向的情況下, 爲形成同時使兩個口狀小線圈部Ka、Kb內之通電方向進 行變化。 在此情況下,於該種第十一實施例中,由於以電磁鐵 所形成之前述四個之被驅動磁鐵6A至6D之通電方向爲鲁 如後所述地被預先特別指定,因此,在四個日字部驅動線 圈72 1至724中之各個內側線圈邊721a至724a部分的通 電方向以及通電電流之大小(包含通電停止控制),係對 應於前述可動桌體1之移送方向而藉由後述之動作控制系 統20所設定控制。藉此,相對於被驅動磁鐵6A至6D, 爲依據夫來明(Fleming)之左手定律,係可輸出朝指定 之方向(分別正交於內側線圈邊7 2 1 a至7 2 4 a之部分的方 向)按壓的電磁力(反力)。 · 此外,藉由預先選擇組合在該四個被驅動磁鐵6A至6D 上產生之電磁力的方向,係形成爲可將在該四個被驅動磁 鐵6A至6D上產生之電磁驅動力的合力配合於前述可動 桌體部15之移送方向,而可將該可動桌體部15朝向X-Y 軸平面上之任意方向而賦予移動力。 有關對於該等四個被驅動磁鐵6A至6D之一連串的通 電控制之手法,係在後述之程式記憶部222之說明處(第 131 1220875 47圖、第48圖)中進行詳述。 在此,於前述各個驅動線圈721至724之同一 外側以及內側之中,在至少與該各個驅動線圈7 2 1 之高度(Y軸方向)爲相同高度、且包含有前述被 鐵6A至6D之動作範圍內的範圍中,亦可充塡裝 粒鐵等磁性材料。 《有關於動作控制系統202》 其次,針對在該種第十一實施例中之動作控制系 來詳細說明。 在該種第十一實施例中,亦可將動作控制系統 設於電磁驅動裝置142中(參照第46圖),該控制 統2 02係爲各別性地將前述各個日字狀之驅動線圈 7 24以及四個之各個被驅動磁鐵6A至6D進行通電 限制前述可動桌體部1 5之移動動作。 該種動作控制系統202係具有下述機能,即·· 別設定機能,爲個別性地設定、維持對應於前述各 狀之驅動線圈721至724所裝設之各個被驅動磁鐵 6 D的磁極;磁力強度設定機能,爲個別性地將該 被驅動磁鐵6 A至6 D之磁力強度進行可變設定( 定而獲得將通電電流進行可變);通電方向設定機 將前述各個日字狀之驅動線圈7 2 1至7 2 4中之內側 721a至724a部分的通電方向於指定方向(一方或 方)而因應於來自外部的指令而進行設定、維持; 圈通電控制機能,爲將朝向該種各個日字狀之驅動,福 面上之 至724 驅動磁 設有肥 統202 202倂 動作系 7 21至 控制、 磁極個 個曰字 6A至 種各個 藉由設 能,爲 線圏邊 是另一 驅動線 【圈721 132 1220875 至7 24之通電電流之大小進行可變設定;且具備有桌體動 作控制機能,爲將該等諸項機能之輸出一面進行適當的調 整、依面則對於前述可動桌體部1 5進行移送方向以及移 送力的調整。 並且,該種動作控制系統202係爲,爲了實施前述諸 項機能’而如第46圖所示,爲具備有:桌體驅動控制裝 置212,爲將前述電磁驅動裝置142之各個日字狀之驅動 線圈72 1至724以及四個之被驅動磁鐵6A至6D依據指 定之控制模式來個別地進行驅動,而將前述可動桌體部1 5 · 於指定之方向上進行移動控制;程式記憶部222,爲記憶 有多數之控制程式,該控制程式係有關於一種多數之通電 控制模式(在本實施例中,係爲B1至B 8之八個通電控 制模式),該模式爲以倂設在該桌體驅動控制裝置2 1 2之 前述可動桌體1之移動方向以及其動作量等所特別指定; 資料記憶部23,爲記憶有在該等各個控制程式之實施之 際所使用的指定之資料等。 此外,在桌體驅動控制裝置2 1 2中,係倂設有動作指鲁 令輸入部24,係下達對於各個日字狀之驅動線圈721至724 以及四個之被驅動磁鐵6A至6D的指定之控制動作之指 令。再者,於此種桌體驅動控制裝置2 1 2之中,前述可動 桌體部1 5之移動中以及移動後的位置資訊係形成爲送 入、且以藉由前述位置檢測感測機構2 5所檢測出之後述 高感度狀地進行演算處理。 並且,前述動作控制系統202所具有之各種的控制機 133 1220875 能’係形成爲總合性地被包含在前述程式記憶部222之多 數之通電控制模式B1至B 8中,以操作員經由動作指令 輸入部2 4所輸入之指令,基於其所選擇之控制模式B 1至 B 8中之任何模式來進行動作、實施。 將其進行更加詳細的說明。 桌體驅動控制裝置2 1 2係爲,在本實施例中,爲具備 有··主要控制部2 1 2A,爲基於來自動作指令輸入部24之 指令而進行作動,由程式記憶部2 2 2選擇指定之控制模 式,在前述日字狀之驅動線圈7 2 1至7 2 4以及四個之各個鲁 被驅動磁鐵6A至6D中爲進行包含有零之指定之直流電 流的通電控制;線圈選擇驅動控制部2 1 2B,爲依據在該 主要控制部2 1 2 A中所選擇設定之指定的通電控制模式(b 1 至B 8 ),以同時或是個別地驅動控制日字狀之驅動線圈7 2 j 至7 24以及四個之各個被驅動磁鐵6A至6D中。 此外,主要控制部2 1 2 A係亦同時兼具有下述之機能, 該機能係爲,基於來自檢測桌體位置之位置檢測感測機構 的輸入資訊,而計算前述可動桌體部15之位置、或是鲁 進行其他各種的演算。 在此,符號4 G所示係爲在前述電磁驅動裝置〗4 2之各 個曰字狀之驅動線圈7 2 1至7 2 4以及四個之各個被驅動磁 鐵6 A至6 D中通電有指定之電流的電源電路部。 《有關於程式記憶部22 2》 則述桌體驅動控制裝置21 2係被構成如下,即,依據 在程式記憶部2 2 2中所預先記憶之指定的通電控制程式 134 1220875 (指定之控制模式),使前述電磁驅動裝置1 42之各個日 字狀之驅動線圈72 1至724以及四個之各個被驅動磁鐵6A 至6D具有指定之關聯性,進而個別地進行驅動控制。 亦即,在有關本實施例之程式記憶部222中,爲記憶 有下述程式,即:多數之磁鐵用控制程式,爲將前述四個 之各個被驅動磁鐵(電磁鐵)6A至6D之通電方向進行個 別地特別指定,而在特別指定磁極之N極或是S極的同 時,可個別性地將包含通電停止之通電電流的大小進行可 變設定;驅動線圈用控制程式,係在當該種四個之各個被肇 驅動磁鐵(電磁鐵)6 A至6 D之通電方向被特別指定之情 況下作用其機能,將與其對應而對於四個之各個日字狀之 驅動線圈721至724的通電方向以及其通電電流之大小進 行可變設定。同時,該等各個控制程式之動作時序係被整 理、記憶在八組之通電控制模式B 1至B 8 (參照第4 7圖、 第48圖)。 在此,針對在該種第十一實施例中之八組的控制模式B1 至B1,基於第47圖至第48圖進行說明。 _ 在第47圖中,爲朝向X軸之正向或負向、或是朝向γ 軸之正向或負向,表示分別移送可動桌體部1 5之情況下 的各個通電控制模式B 1至B4之一例(已圖表化之物)。 在該第47圖中’於各個通電控制模式B1至B4方面, 係被設定成個別性地將對於各個日字狀之驅動線圈72 1至 724的直流電流之通電方向進行可變控制。此外,針對於 各個磁極之N極或是S極,係被設定成無論控制模式爲 135 1220875 何均不致經常地產生變化(已固定之狀態)。 亦即,在此種第十一實施例中,爲將對向於四個之各 個被驅動磁鐵6A至6D之前述日字狀之驅動線圈72卜722 的端面部之磁極分別設定控制成如下,即,在被動驅動磁 鐵6A、6B方面爲設定成N極,在被驅動磁鐵6C、6D方 面則設定成S極,即使是控制模式B 1至B4形成相異, 該各個被驅動磁鐵6A至6D之磁極亦被設定控制爲已固 定之狀態。 〈控制模式B 1〉 在該種控制模式B 1係表示用以將可動桌體1移送至X 軸之正的方向之通電控制模式之一例(參照第47圖)。 在此種控制模式B 1中,爲使Y軸上之被驅動磁鐵6B、 6D被控制成停止通電,使對向於X軸上之被驅動磁鐵6A 之前述線圈邊7 2 1 a的端面部被設定成N極,且將對向於 X軸上之被驅動磁鐵6C之前述線圈邊7 2 3 a的端面部設定 爲S極。 因此,在驅動線圈7 2 1、7 2 3之線圈邊7 2 1 a、7 2 3 a部 份中,爲在該線圈邊721a、72 3a內產生於點線之箭頭所 示方向的電磁驅動力,同時,以該反力(爲了使日字狀之 驅動線圈721、7 2 3被固定所產生)而使得被驅動磁鐵6A、 6C於實線之箭頭所示方向(圖中之右方)被推斥驅動, 藉此,使可動桌體部1 5被移送至X軸上之正向。在此情 況下,驅動線圈722、724係被設定成通電停止控制之狀 態。 136 1220875 此外,通電停止中之驅動線圈722、724以及被驅動磁 鐵6B、6D係形成爲,當可動桌體1之位置偏移的情況下, 係個別性地電通驅動、實施位置偏移之補正動作(包含前 述第十實施例,此係與其他實施例均爲相同)。 〈控制模式B2〉 在該種控制模式B2係表示用以將可動桌體1移送至X 軸之負的方向之通電控制模式之一例(參照第47圖)。 在此種控制模式B 2中,將X軸上之驅動線圈7 2 1、7 2 3 之線圈邊721 a、723a部份的通電方向設定在相較於前述φ 控制模式B1的情況係以成相逆之點爲不同處。其他係與 前述控制模式B 1之情況形成相同。 因此,在驅動線圈7 2 1、7 2 3之線圈邊7 2 1 a、7 2 3 a部 份中’藉由與前述模式B 1之情況相同的原理而產生電磁 驅動力’其反力爲使該驅動磁鐵6A、6C分別被推斥驅動 在實線之箭頭所示方向(圖中之左方),藉此,爲使可動 桌體15移送至X軸上之負向。在可動桌體〗之位置偏移 之際’亦實施與前述控制模式B1之情況爲相同的補正動馨 作。 〈控制模式B3〉 在該種控制模式B 3係表示用以將可動桌體1移送至Y 軸之正的方向之通電控制模式之一例(參照第47圖)。 在該控制模式B3中,爲使X軸上之被驅動磁鐵6A、6C 被控制成停止通電,使對向於γ軸上之被驅動磁鐵6B之 前述線圈邊7 2 2 a的端面部被固定控制於N極,且將對向 137 1220875 於Y軸上之被驅動磁鐵6D之前述線圈邊724a的端面部 固定控制於S極。 因此,在驅動線圈7 22、724之線圈邊7 22 a、724a部 份中,爲在該線圈邊722a、724a內產生於點線之箭頭所 示方向的電磁驅動力,同時,以該反力(爲了使日字狀驅 動線圈722、724被固定所產生)而使得被驅動磁鐵6A、 6C於實線之箭頭所示方向(圖中之上方)被推斥驅動, 藉此,使可動桌體部1 5被移送至Y軸上之正向。在此情 況下,驅動線圈721、72 3係被設定成通電停止控制之狀# 態。 另外,通電停止中之驅動線圈7 2 1、7 2 3以及被驅動磁 鐵6A、6C係爲,當可動桌體1之位置偏移之際,爲形成 個別地進行通電驅動、且實施位置偏移的補正動作。 〈控制模式B4〉 在該種控制模式B4係表示用以將可動桌體1移送至Y 軸之負的方向之通電控制模式之一例(參照第47圖)。 在此種控制模式B4中,將Y軸上之驅動線圈722、724春 之線圈邊722a、724a部分的通電方向在相較於前述控制 模式B 3的情況係以成相逆之點爲不同處。其他係與前述 控制模式B3之情況形成相同。 因此,在驅動線圈722、724之線圈邊722a、724a部 份中’藉由與前述控制模式B 3之情況相同的原理爲產生 有電磁驅動力,以該反力而使得被驅動磁鐵6B、6D於實 線之箭頭所示方向(圖中之下方)被推斥驅動,藉此,使 138 1220875 可動桌體部15被移送至Y軸上之負向。當可動桌體1之 位置偏移之際,係實施與前述控制模式Β3之情況爲相同 的補正動作。 接著,在第4 8圖中所示係爲說明將可動桌體部1 5分 別朝向Χ-Υ平面座標上之四個象限方向之情況的各個通 電控制模式Β 5至Β 8之一例(已圖表化之物)。 在第48圖中,於各個通電控制模式Β5至Β8中,係將 對於各個日字狀之驅動線圈721至724之直流電流的通電 方向設定成以個別性地進行可變控制,針對於四個之各個· 被驅動磁鐵(電磁鐵)之通電方向,則是使各個磁極之Ν 極或是S極被設定成無論控制模式爲何均不致經常地產生 變化(已固定之狀態)。 〈控制模式Β 5〉 在此種第十一實施例中之控制模式Β 5係爲表示通電控 制模式之一例,係用以將可動桌體1朝向Χ-Υ平面座標 上之第一象限方向(參照第48圖)。 在該控制模式Β 5中,爲同時地使四個之各個被驅動磁鲁 鐵6Α至6D被通電控制,其通電方向(磁極Ν、S )係被 固定成於前述各個控制模式Β 1至Β4之情況爲相同。 亦即,被配置在X軸上、Υ軸上之正向的被驅動磁鐵 6Α、6Β係爲,使其對向於各個日字狀之驅動線圈721、722 的端面部分被設定爲Ν極。此外,被配置在X軸上、Υ 軸上之負向的被驅動磁鐵6 C、6D係爲,使其對向於各個 日字狀之驅動線圈723、724的端面部分被設定爲S極。 139 1220875 因此,在各個日字狀之驅動線圈72 1至 圈邊721a至7 24d部分方面,所形成之通電 控制模式B 1與B 3同時作動狀態爲成相等。 因此,係同時地產生與前述控制模式B1 ‘ 相同朝向(第48圖之右方與上方)的電磁驅 其合力係如第48圖之控制模式B5之欄所示 第一象限之方向。藉此,爲使前述可動桌體 Y平面座標上之第一象限的方向來移送。 在此,對於X軸而朝向第一象限方向之移 X軸間之角度19 )係爲,藉由個別性地將各 動線圈721至724以及各個被驅動磁鐵6A 電流的大小進行可變控制,使作用在各個被 至6D之電磁驅動力進行變化,藉此,係可 象限方向之任意方向上進行可變設定。 〈控制模式B6〉 此種控制模式B6係爲,表示用以將可動桌 平面座標上之第三象限方向(與第一象限方 向)進行移送的通電控制模式之一例(參照 在該控制模式B6中,爲使四個之被驅動 同時地被通電控制,其磁極N、S係全數被 模式B 5之情況爲相同狀。 亦即,在各個日字狀之驅動線圈72 1至 圈邊72la至724d部分方面,所形成之通電 控制模式B2與B4同時作動狀態爲成相等。 724之各個線 控制係與前述 、B 3之情況爲 動力,並且, ,爲被朝向至 部15朝向X- •送角度0 (與_ 個曰字狀之驅 至6D之通電 :驅動磁鐵6A 自由地在第一 體1朝向X-Y 向爲相反的方® 第48圖)。 磁鐵6A至6D 設定成與控制 724之各個線 控制係與前述 140 1220875 因此,係同時地產生與前述控制模式B2、B4之情況爲 相同朝向(第48圖之左方與下方)的電磁驅動力,並且, 其合力係如第48圖之控制模式B6之欄所示,爲被朝向至 第三象限之方向。藉此,爲使前述可動桌體部15朝向X-γ平面座標上之第三象限的方向來移送。 在此,對於X軸而朝向第三象限方向之移送角度(9係 爲,藉由個別性地將各個日字狀之驅動線圈72 1至724以 及各個被驅動磁鐵6A至6D之通電電流的大小進行可變 控制,使作用在各個被驅動磁鐵6A至6D之電磁驅動力鲁 進行變化,藉此,係可自由地在任意方向上進行可變設定。 〈控制模式B7〉 此種控制模式B7係爲,表示用以將可動桌體1朝向X-Y 平面座標上之第二象限方向(與第一象限方向爲相反的方 向)進行移送的通電控制模式之一例(參照第48圖)。 在該控制模式B7中,爲使四個之被驅動磁鐵6A至6D 同時地被通電控制,其磁極N、S係全數被設定成與控制 模式B 6之情況爲相同的被固定。 φ 在該控制模式B7之情況下,各個日字狀之驅動線圈72 1 至724之各個線圈邊721a至724d部分方面,所形成之通 電控制係與前述控制模式B 2與B 3同時作動狀態爲成相 等。 因此’係同時地產生與前述控制模式B2、B4之情況爲 相同朝向(第48圖之左方與上方)的電磁驅動力,並且, 其合力係如第4 8圖之控制模式B 7之欄所示,爲被朝向至 141 1220875 第二象限之方向。藉此,爲使前述可動桌體部1 5朝向X-Y平面座標上之第二象限的方向來移送。 在此,對於X軸而朝向第二象限方向之移送角度0係 爲,藉由個別性地將各個日字狀之驅動線圈72 1至724以 及各個被驅動磁鐵6A至6D之通電電流的大小進行可變 控制,使作用在各個被驅動磁鐵6A至6D之電磁驅動力 進行變化,藉此,係可自由地在任意方向上進行可變設定。 〈控制模式B 8〉 此種控制模式B 8係爲,表示用以將可動桌體部15朝 向X-Y平面座標上之第四象限方向(與第一象限方向爲 相反的方向)進行移送的通電控制模式之一例(參照第4 8 圖)。 在該控制模式B 8中,爲使四個之被驅動磁鐵6 A至6 D 同時地被通電控制,其磁極N、S係被與控制模式B 7之 情況爲同樣的被固定。 在此種控制模式B8之情況下,在各個日字狀驅動線圈 721至724之各個線圈邊721a至724d部分上,係形成爲 與同時作動前述控制模式B 1以及B4之情形爲同等的通 電控制。因此,爲同時產生與前述控制模式B 1、B 4之情 況爲相同的朝向(第48圖之右方與下方)之電磁驅動力, 並且,其合力係如第4 8圖之控制模式B 8之欄所示,爲被 朝向至第四象限之方向。藉此,爲使前述可動桌體部15 朝向X - Y平面座標上之第四象限的方向來移送。 在此,對於X軸而朝向第四象限方向之移送角度0係 1220875 爲,藉由個別性地將各個日字狀之驅動線圈7 2 1至7 2 4以 及各個被驅動磁鐵6 A至6 D之通電電流的大小進行可變 控制’使作用在各個被驅動磁鐵6A至6D之電磁驅動力 進行變化,藉此,係可自由地在任意方向上進行可變設定。 有關於其他的構造以及其動作、機能,係形成爲略與 前述第十實施例之情況相同。 即使如此,除了可獲得與前述第十實施例之情況爲相 同的作用效果之外,更在第十一實施例中係對於各個被驅 動fe鐵6 A至6 D爲以個別性地配置驅動線圈7 2 1至7 2 4, 因此’針對於不需要有驅動力之輸出之處的驅動線圈72 i、 722、723或724、抑或是被驅動磁鐵6A、6B、6C或6D, 係可將相當於其處之通電動作進行停止控制。從而,爲具 有可達成在作動中之裝置整體之省能源化的優點。 此外,在前述第十一實施例中,於進行可動桌體部J 5 的移送方向之設定之際,係例示區分成B 1至B 8之控制 模式來將電磁驅動裝置1 4 2進行驅動控制的情況,不過, 例如在控制模式B 2中,倘若具有同等於將被驅動磁鐵6 A 至6 D之各個通電方向設爲與控制模式]g 1爲逆向、且將 驅動線圈7 2 1、7 2 3之通電方向設定爲與控制模式b 1之情 況下爲相同等的機能時,亦可採用其他的驅動控制方法來 將電磁驅動裝置1 4 2進行驅動控制。 再者,於前述第十一實施例中,亦可置換被驅動磁鐵6 A 至6 D之裝設處與日字狀之驅動線圈7 2〗至7 2 4之裝設部。 此種情況係形成爲,使被驅動磁鐵6 A至6 D被裝設在固 1220875 定件側,且使日字狀之驅動線圈72 1至724被裝設在可動 件側。 此外,在前述第十一實施例中,雖然例示將被驅動磁 鐵6A至6D以電磁鐵所構成之情況,不過,亦可將被驅 動磁鐵6 A至6 D以永久磁鐵來構成。 如此,係使被驅動磁鐵6A至6D周圍之電氣配線簡略 化,而可大幅度的改善生產性以及可維修性,而伴隨於電 氣配線之簡略化,係可縮小被驅動磁鐵6A至6D之裝設 處的空間區域。從而,由於其量額而形成爲可達到裝置整馨 體之小型輕量化,相較於將被驅動磁鐵6A至6D作爲電 磁鐵的情況,係由於無須其通電驅動,故而可大幅度的抑 制整體性地消費電力以及溫度上升。從而,係可大幅度的 減低裝置整體之經營成本(running cost),而在電磁驅動 裝置4之驅動控制之際,係僅進行多數之各個驅動線圈7 2 i 至7 24之通電方向的切換控制,便可將可動桌體1移送驅 動至任意的方向。藉此,在可動桌體i之移動方向之切換 時’係形成爲可迅速地進行回應,且形成爲均無被驅動磁鲁 鐡6A至6D之斷線等事故的產生,因此,爲具有大幅度 的提昇裝置整體之耐久性的優點。 〔第十二實施例〕 其次,基於第49圖至第5 3圖說明第十二實施例。 在該第十二實施例中,所具備之特徵係爲已裝設有電 磁駆動裝置M3之特點,該電磁驅動裝置係具備有大 小兩個之環狀驅動線圈、以及與其對應之被驅動磁鐵,其 1220875 係用以取代在前述第十實施例中之電磁驅動裝置4。同時, 爲具有取代前述動作控制系統2 0,而裝設有用以使該電 SHI ϋ裝置i43效率爲佳地進行動之動作控制系統2〇3之 點的特徵。 以下’將其進行詳細之說明。 首先’該種第十二實施例係爲,與前述第十實施例之 情況相同的’爲具備有··精密作業用之可動桌體部1 5, 爲在同一面上被配設成可於任意之方向進行移動者;桌體 維持機構2,爲容許該種可動桌體部1 5之移動,同時維 持該可動桌體部1 5,並且具備有對於該可動桌體部丨5之 恢復原始位置之機能,·外殼本體3,係作爲支撐該桌體維 持機構2的本體部;電磁驅動裝置1 4 3,係被裝設在該外 殻本體3側,且因應於來自外部的指令而將朝向指定方向 之移動力賦予至可動桌體部1 5。 在此,可動桌體部i 5係構成如下,即··精密作業用之 可動桌體1’以及輔助桌體5,爲對應於該種可動桌體1 而隔有指定間隔,以平行、且在同一中心軸上呈一體狀的 配置。並且,如第4 9圖所示’桌體維持機構2係被裝設 在輔助桌體5側,係構成爲經由該輔助桌體5而維持前述 可動桌體1。 《有關於電磁驅動裝置i 4 3》 電磁驅動裝置1 4 3係爲,在同~面上裝設有大小兩個 之環狀驅動線圈7 3 1、7 3 2以取代如前所述之第十實施例 中所裝設的環狀驅動線圈7。該種環狀驅動線圈7 3丨、7 3 2 145 1220875 係被維持在固定平板8上。 此外,此種電磁驅動裝置1 4 3係爲,對於應該各個環 狀驅動線圈7 3 1、7 3 2之各個線圈邊7 3 1 a至7 3 1 d、7 3 2 a 至73 2 d,爲與前述第一實施例的情況相同的,係分別配 設有各四個之被驅動磁鐵6A至6D、16A至16D。 並且,爲使該各個被驅動磁鐵6A至6D、16A至16D 被裝設在輔助桌體5上。 該種大小兩個之各個環狀驅動線圏7 3 1、7 3 2係爲,在 此種第十二實施例中,爲將固定平板8上之中央部作爲原鲁 點而正交於所假定之相同的X-Y平面上,將其中心軸設 爲共通狀而配設。 其中,位於內側之內側環狀驅動線圈7 3 1係形成略與 前述第十實施例之情況中之環狀驅動線圈7爲相同的四角 形’·其各個線圈邊731a、731b、731c、731d之各個中央 部係以與X軸、Y軸交叉狀的被裝設在前述固定平板8上。 並且’爲分別使前述各個被驅動磁鐵6 Α至6 D個別地 配置在靠近、且對向於該種內側環狀驅動線圈7 3 1之各個鲁 線圈邊7 3 1 a、7 3 1 b、7 3 1 c、7 3 1 d之各個線部分之中央部, 且被裝著、維持在輔助桌體5。 此外,配設在內側環狀驅動線圈7 3 1之外側的外側環 狀驅動線圈7 3 2係如第5 0圖所示,爲被形成八角形形狀。 該種外側環狀驅動線圈7 3 2係爲,以使鄰接至前述內側環 狀驅動線圈7 3 ]之各個線圈邊7 3 1 a至7 3 ] d的線圈邊7 3 2 a 至7 3 2 d部分之四邊之各個中央部爲分別與X軸、γ軸交 146 1220875 叉狀地而被裝設在前述固定平板8上。 再者,爲分別使前述各個被驅動磁鐵16A至16D個別 地配置在靠近、且對向於該種外側環狀驅動線圈7 3 2之各 個線圈邊7 3 2a、7 3 2b、7 3 2c、7 3 2d之各個線部分之中央 部。該種各個被驅動磁鐵16A至16D係以被倂設在前述 各個被驅動磁鐵6A至6D之狀態下,爲被裝著、維持在 輔助桌體5。 此種各個被驅動磁鐵6A至6D、16A至16D係爲,在 本實施例中,係以可由外部來進行通電控制之電磁鐵所構鲁 成。 有關本實施例之四個被驅動磁鐵6A至6D係如第49圖 所示,爲使用磁極之端面(與環狀驅動線圈7之各個線圈 邊的對象面)爲四角形狀之電磁鐵,在輔助桌體5之上面 所假定之X-Y平面上,爲分別被配設、固著在距離中心 部爲相等距離之位置的X軸上以及Y軸上。 此外,其他之四個被驅動磁鐵1 6 A至1 6 D亦使用相同 之電磁鐵,爲在輔助桌體5之上面所假定之X-Y平面上,® 爲分別被配設、固著在距離中心部爲相等距離之位置的X 軸上以及Y軸上。 前述固定平板8係如第49圖所示,係被裝設在前述輔 助桌體5與可動桌體1之間,而被維持在前述外殼本體3 上。在此,藉由環狀驅動線圈7 3 1、7 3 2與固定平板8, 而構造作爲前述電磁驅動裝置4之主要部的固定件部分。 並且,環狀驅動線圈7 3〗、7 3 2係爲,當被設定爲作動 14 1220875 狀態後,在與前述各個被驅動磁鐵6A至6D、16A至16D 之間爲產生有電磁驅動力,該電磁驅動力係爲在將該各個 被驅動磁鐵6A至6D、16A至16D正交於各個線圈邊之方 向上進行推斥驅動。 因此,當將前述可動桌體部1 5移送至未正交於各個線 圈邊7 3 1 a至7 3 1 d、7 3 2 a至7 3 2 d之方向(傾斜於各個線 圈邊7 3 1 a至7 3 1 d、7 3 2 a至7 3 2 d之方向)的情況下,爲 如後述而至少具有對於兩個以上之各個被驅動磁鐵6A至 6D、16A至16D之的電磁驅動力之合力,形成爲可實施_ 該可動桌體部15之移送。 再者,於面對於各個驅動線圈731、73 2之前述被驅動 磁鐵6A至6D、16A至16D的線圈邊731a至731d、732a 至7 3 2 d部分上,爲使由非磁性金屬構件所形成之致動用 平板9靠近於各個被驅動磁鐵6 A至6 D、1 6 A至1 6 D之磁 極面進行配設。該種致動用平板9係形成爲被固定在前述 環狀驅動線圈7 3 1、7 3 2側(在本實施例中係爲外殻本體 3 )的狀態。 ® 並且,在該種第十二實施例中,在使裝置整體被設定 成作動狀態後,在環狀驅動線圈7 3 1、7 3 2中,於預先設 定之通電方向上係開始進行通電。此外,對應於此,爲如 後所述的使得指定之作動電流通電至局部或是全部的被驅 動磁鐵6A至6D、16A至16D,因應於前述可動桌體部15 之移送方向來設定磁極(N極、S極、無磁極)。同時, 使包含環狀驅動線圈7 3 ]、7 3 2之各個被驅動磁鐡6 A至 1220875 6D、16A至16D的磁力大小爲藉由通電控制來調 此,爲使前述可動桌體部15移動至指定之方向。 在此情況下,環狀驅動線圈73 1、7 3 2之通電方 由後述之動作控制系統2 03來預先特別指定,對應 係使各個被驅動磁鐵6A至6D、16A至16D之通電 合、特別指定可動桌體部15之移送方向,而在裝 之作動之際,如前所述,爲使其通電電流之大小藉 控制系統20 3來進行可變控制(包含通電停止控制 並且,在內側環狀驅動線圈7 3 1之線圈邊7 3 1 a 部分上,相對於被驅動磁鐵 6A至 6D,爲依據 (Fleming )之左手定律,而將例如各個被驅動磁| 6B、6C或6D輸出朝向指定之方向(分別正交於 7 3 1 a、7 3 1 b、7 3 1 c或7 3 1 d之方向)按壓的電磁力( 即使是在外側環狀驅動線圈7 3 2與被驅動磁鐵 16B、16C或16D之間,亦同樣地使指定之電磁力 配合前述各個被驅動磁鐵6A、6B、6C或6D而輸tl 在此種情況下,輸出至內側環狀驅動線圈7 3 1 之各個被驅動磁鐵6 A至6 D的電磁驅動力、以及 外側環狀驅動線圈7 3 2之各個被驅動磁鐵1 6 A至 電磁驅動力’係與先被設定控制成使其輸出之朝向 一致化。Ministry 22 &quot; And each individual has: the coil most electric power will be four ground special, can be set memory map). ^ A1 to Y case 丨). On the other hand, the control mode A 1 of the head A 104 1220875 in the tenth embodiment indicates an example of the energization control mode for moving the movable table 1 to the positive direction of the X axis (see FIG. 37). In this control mode A1, in order to control the energized magnets 6B and 6S on the Y axis to stop energization, the end surface portion of the coil side 7 a facing the driven magnet 6A on the X axis is set to N pole, and the end face of the coil side 7 c facing the driven magnet 6 C on the X axis is set to S pole 0. Therefore, in the coil sides 7 a and 7 c of the ring-shaped drive coil 7, _ In the coil sides 7 a and 7 c, the electromagnetic driving force generated in the direction indicated by the dotted line arrow 'is simultaneously caused by the reaction force (the ring-shaped driving coil 7 is fixed) to cause the driven magnets 6A, 6C to The direction indicated by the solid arrow (right in the figure) is driven by repulsion, thereby moving the movable table body 15 to the positive direction on the X axis. <Control Mode A2> This control mode A2 is an example of a control mode used to move the movable table 1 to the negative direction of the X axis (refer to FIG. 37). In this control mode A2, the setting of the magnetic poles of the driven magnets 6A and 6C on the X axis is different from that in the case of the aforementioned control mode A1 in the opposite phase. The other systems are the same as those in the aforementioned control mode A1. Therefore, in the coil sides 7 a and 7 c of the toroidal drive coil 7, the same principle as in the case of the control mode A 1 described above is used to generate an electromagnetic driving force in the reverse direction of the case of the control mode A 1. The reaction force is driven by the repulsive 105 1220875 in the direction indicated by the solid line arrow (left in the figure), so as to move the movable table 15 to the negative direction on the X axis. <Control mode A3> This control mode A3 is an example of a control mode for moving the movable table 1 to the positive direction of the Y axis (refer to FIG. 37). In this control mode A3, in order to stop the energized magnets 6A and 6C on the X axis from being energized, the end face of the coil side 7b facing the driven magnet 6B on the gamma axis is set to N pole. The end face of the coil side 7d facing the driven magnet 6D on the Y-axis is set to the S pole. Therefore, in the coil sides 7b, 7d of the loop-shaped driving coil 7, the electromagnetic driving force generated in the direction indicated by the dotted arrow in the coil sides 7b, 7d is generated by the reaction force (the loop The driving coil 7 is fixed) so that the driven magnets 6B and 6D are repulsively driven in the direction indicated by the solid arrows (upper in the figure), thereby moving the movable table body 15 to the γ axis. Positive. <Control mode A4> This control mode A4 is an example of a control mode for moving the movable table body to the negative direction of the γ axis (refer to FIG. 37). In this control mode A4, the setting of the magnetic poles of the driven magnets 6B and 6D on the Y axis is different from that in the case of the aforementioned control mode A3 by the point of phase inversion. The other systems are the same as those in the aforementioned control mode A3. Therefore, in the coil side 7b, 7d part of the loop drive coil 7, borrow.  106 1220875 The same principle as in the case of the aforementioned control mode A3 is that an electromagnetic driving force is generated, and the reaction force is repelled and driven in the direction shown by the solid line arrow (lower in the figure). The body 15 moves to the negative direction on the γ axis. Next, an example of each of the energization control modes A5 to A8 when the movable table body portion 15 is oriented in the four quadrant directions on the X-Y plane coordinates (graphed objects) will be described. This is disclosed in Figs. In Fig. 38, in each of the energization control modes A5 to A8, the energization direction of the DC current of the ring-shaped drive coil 7 is as shown by arrow A, and in this embodiment, it is set to be right-handed. φ <Control Mode A5> The control mode A5 in the tenth embodiment is an example of an energization control mode for moving the movable table body 1 in the first quadrant direction on the XY plane coordinates (refer to Section 3) 8). In this control mode A5, in order to control the energization of each of the four driven magnets 6A to 6D at the same time, the magnetic poles N and S are respectively set to face the coil side 7a of the ring-shaped driving coil 7 The magnetic poles of the end faces at 7 and 7b are N poles, and the magnetic poles of the end faces at the same positions as the coil edges 7c and 7d of the loop drive coil are S poles. Therefore, the coil sides 7a to 7d of the ring-shaped drive coil 7 are formed in a state equivalent to the case where the aforementioned control modes A1 and A3 are simultaneously operated, and the resultant force is as shown in the control mode A5 in FIG. 38. The column reveals that it is oriented in the first quadrant. Thereby, the movable table body 15 is moved in the direction of the first quadrant on the X-Y plane coordinates. 107 1220875 Here, the transfer angle 0 of the x-axis toward the first quadrant direction is such that the magnitude of the energized current of each of the driven magnets 6A to 6D can be variably controlled. 6D's electromagnetic driving force changes, and its size can be set freely. Thereby, the movable table body 15 can be freely controlled in any direction in the first quadrant direction. <Control mode A6> This control mode A6 is a power-on control mode for moving the movable table body 1 in the third quadrant direction (the direction φ opposite to the first quadrant direction) on the XY plane coordinates. An example (refer to Figure 38). In this control mode A6, in order that the four driven magnets 6A to 6D are simultaneously energized and controlled, the magnetic poles N and S are all set to be inverse to those in the control mode A5. Therefore, the respective coil sides 7a to 7d of the ring-shaped drive coil 7 are formed in a state equivalent to the case where the aforementioned control modes A2 and A4 are simultaneously operated, and the resultant force is as shown in the control mode A6 in FIG. 38. The columns indicate that they are oriented in the third quadrant. Thereby, the movable table body 15 is moved in the direction of the third quadrant on the X-Y plane coordinates. Here, the transfer angle 0 of the X axis toward the third quadrant direction is such that the magnitude of the energized current of each of the driven magnets 6A to 6D can be variably controlled, and by acting on each of the driven magnets 6A to 6D, The electromagnetic driving force is changed, and the size can be freely set. In this way, the movable table body 15 can be freely moved in any direction in the third quadrant direction 108 1220875. <Control mode A 7> This control mode A7 is an example of an energization control mode used to move the movable table body 1 in the second quadrant direction on the X-Y plane coordinates (refer to Figure 38). In this control mode A7, in order to simultaneously control the four driven magnets 6A to 6D, the magnetic poles N and S are respectively set to face the coil sides 7b, The magnetic pole at the end face at 7c is N pole, and the magnetic pole at the end face at 7c, 7a, which is also opposite to the coil φ side of the toroidal drive coil, is S pole. Therefore, the respective coil sides 7a to 7d of the annular driving coil 7 are formed in a state equivalent to the case where the aforementioned control modes A2 and A3 are simultaneously operated, and the resultant force is as shown in the control mode A7 in FIG. 38. The column reveals that it is oriented in the second quadrant. Thereby, the movable table body 15 is moved in the direction of the second quadrant on the X-Y plane coordinates. .  here, For the X axis, the transfer angle 0 toward the second quadrant is 0, Make the magnitude of the energized current of each driven magnet 6A to 6D variable, By changing the electromagnetic driving force acting on each of the driven magnets 6A to 6D, The size can be set freely.  With this, It is possible to freely move the movable table body 15 in any direction in the second quadrant direction.  <Control mode A8> This control mode A8 is, Shows an example of the energization control mode used to move the movable table body 15 toward 109 1220875 in the fourth quadrant direction (the direction opposite to the first quadrant direction) on the X-Υ plane coordinates (refer to Figure 38) ).  In this control mode A8, In order for the four driven magnets 6A to 6D to be energized simultaneously, Its magnetic pole N, All the S-systems are set to be inverse to the case of the control mode A7.  therefore, On the respective coil sides 7a to 7d of the toroidal drive coil 7, It is formed in a state equivalent to that in which the aforementioned control modes A 1 and A4 are simultaneously operated. The resultant force is as revealed in the Lu column of the control mode A8 in Figure 38. To be oriented in the fourth quadrant. With this, The movable table body 15 is moved in the direction of the fourth quadrant on the X-Y plane coordinates.  here, For the X axis, the transfer angle 0 toward the fourth quadrant is 0, Make the magnitude of the energized current of each driven magnet 6A to 6D variable, By changing the electromagnetic driving force acting on each of the driven magnets 6A to 6D, The size can be set freely.  With this, It is possible to freely move the movable table body 15 in any desired direction in the fourth quadrant direction.  << Actuation plate >> On each coil side 7a to 7d of the aforementioned annular drive coil 7,  In opposition, And close to the magnetic pole faces of each of the four driven magnets 6A to 6D, As shown in Figures 3 2 to 34, The metal actuating plate 9 made of a non-magnetic member is disposed in a state of being insulated from the surroundings. It is fixedly mounted on each of the annular drive coils 7.  110 1220875 This type of actuation plate 9 is equipped with the following functions, which is, Suppresses the rapid movement of the movable table body 15, At the same time, the movable table body 15 is moved slowly. Figure 39 shows the principle of operation.  here, Fig. 39A is a partial cross-sectional view showing a portion of the actuating plate 9 in which Fig. 32 is omitted. In addition, Figure 3 9B is a plan view (illustration of the principle of operation) viewed along the arrow A-A line of Figure 3 9 A.  In this situation, In a case where the movable table body 15 in which four driven magnets 6A to 6D are installed is rapidly moved, Between the respective driven magnets 6A to 6D and the respective actuation plates 9 corresponding thereto, The book is operated by electromagnetic actuation (eddy current braking) which is proportional to the moving speed. With this, The movable table body 15 is designed to suppress rapid movements, And can move slowly.  To explain it more specifically, In Figure 39, The actuating plate 9 is fixed to the coil side 7a of the ring-shaped drive coil 7 opposite to the N pole of the driven magnet 6A. Symbol 9A, 9B is a spacer member for fixing the plate 9 for actuation. This kind of spacer member 9A, 9B is formed by a non-conductive member in this embodiment.  Call now, When the auxiliary table body 5 is rapidly moved at the speed V1 on the right side of the figure, The metal actuating plate 9 (because it has been fixed) is formed relatively quickly after moving at the same speed V2 (= V1) on the left side of the figure. With this, In the actuation plate 9, based on Fleming's right-hand law, In the direction shown in FIG. 39B (the upward direction in the figure), eddy currents of the opposite directions flowing in the direction of the arrow are generated. The magnitude of this eddy current is also proportional to the speed V2.  111 1220875 Second, In the area where the electromotive force EV is generated, there is a magnetic flux from the N pole, therefore, Between the magnetic flux of the driven magnets 6A to 6D and the eddy current (in the direction of the electromotive force EV) in the actuation plate 9, According to Fleming's left-hand law, A specified moving force fl is generated in the moving flat plate 9 (toward the right in the figure).  on the other hand, The actuation plate 9 is fixed on the fixed plate 8,  therefore, The opposing force f2 of the moving force Π is generated as actuating force on the driven magnets 6A to 6D, and its orientation is opposite to that of the moving force fl.  that is, This type of actuating force f2 is formed in a direction opposite to the initial rapid movement direction of the driven magnets 6A to 6D (that is, the auxiliary table body 5). In addition, Its size is formed to be proportional to the moving speed of the auxiliary table body 5, Therefore, 'the auxiliary table body 5 is suppressed by its rapid movement,  Instead, it moves smoothly in a stable state.  The specified actuating force f2 is generated in the same manner even in the other actuating plates 9.  therefore, In the auxiliary table body 5 already equipped with the driving magnets 6A to 6D,  E.g, At the moment when I stopped moving quickly, Although it is easy to produce reciprocating motion at this stop, but, In contrast, the action is formed to be appropriately suppressed, And move smoothly and slowly. that is, In terms of integrity, The respective actuation plates 9 are effective in functioning, A device in which the movement of the movable table body 15 has been stabilized can be obtained. Vibration from the outside makes the movable table body 15 even in the case of reciprocating minute vibration,  The same function can be exerted to effectively suppress reciprocating minute vibration.  In addition, Each of the aforementioned actuating plates 9 has a function of releasing heat generated during driving of the loop drive 112 1220875 coil 7. In this feature, In order to effectively suppress the increase in resistance at high temperature l caused by the continuous operation of the ring-shaped driving wire 圏 7, And a reduction in energization current (ie, Reduction of electromagnetic driving force), In order to set the energization current to a long time as a standard.  therefore, For the electromagnetic driving force output by the electromagnetic driving device, It can continue to stabilize the current control from the outside, It can effectively suppress long-term deformation (insulation damage due to heat). With this, It can improve the durability of the entire device, Even the reliability of the device as a whole.  "Integral action" φ Second, The overall operation in the aforementioned tenth embodiment will be described.  In Figures 3 to 5, First of all, The motion command input unit 24 inputs a motion command for moving the movable table 1 to a specified position to the control system 20, after that, The main control unit 2 1 A of the table drive control device 21 will immediately act, The reference position information of the mobile terminal is selected by the data storage unit 23 according to the operation instruction. Simultaneously, The motion program registering unit 22 selects the corresponding control mode (the control program for any of A1 to A8). then, Actuate the coil selection drive control unit 2 1 B, Lu will drive control of one annular driving coil 7 and four annular driven coils 7 of the electromagnetic driving device 4 based on a specified control mode.  here, In the aforementioned motion control system 20, For example, an operation instruction for the purpose of moving the movable table 1 toward a specified position in the X-axis forward direction is input by the operation instruction input unit 24, As a result, the entire device is operated in accordance with the specified energization control mode. Examples of the situation after such operation are shown in Figs. 40 to 41.  113 1220875 In this example, Means that the control mode A1 shown in Fig. 37 is selected as the power-on control mode, Accordingly, The ring-shaped driving coil 7 and each of the four driven coils 6 A to 6 D are operated in this control mode A 1.  In this situation, In the aforementioned table maintenance mechanism 4, When the auxiliary table 5 is set to the right of FIG. 32 by the electromagnetic driving device 4,  To fight against each piano line 2A, 2B elasticity, Move the auxiliary table body 5. and, The auxiliary table body 5 (that is, The movable table body 1) is stopped at each piano line 2A, The balance point (moving target position) between the elastic restoring force of 2B and the electromagnetic driving force of the electromagnetic driving device 4 applied to the auxiliary table body 5 (refer to FIG. 40, Figure 41).  In this figure 40, In Figure 41, The symbol T indicates the distance moved. In addition, In Figure 41, The oblique line indicates that the capacitance detection electrode 26X3, 26X4 capacitor component, The cross-hatched line indicates the capacitance detection electrode 26X1 of the aforementioned one. The capacitance component of 26X2 has been increased. In addition,  In this figure 41, It indicates the ideal state without a position shift in the Y-axis direction.  and, In this action, When the moving position of the auxiliary table 5 is shifted from the target position due to interference, etc., Based on this kind of capacitance detection electrode 26X1, 26X2, 2 6X3, Information on the increase and decrease of the capacitance component of 26X4, Detect the position after actual movement as described above, It is formed to perform feed back control (not shown) for preventing positional displacement.  on the other hand, After the magnetic driving force of the electric 114 1220875 applied to the auxiliary table body 5 is released from this state, To make piano line 2A, The elastic restoring force of 2B is given to the auxiliary table body 5 to return to the original position (the function of restoring the original position function).  In this series of actions, The movement of the auxiliary table 5 is:  Generally, it is performed quickly under any circumstances in which the electromagnetic driving force is applied or controlled. In that case, In auxiliary table 5 (or movable table 1), When the mobile is stopped or when it is restored to its original position, In order to generate reciprocating action caused by inertial force and spring force.  φ However, ’In this embodiment, This repeated reciprocating action is controlled by electromagnetic actuation (eddy current braking) generated between the actuation plate and the driven magnet, While moving smoothly towards the specified position, Stop control is performed in a stable state.  It is useful to make a movable table even when input from the motion instruction input section 24!  In the case of an operation instruction to move to a specified position other than the above, Similarly, the main control unit 2 1 A of the table body driving control device 21 can be immediately actuated ’based on the operation instruction, and the data storage unit 23 selects the reference position information of the mobile terminal. At the same time, the motion program memory 22 selects a control program related to the control mode specified by it. then, Actuate the coil selection drive control unit 2 1 B, The ring-shaped driving coil 7 of the electromagnetic driving device 4 and the four driven magnets 6 A to 6D are driven and controlled based on the designated control mode. ’Even in this case, The actuation action can also be performed by the same control action and actuation plate as in the foregoing case, Auxiliary table 115 1220875 5 (movable table 1) is facing the designated position, Moving smoothly, Instead, control is stopped in a stable state.  in this way, In the aforementioned tenth embodiment, In order to maintain the mechanism 2 by applying the linked mechanism to the table, While maintaining the movable table body 15 at the same height position from the center position (within a specified range) without accompanying sliding action, At the same time, it can smoothly move (or rotate) in any direction on the X-Y plane.  thereby, In the aforementioned tenth embodiment, Because it does not need the heavy double structure of the X-Y axis movement maintaining mechanism required in the conventional technology, The repair resulted in miniaturization and weight reduction of the entire device. At the same time, it can significantly improve transportability by reducing weight. Compared to the conventional example ’is to reduce the number of components, It also significantly improves durability. In addition, Because the adjustment during assembly does not require special skilled operation, Therefore, it can improve productivity.  In addition, Even if the movable table body 1 5 with the driven magnets 6 A to 6D changes its operation rapidly, Because the driven magnets 6A to 6D and the actuating plate 9 formed of a non-magnetic metal member are operated by an electromagnetic actuation (eddy current brake), therefore, The movable table system thus suppresses its rapid movement, Instead, it can move smoothly in a stable state in the specified direction.  Furthermore, Each coil side 7a of the ring-shaped driving coil 7 is provided so as to have the actuating flat plate 9 facing the driven magnets 6A to 6D. 7b, 7c, 7d's simple structure, Simultaneously, Even an electromagnetic drive device 4 for generating power in an electromagnetic zone, It is also possible to have a simple structure in which one ring 116 1220875-like driving coil 7 is mounted on a fixed flat plate 8 opposed to the driven magnets 6 A to 6 D installed in the auxiliary table body 5. therefore,  To reduce the size and weight of the entire device, And not only has good transportability, Even during assembly operations, There is no need for special operation, Therefore, workability is also good.  Furthermore, Is mounted on the end face portions of the driving magnets 6A to 6D side, In addition, the metal actuating plate 9 made of a non-magnetic material is used in terms of its relationship with the driving coil 7. In order to form a circuit equal to the secondary circuit of the transformer, In addition, it is configured to be short-circuited by actuating the electrical resistance component (generating eddy current loss) of the flat plate 9 for φ.  and, At each coil side 7a of the drive coil constituting the primary circuit in this case, 7b, 7c, In 7d, Compared with the case where the secondary circuit is open (without actuating the panel), a larger current can be passed. thereby, Although the distance between the driving wire 7 and the driven magnets 6A to 6D can be increased substantially by the actuating plate 9, but, It also increases the energizing current, Therefore, in this feature, the generated electromagnetic driving force is not reduced. It is formed so as to be able to output a large electromagnetic force with respect to the driven magnets 6A to 6D.  In addition, This type of actuation plate 9 also has the function of a heat release plate,  In this feature, In order to effectively suppress long-term deformation (insulation damage caused by heat, etc.) accompanying the continuous operation of the ring-shaped drive coil 7. thereby,  It can improve the durability of the entire device, Even the reliability of the device as a whole.  Furthermore, In this embodiment, Because each of the driven magnets 6A to 6D corresponding to one of the ring-shaped driving coils 7 in the electromagnetic driving device 117 1220875 is installed, Therefore, the four coil sides 7a of the loop coil 7 7b, 7c, 7d is operated so that the corresponding driven magnets 6A to 6D are constantly pressed in the X-axis or Y-axis direction orthogonal to the X-Y plane.  therefore, Compared to the auxiliary table 5 (that is, The movable power of the movable table body 1) is Even when moved in any direction, The resultant force can often be generated in a direction from the center point side on the X-Y plane toward the outside.  thereby, Even if the moving direction of the movable table body 15 is changed, The system is not always formed so that the movable table 1 can be moved in a plane (within a permissible range) in a planar manner with the rotation.  in this way, In the foregoing embodiment, For one ring-shaped driving coil 7 and four driven magnets 6A to 6D, Set the energizing current to obtain continuous output electromagnetic driving force in the specified direction, therefore, Even in any direction, The movable table 1 can also be continuously transferred,  In this feature, the micrometer (//) unit can be precisely moved.  In addition, Since the driving coil is constituted by one annular driving coil 7,  Therefore, the structure is simplistic, The entirety that also includes the corresponding driven magnets 6 A to 6D is widely used between the movable table body portion 15 and the fixed plate 8 in a state where the size of the movable table body portion 15 is widely used. Therefore, Is an exclusive area that can reduce space, In this characteristic, System formation can reduce the overall size of the device, Improve transportability. In addition, To reduce the number of components, Therefore, it has the advantage of improving productivity and maintainability.  118 1220875 Here’in the tenth embodiment, Although it is exemplified that the driven magnets 6A to 6D are installed in the auxiliary table body 5, but, The driven magnets 6A to 6D can also be installed on the side of the movable table body 1, At the same time, the aforementioned ring-shaped driving coil 7 opposed to it is arranged at a designated position on the fixed flat plate 8.  In addition, there is a case where the movable table 1 is a circular shape,  However, 'can also be a quadrangle or other shapes. As for the case where the auxiliary table 5 is an example of a quadrangular shape, but, If there is something that can implement the aforementioned functions, It can also be round or other shapes.  φ The aforementioned table body maintenance mechanism 2 exemplifies the structure of the movable table body 15 which has a function of restoring the original position. but, It can also be constituted as another device for restoring the original position with respect to the movable table body 15  The functional structure for restoring the original position of the table maintenance mechanism 2 is removed. After specific description, In an embodiment of the present invention, As a connecting mechanism, a piano wire formed of a spring material is used. With this, In order to use the force to restore the original position of the movable table in the link mechanism, but, It is not limited to this. that is, It can also be structured as a connection mechanism, And the original position recovery mechanism for returning the movable table body to the original position is set to be separated from each other, Independent agency.  As mentioned before, When the connection mechanism of the table maintenance mechanism and the original position restoration mechanism are constituted as separate mechanisms, The mechanism of restoring the original position is formed. The force is accumulated as a spring force to restore the original position. Furthermore, To have a sensor, The current position of the movable table is detected, This kind of sensor is based on the 119 1220875 position signal measured by the piece to control the current 値 which is energized in the drive coil of the electromagnetic drive device, With this, To have a counterforce, The reaction force is the spring force generated by the mechanism for returning to the original position.  Although the actuation plate 9 of this embodiment is exemplified in the case where it is installed in each of the driven magnets 6 A to 6 D, but, It is also possible to target two or more or 6 Fe to 6 Fe, The structure is such that the plates for actuation are opposed to one piece.  In Figure 4 2 This is an example of a case where the one-piece actuation plate faces all the driven magnets 6A to 6D.  φ In this Figure 42, Symbol 92, Reference numeral 93 denotes a spacer member for maintaining a single actuation plate 9. here, The symbol 9a indicates a through-hole, This is to allow the post 10 to reciprocate along the fixed plate 8.  In this case, While extending the periphery of the actuation plate 9,  In order to constitute a part or the whole of the periphery of the actuation plate 9 maintained by the housing body 3 described above, It is also possible to omit such spacer members 92, 93.  In addition, To install and replace each of the aforementioned driven magnets 6A to 6D and the ring-shaped driving coil 7, The ring-shaped drive coil 7 can also be installed on the side of the auxiliary table, Alternatively, each of the driven magnets 6A to 6D is mounted on the fixed flat plate 8 side. In this situation, In order that the actuating tablet 9 can also achieve the actual function, Instead, it is fixedly installed on the side of the ring-shaped driving coil 7.  Furthermore, In the aforementioned tenth embodiment, Although it is exemplified that the four driven magnets are mounted at an equal distance from the origin on a right-angled coordinate (X-Y coordinate), but, Among most driven magnets, If the moving direction (repulsion driving direction) of each driven magnet is on a line passing through the origin 120 1220875 (or a right-angled coordinate) on the coordinates, Even if it is not installed at an equal distance from the origin, Is placed at a position offset from the coordinate axis, Or the number may not be four.  in this way, When the movable table body 15 is driven in a specified direction by one or two or more driven magnets, The components that can generate the rotational force components can be reliably discharged in advance. In addition, In the case where the four driven magnets on the right-angled coordinate (X-Y coordinate) are installed at an equal distance from the origin, The simplification of control motion can be achieved by the motion control system 20 series. therefore, In order to quickly and smoothly move the movable table body φ part 15 to a specified direction.  Furthermore, In the aforementioned tenth embodiment, As an example of the case where four driven magnets 6A to 6D are installed as the driven magnet system, but, In the present invention, Not limited to four driven magnets, It may also be provided with three or more driven magnets. In addition, The shape of the driven magnet may be other shapes (for example, Cylindrical).  In addition, With a large number of driven magnets properly installed,  It can also be the aforementioned motion control system 20, In the direction of movement from the outside, And when appropriate (for example, In the transfer direction, it is located at a position where better efficiency can be achieved.) Most of the driven magnets are driven by electricity. According to the resultant force, the movable table body 15 is configured to move in a moving direction indicated by the outside.  In addition, In the aforementioned tenth embodiment, Then set the moving direction of the movable table body 15 to ten, This is an example of the case where the control mode is divided into A 1 to A 8 to drive and control the electromagnetic drive device 4, but, For example, in control mode A2 121 1220875, Provided that it is equivalent to setting the respective energizing directions of the driven magnets 6A to 6D to be the same as the control mode A 1, When only the power-on direction of the _ring drive coil 7 is set to a function such as reverse direction, Other drive control methods can also be used.  "Other Examples of Toroidal Drive Coils" Figures 43A to 43D, There are other structural examples of one toroidal drive coil 7 arranged on the χ_γ plane, respectively.  <Triangular Drive Coil> First, Fig. 43A shows a case where the ring-shaped driving coil is formed into a regular triangle. The ring-shaped driving coil 7 1 of this equilateral triangle is,  Make the corners arc-shaped, And fixed, It is held on a fixed plate (not shown) serving as a fixture.  In addition, Each coil side 7Aa of the annular driving coil 7 1 corresponding to the triangle 7Ab, 7Ac, The driven magnets 6A to 6C each formed by an electromagnet are individually provided. Each of these driven magnets 6A to 6C is fixedly mounted on a movable table body (not shown) as a movable member side.  Each of these driven magnets 6A, 6B or 6C is, In the state of action, For each coil side 7 1 a corresponding to the loop drive coil 7 1 individually, 7 1 b or 7 1 c when subjected to electromagnetic force, Orientation orthogonal to the respective coil sides 71a, 71b or 71c.  here, Each driven magnet 6A, 6B or 6C is configured to correspond to each of the coil sides 7 1 a, 7 1 b or 7 1 c, Let the extension of the center line in the direction driven by it be the origin on the X-Y plane passing through the aforementioned annular drive coil 71.  122 1220875 and ‘when the whole device is operating, For the same operation control system as in the case of the tenth embodiment, The specified power-on control mode is selected by a plurality of power-on control modes specified in advance, Accordingly, It is formed so that the ring-shaped driving coil 71 and each driven magnet 6A, 6B or 6C are individually controlled by power-on. The other structures are formed in the same manner as in the case of the tenth embodiment shown in Figs. 3 2 to 41.  even so, For the ring-shaped driving coil 71 and each driven magnet 6 A, 6 B or 6 C is an individual motion control system (including zero) for energization control. With this, It can move the aforesaid movable table body to any direction on the X-Y plane. The same effect as that in the case of the tenth embodiment can be obtained.  <Circular driving coil> Second, Fig. 43B shows a case where the ring-shaped driving coil is formed in a circular shape. The circular ring-shaped driving coil 7 2 is, Make the corners arc-shaped, And fixed, It is maintained on a fixed plate (not shown) serving as a fixing member.  In addition, Where it intersects the X-axis and Y-axis on the X-Y plane of the circular ring-shaped drive coil 72, For each coil side portion 72a corresponding to the loop-shaped driving coil 72, 72b, 72c, 72d, Each of them is equipped with a driven magnet 6 A formed by an electromagnet, 6 B, 6 C, 6 D.  Each of these driven magnets 6A to 6D is fixedly mounted on a movable table body (not shown) as a movable member side.  Each of these driven magnets 6A, 6B, 6C or 6D is, In the actuated state 'are the respective coils 123 1220875 sides 72a, 72b, 72c or 72d, And withstand electromagnetic forces, It is repulsively driven in the direction of the wiring perpendicular to the loop drive coil 7B.  here, Each driven magnet 6A, 6B, The 6C or 6D system is configured to correspond to each of the coil sides 72a, 72b, 72c or 7 2d, Let the extension line of the center line in the direction driven by it be the origin on the χ-γ plane passing through the aforementioned annular drive coil 7 2.  and, During the operation of the device as a whole, For the same operation control system as in the case of the tenth embodiment, The specified power-on control mode is selected by a plurality of power-on control modes specified in advance, Accordingly, Φ is formed so that the loop-shaped driving coil 72 and each driven magnet 6A, 6B, 6C or 6D are individually controlled by power-on. The other structures are formed in the same manner as in the case of the tenth embodiment shown in Figs. 32 to 41.  even so, The loop drive coil 72 and each driven magnet 6A, 6B, 6C or 6D is an individual motion control system (including zero) for energization control. With this, It can move the movable table body to any direction on the X-Y plane. However, it is possible to obtain an operation effect which is slightly the same as that in the case of the aforementioned tenth embodiment.  Tae <Hex Ring Drive Coil> Second, Figure 4 3C shows the case where the ring-shaped driving coil is formed into a regular hexagon. The regular hexagonal ring-shaped driving coil 73 is,  Fixation, It is maintained on a fixed flat plate (not shown) serving as a fixing member.  In addition, Each of the coil sides 73a, 73b, 73c, 73d, 73e, 73f, Six individually driven magnets 6A, 6A, 6B, 6C, 6D,  124 1220875 6E, 6F. Each of these driven magnets 6A to 6F is fixedly mounted on a movable table body (not shown) as a movable member side.  The respective types of driven magnets 6A to 6F are, In the actuated state,  Are individually formed by each coil side 73a, 73b, 73c, 73d, 73e, 73f while bearing electromagnetic force, Orientation orthogonal to the respective coil sides 73a, 73b, 73c,  73d, 73e, 73f direction was driven by repulsion.  here, The respective driven magnets 6A to 6F are arranged so as to correspond to the respective coil sides 73a, 73b, 73c, 73d, 73e, 73f, Let the extension line of the center line in the direction driven by it be the origin on the X-Y plane passing through the aforementioned annular drive coil 73φ.  and, During the operation of the device as a whole, For the same operation control system as in the case of the tenth embodiment, The specified power-on control mode is selected by a plurality of power-on control modes specified in advance, Accordingly, Instead, the ring-shaped driving coils 73 and the driven magnets 6A to 6F are individually controlled to be energized. The other structures are the same as in the case of the tenth embodiment shown in Figs. 32 to 41.  even so, The energized control is performed by using a hexagonal ring-shaped driving coil 73 and each driven magnet 6A to 6F as individual operation control systems (including zero), With this, It can move the movable table body to any direction on the X-Y plane. The same effect as that in the case of the tenth embodiment is obtained.  <Octagonal Ring Drive Coil> Second, The case shown in Fig. 43D is a case where the ring-shaped driving coil is formed into a regular octagon. The regular hexagonal ring-shaped driving coil 74 is,  125 1220875 fixation, It is maintained on a fixed flat plate (not shown) serving as a fixing member.  In addition, Each coil side 74a corresponding to eight of the regular octagonal ring-shaped driving coils 74, 74b, 74c, 74d, 74e '74f, 74g, 74h,  Each of the eight driven magnets 6A, which are formed by electromagnets, is individually arranged. 6B, 6C, 6D, 6E, 6F, 6G, 6H. Each of these driven magnets 6A to 6H is fixedly mounted on a movable table body (not shown) as a movable member side.  The respective types of driven magnets 6A to 6H are, In the actuated state,  In order to withstand the electromagnetic force by the individual coil sides 74a to 74h, They are individually repelled and driven in the direction of the orthogonal coils 74a to 74h.  here, The respective driven magnets 6A to 6H are arranged to correspond to the respective coil sides 74a to 74h, Let the extension of the center line of the direction it drives be the original on the X-Y plane passing through the aforementioned annular drive coil 74 and, During the operation of the device as a whole, For the same operation control system as in the case of the tenth embodiment, The specified power-on control mode is selected by a plurality of power-on control modes specified in advance. Accordingly, Instead, the loop drive coil 74 and the driven magnets 6A to 6H are individually controlled to be energized. The other structural systems are formed in the same manner as in the case of the tenth embodiment shown in Figs. 32 to 41.  even so, The energization control is performed by forming an individual motion control system (including zero (zer0)) on the loop-shaped driving coil 74 and each of the driven magnets 6A to 6H. In this way, the aforementioned movable table body can be moved to any direction on the plane of X-γ 126 1220875. The same effect as that in the case of the tenth embodiment can be obtained.  [Eleventh embodiment] Next, The eleventh embodiment will be described based on Figs. 44 to 48.  In this eleventh embodiment, Compared with the electromagnetic driving device 4 in the tenth embodiment described above, a ring-shaped driving coil 7 is provided as a driving coil, which is characterized by having an electromagnetic driving device 42. This electromagnetic driving device 1 4 2 is provided with four driving coils formed in a Japanese shape. At the same time, it has the function of replacing the aforementioned motion control system 20, It is also equipped with a motion control system 202 for operating the electromagnetic drive device 1 42 to efficiently operate it.  the following, This will be explained in more detail.  First of all, This eleventh embodiment is: As in the case of the aforementioned tenth embodiment, In order to have a movable table body i 5 for precision work,  For those who are arranged on the same surface and can move in any direction; Table maintenance mechanism 2, In order to allow the movable table body 15 to move, While maintaining the movable table body 15, And has the function of restoring the original position of the movable table body 15; Housing body 3, It is used as a main body for supporting the table body maintaining mechanism 2; Electromagnetic drive 1 42 Is mounted on the shell body 3 side, A moving force in a specified direction is given to the movable table body 15 in response to an instruction from the outside.  here, The movable table body 1 5 series is structured as follows, which is: Movable table body 1 for precision work; And auxiliary table body 5, There are designated intervals to correspond to this kind of movable table body 1, With parallel, 127 1220875 configuration is integrated on the same central axis. and, As shown in Figure 44, The table maintenance mechanism 2 is provided on the side of the auxiliary table 5 'and is configured to maintain the movable table 1 via the auxiliary table 5.  "About the electromagnetic drive device 1 42" The electromagnetic drive device 1 4 2 is, So that its main part is maintained on the shell body 3 side, It has the following functions, which is, In response to external instructions,  A specified moving force (driving force) is given to the movable table body 15 in the moving direction of the movable table body 15. Such an electromagnetic driving device 1 42 is disposed between the movable table body 1 and the auxiliary table body 5.  φ Specifically, The electromagnetic driving device 142 is provided with: Four drive coils 721, 722, 72 3. 724; Four driven magnets 6A,  6B, 6C, 6D, The inner coil sides 721a to 724a corresponding to the central portions of the respective drive coils 721 to 7 24, And is installed on the aforementioned auxiliary table body 5; Fixed plate 8, In order to maintain the aforementioned four drive coils 72 1 to 724 at the designated positions. Four drive coils 721,  722, 72 3. 724 is It is formed by combining two mouth-shaped coils,  And the aforementioned inner coil sides 721a to 724a are formed on the protruding joint portions of the respective coils.  The aforementioned Japanese-shaped driving coils 721 to 724 are, The inner coil sides 721a to 724a located at the central portion thereof are individually arranged on the central portion on the aforementioned X-axis and Y-axis, respectively. The center portion on the fixed plate 8 is used as an origin to be orthogonal to the X-axis or Y-axis on the assumed X-Y plane.  In addition, Each of the four driven magnets 6A to 6D is, It is constituted by an electromagnet that can be energized by 128 1220875. The inner coil sides 72 1 a to 724a corresponding to the aforementioned drive coils, They are individually arranged on the X-axis and the Y-axis.  As shown in FIG. 32, the fixed flat plate 8 is attached and maintained on the casing body 3 disposed on the movable table body 1 side of the auxiliary table body 5. As shown in FIG. With the Japanese driving coils 721 to 724 and the fixed plate 8, Instead, it constitutes a fixture portion as a main part of the electromagnetic drive device 4 described above.  and, Each drive coil 721 to 724 is, When set to active, There is an electromagnetic driving force for production and repair between each of the aforementioned driven magnets 6A to 6D, The electromagnetic driving force is repulsive driving in a direction in which each of the driven magnets 6A to 6D is orthogonal to each of the inner coil sides 721a to 724a. In this situation, The center axis of each of the driven magnets 6A to 6D in the moving direction is set so as to have passed the center point on the aforementioned X-Y plane. In addition, In a case where the movable table body 15 is moved in a direction that is not orthogonal to each of the inner coil sides 72 1 a to 724a (direction inclined to each of the coil sides 721a to 724a), To have at least the combined force of the electromagnetic driving force for at least two of the driven magnets 6A to 6D as described later, It is formed so that the movable table body 15 can be transferred.  Furthermore, On the inner coil sides 721a to 724a of the aforementioned driven magnets 6A to 6D facing the respective driving coils 721 to 724, The actuating plate 9 formed of a non-magnetic metal member is arranged near (in an almost abutting state) the magnetic pole faces of the driven magnets 6A to 6D. This type of actuation plate 9 is a sheet-shaped object in this embodiment. Part or all of its surroundings are fixed to the aforementioned casing body 3 129 1220875.  The four driven parts constituting part of the electromagnetic driving device 1 4 2 are 6D, In this embodiment, as shown in FIG. 45,  Surface (each drive coil 721 to 7: Each of the inner coil sides of 24 (the facing surface between 24a) is formed by a quadrangular electromagnet on the X-Y plane above the auxiliary table body 5, In order to be fixed on the X-axis at equal distances from the center and therefore, In this embodiment, For example, in order to perform a part or all of the designated driven magnets 6A to 6D, each of the driven magnets 6A to 6D is set to an activated state or based on a designated control mode described later. At the beginning of each turn 72 1 to 724 are set to be energized in the activated state. And the magnitude of each of the driven magnets 6A to 6 of the driving coils 721 to 724 is adjusted by the energization control. With this, In order to move the front part 15 to the specified direction.  In this situation, Regarding the direction of the movable table body 1 and its driving force of the electromagnetic driving device 1 4 2 (the driving driving of each of the driving coils 721 to 724 and the four driven magnets), In order to carry out the detailed description with reference to Figs. 47 to 48, Fig. 47 and Fig. 48, The rotation drive achieved by the drive line is not disclosed.  The four coils 72 1 to 724 forming the main part of the electromagnetic driving device 1 4 2 are shown in FIGS. 44 to 45. For small coils Ka, Kb is formed. and, To make the line &amp; End of magnetic pole 6A ^ 7 2 1 a to, Being faked, being deployed,  On the Y axis.  The current is energized at four, While after that,  Drive lines, Contains the 6D magnetic description of the movable table 5 (as opposed to 6A to 6D). The energized drive in the circle is formed by two ring edges (inner 130 1220875 side coil edges 721a to 724a) in the two small ring coil portions Ka, On the abutting part of Kb, On this coil side (the inner coil side 72 1 a to 724a), The system is formed so that the current is always flowing in the same direction (the current flowing in the same direction is often flowing in one side of the abutting part and the other side of each coil). therefore, When changing its orientation,  To form two mouth-shaped small coil sections Ka, The direction of energization in Kb is changed.  In this situation, In this eleventh embodiment, Since the directions of energization of the four driven magnets 6A to 6D formed by the electromagnets are specified in advance as described later, therefore, The direction of power conduction and the magnitude of the energizing current (including the energization stop control) of each of the inner coil sides 721a to 724a of the four Japanese character driving coils 72 1 to 724, The control is set by the motion control system 20 described later in response to the moving direction of the movable table body 1 described above. With this, With respect to the driven magnets 6A to 6D,  In accordance with Fleming's left-hand law, It can output the electromagnetic force (reaction force) pressed in the specified direction (orthogonal to the part of the inner coil side 7 2 1 a to 7 2 4 a).  · In addition, By pre-selecting a combination of directions of electromagnetic forces generated on the four driven magnets 6A to 6D, It is formed so that the combined force of the electromagnetic driving forces generated on the four driven magnets 6A to 6D can be matched with the moving direction of the aforementioned movable table body portion 15, Alternatively, the movable table body portion 15 may be provided with a moving force in an arbitrary direction on the X-Y axis plane.  Regarding the serial power control method for one of the four driven magnets 6A to 6D, It is in the explanation section of the program memory section 222 described later (picture 131 1220875 47, (Figure 48).  here, Among the same outer and inner sides of the aforementioned driving coils 721 to 724, At least the same height (in the Y-axis direction) as each of the driving coils 7 2 1, And within the range of the operation range of the iron 6A to 6D, It can also be filled with magnetic materials such as grain iron.  "About Motion Control System 202" Secondly, The operation control system in this eleventh embodiment will be described in detail.  In this eleventh embodiment, The motion control system can also be installed in the electromagnetic drive device 142 (refer to Figure 46). The control system 202 is to individually energize the aforementioned Japanese-shaped driving coils 7 24 and the four driven magnets 6A to 6D to restrict the movement of the movable table body 15.  The motion control system 202 has the following functions, That is, do not set the function, To set individually, Maintaining the magnetic poles of the driven magnets 6D corresponding to the aforementioned driving coils 721 to 724; Magnetic force setting function, To individually set the magnetic strength of the driven magnets 6 A to 6 D (to obtain variable current flow) The energizing direction setting machine sets the energizing direction of the inner part 721a to 724a of each of the aforementioned Japanese-shaped driving coils 7 2 1 to 7 2 4 in a specified direction (one or the other) and sets it according to an external command. maintain;  Loop power control function, To drive towards each of these Japanese characters, From the top to the top of the 724 drive magnet is equipped with a fat system 202 202 倂 action system 7 21 to control,  The magnetic poles are 6A to 6A. By enabling, The line is the other side of the drive line. [Circle 721 132 1220875 to 7 24 The size of the energizing current is variable. And has a table body control function, To properly adjust the output side of these functions, The moving direction and the moving force of the movable table body 15 are adjusted according to the surface.  and, The action control system 202 is, In order to implement the aforementioned functions ’, as shown in FIG. 46, To have: Table driving control device 212, In order to individually drive the Japanese-shaped driving coils 72 1 to 724 and the four driven magnets 6A to 6D of the aforementioned electromagnetic driving device 142 according to a specified control mode, And the aforementioned movable table body part 15 is controlled to move in a specified direction; Program memory 222, There are many control programs for memory, The control program relates to a majority of power-on control modes (in this embodiment, Are eight power-on control modes from B1 to B 8), This mode is specifically designated by the moving direction of the aforementioned movable table body 1 and the amount of movement of the movable table body 1 installed in the table body drive control device 2 1 2;  Data memory department 23, In order to memorize, specific data and the like used in the implementation of each of these control programs are stored.  In addition, In the table driving control device 2 1 2, There is a motion command input unit 24, The control instructions are given for each of the Japanese-shaped driving coils 721 to 724 and the four driven magnets 6A to 6D. Furthermore, In such a table body driving control device 2 1 2 The position information of the movable table body portion 15 during and after the movement is formed as input, In addition, the calculation processing is performed with a high sensitivity as described later after being detected by the position detection and sensing mechanism 25.  and, The various control machines 133 1220875 included in the aforementioned motion control system 202 can be integrated into the majority of the power-on control modes B1 to B8 of the program memory 222, With the instruction input by the operator via the operation instruction input section 24, Operate based on any of its selected control modes B 1 to B 8, Implementation.  This will be explained in more detail.  The table drive control device 2 1 2 is, In this embodiment, In order to have ... the main control unit 2 1 2A, In order to operate based on a command from the motion command input unit 24, The designated control mode is selected by the program memory 2 2 2 In the aforementioned Japanese-shaped driving coils 7 2 1 to 7 2 4 and each of the four driven magnets 6A to 6D, the energization control including a designated DC current including zero is performed; The coil selection drive control section 2 1 2B, In accordance with the specified energization control mode (b 1 to B 8) selected and set in the main control section 2 1 2 A, The driving coils 7 2 j to 7 24 and the four driven magnets 6A to 6D are driven and controlled simultaneously or individually.  In addition, The main control unit 2 1 2 A also has the following functions,  The function is, Based on input information from a position detection sensing mechanism that detects the position of the table, While calculating the position of the movable table body 15, Or Lu performs various other calculations.  here, The symbol 4 G indicates that a specified current is applied to each of the aforementioned letter-shaped driving coils 7 2 1 to 7 2 4 and the four driven magnets 6 A to 6 D of the aforementioned electromagnetic driving device. Power circuit section.  "About the program memory section 22 2" The table body drive control device 21 2 is configured as follows, which is, According to the specified power-on control program 134 1220875 (designated control mode) stored in the program memory 2 2 2 in advance, Make the respective Japanese-shaped driving coils 72 1 to 724 and the four driven magnets 6A to 6D of the aforementioned electromagnetic driving device 1 42 have a specified correlation, Further, drive control is performed individually.  that is, In the program memory section 222 related to this embodiment, To memorize the following program, which is: Control programs for most magnets, In order to individually specify the energization directions of the four driven magnets (electromagnets) 6A to 6D, When the N pole or S pole of the magnetic pole is specified, The magnitude of the energization current including the energization stop can be individually set; Control program for driving coils, The function of the four driven magnets (electromagnets) 6 A to 6 D is specified when the directions of energization of the four driven magnets (electromagnets) are specified. Correspondingly, the energizing directions of the four Japanese-shaped driving coils 721 to 724 and the magnitude of the energizing current are variably set. Simultaneously, The operation sequence of each control program is adjusted, Memorized in eight groups of power-on control modes B 1 to B 8 (refer to Figures 4 and 7,  Figure 48).  here, For the eight groups of control modes B1 to B1 in this eleventh embodiment, Explanation will be made based on Figs. 47 to 48.  _ In Figure 47, For the positive or negative direction toward the X axis, Either positive or negative towards the γ axis, An example of each of the energization control modes B 1 to B4 when the movable table body 15 is separately transferred (a graphed object).  In this Fig. 47 ', in the respective energization control modes B1 to B4,  It is set to individually control the direction of energization of the DC currents of the Japanese-shaped driving coils 72 1 to 724 individually. In addition, For the N pole or S pole of each magnetic pole, The system is set so that it does not change frequently regardless of the control mode 135 1220875 (fixed state).  that is, In such an eleventh embodiment, In order to set and control the magnetic poles of the end faces of the aforementioned Japanese-shaped driving coils 72 and 722 facing the four driven magnets 6A to 6D, respectively, as follows, which is, Passive drive magnet 6A, 6B is set to N pole, In driven magnet 6C, 6D is set to S pole, Even if the control modes B 1 to B4 are different,  The magnetic poles of the respective driven magnets 6A to 6D are also set and controlled to a fixed state.  <Control Mode B 1> In this control mode B 1 is an example of the energization control mode used to move the movable table 1 to the positive direction of the X axis (refer to FIG. 47).  In this control mode B 1, To make the driven magnets 6B on the Y axis,  6D is controlled to stop energizing, The end face of the coil side 7 2 1 a facing the driven magnet 6A on the X axis is set to the N pole, The end face of the coil side 7 2 3 a facing the driven magnet 6C on the X axis is set to the S pole.  therefore, In the drive coil 7 2 1, 7 2 3 coil side 7 2 1 a, In part 7 2 3 a, In the coil side 721a, 72 The electromagnetic driving force generated in the direction indicated by the dotted arrow in 3a, Simultaneously, With this reaction force (to make the Japanese-shaped driving coil 721, 7 2 3 is generated) and the driven magnet 6A,  6C is repelled and driven in the direction shown by the solid arrow (right in the figure),  With this, The movable table body 15 is moved to the positive direction on the X axis. In this situation, Drive coil 722, 724 is set to the state of power-on stop control.  136 1220875 In addition, Drive coils 722 during energization stop, 724 and driven magnet 6B, 6D system is formed, When the position of the movable table body 1 is shifted,  Individually powered by electricity, Carry out corrective actions for position shift (including the tenth embodiment described above, This is the same as the other embodiments).  <Control Mode B2> This control mode B2 is an example of the energization control mode for moving the movable table 1 to the negative direction of the X axis (refer to FIG. 47).  In this control mode B 2, Drive the coil on the X axis 7 2 1. 7 2 3 coil side 721 a, The energizing direction of part 723a is set to be different from the point of phase inversion compared to the case of the φ control mode B1. The other systems are the same as those in the aforementioned control mode B 1.  therefore, In the drive coil 7 2 1, 7 2 3 coil side 7 2 1 a, In the part 7 2 3 a, “the electromagnetic driving force is generated by the same principle as in the case of the aforementioned mode B 1”, and the reaction force is such that the driving magnet 6A, 6C is repelled and driven in the direction shown by the solid arrow (left in the figure), With this, In order to move the movable table body 15 to the negative direction on the X axis. When the position of the movable table is deviated ', the same corrective action as in the case of the aforementioned control mode B1 is also performed.  <Control Mode B3> This control mode B 3 is an example of the energization control mode for moving the movable table 1 to the positive direction of the Y axis (see FIG. 47).  In this control mode B3, To make the driven magnets 6A on the X axis, 6C is controlled to stop energizing, The end face of the coil side 7 2 2 a facing the driven magnet 6B on the γ axis is fixedly controlled at the N pole, And the end face of the aforementioned coil side 724a of the driven magnet 6D facing 137 1220875 on the Y axis is fixedly controlled at the S pole.  therefore, In the drive coil 7 22, 724 coil side 7 22 a, In part 724a, To the coil side 722a, In 724a, the electromagnetic driving force generated in the direction indicated by the arrow of the dotted line, Simultaneously, With this reaction force (to make the Japanese characters drive the coil 722, 724 is fixed) and the driven magnet 6A,  6C is repelled and driven in the direction shown by the solid arrow (upper in the figure),  With this, The movable table body 15 is moved to the positive direction on the Y axis. In this situation, Drive coil 721, 72 3 series is set to the state of power-on stop control.  In addition, Drive coils when power is stopped 7 2 1. 7 2 3 and driven magnet 6A, 6C series is, When the position of the movable table body 1 is shifted, In order to form the electric drive individually, In addition, a position offset correction operation is performed.  <Control Mode B4> This control mode B4 is an example of an energization control mode for moving the movable table 1 to the negative direction of the Y axis (refer to FIG. 47).  In this control mode B4, Drive the coil 722 on the Y axis, 724 spring coil edge 722a, The energizing direction of the part 724a is different from that in the case of the aforementioned control mode B 3 by the point of phase inversion. The other systems are the same as those in the aforementioned control mode B3.  therefore, On the drive coil 722, Coil side 722a of 724, In the part 724a, the electromagnetic driving force is generated by the same principle as in the case of the aforementioned control mode B 3, The reaction force causes the driven magnets 6B, 6D is repelled and driven in the direction indicated by the solid arrow (bottom in the figure), With this, The 138 1220875 movable table body 15 is moved to the negative direction on the Y axis. When the position of the movable table 1 is shifted, The same correction operation is performed as in the case of the aforementioned control mode B3.  then, An example of each of the energization control modes B 5 to B 8 is illustrated in Figs. 4 to 8 when the movable table body portion 15 is respectively oriented in the four quadrant directions on the X-Υ plane coordinates. Thing).  In Figure 48, In each of the power-on control modes B5 to B8, The direction of energization of the DC current to each of the Japanese-shaped drive coils 721 to 724 is set to be individually variable controlled, For each of the four directions of energization of the driven magnet (electromagnet), The N pole or S pole of each magnetic pole is set so that it will not change frequently regardless of the control mode (fixed state).  <Control Mode B 5> The control mode B 5 in this eleventh embodiment is an example showing a power-on control mode. It is used to orient the movable table body 1 in the first quadrant direction on the XY plane coordinate (refer to Figure 48).  In this control mode B 5, In order for the four driven magnetic irons 6A to 6D to be energized simultaneously, Its current direction (magnetic pole N, S) is the same as the case where the control modes B1 to B4 are fixed.  that is, Placed on the X axis, Positive driven magnet 6A on the y-axis, 6B is, So that it faces the driving coils 721, The end portion of 722 is set as the N pole. In addition, Placed on the X axis, 负 Negative driven magnet on the shaft 6 C, 6D system is, Make it face the driving coils 723, The end face portion of 724 is set to the S pole.  139 1220875 Therefore, With respect to the Japanese-shaped driving coils 72 1 to rims 721a to 7 24d, The energized control modes B1 and B3 are formed to be equal to each other.  therefore, At the same time, the electromagnetic drive with the same orientation as the aforementioned control mode B1 ′ (right and upper of FIG. 48) is generated in the direction of the first quadrant as shown in the column of control mode B5 in FIG. 48. With this, In order to move the movable table body in the direction of the first quadrant on the Y-plane coordinate.  here, For the X-axis, the shift toward the first quadrant direction is an angle between X-axis 19), By individually controlling the magnitude of the current of each of the moving coils 721 to 724 and each of the driven magnets 6A, Change the electromagnetic driving force acting on each of the 6D, With this, It can be set in any direction of the quadrant.  <Control mode B6> This control mode B6 is, An example of the energization control mode used to transfer the third quadrant direction (to the first quadrant direction) on the plane coordinate of the movable table (refer to this control mode B6, In order for four of them to be driven and simultaneously controlled by power-on, Its magnetic pole N, The same applies to the case where all the S series are covered by the pattern B 5.  that is, With respect to the portions of the Japanese-shaped driving coils 72 1 to rims 72 a to 724 d, The energized control modes B2 and B4 formed at the same time are equal to each other.  The various line control systems of 724 and the aforementioned, The case of B 3 is motivation, and,  , To be oriented toward the part 15 towards X- • send an angle of 0 (with a _ shaped drive to 6D energization: The drive magnet 6A is free in the direction of the first body 1 facing the X-Y direction (Figure 48).  The magnets 6A to 6D are set to control the individual wires of the 724 control system and the aforementioned 140 1220875. Simultaneously with the aforementioned control mode B2, In the case of B4, the electromagnetic driving force in the same direction (left and bottom of Fig. 48), and,  The resultant force is shown in the column of control mode B6 in Fig. 48. To be directed to the third quadrant. With this, In order to move the movable table body 15 in the direction of the third quadrant on the X-γ plane coordinate, the movable table body 15 is moved.  here, For the X axis, the transfer angle toward the third quadrant (9 series is, By individually controlling the magnitudes of the energized currents of the Japanese-shaped driving coils 72 1 to 724 and the driven magnets 6A to 6D, Changing the electromagnetic driving force acting on each of the driven magnets 6A to 6D, With this, The system can be freely set in any direction.  <Control mode B7> This control mode B7 is, An example of the energization control mode used to move the movable table 1 toward the second quadrant direction (the direction opposite to the first quadrant direction) on the X-Y plane coordinates (refer to FIG. 48).  In this control mode B7, In order to control the four driven magnets 6A to 6D at the same time, Its magnetic pole N, The entire S system is set to be fixed in the same manner as in the case of the control mode B 6.  φ In the case of this control mode B7, With respect to the part of each coil side 721a to 724d of each Japanese-shaped driving coil 72 1 to 724, The power control system formed is in phase with the control modes B 2 and B 3 simultaneously.  Therefore, 'is generated simultaneously with the aforementioned control mode B2, In the case of B4, the electromagnetic driving force in the same direction (left and top of Fig. 48), and,  The resultant force is as shown in the column of control mode B 7 in Fig. 48. To be directed to the second quadrant of 141 1220875. With this, In order to move the movable table body 15 in the direction of the second quadrant on the X-Y plane coordinates, the movable table body 15 is moved.  here, For the X axis, the transfer angle 0 toward the second quadrant is 0, By individually controlling the magnitudes of the energized currents of the Japanese-shaped driving coils 72 1 to 724 and the driven magnets 6A to 6D, Changing the electromagnetic driving force acting on each of the driven magnets 6A to 6D, With this, The system can be freely set in any direction.  <Control mode B 8> This control mode B 8 is, It shows an example of the energization control mode for moving the movable table body 15 in the fourth quadrant direction (the direction opposite to the first quadrant direction) on the X-Y plane coordinates (refer to FIG. 48).  In this control mode B 8, In order for the four driven magnets 6 A to 6 D to be energized simultaneously, Its magnetic pole N, The S system is fixed in the same manner as in the case of the control mode B 7.  In the case of this control mode B8, On each of the coil sides 721a to 724d of each of the Japanese-shaped driving coils 721 to 724, The system is formed with the same power-on control as when the aforementioned control modes B 1 and B4 are simultaneously operated. therefore, To generate the same control mode B1 as above, The case of B 4 is the electromagnetic driving force in the same direction (right and bottom of Fig. 48).  and, The resultant force is shown in the column of control mode B 8 in Fig. 4-8. To be directed to the fourth quadrant. With this, In order to move the movable table body 15 in the direction of the fourth quadrant on the X-Y plane coordinates, the movable table body 15 is moved.  here, For the X-axis, the transfer angle of the fourth quadrant 0 is 1220875, By individually controlling the magnitude of the energized current of each of the Japanese-shaped driving coils 7 2 1 to 7 2 4 and each of the driven magnets 6 A to 6 D ', the action is applied to each of the driven magnets 6A to 6D. The electromagnetic driving force changes, With this, The system can be freely set in any direction.  About other structures and their actions, function, The system is formed slightly the same as in the case of the aforementioned tenth embodiment.  even so, Except that the same effect as that in the case of the aforementioned tenth embodiment can be obtained, Furthermore, in the eleventh embodiment, the driving coils 7 2 1 to 7 2 4 are individually arranged for each driven iron 6 A to 6 D,  Therefore, ′ is directed to the driving coil 72 i where the driving force output is not needed,  722, 723 or 724, Or is it driven by magnet 6A, 6B, 6C or 6D,  It can stop the energizing operation corresponding to it. thereby, This has the advantage of achieving energy saving of the entire operating device.  In addition, In the aforementioned eleventh embodiment, When setting the moving direction of the movable table body J 5, This is an example of the case where the control mode is divided into B 1 to B 8 to control the electromagnetic drive device 1 2 2. but,  For example, in control mode B 2, Provided that each of the energized directions of the driven magnets 6 A to 6 D is set to the control mode] g 1 is the reverse direction, And will drive the coil 7 2 1, When the power-on direction of 7 2 3 is set to the same function as in the case of control mode b 1, It is also possible to use other drive control methods to drive the electromagnetic drive device 1 2 2.  Furthermore, In the aforementioned eleventh embodiment, It is also possible to replace the installation place of the driven magnets 6 A to 6 D and the installation part of the Japanese-shaped driving coil 7 2 to 7 2 4.  This is the case, The driven magnets 6 A to 6 D are mounted on the fixed 1220875 fixed part side, The Japanese-shaped driving coils 72 1 to 724 are mounted on the movable member side.  In addition, In the aforementioned eleventh embodiment, Although the case where the driven magnets 6A to 6D are constituted by an electromagnet is exemplified, but, The driven magnets 6 A to 6 D may be constituted by permanent magnets.  in this way, To simplify the electrical wiring around the driven magnets 6A to 6D, And can greatly improve productivity and maintainability, With the simplification of electrical wiring, It is possible to reduce the space area where the driven magnets 6A to 6D are installed. thereby, Due to its amount, it is formed into a small size and light weight that can reach the entire body of the device. Compared to the case where the driven magnets 6A to 6D are used as an electromagnet, Because it is not necessary to drive it, Therefore, the overall power consumption and temperature rise can be greatly suppressed. thereby, It can greatly reduce the overall operating cost of the device. In the driving control of the electromagnetic driving device 4, Only the switching control of the energizing directions of the plurality of driving coils 7 2 i to 7 24 is performed. The movable table 1 can be driven and moved to any direction. With this, When the moving direction of the movable table body i is switched, ’it is formed to respond quickly, And it is formed so that there are no accidents such as disconnection of the driven magnetic 鐡 6A to 6D, therefore, It has the advantage of greatly improving the durability of the entire device.  [Twelfth Embodiment] Next, The twelfth embodiment will be described based on Figs. 49 to 53.  In this twelfth embodiment, The characteristics are the characteristics of the electromagnetic actuator M3, The electromagnetic driving device is provided with two large and small ring-shaped driving coils, And the corresponding driven magnet, Its 1220875 is used to replace the electromagnetic driving device 4 in the tenth embodiment. Simultaneously,  In order to replace the aforementioned motion control system 2 0, It is equipped with an operation control system 203 for making the electric SHI ϋ device i43 operate efficiently.  Hereinafter, it will be described in detail.  First ’the twelfth embodiment is, The same as in the case of the tenth embodiment described above is provided with a movable table body portion 15 for precision work,  For those who are arranged on the same surface and can move in any direction; Table maintenance mechanism 2, In order to allow the movable table body 15 to move, While maintaining the movable table body 1 5 And has the function of restoring the original position of the movable table body 5 · Housing body 3, It is used as a main body for supporting the table body maintaining mechanism 2; Electromagnetic drive 1 4 3, Is mounted on the shell body 3 side, In response to an instruction from the outside, a moving force in a specified direction is given to the movable table body 15.  here, The movable table body i 5 series is structured as follows, That is, movable table 1 'and auxiliary table 5 for precision work, There are designated intervals to correspond to this kind of movable table body 1, With parallel, They are arranged on the same central axis. and, As shown in Figures 4 to 9, the table maintenance mechanism 2 is installed on the auxiliary table 5 side. The movable table body 1 is configured to be maintained through the auxiliary table body 5.  "About the electromagnetic drive i 4 3" The electromagnetic drive 1 4 3 is, Two ring driving coils of the same size are installed on the same surface 7 3 1. 7 3 2 replaces the ring-shaped driving coil 7 provided in the tenth embodiment described above. This kind of toroidal drive coil 7 3 丨, The 7 3 2 145 1220875 system is maintained on the fixed plate 8.  In addition, This electromagnetic drive device 1 4 3 is, For each ring drive coil 7 3 1, Each coil side of 7 3 2 7 3 1 a to 7 3 1 d, 7 3 2 a to 73 2 d, Is the same as the case of the aforementioned first embodiment, There are four driven magnets 6A to 6D, 16A to 16D.  and, To make the respective driven magnets 6A to 6D, 16A to 16D are installed on the auxiliary table body 5.  Each ring drive wire of this size two 7 7 1. 7 3 2 series are, In such a twelfth embodiment, In order to use the central portion on the fixed flat plate 8 as the origin point, it is orthogonal to the supposed X-Y plane, The central axes are arranged in common.  among them, The inner ring-shaped driving coil 7 3 1 on the inner side is formed in a quadrilateral shape that is slightly the same as the ring-shaped driving coil 7 in the case of the tenth embodiment described above. Each coil side 731 a, 731b, 731c, Each central part of the 731d is connected to the X axis, The Y-axis cross is mounted on the fixed flat plate 8.  In addition, the respective magnets 6 A to 6 D are individually arranged near, And each coil side 7 3 1 a facing the inner annular driving coil 7 3 1 7 3 1 b, 7 3 1 c, The central part of each line part of 7 3 1 d,  And was pretended, Maintained at the auxiliary table body 5.  In addition, The outer ring-shaped drive coil 7 3 2 arranged outside the inner ring-shaped drive coil 7 3 1 is shown in FIG. 50. To be formed into an octagonal shape.  This kind of outer ring drive coil 7 3 2 is, Let each central part of the four sides of the coil sides 7 3 2 a to 7 3 2 d adjacent to each of the coil sides 7 3 1 a to 7 3] d of the inner loop drive coil 7 be the X axis , The γ axis intersects 146 1220875 and is mounted on the fixed flat plate 8 in a fork shape.  Furthermore, In order to arrange the aforementioned driven magnets 16A to 16D individually, And each coil side 7 3 2a facing the outer annular driving coil 7 3 2, 7 3 2b, 7 3 2c, The central part of each line part of 7 3 2d. Each of these driven magnets 16A to 16D is set in the state of each of the driven magnets 6A to 6D described above. To be dressed, Maintain at Auxiliary Table 5.  Each of these driven magnets 6A to 6D, 16A to 16D are, In this embodiment, It consists of an electromagnet that can be energized and controlled externally.  The four driven magnets 6A to 6D of this embodiment are shown in FIG. 49. In order to use an electromagnet whose end face of the magnetic pole (the object surface of each coil side of the annular drive coil 7) is square, On the assumed X-Y plane above the auxiliary table body 5, To be deployed separately, It is fixed on the X-axis and the Y-axis at positions at equal distances from the center.  In addition, The other four driven magnets 16 A to 16 D also use the same electromagnets, To assume the X-Y plane above the auxiliary table body 5, ® are configured separately, It is fixed on the X-axis and the Y-axis at a position equal to the distance from the center.  The aforementioned fixed plate 8 is shown in FIG. 49, Is installed between the auxiliary table 5 and the movable table 1, Instead, it is maintained on the aforementioned case body 3. here, By loop drive coil 7 3 1. 7 3 2 and fixed plate 8,  Instead, a fixture portion which is a main part of the aforementioned electromagnetic drive device 4 is configured.  and, Toroidal drive coil 7 3〗, 7 3 2 series are, When set to act 14 1220875, In connection with each of the aforementioned driven magnets 6A to 6D, In order to generate electromagnetic driving force between 16A and 16D, The electromagnetic driving force is to drive each of the driven magnets 6A to 6D, 16A to 16D are repulsive driven orthogonally to the sides of each coil.  therefore, When the aforementioned movable table body part 15 is moved to a position which is not orthogonal to each coil edge 7 3 1 a to 7 3 1 d, 7 3 2 a to 7 3 2 d (inclined to each coil edge 7 3 1 a to 7 3 1 d, 7 3 2 a to 7 3 2 d), For at least two driven magnets 6A to 6D, as described later, The combined force of the electromagnetic driving forces from 16A to 16D, Formed so that the transfer of the movable table body 15 can be performed.  Furthermore, For each drive coil 731, 73 2 of the aforementioned driven magnets 6A to 6D, 16A to 16D coil sides 731a to 731d, 732a to 7 3 2 d, In order to make the actuating plate 9 formed of a non-magnetic metal member close to each of the driven magnets 6 A to 6 D, The magnetic pole faces of 16 A to 16 D are arranged. This type of actuation plate 9 is formed to be fixed to the aforementioned annular drive coil 7 3 1. 7 3 2 side (in this embodiment, the case body 3).  ® And, In this twelfth embodiment, After the entire device is set to the active state, Driven in a loop 7 3 1. 7 3 2 The energization is started in the preset energizing direction. In addition, Corresponding to this, In order to energize the specified operating current to part or all of the driven magnets 6A to 6D, as described later, 16A to 16D, Set the magnetic poles (N pole, S pole, No magnetic pole). Simultaneously,  Make the loop drive coil 7 3], Each of 7 3 2 driven magnets 6 A to 1220875 6D, The magnetic force of 16A to 16D is adjusted by power-on control. In order to move the movable table body 15 to a specified direction.  In this situation, Toroidal drive coil 73 1. The power-on party of 7 3 2 is specified in advance by the action control system 2 03 described later. Correspondingly, each of the driven magnets 6A to 6D, 16A to 16D Specially specify the moving direction of the movable table body 15, And in the act of acting, As mentioned before, In order to make the magnitude of the energization current, the control system 20 3 can be used for variable control (including energization stop control) On the coil side 7 3 1 a of the inner annular driving coil 7 3 1, Relative to the driven magnets 6A to 6D, Based on the left-hand law of (Fleming), And for example each driven magnetic | 6B, 6C or 6D output is in the specified direction (orthogonal to 7 3 1 a, 7 3 1 b, 7 3 1 c or 7 3 1 d) pressing electromagnetic force (even if the outer ring drive coil 7 3 2 and the driven magnet 16B, Between 16C or 16D, Similarly, the specified electromagnetic force is matched with each of the driven magnets 6A, 6B, 6C or 6D and lose tl In this case, The electromagnetic driving force output to each of the driven magnets 6 A to 6 D of the inner annular driving coil 7 3 1, And each of the driven magnets 16 A to the electromagnetic driving force of the outer ring-shaped driving coil 7 3 2 is set and controlled so that the output direction thereof is consistent.

此外,藉由預先選擇、組合產生在各個環狀驅 7 3 1、7 3 2 Z各四個Z被驅動磁鐵6 A至6 D、1 6 A 的電磁力之方向,係形成爲可將產生在該各四個之 Η 9 整,藉 向係藉 於此, 方向配 置整體 由動作 )° 至731d鲁 夫來明 | 6 A、 線圈邊 反力)。 1 6 A、 (反力) ti ° 所對應® 輸出至 16D的 經常地 動線圈 至 1 6D 被驅動 1220875 磁鐵6A至6D、16A至16D的電磁力之合力配合於前述可 動桌體部15之移送方向,使該可動桌體部15朝向X-Y 平面上之任意方向而可賦予移動力。 在此情況下,針對有關對於可動桌體部1 5之移送方向 以及其驅動移送力的電磁驅動裝置1 43之作動(對於環狀 驅動線圈731、7 3 2與各個被驅動磁鐵6A至6D、16A至 1 6D的通電驅動),係以第5 2圖至第5 3圖來進行詳述。 在第5 2圖至第5 3圖中,並未顯示藉由朝向驅動線圈之通 電所造成的旋轉驅動。 在此,於前述環狀驅動線圈7 3 1、7 3 2之同一面上之外 側以及內側方面,至少在與該環狀驅動線圈73 1、73 2之 高度(Y軸方向之高度)爲相同高度,並且,在包含前述 被驅動磁鐵6A至6D之動作範圍,亦可充塡裝設有肥粒 鐵等之磁性材料。 •《有關於動作控制系統2 0 3》 在本貫施例中’於則述電fe驅動裝置1 4 3中係被設有 動作控制系統2〇3 (參照第5 1圖),該控制動作系統203 係爲各別性地將內側以及外側之兩個環狀驅動線圈7 3 }、 732以及各八個之各個被驅動磁鐵6A至6D、16A至16D 進行通電控制、限制前述可動桌體部1 5之移動動作。 該種動作控制系統2 0 3係具有下述機能,即:通電方 向設疋機能’爲將相封於則述各個環狀驅動線圈7 3 1、7 3 2 之通電方向設定、維持在指定方向(一方或是另一方); 驅動線圈通電控制機能,爲將朝向該種各個環狀驅動線圈 ]50 1220875 7 3 1、7 3 2之通電電流之大小進行可變設定;磁極個別設 定機能,係因應於該種各個環狀驅動線圈731、73 2之通 電方向來作動,且個別性地設定、維持前述各個被驅動磁 鐵6A至6D、16A至16D的磁極;磁力強度設定機能,爲 因應來自外部之指令,而將該種各個被驅動磁鐵6A至 6D、16A至16D之磁力強度個別地進行可變設定(藉由 設定而獲得將通電電流進行可變);且具備有桌體動作控 制機能,爲將該等諸項機能之輸出一面進行適當的調整、 依面則對於前述可動桌體部1 5進行移送方向以及移送力馨 的調整。In addition, the directions of the electromagnetic forces of the four driven magnets 6 A to 6 D and 1 6 A in each of the ring drives 7 3 1 and 7 3 2 Z are selected and combined to be generated in advance. It is Η 9 in each of the four, and the direction is borrowed from this, and the overall arrangement of the direction is from motion) ° to 731d Lu Fulaiming | 6 A, coil side reaction force). 1 6 A, (reaction force) ti ° Correspondence to the constantly moving coil output to 16D to 1 6D driven 1220875 The combined force of the electromagnetic forces of the magnets 6A to 6D, 16A to 16D is matched with the moving direction of the movable table body 15 By moving the movable table body portion 15 in any direction on the XY plane, a moving force can be imparted. In this case, the operation of the electromagnetic driving device 1 43 regarding the transfer direction of the movable table body 15 and its driving transfer force (for the ring-shaped driving coils 731, 7 3 2 and each of the driven magnets 6A to 6D, 16A to 16D), detailed description is shown in Figure 52 to Figure 53. In Figs. 52 to 53, the rotation drive by the power to the drive coil is not shown. Here, the outer side and the inner side of the same surface of the annular driving coils 7 3 1 and 7 3 2 are at least the same height (the height in the Y-axis direction) as the annular driving coils 73 1 and 73 2. In addition, it can be filled with magnetic materials such as fertile iron in the operating range including the aforementioned driven magnets 6A to 6D. • "About the motion control system 2 0 3" In the present embodiment, 'the control electric drive device 1 4 3 is provided with a motion control system 2 0 3 (refer to FIG. 51), the control action The system 203 is to individually control the inner and outer two ring-shaped driving coils 7 3}, 732 and each of the eight driven magnets 6A to 6D, 16A to 16D to restrict the movable table body. 15 moves. This kind of motion control system 203 has the following functions, namely, the energizing direction setting function is to enclose and enclose the energizing directions of the ring drive coils 7 3 1 and 7 3 2 in the specified direction. (One or the other); The drive coil energization control function is to change the size of the energizing current to the various ring-shaped drive coils] 50 1220875 7 3 1, 7 3 2; Operate in accordance with the energizing direction of each of these annular drive coils 731 and 732, and individually set and maintain the magnetic poles of each of the aforementioned driven magnets 6A to 6D and 16A to 16D; The magnetic strength of each of the driven magnets 6A to 6D and 16A to 16D can be individually set (by setting, the energized current can be changed); and it has a table motion control function. In order to properly adjust the output of these functions, the moving direction of the movable table body 15 and the adjustment of the feeding force are adjusted according to the surface.

並且,該種動作控制系統203係爲,爲了實施前述諸 項機能,而如第5 1圖所示,爲具備有:桌體驅動控制裝 置2 1 3,爲將前述電磁驅動裝置1 43之兩個環狀驅動線圈 73 1、7 3 2以及對應之各個被驅動磁鐵6A至6D、16A至16D 依據指定之控制模式來個別地進行驅動,而將前述可動桌 體部1 5於指定之方向上進行移動控制;程式記憶部2 2 3, 爲記憶有多數之控制程式,該控制程式係有關於一種多數修 之通電控制模式(在本實施例中,係爲C1至C 8之八個 通電控制模式),該模式爲以倂設在該桌體驅動控制裝置 2 1 3之前述可動桌體1之移動方向以及其動作量等所特別 指定;資料記憶部23,爲記憶有在該等各個控制程式之 實施之際所使用的指定之資料等。 此外,在桌體驅動控制裝置2 1 3中,係倂設有動作指 令輸入部24,係下達對於環狀驅動線圈7 3 1、7 3 2以及各 1220875 個被驅動磁鐵6 A至6 D、1 6 A至1 6 D的指定之控制動作之 指令。再者,於此種桌體驅動控制裝置2 1 3之中,前述可 動桌體部1 5之移動中以及移動後的位置資訊係形成爲送 入、且以藉由前述位置檢測感測機構2 5所檢測出之後述 高感度狀地進行演算處理。 並且,前述動作控制系統203所具有之各種的控制機 能’係形成爲總合性地被包含在前述程式記憶部2 2 3之多 數之通電控制模式C 1至C 8中,以操作員經由動作指令 輸入部24所輸入之指令,基於其所選擇之控制模式C 1至馨 C 8中之任何模式來進行動作、實施^ 將其更加詳細敘述。 具體而言,桌體驅動控制裝置213係爲具備有:主要 控制部2 1 3 A,爲基於來自動作指令輸入部24之指令而進 行作動,由程式記憶部223選擇指定之控制模式,在前述 各個環狀驅動線圈7 3 1、7 3 2以及各四個之被驅動磁鐵6 A 至6D、16A至16D中爲進行包含有零之指定之直流電流 的通電控制;線圈選擇驅動控制部2 1 3 B,爲依據在該主鲁 要控制部2 1 3 A中所選擇設定之指定的通電控制模式(C 1 至C 8 ),以同時或是個別地驅動控制環狀驅動線圈7 3 1、7 3 2 以及各個被驅動磁鐵6 A至6 D、1 6 A至1 6 D。 該種主要控制部2 1 3 A係亦同時兼具有下述之機能,該 機能係爲,基於來自檢測桌體位置之位置檢測感測機構2 5 的輸入資訊,而計算前述可動桌體部1 5之位置、或是進 行其他各種的演算。 1220875 在此,符號4G所示係爲在前述電磁驅動裝置1 43之環 狀驅動線圈731、732以及八個之被驅動磁鐵6A至6D、16A 至1 6 D中通電有指定之電流的電源電路部。 再者,前述桌體驅動控制裝置2 1 3係具備有:位置偏 移演算機能,爲輸入來自前述位置檢測感測機構25之資 訊而進行指定的演算,據此,預先算出與以動作指令輸入 部24所設定之移動端的基準位置資訊間之偏移;桌體位 置補正機能,爲基於該已算出之位置偏移資訊,驅動電磁 驅動裝置1 43,而將該可動桌體部1 5移送控制至預先設鲁 定之移動端的基準位置上。 因此,在本實施例中,當可動桌體部15之移動方向由 於干擾等而偏移的情況下,係一面修正該偏移而形成爲將 可動桌體部1 5移送控制至指定的方向,藉此,該可動桌 體部1 5係形成爲迅速且高精度的移送至預先設定的目標 位置上。在此情況下,位置偏移之修正係藉由調整通電驅 動中之各個被驅動磁鐵6A至6D、或是16A至16D之通 電電流來實施。 籲 《程式記憶部》 前述桌體驅動控制裝置2 1 3係爲,依據在程式記憶部223 中所預先記憶的指定之控制程式(指定之控制模式),而 將前述電磁驅動裝置1 4 3之各個環狀驅動線圈7 3 1、7 3 2 以及八個之各個被驅動磁鐵6 A至6 D、1 6 A至1 6 D構成爲 以具有指定之關聯性而個別的進行驅動控制。 亦即,在有關本實施例之程式記憶部2 2 3中,爲記憶 153 1220875 有:驅動線圈用控制程式,係特別指定對於前述各個環狀 驅動線圈7 3 1、7 3 2之通電方向,而將通電電流之大小進 行可變設定;多數之磁鐵用控制程式,爲在對於各個環狀 驅動線圈7 3 1、7 3 2而使通電方向被特別指定的情況下作 用該機能,並且與其對應的將四個之各個被驅動磁鐵(電 磁鐵)6 A至6 D、1 6 A至1 6 D之通電方向進行個別地特別 指定,而在特別指定磁極之N極或是S極的同時,可個 別性地將包含通電停止之通電電流的大小進行可變設定。 同時,前述各個控制程式之動作時序係被整理、記憶在八· 組之通電控制模式C 1至C 8 (參照第5 1圖、第5 2圖)。 在此,有關於第十二實施例中之八組的通電控制模式C i 至C8,爲基於第52圖至第53圖進行說明。 在弟52圖中’爲朝向X軸之正向或負向、或是朝向γ 軸之正向或負向,表示分別移送可動桌體部1 5之情況下 的各個通電控制模式C 1至C4之一例(已圖表化之物)。 在該第52圖中,於各個通電控制模式C丨至C4方面, 將對於內側環狀驅動線圈7 3 1之直流電流之通電方向如箭鲁 頭A所示,在本實施例中係被設定成右旋狀。此外,對 於外側環狀驅動線圈7 3 2之直流電流之通電方向如箭頭b 所示,在本實施例中係被設定成左右旋狀。 〈控制模式C 1〉 此種控制模式C ]係表示用以將可動桌體]移送至X軸 之正的方向之通電控制模式之一例(參照第5 2圖)。 在該控制模式C 1中,爲使γ軸上之被驅動磁鐵6 B、6 D ' 1220875 16B、16D被控制成停止通電。 並且,有關於內側環狀驅動線圈7 3 1,爲使對向於X 軸上之被驅動磁鐵6 A之前述線圈邊73 1 a的端面部設定爲 N極,且使對向於X軸上之被驅動磁鐵6C之前述線圈邊 7 3 1 c的端面部設定爲S極。 同樣的,有關於外側環狀驅動線圈732,爲使對向於X 軸上之被驅動磁鐵16A之前述線圈邊73 2a的端面部設定 爲S極,且使對向於X軸上之被驅動磁鐵1 6 C之前述線 圈邊732c的端面部設定爲N極。 因此,在驅動線圏7 3 1、7 3 3之線圈邊7 3 1 a、7 3 1 c、以 及732a、732c部份中,爲在該線圈邊731a、731c、以及 7 3 2 a、7 3 2 c內產生於點線之箭頭所示方向的電磁驅動力, 同時,以該反力(爲了使環狀驅動線圈7 3 1、7 3 2被固定 所產生)而使得被驅動磁鐵6 A、6 C以及1 6 A、1 6 C於實 線之箭頭所示方向(圖中之右方)被推斥驅動,藉此,使 可動桌體部15被移送至X軸上之正向。 〈控制模式C2 &gt; 在該種控制模式C2係表示用以將可動桌體1移送至X 軸之負的方向之通電控制模式之一例(參照第5 2圖)。 在此種控制模式C2中,將X軸上之被驅動磁鐵6A、6C 以及16A、16C之磁極的設定在相較於前述控制模式C1 的情況係以成相逆之點爲不同處。其他係與前述控制模式 C 1之情況形成相同。 因此,在驅動線圈7 3 1、7 3 3之線圈邊7 3 1 a、7 3 1 C以 1220875 及73 2a、7 3 2c部份中,藉由與前述模式Cl之情 原理而使逆向之電磁驅動力產生在以點線之箭頭 向,其反力爲使該驅動磁鐵6 A、6 C以及1 6 A、 被推斥驅動在實線之箭頭所示方向(圖中之左方 爲使可動桌體15移送至X軸上之負向。 〈控制模式C3〉 在該種控制模式C3係表示用以將可動桌體1 軸之正的方向之通電控制模式之一例(參照第5 : 在該控制模式C3中,爲使X軸上之被驅動磁鐵 16A、16C被控制成停止通電。 並且,有關於內側環狀驅動線圈73 1,係使 軸上之被驅動磁鐵6B之前述線圈邊73 1 c的端面 N極,且使對向於Y軸上之被驅動磁鐵6D之前 7 3 1 d的端面部設定爲S極。 同樣的,有關於外側環狀驅動線圈7 3 2,爲使 軸上之被驅動磁鐵16B之前述線圈邊73 2b的端 爲S極,且使對向於Y軸上之被驅動磁鐵1 6D 圏邊7 3 2 d的端面部設定爲N極。 因此,在驅動線圈7 3 1、7 3 2之各個線圈邊7 3 1 以及7 3 2b、7 3 2 d部份中,爲在該線圈邊7 3 1 b、 及7 3 2b、7 3 2d內產生於點線之箭頭所示方向的 力,同時,以該反力(爲了使環狀驅動線圈73 固定所產生)而使得被驅動磁鐵6 B、6 D以及 於實線之箭頭所示方向(圖中之上方)被推斥驅置 況相同的 所示之方 1 6 C分別 ),藉此, 移送至Y 2圖)。 6A、6C、 對向於γ 部設疋爲 述線圈邊 對向於Y 面部設定 之前述線 b、731d、 7 3 1 d、以 電磁驅動 1 ' 732 被 16B 、 16D 坊,藉此, ]^6 1220875 使可動桌體部15被移送至γ軸上之正向。 〈控制模式C4〉 在該種控制模式C4係表示用以將可動桌體1移送至γ 軸之負的方向之通電控制模式之一例(參照第5 2圖)。 在此種控制模式C 4中,將Υ軸上之被驅動磁鐵6 Β、6 D 以及16Β、16D的磁極之設定在相較於前述控制模式C3 的情況係以成相逆之點爲不同處。其他係與前述控制模式 C3之情況形成相同。 因此,在各個環狀驅動線圏7 3 1、7 3 2之線圏邊7 3 1 b、 73 Id、以及7 3 2b、7 3 2d部份中,藉由與前述控制模式C3 之情況相同的原理爲產生有電磁驅動力,以該反力而使得 被驅動磁鐵6 B、6 D以及1 6 B、1 6 D於實線之箭頭所示方 向(圖中之下方)被推斥驅動,藉此,使可動桌體部1 5 被移送至Y軸上之負向。 接著,說明控制模式C 5至C 8之例。 接著,在第5 3圖中所示係爲說明將可動桌體部1 5分 別朝向X-Y平面座標上之四個象限方向之情況的各個通 電控制模式C5至C8之一例(已圖表化之物)。 〈控制模式C5〉 在此種第十二實施例中之控制模式C 5係爲表示將控制 模式之一例,係用以將可動桌體1朝向X-Y平面座標上 之第一象限方向(參照第5 3圖)。 在該控制模式C 5中,爲同時地使四個之各個被驅動磁 鐵6A至6D以及]6B、16D被通電控制,其磁極N、S係 1220875 分別被設定成使對向於內側環狀驅動線圈7 3 1之線圈邊 7 3 1 a、7 3 1 b之處的端面部之磁極設定爲N極,同樣的, 爲使對向於內側環狀驅動線圈7 3 1之線圈邊7 3 1 c、7 3 1 d 之處的端面部之磁極設定爲s極。 同樣的,使對向於外側環狀驅動線圈7 3 2之線圈邊 7 3 2 a、7 3 2b之處的端面部之磁極設定爲S極,相同的爲 使對向於外側環狀驅動線圈7 3 2之線圈邊732c、73 2d之 處的端面部之磁極設定爲N極。 因此,在各個環狀驅動線圈7 3 1、7 3 2之線圈邊7 3 1 a _ 至73 Id、732a至7 3 2d部分方面,爲形成與同時作動前述 控制模式C1與C3爲同等之狀態,其合力係如同第53圖 之控制模式C5之欄所示,係被朝向X-Y座標上之第一象 限的方向。藉此,使可動桌體部1 5被朝向於X-Y平面座 標上之第一象限的方向而移送。 在此,對於X軸而朝向第一象限方向之移送角度Θ (與 X軸間之角度Θ )係爲,例如藉由將各個被驅動磁鐵6B、 6D以及16B、16D之通電電流的大小進行可變控制,使鲁 作用在各個被驅動磁鐵6A至6D以及16B、16D之電磁驅 動力進彳了變化,藉此,係可自由地在第一象限方向之任意 方向上進行可變設定。 〈控制模式C6〉In addition, this kind of motion control system 203 is to implement the aforementioned functions, and as shown in FIG. 51, it is provided with: a table driving control device 2 1 3, and two of the aforementioned electromagnetic driving devices 1 43 Each ring-shaped driving coil 73 1, 7 3 2 and the corresponding driven magnets 6A to 6D, 16A to 16D are individually driven according to a specified control mode, and the aforementioned movable table body portion 15 is in a specified direction. Carry out movement control; the program memory section 2 2 3 is for memorizing the majority of control programs, and the control program is related to a majority of power-on control modes (in this embodiment, it is eight power-on control modes of C1 to C 8 ), The mode is specially designated by the moving direction of the aforementioned movable table 1 and the amount of movement of the movable table 1 installed in the driving control device 2 1 3 of the table; the data storage section 23 is for storing the control programs Designated materials used during implementation. In addition, the table body driving control device 2 1 3 is provided with an operation command input unit 24, which issues ring driving coils 7 3 1, 7 3 2 and 1220875 driven magnets 6 A to 6 D, 1 6 A to 1 6 D designated control action command. Furthermore, in such a table body driving control device 2 1 3, the position information during and after the movement of the movable table body portion 15 is formed to be fed in, and the position detection and sensing mechanism 2 is passed through After the detection, the calculation processing is performed with high sensitivity as described later. In addition, the various control functions of the motion control system 203 are formed so as to be collectively included in the power-on control modes C 1 to C 8 of most of the program memory sections 2 2 3, and the operation is performed by the operator via the motion. The command input by the command input section 24 is based on any one of the selected control modes C 1 to Xin C 8 to operate and implement. This will be described in more detail. Specifically, the table drive control device 213 is provided with a main control unit 2 1 3 A, which operates based on a command from the action command input unit 24, and a designated control mode is selected by the program memory unit 223. Each of the ring-shaped driving coils 7 3 1, 7 3 2 and each of the four driven magnets 6 A to 6D, 16A to 16D performs energization control including a designated DC current including zero; the coil selection driving control section 2 1 3 B, according to the specified energization control mode (C 1 to C 8) selected and set in the main control unit 2 1 3 A to drive and control the ring-shaped driving coil 7 3 1 or 7 3 2 and each of the driven magnets 6 A to 6 D, 1 6 A to 16 D. The main control unit 2 1 3 A also has the following functions. The function is to calculate the movable table body based on the input information from the position detection and sensing mechanism 2 5 that detects the position of the table body. 1 5 position, or perform various other calculations. 1220875 Here, the symbol 4G is a power supply circuit having a specified current supplied to the ring-shaped driving coils 731 and 732 of the electromagnetic driving device 1 43 and the eight driven magnets 6A to 6D and 16A to 16D. unit. In addition, the above-mentioned table driving control device 2 1 3 is provided with a position shift calculation function for performing a specified calculation for inputting information from the position detection and sensing mechanism 25, and based on this, it calculates in advance and inputs it with an operation instruction. The offset between the reference position information of the mobile terminal set by the unit 24; the position correction function of the table body, based on the calculated position offset information, drives the electromagnetic drive device 43, and transfers the movable table body portion 15 To the reference position of the mobile terminal set in advance. Therefore, in this embodiment, when the moving direction of the movable table body portion 15 is shifted due to interference or the like, the offset is corrected to form the movable table body portion 15 to a specified direction while correcting the shift. Thereby, the movable table body 15 is formed to be quickly and accurately transferred to a preset target position. In this case, the correction of the positional deviation is performed by adjusting the energization current of each of the driven magnets 6A to 6D or 16A to 16D in the energized driving. "Program memory unit" The aforementioned table body drive control device 2 1 3 is based on the specified control program (designated control mode) previously stored in the program memory unit 223, and the aforementioned electromagnetic drive device 1 4 3 Each of the ring-shaped driving coils 7 3 1, 7 3 2 and each of the eight driven magnets 6 A to 6 D and 16 A to 16 D is configured to individually perform drive control with a specified correlation. That is, in the program memory unit 2 2 3 of this embodiment, the memory 153 1220875 includes: a control program for a driving coil, which specifically specifies the energizing direction of each of the aforementioned annular driving coils 7 3 1 and 7 3 2. The magnitude of the energized current can be set variably; most control programs for magnets operate this function when the energized direction is specified for each of the ring-shaped drive coils 7 3 1 and 7 3 2 and correspond to it. The directions of energization of each of the four driven magnets (electromagnets) 6 A to 6 D and 16 A to 16 D are individually specified, and while the N or S poles of the magnetic poles are specified, The magnitude of the energizing current including the stop of energization can be individually set. At the same time, the operation sequence of each of the aforementioned control programs is organized and memorized in the eight-group power-on control modes C 1 to C 8 (refer to Fig. 51 and Fig. 52). Here, the eight groups of power-on control modes C i to C8 in the twelfth embodiment will be described based on FIGS. 52 to 53. In the figure 52, 'is positive or negative toward the X-axis or positive or negative toward the γ-axis, which indicates each of the energization control modes C 1 to C4 when the movable table body 15 is moved respectively. An example (a graphed thing). In FIG. 52, in each of the energization control modes C 丨 to C4, the energization direction of the DC current to the inner ring-shaped drive coil 7 31 is as shown by arrow head A, which is set in this embodiment. Right-handed. The direction of energization of the DC current to the outer ring-shaped drive coil 7 3 2 is indicated by arrow b, and in this embodiment, it is set to rotate left and right. <Control mode C 1> This control mode C] is an example of the energization control mode used to move the movable table body to the positive direction of the X axis (refer to Figure 52). In this control mode C1, the driven magnets 6 B and 6 D ′ 1220875 16B and 16D on the γ axis are controlled so as to stop energization. In addition, with regard to the inner annular driving coil 7 3 1, the end portion of the coil side 73 1 a facing the driven magnet 6 A on the X axis is set to N pole, and facing the X axis. The end face of the coil side 7 3 1 c of the driven magnet 6C is set to an S pole. Similarly, regarding the outer annular driving coil 732, in order to set the end face portion of the coil side 73 2a facing the driven magnet 16A on the X-axis to the S pole, and to drive the driving side facing the X-axis The end face of the coil side 732c of the magnet 16C is set to the N pole. Therefore, among the coil sides 7 3 1 a, 7 3 1 c, and 732a, 732c of the driving coils 7 3 1, 7 3 3, the coil sides 731a, 731c, and 7 3 2 a, 7 The electromagnetic driving force in the direction indicated by the arrow of the dotted line is generated in 3 2 c, and at the same time, the driven magnet 6 A is caused by the reaction force (generated to fix the ring-shaped driving coils 7 3 1 and 7 3 2). , 6 C, and 16 A, 1 6 C are repulsively driven in the direction indicated by the solid arrow (right side in the figure), whereby the movable table body 15 is moved to the positive direction on the X axis. <Control mode C2 &gt; In this control mode C2, an example of the energization control mode for moving the movable table 1 to the negative direction of the X axis is shown (see FIG. 52). In this control mode C2, the setting of the magnetic poles of the driven magnets 6A, 6C and 16A, 16C on the X axis is different from that in the case of the aforementioned control mode C1 by the point of inversion. Others are the same as those in the aforementioned control mode C 1. Therefore, in the coil sides 7 3 1 a, 7 3 1 C of the driving coils 7 3 1 and 7 3 3, the parts of 1220875 and 73 2a and 7 3 2c are reversed by the principle of the aforementioned mode Cl. The electromagnetic driving force is generated in the direction of the arrow with a dotted line, and the reaction force is to drive the driving magnets 6 A, 6 C, and 16 A. It is repelled and driven in the direction shown by the solid arrow (the left side in the figure is the The movable table body 15 is moved to the negative direction on the X axis. <Control mode C3> In this control mode C3 is an example of the energization control mode used to move the positive direction of the movable table body 1 axis (refer to Section 5: In this control mode C3, the drive magnets 16A and 16C on the X axis are controlled to stop the energization. The inner ring-shaped drive coil 73 1 is the coil side 73 of the drive magnet 6B on the axis. The end face of 1 c is the N pole, and the end face 7 3 1 d facing the driven magnet 6D on the Y axis is set to the S pole. Similarly, the outer annular drive coil 7 3 2 is used to make the shaft The end of the aforementioned coil side 73 2b of the driven magnet 16B is the S pole, and it is opposed to the driven magnet 1 6D on the Y axis 7 side 2 The end face of d is set to the N pole. Therefore, in each of the coil sides 7 3 1 and 7 3 2b and 7 3 2 d of the drive coil 7 3 1 and 7 3 2, the coil side 7 3 1 b , And 7 3 2b, 7 3 2d, the force generated in the direction indicated by the dotted line arrow, and at the same time, the driven magnet 6 B, 6 D is caused by the reaction force (generated to fix the ring-shaped driving coil 73). And the direction shown by the solid line arrow (upper in the figure) is repelled and the same shown (1 6 C, respectively), thereby moving to the Y 2 figure). 6A, 6C, the opposite line γ is set to the coil side facing the aforementioned line b, 731d, 7 3 1 d set to the Y face, electromagnetic drive 1 '732 is 16B, 16D, thereby,] ^ 6 1220875 Moves the movable table body 15 to the positive direction on the γ axis. <Control Mode C4> This control mode C4 is an example of the energization control mode for moving the movable table 1 to the negative direction of the γ axis (see FIG. 52). In this control mode C 4, the magnetic poles of the driven magnets 6 Β, 6 D and 16B, 16D on the y-axis are set to be different from those in the control mode C3 by the point of inversion. . The other systems are the same as those in the aforementioned control mode C3. Therefore, in each of the loop driving lines 7 3 1 and 7 3 2, the edges 7 3 1 b, 73 Id, and 7 3 2b, 7 3 2d are the same as those in the aforementioned control mode C3. The principle is that an electromagnetic driving force is generated, and the reaction force causes the driven magnets 6 B, 6 D and 16 B, 16 D to be repelled and driven in the direction indicated by the solid arrow (lower in the figure). Thereby, the movable table body 15 is moved to the negative direction on the Y axis. Next, examples of the control modes C 5 to C 8 will be described. Next, Fig. 53 shows an example of each of the energization control modes C5 to C8 (characterized diagrams) illustrating the case where the movable table body 15 is oriented in the four quadrant directions on the XY plane coordinates. . <Control mode C5> The control mode C 5 in this twelfth embodiment is an example of a control mode, and is used to move the movable table body 1 in the first quadrant direction on the XY plane coordinates (refer to Section 5). 3 picture). In this control mode C5, in order to simultaneously control the four driven magnets 6A to 6D and 6B and 16D, the magnetic poles N and S of the system 1220875 are set to drive the rings inwardly. The magnetic poles on the end faces of the coil 7 3 1 at the coil sides 7 3 1 a, 7 3 1 b are set to N poles. Similarly, the coil sides 7 3 1 are driven so as to face the inner annular driving coil 7 3 1. The magnetic pole on the end face at c, 7 3 1 d is set to s pole. Similarly, the magnetic poles at the end faces facing the coil sides 7 3 2 a and 7 3 2b of the outer annular drive coil 7 3 2 are set to S poles, and the same is the opposite to the outer annular drive coil. The magnetic poles on the end faces of the coil sides 732c and 73 2d of 7 3 2 are set to N poles. Therefore, the coil sides 7 3 1 a and 7 3 2 of each of the loop drive coils 7 3 1 a _ to 73 Id and 732a to 7 3 2d have the same state as the control modes C1 and C3 when they are operated simultaneously. The resulting force is as shown in the column of control mode C5 in Fig. 53 and is directed in the direction of the first quadrant on the XY coordinate. Thereby, the movable table body 15 is moved toward the first quadrant on the X-Y plane coordinates. Here, the transfer angle Θ (the angle Θ with the X axis) toward the first quadrant direction with respect to the X axis is, for example, the magnitude of the energization current of each of the driven magnets 6B, 6D, 16B, and 16D. The variable control changes the electromagnetic driving force of Lu acting on each of the driven magnets 6A to 6D and 16B and 16D, whereby the variable setting can be freely set in any direction of the first quadrant direction. <Control mode C6>

此種控制模式C6係爲,表示用以將可動桌體1朝向X-Y 平面座標上之第三象限方向(與第·一象限方向爲相反的方 向)進行移送的通電控制模式之·-例(參照第5 3圖)。 1220875 在該控制模式C 6中,爲使八個之被驅動磁鐵6 A至6 D、 1 6A至1 6D同時地被通電控制,其磁極n、S係全數被設 定成與前述控制模式C 5之情況爲相同狀。 因此,各個環狀驅動線圈731、7 3 2之線圈邊731a至 731d、732a至732d部分方面,係同時地作動與前述控制 模式C2、C4之情況爲相等之狀態,其合力係如第5 3圖 之控制模式C6之欄所示,爲被朝向至第三象限之方向。 藉此,爲使前述可動桌體部1 5朝向X-Y平面座標上之第 三象限的方向來移送。 在此,對於X軸而朝向第三象限方向之移送角度0係 爲,例如,藉由個別性地將各個被驅動磁鐵6 A至6D、1 6 A 至1 6D之通電電流的大小進行可變控制,而可自由地在 任意方向上進行可變設定。 〈控制模式C7〉 此種控制模式C7係爲,表示用以將可動桌體1朝向X-Y 平面座標上之第二象限方向進行移送的通電控制模式之一 例(參照第5 3圖)。 在該控制模式C7中,爲使八個之被驅動磁鐵6A至6D、 1 6 A至1 6 D同時地被通電控制,其磁極N、S係分別被設 定如下,即,將對向於內側環狀驅動線圈7 3 1之線圈邊 7 3 1 b、7 3 1 c之處的端面部之磁極設定爲N極,同樣的, 將對向於內側環狀驅動線圈731之線圈邊73 ld、73 la之 處的端面部之磁極設定爲S極。 同樣的,分別爲使對向於外側環狀驅動線圈7 3 2之線 1220875 圈邊732b、732c之處的端面部之磁極設定爲S極,相同 的爲將對向於外側環狀驅動線圈7 3 2之線圈邊73 2d、73 2 a 之處的端面部之磁極設定爲N極。 因此,在各個環狀驅動線圈7 3 1、7 3 2之線圈邊7 3 1 a 至73 Id、73 2a至7 3 2d部分方面,爲形成與同時作動前述 控制模式C2與C3爲同等之狀態,其合力係如同第5 3圖 之控制模式C7之欄所示,係被朝向X-Y座標上之第二象 限的方向。藉此,使可動桌體部1 5被朝向於X-Y平面座 標上之第二象限的方向而移送。 此外,對於X軸而朝向第二象限方向之移送角度0係 爲,藉由將各個被驅動磁鐵6 B、6 D以及1 6 B、1 6 D之通 電電流的大小進行可變控制,使作用在各個被驅動磁鐵6 A 至6D以及16B、16D之電磁驅動力進行變化,藉此,係 可自由地在任意方向上進行可變設定。 〈控制模式C 8〉 此種控制模式C8係爲,表示用以將可動桌體1朝向X-Y 平面座標上之第四象限方向(與第二象限方向爲相反的方 向)進行移送的通電控制模式之一例(參照第5 3圖)。 在該控制模式C8中,爲使八個之被驅動磁鐵6A至6D、 1 6 A至1 6D同時地被通電控制,其磁極N、S係分別被設 定成與前述控制模式C 7情況爲相逆狀。 因此,各個環狀驅動線圈7 3 1、7 3 2之線圈邊7 3 1 a至 7 3 1 d、7 3 2 a至7 3 2 d部分方面,係同時地作動與前述控制 模式C 1、CM之情況爲相等之狀態,其合力係如第5 3圖 160 1220875 之控制模式C 8之欄所示’爲被朝向至第四象限之方向。 藉此,爲使前述可動桌體部15朝向X- γ平面座標上之第 四象限的方向來移送。 在此,對於X軸而朝向第四象限方向之移送角度θ係 爲,例如,藉由個別性地將各個被驅動磁鐵6 Α至6 D、1 6 A 至1 6 D之通電電流的大小進行可變控制,而可自由地在 任意方向上進行可變設定。 〈環狀驅動線圈7 3 1、7 3 2之其他例〉 在此種第十二實施例中,係將與前述第十實施例中之 揭示在第43 A圖至第43D圖之環狀驅動線圈71至74爲 技術上相同之物,依據第5 0圖之實施例之構造而在同一 面上分別設置大小二重構造、將其配合而分別裝設多數之 被驅動磁鐵。並且,相對於此,係建構前述各個構成要素, 藉此而可獲得一種具備有與該第十二實施例之構造爲同等 機能之環狀驅動線圈的電磁驅動裝置。 此外,此種第十二實施例係被構成如上,因此,除了 具有與前述第十實施例之情況爲相等之機能、具有相等之 作用效果之外,更裝設有相較於第十實施例之情況爲分別 裝設兩倍數目之環狀驅動線圈、以及被驅動磁鐵,因此, 係可增大電磁驅動裝置之輸出,此外,由於驅動磁鐵數目 較多,因此在進行可動桌體部之移送控制之際,相較於前 述第十實施例的情況,爲具有可更加迅速且高精度地實施 可動桌體部之移動動作的優|占。 此外’在在此種第十二實施例中,係由於將前述多數 1220875 之被驅動磁鐵的裝設處配設在與各個驅動線圈之χ軸以 及Y軸交叉處,因此,在實際上係容易地進行移送方向 之特別指定(演算處理),因此,在整體性方面爲使得該 被驅動磁鐵之驅動控制單純化。從而,既使是對於可動桌 體部之移送方向的變化,亦可與其進行迅速地對應,同時, 即使在可動桌體部之移送控制等(例如,其方向之切換控 制、或是產生位置偏移之情況的補正)之際,爲具有可與 其進行迅速地對應的優點。 〔第十三實施例〕 _ 其次,基於第54圖至第58圖說明第十三實施例。 在該第十三實施例中,所具備之特徵係爲已裝設有其 他之電磁驅動裝置1 44之特點,該電磁驅動裝置1 44係具 備有四個之方形驅動線圈,其係用以取代在前述第十一實 施例中之電磁驅動裝置1 42。同時,爲具有取代前述動作 控制系統2 0 2,而裝設有用以使該電磁驅動裝置1 44效率 爲佳地進行動之動作控制系統204之點的特徵。 以下,將其進行詳細之說明。 φ 首先,該種第十三實施例係爲,與前述第十實施例之 情況相同的,爲具備有:精密作業用之可動桌體部15, 爲在同一面上被配設成可於任意之方向進行移動者;桌體 維持機構2,爲容許該種可動桌體部1 5之移動,同時維 持該可動桌體部1 5,並且具備有對於該可動桌體部1 5之 恢復原始位置之機能;外殼本體3,係作爲支撐該桌體維 持機構2的本體部;電磁驅動裝置〗44,係被裝設在該外 1220875 殼本體3側,且因應於來自外部的指令而將朝向指定方向 之移動力賦予至可動桌體部1 5。 在此’可動桌體部1 5係構成如下,即:精密作業用之 可動桌體1 ;以及輔助桌體5,爲對應於該種可動桌體i 而隔有指定間隔,以平行、且在同一中心軸上呈一體狀的 配置。並且’如第54圖所示,桌體維持機構2係被裝設 在輔助桌體5側,係構成爲經由該輔助桌體5而維持前述 可動桌體1。 《有關於電磁驅動裝置1 44》 電磁驅動裝置1 44係爲,使其主要部被維持在外殼本 體3側,而具備有下述機能,即,因應來自外部之指令, 將指定之移動力(驅動力)沿著該可動桌體部1 5之移送 方向而賦予至前述可動桌體部1 5。此種電磁驅動裝置1 4 4 係被配設在前述可動桌體1與輔助桌體5之間。 具體而言,該種電磁驅動裝置1 4 4係具備有:形成爲 四角形之四個之方形驅動線圈741、742、743、744 ;各 個四個之被驅動磁鐵6 A、6 B、6 C、6 D、以及1 6 A、1 6 B、 16C、16D,係個別地對應於位在與該各個方形驅動線圈741 至744之X軸或Y軸交叉之處的內側線圈邊741a至744a ’ 以及個別地對應於外側線圈邊74 1 b至744b所配置且被裝 設在前述輔助桌體5上;固定平板8,爲將前述各個方形 驅動線圈7 4 1至7 4 4維持在指定位置上。 前述各個方形驅動線圈7 4 1至7 4 4係爲,使對象之兩 個邊爲各個地配設在X軸上、γ軸上,用以將固定平板8 63 1220875 上之中央部作爲原點而正交於所假定之Χ-Υ平面上之x 軸或是Υ軸。 此外,合計八個之各個被驅動磁鐵6Α至6D、16Α至16D 係爲,以可由外部進行通電控制的電磁鐵所構成,對應於 前述各個方形驅動線圈741至744的內側線圈邊741a至 7 44a以及外側線圈邊741b至744b,而分別個別狀的配設 在X軸上以及Y軸上。 固定平板8係如第54圖所示,係配維持在配設於前述 輔助桌體5之可動桌體1側的前述外殼本體3上。此外, 藉由前述方形之各個驅動線圈741至744與固定平板8, 而構成作爲前述電磁驅動裝置1 44之主要部的固定件部 分。 並且,各個驅動線圈741至744係爲,當在設定爲作 動狀態後,在與前述各個被驅動磁鐵6A至6D、16A至16D 之間爲產生有電磁驅動力,該電磁驅動力係爲在將該各個 被驅動磁鐵6A至6D、16A至16D正交於各個線圈邊741a 至7 44a、74 1b至744b之方向上進行推斥驅動。在此情況 下,各個被驅動磁鐵6A至6D、16A至16D之移動方向的 中心軸線係被設定成已通過前述X-Y平面上之中心點。 此外,在未正交於各個線圈邊741a至7 44a、741b至74# 之方向(傾斜於各個線圈邊741a至744a、741b至744b 之方向)上移動前述可動桌體部1 5的情況下,爲如後述, 具有相對於施加於至少具有對於兩個以上之方形驅動線圈 7 4 1、7 4 2、7 4 3或7 4 4之各個被驅動磁鐵的電磁驅動力之 164 1220875 合力,形成爲可實施該可動桌體部15之移送。 再者,於面對於各個驅動線圈7 4 1至7 4 4之前述 動磁鐵6A至6D、16A至16D的線圈邊741a至744a、 至7 4 4 b部分上,爲使由非磁性金屬構件所形成之致 平板9靠近(以幾乎爲抵接之狀態)於各個被驅動磁| 至6D、16A至16D之磁極面進行配設。該種致動用 9係在本實施例中爲使用一片狀之物,其周圍之局部 全部爲被固著在前述外殻本體3上。 構成電磁驅動裝置1 44之局部的八個之被驅動磁翻 至6D、16A至16D係爲,在本實施例中係如第55圖所 磁極之端面(各個驅動線圈7 4 1至7 4 4之各個線圈邊 至744a、741b至74 4b間之對向面)爲以四角形之電 所形成,在被假定在輔助桌體5之上面的X-Y平面 爲分別被配設、固著在由中心部爲成等距離之位置 軸上以及Y軸上。 並且’在本實施例中,例如爲使指定之作動電流 個之被驅動磁鐵6A至6D、16A至16D之局部或是全 行通電’而使各個被驅動磁鐵6 A至6 D、1 6 A至1 6 D 定成作動狀態,之後、或是同時的依據後述之指定的 模式,開始各個驅動線圈74 1至744被設定在作動狀 之通電。並且,包含各個驅動線圈741至744之各個 動磁鐵6 A至6 D、1 6 A至1 6 D的磁性力大小爲藉由通 制所調整’藉此,爲使前述可動桌體部]5移送至指 方向。 被驅 741b 動用 戴6A 平板 或是 I 6A 示, 74 1a 磁鐵 上, 的 X 在八 部進 被設 控制 態下 被驅 電控 定的 165 1220875This control mode C6 is an example of the energization control mode used to move the movable table 1 toward the third quadrant direction (the direction opposite to the first quadrant direction) on the XY plane coordinates (see example) (see Figure 5 3). 1220875 In this control mode C 6, in order to make the eight driven magnets 6 A to 6 D and 16 A to 16 D simultaneously controlled by energization, the magnetic poles n and S are all set to be the same as those of the aforementioned control mode C 5 The situation is the same. Therefore, the coil sides 731a to 731d and 732a to 732d of each of the annular driving coils 731 and 7 3 2 are simultaneously operated in a state equal to that in the aforementioned control modes C2 and C4, and the resultant force is as described in Section 5 3 The column of control mode C6 in the figure is directed to the third quadrant. Thereby, the movable table body 15 is moved in the direction of the third quadrant on the X-Y plane coordinates. Here, the transfer angle 0 of the X-axis toward the third quadrant direction is, for example, by individually varying the magnitude of the energized current of each of the driven magnets 6 A to 6D and 16 A to 16D. Control, and can be freely set in any direction. <Control mode C7> This control mode C7 is an example of the energization control mode used to move the movable table body 1 in the second quadrant direction on the X-Y plane coordinates (refer to Figure 53). In this control mode C7, in order for the eight driven magnets 6A to 6D and 16A to 16D to be simultaneously energized and controlled, the magnetic poles N and S are respectively set as follows, that is, they will face the inside. The magnetic poles of the end faces at the coil sides 7 3 1 b and 7 3 1 c of the loop drive coil 7 3 1 are set to N poles. Similarly, the coil sides 73 ld facing the inner loop drive coil 731, The magnetic pole at the end face at 73 la is set to the S pole. Similarly, the magnetic poles of the end faces facing the outer ring-shaped drive coils 7 3 2 and 1220875 rims 732b and 732c are respectively set to S poles, and the same is to face the outer ring-shaped drive coils 7 The magnetic poles at the end faces of the coil sides 73 2d and 73 2 a of 3 2 are set to N poles. Therefore, the coil sides 7 3 1 a to 73 Id and 73 2a to 7 3 2d of each of the loop drive coils 7 3 1 and 7 3 2 are in a state equivalent to the aforementioned control modes C2 and C3. The resultant force is as shown in the column of control mode C7 in Fig. 53, and is directed in the direction of the second quadrant on the XY coordinate. Thereby, the movable table body 15 is moved toward the second quadrant on the X-Y plane coordinates. In addition, the transfer angle 0 of the X-axis toward the second quadrant direction is to control the magnitude of the energized current of each of the driven magnets 6 B, 6 D, 1 6 B, and 1 6 D to make the effect The electromagnetic driving force of each of the driven magnets 6 A to 6D and 16B and 16D is changed, so that the system can be variably set in any direction freely. 〈Control mode C 8〉 This control mode C8 is the energization control mode used to move the movable table body 1 in the fourth quadrant direction (the direction opposite to the second quadrant direction) on the XY plane coordinates. An example (refer to Figure 5 3). In this control mode C8, in order for the eight driven magnets 6A to 6D and 16A to 16D to be energized and controlled at the same time, the magnetic poles N and S are respectively set to be the same as those in the aforementioned control mode C7. Inverse. Therefore, the coil sides 7 3 1 a to 7 3 1 d, 7 3 2 a to 7 3 2 d of each of the annular driving coils 7 3 1 and 7 3 2 are operated simultaneously with the aforementioned control mode C 1, The situation of CM is equal, and the resultant force is shown in the column of the control mode C 8 in Fig. 5 3 160 1602020875 'is the direction to the fourth quadrant. Thereby, the movable table body 15 is moved in the direction of the fourth quadrant on the X-γ plane coordinates. Here, the transfer angle θ toward the fourth quadrant direction with respect to the X axis is, for example, the magnitude of the energized current of each of the driven magnets 6 A to 6 D and 1 6 A to 1 6 D. Variable control, and can be freely set in any direction. <Other Examples of Ring Drive Coils 7 3 1 and 7 3 2> In this twelfth embodiment, the ring drive is the same as that disclosed in the tenth embodiment described above in FIGS. 43A to 43D. The coils 71 to 74 are technically the same, and according to the structure of the embodiment of FIG. 50, a double size structure is provided on the same surface, and a plurality of driven magnets are respectively installed in cooperation with each other. In contrast, by constructing each of the aforementioned components, an electromagnetic drive device having a ring-shaped drive coil having the same function as the structure of the twelfth embodiment can be obtained. In addition, this twelfth embodiment is structured as described above. Therefore, in addition to having the same function and the same function and effect as those of the tenth embodiment, the twelfth embodiment is provided in comparison with the tenth embodiment In this case, twice the number of ring-shaped driving coils and driven magnets are installed, so the output of the electromagnetic driving device can be increased. In addition, since the number of driving magnets is large, the movable table body is being transferred. In the control, compared with the case of the tenth embodiment described above, it is advantageous in that the movement of the movable table body can be performed more quickly and with high accuracy. In addition, in such a twelfth embodiment, since the installation positions of the majority of the driven magnets of 1220875 are arranged at the intersections with the x-axis and the y-axis of each driving coil, it is practically easy. Specially specify the transfer direction (calculation process), so the drive control of the driven magnet is simplified in terms of integrity. Therefore, even if the movement direction of the movable table body is changed, it can be quickly responded to it. At the same time, even in the movement control of the movable table body, etc. (for example, the direction switching control, or the position deviation occurs). In the case of transfer, it has the advantage that it can be quickly responded to. [Thirteenth Embodiment] Next, the thirteenth embodiment will be described with reference to Figs. 54 to 58. In the thirteenth embodiment, the feature is that the other electromagnetic driving device 1 44 has been installed. The electromagnetic driving device 1 44 is provided with four square driving coils, which are used instead of The electromagnetic driving device 142 in the aforementioned eleventh embodiment. At the same time, in order to replace the above-mentioned motion control system 202, a motion control system 204 is provided to make the electromagnetic driving device 144 operate efficiently. This will be described in detail below. φ First, this thirteenth embodiment is the same as that in the tenth embodiment described above, and includes: a movable table body 15 for precision work; The table body maintaining mechanism 2 is to allow the movable table body portion 15 to move while maintaining the movable table body portion 15 and is provided with a restoration original position of the movable table body portion 15 The function of the housing body 3 is to support the main body of the table maintenance mechanism 2; the electromagnetic drive device 44 is installed on the side of the outer body 1220875 of the housing body 3, and will be directed in accordance with instructions from the outside. The moving force in the direction is given to the movable table body 15. Here, the 'movable table body part 15' is constituted as follows: that is, the movable table body 1 for precision work; and the auxiliary table body 5 are spaced apart from each other by a designated interval corresponding to the movable table body i, and Integral arrangement on the same central axis. As shown in Fig. 54, the table maintenance mechanism 2 is installed on the side of the auxiliary table 5 and is configured to maintain the movable table 1 via the auxiliary table 5. "About the electromagnetic drive device 1 44" The electromagnetic drive device 1 44 is to maintain the main part on the side of the housing body 3, and has the following function, that is, according to an external command, the specified moving force ( The driving force) is given to the movable table body 15 along the moving direction of the movable table body 15. The electromagnetic drive device 1 4 4 is disposed between the movable table body 1 and the auxiliary table body 5. Specifically, the electromagnetic drive device 1 4 4 is provided with four square drive coils 741, 742, 743, and 744 formed in a quadrangular shape, and four driven magnets 6 A, 6 B, 6 C, 6 D, and 1 6 A, 1 6 B, 16C, and 16D respectively correspond to the inner coil sides 741a to 744a ′ located at intersections with the X-axis or Y-axis of the respective square driving coils 741 to 744 and Individually arranged corresponding to the outer coil sides 74 1 b to 744 b and mounted on the auxiliary table body 5; the fixed flat plate 8 maintains each of the aforementioned square drive coils 7 4 1 to 7 4 4 at a specified position. The aforementioned square driving coils 7 4 1 to 7 4 4 are such that the two sides of the object are respectively arranged on the X axis and the γ axis, and use the central part on the fixed flat plate 8 63 1220875 as the origin. Orthogonal to the x-axis or y-axis in the assumed X-Υ plane. In addition, a total of eight driven magnets 6A to 6D and 16A to 16D are composed of electromagnets that can be energized and controlled externally, and correspond to the inner coil sides 741a to 7 44a of the square driving coils 741 to 744. And the outer coil sides 741b to 744b are individually arranged on the X axis and the Y axis, respectively. As shown in FIG. 54, the fixed flat plate 8 is attached and maintained on the casing body 3 disposed on the movable table body 1 side of the auxiliary table body 5. In addition, each of the rectangular drive coils 741 to 744 and the fixed flat plate 8 constitutes a fixed part as a main part of the aforementioned electromagnetic drive device 144. In addition, each of the driving coils 741 to 744 is configured to generate an electromagnetic driving force between the driving coils 741 to 744 and each of the driven magnets 6A to 6D and 16A to 16D. The respective driven magnets 6A to 6D, 16A to 16D are repulsively driven in a direction orthogonal to the respective coil sides 741a to 7 44a, 74 1b to 744b. In this case, the center axis of each of the driven magnets 6A to 6D, 16A to 16D in the moving direction is set to have passed through the center point on the aforementioned X-Y plane. In addition, when the movable table body 15 is moved in a direction that is not orthogonal to each coil side 741a to 7 44a, 741b to 74 # (inclined to each coil side 741a to 744a, 741b to 744b), As will be described later, 164 1220875 combined force with respect to the electromagnetic driving force applied to at least two driven magnets 7 4 1, 7, 4 2, 7 4 3, or 7 4 4 is formed as The movable table body 15 can be transferred. In addition, the coil sides 741a to 744a and 7 4 4 b of the aforementioned moving magnets 6A to 6D, 16A to 16D facing each of the driving coils 7 4 1 to 7 4 4 are formed by non-magnetic metal members. The resulting flat plate 9 is arranged close to (in almost abutted state) on the magnetic pole faces of each of the driven magnets | to 6D, 16A to 16D. This type of actuating device 9 is a sheet-shaped object in this embodiment, and all parts around it are fixed to the aforementioned casing body 3. Eight of the parts of the electromagnetic driving device 1 44 that are driven magnetically to 6D, 16A to 16D are, in this embodiment, the end faces of the magnetic poles as shown in FIG. 55 (each driving coil 7 4 1 to 7 4 4 The opposite sides of each coil edge to 744a, 741b to 74 4b) are formed by a quadrangular electric shape, and are respectively arranged on the XY plane assumed to be above the auxiliary table body 5 and fixed at the center portion. For the equidistant positions on the axis and on the Y axis. And in this embodiment, for example, in order to energize a part or the entire row of the driven magnets 6A to 6D, 16A to 16D that are designated to have an operating current, each of the driven magnets 6 A to 6 D, 1 6 A Until 1 6 D is set to the operating state, after that, or at the same time, the driving coils 74 1 to 744 are started to be energized in the operating state according to a designated mode described later. In addition, the magnetic force of each of the moving magnets 6 A to 6 D and 16 A to 16 D including the driving coils 741 to 744 is adjusted by the general system. Move to the finger direction. The driven 741b uses a 6A flat or I 6A indicator. The X on the 74 1a magnet is driven in the eight-step control state. The electric control is set to 165 1220875.

送 對 至 圖 向 鐵 之 方 之 之 藉 夫 分 分 至 將 磁 而 賦 6D 在此情況下,針對於有關相對於可動桌體部1 5之移 方向以及其移送驅動力的電磁驅動裝置1 44的作動(相 於各個驅動線圈74 1至744與八個之被驅動磁鐵6A 6D、16A至16D之通電驅動),爲藉由第57圖至第58 進行詳述。在第5 7圖以及第5 8 _中,並未揭示藉由朝 驅動線圈之通電所達成之旋轉驅動。 在此情況下,於該種第十三實施例中,由於以電磁 所形成之前述八個之被驅動磁鐵6A至6D、16A至16D 通電方向爲如後所述地被預先特別指定,因此,在八個 形驅動線圈741至744之各個內側線圈邊741a至744a 外側線圈邊741b至744b部分的通電方向以及通電電流 大小(包含通電停止控制),係對應於前述可動桌體1 移送方向而藉由後述之動作控制系統204所設定控制。 此,相對於被驅動磁鐵6A至6D、16A至16D,爲依據 來明(Fleming)之左手定律,係可輸出朝指定之方向( 別正交於內側線圈邊741a至744a、741b至744b之部 的方向)按壓的電磁力(反力)。 此外,藉由預先選擇組合在該八個之被驅動磁鐵6A 6D、16A至16D上產生之電磁力的方向,係形成爲可 在該各個被驅動磁鐵6A至6D、16A至16D上產生之電 驅動力的合力配合於前述可動桌體部1 5之移送方向’ 可將該可動桌體部1 5朝向X-Y軸平面上之任意方向而 予移動力。 有關對於該等八個被驅動磁鐵6A至6D、]6A至1 166 1220875 之一連串的通電控制之手法,係在後述之程式記憶 之說明處(第57圖、第58圖)中進行詳述。 在此,於前述各個驅動線圈7 4 1至7 4 4之同一 外側以及內側之中,在至少與該各個驅動線圈74 j 之高度(Y軸方向)爲相同高度、且包含有前述被 鐵6A至6D、16A至16D之動作範圍內的範圍中, 塡裝設有肥粒鐵等磁性材料。 《有關於動作控制系統204》 其次’針對在該種第十三實施例中之動作控制系 來詳細說明。 在該種第十三實施例中,亦可將動作控制系統 設於電磁驅動裝置1 44中(參照第5 6圖),該控制 統2 0 4係爲各別性地將前述各個方形驅動線圈7 4 1 以及八個之各個被驅動磁鐵6 A至6 D、1 6 A至1 6 D 電控制、限制前述可動桌體部1 5之移動動作。 該種動作控制系統204係具有下述機能,即: 別設定機能,爲個別性地設定、維持對應於前述各 驅動線圈74 1至744所裝設之八個被驅動磁鐵6 Α ΐ 1 6 Α至1 6D的磁極;磁力強度設定機能,爲個別性 種各個被驅動磁鐵6 A至6 D、1 6 A至1 6 D之磁力強 可變設定(藉由設定而獲得將通電電流進行可變) 方向設定機能,爲將與前述各個方形驅動線圈74 1 之前述X軸或Y軸交叉部分的線圈邊7 4 1 a、7 4 1 b、 7 4 2b、7 4 3 a、7 4 3 b、7 4 4 a、7 4 4 b 咅B 分的通電方向 部2 24 面上之 至7 4 4 驅動磁 亦可充 統 204_ 204倂 動作系 至744 進行通 磁極個 個方形_ g 6D、 地將該 度進行 ;通電 至744 742 a、 於指定 ]67 1220875 方向(一方或是另一方)而因應於來自外部的指令 設定、維持;驅動線圈通電控制機能,爲將朝向該 方形驅動線圈741至744之通電電流之大小進行 定;且具備有桌體動作控制機能,爲將該等諸項機 出一面進行適當的調整、依面則對於前述可動桌骨 進行移送方向以及移送力的調整。 並且,該種動作控制系統204係爲,爲了實施 項機能,而如第56圖所示,爲具備有:桌體驅動 置2 1 4,爲將前述電磁驅動裝置1 44之各個方形驅 741至744以及八個之被驅動磁鐵6A至6D、16A 依據指定之控制模式來個別地進行驅動,而將前述 體部1 5於指定之方向上進行移動控制;程式記憶音f 爲記憶有多數之控制程式,該控制程式係有關於一 之通電控制模式(在本實施例中,係爲D 1至D 8 通電控制模式),該模式爲以倂設在該桌體驅動控 214之前述可動桌體1之移動方向以及其動作量等 指定;資料記憶部23,爲記憶有在該等各個控制 實施之際所使用的指定之資料等。 此外,在桌體驅動控制裝置2 1 4中,係倂設有 令輸入部24,係下達對於各個方形驅動線圈74 1 以及八個之被驅動磁鐵6 A至6 D、1 6 A至1 6 D的指 制動作之指令。再者,於此種桌體驅動控制裝置2 1 4 前述可動桌體部1 5之移動中以及移動後的位置資 成爲送入、且以藉由前述位置檢測感測機構2 5所 而進行 種各個 可變設 能之輸 I部15 前述諸 控制裝 動線圈 至1 6 D 可動桌 ;224, 種多數 之八個 制裝置 所特別 程式之 動作指 至 744 定之控 之中, 訊係形 檢測出 168 1220875 之後述高感度狀地進行演算處理。 並且,前述動作控制系統204所具有之各種的控制機 能,係形成爲總合性地被包含在前述程式記億部224之多 數之通電控制模式D 1至D 8中,以操作員經由動作指令 輸入部24所輸入之指令,基於其所選擇之控制模式D 1 至D 8中之任何模式來進行動作、實施。 將其進行更加詳細的說明。 有關本實施例之桌體驅動控制裝置2 1 4係爲,具備有: 主要控制部2 1 4A,爲基於來自動作指令輸入部24之指令馨 而進行作動,由程式記憶部224選擇指定之控制模式,在 前述方形驅動線圈741至744以及八個之各個被驅動磁鐵 6A至6D、16A至16D中爲進行包含有零之指定之直流電 流的通電控制;線圈選擇驅動控制部2 1 4B,爲依據在該 主要控制部2 1 4 A中所選擇設定之指定的通電控制模式(D 1 至D 8 ),以同時或是個別地驅動控制方形驅動線圈74 1至 744以及八個之各個被驅動磁鐵6A至6D、16A至16D中。 此外,主要控制部2 1 4 A係亦同時兼具有下述之機能,&lt;1 該機能係爲,基於來自檢測桌體位置之位置檢測感測機構 25的輸入資訊,而計算前述可動桌體部15之位置、或是 進行其他各種的演算。在此,符號4G所示係爲在前述電 磁驅動裝置1 4 2之各個方形驅動線圈7 4 1至7 4 4以及八個 之各個被驅動磁鐵6A至6D、16A至16D中通電有指定之 電流的電源電路部。 《有關於程式記憶部2 24》 169 1220875 則述桌體驅動控制裝置214係被構成如下,即,依據 在程式記憶部224中所預先記憶之指定的通電控制程式· (指定之控制模式),使前述電磁驅動裝置1 44之各個方 形驅動線圈741至744以及八個之各個被驅動磁鐵6A至 6D、1 6 A至1 6D具有指定之關聯性,進而個別地進行驅 動控制。 亦即,在有關該種第十三實施例之程式記憶部224中, 爲記憶有下述程式,即:多數之磁鐵用控制程式,爲將前 述八個之各個被驅動磁鐵(電磁鐵)6A至6D、16A至16D鲁 之通電方向進行個別地特別指定,而在特別指定磁極之N 極或是S極的同時,可個別性地將包含通電停止之通電電 流的大小進行可變設定;驅動線圈用控制程式,係在當該 種八個之各個被驅動磁鐵(電磁鐵)6A至6D、16A至16D 之通電方向被特別指定之情況下作用其機能,將與其對應 而對於四個之各個方形驅動線圈741至744的通電方向以 及其通電電流之大小進行可變設定。同時,該等各個控制 程式之動作時序係被整理、記憶在八組之通電控制模式D 1 0 至D8(參照第57圖、第58圖)。 在此,針對在該種第十三實施例中之八組的控制模式 D1至D1,基於第57圖至第58圖進行說明。 在第57圖中,爲朝向X軸之正向或負向、或是朝向Y 軸之正向或負向,表示分別移送可動桌體部1 5之情況下 的各個通電控制模式D 1至D 4之一例(已圖表化之物)。 在該第5 7圖中,於各個通電控制模式D 1至D4方面, 170 1220875 係被設定成個別性地將對於各個方形驅動線圈74 1至744 的直流電流之通電方向進行可變控制。此外,針對於八個 之各個被驅動磁鐵(電磁鐵)之通電方向,各個磁極之N 極或是S極係被設定成無論控制模式爲何均不致經常地產 生變化(已固定之狀態)。 亦即,在此種第十三實施例中,爲將對向於八個之各 個被驅動磁鐵6A至6D、16A至16D之前述方形驅動線圈 74 1至744的端面部之磁極分別設定控制成如下,即,在 被動驅動磁鐵6A、6B方面爲設定成N極,在被驅動磁鐵 6C、6D方面則設定成S極。同樣的,在被動驅動磁鐵16A、 16B方面爲設定成S極,在被驅動磁鐵16C、16D方面則 設定成N極。並且,在該種第十三實施例中,已設定爲 如上述之各個磁極N、S係爲,即使是控制模式D 1至D4 形成相異,亦被設定控制爲已固定之狀態。 〈控制模式D 1〉 在該種第十三實施例中之控制模式D 1係表示用以將可 動桌體1移送至X軸之正的方向之通電控制模式之一例 (參照第5 7圖)。 在此種控制模式D 1中,爲使Y軸上之被驅動磁鐵6B、 6 D以及1 6 A、1 6 B被控制成停止通電。同時,方形驅動 線圈742、722係維持在通電停止控制之狀態。 此外,使對向於X軸上之被驅動磁鐵6 A之前述線圈邊 74 1 a.的端面部被設定成N極,且將對向於X軸上之被驅 動磁鐵6C之前述線圈邊743 a的端面部設定爲S極。 ]71 1220875 再者,使對向於X軸上之被驅動磁鐵1 6 A之前述線圈 邊74 1 b的端面部設定爲S極,且將對向於X軸上之被驅 動磁鐵1 6 C之前述線圈邊7 4 3 b的端面部被設定成N極。 並且,前述驅動線圈7 4 1、7 4 3係形成爲無論是哪一方, 均被通電驅動成逆時針方向(左旋)。 因此’在驅動線圈741、743之各個線圈邊741a、741b、 743 a、743 b部份中,爲產生於點線之箭頭所示方向的電 磁驅動力,同時,以該反力(爲了使方形驅動線圈741、 743被固定所產生)而使得被驅動磁鐵6A、6C、16A、16C _ 於實線之箭頭所示方向(圖中之右方)被推斥驅動。藉此, 使可動桌體部15被移送至X軸上之正向。 此外,通電停止中之驅動線圈742、744以及被驅動磁 鐵6B、16B以及6D、16D係形成爲,當可動桌體1之位 置偏移的情況下,係個別性地電通驅動、實施位置偏移之 補正動作。 〈控制模式D2〉 在該種控制模式D2係表示用以將可動桌體1移送至X# 軸之負的方向之通電控制模式之一例(參照第5 7圖)。 在此種控制模式D2中,將X軸上之方形驅動線圈74 1、 743之線圈邊741a、741b、743a、743b部份的通電方向 設定在相較於前述控制模式D 1的情況係以成逆向(逆時 針之旋轉方向)之點爲不同處。其他係與前述控制模式D 1 之情況形成相同。 因此,在驅動線圈7 4 ]、7 4 3之線圈邊7 4〗a、7 4 1 b、7 4 3 a、 172 1220875 743b部份中,藉由與前述模式D1之情況相同的原理而產 生電磁驅動力,其反力爲使該驅動磁鐵6A、16A以及6C、 1 6C分別被推斥驅動在實線之箭頭所示方向(圖中之左 方)’藉此,爲使可動桌體15移送至X軸上之負向。在 此’在可動桌體1之位置偏移之際,亦實施與前述控制模 式D1之情況爲相同的補正動作。 〈控制模式D3〉 在該種控制模式D 3係表示用以將可動桌體1移送至Y 軸之正的方向之通電控制模式之一例(參照第5 7圖)。 在該控制模式D3中,爲使X軸上之被驅動磁鐵6A、16A 以及6C、16C被控制成停止通電。同時,亦使方形驅動 線圈7 4 1、7 4 3設定成通電停止控制之狀態。 此外,使對向於Y軸上之被驅動磁鐵6B之前述內側線 圈邊742a的端面部被固定控制於N極,且將對向於Y軸 上之被驅動磁鐵6D之前述線圈邊744a的端面部固定控制 於S極。 同樣的,爲使對向於Y軸上之被驅動磁鐵1 6B之前述 內側線圈邊742b的端面部被固定控制於S極,且使對向 於Y軸上之被驅動磁鐵16D之前述線圈邊744b的端面部 被固定控制於N極。 並且,前述驅動線圈742、7 44係形成爲無論是哪一方, 均被通電驅動成逆時針方向(左旋)。 因此,在驅動線圈7 4 2、7 4 4之各個線圈邊7 4 2 a、7 4 2 b、 744a、744b部份中,爲產生於點線之箭頭所示方向的電 173 1220875 磁驅動力,同時,以該反力(爲了使方形驅動線圈742、 744被固定所產生)而使得被驅動磁鐵6B、16B以及6D、 1 6D於實線之箭頭所示方向(圖中之上方)被推斥驅動, 藉此,使可動桌體部15被移送至Y軸上之正向。 在此’通電停止中之驅動線圈74 1、7G以及被驅動磁 鐵6A、16A、6C、16C係爲在可動桌體1之位置偏移時, 爲形成個別性地進行通電驅動、且實施位置偏移的補正動 作。 〈控制模式D4〉 φ 在該種控制模式D4係表示用以將可動桌體1移送至Y 軸之負的方向之通電控制模式之一例(參照第5 7圖)。 在此種控制模式D4中,將X軸上之驅動線圈722、724 之線圈邊742a、742b、744a、744b部份的通電方向設定 在相較於前述控制模式D3的情況係以成逆向(逆時針方 向)之點爲不同處。其他係與前述控制模式D3之情況形 成相同。The pair of points sent to the figure to the side of the iron is divided into 6D by magnetism. In this case, the electromagnetic driving device 1 44 is related to the moving direction with respect to the movable table body 15 and its driving force. The operation (compared with each of the driving coils 74 1 to 744 and the energized driving of the eight driven magnets 6A 6D, 16A to 16D) is described in detail with reference to FIGS. 57 to 58. In Figs. 5 7 and 5 8 _, the rotation drive achieved by energizing the drive coils is not disclosed. In this case, in the thirteenth embodiment, since the eight driving magnets 6A to 6D and 16A to 16D which are formed by electromagnetic waves are energized in the following directions, they are specified in advance, so that The energizing direction and the energizing current (including energization stop control) of the inner coil sides 741a to 744a and the outer coil sides 741b to 744b of each of the eight shaped drive coils 741 to 744 are borrowed corresponding to the moving direction of the movable table 1 described above. Control is set by an operation control system 204 described later. Therefore, relative to the driven magnets 6A to 6D, 16A to 16D, based on Fleming's left-hand law, it can output the part in a specified direction (not orthogonal to the inner coil sides 741a to 744a, 741b to 744b). Direction) of the pressing force (reaction force). In addition, the directions of the electromagnetic forces generated on the eight driven magnets 6A, 6D, 16A to 16D are preselected and combined to form electricity that can be generated on the respective driven magnets 6A to 6D, 16A to 16D. The resultant force of the driving force is matched with the moving direction of the movable table body portion 15 described above, and the movable table body portion 15 can be moved toward any direction on the XY axis plane. A series of energization control methods for one of the eight driven magnets 6A to 6D, 6A to 1 166 1220875 is described in detail in the program memory description section (Figs. 57 and 58) described later. Here, among the same outer and inner sides of each of the aforementioned drive coils 7 4 1 to 7 4 4, at least the same height as the height (Y-axis direction) of each of the drive coils 74 j and the aforementioned iron 6A is included. Within the range of 6D, 16A to 16D, magnetic materials such as fat iron are installed. "About the motion control system 204" Next, the motion control system in this thirteenth embodiment will be described in detail. In this thirteenth embodiment, the motion control system may be provided in the electromagnetic driving device 1 44 (refer to FIG. 56), and the control system 204 is to individually drive each of the aforementioned square driving coils. 7 4 1 and each of the eight driven magnets 6 A to 6 D, 16 A to 16 D electrically control and restrict the movement of the movable table body 15 described above. This kind of motion control system 204 has the following functions, that is, do not set the function, and individually set and maintain the eight driven magnets 6 corresponding to each of the aforementioned drive coils 74 1 to 744. Α ΐ 1 6 Α Magnetic poles to 16D; magnetic strength setting function, variable magnetic force setting for each driven magnet 6 A to 6 D, 16 A to 16 D (by setting to obtain variable current flow) ) The direction setting function is the coil side 7 4 1 a, 7 4 1 b, 7 4 2b, 7 4 3 a, 7 4 3 b that intersects the aforementioned X-axis or Y-axis of each of the square drive coils 74 1. , 7 4 4 a, 7 4 4 b 咅 B points of the current direction 2 24 to 7 4 4 drive magnet can also charge 204_ 204 倂 action system to 744 for magnetic flux poles square _ g 6D, ground Carry out this degree; energize to 744 742 a, in the specified] 67 1220875 direction (one or the other) and set and maintain it in response to external commands; the drive coil power control function will drive the drive coil 741 to The size of the 744 electric current is determined; and it is equipped with a table motion control machine , To the side of the machine and other various items appropriately adjusted, by adjusting the transfer surface to force the movable tables for feeding direction and the bone. In addition, this type of motion control system 204 is designed to implement functions, and as shown in FIG. 56, it is provided with: a table body driving device 2 1 4, and each of the aforementioned electromagnetic driving devices 1 44 driving 741 to 744 and eight driven magnets 6A to 6D, 16A are individually driven according to the specified control mode, and the aforementioned body part 15 is moved in the specified direction; the program memory sound f is a control that has a majority of memory Program, the control program is related to a power-on control mode (in this embodiment, D 1 to D 8 power-on control mode), the mode is set on the table body drive control 214 of the aforementioned movable table body The designation of the movement direction of 1 and the amount of movement, etc .; the data storage unit 23 stores designated data and the like used in the implementation of each of these controls. In addition, the table body drive control device 2 1 4 is provided with a command input portion 24 for each square drive coil 74 1 and eight driven magnets 6 A to 6 D, 1 6 A to 1 6 The instruction of D's pointing action. In addition, in such a table body driving control device 2 1 4, the position of the movable table body 15 during and after the movement is transferred, and is seeded by the position detection and sensing mechanism 25. Part I of each variable setting energy 15 The aforementioned control and installation coils to a 16 D movable table; 224, most of the eight programs made by the special program are directed to the 744 control, the signal system detected 168 1220875 The calculation process is performed with high sensitivity as described later. In addition, the various control functions of the motion control system 204 are collectively included in the power-on control modes D 1 to D 8 of the majority of the program recording unit 224, and the operator uses the motion command The command input by the input unit 24 is operated and implemented based on any of the selected control modes D 1 to D 8. This will be explained in more detail. The table body drive control device 2 1 4 related to this embodiment is provided with: a main control unit 2 1 4A, which operates based on a command from the motion command input unit 24, and the designated control is selected by the program memory unit 224 Mode, in the aforementioned square driving coils 741 to 744 and each of the eight driven magnets 6A to 6D, 16A to 16D, to perform energization control including a designated DC current including zero; the coil selection driving control section 2 1 4B is According to the specified energization control mode (D 1 to D 8) selected and set in the main control section 2 1 4 A, the square driving coils 74 1 to 744 and each of the eight are driven simultaneously or individually. Among the magnets 6A to 6D, 16A to 16D. In addition, the main control unit 2 1 4 A also has the following functions at the same time. &Lt; 1 This function is to calculate the movable table based on the input information from the position detection sensing mechanism 25 that detects the position of the table body. The position of the body 15 or other various calculations. Here, the symbol 4G indicates that a specified current is applied to each of the square drive coils 7 4 1 to 7 4 4 of the aforementioned electromagnetic drive device 1 4 2 and each of the eight driven magnets 6A to 6D and 16A to 16D. Power circuit section. "About the Program Memory Unit 2 24" 169 1220875 The table body drive control device 214 is structured as follows, that is, according to the specified power-on control program stored in the program memory unit 224 in advance (designated control mode), Each of the square drive coils 741 to 744 and the eight driven magnets 6A to 6D, 16A to 16D of the aforementioned electromagnetic drive device 1 44 are assigned a specified correlation, and drive control is performed individually. That is, in the program memory section 224 of the thirteenth embodiment, the following programs are stored, that is, most of the magnet control programs are 6A of the eight driven magnets (electromagnets). The energizing directions from 6D, 16A to 16D are individually specified, and while the N or S poles of the magnetic poles are specified, the magnitude of the energizing current including the stop of energization can be individually set. The control program for the coil is used when the electric directions of 6A to 6D and 16A to 16D of each of the eight driven magnets (electromagnets) are specifically designated, and its functions will be corresponding to each of the four. The energizing directions of the rectangular driving coils 741 to 744 and the magnitude of the energizing current are variably set. At the same time, the operation sequence of each control program is organized and memorized in eight groups of power-on control modes D 1 0 to D8 (refer to Figure 57 and Figure 58). Here, the eight groups of control modes D1 to D1 in the thirteenth embodiment will be described with reference to FIGS. 57 to 58. In FIG. 57, the positive or negative directions toward the X-axis or the positive or negative directions toward the Y-axis indicate the respective energization control modes D 1 to D when the movable table body portion 15 is moved respectively. An example of 4 (characterized). In this Fig. 57, in each of the energization control modes D1 to D4, the 170 1220875 system is set to individually control the energization direction of the DC current of each of the square drive coils 74 1 to 744. In addition, with respect to the current direction of each of the eight driven magnets (electromagnets), the N or S poles of each magnetic pole are set so that they do not change frequently regardless of the control mode (a fixed state). That is, in this thirteenth embodiment, the magnetic poles on the end faces of the square drive coils 74 1 to 744 facing the eight driven magnets 6A to 6D and 16A to 16D are set and controlled so as to The passive magnets 6A and 6B are set to N poles and the driven magnets 6C and 6D are set to S poles. Similarly, the passively driven magnets 16A and 16B are set to the S pole, and the driven magnets 16C and 16D are set to the N pole. Moreover, in this thirteenth embodiment, the magnetic poles N and S have been set as described above, and even if the control modes D 1 to D 4 are different, they are set to be controlled and fixed. <Control Mode D 1> The control mode D 1 in this thirteenth embodiment is an example of the energization control mode for moving the movable table body 1 to the positive direction of the X axis (refer to Figs. 5 to 7). . In this control mode D1, the driven magnets 6B, 6D and 16A, 16B on the Y axis are controlled so as to stop energization. At the same time, the rectangular drive coils 742 and 722 are maintained in a state where the power is stopped and controlled. In addition, the end face of the coil side 74 1 a. Facing the driven magnet 6 A on the X axis is set to N pole, and the coil side 743 facing the driven magnet 6C on the X axis is set. The end face of a is set to the S pole. ] 71 1220875 Furthermore, the end face of the coil side 74 1 b facing the driven magnet 1 6 A on the X axis is set to the S pole, and the driven magnet 1 6 C facing the X axis is set. The end face of the coil side 7 4 3 b is set to the N pole. In addition, the drive coils 7 4 1 and 7 4 3 are formed so as to be driven in a counterclockwise direction (left-handed) regardless of which one is driven. Therefore, 'in each of the coil sides 741a, 741b, 743a, 743b of the driving coils 741, 743, the electromagnetic driving force is generated in the direction indicated by the dotted line arrow, and at the same time, the reaction force (in order to make the square The driving coils 741, 743 are generated by being fixed), so that the driven magnets 6A, 6C, 16A, 16C _ are repulsively driven in the direction indicated by the solid arrow (right side in the figure). Thereby, the movable table body 15 is moved to the positive direction on the X axis. In addition, the drive coils 742 and 744 and the driven magnets 6B and 16B and 6D and 16D during the energization stop are formed so that when the position of the movable table body 1 is shifted, it is electrically driven to perform the position shift individually The corrective action. <Control Mode D2> This control mode D2 is an example of the energization control mode used to move the movable table body 1 to the negative direction of the X # axis (refer to Figs. 5 to 7). In this control mode D2, the energizing direction of the coil sides 741a, 741b, 743a, and 743b of the square drive coils 74 1 and 743 on the X axis is set to be compared with the case of the aforementioned control mode D 1. The points of counterclockwise (counterclockwise rotation) are different. Others are the same as those in the aforementioned control mode D 1. Therefore, the coil sides 7 4] a, 7 4 1 b, 7 4 3 a, 172 1220875 743b of the driving coil 7 4], 7 4 3 are generated by the same principle as in the case of the aforementioned mode D1. Electromagnetic driving force, the counter force is to drive the driving magnets 6A, 16A and 6C, 16C respectively in the direction indicated by the solid line arrow (left in the figure). Move to the negative direction on the X axis. At this time, when the position of the movable table body 1 is shifted, the same corrective action as in the case of the aforementioned control mode D1 is also performed. <Control Mode D3> This control mode D3 is an example of an energization control mode for moving the movable table 1 to the positive direction of the Y axis (refer to FIG. 5 to FIG. 7). In this control mode D3, the driven magnets 6A, 16A, and 6C, 16C on the X axis are controlled so as to stop the energization. At the same time, the square driving coils 7 4 1 and 7 4 3 are also set to the state of energization stop control. In addition, the end face of the inner coil side 742a facing the driven magnet 6B on the Y axis is fixed to the N pole, and the end face of the coil side 744a facing the driven magnet 6D on the Y axis is fixed. The part is fixedly controlled at the S pole. Similarly, the end face of the inner coil side 742b facing the driven magnet 16B on the Y axis is fixed to the S pole, and the coil side facing the driven magnet 16D on the Y axis is fixed. The end face of 744b is fixedly controlled at the N pole. In addition, the drive coils 742 and 744 are formed so that the drive coils 742 and 744 are driven counterclockwise (left-handed) by being energized. Therefore, in each of the coil sides 7 4 2 a, 7 4 2 b, 744a, and 744b of the driving coils 7 4 2 and 7 4 4 are electric 173 1220875 magnetic driving forces generated in the directions indicated by the dotted arrows At the same time, the driven magnets 6B, 16B and 6D, 1 6D are pushed in the direction indicated by the solid line arrows (upper in the figure) with the reaction force (generated to fix the square driving coils 742 and 744). The repulsive drive is thereby used to move the movable table body 15 to the positive direction on the Y axis. Here, the drive coils 74 1 and 7G and the driven magnets 6A, 16A, 6C, and 16C during the energization stop are performed when the position of the movable table 1 is shifted, and the energization drive is performed individually and the position is deviated. Move the corrective action. <Control mode D4> φ In this control mode D4 is an example of the energization control mode used to move the movable table 1 to the negative direction of the Y axis (refer to Fig. 57). In this control mode D4, the energizing direction of the coil sides 742a, 742b, 744a, and 744b of the drive coils 722 and 724 on the X axis is set in a reverse direction (reverse direction) compared to the case of the aforementioned control mode D3. Hour direction) are different. Others are the same as those in the aforementioned control mode D3.

因此,在驅動線圈742、744之線圈邊742a、742b、744a、 744b部份中,藉由與前述控制模式D3之情況相同的原理 而在以點線之箭頭所示之方向(與控制模式D 3之情況爲 逆向)係爲產生有電磁驅動力,以該反力而使得被驅動磁 鐵6B、16B、6D、16D分別於實線之箭頭所示方向(圖中 之下方)被推斥驅動,藉此,使可動桌體部15被移送至 Y軸上之負向。當可動桌體丨之位置偏移之際,係實施與 前述控制模式D 3之情況爲相同的補正動作。 174 1220875 接著,在第5 8圖中所示係爲說明將可動桌體部1 5分 別朝向X-Y平面座標上之四個象限方向之情況的各個通 電控制模式D5至D8之一例(已圖表化之物)。 在第58圖中,於各個通電控制模式D5至D8中,爲與 前述各個控制模式D5至D8之情況爲相同的,係將對於 各個方形驅動線圈741至744之直流電流的通電方向設定 成以個別性地進行可變控制,針對於八個之各個被驅動磁 鐵(電磁鐵)之通電方向,則是使各個磁極之N極或是S 極被設定成無論控制模式爲何均不致經常地產生變化(已 固定之狀態)。 〈控制模式D 5〉 在此種控制模式D5係爲表示將控制模式之一例,係用 以將可動桌體1朝向X-Y平面座標上之第一象限方向(參 照第5 8圖)。 在該控制模式D5中,係被設定成爲同時地使八個之各 個被驅動磁鐵6A至6D、16A至16D被通電控制之狀態。 此外,其通電方向(磁極N、S之設定)係被固定成於前 述各個控制模式D 1至D4之情況爲相同。 亦即,被配置在X軸上、Y軸上之正向的被驅動磁鐵 6A、6B係爲,使其對向於各個方形驅動線圈之線圈邊 741a、742a的端面部分被設定爲N極。此外,被配置在 X軸上、Y軸上之負向的被驅動磁鐵6 C、6 D係爲,使其 對向於各個方形驅動線圈之線圈邊743 a、744a的端面部 分被設定爲S極。 175 1220875 同樣的,被配置在X軸上、Y軸上之正向的被驅動磁 鐵16Α、16Β係爲,使其對向於各個方形驅動線圈之線圈 邊741b、742b的端面部分被設定爲S極。此外,被配置 在X軸上、Y軸上之負向的被驅動磁鐵1 6C、1 6D係爲使 其對向於各個方形驅動線圈之線圈邊743b、744b的端面 部分被設定爲N極。 並且,在前述方形驅動線圈741至744之各個線圈邊 741a、 741b、 742a、 742b、 743a、 743b、 744a、 744b 部分Therefore, in the coil sides 742a, 742b, 744a, and 744b of the drive coils 742 and 744, in the direction indicated by the dotted arrow (the same as the control mode D) by the same principle as in the case of the aforementioned control mode D3 The case of 3 is the reverse direction) is to generate an electromagnetic driving force, and the driven magnets 6B, 16B, 6D, and 16D are repulsively driven in the directions indicated by the solid arrows (lower in the figure), Thereby, the movable table body 15 is moved to the negative direction on the Y axis. When the position of the movable table body 丨 is shifted, the same corrective action as in the case of the aforementioned control mode D 3 is performed. 174 1220875 Next, an example of each of the energization control modes D5 to D8 is illustrated in Figs. 5 and 8 to explain the case where the movable table body portion 15 is oriented in the four quadrant directions on the XY plane coordinates. Thing). In FIG. 58, in each of the energization control modes D5 to D8, the same as in the case of each of the aforementioned control modes D5 to D8, the energization direction of the direct current of each square drive coil 741 to 744 is set to Individually variable control is performed. For the current direction of each of the eight driven magnets (electromagnets), the N or S poles of each magnetic pole are set so that they do not change frequently regardless of the control mode. (Fixed state). <Control mode D 5> In this control mode D5 is an example of a control mode, which is used to move the movable table body 1 in the first quadrant direction on the X-Y plane coordinates (refer to Figure 5 8). In this control mode D5, a state is set in which the eight driven magnets 6A to 6D and 16A to 16D are simultaneously controlled by energization. In addition, the energizing directions (setting of the magnetic poles N and S) are fixed in the same manner as in each of the aforementioned control modes D1 to D4. That is, the driven magnets 6A and 6B arranged in the positive direction on the X-axis and the Y-axis are set so that the end faces of the coil sides 741a and 742a facing the square driving coils are set to N poles. In addition, the driven magnets 6 C and 6 D arranged in the negative direction on the X-axis and the Y-axis are set so that end portions facing the coil sides 743 a and 744 a of each square driving coil are set to S pole. 175 1220875 Similarly, the driven magnets 16A and 16B arranged in the positive direction on the X-axis and Y-axis are set so that their end portions facing the coil sides 741b and 742b of the square driving coils are set to S pole. In addition, the driven magnets 16C and 16D arranged in the negative direction on the X-axis and the Y-axis are set so that their end portions facing the coil sides 743b and 744b of the square driving coils are N poles. The coil sides 741a, 741b, 742a, 742b, 743a, 743b, 744a, and 744b of the rectangular drive coils 741 to 744 are respectively

方面,爲形成有與同時作動前述控制模式D1與D3爲同 等的通電控制(通電方向係爲逆時針方向)。因此,係同 時地產生與前述控制模式D 1、D3之情況下爲相同朝向(X 軸之正向與Y軸之正向)的電磁驅動力,其合力係如第5 8 圖之控制模式D5之欄所示,爲朝向第一象限之方向。 藉此,前述可動桌體部15係朝向X-Y平面座標上的第 一象限之方向來移送。On the other hand, the energization control is performed in the same manner as the aforementioned control modes D1 and D3 are simultaneously operated (the energization direction is counterclockwise). Therefore, it generates the electromagnetic driving force in the same direction (the positive direction of the X axis and the positive direction of the Y axis) as in the case of the aforementioned control modes D 1 and D 3 at the same time. The column shows the direction towards the first quadrant. Thereby, the movable table body 15 is moved toward the first quadrant on the X-Y plane coordinates.

在此,對於X軸而朝向第一象限方向之移送角度0 (移 送方向)係爲,藉由個別性地將各個方形驅動線圈74 1至 744以及各個被驅動磁鐵6A至6D、16A至16D之通電電 流的大小進行可變控制,使作用在各個被驅動磁鐵6A至 6D、16A至16D之電磁驅動力進行變化,藉此,係可自 由地在第一象限方向之任意方向上進行可變設定。 〈控制模式D 6〉Here, the transfer angle 0 (transfer direction) toward the first quadrant direction with respect to the X axis is such that each of the square driving coils 74 1 to 744 and each of the driven magnets 6A to 6D, 16A to 16D is individually The magnitude of the energized current can be controlled to change the electromagnetic driving force acting on each of the driven magnets 6A to 6D and 16A to 16D. Thereby, the variable setting can be freely set in any direction of the first quadrant direction. . <Control mode D 6>

此種控制模式D6係爲,表示用以將可動桌體1朝向X-Y 平面座標上之第三象限方向(與第.一象限方向爲相反的方 176 1220875 向)進行移送的通電控制模式之一例(參照第5 8圖)。 在該控制模式D6中,爲使八個之被驅動磁鐵6A至6D、 1 6 A至1 6 D同時地被通電控制,其磁極N、S係全數被設 定成與控制模式D 5之情況爲相同狀。 此外,在前述方形驅動線圈741至744之各個線圈邊 741a、 741b、 742a、 742b、 743a、 743b、 744a、 744b 部分 方面,爲形成有與同時作動前述控制模式D2與D4爲同 等的通電控制(通電方向全數係爲順時針方向)。因此, 係同時地產生與前述控制模式D2、D4之情況下爲相同朝暴 向(第58圖之左方與下方)的反力(電磁驅動力),並且, 其合力係如第5 8圖之控制模式D6之欄所示,爲朝向第 三象限之方向。藉此,前述可動桌體部15係爲朝向X-Y 平面座標上之第三象限之方向來移送。 此外,對於X軸而朝向第三象限方向之移送角度0 (移 送方向)係爲,藉由個別性地將各個方形驅動線圈74 1至 744以及各個被驅動磁鐵6A至6D、16A至16D之通電電 流的大小進行可變控制,使作用在各個被驅動磁鐵6A至# 6D、16A至16D之電磁驅動力進行變化,藉此,係可自 由地在第一象限方向之任意方向上進行可變設定。 〈控制模式D7〉 此種控制模式D7係爲,表示用以將可動桌體1朝向X-Y 平面座標上之第二象限方向進行移送的通電控制模式之一 例(參照第5 8圖)。 在該控制模式D 7中,爲使八個之被驅動磁鐵6 A至6 D、 177 1220875 1 6A至1 6D同時地被通電控制,其磁極n、S係全數被設 定成與控制模式D 1至D 6之情況爲相同的被固定。 另一方面,針對於前述各個方形驅動線圈741至744, 係形成爲使X軸上之方形驅動線圈74 1、743爲與控制模 式D2之情況爲相同的被通電驅動至順時針方向(在第5 8 圖中爲右旋),且使Y軸上之方形驅動線圈742、744爲 與控制模式D3之情況爲相同的被通電驅動至逆時針方向 (在第58圖中爲左旋)。 因此,在此種控制模式D7之情況下,於各個方形驅動鲁 線圈741至744之各個線圈邊741a、741b、742a、742b、 743 a、743 b、744a、744b部分方面,爲形成有與同時作 動前述控制模式D2與D4爲同等的通電控制。因此,係 同時地產生與前述控制模式D2、D4之情況下爲相同朝向 (第58圖之左方與上方)的電磁驅動力,並且,其合力 係如第5 8圖之控制模式D7之欄所示,爲朝向第二象限 之方向。藉此,爲使前述可動桌體部15爲朝向X-Y平面 座標上的第二象限之方向來移送。 . 另外,對於X軸而朝向第二象限方向之移送角度Θ (移 送方向)係爲,藉由個別性地將各個方形驅動線圈74 1至 744以及各個被驅動磁鐵6A至6D、16A至16D之通電電 流的大小進行可變控制,使作用在各個被驅動磁鐵6A至 6 D、1 6 A至1 6 D之電磁驅動力進行變化,藉此,係可將 移送方向設定於任意方向上。 〈控制模式D 8〉 178 1220875 此種控制模式D8係爲,表示用以將可動桌體部1 5朝 向χ-γ平面座標上之第四象限方向(與第一象限方向爲 相反的方向)進行移送的通電控制模式之一例(參照第5 8 圖)。 在該控制模式D8中,爲使八個之被驅動磁鐵6A至6D、 16A至16D同時地被通電控制,其磁極n、S係全數被固 定成與控制模式D 1至D7之情況爲相同狀。 另一方面,針對於前述各個方形驅動線圈741至744, 所謂的前述控制模式D 8之情況係爲使其通電驅動方向全鲁 數設定爲逆向。亦即,係形成爲使X軸上之方形驅動線 圈741、743爲與控制模式D1之情況爲相同的被通電驅 動至逆時針方向(在第58圖中爲左旋),且使Y軸上之 方形驅動線圈742、744爲與控制模式D4之情況爲相同 的被通電驅動至逆時針方向(在第58圖中爲右旋)。 因此,在此種控制模式D 8之情況下,於各個方形驅動 線圈741至744之各個線圈邊741a、741b、742a、742b、 743 a、743b、744a、744b部分方面,爲形成有與同時作_ 動前述控制模式D 1與D4爲同等的通電控制,同時地產 生與前述控制模式D 1、D4之情況下爲相同朝向(第5 8 圖之右方與下方)的電磁驅動力,並且,其合力係如第58 圖之控制模式D 8之欄所示,爲朝向第四象限之方向。藉 此,爲使前述可動桌體部1 5爲朝向X-Y平面座標上的第 四象限之方向來移送。 另外,對於X軸而朝向第四象限方向之移送角度0 (移 179 1220875 送方向)係爲,藉由個別性地將各個方形驅動線圈74 1至 744以及各個被驅動磁鐵6A至6D、16A至16D之通電電 流的大小進行可變控制,使作用在各個被驅動磁鐵6A至 6D、16A至16D之電磁驅動力進行變化,藉此,係可將 移送方向設定於任意方向上。 有關於其他的構造以及其動作、機能,係形成爲略與 前述第十一實施例之情況相同。 即使如此,除了可獲得與前述第十一實施例之情況爲 相同的作用效果之外,方形驅動線圈741至744之構造在鲁 相較於前述第二實施例中之日字狀之驅動線圈721至724 之下爲大幅度地單純化,因此,係使得該驅動線圈74 1至 7 44之配線簡略化,故而相較於前述第十一實施例之情況, 爲可達到提昇其生產性以及耐久性的目的,再者,由於係 使得驅動線圈7 4 1至7 4 4之通電控制簡略化,因此亦具有 使得應答性得以改善的優點。 此外,係設各個被驅動磁鐵6A至6D、16A至16D爲 前述第十一實施例之情況下的兩倍,因此,係可強化電磁· 驅動力之輸出’亦具有形成可獲得可動桌體1之迅速地移 動的優點。 此外,在前述第十三實施例中,於可動桌體部1 5之移 送方向的設定時,雖是例示區分成D 1至D 8之控制模式 來驅動控制電磁驅動裝置1 4 2的情況,不過,例如在控制 模式D2中,倘若具有同等於將被驅動磁鐵6人至6D、16A 至】6 D之各個通電方向設爲與控制模式〇 1爲逆向、且將 180 1220875 驅動線圈741、743之通電方向設定爲與控制模式D1之 情況下爲相同等的機能時,亦可採用其他的驅動控制方法 來將電磁驅動裝置1 44進行驅動控制。 此外,於前述第十三實施例中,亦可置換被驅動磁鐵6A 至6D、16A至16D之裝設處與方形驅動線圈741至744 之裝設處。此種情況係形成爲,使被驅動磁鐵6A至6D、 1 6A至1 6D被裝設在固定件側,且使方形驅動線圈74 1至 744被裝設在可動件側。 再者,在前述第十三實施例中,雖然例示將被驅動磁 鐵6A至6D、16A至16D以電磁鐵所構成之情況,不過, 亦可將被驅動磁鐵6 A至6 D、1 6 A至1 6 D以永久磁鐵來構 成。 如此,係形成爲無須被驅動磁鐵6 A至6 D、1 6 A至1 6 D 周圍之電氣配線,而可縮小被驅動磁鐵6A至6D、16A至 1 6D之裝設處的空間區域。從而,由於其量額而形成爲可 達到裝置整體之小型輕量化、提昇生產性以及維修性,相 較於將被驅動磁鐵6 A至6 D、1 6 A至1 6 D作爲電磁鐵的情 況,係由於無須其通電驅動,故而可大幅度的抑制整體性 地消費電力以及該部分之溫度上升。藉此,係可大幅度的 減低裝置整體之經營成本(running cost),而在電磁驅動 裝置4之驅動控制之際,係僅進行多數之各個驅動線圈74 1 至7 44之通電方向的切換控制,便可將可動桌體1移送驅 動至任意的方向。藉此,在可動桌體1之移動方向之切換 時,係形成爲可迅速地進行回應,且形成爲均無被驅動磁 181 1220875 鐵6A至6D、16A至16D之斷線等事故的產生, 具有大幅度的提昇裝置整體之耐久性的優點。 〔第十四實施例〕 其次,基於第59圖至第64圖說明第十四實施 在該第十四實施例中,所具備之特徵係爲已 磁驅動裝置145以取代在前述第十一實施例中之 裝置1 42,同時,爲具有取代前述動作控制系統 裝設有用以使該電磁驅動裝置1 4 5效率爲佳地進 作控制系統205之點的特徵。 在本實施例中之電磁驅動裝置145係爲,其 於前述第十一實施例中之電磁驅動裝置142裡, 之四個日字狀之驅動線圈 721、722、723、724 轉90 °之狀態下裝設至固定平板8,以將其設爲 驅動線圈7 5 1、7 5 2、7 5 3、7 5 4之特點。同時,對 爲具有藉由前述動作控制系統2 0 5而將新的旋轉 (控制馬達9、1 0 )附加至控制內容中之特點。 藉此,該種第十一實施例係爲,即使未新裝 驅動裝置,亦可進行在前述第十一實施例中於原 行之對於可動桌體1爲在限定範圍內的旋轉驅動 以下,將其進行詳細之說明。 首先,該種第十四實施例係爲,與前述第十 之情況相同的,爲具備有:精密作業用之可動桌 爲在同一面上被配設成可於任意之方向進行移動 維持機構2,爲容許該種可動桌體部1 5之移動 因此,爲 例。 裝設有電 電磁驅動 202,而 行動之動 特徵爲, 使已裝設 以分別旋 曰字狀之 應於此, 控制機能 設其他的 理上不可 一實施例 體部1 5, 者;桌體 ,同時維 182 1220875 持該可動桌體部15,並且具備有對於該可動桌體部15之 恢復原始位置之機能;外殼本體3,係作爲支撐該桌體維 持機構2的本體部;電磁驅動裝置1 45,係被裝設在該外 殼本體3側,且因應於來自外部的指令而將朝向指定方向 之移動力賦予至可動桌體部15。 在此,可動桌體部1 5係與前述各個實施例之情況相同 的,爲構成如下,即:精密作業用之可動桌體1 ;以及輔 助桌體5,爲對應於該種可動桌體1而隔有指定間隔,以 平行、且在同一中心軸上呈一體狀的配置。並且,如第59 圖所示,桌體維持機構2係被裝設在輔助桌體5側,係構 成爲經由該輔助桌體5而維持前述可動桌體1。 《針對於電磁驅動裝置145》 電磁驅動裝置1 45係爲,使其主要部被維持在外殼本 體3側,而具備有下述機能,即,因應來自外部之指令, 將指定之移動力(驅動力)沿著該可動桌體部1 5之移送 方向而賦予至前述可動桌體部15。此種電磁驅動裝置145 係被配設在前述可動桌體1與輔助桌體5之間。 具體而言,該種電磁驅動裝置145係具備有:形成爲 曰字狀之四個之驅動線圈 7 5 1、7 5 2、7 5 3、7 5 4 ;四個之 被驅動磁鐵6A、6B、6C、6D,係個別地對應於位在該各 個驅動線圈7 5 1至7 5 4之中央部的內側線圈邊7 5 1 a至 7 5 4a,且被裝設在前述輔助桌體5上;固定平板8,爲將 前述四個之驅動線圈7 5 1至7 5 4維持在指定位置上。 前述各個日字狀之驅動線圈7 5 1至7 5 4係爲’使位於 183 1220875 其中央部之內側線圈邊751a至754a用以將固定平板8上 之中央部作爲原點而正交於所假定之X-Y平面上之X軸 或是Y軸。 因此,相對於分別個別性地對向配置在該種內側線圈 邊75 1a至754a的四個之各個被驅動磁鐵6A至6D,係如 後所述,爲形成使電磁驅動力輸出至正交於該各個內側線 圈邊751a至754a(亦即,X軸或是Y軸)的方向。 並且,在本實施例中,爲將通電至各個內側線圈邊7 5 1 a 至754a的電流朝向配合目的來進行可變控制,藉此,爲# 形成可將前述可動桌體1以指定範圍內進行旋轉驅動的構 造。 此外,四個之各個被驅動磁鐵6A至6D係爲,以可由 外部進行通電控制的電磁鐵所構成,對應於前述各個曰字 狀之驅動線圈的內側線圈邊751a至754a,而分別個別狀 的配設在X軸上以及Y軸上。 固定平板8係如第5 9圖所示,係配維持在配設於前述 輔助桌體5之可動桌體1側的前述外殼本體3上。藉由該% 種曰字狀之各個驅動線圈7 5 1至7 5 4與固定平板8,而構 成作爲前述電磁驅動裝置4之主要部的固定件部分。 並且,各個驅動線圈75 1至75 4係爲,當在設定爲作 動狀態後,在與前述各個被驅動磁鐵6A至6D之間爲產 生有電磁驅動力,該電磁驅動力係爲在將該各個被驅動磁 鐵6A至6D正交於各個內側線圈邊751a至75 4a之方向 (亦即,正交於對應X軸或是Y軸的方向)上進行推斥 184 1220875 驅動。 此外,在未正交於各個內側線圈邊7 5 1 a至7 5 4 a之方 向(傾斜於各個線圈邊751a至754a之方向)上移動前述 可動桌體部1 5的情況下,爲如後述而至少具有對於兩個 以上之各個被驅動磁鐵6A至6D的電磁驅動力之合力, 形成爲可實施該可動桌體部15之移送。 再者,於面對於各個驅動線圈751至754之前述被驅 動磁鐵6A至6D的內側線圈邊751a至754a部分上,爲 使由非磁性金屬構件所形成之致動用平板9靠近(以幾乎· 爲抵接之狀態)於各個被驅動磁鐵6A至6D之磁極面進 行配設。該種致動用平板9係在本實施例中爲使用一片狀 之物,其周圍之局部或是全部爲被固著在前述外殼本體3 上。 構成電磁驅動裝置145之局部的四個之被驅動磁鐵6A 至6D係爲,在本實施例中係如第60圖所示,磁極之端 面(各個驅動線圈751至7 5 4之各個內側線圈邊751a至 7 5 4a間之對向面)爲以四角形之電磁鐵所形成,在被假 定在輔助桌體5之上面的X-Y平面上,爲分別被配設、 固著在由中心部爲成等距離之位置的X軸上以及Y軸上。 因此,在本實施例中,例如爲使指定之作動電流在四 個之被驅動磁鐵6A至6D之局部或是全部進行通電,而 使各個被驅動磁鐵6 A至6 D被設定成作動狀態,之後、 或是同時的依據後述之指定的控制模式,開始各個驅動線 圈7 5 1至7 5 4被設定在作動狀態下之通電。並且,包含各 1220875 個驅動線圈751至75 4之各個被驅動磁鐵6A至6D的磁 性力大小爲藉由通電控制所調整,藉此,爲使前述可動桌 體部1 5移送至指定的方向。 在此情況下,針對於有關相對於可動桌體部1 5之移送 方向以及其移送驅動力的電磁驅動裝置1 45的作動(相對 於各個驅動線圈75 1至754與四個之被驅動磁鐵6A至6D 之通電驅動),爲藉由第62圖至第64圖進行詳述。This control mode D6 is an example of the energization control mode used to move the movable table 1 toward the third quadrant direction (the direction opposite to the first quadrant direction 176 1220875) on the XY plane coordinates ( (Refer to Figure 5 8). In this control mode D6, in order for the eight driven magnets 6A to 6D and 16A to 16D to be energized and controlled at the same time, all the magnetic poles N and S are set to the control mode D5. Same shape. In addition, each of the coil sides 741a, 741b, 742a, 742b, 743a, 743b, 744a, and 744b of the rectangular drive coils 741 to 744 has the same energization control as the control modes D2 and D4 that are simultaneously operated ( All directions of energization are clockwise). Therefore, the reaction force (electromagnetic driving force) in the same direction (left and bottom of Fig. 58) as that in the case of the aforementioned control modes D2 and D4 is generated simultaneously, and the resultant force is as shown in Figs. 5 to 8 As shown in the column of the control mode D6, it is the direction toward the third quadrant. Therefore, the movable table body 15 is moved toward the third quadrant on the X-Y plane coordinates. In addition, the transfer angle 0 (moving direction) toward the third quadrant direction with respect to the X axis is such that each square driving coil 74 1 to 744 and each driven magnet 6A to 6D, 16A to 16D are individually energized. The magnitude of the current can be controlled variably, so that the electromagnetic driving force acting on each of the driven magnets 6A to 6D, 16A to 16D can be changed, whereby the variable setting can be freely set in any direction of the first quadrant direction . <Control mode D7> This control mode D7 is an example of the energization control mode used to move the movable table body 1 in the second quadrant direction on the X-Y plane coordinates (refer to Figure 58). In this control mode D 7, in order to control the eight driven magnets 6 A to 6 D, 177 1220875 1 6A to 16D simultaneously, the magnetic poles n and S are all set to the control mode D 1 The situation up to D 6 is fixed in the same way. On the other hand, for each of the aforementioned square drive coils 741 to 744, the square drive coils 74 1 and 743 on the X axis are driven to be driven in a clockwise direction in the same manner as in the case of the control mode D2 ( 5 8 is right-handed in the figure), and the square drive coils 742 and 744 on the Y axis are driven in the same direction as in the case of the control mode D3 and turned counterclockwise (in the 58th figure, left-handed). Therefore, in the case of this control mode D7, the coil sides 741a, 741b, 742a, 742b, 743a, 743b, 744a, and 744b of each of the square-shaped driving coils 741 to 744 are formed in parallel with each other. The aforementioned control modes D2 and D4 are operated for equivalent energization control. Therefore, the electromagnetic driving force in the same direction (left and top of Fig. 58) as in the case of the aforementioned control modes D2 and D4 is generated simultaneously, and the resultant force is as shown in the column of the control mode D7 in Fig. 58. Shown is the direction towards the second quadrant. Thereby, the movable table body 15 is moved in a direction toward the second quadrant on the X-Y plane coordinates. In addition, the transfer angle Θ (transfer direction) toward the second quadrant direction with respect to the X axis is such that each of the square driving coils 74 1 to 744 and each of the driven magnets 6A to 6D, 16A to 16D is individually The magnitude of the energized current can be controlled variably, and the electromagnetic driving force acting on each of the driven magnets 6A to 6D and 16A to 16D can be changed. As a result, the transfer direction can be set in any direction. <Control mode D 8> 178 1220875 This control mode D8 is used to indicate that the movable table body 15 is directed to the fourth quadrant direction (the direction opposite to the first quadrant direction) on the χ-γ plane coordinates. An example of transfer energization control mode (refer to Figure 5 8). In this control mode D8, in order for the eight driven magnets 6A to 6D and 16A to 16D to be simultaneously energized and controlled, the magnetic poles n and S are all fixed to be the same as those in the control modes D 1 to D7. . On the other hand, for each of the square drive coils 741 to 744, the so-called control mode D 8 is set such that the full number of the drive directions in the energized driving direction is set to the reverse direction. That is, the square drive coils 741 and 743 on the X axis are driven in the same direction as in the case of the control mode D1 and are driven in a counterclockwise direction (leftward in FIG. 58). The square driving coils 742 and 744 are driven to the counterclockwise direction in the same manner as in the case of the control mode D4 (rightward rotation in FIG. 58). Therefore, in the case of this control mode D 8, the coil sides 741a, 741b, 742a, 742b, 743a, 743b, 744a, and 744b of each of the square drive coils 741 to 744 are formed in order to form and work simultaneously. _ Activate the aforementioned control modes D 1 and D 4 for the same energization control, and simultaneously generate an electromagnetic driving force in the same direction (right and lower of Figure 5 8) as in the case of the aforementioned control modes D 1 and D4, and, The resultant force is shown in the column of control mode D 8 in Fig. 58 and is in the direction of the fourth quadrant. Therefore, the movable table body 15 is moved in a direction toward the fourth quadrant on the X-Y plane coordinates. In addition, for the X axis, the moving angle 0 (moving direction 179 1220875) toward the fourth quadrant is that each square driving coil 74 1 to 744 and each driven magnet 6A to 6D, 16A to The magnitude of the energized current of 16D can be controlled variably, and the electromagnetic driving force acting on each of the driven magnets 6A to 6D, 16A to 16D can be changed, whereby the transfer direction can be set in any direction. Regarding the other structures and their operations and functions, they are formed slightly the same as in the case of the eleventh embodiment. Even so, the structure of the square drive coils 741 to 744 is better than that of the Japanese-shaped drive coil 721 in the second embodiment except that the same effect can be obtained as in the case of the eleventh embodiment. Below 724, the simplification is greatly simplified. Therefore, the wiring of the driving coils 74 1 to 7 44 is simplified. Therefore, compared with the case of the eleventh embodiment, the productivity and durability can be improved. The purpose of sexuality is further simplified because the energization control of the drive coils 7 4 1 to 7 4 4 is simplified, so that it has the advantage of improving the responsiveness. In addition, since each of the driven magnets 6A to 6D and 16A to 16D is twice as in the case of the eleventh embodiment described above, it is possible to strengthen the output of the electromagnetic and driving force. The advantage of moving quickly. In addition, in the foregoing thirteenth embodiment, when setting the moving direction of the movable table body 15, it is exemplified that the control mode divided into D 1 to D 8 is used to drive and control the electromagnetic driving device 1 4 2. However, for example, in the control mode D2, if it is equivalent to set the respective energized directions of the driven magnets 6 to 6D, 16A to 6D, the control mode is set to be in the opposite direction to the control mode, and 180 1220875 drive coils 741 and 743 When the energization direction is set to have the same function as that in the case of the control mode D1, other drive control methods may be used to drive control the electromagnetic drive device 44. In addition, in the aforementioned thirteenth embodiment, the installation place of the driven magnets 6A to 6D, 16A to 16D, and the installation place of the square driving coils 741 to 744 may be replaced. In this case, the driven magnets 6A to 6D, 16A to 16D are mounted on the fixed member side, and the square driving coils 74 1 to 744 are mounted on the movable member side. Furthermore, in the foregoing thirteenth embodiment, although the case where the driven magnets 6A to 6D and 16A to 16D are constituted by electromagnets is exemplified, the driven magnets 6 A to 6 D and 1 6 A may also be used. To 1 6 D is constituted by a permanent magnet. In this way, the electrical wiring around the driven magnets 6 A to 6 D, 16 A to 16 D is not required, and the space area where the driven magnets 6A to 6D, 16A to 16D are installed can be reduced. Therefore, compared with the case where the driven magnets 6 A to 6 D and 1 6 A to 1 6 D are used as electromagnets due to their amount, they can be made smaller and lighter, and their productivity and maintainability can be improved. Because it is not required to be driven by electricity, it can greatly suppress the overall power consumption and the temperature rise in this part. This can greatly reduce the overall running cost of the device. In the drive control of the electromagnetic drive device 4, only a majority of the drive directions of the drive coils 74 1 to 7 44 are switched. , The movable table body 1 can be driven and driven to any direction. Therefore, when the moving direction of the movable table body 1 is switched, it is formed to respond quickly, and it is formed so that no accidents such as disconnection of the driven magnetic 181 1220875 iron 6A to 6D, 16A to 16D occur, It has the advantage of greatly improving the durability of the entire device. [Fourteenth embodiment] Next, the fourteenth implementation will be described based on Figs. 59 to 64. In the fourteenth embodiment, the feature is a magnetic drive device 145 instead of the eleventh implementation. In the example, the device 1 42 is also equipped with a feature of replacing the aforementioned motion control system to make the electromagnetic drive device 1 4 5 perform the control system 205 more efficiently. The electromagnetic driving device 145 in this embodiment is a state in which the four Japanese-shaped driving coils 721, 722, 723, and 724 are rotated by 90 ° in the electromagnetic driving device 142 in the eleventh embodiment. The bottom plate is set to the fixed plate 8 to set it as the characteristics of the driving coils 7 5 1, 7 5 2, 7 5 3, 7 5 4. At the same time, the pair has a feature that a new rotation (control motors 9, 10) is added to the control content by the aforementioned motion control system 205. Accordingly, this eleventh embodiment is such that the rotation driving of the movable table body 1 within the limited range in the original row in the previous eleventh embodiment can be performed even if the driving device is not newly installed, This will be explained in detail. First, the fourteenth embodiment is the same as the tenth embodiment described above, and includes: a movable table for precision work is provided on the same surface so that it can be moved and maintained in any direction 2 In order to allow the movable table body 15 to move, therefore, as an example. It is equipped with an electro-magnetic drive 202, and the action is characterized by the fact that it has been installed in a spiral shape, and the control function is provided in other embodiments. At the same time, dimension 182 1220875 holds the movable table body 15 and has the function of restoring the original position of the movable table body 15; the housing body 3 is used as the body supporting the table maintenance mechanism 2; the electromagnetic driving device 1 45, is installed on the side of the casing body 3, and a moving force in a specified direction is given to the movable table body 15 in response to an instruction from the outside. Here, the movable table body portion 15 is the same as that in the foregoing embodiments, and is configured as follows, that is, a movable table body 1 for precision work; and an auxiliary table body 5 corresponding to the movable table body 1 At a specified interval, they are arranged in parallel and integrated on the same central axis. As shown in FIG. 59, the table maintenance mechanism 2 is installed on the side of the auxiliary table 5, and the system is configured to maintain the movable table 1 via the auxiliary table 5. << For the electromagnetic drive device 145 >> The electromagnetic drive device 1 45 is to maintain the main part on the side of the housing body 3, and has the following function, that is, according to an external command, the specified moving force (drive The force) is applied to the movable table body 15 along the moving direction of the movable table body 15. Such an electromagnetic driving device 145 is disposed between the movable table body 1 and the auxiliary table body 5. Specifically, the electromagnetic driving device 145 is provided with four driving coils 7 5 1, 7 5 2, 7 5 3, 7 5 4 formed in a letter shape, and four driven magnets 6A, 6B. , 6C, 6D are respectively corresponding to the inner coil sides 7 5 1 a to 7 5 4a located in the central part of each of the drive coils 7 5 1 to 7 5 4 and are installed on the auxiliary table body 5 ; The flat plate 8 is fixed to maintain the four driving coils 7 5 1 to 7 5 4 at a specified position. Each of the aforementioned Japanese-shaped driving coils 7 5 1 to 7 5 4 is used such that the inner coil sides 751a to 754a of the central portion of the central portion 183 1220875 are used to orthogonalize the central portion on the fixed flat plate 8 as the origin. The X or Y axis on the assumed XY plane. Therefore, the four driven magnets 6A to 6D arranged on the inner coil sides 75 1a to 754a are individually opposed to each other, as described later, so that the electromagnetic driving force is output orthogonal to The directions of the respective inner coil sides 751a to 754a (ie, the X-axis or Y-axis). In addition, in this embodiment, in order to perform variable control to direct the currents energized to the respective inner coil sides 7 5 1 a to 754a toward the matching purpose, thereby forming # for the aforementioned movable table body 1 within a specified range. The structure is driven by rotation. In addition, each of the four driven magnets 6A to 6D is composed of an electromagnet that can be energized and controlled externally, and corresponds to the inner coil sides 751a to 754a of each of the aforementioned letter-shaped driving coils, and is individually shaped It is arranged on the X axis and the Y axis. As shown in Figs. 5 and 9, the fixed flat plate 8 is attached and maintained on the casing body 3 disposed on the movable table body 1 side of the auxiliary table body 5. Each of the driving coils 7 5 1 to 7 5 4 in the shape of a letter and the fixing plate 8 constitutes a fixing part as a main part of the electromagnetic driving device 4 described above. In addition, each of the driving coils 75 1 to 75 4 is configured to generate an electromagnetic driving force with each of the driven magnets 6A to 6D after the driving state is set. The driven magnets 6A to 6D perform repulsion 184 1220875 in a direction orthogonal to each of the inner coil sides 751a to 75 4a (that is, in a direction corresponding to the X-axis or Y-axis). In addition, when the movable table body 15 is moved in a direction that is not orthogonal to each inner coil side 7 5 1 a to 7 5 4 a (inclined to each coil side 751a to 754a), it will be described later. The combined force of at least two electromagnetic driving forces for each of the driven magnets 6A to 6D is formed so that the movable table body 15 can be transferred. Further, on the inner coil sides 751a to 754a of the aforementioned driven magnets 6A to 6D facing each of the driving coils 751 to 754, the actuation plate 9 formed of a non-magnetic metal member is brought close to (about The contact state) is arranged on the magnetic pole faces of the driven magnets 6A to 6D. This type of actuation plate 9 is a sheet-shaped object in this embodiment, and a part or all of its surroundings are fixed to the aforementioned casing body 3. The four driven magnets 6A to 6D constituting part of the electromagnetic driving device 145 are, in this embodiment, as shown in FIG. 60, the end faces of the magnetic poles (each inner coil side of each driving coil 751 to 7 54). Opposite faces between 751a to 7 5 4a) are formed by quadrangular electromagnets. They are arranged on the XY plane assumed to be above the auxiliary table body 5 and fixed to the central part. The distance position is on the X axis and the Y axis. Therefore, in this embodiment, for example, in order to energize a specified actuating current to a part or all of the four driven magnets 6A to 6D, each of the driven magnets 6 A to 6D is set to an operating state. After that, or at the same time, the drive coils 7 5 1 to 7 5 4 are set to be energized in an operating state according to a control mode specified later. In addition, the magnitude of the magnetic force of each of the driven magnets 6A to 6D including 1,220,875 drive coils 751 to 75 4 is adjusted by energization control, thereby moving the movable table body 15 to a predetermined direction. In this case, the operation of the electromagnetic driving device 1 45 regarding the moving direction with respect to the movable table body 15 and its driving force (with respect to each driving coil 75 1 to 754 and the four driven magnets 6A) To 6D), for details, refer to Figures 62 to 64.

形成電磁驅動裝置1 45之主要部的四個日字狀之驅動 線圈75 1至754係如第59圖至第60圖所示,爲由兩個角 形小線圈部Ka、Kb之組合所形成,而使得整體性地構成 爲曰字狀。並且,爲使線圈邊(內側線圈邊751a至754a 部分)形成在兩個角形小線圈部Ka、Kb相互抵接之部分 上,在該線圈邊(內側線圈邊721a至724a部分)上,係 形成爲經常地將電流流動於相同方向(在一方與另一方之 小型線圈部之抵接部分的線圈邊內流動之電流的朝向)。 因此,在變更其朝向的情況下,爲形成同時使兩個角形小 線圈部Ka、Kb內之通電方向進行變化。 在此情況下,於該種第十四實施例中,由於以電磁鐵 所形成之前述四個之被驅動磁鐵6A至6D之通電方向爲 如後所述地被預先特別指定,因此,在四個日字部驅動線 圈75 1至754中之各個內側線圈邊751a至7 5 4a部分的通 電方向以及通電電流之大小(包含通電停止控制)’係對 應於前述可動桌體部15之移送方向而藉由後述之動作控 制系統2 0 5所設定控制。 186 1220875 藉此,相對於被驅動磁鐵6A至6D,爲依據夫來明 (Fleming )之左手定律,係可輸出朝指定之方向(分別 正交於內側線圏邊751a至754a之部分的方向)按壓的電 磁力(反力)。 此外,藉由預先選擇組合在該四個被驅動磁鐵6A至6D 上產生之電磁力的方向,係形成爲可將在該四個被驅動磁 鐵6A至6D上產生之電磁驅動力的合力配合於前述可動 桌體部15之移送方向,而可將該可動桌體部15朝向X-Y 軸平面上之任意方向而賦予移動力。 有關對於該等四個被驅動磁鐵6A至6D之一連串的通 電控制之手法,係在後述之程式記憶部225之說明處(第 62圖、第64圖)中進行詳述。 在此,於前述各個驅動線圈751至754之同一面上之 外側以及內側之中,在至少與該各個驅動線圈751至754 之高度(Y軸方向)爲相同高度、且包含有前述被驅動磁 鐵6A至6D之動作範圍內的範圍中,亦可充塡裝設有肥 粒鐵等磁性材料。 《有關於動作控制系統205》 其次,針對在該種第十四實施例中之動作控制系統2 0 5 來詳細說明。 在該種第十四實施例中,係使將動作控制系統2 0 5倂 設於電磁驅動裝置1 45中(參照第6 1圖),該控制動作系 統20 5係爲各別性地將前述各個日字狀之驅動線圈75 1至 以及四個之各個被驅動磁鐵6A至6D進行通電控制、 187 1220875 限制前述可動桌體部1 5之移動動作。 Φ 該種動作控制系統205係具有下述機能,即:磁極個 別設定機能,爲個別性地設定、維持對應於前述各個曰字 狀之驅動線圈751至754所裝設之各個被驅動磁鐵6A至 6D的磁極;磁力強度設定機能,爲個別性地將該種各個 被驅動磁鐵6A至6D之磁力強度進行可變設定(藉由設 定而獲得將通電電流進行可變);通電方向設定機能,爲 將前述各個日字狀之驅動線圈751至754中之內側線圈邊 751a至75 4a部分的通電方向於指定方向(一方或是另一 方)而因應於來自外部的指令而進行設定、維持;驅動線 圏通電控制機能,爲將朝向該種各個日字狀之驅動線圈75 1 至7 5 4之通電電流之大小進行可變設定;且具備有桌體動 作控制機能,爲將該等諸項機能之輸出一面進行適當的調 整、依面則對於前述可動桌體部1 5進行移送方向以及移 送力的調整。The four Japanese-shaped driving coils 75 1 to 754 forming the main part of the electromagnetic driving device 1 45 are formed by a combination of two angular small coil parts Ka, Kb as shown in FIGS. 59 to 60. Instead, it is structured as a whole. In addition, in order to form the coil side (the inner coil sides 751a to 754a) on the portion where the two small angular coil portions Ka and Kb abut each other, the coil side (the inner coil sides 721a to 724a) is formed. The current is always flowing in the same direction (the direction of the current flowing in the coil side of the abutting part of the small coil part on the other side). Therefore, when the orientation is changed, the direction of current conduction in the two angular small coil portions Ka, Kb is changed so as to form the same. In this case, in this fourteenth embodiment, since the energizing directions of the four driven magnets 6A to 6D formed by the electromagnets are specified in advance as described below, The energizing direction of each of the inner coil sides 751a to 7 5 4a of each of the Japanese coil driving coils 75 1 to 754 and the magnitude of the energizing current (including the energization stop control) are corresponding to the moving direction of the movable table body portion 15 described above. Control is set by the operation control system 2 05 described later. 186 1220875 With this, relative to the driven magnets 6A to 6D, in accordance with Fleming's left-hand law, it can output in the specified direction (orthogonal to the part of the inner line edge 751a to 754a respectively) Electromagnetic force (reaction force) of pressing. In addition, by selecting and combining the directions of the electromagnetic forces generated on the four driven magnets 6A to 6D in advance, it is formed so that the resultant force of the electromagnetic driving forces generated on the four driven magnets 6A to 6D can be matched with The moving direction of the movable table body portion 15 can be applied to the movable table body portion 15 in any direction on the XY axis plane to impart a moving force. A series of power-on control methods for one of the four driven magnets 6A to 6D is described in detail in the description section (Fig. 62 and Fig. 64) of the program memory section 225 described later. Here, among the same sides of the driving coils 751 to 754 on the outside and inside, at least the same height as the height of the driving coils 751 to 754 (in the Y-axis direction), and the driven magnets are included. In the range of 6A to 6D, magnetic materials such as fertile iron can also be filled. << About Motion Control System 205 >> Next, the motion control system 205 in the fourteenth embodiment will be described in detail. In this fourteenth embodiment, the operation control system 2 0 5 is installed in the electromagnetic drive device 1 45 (refer to FIG. 61), and the control operation system 20 5 is configured to individually Each of the Japanese-shaped driving coils 75 1 to 4 and the four driven magnets 6A to 6D perform energization control, and 187 1220875 restricts the movement of the movable table body 15 described above. Φ This kind of motion control system 205 has the following functions: the magnetic pole individual setting function is to individually set and maintain each of the driven magnets 6A to 6 installed in the driving coils 751 to 754 corresponding to the aforementioned Japanese characters. 6D magnetic pole; magnetic strength setting function, for individually setting the magnetic strength of each of the driven magnets 6A to 6D (variable current flow through the setting); the current direction setting function is Set and maintain the energizing direction of the inner coil sides 751a to 75 4a of each of the Japanese-shaped drive coils 751 to 754 in the specified direction (one or the other) and set and maintain them in response to an external command; drive line圏 The energization control function is to change the setting of the energization current to each of the Japanese-shaped drive coils 75 1 to 7 5 4; and it has a table body motion control function. The output side is appropriately adjusted, and the moving direction of the movable table body 15 is adjusted according to the moving side.

並且,該種動作控制系統205係爲,爲了實施前述諸 項機能,而如第6 1圖所示,爲具備有:桌體驅動控制裝 置2 1 5,爲將前述電磁驅動裝置1 4 5之各個日字狀之驅動 線圈75 1至754以及四個之被驅動磁鐵6A至6D依據指 定之控制模式來個別地進行驅動,而將前述可動桌體部1 5 於指定之方向上進行移動控制;程式記憶部22 5,爲記憶 有多數之控制程式,該控制程式係有關於一種多數之通電 控制模式(在本實施例中,係爲E 1至E 1 0之十個通電控 制模式),該模式爲以倂設在該桌體驅動控制裝置2 1 5之 ]88 1220875 前述可動桌體1之移動方向以及其動作量等所特別指定; 資料記憶部23,爲記憶有在該等各個控制程式之實施之 際所使用的指定之資料等。 在桌體驅動控制裝置2 1 5中,係倂設有動作指令輸入 部24,係下達對於各個日字狀之驅動線圈751至754以 及四個之被驅動磁鐵6A至6D的指定之控制動作之指令。 再者,於此種桌體驅動控制裝置215之中,前述可動桌體 部1 5之移動中以及移動後的位置資訊係形成爲送入、且 以藉由前述位置檢測感測機構25所檢測出之後述高感度&lt;1 狀地進行演算處理。 並且,前述動作控制系統2 05所具有之各種的控制機 能’係形成爲總合性地被包含在前述程式記憶部225之多 數之通電控制模式E 1至E 1 0中,以操作員經由動作指令 輸入部24所輸入之指令,基於其所選擇之控制模式E 1至 E 1 〇中之任何模式來進行動作、實施。 將其進行更加詳細的說明。In addition, this kind of motion control system 205 is to implement the aforementioned functions, and as shown in FIG. 61, it is provided with: a table driving control device 2 1 5; Each Japanese-shaped driving coil 75 1 to 754 and four driven magnets 6A to 6D are individually driven according to a specified control mode, and the aforementioned movable table body portion 15 is moved and controlled in a specified direction; The program memory section 22 5 is for storing a plurality of control programs, and the control program is related to a plurality of power-on control modes (in this embodiment, it is ten power-on control modes from E 1 to E 1 0). The mode is specified in the drive control device 2 1 5 of the table body] 88 1220875 The movement direction of the aforementioned movable table body 1 and its movement amount are specially designated; the data memory section 23 is for storing the control programs Designated materials used during implementation. The table driving control device 2 1 5 is provided with an operation command input section 24, which issues control operations for each of the Japanese-shaped driving coils 751 to 754 and four driven magnets 6A to 6D. instruction. Furthermore, in such a table body driving control device 215, the position information during and after the movement of the movable table body portion 15 is formed to be fed in and detected by the position detection sensing mechanism 25. The calculation process is performed in the following manner with high sensitivity &lt; In addition, various control functions included in the aforementioned motion control system 205 are collectively included in most of the power-on control modes E 1 to E 1 0 of the program memory unit 225, and are controlled by the operator via motion. The command input by the command input unit 24 operates and is executed based on any one of the selected control modes E 1 to E 1 0. This will be explained in more detail.

有關於本實施例之桌體驅動控制裝置2 1 5係爲,具備 有:主要控制部2 1 5 A,爲基於來自動作指令輸入部24之 指令而進行作動,由程式記憶部22 5選擇指定之控制模 式’在前述日字狀之驅動線圈751至754以及四個之各個 被驅動磁鐵6A至6D中爲進行包含有零之指定之直流電 流的通電控制;線圈選擇驅動控制部2 1 5B,爲依據在該 主要控制部2 1 5 A中所選擇設定之指定的通電控制模式(E 1 至E 1 〇 ),以同時或是個別地驅動控制日字狀之驅動線圈 5 89 1220875 75 1至754以及四個之各個被驅動磁鐵6A至6D中。 此外,主要控制部2 1 5 A係亦同時兼具有下述之機能, 該機能係爲,基於來自檢測桌體位置之位置檢測感測機構 2 5的輸入資訊,而計算前述可動桌體1之位置、或是進 行其他各種的演算。在此,符號4G所示係爲在前述電磁 驅動裝置145之各個日字狀之驅動線圈751至754以及四 個之各個被驅動磁鐵6A至6D中通電有指定之電流的電 源電路部。 《有關於程式記憶部225》 前述桌體驅動控制裝置2 1 5係被構成如下,即,依據 在程式記憶部225中所預先記憶之指定的通電控制程式 (指定之控制模式),使前述電磁驅動裝置1 45之各個日 字狀之驅動線圈751至754以及四個之各個被驅動磁鐵6A 至6D具有指定之關聯性,進而個別地進行驅動控制。 亦即,在有關本實施例之程式記憶部22 5中,爲記憶 有下述程式,即:多數之磁鐵用控制程式,爲將前述四個 之各個被驅動磁鐵(電磁鐵)6A至6D之通電方向進行個 別地特別指定,而在特別指定磁極之N極或是S極的同 時,可個別性地將包含通電停止之通電電流的大小進行可 變設定;驅動線圈用控制程式,係在當該種四個之各個被 驅動磁鐵(電磁鐵)6 A至6 D之通電方向被特別指定之情 況下作用其機能,將與其對應而對於四個之各個日字狀之 驅動線圈7 5 1至7 5 4的通電方向以及其通電電流之大小進 行可變設定。同時,該等各個控制程式之動作時序係被整 190 1220875 理、記憶在八組之通電控制模式El至El 0(參照第62圖、 第64圖)。 其次’針對在該種第十四實施例中之十組的控制模式E1 至E10,基於第62圖至第64圖進行說明。 在第62圖中,爲朝向X軸之正向或負向、或是朝向γ 軸之正向或負向,表示分別移送可動桌體部1 5之情況下 的各個通電控制模式E 1至E4之一例(已圖表化之物)。 在該第62圖中,於各個通電控制模式E1至E4方面, 係被設定成個別性地將對於各個日字狀之驅動線圈751至 7 54的直流電流之通電方向進行可變控制。此外,針對於 四個之各個被驅動磁鐵(電磁鐵)之通電方向,係被設定 成無論各個磁極之N極或是S極被設定成不同控制模式 均不致經常地產生變化(已固定之狀態)。 亦即,在此種第十四實施例中,爲將對向於四個之各 個被驅動磁鐵6A至6D之前述日字狀之驅動線圈75卜752 的端面部之磁極分別設定控制成如下,即,在被動驅動磁, L· 鐵6A、6B方面爲設定成N極,在被驅動磁鐵6C、6D方β 面則設定成S極,即使是控制模式Ε1至Ε4形成相異, 該各個被驅動磁鐵6Α至6D之磁極亦被設定控制爲已固 定之狀態。 〈控制模式Ε 1〉 在該種控制模式Ε1係表示用以將可動桌體1移送至X 軸之正向之通電控制模式之一例(參照第6 2圖)。 在此種控制模式Ε 1中,爲使Υ軸上之日字狀之驅動線 ]91 1220875 圈75 2、754以及與其對應而所裝設的被驅動磁鐵6B、6D 進行通電控制,且使X軸上之日字狀之驅動線圈7 5 1、7 5 3 以及與其對應而所裝設的被驅動磁鐵6A、6C進行通電停 止控制。 並且,Y軸上之日字狀之驅動線圈752、754之通電方 向係被設定如下,即,在日字狀之驅動線圈7 5 2之內側線 圈邊752a部分方面,爲被設定控制成由Y軸之正向沿著 Y軸而朝向原點〇的方向,相同的,在日字狀驅動線圈754 之內側線圈邊754a部分方面,爲被設定控制成由Y軸之p 負向沿著Y軸而朝向原點的方向。 此外,在被驅動磁鐵6B、6D方面,爲使對向於Y軸 上之被驅動磁鐵6B之內側線圈邊75 2a的端面部被固定控 制成N極,同樣的,爲使Y軸上之被驅動磁鐵6D之前述 內側線圈邊7 54a的端面部被固定控制成S極。 因此,在驅動線圈 7 5 2、7 5 4之線圈邊 7 5 2 a、7 5 4 a部 份中’爲在該線圈邊75 2a、754a (圖中之左方,以點線 L. 之箭頭所表示)內產生指定的電磁澤動力,同時,以該反~ 力(爲了使日字狀之驅動線圈7 5 2、7 5 4被固定所產生) 而使得被驅動磁鐵6B、6D於實線之箭頭所示方向(圖中 之右方)被推斥驅動,以產生在該等兩個被驅動磁鐵6B、 6 D上之電磁驅動力的均衡爲主,使可動桌體部丨5被移送 至X軸上之正向。 止匕外,在移送方向之偏移之際,爲使得相對於兩個被 驅動磁鐵6B、6D或是驅動線圈.7 5 2、7 5 4之通電電流的 192 1220875 大小得以調整,藉此,維持產生在兩個被驅動磁鐵6B、6D 之電磁驅動力的平衡、使得移送方向之偏移受到修正。 〈控制模式E2〉 在該種控制模式E2係表示用以將可動桌體1移送至X 軸之負的方向之通電控制模式之一例(參照第62圖)。 在此種控制模式E2中,將X軸上之驅動線圈752、754The table drive control device 2 1 5 related to this embodiment is provided with: a main control section 2 1 5 A, which operates based on a command from the motion command input section 24, and is selected and designated by the program memory section 22 5 The "control mode" performs energization control including the specified DC current including zero in the aforementioned Japanese-shaped driving coils 751 to 754 and each of the four driven magnets 6A to 6D; the coil selection driving control section 2 1 5B, In accordance with the specified energization control mode (E 1 to E 1 0) selected and set in the main control section 2 1 5 A, the Japanese-shaped driving coils are driven simultaneously or individually 5 89 1220 875 75 1 to 754 and each of the four driven magnets 6A to 6D. In addition, the main control unit 2 1 5 A also has the following functions. The function is to calculate the movable table 1 based on the input information from the position detection sensor 2 5 that detects the position of the table. Position, or perform various other calculations. Here, reference numeral 4G denotes a power supply circuit section having a specified current supplied to each of the Japanese-shaped driving coils 751 to 754 of the electromagnetic driving device 145 and the four driven magnets 6A to 6D. << About the program memory part 225 >> The aforementioned table body drive control device 2 1 5 is configured as follows, that is, according to the specified power-on control program (designated control mode) stored in the program memory part 225 in advance, the aforementioned electromagnetic Each of the Japanese-shaped driving coils 751 to 754 of the driving device 1 45 and each of the four driven magnets 6A to 6D have a specified correlation, and further individually perform drive control. That is, in the program memory section 22 5 related to this embodiment, the following programs are stored, that is, most of the magnet control programs are those of the four driven magnets (electromagnets) 6A to 6D described above. The direction of energization is specified individually, and while the N or S pole of the magnetic pole is specified, the magnitude of the energization current including the stop of energization can be individually set; the control program for the drive coil is used when The function of each of the four driven magnets (electromagnets) 6 A to 6 D is specified when the direction of energization is specified, and corresponding to each of the four Japanese-shaped driving coils 7 5 1 to 7 5 4 The direction of energization and the magnitude of its energizing current can be set variably. At the same time, the operation timings of these control programs are adjusted and stored in eight groups of power-on control modes El to El 0 (refer to Figures 62 and 64). Next, the ten groups of control modes E1 to E10 in the fourteenth embodiment will be described based on FIGS. 62 to 64. In Fig. 62, the positive or negative directions toward the X axis or the positive or negative directions toward the γ axis indicate the respective energization control modes E 1 to E4 when the movable table body portion 15 is moved respectively. An example (a graphed thing). In FIG. 62, in each of the energization control modes E1 to E4, it is set to individually control the energization direction of the direct current of each of the Japanese-shaped drive coils 751 to 754. In addition, the energizing directions of the four driven magnets (electromagnets) are set so that no matter whether the N or S poles of each magnetic pole are set to different control modes, they will not change frequently (the fixed state) ). That is, in this fourteenth embodiment, in order to set and control the magnetic poles on the end faces of the aforementioned Japanese-shaped driving coils 75 and 752 facing the four driven magnets 6A to 6D, respectively, as follows, That is, in the passive driving magnet, the L · iron 6A and 6B are set to N poles, and the β sides of the driven magnets 6C and 6D are set to S poles. Even if the control modes E1 to E4 are different, each of them is different. The magnetic poles of the driving magnets 6A to 6D are also set and controlled to be fixed. <Control Mode E 1> This control mode E1 is an example of the energization control mode used to move the movable table 1 to the positive direction of the X axis (see Fig. 62). In this control mode E1, in order to make the Japanese-shaped driving wire on the yoke axis] 91 1220875 turns 75 2,754 and the driven magnets 6B and 6D installed corresponding to it to conduct power control, and make X The Japanese-shaped driving coils 7 5 1 and 7 5 3 on the shaft and the driven magnets 6A and 6C installed corresponding thereto perform energization stop control. In addition, the current-carrying directions of the Japanese-shaped driving coils 752 and 754 on the Y-axis are set as follows. That is, the inner coil side 752a of the Japanese-shaped driving coil 7 5 2 is set to be controlled by Y. The positive direction of the axis is along the Y axis toward the direction of the origin. Similarly, in the part of the inner coil side 754a of the Japanese-shaped driving coil 754, it is set to be controlled so that the negative direction of the Y axis p is along the Y axis And towards the origin. In addition, in terms of the driven magnets 6B and 6D, in order to fix and control the end face portion of the inner coil side 75 2a facing the driven magnet 6B on the Y axis to the N pole, the same is true for the Y axis The end face of the inner coil side 7 54 a of the drive magnet 6D is fixedly controlled to be an S pole. Therefore, in the coil side 7 5 2 a, 7 5 4 a of the driving coil 7 5 2, 7 5 4 'is the coil side 75 2a, 754a (left in the figure, with a dotted line L. of the The indicated electromagnetic force is generated within the arrow. At the same time, the reaction force (generated to fix the Japanese-shaped driving coil 7 5 2, 7 5 4) makes the driven magnets 6B and 6D realistic. The direction indicated by the arrow on the line (right in the figure) is driven by repulsion, and the balance of the electromagnetic driving force generated on the two driven magnets 6B and 6D is mainly caused by the movable table body. Move to the positive direction on the X axis. In addition to stopping the dagger, when the transfer direction is shifted, in order to make the 192 1220875 size of the current of 7 5 2, 7 5 4 relative to the two driven magnets 6B, 6D or the drive coil, The balance of the electromagnetic driving force generated between the two driven magnets 6B and 6D is maintained so that the shift in the transfer direction is corrected. <Control Mode E2> This control mode E2 is an example of a power-on control mode for moving the movable table 1 to the negative direction of the X axis (see FIG. 62). In this control mode E2, drive coils 752, 754 on the X axis

之線圈邊752a、754a部份的通電方向設定在相較於前述 控制模式E1的情況係以成相逆之點爲不同處。其他係與 前述控制模式E 1之情況形成相同。 因此,在驅動線圈7 5 2、754之線圈邊75 2a、754a部 份中,藉由與前述模式E 1之情況相同的原理而產生與控 制模式E1之情況爲逆向的電磁力,其反力爲使該驅動磁 鐵6A、6C分別被推斥驅動在實線之箭頭所示方向(圖中 之左方),藉此,以產生在該等兩個被驅動磁鐵6B、6D 上之電磁驅動力的均衡爲主,使可動桌體15移送至X軸 上之負向。The direction of energization of the coil sides 752a and 754a is set to be different from the point of phase inversion compared to the case of the aforementioned control mode E1. The other systems are the same as those in the aforementioned control mode E 1. Therefore, in the coil sides 75 2a and 754a of the driving coils 7 5 and 754, the electromagnetic force in the reverse direction is generated in the case of the control mode E1 by the same principle as in the case of the aforementioned mode E 1 and the reaction force In order for the driving magnets 6A and 6C to be repelled and driven in the directions indicated by the solid arrows (left in the figure), thereby generating electromagnetic driving forces on the two driven magnets 6B and 6D. The balance is mainly used to move the movable table body 15 to the negative direction on the X axis.

〈控制模式E3〉 在該種控制模式E3係表示用以將可動桌體1移送至Y 軸之正的方向之通電控制模式之一例(參照第6 2圖)。 在該控制模式E3中,爲使X軸上之日字狀之驅動線圈 75 1、7 5 3以及與其對應而所裝設的被驅動磁鐵6A、6C進 行通電控制,且使Y軸上之日字狀之驅動線圈7 5 2、7 5 4 以及與其對應而所裝設的被驅動磁鐵6 B、6 D進行通電停 止控制。 193 1220875 並且,X軸上之日字狀之驅動線圈7 5 1、7 5 3之通電方 向係被設定如下,即,在日字狀之驅動線圈7 5 1之內側線 圈邊7 5 1 a部分方面,爲被設定控制成由X軸之正向沿著 X軸而朝向原點〇的方向,相同的,在日字狀驅動線圈7 5 3 之內側線圈邊75 3 a部分方面,爲被設定控制成由X軸之 負向沿著X軸而朝向原點的方向。 此外,在被驅動磁鐵6A、6C方面,爲使對向於X軸 上之被驅動磁鐵6A之內側線圈邊75 1 a的端面部被固定控 制成N極,同樣的,爲使X軸上之被驅動磁鐵6C之前述鲁 內側線圈邊75 3 a的端面部被固定控制成S極。 因此,在驅動線圏7 5 1、7 5 3之線圈邊7 5 1 a、7 5 3 a部 份中,爲在該線圈邊7 5 1 a、7 5 3 a內產生指定的電磁驅動 力,同時,以該反力(爲了使日字狀之驅動線圈751、753 被固定所產生)而使得被驅動磁鐵6A、6C於實線之箭頭 所示方向(圖中之上方)被推斥驅動,以產生在該等兩個 被驅動磁鐵6A、6C上之電磁驅動力的均衡爲主,使可動 桌體部15被移送至Y軸上之正向。 修 可動桌體部15之位置偏移時,係實施與前述控制模式 E 1之情況相同的補正動作。 〈控制模式E4 &gt; 在該種控制模式E4係表示用以將可動桌體1移送至Y 軸之負的方向之通電控制模式之一例(參照第62圖)。 在此種控制模式E4中,將X軸上之驅動線圈751、753 之線圈邊751a、7 5 3 a部份的通電方向設定在相較於前述 194 1220875 控制模式E3的情況係以成相逆之點爲不同處。其他係與 前述控制模式E3之情況形成相同。 因此,在驅動線圈7 5 1、7 5 3之線圈邊7 5 1 a、7 5 3 a部 份中,藉由與前述模式E3之情況相同的原理而產生與控 制模式E3之情況爲逆向的電磁力,其反力爲使該驅動磁 鐵6A、6 C分別被推斥驅動在實線之箭頭所示方向(圖中 之下方),藉此,以產生在該等兩個被驅動磁鐵6A、6C 上之電磁驅動力的均衡爲主,使可動桌體1 5移送至X軸 上之負向。可動桌體1之位置偏移時,係實施與前述控制φ 模式B3之情況相同的補正動作。 接著,在第63圖中所示係爲說明將可動桌體部1 5分 別朝向X_Y平面座標上之四個象限方向之情況的各個通 電控制模式Ε5至Ε8之一例(已圖表化之物)。 在此種第63圖中,於各個通電控制模式Ε5至Ε8中, 係將對於各個日字狀之驅動線圈751至7 5 4之直流電流的 通電方向設定成以個別性地進行可變控制,針對於四個之 各個被驅動磁鐵(電磁鐵)之通電方向,則是使各個磁極® 之Ν極或是S極被設定成無論控制模式爲何均不致經常 地產生變化(已固定之狀態)。 〈控制模式Ε5〉 在此種第十四實施例中之控制模式Ε5係爲表示通電控 制模式之一例,係用以將可動桌體1朝向Χ-Υ平面座標 上之第一象限方向(參照第63圖)。 在該控制模式Ε5中,爲同時地使四個之各個被驅動磁 195 1220875 鐵6 A至6 D被通電控制,其通電方向(磁極N、S )係被 固定成於前述各個控制模式E1至E4之情況爲相同。亦 即,被配置在X軸上、Y軸上之正向的被驅動磁鐵6A、6B 係爲,使其對向於各個日字狀之驅動線圈751、752的端 面部分被設定爲N極。此外,被配置在X軸上、Y軸上 之負向的被驅動磁鐵6C、6D係爲,使其對向於各個日字 狀之驅動線圈75 3、754的端面部分被設定爲S極。 此外,在控制模式E5方面,四個之各個日字狀之驅動 線圈75 1至754亦被同時地通電驅動。具體而言,在各個鲁 日字狀之驅動線圈751至754之各個內側線圈邊751a至 7 5 4a部分方面,所形成之通電控制係與同時作動控制模 式E3與E3狀態爲成相等。因此,係同時地產生與前述 控制模式E1、E3之情況爲相同朝向(第63圖之右方與 上方)的電磁驅動力,並且,其合力係如第63圖之控制 模式E5之欄所示,爲被朝向至第一象限之方向。藉此, 爲使前述可動桌體部15朝向X-Y平面座標上之第一象限 的方向來移送。 ® 在此,對於X軸而朝向第一象限方向之移送角度Θ (與 X軸間之角度0 )係爲,藉由個別性地將各個日字狀之驅 動線圈751至75 4以及各個被驅動磁鐵6A至6D之通電 電流的大小進行可變控制,使作用在各個被驅動磁鐵6A 至6D之電磁驅動力進行變化,藉此,係可自由地在任意 方向上進行可變設定。 〈控制模式E6〉 196 1220875 此種控制模式E6係爲,表示用以將可動桌體〗朝向χ-Υ平面座標上之桌二象限方向(與第一象限方向爲相反的 方向)進行移送的通電控制模式之一例(參照第6 3圖)。 在該控制模式Ε6中,爲使四個之被驅動磁鐵6Α至6D 同時地被通電控制,其磁極N、S係全數被設定成與控制 模式E1至E5之情況爲相同狀。 因此,在各個日字狀之驅動線圈7 5 1至7 5 4方面,所 形成之通電控制係與前述控制模式E2與E4同時作動狀 態爲成相等。因此,在各個內側線圈邊7 5 1 a至7 5 4 a部分擎 方面,係同時地產生與前述控制模式E2、E4之情況爲相 同朝向(第63圖之左方與下方)的電磁驅動力,並且, 其合力係如第63圖之控制模式E6之欄所示,爲被朝向至 第三象限之方向。藉此,爲使前述可動桌體部15朝向X-Y平面座標上之第三象限的方向來移送。 在此,對於X軸而朝向第三象限方向之移送角度0係 爲,藉由個別性地將各個日字狀之驅動線圈751至754以 及各個被驅動磁鐵6A至6D之通電電流的大小進行可變® 控制,使作用在各個被驅動磁鐵6A至6D之電磁驅動力 進行變化,藉此,係可自由地在任意方向上進行可變設定。 〈控制模式E7〉 此種控制模式E7係爲,表示用以將可動桌體1朝向X-Y平面座標上之第二象限方向進行移送的通電控制模式之 一例(參照第63圖)。<Control Mode E3> This control mode E3 is an example of the energization control mode used to move the movable table 1 to the positive direction of the Y axis (see FIG. 62). In this control mode E3, the drive coils 75 1 and 7 5 3 in the shape of a Japanese character on the X axis and the driven magnets 6A and 6C installed corresponding thereto are electrically controlled, and the day on the Y axis is controlled. The letter-shaped driving coils 7 5 2 and 7 5 4 and the driven magnets 6 B and 6 D installed corresponding thereto perform energization stop control. 193 1220875 In addition, the energizing directions of the Japanese-shaped driving coils 7 5 1 and 7 5 3 on the X-axis are set as follows, that is, the inner coil side 7 5 1 a of the Japanese-shaped driving coil 7 5 1 On the other hand, in order to be controlled by setting the positive direction of the X axis along the X axis toward the origin 0, the same applies to the inner coil side 75 3 a of the Japanese-shaped driving coil 7 5 3. It is controlled so that the direction from the negative direction of the X axis to the origin along the X axis. In addition, in terms of the driven magnets 6A and 6C, in order to fix the end surface portion facing the inner coil side 75 1 a of the driven magnet 6A on the X axis to the N pole, the same is applied to the X axis. The end face of the aforementioned inner coil side 75 3 a of the driven magnet 6C is fixedly controlled to the S pole. Therefore, in the coil sides 7 5 1 a and 7 5 3 a of the drive wire 7 5 1 and 7 5 3, a specified electromagnetic driving force is generated in the coil sides 7 5 1 a and 7 5 3 a. At the same time, the reaction force (produced to fix the Japanese-shaped driving coils 751 and 753) causes the driven magnets 6A and 6C to be repelled and driven in the direction indicated by the solid arrow (upper in the figure). Based on the balance of the electromagnetic driving forces generated on the two driven magnets 6A, 6C, the movable table body 15 is moved to the positive direction on the Y axis. When the position of the movable table body 15 is shifted, the same corrective action as in the case of the aforementioned control mode E 1 is performed. <Control Mode E4> In this control mode E4, an example of the energization control mode for moving the movable table 1 to the negative direction of the Y axis is shown (refer to FIG. 62). In this control mode E4, the energizing direction of the coil sides 751a, 7 5 3 a of the drive coils 751 and 753 on the X axis is set to be inverse to that in the case of the control mode E3 described above 194 1220875. The point is different. The other systems are the same as those in the aforementioned control mode E3. Therefore, in the coil sides 7 5 1 a and 7 5 3 a of the driving coils 7 5 1 and 7 5 3, the situation of the control mode E3 is reversed by the same principle as that of the foregoing mode E3. The electromagnetic force and its reaction force cause the driving magnets 6A and 6C to be repulsed and driven in the directions indicated by the solid arrows (lower in the figure), thereby generating the two driven magnets 6A, 6A, and 6C. The balance of the electromagnetic driving force on 6C is mainly to move the movable table body 15 to the negative direction on the X axis. When the position of the movable table body 1 is shifted, the same corrective action is performed as in the case of the aforementioned control φ mode B3. Next, Fig. 63 shows an example of each of the power control modes E5 to E8 (characterized objects) to explain the case where the movable table body 15 is oriented in the four quadrant directions on the X_Y plane coordinates. In such a figure 63, in each of the energization control modes E5 to E8, the energization direction of the DC current of each of the Japanese-shaped drive coils 751 to 74 is set to be individually variable controlled. For the current-carrying directions of the four driven magnets (electromagnets), the N or S poles of each magnetic pole® are set so that they do not change frequently regardless of the control mode (fixed state). <Control Mode E5> The control mode E5 in this fourteenth embodiment is an example of a power-on control mode, and is used to orient the movable table 1 in the first quadrant direction on the X-Χ plane coordinates (refer to Figure 63). In this control mode E5, in order to control each of the four driven magnets 195 1220875 iron 6 A to 6 D at the same time, the current direction (magnetic poles N, S) is fixed to each of the aforementioned control modes E1 to The situation is the same for E4. That is, the driven magnets 6A and 6B arranged in the positive direction on the X-axis and the Y-axis are set so that end portions facing the Japanese-shaped driving coils 751 and 752 are set to N poles. In addition, the driven magnets 6C and 6D arranged in the negative direction on the X-axis and the Y-axis are set so that end portions facing the Japanese-shaped driving coils 75 and 754 are S poles. In addition, in the control mode E5, the four Japanese-shaped driving coils 75 1 to 754 are also energized and driven simultaneously. Specifically, in the parts of each of the inner coil sides 751a to 7 5 4a of each of the Luz-shaped driving coils 751 to 754, the energization control system formed is equal to the state of the simultaneous operation control modes E3 and E3. Therefore, the electromagnetic driving force in the same direction (right and upper of Fig. 63) as in the case of the aforementioned control modes E1 and E3 is generated simultaneously, and the resultant force is as shown in the column of control mode E5 in Fig. 63 Is the direction to the first quadrant. In this way, the movable table body 15 is moved in the direction of the first quadrant on the X-Y plane coordinates. ® Here, for the X-axis, the transfer angle Θ (angle 0 with the X-axis) toward the first quadrant is obtained by individually driving the Japanese-shaped drive coils 751 to 75 4 and each being driven. The magnitudes of the energized currents of the magnets 6A to 6D are variably controlled, so that the electromagnetic driving force acting on each of the driven magnets 6A to 6D is changed, whereby the variable setting can be freely made in any direction. <Control mode E6> 196 1220875 This control mode E6 is the energization used to move the movable table body in the direction of the second quadrant of the table on the χ-Υ plane coordinate (the direction opposite to the first quadrant). An example of the control mode (refer to Figure 63). In this control mode E6, in order for the four driven magnets 6A to 6D to be simultaneously energized and controlled, the magnetic poles N and S are all set to be the same as those in the control modes E1 to E5. Therefore, in each of the Japanese-shaped driving coils 7 51 to 7 54, the energization control system formed is equal to the aforementioned control modes E2 and E4. Therefore, in terms of each of the inner coil sides 7 5 1 a to 7 5 4 a, the electromagnetic driving force is generated in the same orientation (left and bottom of Fig. 63) as in the case of the aforementioned control modes E2 and E4. Moreover, as shown in the column of the control mode E6 in FIG. 63, the resultant force is directed to the third quadrant. Therefore, the movable table body 15 is moved in the direction of the third quadrant on the X-Y plane coordinates. Here, the transfer angle 0 of the X-axis toward the third quadrant direction is such that the magnitude of the energized current of each of the Japanese-shaped driving coils 751 to 754 and each of the driven magnets 6A to 6D can be individually adjusted. Variable ® control changes the electromagnetic driving force acting on each of the driven magnets 6A to 6D, so that the system can be freely set in any direction. <Control mode E7> This control mode E7 is an example of an energization control mode used to move the movable table body 1 in the second quadrant direction on the X-Y plane coordinates (refer to FIG. 63).

在該控制模式E7中,爲使四個之被驅動磁鐵6A至6D 197 1220875 同時地被通電控制,其磁極N、S係全數被設定成與控制 模式E 1至E6之情況爲相同的被固定。 在該控制模式E7之情況下,四個之各個日字狀之驅動 線圈75 1至754亦被同時地被通電驅動。具體而言,於各 個日字狀之驅動線圈7 5 1至7 5 4中,在其各個線圈邊7 5 1 a 至754d部分方面,所形成之通電控制係與前述控制模式 E2與E3同時作動狀態爲成相等。 因此,係同時地產生與前述控制模式E2、E4之情況爲 相同朝向(第63圖之左方與上方)的電磁驅動力,並且, 其合力係如第63圖之控制模式E7之欄所示,爲被朝向至 第二象限之方向。藉此,爲使前述可動桌體部15朝向X-Y平面座標上之第二象限的方向來移送。 在此,對於X軸而朝向第二象限方向之移送角度0係 爲,藉由個別性地將各個日字狀之驅動線圈751至75 4以 及各個被驅動磁鐵6A至6D之通電電流的大小進行可變 控制,使作用在各個被驅動磁鐵6A至6D之電磁驅動力 進行變化,藉此,係可自由地在任意方向上進行可變設定。 〈控制模式E8〉 此種控制模式E8係爲,表示用以將可動桌體部1 5朝 向χ-γ平面座標上之第四象限方向(與第一象限方向爲 相反的方向)進行移送的通電控制模式之一例(參照第63 圖)。 在該控制模式E8中,爲使四個之被驅動磁鐵6A至6D 同時地被通電控制,其磁極N、S係被與控制模式E1至E7 198 1220875 之情況爲同樣的被固定。 在此種控制模式E 8之情況下’在各個日字狀驅動線圈 751至754之各個線圈邊751a至754d部分上,係形成爲 與同時作動前述控制模式E 1以及E 4之情形爲同等的通 電控制。因此,爲同時產生與前述控制模式E1、E4之情 況爲相同的朝向(第6 3圖之右方與下方)之電磁驅動力, 並且,其合力係如第6 3圖之控制模式E 8之欄所示,爲被 朝向至第四象限之方向。藉此,爲使前述可動桌體部15 朝向X-Y平面座標上之第四象限的方向來移送。 φ 在此,對於X軸而朝向第四象限方向之移送角度0係 爲,藉由個別性地將各個日字狀之驅動線圈751至754以 及各個被驅動磁鐵6 A至6 D之通電電流的大小進行可變 控制,使作用在各個被驅動磁鐵6A至6D之電磁驅動力 進行變化,藉此,係可自由地在任意方向上進行可變設定。 〈控制模式E9〉 此種控制模式E 9係爲顯示一種通電控制模式之一例, 其係用以將可動桌體1設爲可在X-Y平面上以逆時針方鲁 向(左旋)而旋轉驅動指定角度者(參照第64圖)。 在此種控制模式E9中,日字狀驅動線圏75 1至754與 各個四個之被驅動磁鐵6A至6D爲同時地被通電控制。 在此情況下,被驅動磁鐵6A至6D之磁極N、S係被設定 成與前述E 1至E8之情況爲相同。In this control mode E7, in order to control the four driven magnets 6A to 6D 197 1220875 at the same time, the magnetic poles N and S are all set to be the same as those in the control modes E 1 to E6. . In the case of this control mode E7, the four Japanese-shaped driving coils 75 1 to 754 are simultaneously driven by being energized. Specifically, in each of the Japanese-shaped driving coils 7 5 1 to 7 5 4, in the respective coil sides 7 5 1 a to 754d, the formed energization control system operates simultaneously with the aforementioned control modes E2 and E3. The status is equal. Therefore, the electromagnetic driving force in the same direction (left and top of FIG. 63) as that of the aforementioned control modes E2 and E4 is generated simultaneously, and the resultant force is as shown in the column of control mode E7 in FIG. 63. Is the direction to the second quadrant. Thereby, the movable table body 15 is moved in the direction of the second quadrant on the X-Y plane coordinates. Here, the transfer angle 0 for the X axis toward the second quadrant direction is obtained by individually adjusting the magnitude of the energized current of each of the Japanese-shaped driving coils 751 to 75 4 and each of the driven magnets 6A to 6D. The variable control changes the electromagnetic driving force acting on each of the driven magnets 6A to 6D, whereby the variable setting can be freely made in any direction. <Control mode E8> This control mode E8 is the energization used to move the movable table body 15 toward the fourth quadrant direction (the direction opposite to the first quadrant direction) on the χ-γ plane coordinates. An example of the control mode (refer to Figure 63). In this control mode E8, in order for the four driven magnets 6A to 6D to be energized and controlled simultaneously, the magnetic poles N and S are fixed in the same manner as in the control modes E1 to E7 198 1220875. In the case of such a control mode E 8, the portions of the coil sides 751a to 754d of each of the Japanese-shaped driving coils 751 to 754 are formed to be equivalent to the case where the aforementioned control modes E 1 and E 4 are simultaneously operated. Power on control. Therefore, in order to simultaneously generate the electromagnetic driving force in the same direction (right and bottom of Fig. 63) as in the case of the aforementioned control modes E1 and E4, the resultant force is the same as that of the control mode E8 of Fig. 63 The column indicates the direction to the fourth quadrant. Thereby, the movable table body 15 is moved in the direction of the fourth quadrant on the X-Y plane coordinates. φ Here, the transfer angle 0 for the X axis toward the fourth quadrant direction is obtained by individually energizing the electric current of each of the Japanese-shaped driving coils 751 to 754 and each of the driven magnets 6 A to 6 D. The size is variable controlled so that the electromagnetic driving force acting on each of the driven magnets 6A to 6D is changed, whereby the system can be variably set in any direction freely. <Control mode E9> This control mode E 9 is an example of a power-on control mode. It is used to designate the movable table 1 to rotate in a counterclockwise direction (left-hand) on the XY plane. (See Figure 64). In this control mode E9, the Japanese-shaped driving wires 175 1 to 754 and the four driven magnets 6A to 6D are simultaneously controlled by energization. In this case, the magnetic poles N and S of the driven magnets 6A to 6D are set to be the same as those in the aforementioned cases E1 to E8.

此外,針對日字狀驅動線圈7 5 1至7 5 4,係被通電控制 爲形成如下,即,相對於對應之四個之各個被驅動磁鐵6A 199 至6D,爲使相同位準之指定的力矩(朝向正交於χ軸或 是Y軸方向的旋轉驅動力)爲分別產生在逆時針方向上 (參照第64圖)。 具體而言,在X軸上之驅動線圈75 1之內側線圈邊75 1 a 部分方面,係使通電方向被設定成由X軸上之原點〇方 向朝向正向,而在X軸上之驅動線圈7 5 3之內側線圈邊 7 5 3 a部分方面,係使通電方向被設定控制成由χ軸上之 負向朝向原點〇方向。此外,在Y軸上之驅動線圈752 之內側線圈邊7 5 2a部分方面,係使通電方向被設定成由鲁 Y軸上之原點0方向朝向正向,而在Y軸上之驅動線圈754 之內側線圈邊754a部分方面,係使通電方向被設定控制 成由Y軸上之負向朝向原點0方向。 並且,在各個內側線圈邊751a至75 4a部分方面,通 電電流之大小係被設定爲相同狀,以對於各個被驅動磁鐵 6A至6D獲得輸出有相同之電磁力。 在第64圖中,爲以實線圖示相同位準之指定旋轉力矩。 藉此,在維持被驅動磁鐵6A至6D的可動桌體部1 5方面,鲁 爲形成經由該被驅動磁鐵6A至6D而在指定範圍內於逆 時針方向上進行旋轉驅動。 亦即,在驅動線圈751至754之各個內側線圈邊751a 至754a部分方面,在該線圈邊751a至754a內係產生有 以點線之箭頭所示之電磁驅動力,同時,藉由其反力(爲 了使日字狀之驅動線圈751至75 4被固定在固定平板8所 產生),而使得各個被驅動磁鐵6A至6D爲在於實線之箭 200 1220875 頭所示方向(圖中之逆時針方向)被推斥驅動,以產生在 該四個之各個被驅動磁鐵6 A至6 D之各個電磁驅動力(相 同位準之指定的旋轉力矩)的平衡爲主,使可動桌體部1 5 爲在X-Y平面上(在指定之範圍內)被旋轉驅動於逆時 針方向。 〈控制模式E 1 0〉 此種控制模式E 1 0係爲顯示一種通電控制模式之一例, 其係用以將可動桌體部1 5設爲可在X-Y平面上以順時針 方向(右旋)而旋轉驅動指定角度者(參照第64圖)。 在此種控制模式E10中,日字狀驅動線圈751至754 與各個四個之被驅動磁鐵6 A至6 D係同時地被通電控制。 在此情況下,被驅動磁鐵6A至6D之磁極N、S係被 設定成與前述E1至E9之情況爲相同。 此外,針對日字狀驅動線圈751至754,係被通電控制 爲形成與前述控制模式E 9之情況爲逆向之狀態,即,相 對於對應之四個之各個被驅動磁鐵6A至6D,爲使相同位 準之指定的力矩(朝向正交於X軸或是Y軸方向的旋轉 驅動力)爲分別產生在順時針方向上(參照第64圖)。 在第64圖中,爲以實線來圖是相同位準之指定的旋轉 力矩。藉此’在維持被驅動磁鐵6 A至6 D的可動桌體部1 5 方面’爲形成經由該被驅動磁鐵6A至6D而在指定範圍 內於逆時針方向上進行旋轉驅動。 亦即,在驅動線圈7 5 1至7 5 4之各個內側線圈邊7 5 1 a 至754a部分方面,在該線圈邊751a至754a內係產生有 201 l22〇875 以點線之箭頭所示之電磁驅動力,同時,藉由其反力(爲 了使日字狀之驅動線圈751至7 5 4被固定在固定平板8所 產生),而使得各個被驅動磁鐵6A至6D爲在於實線之箭 頭所示方向(圖中之順時針方向)被推斥驅動,以產生在 該四個之各個被驅動磁鐵6A至6D之各個電磁驅動力(相 同位準之指定的旋轉力矩)的平衡爲主,使可動桌體部1 5 爲在X-Y平面上(在指定之範圍內)被旋轉驅動於順時 針方向。 有關於其他的構造以及其動作、機能,係形成爲略與φ 前述第十一實施例之情況相同。 即使是藉由如此,除了可獲得與前述第十一實施例之 情況爲同等之作用效果以外,更在此種第十四實施例中, 爲獲得將藉由前述電磁驅動裝置所輸出之各個電磁驅動力 輸出至對於X軸或Y軸正交的方向、且進行旋轉之方向, 因此,無須另外裝設新的旋轉驅動裝置,而具有形成對於 可動桌體部爲可在指定角度內進行旋轉驅動的優點,更可 提高其泛用性。 · 此外,在前述第十四實施例中,於進行可動桌體部15 的移送方向之設定之際,係例示區分成E 1至E 1 0之控制 模式來將電磁驅動裝置1 45進行驅動控制的情況,不過, 例如在控制模式E2中,倘若具有同等於將被驅動磁鐵6A 至6D之各個通電方向設爲與控制模式E1爲逆向、且將 驅動線圈751、7 5 3之通電方向設定爲與控制模式E1之情 況下爲相同等的機能時,亦可採用其他的驅動控制方法來 202 1220875 將電磁驅動裝置1 45進行驅動控制。 此外,於前述第十四實施例中,亦可置換被驅動磁鐵6A 至6D之裝設處與日字狀之驅動線圈751至754之裝設處。 此種情況係形成爲,使被驅動磁鐵6 A至6 D被裝設在固 定件側,且使日字狀之驅動線圈751至754被裝設在可動 件側。 再者,在前述實施例中,雖然例示將被驅動磁鐵6A至 6D以電磁鐵所構成之情況,不過,亦可將被驅動磁鐵6A 至6D分別以永久磁鐵來構成。 藉由將該種被驅動磁鐵6A至6D分別設爲永久磁鐵而 無須該被驅動磁鐵6A至6D周圍之電氣性的配線,係可 減小被驅動磁鐵6A至6D之裝設處的空間區域。從而, 由於其量額而形成爲可達到裝置整體之小型輕量化,且可 達到生產性以及可維修性之提昇的目的,相較於將被驅動 磁鐡6A至6D作爲電磁鐡的情況,係由於無須其通電驅 動,故而可大幅度的抑制整體性地消費電力。藉此,係可 大幅度的減低裝置整體之經營成本(running cost),而在 電磁驅動裝置4之驅動控制之際,係僅進行多數之各個驅 動線圏751至7 5 4之通電方向的切換控制,便可將可動桌 體1移送驅動至任意的方向。從而,在可動桌體1之移動 方向之切換時,係形成爲可迅速地進行回應,且形成爲均 無被驅動磁鐵6A至6D之斷線等事故的產生,因此,爲 具有大幅度的提昇裝置整體之耐久性的優點。 〔第十五實施例〕 203 1220875 其次,基於第65圖至第70圖說明第十五實施例。 在此種第十五實施例中,其特徵爲具備有已裝設其他 之電磁驅動裝置1 4 6 (參照第3 5圖)以替代在前述第十 三實施例中之電磁驅動裝置1 44 (參照第24圖)之特點。 具體而言,在本實施例中之電磁驅動裝置1 46係具備 有下述構造上之特徵,即,將在前述第十三實施例中之電 磁驅動裝置1 44之四個方形驅動線圈以及與其對應而裝設 之各個被驅動線圈在分別於各個方形驅動線圈上成90 °旋 轉之狀態下來配置、裝設。藉此,無須裝設全新之其他的鲁 旋轉驅動裝置,所實現之特點係爲朝任意方向之移動、同 時對於可動桌體部15爲在同一面上之旋轉驅動之動作上 的特徵。 此外,爲具有取代前述動作控制系統206,而裝設有用 以使該電磁驅動裝置1 46效率爲佳地進行動之動作控制系 統204之點的特徵。 以下,將其進行詳細之說明。 首先,該種第十五實施例係爲,與前述第十三實施例鲁 之情況相同的,爲具備有:精密作業用之可動桌體部1 5, 爲在同一面上被配設成可於任意之方向進行移動者;桌體 維持機構2,爲容許該種可動桌體部1 5之移動,同時維 持該可動桌體部15,並且具備有對於該可動桌體部15之 恢復原始位置之機能;外殻本體3,係作爲支撐該桌體維 持機構2的本體部;電磁驅動裝置1 46,係被裝設在該外 殻本體3側,且因應於來自外部的指令而將朝向指定方向 204 1220875 之移動力賦予至可動桌體部15。 在此,可動桌體部1 5係構成如下,即··精密作業用之 可動桌體1 ;以及輔助桌體5,爲對應於該種可動桌體1 而隔有指定間隔’以平行、且在同一中心軸上呈~體狀的 配置。並且,如第6 5圖所示,桌體維持機構2係被裝設 在輔助桌體5側,係構成爲經由該輔助桌體5而維持前述 可動桌體1。 《有關於電磁驅動裝置146》 電磁驅動裝置1 46係爲,使其主要部被維持在外殼本馨 體3側,而具備有下述機能,即,因應來自外部之指令, 將指定之移動力(驅動力)沿著該可動桌體部1 5之移送 方向而賦予至前述可動桌體部1 5。此種電磁驅動裝置1 4 6 係被配設在前述可動桌體1與輔助桌體5之間。 具體而言,該種電磁驅動裝置1 46係具備有:形成爲 四角形之四個之方形驅動線圈7 6 1、7 6 2、7 6 3、7 6 4 ;各 個八個之被驅動磁鐵6A、16A、6B、16B、6C、16C、6D、 1 6D,係個別地對應於平行於位在與該各個方形驅動線圈鲁 76 1至764之X軸或Y軸之位置的平行線圈邊761a、761b、 762a、 762b、 763a、 763b、 764a、 764b (符號係爲依序以 逆時針方向付與在第65圖中);固定平板8,爲將前述各 個方形驅動線圈761至764維持在指定位置上。In addition, the Japanese-shaped driving coils 7 5 1 to 7 5 4 are energized and controlled to be formed as follows, that is, for the corresponding four driven magnets 6A 199 to 6D, the designated Moments (rotational driving forces in directions orthogonal to the χ-axis or Y-axis) are generated in the counterclockwise directions, respectively (see FIG. 64). Specifically, in terms of the inner coil side 75 1 a of the driving coil 75 1 on the X axis, the energization direction is set so that the direction from the origin 0 on the X axis is directed to the positive direction, and the driving on the X axis is performed. The inner coil side 7 5 3 a of the coil 7 5 3 is partially controlled such that the energizing direction is set so that the negative direction on the x-axis is oriented toward the origin 0 direction. In addition, in the part of the inner coil side 7 5 2a of the driving coil 752 on the Y axis, the energizing direction is set to be positive from the origin 0 direction on the Y axis, and the driving coil 754 on the Y axis Part of the inner coil side 754a is such that the direction of energization is set and controlled so that the negative direction on the Y-axis is directed toward the origin 0 direction. In addition, in each of the inner coil sides 751a to 75 4a, the magnitude of the electric current is set to be the same to obtain the same electromagnetic force for each of the driven magnets 6A to 6D. In Fig. 64, the specified rotation moments at the same level are shown in solid lines. Thereby, in order to maintain the movable table body portion 15 of the driven magnets 6A to 6D, Lu is driven to rotate in a counterclockwise direction within a specified range via the driven magnets 6A to 6D. That is, with respect to each of the inner coil sides 751a to 754a of the drive coils 751 to 754, an electromagnetic driving force indicated by a dotted arrow is generated in the coil sides 751a to 754a, and at the same time, by the reaction force (In order to make the Japanese-shaped driving coils 751 to 75 4 fixed to the fixed flat plate 8), so that each driven magnet 6A to 6D is in the direction shown by the solid arrow 200 1220875 (counterclockwise in the figure) Direction) is driven by repulsion, and the balance of each electromagnetic driving force (specified rotation torque at the same level) generated in the four driven magnets 6 A to 6 D is mainly used to make the movable table body 1 5 To be rotated in the counterclockwise direction on the XY plane (within a specified range). <Control mode E 1 0> This control mode E 1 0 is an example of a power-on control mode. It is used to set the movable table body 15 to be clockwise (right-handed) on the XY plane. And the person who rotates and drives the designated angle (refer to Fig. 64). In this control mode E10, the Japanese-shaped driving coils 751 to 754 and the four driven magnets 6 A to 6 D are simultaneously controlled by energization. In this case, the magnetic poles N and S of the driven magnets 6A to 6D are set to be the same as those in the aforementioned cases E1 to E9. In addition, the Japanese-shaped driving coils 751 to 754 are controlled by being energized so as to be in a state opposite to the case of the aforementioned control mode E 9, that is, with respect to the corresponding four driven magnets 6A to 6D, The specified moments (rotational driving forces that are orthogonal to the X-axis or Y-axis direction) at the same level are generated in the clockwise directions, respectively (see Figure 64). In Fig. 64, the specified rotational torque is shown at the same level as the solid line. Thereby, 'the movable table body portion 15 in which the driven magnets 6 A to 6 D are maintained' is formed so as to be rotated in a counterclockwise direction within a specified range via the driven magnets 6A to 6D. That is, with respect to each of the inner coil sides 7 5 1 a to 754a of the drive coils 7 5 1 to 7 5 4, 201 1222875 are generated in the coil sides 751a to 754a as indicated by dotted arrows. At the same time, the electromagnetic driving force is generated by the reaction force (in order to make the Japanese-shaped driving coils 751 to 7 5 4 fixed to the fixed plate 8), so that each of the driven magnets 6A to 6D is an arrow lying in a solid line. The direction shown (clockwise in the figure) is repulsed and driven, mainly based on the balance of the electromagnetic driving forces (designated rotational moments at the same level) generated in the four driven magnets 6A to 6D. The movable table body 15 is driven to rotate clockwise on the XY plane (within a specified range). Regarding the other structures and their operations and functions, they are formed to be slightly the same as those in the eleventh embodiment described above. Even in this case, in addition to obtaining the same effect as the case of the eleventh embodiment described above, in this fourteenth embodiment, in order to obtain the electromagnetic signals that will be output by the electromagnetic driving device described above, The driving force is output to a direction orthogonal to the X-axis or Y-axis, and the direction of rotation is not required. Therefore, it is not necessary to install a new rotation driving device, and it is formed to rotate the movable table body within a specified angle. The advantages can also improve its versatility. In addition, in the fourteenth embodiment described above, when setting the moving direction of the movable table body portion 15, the control mode divided into E 1 to E 1 0 is exemplified to drive and control the electromagnetic driving device 1 45 However, for example, in the control mode E2, if the energization directions of the driven magnets 6A to 6D are set to be opposite to the control mode E1, and the energization directions of the drive coils 751 and 7 53 are set to When the function is the same as in the case of the control mode E1, other driving control methods may be used to control the electromagnetic driving device 1 45 by 202 1220875. In addition, in the aforementioned fourteenth embodiment, the installation place of the driven magnets 6A to 6D and the installation place of the Japanese-shaped driving coils 751 to 754 may be replaced. In this case, the driven magnets 6 A to 6 D are mounted on the fixed member side, and the Japanese-shaped driving coils 751 to 754 are mounted on the movable member side. Moreover, in the foregoing embodiment, although the case where the driven magnets 6A to 6D are constituted by electromagnets is exemplified, the driven magnets 6A to 6D may be constituted by permanent magnets, respectively. By setting the driven magnets 6A to 6D as permanent magnets respectively, the electrical wiring around the driven magnets 6A to 6D is not required, and the space area where the driven magnets 6A to 6D are installed can be reduced. Therefore, due to its amount, it can be made small and light as a whole, and can improve the productivity and maintainability. Compared to the case where the driven magnetic cymbals 6A to 6D are used as electromagnetic cymbals, Because it is not required to be driven by electricity, it can greatly suppress the overall power consumption. This can greatly reduce the overall running cost of the device. In the drive control of the electromagnetic drive device 4, only the majority of the drive lines 圏 751 to 7 5 4 are switched. By controlling, the movable table body 1 can be driven and driven to any direction. Therefore, when the moving direction of the movable table body 1 is switched, it is formed to be able to respond quickly, and is formed so that no accidents such as disconnection of the driven magnets 6A to 6D occur, so it has a significant improvement Advantages of overall durability of the device. [Fifteenth embodiment] 203 1220875 Next, a fifteenth embodiment will be described with reference to Figs. 65 to 70. Figs. This fifteenth embodiment is characterized by being provided with other electromagnetic driving devices 1 4 6 (refer to FIG. 35) in place of the electromagnetic driving device 1 44 in the aforementioned thirteenth embodiment ( (See Figure 24). Specifically, the electromagnetic driving device 1 46 in this embodiment is provided with the following structural features, that is, the four square driving coils of the electromagnetic driving device 1 44 in the foregoing thirteenth embodiment and the Each driven coil installed correspondingly is arranged and installed in a state where each square driving coil is rotated by 90 °. Thereby, it is not necessary to install a brand-new other Rotary rotary driving device, and the characteristics realized are the movement in any direction and the movement of the movable table body 15 on the same plane. In addition, in order to replace the aforementioned operation control system 206, an operation control system 204 is provided to make the electromagnetic drive device 146 operate efficiently. This will be described in detail below. First of all, this fifteenth embodiment is the same as that of the thirteenth embodiment described above, and is provided with a movable table body portion 15 for precision work, and is arranged on the same surface so as to be movable. Those who move in any direction; the table body maintenance mechanism 2 allows the movable table body portion 15 to move while maintaining the movable table body portion 15 and is provided with a restored original position of the movable table body portion 15 The function of the housing body 3 is to support the main body maintenance mechanism 2 of the table; the electromagnetic driving device 1 46 is installed on the side of the housing body 3, and will be directed in accordance with an instruction from the outside. A moving force in the direction 204 1220875 is imparted to the movable table body 15. Here, the movable table body 15 is constituted as follows: that is, the movable table body 1 for precision work; and the auxiliary table body 5 corresponding to the movable table body 1 with a specified interval 'parallel, and Arranged in the shape of a body on the same central axis. As shown in Figs. 6 and 5, the table maintenance mechanism 2 is installed on the side of the auxiliary table 5 and is configured to maintain the movable table 1 via the auxiliary table 5. << About the electromagnetic drive device 146 >> The electromagnetic drive device 1 46 is to maintain the main part on the side of the shell body 3, and has the following function, that is, in accordance with an external command, the specified moving force (Driving force) is given to the movable table body 15 along the moving direction of the movable table body 15. Such an electromagnetic driving device 1 4 6 is disposed between the movable table body 1 and the auxiliary table body 5. Specifically, the electromagnetic drive device 1 46 is provided with four square drive coils 7 6 1, 7 6 2, 7 6 3, 7 6 4 formed in a quadrangle, and eight driven magnets 6A, 16A, 6B, 16B, 6C, 16C, 6D, and 16D respectively correspond to parallel coil sides 761a, 761b that are parallel to the X-axis or Y-axis of the square drive coils 76 1 to 764. , 762a, 762b, 763a, 763b, 764a, 764b (symbols are sequentially given in the counterclockwise direction in Figure 65); the fixed flat plate 8 is used to maintain the aforementioned square drive coils 761 to 764 at a specified position .

前述各個方形驅動線圈761至764係爲,使對象之兩 個邊爲各個地配設在X軸上、Y軸上,用以將固定平板8 上之中央部作爲原點而正交於所假定之X-Y平面上之X 205 1220875 軸或是γ軸。 此外’合計八個之各個被驅動磁鐵6Α至6D、16Α至16D 係爲’以可由外部進行通電控制的電磁鐵所構成,而分別 個別地配設對應於平行於前述各個方形驅動線圈之X軸 或是Υ軸的線圈邊761a至764a以及外側線圈邊761b至 764b之中央區域。 固定平板8係如第65圖所示,係配維持在配設於前述 輔助桌體5之可動桌體1側的前述外殼本體3上。在此, 藉由前述方形之各個驅動線圈761至764與固定平板8, 而構成作爲前述電磁驅動裝置1 46之主要部的固定件部 分。 並且,各個方形驅動線圈761至764係爲,當在設定 爲作動狀態後,在與前述各個被驅動磁鐵6A至6D、1 6A 至1 6D之間爲產生有電磁驅動力,該電磁驅動力係爲在 將該各個被驅動磁鐵6A至6D、16A至16D正交於各個線 圈邊761a至764a、764b至764b之方向上進行推斥驅動。 在此情況下,各個被驅動磁鐵6 A至6 D、1 6 A至1 6 D之移 動方向的中心軸線係被設定成正交於前述X軸或是Y軸。 此外,在未正交於各個線圈邊761a至764a、761b至764b 之方向(傾斜於各個線圈邊761a至764a、761b至764b 之方向)上移動前述可動桌體部1 5的情況下,爲如後述, 具有相對於施加於至少具有對於兩個以上之方形驅動線圈 761、762、763或764之各個被驅動磁鐵的電磁驅動力之 合力,形成爲可實施該可動桌體部15之移送。 206 1220875 構成電磁驅動裝置1 46之局部的八個之被驅動磁鐵6A 至6D、16A至16D係爲,在本實施例中係如第66圖所示, 磁極之端面(各個驅動線圈7 6 1至7 6 4之各個線圈邊7 6 1 a 至764a、76 1b至764b間之對向面)爲以四角形之電磁鐵 所形成,在被假定在輔助桌體5之上面的X-Y平面上, 爲分別被配設、固著在由中心部爲成等距離之位置的X 軸上以及Y軸上。 並且,在本實施例中,例如爲使指定之作動電流在八 個之被驅動磁鐵6A至6D、16A至16D之局部或是全部進_ 行通電,而使各個被驅動磁鐵6A至6D、16A至16D被設 定成作動狀態,之後、或是同時的依據後述之指定的控制 模式,開始各個方形驅動線圈761至764被設定在作動狀 態下之通電。並且,包含各個驅動線圈761至764之各個 被驅動磁鐵6A至6D、16A至16D的磁性力大小爲藉由通 電控制所調整,藉此,爲使前述可動桌體部1 5移送至指 定的方向。 在此情況下,針對於有關相對於可動桌體部1 5之移送® 方向以及其移送驅動力的電磁驅動裝置1 46的作動(相對 於各個驅動線圈761至764與八個之被驅動磁鐵6A至 6D、16A至16D之通電驅動)’爲藉由弟67圖至第69圖 進行詳述。 在此情況下,於該種第十五實施例中’由於以電磁鐵 所形成之前述八個之被驅動磁鐡6A至6D、16A至16D之 通電方向爲如後所述地被預先特別指定’因此’在八個方 207 1220875 形驅動線圈761至764之各個內側線圈邊761a至764a、 外側線圏邊761b至764b部分的通電方向以及通電電流之 大小(包含通電停止控制),係對應於前述可動桌體1之 移送方向而藉由後述之動作控制系統20 6所設定控制。藉 此,相對於被驅動磁鐵6A至6D、16A至16D,爲依據夫 來明(Fleming )之左手定律,係可輸出朝指定之方向(分 別正交於內側線圈邊761a至764a、761b至764b之部分 的方向)按壓的電磁力(反力)。 此外,藉由預先選擇組合在該八個之被驅動磁鐵6A至春 6D、16A至16D上產生之電磁力的方向,係形成爲可將 在該八個之被驅動磁鐵6A至6D、16A至16D上產生之電 磁驅動力的合力配合於前述可動桌體部1 5之移送方向, 而可將該可動桌體部15朝向X-Y軸平面上之任意方向而 賦予移動力。 有關對於該等八個被驅動磁鐵6A至6D、16A至16D 之一連串的通電控制之手法,係在後述之程式記憶部226 之說明處(第68圖、第70圖)中進行詳述。 ® 在此,於前述各個方形驅動線圈761至764之同一面 上之外側以及內側之中,在至少與該各個驅動線圈76 1至 7 64之高度(Y軸方向)爲相同高度、且包含有前述被驅 動磁鐵6A至6D、16A至16D之動作範圍內的範圍中,亦 可充塡裝設有肥粒鐵等磁性材料。 《有關於動作控制系統206》 其次,針對在該種第十五實施例中之動作控制系統206 208 1220875 來詳細說明。 在該種第十五實施例中,亦可將動作控制系統 設於電磁驅動裝置1 64中(參照第67圖),該控制 統206係爲各別性地將前述各個方形驅動線圈761 以及八個之各個被驅動磁鐵6A至6D、16A至16D 電控制、限制前述可動桌體部1 5之移動動作。 該種動作控制系統206係具有下述機能,即: 別設定機能,爲個別性地設定、維持對應於前述各 驅動線圈761至764所裝設之八個被驅動磁鐵6A ΐ 16Α至16D的磁極Ν、S ;磁力強度設定機能,爲 地將該種各個被驅動磁鐵6Α至6D、16Α至16D之 度進行可變設定(藉由設定而獲得將通電電流進行ί 通電方向設定機能,爲將與前述各個方形驅動線圈 764之前述X軸或Υ軸交叉部分的線圈邊761a、 762a、 762b、 7 63a、 763b、 7 64a、 764b g|3 ^ 0¾ S 於指定方向(一方或是另一方)而因應於來自外部 而進行設定、維持;驅動線圈通電控制機能,爲將 種各個方形驅動線圈7 6 1至7 6 4之通電電流之大小 變設定;且具備有桌體動作控制機能,爲將該等諸 之輸出一面進行適當的調整、依面則對於前述可動 15進行移送方向以及移送力的調整。 並且,該種動作控制系統206係爲,爲了實施 項機能,而如第66圖所示,爲具備有:桌體驅動 置216,爲將前述電磁驅動裝置146之各個方形驅 206倂 動作系 至764 進行通 磁極個 個方形 巨 6D、φ 個別性 磁力強 Ϊ變); 761至 761b、 電方向 的指令 朝向該® 進行可 項機能 桌體部 前述諸 控制裝 動線圈 209 1220875 76 1至764以及八個之被驅動磁鐵6A至6D、16A至16D 依據指定之控制模式來個別地進行驅動,而將前述可動桌 體部1 5於指定之方向上進行移動控制;程式記億部226, 爲記憶有多數之控制程式,該控制程式係有關於一種多數 之通電控制模式(在本實施例中,係爲F1至F1 0之十個 通電控制模式),該模式爲以倂設在該桌體驅動控制裝置 216之前述可動桌體1之移動方向以及其動作量等所特別 指定;資料記憶部23,爲記憶有在該等各個控制程式之 實施之際所使用的指定之資料等。 此外,在桌體驅動控制裝置2 1 6中,係倂設有動作指 令輸入部24,係下達對於各個方形驅動線圈761至764 以及八個之被驅動磁鐵6A至6D、16A至16D的指定之控 制動作之指令。再者,於此種桌體驅動控制裝置2 1 6之中, 前述可動桌體1之移動中以及移動後的位置資訊係形成爲 送入、且以藉由前述位置檢測感測機構25所檢測出之後 述高感度狀地進行演算處理。 並且,前述動作控制系統206所具有之各種的控制機 能,係形成爲總合性地被包含在前述程式記憶部226之多 數之通電控制模式F 1至F 1 0中,以操作員經由動作指令 輸入部24所輸入之指令,基於其所選擇之控制模式F 1至 F 1 0中之任何模式來進行動作、實施。 將其進行更加詳細的說明。 有關本實施例之桌體驅動控制裝置2 1 6係爲,具備有: 主要控制部2 1 6A,爲基於來自動作指令輸入部24之指令 210 1220875 而進行作動,由程式記憶部226選擇指定之控制模式,在 前述方形驅動線圈76 1至764以及八個之各個被驅動磁鐵 6Ag 6D、16A至16D中爲進行包含有零之指定之直流電 流的通電控制;線圈選擇驅動控制部2 1 6B ’爲依據在該 主要控制部2 1 6 A中所選擇設定之指定的通電控制模式(F 1 至F 1 0 ),以同時或是個別地驅動控制方形驅動線圈7 6 1 至764以及八個之各個被驅動鐵6A至6D、16A至16D 中〇 此外,主要控制部2 1 6 A係亦同時兼具有下述之機能, 該機能係爲,基於來自檢測桌體位置之位置檢測感測機構 2 5的輸入資訊,而計算前述可動桌體部1 5之位置、或是 進行其他各種的演算。在此,符號4G所示係爲在前述電 磁驅動裝置146之各個方形驅動線圈761至764以及八個 之各個被驅動磁鐵6A至6D、16A至16D中通電有指定之 電流的電源電路部。 《有關於程式記憶部226》 前述桌體驅動控制裝置2 1 6係被構成如下,即,依據 在程式記憶部226中所預先記憶之指定的通電控制程式 (用以實施指定之通電控制模式的程式),使前述電磁驅 動裝置146之各個方形驅動線圈761至764以及八個之各 個被驅動磁鐵6A至6D、16A至16D具有指定之關聯性, 進而個別地進行驅動控制。 亦即,在有關本實施例之程式記憶部226中,爲記憶 有*下述程式,即:多數之磁鐵用控制程式,爲將前述八個 211 1220875 之各個被驅動磁鐵(電磁鐵)6A至6D、16A至16D之通 電方向進行個別地特別指定,而在特別指定磁極之N極 或是S極的同時,可個別性地將包含通電停止之通電電流 的大小進行可變設定;驅動線圈用控制程式,係在當該種 八個之各個被驅動磁鐵(電磁鐵)6A至6D、16A至16D 之通電方向被特別指定之情況下作用其機能,將與其對應 而對於四個之各個方形驅動線圈761至764的通電方向以 及其通電電流之大小進行可變設定。 同時,該等各個控制程式之動作時序係被整理、記憶 在十組之通電控制模式F1至F10 (參照第68圖、第70 圖)。 在此,針對在該種十組的控制模式F1至F 1 0,基於第 68圖至第7 0圖進行說明。 在第68圖中,爲朝向X軸之正向或負向、或是朝向Y 軸之正向或負向,表示分別移送可動桌體部1 5之情況下 的各個通電控制模式F 1至F4之一例(已圖表化之物)。 在該第68圖中,於各個通電控制模式F1至F4方面, 係被設定成個別性地將對於各個方形驅動線圈761至764 的直流電流之通電方向進行可變控制。此外,針對於八個 之各個被驅動磁鐵(電磁鐵)之通電方向,各個磁極之N 極或是S極係被設定成無論控制模式不同卻仍不致經常地 產生變化(已固定之狀態)之狀態。 亦即,在此種第十五實施例中,爲將對向於八個之各 個被驅動磁鐵6 A至6 D、1 6 A至1 6 D之前述方形驅動線圈 212 1220875 76 1至764的端面部之磁極分別設定控制成如下,即,在 被動驅動磁鐵6A至6D方面爲設定成N極,在被驅動磁 鐵16A至16D方面則設定成S極。。並且,在該種第十 五實施例中,已設定爲如上述之各個磁極N、S係爲,即 使是控制模式F 1至F4形成相異,亦被設定控制爲已固定 之狀態。 〈控制模式F 1〉 此種控制模式F1係表示用以將可動桌體1移送至X軸 之正的方向之通電控制模式之一例(參照第68圖)。 鲁 在此種控制模式F 1中,爲使Y軸上之各個方形驅動線 圈7 62、7 64以及與其對應之各個被驅動磁鐵6B、16B以 及6D、16D進行通電控制,X軸上之各個方形驅動線圈 76 1、763以及與即對應之各個被驅動磁鐵6A、16A以及 6C、16C係成爲被控制成停止通電。 在此,已對應於Y軸上之方形驅動線圈7 6 2、7 64之被 驅動磁鐵6B、6D係使對向於前述各個線圈邊762a、764a 之被驅動磁鐵6B、6D之端面部被固定控制成N極,且使鲁 對向於線圈邊762b、764b之被驅動磁鐵16B、16D之端 面部被固定控制成S極。 此外,相對於Y軸上之各個方形驅動線圈762、764的 通電方向係分別被設定如下,即,相對於方形驅動線圈762 爲設定成順時針方向(右旋),此外,相對於方形驅動線 圈7 64爲設定成逆時針方向(左旋)。 因此,在各個方形驅動線圈762、764之各個線圈邊 213 1220875 7 62a、762b、764a、764b部份中,爲產生於點線之箭頭 所示方向的電磁驅動力,同時,以該反力(爲了使方形驅 動線圈762、764被固定所產生)而使得被驅動磁鐵6B、 16B、6D、16D於實線之箭頭所示方向(圖中之右方)被 推斥驅動。 並且,以產生在該種四個之被驅動磁鐵6B、16B、6D、 16D的電磁驅動力之平衡爲主,使前述可動桌體部15圓 滑地被移送至X軸上之正的方向。 〈控制模式F2〉 此種控制模式F2係表示用以將可動桌體1移送至X軸 之負的方向之通電控制模式之一例(參照第6 8圖)。 在此種控制模式F2中,將Y軸上之方形驅動線圈762、 764之線圈邊762a、762b、764a、764b部份的通電方向 設定在相較於前述控制模式F1的情況係以成相逆之點爲 不同處。其他係與前述控制模式F 1之情況形成相同。 因此,在驅動線圈7 62、764之各個線圈邊762a、762b、 7 64a、7 64b部份中,藉由與前述模式F1之情況相同的原 理而產生與控制模式F 1之情況爲逆向的電磁力(點線之 箭頭),其反力爲使該驅動磁鐵6B、16B以及6D、16D分 別被推斥驅動在實線之箭頭所示方向(圖中之左方),藉 此’以產生在該等兩個被驅動磁鐵6B、6D上之電磁驅動 力的均衡爲主,使可動桌體15移送至X軸上之負向。 〈控制模式F 3〉 此種控制模式F3係表示用以將可動桌體1移送至γ軸 214 1220875 之正的方向之通電控制模式之一例(參照第6 8圖)。 在該控制模式F3中,爲使X軸上之各個方形驅動線圈 76 1、7 6 3以及與其對應而所裝設的被驅動磁鐵6A、16A 以及6 C、1 6 C進行通電控制,且使Y軸上之各個方形驅 動線圈762、764以及與其對應而所裝設的被驅動磁鐵6B、 16B以及6D、16D進行通電停止控制。 在此,已對應於X軸上之方形驅動線圈7 6 1的被驅動 磁鐵6 A、1 6 A之內,爲使對向於前述線圈邊7 6 1 a之被驅 動磁鐵6A之端面部被固定控制成N極,且使對向於線圈肇 邊761b之被驅動磁鐵16A之端面部被固定控制成S極。 同樣的,已對應於X軸上之方形驅動線圈7 63的被驅 動磁鐵6C、16C之內,爲使對向於前述線圈邊763 a之被 驅動磁鐵6C之端面部被固定控制成N極,且使對向於線 圈邊763b之被驅動磁鐵16C之端面部被固定控制成S極。 此外,相對於X軸上之各個方形驅動線圈76 1、763之 通電方向係分別被設定如下,即,對於方形驅動線圈76 1 爲設定成逆時針方向(左旋),此外,對於方形驅動線圈鲁 763爲設定成順時針方向(右旋)。 因此,在方形驅動線圈761、763之各個線圈邊761a、 761b、763 a、763b部份中,爲產生於點線之箭頭所示方 向的電磁驅動力,同時,以該反力(爲了使方形驅動線圈 76 1、7 6 3被固定所產生)而使得被驅動磁鐵6A、16A以 及6C、16C於實線之箭頭所示方向(圖中之上方)被推 斥驅動,以產生在該種四個之被驅動磁鐵6 A、1 6 A以及 215 1220875 6 C、1 6 C的電磁驅動力之平衡爲主,使可動桌體部1 5被 移送至Y軸上之正向。 〈控制模式F4〉 在該種控制模式F4係表示用以將可動桌體丨移送至γ 軸之負的方向之通電控制模式之一例(參照第6 8圖)。 在此種控制模式F 4中,將X軸上之方形驅動線圈7 6 1、 763之各個線圈邊761a、761b、763a、763b部份的通電 方向設定在相較於前述控制模式F3的情況係以成逆向之 點爲不同處。其他係與前述控制模式F3之情況形成相同。 因此,在驅動線圈7 6 1、7 6 3之線圈邊7 6 1 a、7 6 1 b、7 6 3 a、 7 6 3b部份中,藉由與前述控制模式F3之情況相同的原理 而產生有逆向之(相反方向之)電磁驅動力(點線之箭頭), 以該反力而使得被驅動磁鐵6 A、1 6 A以及6 C、1 6 C分別 於實線之箭頭所示方向(圖中之左方)被推斥驅動,藉此, 使可動桌體部15被移送至X軸上之負向。 接著,在第68圖中所示係爲說明將可動桌體部15分 別朝向X-Y平面座標上之四個象限方向之情況的各個通 電控制模式F5至F8之一例(已圖表化之物)。 在第68圖中,於各個通電控制模式F5至F8中,爲與 前述各個控制模式F5至F8之情況爲相同的,係將對於各 個方形驅動線圈761至764之直流電流的通電方向設定成 以個別性地進行可變控制,針對於八個之各個被驅動磁鐵 (電磁鐵)之通電方向,則是與前述各個控制模式F 1至 F4之情況爲相同的,使各個磁極之N極或是S極被設定 216 1220875 成即使控制模式相異仍不致經常地產生變化(已固定之狀 態)。 〈控制模式F 5〉 在此種控制模式F5係爲表示通電控制模式之一例,係 用以將可動桌體1朝向X-Y平面座標上之第一象限方向 (參照第69圖)。 在該控制模式F 5中,係被設定成爲同時地使八個之各 個被驅動磁鐵6A至6D、16A至16D被通電控制之狀態, 其通電方向(磁極N、S之設定)係被固定成於前述各個鲁 控制模式F 1至F4之情況爲相同。 亦即,對應於位在X軸上、Y軸上之各個方形驅動線 圈761至764之線圈邊761a至764a所裝設的各個被驅動 磁鐵6A至6D係爲,使對向於其各個線圈邊761a至764a 的端面部分爲分別設定成N極。此外,對應於位在X軸 上、Y軸上之各個方形驅動線圈761至764之線圈邊761b 至762b所裝設的各個被驅動磁鐵16A至16D係爲,使對 向於其各個線圈邊761b至764b的端面部分爲分別設定成® S極。 並且,在前述方形驅動線圈761至764之各個線圈邊 761a、 761b、 762a、 762b、 763a、 763b、 764a、 764b 部分 方面,所形成之通電控制係與同時作動控制模式F 1與F3 狀態爲成相等。因此,係同時地產生與前述控制模式F 1、 F 3之情況爲相同朝向(X軸之正向與Y軸之正向)的電 磁驅動力,其合力係如第68圖之控制模式F5之欄所示, 217 1220875 爲被朝向至第一象限之方向。藉此’爲使前述可動桌體部 1 5朝向X-Y平面座標上之第一象限的方向來移送。 在此,對於X軸而朝向第一象限方向之移送角度Θ (與 X軸間之角度β )係爲,藉由個別性地將各個方形驅動線 圈761至764以及各個被驅動磁鐵6Α至6D、16Α至16D 之通電電流的大小進行可變控制,使作用在各個被驅動磁 鐵6Α至6D之電磁驅動力進行變化,藉此,係可自由地 在任意方向上進行可變設定。 〈控制模式F6〉 此種控制模式F6係爲,表示用以將可動桌體1朝向X-Υ平面座標上之第三象限方向(與第一象限方向爲相反的 方向)進行移送的通電控制模式之一例(參照第69圖)。 在該控制模式F6中,爲使八個之被驅動磁鐵6Α至6D、 16Α至16D同時地被通電控制,其磁極Ν、S係全數被設 定成與控制模式F 1至F5之情況爲相同狀。 因此,在各個方形驅動線圈761至764之各個線圈邊 761a、 761b、 762a、 762b &gt; 763a、 763b、 764a、 764b 部分 方面,所形成之通電控制係與前述控制模式F2與F4同時 作動狀態爲成相等。因此,係同時地產生與前述控制模式 F2、F4之情況爲相同朝向(第68圖之左方與下方)的電 磁驅動力,並且,其合力係如第6 8圖之控制模式F 6之欄 所示,爲被朝向至第三象限之方向。藉此,爲使前述可動 桌體部15朝向X-Y平面座標上之第三象限的方向來移 送0 218 1220875 在此,對於x軸而朝向第三象限方向之移送角度θ係 爲,藉由個別性地將各個方形驅動線圈76 1至764以及各 個被驅動磁鐵6Α至6D、16Α至16D之通電電流的大小進 行可變控制,使作用在各個被驅動磁鐵6Α至6D、1 6Α至 1 6D之電磁驅動力進行變化,藉此,係可自由地在任意方 向上進行可變設定。 〈控制模式F7〉 此種控制模式F7係爲,表示用以將可動桌體1朝向X-Y平面座標上之第二象限方向進行移送的通電控制模式之鲁 一例(參照第69圖)。 在該控制模式F7中,爲使八個之被驅動磁鐵6A至6D、 16A至16D同時地被通電控制,其磁極N、S係全數被設 定成與控制模式F 1至F6之情況爲相同的被固定。 在該控制模式F7之情況下,於方形驅動線圈761至764 之各個線圈邊 761a、761b、762a、762b、763a、763b、764a、 764b部分方面,所形成之通電控制係與前述控制模式F2 與F3同時作動狀態爲成相等。因此,係同時地產生與前鲁 述控制模式F2、F3之情況爲相同朝向(第68圖之左方與 上方)的電磁驅動力,並且,其合力係如第6 8圖之控制 模式F7之欄所示,爲被朝向至第二象限之方向。藉此, 爲使前述可動桌體部15朝向X-Y平面座標上之第二象限 的方向來移送。 在此’對於X軸而朝向第二象限方向之移送角度0係 爲,藉由個別性地將各個方形驅動線圈76 1至764以及各 219 1220875 個被驅動磁鐵6A至6D、16A至16D之通電電流的大小進 行可變控制,使作用在各個被驅動磁鐵6A至6D、1 6A至 1 6D之電磁驅動力進行變化,藉此,係可自由地在任意方 向上進行可變設定。 〈控制模式F 8〉 此種控制模式F 8係爲,表示用以將可動桌體部1 5朝 向χ-γ平面座標上之第四象限方向(與第二象限方向爲 相反的方向)進行移送的通電控制模式之一例(參照第69 圖)。 · 在此種控制模式F8中,爲同時的使八個之各個被驅動 磁鐵6A至6D、16A至16D進行通電控制,其磁極N、S 係被固定成與前述各個控制模式F 1至F 7之情況爲相同 狀。 在此種控制模式F8之情況下,在各個方形驅動線圈761 至 764 之各個線圈邊 761a、761b、762a、762b、763a、7 63b、 7 64a、7 64b部分上,係形成爲與同時作動前述控制模式F1 以及F4之情形爲同等的通電控制。因此,爲同時產生與鲁 前述控制模式F1、F4之情況爲相同的朝向(第68圖之右 方與下方)之電磁驅動力,並且,其合力係如第68圖之 控制模式F 8之欄所示’爲被朝向至第四象限之方向。藉 此,爲使前述可動桌體部15朝向X-Y平面座標上之第四 象限的方向來移送。 在此,對於X軸而朝向第二象限方向之移送角度0係 爲,藉由個別性地將各個方形驅動線圈761至764以及各 220 1220875 個被驅動磁鐵6A至6D、16A至16D之通電電流的大小進 行可變控制,使作用在各個被驅動磁鐵6A至6D、1 6A至 1 6D之電磁驅動力進行變化,藉此,係可自由地在任意方 向上進行可變設定。 〈控制模式F9〉 此種控制模式F9係爲顯示一種通電控制模式之一例, 其係用以將可動桌體部15設爲可在X-Y平面上以逆時針 方向而旋轉驅動指定角度者(參照第70圖)。 在此種控制模式F 9中,方形驅動線圈7 6 1至7 6 4與八鲁 個之各個被驅動磁鐵6A至6D、16A至16D爲同時地被通 電控制。在此情況下,被驅動磁鐵6A至6D、16A至16D 之磁極N、S係被設定成與前述F 1至F 8之情況爲相同。 此外,針對各個方形驅動線圈76 1至764,係被通電控 制爲形成如下,即,相對於對應之八個之各個被驅動磁鐵 6A至6D、16A至16D,爲將X-Y平面上之原點(〇點) 作爲中心的相同位準之指定的力矩爲分別地產生在逆時針 方向上。 鲁 在此情況下,相對於各個方形驅動線圈761至764之 通電方向係爲,在控制模式F9中,均被設定控制爲逆時 針方向(左旋)。 在第7 0圖中,爲以實線圖示分別產生在各個被驅動磁 鐵6A至6D、16A至16D之X軸以及Y軸上的相同位準 之指定旋轉力矩。藉此,在維持被驅動磁鐵6A至6D、1 6A 至1 6D的可動桌體部1 5方面,爲形成經由該被驅動磁鐵 221 1220875 6A至6D、16A至16D而在指定範圍內於逆時針方向上進 行旋轉驅動。 亦即,在方形驅動線圈7 6 1至7 6 4之各個線圈邊7 6 1 a、 761b、762a、762b、763a、763b、764a、764b 部分方面, 係產生有以點線之箭頭所示之電磁驅動力,同時,藉由其 反力(爲了使方形驅動線圈761至764被固定在固定平板 8所產生),而使得各個被驅動磁鐵6A至6D、16A至16D 爲在於實線之箭頭所示方向(圖中之逆時針方向)被推斥 驅動,以產生在該八個之各個被驅動磁鐵6A至6D、16A鲁 至1 6D之各個電磁驅動力(相同位準之指定的旋轉力矩) 的平衡爲主,使可動桌體部1 5爲在X-Y平面上(在指定 之範圍內)被旋轉驅動於逆時針方向。 〈控制模式F 1 0〉 .此種控制模式F 1 0係爲顯示一種通電控制模式之一例, 其係用以將可動桌體部1 5設爲可在X-Y平面上以順時針 方向而旋轉驅動指定角度者(參照第70圖)。 在此種控制模式F10中,方形驅動線圈761至764與· 各個八個之被驅動磁鐵6A至6D、16A至16D係同時地被 通電控制。在此情況下,相對於各個方形驅動線圈76 1至 764係形成爲通電有與前述控制模式F1至F9之情況爲相 異的控制電流(參照第70圖之控制模式F 1 0之欄)。 在此情況下,被驅動磁鐡6 A至6 D之磁極N、S係被 設定成與前述F 1至F9之情況爲相同。 此外,針對方形驅動線圈76 1至764,係被通電控制爲 222 1220875 形成與前述控制模式F9之情況爲逆向之狀態,藉此來輸 出指定之電磁驅動力,即,相對於對應之八個之各個被驅 動磁鐵6A至6D、16A至16D,爲將X-Y平面上之原點(0 點)作爲中心的相同位準之指定的力矩(旋轉驅動力)爲 分別地產生在順時針方向上。 在第70圖中,爲以實線圖示相同位準之指定旋轉力矩。 藉此,在維持被驅動磁鐵6A至6D、16A至16D的可動桌 體部1 5方面,爲形成經由該被驅動磁鐵6A至6D、16A 至1 6D而在指定範圍內於順時針方向(右旋)上進行旋鲁 轉驅動。 有關於其他的構造以及其動作、機能,係形成爲略與 前述第十三實施例之情況相同。 即使是藉由如此,除了可獲得與前述第十三實施例之 情況爲同等之作用效果以外,更在此種第十五實施例中, 爲獲得將藉由前述電磁驅動裝置所輸出之各個電磁驅動力 輸出至對於X軸或Y軸正交的方向、且進行旋轉之方向, 因此,無須另外裝設新的旋轉驅動裝置,而具有形成對於® 可動桌體部1 5爲可在指定角度內進行旋轉驅動的優點, 更可提高其泛用性。 此外,在前述第十五實施例中,於進行可動桌體部1 5 的移送方向之設定之際’係例示區分成F1至F10之控制 模式來將電磁驅動裝置1 64進行驅動控制的情況,不過, 例如在控制模式F2中,倘若具有同等於將被驅動磁鐵6A 至6D、16A至16D之各個通電方向設爲與控制模式F1爲 223 1220875 逆向、且將驅動線圈761、7 63之通電方向設定爲與控制 模式F1之情況下爲相同等的機能時,亦可採用其他的驅 動控制方法來將電磁驅動裝置1 64進行驅動控制。 此外,於前述第十五實施例中,亦可置換被驅動磁鐵6A 至6D、16A至16D之裝設處與方形驅動線圈761至764 之裝設處。此種情況係形成爲,使被驅動磁鐵6A至6D、 1 6A至1 6D被裝設在固定件側,且使方形驅動線圏76 1至 764被裝設在可動件側。 再者,在此種第十五實施例中,雖然例示將被驅動磁· 鐵6A至6D、16A至16D以電磁鐵所構成之情況,不過, 亦可將被驅動磁鐵6A至6D、16A至16D分別以永久磁鐵 來構成。 藉由將該種被驅動磁鐵6A至6D、16A至16D分別設 爲永久磁鐵而無須該被驅動磁鐵6A至6D、16A至16D周 圍之電氣性的配線,係可減小被驅動磁鐵6A至6D、1 6A 至1 6D之裝設處的空間區域。從而,由於其量額而形成 爲可達到裝置整體之小型輕量化,且可達到生產性以及可魯 維修性之提昇的目的,相較於將被驅動磁鐵6A至6D、1 6A 至1 6D作爲電磁鐵的情況,係由於無須其通電驅動,故 而可大幅度的抑制整體性地消費電力。藉此,係可大幅度 的減低裝置整體之經營成本(running cost),而在電磁驅 動裝置4之驅動控制之際,係僅進行多數之各個驅動線圈 761至764之通電方向的切換控制,便可將可動桌體i移 送驅動至任意的方向。從而,在可動桌體1之移動方向之 224 1220875 切換時,係形成爲可迅速地進行回應,且形成爲均無被驅 動磁鐵6 A至6 D、1 6 A至1 6 D之斷線等事故的產生,因此, 爲具有大幅度的提昇裝置整體之耐久性的優點。 〔第十六實施例〕 其次,基於第71圖至第76圖說明第十六實施例。 在此種第十六實施例中,其特徵爲具備有已裝設其他 之電磁驅動裝置147(參照第71、72圖)以替代在前述 第十五實施例中之電磁驅動裝置1 4 6 (參照第66圖)之 特點。 具體而言,在本實施例中之電磁驅動裝置1 4 7係具備 有下述構造上之特徵,即,裝設有形成爲十字框狀之十字 狀驅動線圈7 7 1,以替代在前述第十五實施例中之電磁驅 動裝置1 46之四個方形驅動線圈,藉此,除了可朝任意方 向之移動之外,同時亦可對於可動桌體部15爲在同一面 上之旋轉驅動之動作上的特徵。 此外,爲具有取代前述第十五實施例中之動作控制系 統206,而裝設有用以使該電磁驅動裝置147效率爲佳地 進行動之動作控制系統207,而可進行在同一面上之旋轉 驅動之特點的特徵。 以下,將其進行詳細之說明。 首先,該種第十六實施例係爲,與前述第十五實施例 之情況相同的,爲具備有:精密作業用之可動桌體部1 5 ’ 爲在同一面上被配設成可於任意之方向進行移動者;桌體 維持機構2,爲容許該種可動桌體部1 5之移動’同時維 225 1220875 持該可動桌體部1 5,並且具備有對於該可動桌體部1 5之 恢復原始位置之機能;外殼本體3,係作爲支撐該桌體維 持機構2的本體部;電磁驅動裝置} 4 7,係被裝設在該外 殻本體3側,且因應於來自外部的指令而將朝向指定方向 之移動力賦予至可動桌體部1 5。 在此,可動桌體部1 5係構成如下,即:精密作業用之 可動桌體1 ;以及輔助桌體5,爲對應於該種可動桌體! 而隔有指定間隔,以平行、且在同一中心軸上呈一體狀的 配置。並且,如第34圖所示,桌體維持機構2係被裝設 在輔助桌體5側,係構成爲經由該輔助桌體5而維持前述 可動桌體1。 《有關於電磁驅動裝置147》 電磁驅動裝置1 4 7係爲,使其主要部被維持在外殼本 體3側,而具備有下述機能,即,因應來自外部之指令, 將指定之移動力(驅動力)沿著該可動桌體部1 5之移送 方向而賦予至前述可動桌體部1 5。此種電磁驅動裝置1 47 係被配設在前述可動桌體1與輔助桌體5之間。 具體而言,該種電磁驅動裝置1 47係具備有:形成爲 十字框狀之十字狀驅動線圈77 1 ;各個八個之被驅動磁鐵 6A、16A、6B、16B、6C、16C、6D、16D,係個別地對應 於平行於位在與該十字狀驅動線圈7 7 1之X軸以及Y軸 之位置的平行線圈邊 7 7 1 a、7 7 1 b、7 7 1 c、7 7 1 d、7 7 1 e、7 7 1 f、 771 g、77 lh (符號係爲依序以逆時針方向付與在第72圖 中);固定平板8,爲將前述十字狀驅動線圈7 7 1維持在 226 1220875 指定位置上。 前述十字狀驅動線圈7 7 1係爲,使其中心點配設在將 固定平板8上之中央部作爲原點所假定之χ_γ平面上的 原點,使朝四方伸張而出之對向的兩個邊爲夾持在χ-γ 平面上,以與其平行而分別沿著前述X軸以及γ軸來進 行配設。 此外,合計八個之各個被驅動磁鐵6 A至6 D、1 6 A至1 6 D 係爲,以可由外部進行通電控制的電磁鐵所構成,而分別 個別地配設對應於平行於前述十字狀驅動線圈7 7 1之各個 線圈邊 771a、 771b、 771c、 771d、 771e、 771f、 771g、 771h (參照第71圖至72圖)。 固定平板8係如第7 1圖所示,係配維持在配設於前述 輔助桌體5之可動桌體1側的前述外殼本體3上。此外, 藉由前述十字狀驅動線圈7 7 1與固定平板8,而構成作爲 前述電磁驅動裝置1 47之主要部的固定件部分。 並且,十字狀驅動線圈77 1係爲,當在設定爲作動狀 態後,在與前述各個被驅動磁鐵6A至6D、16A至16D之 間爲產生有電磁驅動力,該電磁驅動力係爲在將該各個被 驅動磁鐵6A至6D、16A至16D正交於各個線圈邊771a 至7 7 1 h之方向上進行推斥驅動。在此情況下,各個被驅 動磁鐵6 A至6 D、1 6 A至1 6 D之移動方向的中心軸線係被 設定成正交於前述X軸或是Y軸。 此外,在未正交於各個線圈邊7 7 1 a至7 7 1 h之方向(相 對於傾斜各個線圈邊771a至771h之方向)上移動前述可 227 1220875 動桌體部1 5的情況下,爲如後述,具有產生在沿著χ軸 以及Y軸所分別配設之相異處之至少兩個以上之各個被 驅動磁鐵6A至6D、16A至16D的電磁驅動力之合力,形 成爲可實施該可動桌體部15之移送。 構成電磁驅動裝置1 47之局部的八個之被驅動磁鐵6A 至6D、16A至16D係爲,在本實施例中係如第72圖所示, 磁極之端面(與各個線圈邊771a至771h之對向面)爲以 四角形之電磁鐵所形成,在被假定在輔助桌體5之上面的 X-Y平面上,爲分別被配設、固著在由中心部爲成等距離 之位置的各個線圈邊7 7 1 a至7 7 1 h上。 並且,在本實施例中,例如爲使指定之作動電流在八 個之被驅動磁鐵6A至6D、16A至16D之局部或是全部進 行通電,而使各個被驅動磁鐵6A至6D、16A至16D被設 定成作動狀態,之後、或是同時的依據後述之指定的控制 模式,開始十字狀驅動線圈77 1被設定在作動狀態下之通 電。並且,相對於十字狀驅動線圈77 1之通電電流以及各 個被驅動磁鐵6 A至6 D、1 6 A至1 6 D的磁性力大小爲藉由 通電控制所調整,藉此,爲使前述可動桌體部1 5移送至 指定的方向。 在此情況下,針對於有關相對於可動桌體部1 5之移送 方向以及其移送驅動力的電磁驅動裝置1 47的作動(相對 於十字狀驅動線圈771與八個之被驅動磁鐵6A至6D、16A 至16D之通電驅動),爲藉由第7 4圖至第76圖進行詳述。 在此情況下,於該種第十六實施例中’由於以電磁鐵 228 1220875 所形成之前述八個之被驅動磁鐵6A至6D、16A至16D之 通電方向爲與前述第一實施例之情況爲相同的被進行可變 控制,因此,十字狀驅動線圈77 1之(各個線圈邊77 1 a 至7 7 1 h部分之)通電方向以及通電電流之大小,係對應 於前述可動桌體部1 5之移送方向而藉由後述之動作控制 系統207、因應於各個控制模式之內容來進行設定控制。 藉此,相對於被驅動磁鐵6A至6D、16A至16D,爲依 據夫來明(Fleming )之左手定律,係可輸出朝指定之方 向(分別正交於線圈邊771a至771h之部分的方向)按壓 的電磁力(反力)。 此外,藉由預先選擇組合在該八個之被驅動磁鐵6A至 6D、16A至16D上產生之電磁力的方向,係形成爲可將 在該八個之被驅動磁鐵6A至6D、16A至16D上產生之電 磁驅動力的合力配合於前述可動桌體部1 5之移送方向(包 含旋轉),而可將該可動桌體部15朝向X-Y軸平面上之 任意方向而賦予移動力。 有關對於該等八個被驅動磁鐵6A至6D、16A至16D 之一連串的通電控制之手法,係在後述之程式記億部227 之說明處(第74圖、第76圖)中進行詳述。 在此,於十字狀驅動線圈7 7 i之同一面上之線圈部分 中的外側以及內側方面,在至少與該十字狀驅動線圈77 1 之高度(固定平板8面上之高度)爲相同高度、且包含有 前述被驅動磁鐵6 A至6 D、1 6 A至1 6 D之動作範圍內的範 圍中’亦可充塡裝設有肥粒鐵等磁性材料。 229 《有關於動作控制系統207》 其次,針對在該種第十六實施例中之動作控制系統207 來詳細說明。 Μ 充207倂 &gt;,該控制動 圈7 7 1以及 進行通電控 即:通電方 7 7 1的通電 J );驅動線 線圈7 7 1之 機能,爲因 而作動、且 6D、16Α 至 該種各個被 應於來自外 通電電流進 該等諸項機 述可動桌體 實施前述諸 驅動控制裝 ^動線圈7 7 1 在該種第十六實施例中,亦可將動作控制ΐ 設於前述電磁驅動裝置147中(參照第73圖: 作系統207係爲各別性地將前述十字狀驅動線 八個之各個被驅動磁鐵6 Α至6 D、1 6 Α至1 6 D 制、限制前述可動桌體部1 5之移動動作。 該種動作控制系統207係具有下述機能, 向設定機能,爲將相對於前述十字狀驅動線圈 方向設定、維持在指定方向(一方或是另一 j 圈通電控制機能,爲爲將朝向該種十字狀驅動 通電電流之大小進行可變設定;磁極個別設定 應於朝向前述十字狀驅動線圈77 1之通電方向 個別的設定、維持前述各個被驅動磁鐵6A至 1 6D的磁極N、S ;磁力強度設定機能,爲將 驅動磁鐵6A至6D、16A至16D之磁力強度因 部之指令而進行可變設定(藉由設定而獲得將 行可變);且具備有桌體動作控制機能,爲將 能之輸出一面進行適當的調整、依面則對於前 部1 5進行移送方向以及移送力的調整。 並且,該種動作控制系統2 0 7係爲,爲了 項機能’而如第7 3圖所示,爲具備有:桌體 置2 1 7,爲將前述電磁驅動裝置1 47之十字狀· 230 1220875 以及八個之被驅動磁鐵6A至6D、16A至16D依據指定之 控制模式來個別地進行驅動,而將前述可動桌體部1 5於 指定之方向上進行移動控制;程式記憶部22 7,爲記憶有 多數之控制程式,該控制程式係有關於一種多數之通電控 制模式(在本實施例中,係爲K 1至K 1 0之十個通電控制 模式),該模式爲以倂設在該桌體驅動控制裝置2 1 7之前 述可動桌體1之移動方向以及其動作量等所特別指定;資 料記憶部2 3,爲記憶有在該等各個控制程式之實施之際 所使用的指定之資料等。 此外,在桌體驅動控制裝置2 1 7中,係倂設有動作指 令輸入部24,係下達對於十字狀驅動線圈77 1以及八個 之被驅動磁鐵6A至6D、16A至16D的指定之控制動作之 指令。再者,於此種桌體驅動控制裝置2 1 7之中,前述可 動桌體1之移動中以及移動後的位置資訊係形成爲送入、 且以藉由前述位置檢測感測機構25所檢測出之後述高感 度狀地進行演算處理。 並且,前述動作控制系統207所具有之各種的控制機 能,係形成爲總合性地被包含在前述程式記憶部227之多 數之通電控制模式K 1至K 1 0中,以操作員經由動作指令 輸入部24所輸入之指令,基於其所選擇之控制模式K1 至K1 0中之任何模式來進行動作、實施。 將其進行更加詳細的說明。 有關本實施例之桌體驅動控制裝置2 1 7係爲,具備有: 主要控制部2 1 7 A,爲基於來自動作指令輸入部24之指令 231 而進行作動,由程式記憶部2 2 7選擇指定之控制模式, 前述十字狀驅動線圈7 7 1以及八個之各個被驅動磁鐵 至6D、1 6A至1 6D中爲進行包含有零之指定之直流電 的通電控制;線圈選擇驅動控制部2 1 7B,爲依據在該 要控制部2 1 7 A中所選擇設定之指定的通電控制模式( 至K 1 0內之一種),以同時或是個別地驅動控制十字狀 動線圈771以及八個之各個被驅動磁鐵6A至6D、16A 1 6D 中。 此外,主要控制部2 1 7 A係亦同時兼具有下述之機能 該機能係爲,基於來自檢測桌體位置之位置檢測感測機 25的輸入資訊,而計算前述可動桌體部15之位置、或 進行其他各種的演算。在此,符號4G所示係爲在前述 磁驅動裝置1 4 7之十字狀驅動線圈7 7 1以及八個之各個 驅動磁鐵6A至6D、16A至16D中通電有指定之電流的 源電路部。 《有關於程式記憶部227》 前述桌體驅動控制裝置2 1 7係被構成如下,即,依 在程式記憶部227中所預先記憶之指定的通電控制程 (用以實施指定之通電控制模式的程式),使前述電磁 動裝置1 4 7之十字狀驅動線圈7 7 1以及八個之各個被驅 磁鐵6A至6D、16A至16D具有指定之關聯性,進而個 地進行驅動控制。 亦即,在有關本實施例之程式記憶部22 7中,爲記 有下述程式,即:多數之磁鐵用控制程式,爲將前述八 在 6 A 流 主 K1 驅 至 構 是 電 被 電 據 式 驅 動 別 憶 個 232 1220875 之各個被驅動磁鐵(電磁鐵)6 A至6 D、1 6 A至1 6 D 電方向進行個別地特別指定,而在特別指定磁極之] 或是S極的同時,可個別性地將包含通電停止之通電 的大小進行可變設定;驅動線圈用控制程式,係在當 八個之各個被驅動磁鐵(電磁鐵)6A至6D、1 6A至 之通電方向被特別指定N極或是S極(或是通電停 之情況下作用其機能,將與其對應而對於十字狀驅動 77 1的通電方向以及其通電電流之大小進行可變設定 時,該等各個控制程式之動作時序係被整理、記憶在 之通電控制模式K1至K10(參照第74圖、第76圖) 在此,針對在該種十組的控制模式Κ1至Κ1 0,基 7 3圖至第7 5圖進行說明。 在第74圖中,爲朝向X軸之正向或負向、或是朝 軸之正向或負向,表示分別移送可動桌體部1 5之情 的各個通電控制模式Κ1至Κ4之一例(已圖表化之物 在該第74圖中,於本實施例中之各個通電控制模5 至Κ4方面,係被設定成個別性地將對於 十字狀驅動線圈7 7 1的直流電流之通電方向固定 時針旋轉(右旋),此外,針對於八個之各個被驅動 (電磁鐵)之通電方向,爲個別的使其磁極(Ν極或 極)藉由控制模式而形成爲被進行可變設定。 〈控制模式Κ1〉 此種控制模式κ 1係表示用以將可動桌體1移送至 之正的方向之通電控制模式之一例(參照第74圖)。 之通 W極 電流 該種 1 6D 止) 線圈 。同 十組 〇 於第 向Υ 況下 )0 ζ Κ1 成順 磁鐵 是S X軸 233 1220875 在第十六實施例之此種控制模式κ1中,爲使沿 之各個線圈邊7 7 1 c、7 7 1 d ' 7 7 1 g、7 7 1 h的各個被 鐵6B、16B以及6D、16D進行通電控制,且使沿 上之各個線圈邊 771a、771b、771e、771f的各個 磁鐵6A、16A以及6C、16C成爲被控制成停止通1 在此,沿著Y軸所配置之各個被驅動磁鐵6B、 爲,使對向於前述各個線圈邊7 7 1 c、7 7 1 d之端面 別設定控制成N極、S極。此外,沿著Y軸所配置 被驅動磁鐵 6 D、1 6 D係爲,使對向於前述各個 771 g、77 lh之端面部被分別設定控制成S極、N極 因此,在十字狀驅動線圈771之各個線圈邊771c、 7 7 1 g、7 7 1 h部份中,爲產生於點線之箭頭所示方 磁驅動力,同時,以該反力(爲了使十字狀驅動線 被固定所產生)而使得被驅動磁鐵6B、16B、6D、 實線之箭頭所示方向(圖中之右方)被推斥驅動, 在該種四個之被驅動磁鐵6B、16B、6D、16D的電 力之平衡爲主,使前述可動桌體部1 5圓滑地被移 軸上之正的方向。 〈控制模式K2〉 此種控制模式K2係表示用以將可動桌體1移送 之負的方向之通電控制模式之一例(參照第74圖: 在此種控制模式K2中,將位於沿著Y軸方向之 磁鐵6B、16B、6D、16D的磁極之設定設定在相較 控制模式K 1的情況係以成相逆之點爲不同處。其 著Y軸 驅動磁 著X軸 被驅動 I ° 16B係 部被分 之各個 線圈邊_ i 〇 77 1 d、 向的電 圈 77 1 16D於 以產生 磁驅動 送至X· 至X軸 )° .被驅動 :於前述 Η也係與 234 1220875 前述控制模式κι之情況形成相同。 因此,在十字狀驅動線圈7 7 1之各個線圈邊7 7 1 c、7 7 1 d、 771g、771h部份中,藉由與前述模式κι之情況相同的原 理而產生與控制模式K 1之情況爲逆向的電磁力(點線之 箭頭),其反力爲使該驅動磁鐵6B、16B以及6D、16D分 別被推斥驅動在實線之箭頭所示方向(圖中之左方),藉 此,使可動桌體15移送至X軸上之負向。 〈控制模式K3〉 此種控制模式K3係表示用以將可動桌體部1 5移送至 Y軸之正的方向之通電控制模式之一例(參照第74圖)。 在該控制模式K3中,將相對於位在沿著X軸方向之各 個線圈邊771a、771b、771e、771f的被驅動磁鐵6A、16A、 6C、1 6C進行通電控制,且使位在沿著γ軸方向之各個線 圈邊771c、771d、771g、771h的被驅動磁鐵6Β、16Β以 及6D、16D進行通電停止控制。 在此,沿著X軸之被驅動磁鐵6 A、16 A係爲,分別將 對向於前述各個線圈邊7 7 1 a、7 7 1 b之端面部設定控制成 S極、N極。此外,沿著X軸所配置之其他的被驅動磁鐵 6C、16C係爲,分別將對向於前述各個線圈邊771e、771f 之端面部設定控制成S極、N極。 因此,在十字狀驅動線圈771之各個線圈邊771a、771b、The aforementioned square driving coils 761 to 764 are such that the two sides of the object are arranged on the X axis and the Y axis, respectively, so that the central part of the fixed flat plate 8 is used as the origin and orthogonal to the hypothesis. X 205 1220875 or γ axis on the XY plane. In addition, 'the eight driven magnets 6A to 6D and 16A to 16D in total are composed of electromagnets that can be energized and controlled from the outside, and the X-axis corresponding to each of the square-shaped driving coils is arranged individually. Or the central region of the coil sides 761a to 764a of the Z axis and the outer coil sides 761b to 764b. As shown in FIG. 65, the fixed flat plate 8 is attached and maintained on the casing body 3 disposed on the movable table body 1 side of the auxiliary table body 5. Here, each of the rectangular drive coils 761 to 764 and the fixed flat plate 8 constitutes a fixture part as a main part of the electromagnetic drive device 146. In addition, each of the square driving coils 761 to 764 is configured to generate an electromagnetic driving force between the square driving coils 761 to 764 and the respective driven magnets 6A to 6D and 16A to 16D. To drive the driven magnets 6A to 6D, 16A to 16D orthogonally to the coil sides 761a to 764a, 764b to 764b. In this case, the central axis of the moving direction of each of the driven magnets 6 A to 6 D and 16 A to 16 D is set to be orthogonal to the aforementioned X-axis or Y-axis. In addition, if the movable table body 15 is moved in a direction that is not orthogonal to each coil side 761a to 764a, 761b to 764b (inclined to each coil side 761a to 764a, 761b to 764b), it is as follows As will be described later, the movable table body portion 15 has a combined force with respect to the electromagnetic driving force applied to each of the driven magnets having at least two square driving coils 761, 762, 763, or 764, so that the movable table body 15 can be transferred. 206 1220875 The eight driven magnets 6A to 6D and 16A to 16D constituting part of the electromagnetic driving device 1 46 are, as shown in FIG. 66 in this embodiment, the end faces of the magnetic poles (each driving coil 7 6 1 The opposite sides of the coil sides 7 to 7 6 4 (7 6 1 a to 764a, 76 1b to 764b) are formed by quadrilateral electromagnets on the XY plane assumed to be above the auxiliary table body 5 as They are respectively arranged and fixed on the X-axis and the Y-axis at positions equidistant from the center. Moreover, in this embodiment, for example, in order to energize the specified actuating current to a part or all of the eight driven magnets 6A to 6D, 16A to 16D, each of the driven magnets 6A to 6D, 16A is energized. 16D is set to the operating state, and thereafter, or at the same time, the rectangular drive coils 761 to 764 are set to be energized in the operating state according to a control mode specified later. In addition, the magnitude of the magnetic force of each of the driven magnets 6A to 6D and 16A to 16D including the driving coils 761 to 764 is adjusted by energization control, thereby moving the movable table body 15 to a specified direction. . In this case, the operation of the electromagnetic driving device 146 with respect to the direction of the transfer® 15 with respect to the movable table body 15 and its transfer driving force (with respect to each of the drive coils 761 to 764 and the eight driven magnets 6A) To 6D, 16A to 16D, energized drives) are described in detail with reference to Figure 67 to Figure 69. In this case, in the fifteenth embodiment, the directions of energization of the eight driven magnets 6A to 6D and 16A to 16D formed by the electromagnets are specified in advance as described later. 'Therefore', the energizing direction and energizing current (including energization stop control) of each of the inner coil sides 761a to 764a and the outer wire loop sides 761b to 764b of the eight square 207 1220875-shaped drive coils 761 to 764 correspond to the energization stop control. The moving direction of the movable table body 1 is controlled by a setting of an operation control system 20 6 described later. With this, relative to the driven magnets 6A to 6D, 16A to 16D, in accordance with Fleming's left-hand law, the output can be directed in a specified direction (orthogonal to the inner coil sides 761a to 764a, 761b to 764b, respectively). Direction of the part) electromagnetic force (reaction force) of the pressing. In addition, the direction of the electromagnetic force generated on the eight driven magnets 6A to 6D, 16A to 16D is selected in advance to form a combination of the eight driven magnets 6A to 6D, 16A to The resultant force of the electromagnetic driving force generated on 16D is matched with the moving direction of the movable table body portion 15 described above, and the movable table body portion 15 can be directed toward any direction on the XY axis plane to impart a moving force. A series of energization control methods for one of the eight driven magnets 6A to 6D and 16A to 16D is described in detail in the description section (FIG. 68 and FIG. 70) of the program memory section 226 described later. ® Here, at the same height as the height (Y-axis direction) of each of the driving coils 76 1 to 7 64 among the outer side and the inner side of the same surface of each of the aforementioned square driving coils 761 to 764 and including Magnetic materials such as fertile grain iron can also be filled and loaded in the ranges within the operation ranges of the driven magnets 6A to 6D and 16A to 16D. << About Motion Control System 206 >> Next, the motion control system 206 208 1220875 in the fifteenth embodiment will be described in detail. In this fifteenth embodiment, the motion control system may also be provided in the electromagnetic drive device 164 (refer to FIG. 67), and the control system 206 is to individually set the aforementioned square drive coils 761 and eight Each of the driven magnets 6A to 6D and 16A to 16D electrically controls and restricts the movement of the movable table body 15 described above. This kind of motion control system 206 has the following functions: do n’t set the function, and set and maintain the magnetic poles of the eight driven magnets 6A ΐ 16A to 16D corresponding to the aforementioned drive coils 761 to 764 individually. Ν, S; magnetic strength setting function, in order to variably set the degree of each of the driven magnets 6A to 6D, 16A to 16D (by setting, the energizing current setting function is obtained, and the energizing direction setting function is The coil sides 761a, 762a, 762b, 7 63a, 763b, 7 64a, 764b g | 3 ^ 0¾ S of each of the aforementioned X-axis or Y-axis crossing portions of each of the square drive coils 764 are in a specified direction (one or the other) It is set and maintained according to the external source; the drive coil power control function is to change the size of the electric current of each square drive coil 7 6 1 to 7 6 4; and it has the table body motion control function. After the various outputs are adjusted appropriately, the moving direction and the moving force of the movable 15 are adjusted according to the output. In addition, this motion control system 206 is designed to implement functions As shown in FIG. 66, it is provided with: a table body driving device 216, in order to link each square drive 206 of the electromagnetic drive device 146 to 764, and perform magnetic flux poles each with a square size of 6D and φ. Individual magnetic force is strong. )); 761 to 761b, the direction of the electric direction is directed towards the ® to perform the functional control of the body of the table 209 1220875 76 1 to 764 and eight driven magnets 6A to 6D, 16A to 16D according to the designation Control mode to individually drive, and move the aforementioned movable table body part 15 in a specified direction; the program recording part 226, in order to memorize the majority of control programs, the control program is about a majority of Power-on control mode (in this embodiment, ten power-on control modes of F1 to F10), this mode is based on the moving direction of the aforementioned movable table 1 and its action set on the table drive control device 216 The data storage unit 23 is specifically designated to store designated data and the like used in the implementation of each of these control programs. In addition, the table body drive control device 2 1 6 is provided with an operation command input unit 24, and designates designated square drive coils 761 to 764 and eight driven magnets 6A to 6D, 16A to 16D. Instructions for controlling actions. Furthermore, in such a table body driving control device 2 1 6, the position information during and after the movement of the movable table body 1 is formed to be fed in and detected by the position detection and sensing mechanism 25. The calculation process is performed with high sensitivity as described later. In addition, the various control functions of the motion control system 206 are formed so as to be collectively included in the power-on control modes F 1 to F 10 of most of the program memory unit 226, and the operator is instructed via the motion command. The command input by the input unit 24 is operated and implemented based on any one of the selected control modes F 1 to F 10. This will be explained in more detail. The table driving control device 2 1 6 related to this embodiment is provided with: a main control portion 2 1 6A, which is operated based on a command 210 1220875 from the motion command input portion 24, and is selected and designated by the program memory portion 226 In the control mode, energization control is performed in the aforementioned square driving coils 76 1 to 764 and each of the eight driven magnets 6Ag 6D, 16A to 16D including a specified DC current including zero; the coil selection driving control section 2 1 6B ′ According to the specified energization control mode (F 1 to F 1 0) selected and set in the main control section 2 1 6 A, the square drive coils 7 6 1 to 764 and eight of them are driven and controlled simultaneously or individually. Each of the driven irons 6A to 6D, 16A to 16D. In addition, the main control section 2 1 6 A also has the following functions. The function is based on the position detection and sensing mechanism from the position of the detection table. 2 5 input information, and calculate the position of the movable table body 15 mentioned above, or perform various other calculations. Here, the reference numeral 4G is a power supply circuit section in which each of the rectangular drive coils 761 to 764 of the electromagnetic drive device 146 and each of the eight driven magnets 6A to 6D, 16A to 16D is energized with a specified current. << About the program memory part 226 >> The aforementioned table body drive control device 2 1 6 is configured as follows, that is, according to a specified power-on control program (for implementing the specified power-on control mode) stored in the program memory part 226 in advance. Program), so that each of the square drive coils 761 to 764 of the aforementioned electromagnetic drive device 146 and each of the eight driven magnets 6A to 6D, 16A to 16D have a specified correlation, and further individually perform drive control. That is, in the program memory section 226 related to this embodiment, the following programs are memorized, that is, most of the magnet control programs are 6A to 821 of each of the aforementioned driven magnets (electromagnets) 6D, 16A to 16D are individually specified in the direction of energization, and the N or S poles of the magnetic poles are specified, and the size of the energization current including the stop of energization can be individually set; the drive coil is used for The control program works when the direction of energization of each of the eight driven magnets (electromagnets) 6A to 6D and 16A to 16D is specified, and it will correspond to the driving of each of the four squares. The energizing directions of the coils 761 to 764 and the magnitude of the energizing current are variably set. At the same time, the operation sequence of each control program is organized and memorized in ten groups of power-on control modes F1 to F10 (refer to Figure 68 and Figure 70). Here, the control modes F1 to F1 0 in these ten groups will be described with reference to FIGS. 68 to 70. In Fig. 68, positive or negative directions toward the X-axis or positive or negative directions toward the Y-axis indicate the respective energization control modes F 1 to F4 when the movable table body 15 is moved respectively. An example (a graphed thing). In FIG. 68, in each of the energization control modes F1 to F4, it is set to individually control the energization direction of the DC current of each of the square drive coils 761 to 764. In addition, for the current direction of each of the eight driven magnets (electromagnets), the N or S poles of each magnetic pole are set so that they do not change frequently (regulated state) regardless of the control mode. status. That is, in such a fifteenth embodiment, the square driving coils 212 1220 875 76 1 to 764 which are opposed to each of the eight driven magnets 6 A to 6 D, 16 A to 16 D The magnetic poles on the end faces are set and controlled as follows: the passive poles 6A to 6D are set to N poles, and the driven magnets 16A to 16D are set to S poles. . Moreover, in this fifteenth embodiment, the magnetic poles N and S have been set as described above, and even if the control modes F1 to F4 are different, they are set to be controlled to be fixed. <Control mode F 1> This control mode F1 is an example of the energization control mode used to move the movable table 1 to the positive direction of the X axis (refer to FIG. 68). In this control mode F 1, in order to make each square driving coil 7 62, 7 64 on the Y axis and the corresponding driven magnets 6B, 16B and 6D, 16D to be energized, each square on the X axis The drive coils 76 1, 763 and the respective driven magnets 6A, 16A, 6C, and 16C are controlled so as to stop energization. Here, the driven magnets 6B, 6D that have corresponded to the square driving coils 7 6 2, 7 64 on the Y axis are fixed to the end faces of the driven magnets 6B, 6D facing the respective coil sides 762a, 764a. The N pole is controlled, and the end faces of the driven magnets 16B and 16D facing the coil sides 762b and 764b are fixedly controlled to the S pole. In addition, the energizing directions with respect to each of the square drive coils 762 and 764 on the Y axis are set as follows, that is, set clockwise (right-handed) with respect to the square drive coil 762, and with respect to the square drive coils. 7 64 is set counterclockwise (left-handed). Therefore, in the coil side 213 1220875 7 62a, 762b, 764a, 764b of each square driving coil 762, 764, the electromagnetic driving force generated in the direction indicated by the arrow of the dotted line is generated by the reaction force ( It is generated in order to fix the square driving coils 762 and 764), so that the driven magnets 6B, 16B, 6D, and 16D are repulsively driven in the direction indicated by the solid arrow (right side in the figure). In addition, the balance of the electromagnetic driving forces generated in the four driven magnets 6B, 16B, 6D, and 16D is mainly used to smoothly move the movable table body 15 to the positive direction on the X axis. <Control mode F2> This control mode F2 is an example of the energization control mode used to move the movable table 1 to the negative direction of the X axis (see Fig. 68). In this control mode F2, the energizing direction of the coil sides 762a, 762b, 764a, 764b of the square drive coils 762, 764 on the Y axis is set to be inverse to that in the case of the aforementioned control mode F1. The point is different. The other systems are the same as those in the aforementioned control mode F 1. Therefore, in each of the coil sides 762a, 762b, 7 64a, and 7 64b of the drive coils 7 62 and 764, the same principle as in the case of the aforementioned mode F1 is used to generate an electromagnetic in the reverse direction from that of the control mode F 1. Force (the arrow of the dotted line), the reaction force is to drive the driving magnets 6B, 16B and 6D, 16D respectively in the direction shown by the solid line arrow (left in the figure), thereby 'to produce in The balance of the electromagnetic driving forces on the two driven magnets 6B and 6D is mainly to make the movable table 15 move to the negative direction on the X axis. <Control Mode F 3> This control mode F3 is an example of the energization control mode used to move the movable table 1 to the positive direction of the γ axis 214 1220875 (refer to Fig. 68). In this control mode F3, each square driving coil 76 1, 7 6 3 on the X axis and the driven magnets 6A, 16A, 6 C, and 1 6 C installed corresponding thereto are energized and controlled. Each of the square drive coils 762 and 764 on the Y-axis and the driven magnets 6B, 16B, 6D, and 16D installed corresponding thereto performs power-on and stop control. Here, within the driven magnets 6 A and 16 A that already correspond to the square driving coil 7 6 1 on the X axis, the end face of the driven magnet 6A facing the coil side 7 6 1 a is covered. The N pole is fixedly controlled, and the end face of the driven magnet 16A facing the coil edge 761b is fixedly controlled to be the S pole. Similarly, within the driven magnets 6C and 16C that already correspond to the square driving coil 7 63 on the X axis, in order to fix the end face of the driven magnet 6C facing the coil side 763 a to be N pole, The end face of the driven magnet 16C facing the coil side 763b is fixedly controlled to be an S pole. In addition, the energizing directions with respect to each of the square drive coils 76 1 and 763 on the X axis are set as follows, that is, the square drive coil 76 1 is set in a counterclockwise direction (left-handed). 763 is set to clockwise (clockwise). Therefore, in the coil side portions 761a, 761b, 763a, and 763b of the square driving coils 761, 763, the electromagnetic driving force is generated in the direction indicated by the dotted arrow, and at the same time, the reaction force (to make the square The driving coils 76 1, 7 6 3 are generated by being fixed), so that the driven magnets 6A, 16A, 6C, and 16C are repulsively driven in the direction indicated by the solid arrow (upper in the figure) to produce the four kinds of The balance of the electromagnetic driving forces of the driven magnets 6 A, 16 A, and 215 1220875 6 C, 1 6 C is mainly to cause the movable table body 15 to be moved to the positive direction on the Y axis. <Control Mode F4> This control mode F4 is an example of the energization control mode used to move the movable table body to the negative direction of the γ axis (see Fig. 68). In this control mode F 4, the energizing directions of the coil sides 761a, 761b, 763a, and 763b of the square drive coils 7 6 1 and 763 on the X-axis are set to be higher than those in the aforementioned control mode F3. The point of contradiction is the difference. The other systems are the same as those in the aforementioned control mode F3. Therefore, in the coil sides 7 6 1 a, 7 6 1 b, 7 6 3 a, 7 6 3b of the drive coils 7 6 1 and 7 6 3, the same principle as in the case of the aforementioned control mode F3 is used. An opposite direction (opposite direction) electromagnetic driving force (dotted line arrow) is generated, and the driven magnets 6 A, 1 6 A, 6 C, and 1 6 C are respectively in the directions shown by the solid line arrows (Left in the figure) is driven by repulsion, whereby the movable table body 15 is moved to the negative direction on the X axis. Next, Fig. 68 shows an example of each of the power control modes F5 to F8 (characterized diagrams) illustrating the case where the movable table body 15 is oriented in the four quadrant directions on the X-Y plane coordinates. In Fig. 68, in each of the energization control modes F5 to F8, the same as the case of each of the aforementioned control modes F5 to F8, the energization direction of the DC current for each of the square drive coils 761 to 764 is set to Individually variable control is performed. For the energizing direction of each of the eight driven magnets (electromagnets), it is the same as in the case of each of the aforementioned control modes F 1 to F4. The N pole of each magnetic pole or The S pole is set to 216 1220875 so that it does not change frequently even when the control modes are different (the fixed state). <Control Mode F 5> In this control mode, F5 is an example of a power-on control mode, and is used to orient the movable table 1 in the first quadrant direction on the X-Y plane coordinates (refer to Figure 69). In this control mode F 5, it is set to a state in which each of the eight driven magnets 6A to 6D and 16A to 16D is controlled by energization at the same time, and its energization direction (setting of the magnetic poles N and S) is fixed to The situation is the same in each of the foregoing Lu control modes F1 to F4. That is, each of the driven magnets 6A to 6D installed corresponding to the coil sides 761a to 764a of each of the square driving coils 761 to 764 on the X-axis and the Y-axis is arranged so as to face the coil sides thereof. End portions of 761a to 764a are set to N poles, respectively. In addition, the driven magnets 16A to 16D corresponding to the coil sides 761b to 762b of each of the square driving coils 761 to 764 on the X axis and the Y axis are arranged so as to face the respective coil sides 761b. The end faces up to 764b are set to ® S poles, respectively. In addition, in the respective coil sides 761a, 761b, 762a, 762b, 763a, 763b, 764a, and 764b of the square driving coils 761 to 764, the state of the energization control system and the simultaneous operation control modes F1 and F3 are completed. equal. Therefore, the electromagnetic driving force in the same direction (the positive direction of the X axis and the positive direction of the Y axis) is generated at the same time as in the case of the aforementioned control modes F 1 and F 3, and the resultant force is as shown in the control mode F5 in FIG. 68. As shown in the column, 217 1220875 is the direction to the first quadrant. This is used to move the movable table body 15 toward the first quadrant on the X-Y plane coordinates. Here, the transfer angle Θ (the angle β with respect to the X axis) toward the first quadrant direction for the X axis is such that each of the square driving coils 761 to 764 and each of the driven magnets 6A to 6D, The magnitude of the energized current from 16A to 16D is controlled variably so that the electromagnetic driving force acting on each of the driven magnets 6A to 6D is changed, whereby the setting can be variably set in any direction. <Control mode F6> This control mode F6 is a power-on control mode for moving the movable table 1 toward the third quadrant direction (the direction opposite to the first quadrant direction) on the X-Υ plane coordinates. An example (refer to Figure 69). In this control mode F6, in order for the eight driven magnets 6A to 6D and 16A to 16D to be energized and controlled simultaneously, the magnetic poles N and S are all set to be the same as those in the control modes F 1 to F5. . Therefore, in the respective coil sides 761a, 761b, 762a, 762b &gt; 763a, 763b, 764a, 764b of each of the square driving coils 761 to 764, the energized control system formed simultaneously with the aforementioned control modes F2 and F4 is Be equal. Therefore, the electromagnetic driving force in the same direction (left and bottom of Fig. 68) as that in the case of the aforementioned control modes F2 and F4 is generated simultaneously, and the resultant force is as shown in the column of the control mode F 6 of Fig. 68. Shown is the direction to the third quadrant. Therefore, in order to move the movable table body 15 in the direction of the third quadrant on the XY plane coordinates, 0 218 1220875 is used here. For the x-axis, the transfer angle θ toward the third quadrant is given by the individuality. The electric current of each square driving coil 76 1 to 764 and each of the driven magnets 6A to 6D, 16A to 16D is variably controlled so that the electromagnetic force acting on each of the driven magnets 6A to 6D, 16A to 16D By changing the driving force, the system can be freely set in any direction. <Control mode F7> This control mode F7 is an example of the energization control mode used to move the movable table body 1 in the second quadrant direction on the X-Y plane coordinates (refer to Figure 69). In this control mode F7, in order for the eight driven magnets 6A to 6D and 16A to 16D to be energized and controlled simultaneously, the magnetic poles N and S are all set to be the same as those in the control modes F 1 to F6. be fixed. In the case of this control mode F7, in the part of each coil side 761a, 761b, 762a, 762b, 763a, 763b, 764a, 764b of the square drive coils 761 to 764, the energization control system formed with the aforementioned control mode F2 and F3 actuation status is equal at the same time. Therefore, the electromagnetic driving force in the same direction (left and top of Fig. 68) as that of the control mode F2 and F3 described above is generated simultaneously, and the resultant force is the same as that of control mode F7 of Fig. 68. The column indicates the direction to the second quadrant. Thereby, the movable table body 15 is moved in the direction of the second quadrant on the X-Y plane coordinates. Here, for the X-axis, the transfer angle 0 toward the second quadrant direction is to energize each of the square driving coils 76 1 to 764 and each of 219 1220875 driven magnets 6A to 6D, 16A to 16D individually. The magnitude of the electric current is controlled variably so that the electromagnetic driving force acting on each of the driven magnets 6A to 6D, 16A to 16D is changed, whereby the setting can be variably set in any direction freely. <Control mode F 8> This control mode F 8 is used to move the movable table body 15 toward the fourth quadrant direction (the direction opposite to the second quadrant direction) on the χ-γ plane coordinates. An example of the power-on control mode (refer to Figure 69). · In this control mode F8, to control the energization of each of the eight driven magnets 6A to 6D and 16A to 16D at the same time, the magnetic poles N and S are fixed to each of the aforementioned control modes F 1 to F 7 The situation is the same. In the case of this control mode F8, the coil sides 761a, 761b, 762a, 762b, 763a, 7 63b, 7 64a, 7 64b of the square drive coils 761 to 764 are formed to act simultaneously with the aforementioned In the case of the control modes F1 and F4, the same energization control is performed. Therefore, in order to simultaneously generate the electromagnetic driving force in the same direction (right and bottom of FIG. 68) as in the case of the aforementioned control modes F1 and F4, the resultant force is as shown in the column of control mode F8 in FIG. 68. Shown is the direction to the fourth quadrant. This moves the movable table body 15 in the direction of the fourth quadrant on the X-Y plane coordinates. Here, for the X axis, the transfer angle 0 toward the second quadrant direction is the energizing current of each of the square drive coils 761 to 764 and each of 220 1220875 driven magnets 6A to 6D, 16A to 16D. The size can be controlled variably so that the electromagnetic driving force acting on each of the driven magnets 6A to 6D and 16A to 16D can be changed, whereby the setting can be variably set in any direction. <Control mode F9> This control mode F9 is an example of a power-on control mode, which is used to set the movable table body 15 to be able to rotate and drive a specified angle in a counterclockwise direction on the XY plane (see section Figure 70). In this control mode F 9, the square driving coils 7 6 1 to 7 6 4 and each of the eight driven magnets 6A to 6D and 16A to 16D are simultaneously controlled by power-on. In this case, the magnetic poles N and S of the driven magnets 6A to 6D and 16A to 16D are set to be the same as those of the aforementioned F 1 to F 8. In addition, for each of the square driving coils 76 1 to 764, the current is controlled so as to be formed as follows, that is, with respect to the corresponding eight driven magnets 6A to 6D and 16A to 16D, the origins on the XY plane ( 〇 point) The designated moments at the same level as the center are generated in the counterclockwise directions, respectively. In this case, the energizing directions with respect to each of the square drive coils 761 to 764 are set to be controlled to be counterclockwise (left-handed) in the control mode F9. In FIG. 70, the specified rotation torques are generated in the solid line diagram at the same level on the X-axis and Y-axis of each of the driven magnets 6A to 6D, 16A to 16D, respectively. Thereby, in order to maintain the movable table body 15 of the driven magnets 6A to 6D, 16A to 16D, in order to form a counterclockwise within a specified range through the driven magnets 221 1220875 6A to 6D, 16A to 16D. Rotary drive in the direction. That is, in the coil side 7 6 1 a, 761b, 762a, 762b, 763a, 763b, 764a, 764b of each of the square drive coils 7 6 1 to 7 6 4, a dotted line is generated. At the same time, the electromagnetic driving force is generated by the reaction force (in order to fix the square driving coils 761 to 764 to the fixed flat plate 8), so that each of the driven magnets 6A to 6D and 16A to 16D is indicated by a solid arrow. The direction shown (counterclockwise in the figure) is repelled and driven to generate the electromagnetic driving forces (designated rotational moments at the same level) in the eight driven magnets 6A to 6D, 16A to 16D. The balance of the main is to make the movable table body 15 to be driven to rotate counterclockwise on the XY plane (within a specified range). <Control mode F 1 0>. This control mode F 1 0 is an example of a power-on control mode, which is used to set the movable table body 15 to be able to rotate and drive a specified angle in a clockwise direction on the XY plane (refer to FIG. 70). ). In this control mode F10, the square driving coils 761 to 764 and the eight driven magnets 6A to 6D and 16A to 16D are simultaneously energized and controlled. In this case, with respect to each of the square driving coils 76 1 to 764, a control current different from that in the aforementioned control modes F1 to F9 is formed (refer to the column of the control mode F 10 in Fig. 70). In this case, the magnetic poles N and S of the driven magnetic coils 6 A to 6 D are set to be the same as those in the foregoing F 1 to F9. In addition, for the square drive coils 76 1 to 764, they are energized and controlled to 222 1220875 to form a reverse state from the case of the aforementioned control mode F9, thereby outputting the specified electromagnetic driving force, that is, relative to the corresponding eight Each of the driven magnets 6A to 6D and 16A to 16D has a designated torque (rotational driving force) at the same level with the origin (0 point) on the XY plane as the center, and is generated in the clockwise direction, respectively. In Fig. 70, the specified rotation torque is shown at the same level with a solid line. Thereby, in order to maintain the movable table body 15 of the driven magnets 6A to 6D and 16A to 16D, in order to form a clockwise direction (right side) within a specified range through the driven magnets 6A to 6D and 16A to 16D. Rotary) on the rotary drive. Regarding the other structures and their operations and functions, they are formed to be slightly the same as those in the thirteenth embodiment. Even with this, in addition to obtaining the same effect as the case of the thirteenth embodiment described above, in this fifteenth embodiment, in order to obtain the electromagnetic signals output by the foregoing electromagnetic drive device, The driving force is output to a direction orthogonal to the X-axis or Y-axis, and the direction of rotation is not required. Therefore, it is not necessary to install a new rotary driving device, and it is possible to form the movable table body 15 within a specified angle. The advantages of rotary drive can further improve its versatility. In addition, in the aforementioned fifteenth embodiment, when setting the transfer direction of the movable table body portion 15 'is exemplified a case where the electromagnetic drive device 164 is driven and controlled by dividing the control mode into F1 to F10, However, for example, in the control mode F2, if the energizing directions of the driven magnets 6A to 6D and 16A to 16D are set to be opposite to the control mode F1 to 223 1220875 and the energizing directions of the driving coils 761 and 7 63 When the function is set to be the same as that in the case of the control mode F1, other drive control methods may be used to drive and control the electromagnetic drive device 164. In addition, in the aforementioned fifteenth embodiment, the installation place of the driven magnets 6A to 6D, 16A to 16D, and the installation place of the square driving coils 761 to 764 may be replaced. In this case, the driven magnets 6A to 6D and 16A to 16D are mounted on the fixed member side, and the square driving wires 76 1 to 764 are mounted on the movable member side. Furthermore, in this fifteenth embodiment, although the case where the driven magnets 6A to 6D and 16A to 16D are constituted by electromagnets is illustrated, the driven magnets 6A to 6D, 16A to 16D is composed of a permanent magnet. By setting the driven magnets 6A to 6D and 16A to 16D as permanent magnets respectively, the electrical wiring around the driven magnets 6A to 6D and 16A to 16D is not required, and the driven magnets 6A to 6D can be reduced. , 16A to 16D installation space. Therefore, due to its amount, it can be formed to achieve small size and light weight of the entire device, and can improve the productivity and maintainability. Compared with the use of the driven magnets 6A to 6D, 16A to 16D as In the case of an electromagnet, it is not necessary to drive the electromagnet, so it can greatly suppress the overall power consumption. This can greatly reduce the overall running cost of the device. In the drive control of the electromagnetic drive device 4, only the switching control of the energization direction of most of the drive coils 761 to 764 is performed. The movable table body i can be driven and driven to any direction. Therefore, when the moving direction of the movable table body 224 1220875 is switched, it is formed so as to respond quickly, and is formed without any disconnection of the driven magnets 6 A to 6 D, 1 6 A to 16 D, etc. The occurrence of an accident has the advantage of greatly improving the durability of the entire device. [Sixteenth Embodiment] Next, a sixteenth embodiment will be described with reference to Figs. 71 to 76. This sixteenth embodiment is characterized by being provided with another electromagnetic drive device 147 (refer to Figs. 71 and 72), instead of the electromagnetic drive device 1 4 6 ( (See Figure 66). Specifically, the electromagnetic drive device 1 4 7 in this embodiment has a structural feature that a cross-shaped drive coil 7 7 1 formed in a cross-frame shape is installed instead of the tenth one described above. The four square driving coils of the electromagnetic driving device 1 46 in the fifth embodiment can not only move in any direction, but also can rotate the movable table body 15 on the same surface. Characteristics. In addition, in order to replace the motion control system 206 in the aforementioned fifteenth embodiment, a motion control system 207 is provided to make the electromagnetic driving device 147 move efficiently, and the rotation on the same surface can be performed. Characteristics of driving characteristics. This will be described in detail below. First, this sixteenth embodiment is the same as that of the fifteenth embodiment described above, and is provided with: a movable table body portion 15 'for precision work is arranged on the same surface so that it can be mounted on Those who move in any direction; the table body maintenance mechanism 2 allows the movable table body portion 15 to move at the same time 225 1220875 holds the movable table body portion 15 and is provided with the movable table body portion 5 The function of restoring the original position; the case body 3 is used as a body part supporting the table body maintenance mechanism 2; the electromagnetic driving device} 4 7 is installed on the side of the case body 3 and responds to instructions from the outside A moving force in a predetermined direction is given to the movable table body 15. Here, the movable table body 15 is constituted as follows: that is, the movable table body 1 for precision work; and the auxiliary table body 5 corresponding to this type of movable table body! At a specified interval, they are arranged in parallel and integrated on the same central axis. Further, as shown in Fig. 34, the table maintenance mechanism 2 is installed on the side of the auxiliary table 5 and is configured to maintain the movable table 1 via the auxiliary table 5. "About Electromagnetic Drive 147" The electromagnetic drive device 1 4 7 is to maintain the main part on the side of the housing body 3, and has the following function, that is, in accordance with an external command, the specified moving force ( The driving force) is given to the movable table body 15 along the moving direction of the movable table body 15. Such an electromagnetic driving device 1 47 is disposed between the movable table body 1 and the auxiliary table body 5. Specifically, the electromagnetic drive device 1 47 is provided with a cross-shaped drive coil 77 1 formed in a cross-frame shape, and eight driven magnets 6A, 16A, 6B, 16B, 6C, 16C, 6D, and 16D. , Corresponding to the parallel coil sides 7 7 1 a, 7 7 1 b, 7 7 1 c, 7 7 1 d that are parallel to the X-axis and Y-axis of the cross-shaped drive coil 7 7 1 , 7 7 1 e, 7 7 1 f, 771 g, 77 lh (symbols are given in sequence in the counterclockwise direction in Figure 72); the flat plate 8 is fixed to maintain the aforementioned cross-shaped drive coil 7 7 1 At the position specified by 226 1220875. The aforementioned cross-shaped driving coil 7 7 1 is such that the center point is arranged at the origin on the χ_γ plane with the central portion on the fixed flat plate 8 as the origin, so that the two opposite sides are stretched out in the four directions. Each side is arranged along the X-axis and the γ-axis so as to be sandwiched on the χ-γ plane and parallel to it. In addition, a total of eight driven magnets 6 A to 6 D and 16 A to 16 D are composed of electromagnets that can be energized and controlled externally, and are individually arranged corresponding to parallel to the cross The coil sides 771a, 771b, 771c, 771d, 771e, 771f, 771g, and 771h of the coil-shaped driving coil 7 7 1 (see FIGS. 71 to 72). As shown in FIG. 71, the fixed flat plate 8 is attached and maintained on the casing body 3 disposed on the movable table body 1 side of the auxiliary table body 5. Further, the cross-shaped drive coil 7 71 and the fixed flat plate 8 constitute a fixture part as a main part of the electromagnetic drive device 1 47. In addition, the cross-shaped driving coil 77 1 is configured to generate an electromagnetic driving force between each of the driven magnets 6A to 6D and 16A to 16D after the driving state is set. The driven magnets 6A to 6D and 16A to 16D are repulsively driven in a direction orthogonal to the coil sides 771a to 7 71 h. In this case, the center axis of the moving direction of each of the driven magnets 6 A to 6 D and 16 A to 16 D is set to be orthogonal to the aforementioned X-axis or Y-axis. In addition, when the aforementioned movable table body section 15 is moved in a direction that is not orthogonal to each coil side 7 7 1 a to 7 7 1 h (relative to the direction in which each coil side is tilted 771a to 771h), As described later, it has a combined force that generates electromagnetic driving forces of at least two or more of the driven magnets 6A to 6D and 16A to 16D at different positions respectively arranged along the χ-axis and the Y-axis, and is formed to be implemented. Transfer of the movable table body 15. The eight driven magnets 6A to 6D and 16A to 16D constituting a part of the electromagnetic driving device 1 47 are, in this embodiment, as shown in FIG. 72, the end faces of the magnetic poles (with each coil side 771a to 771h). (Opposite face) is formed by a quadrangular electromagnet, and each coil side is arranged and fixed on the XY plane assumed to be above the auxiliary table body 5 at the same distance from the center. 7 7 1 a to 7 7 1 h. Further, in this embodiment, for example, in order to energize the specified actuating current to part or all of the eight driven magnets 6A to 6D, 16A to 16D, each of the driven magnets 6A to 6D, 16A to 16D is energized. After being set to the active state, the cross-shaped drive coil 77 1 is started to be energized in the active state in accordance with a control mode to be described later at the same time. In addition, the energizing current to the cross-shaped drive coil 77 1 and the magnitude of the magnetic force of each of the driven magnets 6 A to 6 D and 16 A to 16 D are adjusted by the energization control, thereby making the aforementioned movable The table body 15 moves to the specified direction. In this case, the operation of the electromagnetic driving device 147 with respect to the moving direction with respect to the movable table body 15 and its driving force (with respect to the cross-shaped driving coil 771 and the eight driven magnets 6A to 6D) , 16A to 16D power-on drive), will be described in detail with reference to Figures 74 to 76. In this case, in the sixteenth embodiment, the directions of energization of the eight driven magnets 6A to 6D and 16A to 16D formed by the electromagnet 228 1220875 are the same as those in the first embodiment. Because the same variable control is performed, the cross-shaped drive coil 77 1 (part of each coil side 77 1 a to 7 7 1 h) and the current direction of the current are corresponding to the movable table body 1 The transfer direction of 5 is set and controlled by an operation control system 207 described later according to the content of each control mode. With this, relative to the driven magnets 6A to 6D, 16A to 16D, in accordance with Fleming's left-hand law, it can output in a specified direction (directions orthogonal to the portions of the coil sides 771a to 771h, respectively) Electromagnetic force (reaction force) of pressing. In addition, the direction of the electromagnetic force generated on the eight driven magnets 6A to 6D and 16A to 16D is selected in advance to form a combination of the eight driven magnets 6A to 6D and 16A to 16D. The resultant force of the electromagnetic driving force generated above is matched with the moving direction of the movable table body portion 15 (including rotation), and the movable table body portion 15 can be given a moving force in any direction on the XY axis plane. A series of energization control methods for one of the eight driven magnets 6A to 6D and 16A to 16D is described in detail in the description section (Fig. 74 and Fig. 76) of the program register part 227 described later. Here, the outer side and the inner side of the coil portion on the same surface of the cross-shaped drive coil 7 7 i are at least the same height as the cross-shaped drive coil 77 1 (the height of the fixed flat plate 8 surface), In addition, a magnetic material such as fat iron can also be filled in a range including the aforementioned operating ranges of the driven magnets 6 A to 6 D and 16 A to 16 D. 229 "About the motion control system 207" Next, the motion control system 207 in the sixteenth embodiment will be described in detail. M Charge 207 倂 &gt; The control coil 7 7 1 and the energization control are: energization of the energizing party 7 7 1); the function of the driving wire coil 7 7 1 is to act accordingly, and 6D, 16Α to this kind In the sixteenth embodiment, the motion control unit can also be set in the electromagnetic field described above. In the driving device 147 (refer to FIG. 73: the operation system 207 is to individually control each of the eight driven magnets of the aforementioned cross-shaped driving wire 6 Α to 6 D, 1 6 Α to 1 6 D, and restrict the movable The movement of the table body part 15. This kind of motion control system 207 has the following function, the setting function, in order to set and maintain the direction with respect to the aforementioned cross-shaped drive coil in a specified direction (one or the other j circle is energized) The control function is to change the setting of the magnitude of the energizing current to this type of cross-shaped drive; the individual setting of the magnetic poles should be set individually to the direction of energization of the aforementioned cross-shaped drive coil 77 1 and maintain the aforementioned driven magnets 6A to 1 6D Magnetic poles N, S; magnetic strength setting function, for setting the magnetic strength of the driving magnets 6A to 6D, 16A to 16D as a function of the department's instructions (variable by setting); and with a table body The motion control function adjusts the output side of the energy appropriately, and adjusts the forward direction and the forward force of the front part 15. According to the motion control system, this kind of motion control system 207 is for the sake of function. As shown in Fig. 7 3, it is provided with a table body 2 1 7 and a cross shape of the aforementioned electromagnetic driving device 1 47 · 230 1220875 and eight driven magnets 6A to 6D and 16A to 16D according to the designation. Control mode to individually drive, and move the aforementioned movable table body 15 in a specified direction; the program memory section 22 7 is to store a majority of control programs, the control program is about a majority of power Control mode (in this embodiment, ten power-on control modes from K 1 to K 1 0), this mode is the moving direction of the aforementioned movable table 1 set on the table driving control device 2 1 7 And its actions The data storage unit 23 is designed to store the designated data used in the implementation of each of these control programs. In addition, the table drive control device 2 1 7 is provided with an action. The command input unit 24 is a command for designating a control operation for the cross-shaped driving coil 77 1 and eight driven magnets 6A to 6D and 16A to 16D. Furthermore, in such a table body driving control device 2 1 7 Among them, the position information during and after the movement of the movable table body 1 is formed to be input, and calculation processing is performed with high sensitivity described later after being detected by the position detection and sensing mechanism 25. In addition, the various control functions of the operation control system 207 are formed so as to be collectively included in the power-on control modes K 1 to K 1 0 of most of the program memory unit 227, and the operator is instructed via the operation command. The command input by the input unit 24 is operated and implemented based on any one of the selected control modes K1 to K10. This will be explained in more detail. The table drive control device 2 1 7 related to this embodiment is provided with: a main control section 2 1 7 A, which is operated based on a command 231 from the motion command input section 24, and is selected by the program memory section 2 2 7 In the specified control mode, the aforementioned cross-shaped drive coil 7 7 1 and each of the eight driven magnets to 6D, 16A to 16D are used to perform energization control including a designated DC power including zero; the coil selection drive control section 2 1 7B is to drive and control the cross-shaped moving coil 771 and eight of them simultaneously or individually according to the specified energization control mode (one of K 1 0) selected and set in the control section 2 1 7 A. Each of the driven magnets 6A to 6D, 16A 1 6D. In addition, the main control unit 2 1 7 A also has the following functions. The function is to calculate the movable table body 15 based on the input information from the position detection sensor 25 that detects the position of the table body. Position, or perform various other calculations. Here, the reference numeral 4G is a source circuit section having a specified current supplied to the cross-shaped drive coil 7 71 of the magnetic drive device 1 4 7 and each of the eight drive magnets 6A to 6D and 16A to 16D. << About the program memory part 227 >> The aforementioned table body drive control device 2 1 7 is structured as follows, that is, according to a predetermined energization control program (for implementing the specified energization control mode) previously stored in the program memory part 227 Program), so that the cross-shaped driving coil 7 7 1 of the electromagnetic actuator 1 4 7 and the eight driven magnets 6A to 6D, 16A to 16D have a specified correlation, and then drive control is performed individually. That is, in the program memory section 22 7 related to this embodiment, the following programs are described, that is, most of the magnet control programs are used to drive the above-mentioned 8 A 6 main flow K1 to the electric circuit. Do not recall each of the driven magnets (electromagnets) of 232 1220875 6 A to 6 D, 16 A to 1 6 D. The electrical directions are individually specified, and while the magnetic poles are specified] or S poles , The size of the energization including the energization stop can be individually set; the control program for the drive coil is specially designed when the energization direction of each of the eight driven magnets (electromagnets) 6A to 6D and 16A to When the N pole or S pole is specified (or the function is performed in the case of power-on and power-off, when correspondingly, the current direction of the cross-shaped drive 77 1 and the size of its current are set variably. The operating sequence is organized and memorized in the power-on control modes K1 to K10 (refer to Figures 74 and 76). Here, for the ten groups of control modes K1 to K1 0, the base 7 3 to 7 5 Figure for illustration. Figure 74 , Is positive or negative toward the X axis, or positive or negative toward the axis, and is an example of each of the power-on control modes KK1 to KK4 (moving the chart) In FIG. 74, in each of the energization control modes 5 to κ4 in this embodiment, it is set to individually fix the energization direction of the DC current of the cross-shaped drive coil 7 71 to rotate clockwise (right-handed ) In addition, for each of the eight driven (electromagnet) energization directions, the magnetic poles (N poles or poles) are individually set to be variably set by the control mode. 〈Control Mode K1〉 This control mode κ 1 is an example of the energization control mode used to move the movable table body 1 in the positive direction (refer to Figure 74). The W-pole current is only 16D) Coil. Same as ten groups 〇In the case of the direction Υ) 0 ζ κ1 The magnet is SX axis 233 1220875 In this control mode κ1 of the sixteenth embodiment, the coil sides 7 7 1 c, 7 7 1 d ′ Each of 7 7 1 g and 7 7 1 h is fed by iron 6B, 16B and 6D, 16D. Power-on control, and the magnets 6A, 16A, 6C, and 16C along the coil sides 771a, 771b, 771e, and 771f are controlled to be stopped. Here, each driven magnet 6B arranged along the Y axis is controlled. In order to set and control the end faces of each of the coil sides 7 7 1 c and 7 7 1 d to N pole and S pole. In addition, the driven magnets 6 D and 1 6 D are arranged along the Y axis so that the end portions facing the aforementioned 771 g and 77 lh are set to control the S pole and the N pole, respectively. Therefore, they are driven in a cross shape. In each of the coil sides 771c, 7 7 1 g, and 7 7 1 h of the coil 771, a square magnetic driving force generated by a dotted line arrow is shown, and at the same time, the reaction force (in order to fix the cross-shaped driving wire is fixed) Generated) and the driven magnets 6B, 16B, 6D, and the directions indicated by the solid arrows (right in the figure) are repelled and driven. In this kind of four driven magnets 6B, 16B, 6D, 16D The balance of power is mainly used to move the movable table body 15 smoothly in the positive direction on the axis. <Control mode K2> This control mode K2 is an example of the energization control mode used to move the movable table 1 in the negative direction (refer to Figure 74: In this control mode K2, it will be located along the Y axis The setting of the magnetic poles of the direction magnets 6B, 16B, 6D, and 16D is different from the point of phase inversion when compared to the control mode K 1. Its Y axis is driven and the X axis is driven by I ° 16B system. Each coil side is divided into _ i 〇 77 1 d, the direction of the coil 77 1 16D to send magnetic drive to the X axis to X axis) °. Driven: In the aforementioned case, it is also the same as the case of the aforementioned control mode 234 1220875. Therefore, in each of the coil sides 7 7 1 c, 7 7 1 d, 771g, and 771h of the cross-shaped drive coil 7 7 1, the same principle as that in the case of the aforementioned mode κ is used to generate the control mode K 1 The situation is a reverse electromagnetic force (the arrow of the dotted line). The reaction force is to drive the driving magnets 6B, 16B and 6D, 16D in the direction shown by the solid arrow (left in the figure). This moves the movable table body 15 to the negative direction on the X axis. <Control mode K3> This control mode K3 is an example of the energization control mode for moving the movable table body 15 to the positive direction of the Y axis (refer to FIG. 74). In this control mode K3, energization control is performed with respect to the driven magnets 6A, 16A, 6C, and 16C located on the respective coil sides 771a, 771b, 771e, and 771f along the X-axis direction, and the positions are set along the The driven magnets 6B, 16B, and 6D, 16D of each of the coil sides 771c, 771d, 771g, and 771h in the γ-axis direction are controlled to be energized and stopped. Here, the driven magnets 6 A and 16 A along the X axis are set to control the end portions facing the respective coil sides 7 7 1 a and 7 7 1 b to S pole and N pole, respectively. In addition, the other driven magnets 6C and 16C arranged along the X axis are set to control the end portions facing the respective coil sides 771e and 771f to S pole and N pole, respectively. Therefore, the coil sides 771a, 771b,

7 7 1 e、7 7 1 f部份中’爲產生於點線之箭頭所示方向的電磁 驅動力,同時,以該反力(爲了使十字狀驅動線圈7 7 1被 固定所產生)而使得被驅動磁鐵6 A、1 6 A以及6 C、1 6 C 235 1220875 於實線之箭頭所示方向(圖中之上方)被推斥驅動’以產 生在該種四個之被驅動磁鐵6 A、1 6 A以及6 C、1 6 C的電 磁驅動力之平衡爲主,使可動桌體部1 5被移送至Υ軸上 之正向。 〈控制模式K4〉 在該種控制模式K4係表示用以將可動桌體1移送至Y 軸之負的方向之通電控制模式之一例(參照第74圖)。 在此種控制模式K4中,將位在沿著X軸方向之被驅動 磁鐵6A、16A以及6C、16C的磁極之設定在在相較於前· 述控制模式K3的情況係以成逆向之點爲不同處。其他係 與前述控制模式K3之情況形成相同。 因此,在十字狀驅動線圈7 7 1之各個線圈邊7 7 1 a、7 7 1 b、In the part 7 7 1 e, 7 7 1 f is the electromagnetic driving force generated in the direction indicated by the arrow of the dotted line, and at the same time, the reaction force (generated to fix the cross-shaped driving coil 7 7 1) The driven magnets 6 A, 1 6 A and 6 C, 1 6 C 235 1220875 are repulsively driven in the direction indicated by the solid arrow (upper in the figure) to generate the four driven magnets 6 of this kind. The balance of the electromagnetic driving forces of A, 1 6 A, and 6 C, 1 6 C is mainly to cause the movable table body 15 to be moved to the positive direction on the y-axis. <Control Mode K4> This control mode K4 is an example of an energization control mode for moving the movable table 1 to the negative direction of the Y axis (refer to FIG. 74). In this control mode K4, the magnetic poles of the driven magnets 6A, 16A and 6C, 16C located along the X-axis direction are set in a reverse direction compared to the case of the control mode K3 described above. For the difference. The other systems are the same as those in the aforementioned control mode K3. Therefore, the respective coil sides 7 7 1 a, 7 7 1 b,

77 1 e、77 1 f部份中,藉由與前述控制模式K3之情況相同 的原理而產生有逆向之電磁驅動力(點線之箭頭),以該 反力而使得被驅動磁鐵6Α、16Α以及6C、16C分別於實 線之箭頭所示方向(圖中之下方)被推斥驅動,藉此,使 可動桌體部15被移送至X軸上之負向。 I 〈控制模式Κ5〉 在此種第十六實施例中之控制模式Κ5係爲表示通電控 制模式之一例,係用以將可動桌體1朝向Χ-Υ平面座標 上之第一象限方向(參照第7 5圖)。 在該控制模式Κ5中,係被設定成爲同時地使八個之各 個被驅動磁鐵6 Α至6 D、1 6 Α至1 6 D被通電控制之狀態, 相對於各個被驅動磁鐵6 A至6 D、1 6 A至1 6 D之全數係形 236 1220875 成爲預將使其通電方向(磁極N、S之設定)爲個別地進 行設定控制。 亦即,如第75圖所示,在對應於十字狀驅動線圈771 之各個線圈邊77 1 a至77 1 h所裝設的各個被驅動磁鐵6 A、 166B、16B、6C、16C、6D、16D之內,各個被驅動磁鐵 6A至6D係爲,使對向於對應之各個線圈邊的端面部分依 序設定成S極、N極、N極、S極,此外,各個被驅動磁 鐵16A至16D係爲,使對向於對應之各個線圈邊的端面 部分依序設定爲N極、S極、S極、N極。 並且,在前述十字狀驅動線圈771之各個線圈邊771a 至7 7 1 h部分方面,所形成之通電控制係與同時作動控制 模式K1與K3狀態爲成相等。因此,係同時地產生與前 述控制模式ΚΙ、K3之情況爲相同朝向(X軸之正向與Y 軸之正向)的電磁驅動力,其合力係如第7 5圖之控制模 式K5之欄所示,爲被朝向至第一象限之方向。藉此,爲 使前述可動桌體部15朝向X-Y平面座標上之第一象限的 方向來移送。 在此,對於X軸而朝向第一象限方向之移送角度Θ (與 X軸間之角度(9 )係爲,藉由個別性地將十字狀驅動線圈 771以及各個被驅動磁鐵6A至6D、16A至16D之通電電 流的大小進行可變控制,使作用在各個被驅動磁鐵6A至 6 D、1 6 A至1 6 D之電磁驅動力進行變化,藉此,係可自 由地在任意方向上進行可變設定。 〈控制模式K6〉 237 1220875 此種控制模式K6係爲,表示用以將可動桌體1朝向χ_γ 平面座標上之第三象限方向(與第一象限方向爲相反的方 向)進行移送的通電控制模式之一例(參照第7 5圖)。 在該控制模式Κ6中,爲使八個之被驅動磁鐵6Α至6D、 1 6 Α至1 6 D同時地被通電控制,其磁極ν、S係全數被設 定成與控制模式K 1至K5之情況爲逆向。 因此’在十字狀驅動線圏771之各個線圏邊771a至771 h 部分方面’所形成之通電控制係與前述控制模式K2與K4 同時作動狀態爲成相等。因此,係同時地產生與前述控制 模式Κ2、Κ4之情況爲相同朝向(第75圖之左方與下方) 的電磁驅動力,並且,其合力係如第75圖之控制模式Κ6 之欄所不,爲被朝向至第三象限之方向。藉此,爲使前述 可動桌體部15朝向Χ-Υ平面座標上之第三象限的方向來 移送。 在此,對於X軸而朝向第三象限方向之移送角度0係 爲,藉由個別性地將十字狀驅動線圈77 1以及各個被驅動 磁鐵6Α至6D、16Α至16D之通電電流的大小進行可變控 制,使作用在各個被驅動磁鐵6Α至6D、16Α至16D之電 磁驅動力進行變化,藉此,係可自由地在任意方向上進行 可變設定。 〈控制模式Κ7〉 在此種第十六實施例中之控制模式Κ7係爲,表示用以 將可動桌體部15朝向Χ-Υ平面座標上之第二象限方向進 行移送的通電控制模式之一例(參照第7 5圖)° 238 1220875 在該控制模式K7中,爲使八個之被驅動磁鐵6A至6D、 1 6Α至1 6D同時地被通電控制,相對於各個被驅動磁鐵6Α 至6D、16A至16D之全部,爲使其通電方向(磁極N、S 之設定)爲個別地被設定控制。 亦即,如第7 5圖所示,在對應於十字狀驅動線圈7 71 之各個線圈邊771a至77 lh所裝設的各個被驅動磁鐵6A、 166B、16B、6C、16C、6D、16D之內,各個被驅動磁鐵 6A至6D係爲,使對向於對應之各個線圈邊的端面部分依 序設定成S極、S極、N極、N極,此外,各個被驅動磁 鐵16A至16D係爲,使對向於對應之各個線圈邊的端面 部分依序設定爲N極、N極、S極、S極。 並且,在前述十字狀驅動線圈771之各個線圈邊771a 至77 1 h部分方面,所形成之通電控制係與同時作動控制 模式K2與K3狀態爲成相等。因此,係同時地產生與前 述控制模式K2、K3之情況爲相同朝向(X軸之負向與Y 軸之正向)的電磁驅動力,其合力係如第7 5圖之控制模 式K7之欄所示,爲被朝向至第二象限之方向。藉此,爲 使前述可動桌體部15朝向X-Y平面座標上之第二象限的 方向來移送。 在此,對於X軸而朝向第二象限方向之移送角度Θ (與 X軸間之角度Θ )係爲,藉由個別性地將十字狀驅動線圈 771以及各個被驅動磁鐵6A至6D、16A至16D之通電電 流的大小進行可變控制,使作用在各個被驅動磁鐵6A至 6D、16A至16D之電磁驅動力進行變化,藉此,係可自 239 1220875 由地在任意方向上進行可變設定。 〈控制模式K8〉 此種控制模式K8係爲,表示用以將可動桌體1朝向X-Y 平面座標Jl之第四象限方向(與第二象限方向爲相反的方 向)進行移送的通電控制模式之一例(參照第7 5圖)。 在此種控制模式K8中,爲同時的使八個之各個被驅動 磁鐵6A至6D、16A至16D進行通電控制,其磁極N、S 係被固定成與前述各個控制模式K1至K7之情況爲相同 狀。 因此,在十字狀驅動線圈7 7 1之各個線圈邊7 7 1 a至7 7 1 h 部分方面,所形成之通電控制係與前述控制模式K1與K4 同時作動狀態爲成相等。因此,係同時地產生與前述控制 模式ΚΙ、K4之情況爲相同朝向(第75圖之右方與下方) 的電磁驅動力,並且,其合力係如第75圖之控制模式K8 之欄所不’爲被朝向至第四象限之方向。藉此,爲使前述 可動桌體部15朝向X-Y平面座標上之第四象限的方向來 移送。 在此,對於X軸而朝向第四象限方向之移送角度0係 爲,藉由個別性地將十字狀驅動線圈7 7 1以及各個被驅動 磁鐵6A至6D、16A至16D之通電電流的大小進行可變控 制,使作用在各個被驅動磁鐵6A至6D、16A至16D之電 磁驅動力進行變化,藉此,係可自由地在任意方向上進行 可變設定。 〈控制模式K9〉 240 1220875 在此種第十六實施例中之控制模式K9係爲,顯示一種 通電控制模式之一例,其係用以將可動桌體部1 5設爲可 在Χ-Υ平面上以逆時針方向而旋轉驅動指定角度者(參 照第7 6圖)。 在此種控制模式Κ9中,十字狀驅動線圈7 7 1與八個之 各個被驅動磁鐵6 Α至6 D、1 6 Α至1 6 D爲同時地被通電控 制。 在此情況下,十字狀驅動線圈77 1之通電方向係如第76 圖所示,爲被設定成與前述K1至K8之情況爲相同的固 定在右旋之狀態下。此外,有關於被驅動磁鐵6A至6D、 16A至16D之磁極N、S,對向於十字狀驅動線圈771之 各個線圈邊之部分的磁極係爲,在被驅動磁鐵6 A至6 D 方面係分別被設定成S極,而在被驅動磁鐵16A至16D 分別則分別被設定成N極。 藉此,爲使十字狀驅動線圈7 7 1以及各個被驅動磁鐵6 A 至6D、16A至16D被通電控制成前述狀態,在該八個之 各個被驅動磁鐵6A至6D、16A至16D中,爲將X-Y平 面上之原點(0點)作爲中心的相同位準之指定的力(指 定之電磁驅動力)爲分別地產生在逆時針方向上。 在第76圖中,爲以實線圖示相同位準之指定旋轉力矩。 藉此,在維持被驅動磁鐵6A至6D、16A至16D的可動桌 體部15方面,爲形成經由該被驅動磁鐵6A至6D、16A 至1 6 D而在指定範圍內於逆時針方向上進行旋轉驅動。 亦即,在十字狀驅動線圈771之各個線圈邊771a至771 h 241 1220875 部分方面,係產生有以點線之箭頭所示之電磁驅動力,同 時,藉由其反力(爲了使十字狀驅動線圈7 7 1被固定在固 定平板8所產生),而使得各個被驅動磁鐵6A至6D、1 6A 至1 6 D爲在於實線之箭頭所示方向(圖中之逆時針方向) 被推斥驅動,以產生在該八個之各個被驅動磁鐵 6A至 6D、16A至16D之各個電磁驅動力(相同位準之指定的 旋轉力矩)的平衡爲主,使可動桌體部1 5爲在X-Y平面 上(在指定之範圍內)被旋轉驅動於逆時針方向。 〈控制模式K10〉 在此種第十六實施例中之控制模式K 1 0係爲顯示一種 通電控制模式之一例,其係用以將可動桌體部1 5設爲可 在X-Y平面上以順時針方向而旋轉驅動指定角度者(參 照第7 6圖)。 在此種控制模式K10中,十字狀驅動線圈771與各個 八個之被驅動磁鐵6A至6D、16A至16D係同時地被通電 控制。在此情況下,相對於十字狀驅動線圈77 1係形成爲 通電有與前述控制模式K9之情況爲相同方向(右旋)的 控制電流(參照第7 6圖之控制模式K1 0之欄)。此外, 有關於被驅動磁鐵6A至6D、16A至16D之磁極N、S之 設定,係使N極、S極被設定成與前述K9之情況爲逆向 狀。 藉此,爲使十字狀驅動線圈7 7 1以及各個被驅動磁鐵6 A 至6D、16A至16D被通電控制成前述狀態,在該八個之 各個被驅動磁鐵6A至6D、16A至16D中,爲將X-Y平 242 1220875 面上之原點(〇點)作爲中心的相同位準之指定的力(指 定之電磁驅動力)爲分別地產生在順時針方向(右旋)上。 將其構造揭示在第7 0圖。於圖中,爲以實線圖示相同 位準之指定旋轉力矩。藉此,在維持被驅動磁鐵6Α至6D、 1 6Α至1 6D的可動桌體部1 5方面,爲形成經由該被驅動 磁鐵6A至6D、16A至16D而在指定範圍內於順時針方向 (右旋)上進行旋轉驅動。 有關於其他的構造以及其動作、機能,係形成爲略與 前述第十五實施例之情況相同。 即使是藉由如此,除了可獲得與前述第十五實施例之 情況爲同等之作用效果以外,更將驅動線圈以十字狀驅動 線圈7 7 1之一個來構成,因此,係可減少在組裝時之手續、 且亦可減輕故障等之產生,在該種特點中,爲具有生產程 序之簡略化以及改善可維修性的優點。 此外,在前述第十六實施例中,於進行可動桌體部1 5 的移送方向之設定之際,係例示區分成K1至K1 0之控制 模式來將電磁驅動裝置1 47進行驅動控制的情況,不過, 倘若例如在控制模式K2、K 1 0中爲將十字狀驅動線圈7 7 1 之各個通電方向設定成與控制模式K1、K9之情況下爲逆 向,且將被驅動磁鐵6A至6D、16A至16D之通電方向設 爲與控制模式K1、K9之情況下爲相同的機能時,亦可採 用其他的驅動控制方法來將電磁驅動裝置1 6 7進行驅動控 制。In the parts 77 1 e and 77 1 f, a reverse electromagnetic driving force (dotted arrow) is generated by the same principle as in the case of the aforementioned control mode K3, and the driven magnets 6A and 16Α are caused by the reaction force. 6C and 16C are repulsively driven in the directions indicated by the solid arrows (lower in the figure), whereby the movable table body 15 is moved to the negative direction on the X axis. I <Control Mode K5> The control mode K5 in this sixteenth embodiment is an example of a power-on control mode, and is used to orient the movable table 1 in the first quadrant direction on the X-Χ plane coordinates (see Figure 7 5). In this control mode K5, it is set such that the eight driven magnets 6 Α to 6 D and 1 6 Α to 1 6 D are simultaneously controlled by energization, with respect to the respective driven magnets 6 A to 6 D, 1 6 A to 1 6 D, all numbers 236 1220875 are set to control the energizing direction (setting of magnetic poles N and S) individually. That is, as shown in FIG. 75, each of the driven magnets 6A, 166B, 16B, 6C, 16C, 6D, 6A, 166B, 16B, 6C, 6D, Within 16D, each of the driven magnets 6A to 6D is such that the end portions facing the corresponding coil sides are sequentially set to S pole, N pole, N pole, and S pole. In addition, each of the driven magnets 16A to The 16D system is such that the end portions facing the corresponding coil sides are sequentially set to N pole, S pole, S pole, and N pole. In addition, in the respective coil sides 771a to 7 7 1 h of the aforementioned cross-shaped drive coil 771, the energization control system formed is equal to the states of the simultaneous operation control modes K1 and K3. Therefore, the electromagnetic driving force in the same direction (the positive direction of the X axis and the positive direction of the Y axis) as in the case of the aforementioned control modes KI and K3 is generated simultaneously, and the resultant force is as shown in the column of the control mode K5 in FIG. 7 Shown is the direction to the first quadrant. Thereby, the movable table body 15 is moved in the direction of the first quadrant on the X-Y plane coordinates. Here, the transfer angle Θ (the angle (9) with the X axis toward the first quadrant direction with respect to the X axis is the cross drive coil 771 and each of the driven magnets 6A to 6D, 16A, respectively). The magnitude of the energized current to 16D is variablely controlled, so that the electromagnetic driving force acting on each of the driven magnets 6A to 6D, 16A to 16D is changed, and the system can be freely performed in any direction. Variable setting. <Control mode K6> 237 1220875 This control mode K6 is used to move the movable table 1 towards the third quadrant direction (the direction opposite to the first quadrant direction) on the χ_γ plane coordinates. An example of the energization control mode (refer to Fig. 75). In this control mode K6, in order to make the eight driven magnets 6A to 6D and 1 6 A to 1 6 D simultaneously energized, the magnetic poles ν, The S system is all set to be in the opposite direction to those of the control modes K 1 to K5. Therefore, the energized control system 'formed on each side 771a to 771 h of the cross-shaped drive line 771' and the aforementioned control mode K2 Simultaneous activation with K4 Therefore, the electromagnetic driving force in the same direction (left and bottom of Fig. 75) as in the case of the aforementioned control modes K2 and K4 is generated simultaneously, and the resultant force is as shown in the column of control mode K6 in Fig. 75 No, it is oriented in the direction of the third quadrant. In this way, the movable table body 15 is moved in the direction of the third quadrant on the XY plane coordinate. Here, the X-axis is oriented in the third direction. The transfer angle 0 in the quadrant direction is such that the magnitude of the energizing current of the cross-shaped driving coil 77 1 and each of the driven magnets 6A to 6D and 16A to 16D is individually controlled so as to act on each of the driven magnets. The electromagnetic driving forces of 6A to 6D and 16A to 16D are changed, so that the system can be freely set in any direction. <Control Mode K7> The control mode K7 in this sixteenth embodiment is Is an example of the energization control mode used to move the movable table body 15 toward the second quadrant on the X-Y plane coordinates (refer to Figure 7 5) ° 238 1220875 In this control mode K7, Quilt The driving magnets 6A to 6D and 1 6A to 16D are controlled by energization at the same time. For all of the driven magnets 6A to 6D and 16A to 16D, the energizing direction (setting of the magnetic poles N and S) is individually controlled. That is, as shown in FIG. 7 to FIG. 5, each of the driven magnets 6A, 166B, 16B, 6C, 16C, and 6D mounted on the coil sides 771a to 77 lh corresponding to the cross-shaped drive coil 7 71 Within 16D, each of the driven magnets 6A to 6D is such that the end portions facing the corresponding coil sides are sequentially set to S pole, S pole, N pole, and N pole. In addition, each driven magnet 16A To 16D, the end portions facing the corresponding coil sides are sequentially set to N pole, N pole, S pole, and S pole. In addition, in the portions of the coil sides 771a to 77 1 h of the aforementioned cross-shaped drive coil 771, the energization control system and the simultaneous operation control modes K2 and K3 are equal to each other. Therefore, the electromagnetic driving force in the same direction (negative direction of the X axis and positive direction of the Y axis) as in the case of the aforementioned control modes K2 and K3 is generated simultaneously, and the resultant force is as shown in the column of the control mode K7 in FIG. 7 As shown, it is oriented to the second quadrant. Thereby, the movable table body 15 is moved in the direction of the second quadrant on the X-Y plane coordinates. Here, the transfer angle Θ (the angle Θ with the X axis) toward the second quadrant direction for the X axis is such that the cross-shaped drive coil 771 and each driven magnet 6A to 6D, 16A to The magnitude of the 16D energized current can be controlled to change the electromagnetic driving force acting on each of the driven magnets 6A to 6D and 16A to 16D. With this, the system can be set variably in any direction from 239 1220875. . <Control mode K8> This control mode K8 is an example of the energization control mode used to move the movable table body 1 in the fourth quadrant direction of the XY plane coordinate J1 (the direction opposite to the second quadrant direction). (Refer to Figures 7 and 5). In this control mode K8, to control the energization of each of the eight driven magnets 6A to 6D and 16A to 16D at the same time, the magnetic poles N and S are fixed to be the same as those of the control modes K1 to K7. Same shape. Therefore, in terms of the respective coil sides 7 7 1 a to 7 7 1 h of the cross-shaped drive coil 7 7 1, the energization control system formed is equal to the simultaneous operation state of the aforementioned control modes K1 and K4. Therefore, the electromagnetic driving force in the same direction (right and bottom of Fig. 75) as in the case of the aforementioned control modes KI and K4 is generated simultaneously, and the resultant force is as shown in the column of control mode K8 in Fig. 75. 'Is the direction to the fourth quadrant. Thereby, the movable table body 15 is moved in the direction of the fourth quadrant on the X-Y plane coordinates. Here, the transfer angle 0 for the X-axis toward the fourth quadrant direction is determined by individually applying the magnitude of the energizing current of the cross-shaped drive coil 7 7 1 and each of the driven magnets 6A to 6D and 16A to 16D. The variable control changes the electromagnetic driving force acting on each of the driven magnets 6A to 6D and 16A to 16D, so that the system can be freely set in any direction. <Control mode K9> 240 1220875 The control mode K9 in this sixteenth embodiment is an example of a power-on control mode, which is used to set the movable table body 15 to be on the X-Υ plane. Rotate the specified angle counterclockwise (see Figures 7 and 6). In this control mode K9, the cross-shaped drive coil 7 71 and the eight driven magnets 6 A to 6 D and 1 6 A to 16 D are simultaneously controlled by energization. In this case, as shown in Fig. 76, the direction of energization of the cross-shaped drive coil 77 1 is set in the right-handed state in the same manner as in the case of the aforementioned K1 to K8. In addition, regarding the magnetic poles N and S of the driven magnets 6A to 6D and 16A to 16D, the magnetic pole system of the portion facing each coil side of the cross-shaped driving coil 771 is that of the driven magnets 6 A to 6 D. Each is set to the S pole, and the driven magnets 16A to 16D are each set to the N pole. Thereby, in order to control the cross-shaped driving coil 7 71 and the respective driven magnets 6 A to 6D, 16A to 16D to the aforementioned state, among the eight driven magnets 6A to 6D, 16A to 16D, The specified forces (designated electromagnetic driving force) at the same level with the origin (0 point) on the XY plane as the center are generated in the counterclockwise directions, respectively. In Fig. 76, the specified rotation moments at the same level are shown in solid lines. Thereby, in order to maintain the movable table body 15 of the driven magnets 6A to 6D and 16A to 16D, the formation of the movable table body 15 through the driven magnets 6A to 6D and 16A to 16D is performed in a counterclockwise direction within a specified range. Rotary drive. That is to say, in the respective coil sides 771a to 771 h 241 1220875 of the cross-shaped drive coil 771, an electromagnetic driving force indicated by a dotted arrow is generated, and at the same time, the reaction force (to make the cross-shaped drive The coil 7 7 1 is generated by being fixed on the fixed flat plate 8), so that each of the driven magnets 6A to 6D, 1 6A to 1 6 D is repelled in the direction indicated by the solid arrow (counterclockwise in the figure). The driving is mainly based on the balance of the electromagnetic driving forces (designated rotation torques at the same level) generated in the eight driven magnets 6A to 6D and 16A to 16D, so that the movable table body 15 is at XY The plane (within the specified range) is rotated and driven counterclockwise. <Control mode K10> The control mode K 1 0 in this sixteenth embodiment is an example showing a power-on control mode, which is used to set the movable table body 15 to be adjustable on the XY plane. A person who rotates a specified angle in the clockwise direction (see Figure 76). In this control mode K10, the cross-shaped drive coil 771 and the eight driven magnets 6A to 6D and 16A to 16D are simultaneously controlled by energization. In this case, the cross-shaped drive coil 77 1 is configured to be energized with a control current in the same direction (rightward rotation) as in the case of the aforementioned control mode K9 (refer to the column of the control mode K10 in FIG. 76). In addition, regarding the setting of the magnetic poles N and S of the driven magnets 6A to 6D and 16A to 16D, the N and S poles are set so as to be opposite to the case of the aforementioned K9. Thereby, in order to control the cross-shaped driving coil 7 71 and the respective driven magnets 6 A to 6D, 16A to 16D to the aforementioned state, among the eight driven magnets 6A to 6D, 16A to 16D, The specified forces (designated electromagnetic driving force) at the same level with the origin (0 point) on the XY plane 242 1220875 plane as the center are generated in the clockwise direction (clockwise), respectively. The structure is disclosed in Figure 70. In the figure, the specified rotation torque is shown at the same level as the solid line. Thereby, in order to maintain the movable table body 15 of the driven magnets 6A to 6D, 16A to 16D, in order to form a clockwise direction within a specified range through the driven magnets 6A to 6D, 16A to 16D ( Right-hand rotation). Regarding the other structures and their operations and functions, they are formed slightly the same as in the case of the fifteenth embodiment. Even in this way, in addition to obtaining the same effect as the case of the fifteenth embodiment described above, the drive coil is configured with one of the cross-shaped drive coils 7 71, so that it is possible to reduce the time of assembly. It can also reduce the occurrence of faults, etc. Among these features, it has the advantages of simplification of production procedures and improvement of maintainability. In addition, in the aforementioned sixteenth embodiment, when setting the moving direction of the movable table body portion 15, it is exemplified that the electromagnetic drive device 1 47 is driven and controlled by dividing the control mode into K1 to K1 0 control modes. However, if, for example, in the control modes K2, K1 0, the respective energizing directions of the cross-shaped drive coils 7 7 1 are set in the opposite directions to those in the control modes K1, K9, and the driven magnets 6A to 6D, When the energizing directions of 16A to 16D are set to the same functions as in the case of the control modes K1 and K9, other driving control methods may also be used to drive and control the electromagnetic driving device 167.

此外,於前述第十六實施例中,亦可置換被驅動磁鐵6A 243 1220875 至6D、16A至16D之裝設處與十字狀驅動線圈771之裝 設處。此種情況係形成爲,使被驅動磁鐵6 A至6D、1 6 A 至1 6 D被裝設在固定件側,且使十字狀驅動線圈7 7 ][以 及致動平板9被裝設在可動件側。 在此,於前述各個實施例中,作爲可動桌體1係爲例 示圓形形狀之物,不過,亦可爲四角形狀或是其他形狀。 針對於輔助桌體5係爲例示四角形狀之情況,不過,倘若 可實現前述諸項機能之裝置時,則亦可爲圓形、亦可爲其 他之形狀。此外,即使是針對於被驅動磁鐵6A至6D,倘 若爲相同形狀之構件時,則磁極面不爲四角形亦可爲例如 圓形。 再者,於前述各個實施例中,雖然例示已裝設致動用 平板9之情況,不過,特別在不過問於移動之迅速性之情 況下,亦可不裝設該種致動用平板9。 此外,前述桌體維持機構2係爲有關針對於可動桌體 部1 5爲已具備恢復原始位置之機能之構件,不過,亦可 構成爲另外裝設相對於該種可動桌體部1 5之恢復原始位 置裝置,對於桌體維持機構2爲去除恢復原始位置機能的 構造。 有關於在前述各個實施例中所裝設之致動用平板9,亦 可爲分別裝設在各個被驅動磁鐵6A至6D、16A至16D之 構件、亦可爲在多數之各個被驅動磁鐵中設有共通之單一 的致動用平板9。 在此情況下’係構成爲將致動用平板9之周圍藉由外 244 1220875 殻本體3來維持,同時,在該種致動用平板9上爲裝設有 於前述各個實施例中之驅動線圈,而構成爲刪除固定平板 8者亦可。在將驅動線圈裝設於該種致動用平板9之際, 該致動用平板9係以導電性、且非磁性構件來形成,而在 維持致動用平板9之本來之機能的同時,亦可有利於有效 的維持驅動線圈。 藉此,由於係將構造更加地單純化,故而具有可更加 促進裝置整體之小型輕量化的優點。 此外,在前述各個實施例中,係爲例示在直角座標(X-Y 座標)上,將四個被驅動磁鐵裝設成距離原點爲成等距離 狀的情況,不過,本發明並非必定限定於此,即使未裝設 成距離原點爲成等距離狀、即使配置在由座標軸上偏移之 位置上、或是其數目並非爲四個時亦可。 在此情況下,於前述各個實施例中,亦可構成如下, 即,藉由其動作控制系統2、2 0 2、2 0 3、2 0 4…,朝向來自 外部所指示之移動方向,在較佳狀態(例如,在移送方向 上位於效率較佳之機能的位置)下選擇多數之被驅動磁鐵 而進行通電驅動,以其合力而將前述可動桌體部1 5朝向 由外部所指不之移送方向來進行移送。 此外,在前述各個實施例中,係爲例示將可動桌體部15 以可動桌體1與輔助桌體5構成之情況,不過,亦可僅以 可動桌體1來構成可動桌體部15。 在此情況下,各個被驅動磁鐵6A至6D(或是6A至6D、 1 6 A至1 6 D )係亦可構成爲如下述,即,固著在可動桌體 245 1220875 1側,且與其對向、而將前述驅動線圈7、721、731…以 及致動平板9裝設在固定平板之對向面。並且,桌體維持 機構2係亦可形成爲無須經由輔助桌體5而直接維持可動 桌體1的構造。 如此,係可更加的促進裝置整體之小型化以及輕量化, 在較佳之狀態下爲可提升可搬性以及泛用性。 再者,於前述各個實施例中,係爲例示已具備有對於 可動桌體1之恢復原始位置機能之機構來作桌體維持機 構,不過,亦可將相對於可動桌體之恢復原始位置機能與 前述桌體維持機構分離(作爲恢復原始機能之裝置)來另 行安裝。在此情況下,具備有此種恢復原始位置機能之裝 置係僅限定在與桌體維持機構同時地作動,在技術思想方 面係於前述各個實施例中爲與桌體維持機構成相等之構 件。 此外,在前述各個實施例中,雖爲例示將各個驅動線 圈裝設在固定線圈8上之情況,不過,亦可將各個驅動線 圈分別埋設在前述固定線圈8上,用已安裝成使對應於前 述被驅動磁鐵6A至6D、16A至16D之各個線圈部分爲露 出至該被驅動磁鐵6A至6D、16A至16D側。 如此,係可將電磁驅動裝置部分之空間區域設定爲更 小,且在較佳情況下爲更可促進裝置整體之小型輕量化。 如上述說明,本實施例係爲,作動電磁驅動裝置而將 環狀驅動線圈進行通電驅動,同時,依據來字外部之指示 而選擇對應於前述各個被驅動磁鐵內之移動方向的一或兩 246 1220875 個以上之被驅動磁鐵,之後,便藉由在該各個被驅動磁鐵 中作動之電磁驅動力(推斥力)之合力’可將可動桌體在 藉由桌體維持機構所維持之指定的線定範圍內之同一平面 上的任意方向(由環狀驅動線圈之中心部側朝向外部的方 向)上進行平面移送。 在此情況下,電磁驅動力之大小係可藉由將環狀驅動 線圈與被驅動磁鐵之兩方的通電電流進行可變控制來設定 而獲得,因此,係可將可動桌體之移送速度設定於大小任 意之大小,在該種特點中,係可更加一層地提昇泛用性。 此外,此種可動桌體部之移送係形成爲如下,即,可 將在電磁驅動裝置之環狀驅動線圈以及指定之被驅動磁鐵 內所通電之電流的大小藉由類比量來連續的變化、或式設 定控制成指定之大小,因此,藉由取得與桌體維持機構之 原始位置恢復力間之平衡,而可進行在移送距離之微米單 位中之設定。故而,係將精密作業用之可動桌體,以高精 度且圓滑地在同一平面中於指定方向上來進行移動。 再者,藉由構成爲將電磁驅動裝置利用可動桌體部與 固定平板間之空間而來進行維持的構造,係可將該電磁驅 動裝置之整體配置在薄板狀之空間內。此外,作爲驅動機 構係爲採用使X軸方向與γ軸方向交叉之雙重構造,因 此,係形成爲達到該電磁驅動裝置之小型輕量化、甚至是 裝置整體之小型輕量化。 此外’作爲驅動線圈,係將形成爲單一形狀者作爲驅 動線圈,因此,爲容易地進行生產時之組裝以及裝設作業, 247 1220875 爲可達到生產性之提昇的目的,即使在作動時,亦無須複 雜的通電控制。從而,爲可提供一種習知技術中未具有之 可迅速切換裝置整體之啓動的精密加工用座台裝置。 再者,藉由將至少四組之驅動線圈之線圈邊分別如前 所述的個別地配設在X軸以及γ軸上,同時與其對應的 爲配置各個被驅動磁鐵,藉此,例如在朝沿著X軸之方 向進行移動時,係可使Y軸上之驅動線圈以及對應之各 個被驅動磁鐵的通電動作停止,在該種特點中,係可有效 地抑制消費電力以及溫度上升。 將驅動線圈構成爲抵接兩個之角形小線圈,同時,爲 將該驅動線圈之線圈邊假設成以固定平板上之中央部設爲 原點、以正交至X-Y平面上之各軸之狀態下,爲可將該 驅動線圈分別個別性地配設在前述X軸以及Y軸上。因 此,相對於對應之各個被驅動磁鐵,係可個別性、且效率 爲佳的輸出各個電磁力,此外,相對於各個被驅動磁鐵, 爲形成可產生個別性差異較大的電磁驅動力。另外,藉由 同時地作動與驅動線圈對應之被驅動磁鐵之雙方的通電電 流,係可將朝向指定之方向的移送速度設定爲較大,此外, 例如,當移動方向之偏移時,爲可達到更加迅速地與其對 應之效果。 再者,作爲驅動線圈,係可裝設有在同一面上將中心 軸設爲相同狀的大小兩個之環狀驅動線圈,同時,爲形成 可裝設對應於各個環狀驅動線圈之各四個的被驅動磁鐵。 因此,在可動桌體之移送控制之際,爲可達造更加迅速且 248 1220875 高精度地實施可動桌體部之移動動作。 此外,在精密加工用座台裝置中,在與驅動線圈之X 軸以及Y軸之交叉處上,係可形成採用對應於該驅動線 圈之線圈邊部分、而個別地配設前述被驅動磁鐵之構造。 由於係將前述多數之被驅動磁鐵之裝設處限定在與驅 動線圈之X軸以及Y軸超插處,因此,實際上係造成容 易進行移送方向之特別指定(演算),故而係整體性的使 得該被驅動磁鐵之驅動控制單純化。從而,即使是對於可 動桌體部之移送方向之變化,係可迅速地與其對應,同時 即使在可動桌體部之移送控制等(例如,其方向之切換控 制或是產生位置偏移等之情況的補正)時,亦可將其迅速 地進行對應。 再者,作爲驅動線圈爲具有至少四個之方形驅動線圈、 同時倍增被驅動磁鐵之數目,藉此,係可略使該方形驅動 線圈與各個被驅動磁鐵間所產生之電磁驅動力倍增,藉 此,可更加迅速且高精度地實施對於該可動桌體之移送驅 動。 再者,作爲驅動線圏爲裝設至少四組之驅動線圈、同 時將其各個驅動線圈之線圈邊沿著前述X軸或是γ軸配 設,並且,係形成爲可.對向於前述線圈邊、而使前述被驅 動磁鐵分別個別性的配設在X軸或是Y軸上。因此,係 形成爲將藉由電磁驅動裝置所輸出之各個電磁驅動力輸出 至對於X軸或是γ軸正交之方向、且輸出至進行旋轉之 方向。因此,無須另外裝設新的旋轉驅動裝置,便可達到 249 1220875 形成對於可動桌體之指定角度內的旋轉驅動的功效’更可 提高其泛用化、且可提供一種過去未有之優越的精密加工 用座台裝置。 作爲驅動線圈,係可形成爲以裝設至少四個之方向驅 動線圈所構成、且更可分別將前述各個被驅動磁鐵以個別 性地配設在對應於位在與各個方形驅動線圈之前述X軸 以及Y軸平行之位置上的各個線圈邊。因此,在裝置整 體係可略使產生在各個驅動線圈以及與其對應之各個被驅 動磁鐵間所產生的電磁驅動力,藉此,可更加迅速且高精® 度地實施相對於該可動桌體部之驅動控制。 在精密加工用座台裝置中,藉由將各個被驅動磁鐵設 爲永久磁鐵以取代電磁鐵,變無須對於各個被驅動磁鐵之 通電控制、且無須各個被驅動磁鐵之配線電路,因此,係 促進使電磁驅動裝置之構造更爲單純化且小型輕量化,且 由於減少在對於可動桌體之驅動控制時之控制對象,因此 爲可提高控制動作的應答性,更可達到提昇裝置整體之生 產性以及耐久性的效果。 ® 再者,係形成可將驅動線圈形成如下,即,在整體性 方面爲以形成十字框狀之一個十字狀驅動線圈所構成的同 時,對應於與該一個之十字狀驅動線圈之前述X軸或是Y 軸平行之位置上的線圈邊,而可分別且成個別性地配設前 述各個驅動磁鐵。因此,爲可將電磁驅動裝置所輸出之各 個電磁驅動力輸出至形成在對於X軸或是γ軸正交之方 向上、且進行旋轉的方向上。從而,無須另外裝置新的旋 250 1220875 轉驅動裝置,便可達到對於可動桌體爲在指定之角度內的 旋轉驅動之效果。因此,係可更加提昇其所謂的泛用性, 而可提供於過去所沒有之優越的精密加工用座台裝置。 經由對向於各個被驅動磁鐵的同時、且經由微小間隙 而配設由導電性構件所形成之致動平板,同時,係形成爲 可將該種致動平板固著裝設在前述驅動線圈側。 因此,即使是使電磁驅動裝置急速地驅動、或是急速 地使其動作停止,藉由產生在各個被驅動磁鐵與致動平板 間之渦電流致動,而在可動桌體側以無接觸地產生適當地 致動力,藉此,可動桌體部係不致有微小的震動,而可以 穩定之狀態來圓滑地進行移送。 在此’亦可將前述致動平板藉由在前述各個被驅動磁 鐵中可共通性對應的單一之板狀構件來構成。 如此,係可減少構件數目,使裝置整體之組裝程序單 純化、或是亦改善可維修性,.而可增加裝置整體之耐久性。 亦可將前述驅動磁鐵、以及與其對應所裝設之多數之 被驅動磁鐵之各個裝設處構成如下,即,裝設成維持該各 個驅動線圈與被驅動磁鐵之對應關係,並且替換其整體。 亦可將前述制定平板以前述本體部來維持的同時,使 前述驅動線圈固著裝設在該種致動平板上,以構成爲刪除 前述固定平板之構造。 因此’由於無須固定平板,因此可更加促進小型輕量 化。 在電磁驅動裝置中,亦可構成爲倂設有動作控制系統 251 1220875 之裝置,該動作控制系統係爲,因應來自外部之指令而作 動、且將該電磁驅動裝置所具有之驅動線圈與各個被驅動 磁鐵進行個別地通電控制,以朝向前述可動桌體部之指定 的移動方向而用以輸出指定之驅動力。 因此,朝向可動桌體之移動方向而選擇有效進行機能 之一或兩個以上之被驅動磁鐵、並使其作動,因此,係可 使可動桌體確實的移動控制在指定之方向上。 在此,針對於動作控制系統,亦可構成如下,即,具 備有:通電方向設定機能,爲將對於前述驅動線圈之通電 方向設定、維持在一方之方向;驅動線圈通電控制機能, 係將對於驅動線圈之通電電流的大小進行可變設定;磁極 可變設定機能,爲設定、維持因應相對於驅動線圈之通電 方向而作動的前述各個被驅動磁鐵的磁極之設定;桌體動 作控制機能,爲將前設各個被驅動磁鐵之磁力強度因應來 自外部之指定而進行個別性的可變設定,同時,藉此而調 整對於可動桌體部之移送方向以及移送力。 藉此,係可提供一種過去未有之優越的精密加工座台 裝置,其係可單純僅個別的調整驅動線圈或是驅動線圈以 及各個被驅動磁鐵之通電電流,便可將可動桌體在同一面 內、以任意之速度,而高精度且確實的移送至任意之方向 上。 〔第十七實施例〕 有關在第77圖以及第78圖中所示之本發明的第十七 實施例係爲,關於在第1圖中所示之第一實施例的電磁致 252 1220875 動機構之改良。亦即,於第1圖所示之第一實施例係爲列 舉藉由電磁致動機構(致動磁鐵以及致動用平板)而僅施 加對於可動桌體1之致動,不過,在第77圖中所示之第 十七實施例則係爲有關藉由電磁致動機構,而可施加對於 可動桌體1以及桌體維持機構2之雙方的致動。 於第77圖中所示之第十七實施例係爲,揭示在桌體維 持機構2之中,特別選定中繼平板(中繼構件)2 G,而 在該中繼平板2G中藉由電磁致動機構來執行致動的情 況。 在第7 7圖中,藉由電磁致動機構而將致動施加至可動 桌體1之構造係與在第1圖中所之構造相同,因此,針對 於藉由電磁致動機構來將致動施加至中繼平板2G之構造 進行說明。此外,藉由電磁致動機構而將致動施加至可動 桌體1上之構造並非限定在於第1圖所示之構造,爲可採 用在上述實施例中所說明之電磁致動機構。 如第77圖所示,桌體維持機構、特別是將致動施加至 中繼平板2G之電磁致動機構,係與在上述實施例中所採 用之構造爲相同的,藉由致動磁鐵800a至8 00b與致動用 平板8 0 1間之組合來構成。 致動用平板8 0 1係爲’在直立於外殻本體3之底部3 B 之支撐軸8 0 2上爲被支撐成與中繼平板2 G成平行的維持 狀。並且,致動用平板801係爲被支撐在支撐軸802、且 面對中繼平板2 G。 在本實施例中,爲使用四個致動磁鐵。該種四個之致 253 1220875 動磁鐵800a至800b係被支撐在外殼本體3之底部3B。 並且,該等致動磁鐵800a至800b係爲被支撐在外殻本體 3而面對於中繼平板8 0 1。亦即,致動磁鐵8 0 0 a至8 0 0 b 係被配設在夾持中繼平板2G而對峙的位置上。該等致動 磁鐵8 00a至800b係爲將支撐軸8〇2設爲中心,且分別被 配設在支撐軸802之圓周方向上而以等間隔分割的位置 上。再者,該等致動磁鐵800a至80 0b係被配置成與各個 致動磁鐵之磁極爲相異狀。亦即,例如將相鄰之致動磁鐵 800a之磁極設爲S極之情況下,致動磁鐵800b或是800d 係被配置成形成爲N極。 從而,在本實施例中,來自致動磁鐵(800b或是800d) 之N極的磁束8 04爲經由致動用平板801而流入S極之 致動磁鐵(8 00a或是800c ),而形成磁路。 於第77圖以及第78圖所示之電磁致動機構(致動磁 鐵8 00a至8 00d、致動用平板801 )係爲,基於在第9圖 所示之致動原理而產生致動力,藉由將該種致動力施加至 桌體維持機構2、特別是施加至中繼平板2G,而可在短 時間內抑制產生於桌體維持機構2之微小地往復動作。 其次,將本實施例與未具有電磁致動機構之習知例間 之致動力進行比較的結果揭示於第7 9 A圖、第7 9 B圖。 在第79A圖、第79B圖中,橫軸係設爲時間、縱軸則設. 爲微小之往復動作的板寬。如第7 9 A圖所示,本發明之 第十七實施例係爲,藉由電磁致動機構而將致動施加至可 動桌體1與桌體維持機構2間之雙方,因此,相較於在第 254 1220875 7 9B圖所示之習知例之下,係可得知其可達到在短時間內 抑制施加致動力時所產生之微小地往復動作。 〔產業上之可利用性〕 若藉由如以上所說明之本發明時,藉由將電磁致動機 構之致動用磁鐵與非磁性以及導電性之致動平板在可動桌 體之移動上進行同步、相對性地進行變位/而使與前述可 動桌體之移動速度成比例之大小的渦電流產生在前述致動 平板上,藉由產生在該致動平板上之渦電流,基於磁力與 前述致動用磁鐵之磁力間之相互磁性作用而使得致動力產 生,因此,係可承受該電磁致動機構之致動力、而在短時 間內聚合前述可動桌體之微小往復運動。 【圖式簡單說明】 第1圖所示係爲本發明之第一實施例的局部省略之槪 略斷面圖。 第2圖所示係爲第1圖之局部平面圖。 第3圖所示係爲沿著第1圖之A-A線所觀看之槪略斷 面圖。 第4圖所示係爲由第1圖之下方所觀看之局部底面圖。 第5圖所示係爲揭示在第1圖之田字型狀之驅動線圈 與被驅動磁鐵以及致動用平板間之位置關係的說明圖。 第6圖所示係爲第1圖之各個構成部分及其動作控制 系統間之關係的方塊圖。 第7圖所示係爲被賦予在於第6圖中所揭示之動作控 制系統而作動的輔助桌體(可動桌體)之動作例的示意圖。 255 1220875 其中,第7A圖係爲在由上45°之方向上,表示將可動桌 體於平面移動之情況的說明圖,第7B圖所示係爲輔助桌 體(可動桌體)爲僅旋轉角度0之情況下的說明圖。 第8圖所示係爲通電於在第!圖至第4圖所揭示之驅 動線圈之四個角形小線圈的四個通電模式(通電程式係爲 預先被記憶在程式記憶部中)及其機能的圖表。 第9圖所示係爲揭示在第6圖之動作控制系統於將四 個驅動線圈進行驅動控制之情況下,表示其控制模式與輔 助桌體(可動桌體)之動作方向的示意圖。其中,第9A 圖係爲第一控制模式與朝向輔助桌體(可動桌體)之X 軸(正)方向之動作的說明圖,第9B圖所示係爲在此情 況下之驅動力的大小與作用點間之關係的說明圖。 第1 〇圖所示係爲揭示在第6圖之動作控制系統爲將四 個驅動線圈進行驅動控制之情況下,表示其控制模式與輔 助平板(可動桌體)之動作方向的示意圖。其中,第i〇A 圖所示係爲第三控制模式與朝向可動桌體之Y軸(正) 方向之動作的說明圖,第1 0B圖所示係爲該情況之驅動力 的大小與作用點間之關係的說明圖。 第1 1圖所示係爲揭示在第6圖之動作控制系統爲將四 個驅動線圈進行驅動控制之情況下,表示其控制模式與輔 助平板(可動桌體)之動作方向的示意圖。其中,第ΠΑ 圖所示係爲第五控制模式與朝向輔助桌體(可動桌體)之 X-Y座標上之第一象限方向之動作的說明圖,第1 1 B圖所 示係爲該情況之驅動力的大小與作用點間之關係的說明 256 1220875 圖。 第1 2圖所示係爲揭示在第6圖之動作控制系統爲將四 個驅動線圈進行驅動控制之情況下,表示其控制模式與輔 助平板(可動桌體)之動作方向的示意圖。其中,第1 2 A 圖所示係爲第七控制模式與朝向輔助桌體(可動桌體)之 X-Y座標上之第二象限方向之動作的說明圖,第12B圖所 示係爲該情況之驅動力的大小與作用點間之關係的說明 圖。 第1 3圖所示係爲揭示在第6圖之動作控制系統爲將四 個驅動線圈進行驅動控制之情況下,表示其控制模式與輔 助平板(可動桌體)之動作方向的示意圖。其中,第13A 圖所示係爲第九控制模式與將輔助桌體(可動桌體)之X-Y 座標上之原點作爲中心而進行轉動之情況下的說明圖,第 1 3 B圖所示係爲該情況之驅動力的大小與作用點間之關係 的說明圖。 第14圖所示係爲揭示在第1圖之致動平板與四個驅動 線圈以及被驅動磁鐵間之位置關係的示意圖。其中,第1 4 A 圖所示係爲包含致動平板之部分構造的局部斷面圖,第 1 4 B圖所示係爲沿著第1 4 A圖中之A - A線所觀看之平面 圖。 第1 5圖所示係爲揭示於第1圖之致動平板之致動力產 生原理的示意圖,其中,第15A圖所示係爲第1圖之致 動平板部分的擴大部分斷面圖,第1 5 B圖所示係沿著在此 情況下之第1 4 A圖中之A - A線所觀看之產生在致動平板 257 1220875 之渦電流致動之產生狀況的說明圖。 第1 6圖所示係爲揭示於第1圖之驅動線圈與致動平板 間之電氣性的關係之示意圖,其中,第1 6 A圖所示係爲 連結雙方之情況下之狀態的等效電路,第1 6B圖所示係爲 在無致動平板之情況下之驅動線圈之狀態的等效電路。 第1 7圖所示係爲揭示在第1圖之第一實施例之整體性 的動作例之說明圖。 第1 8圖所示係爲將第1 7圖之動作例於平面所觀看之 情況下之一例的說明圖。 第1 9圖所示係爲本發明之第二實施例的局部省略之槪 略斷面圖。 第20圖所示係爲第19圖之局部平面圖。 第2 1圖所示係爲本發明之第三實施例的局部省略之槪 略斷面圖。其中,第2 1 A圖所示係爲已局部省略的槪略 局部斷面圖,而第21B圖係爲沿著第21A圖之箭頭A-A 所觀看之局部省略的平面圖。 第22圖所示係爲本發明第四實施例的局部省略之槪略 斷面圖。 第2 3圖所示係爲本發明第五實施例的局部省略之槪略 斷面圖。 第24圖所示係爲本發明第六實施例的局部省略之槪略 斷面圖。 第2 5圖所示係爲在本發明之各個實施例中所揭示之四 個驅動線圈之固定平板上,表示其他之配置例與被驅動磁 258 1220875 鐵間之關係的說明圖。 第2 6圖所示係爲在本發明中之電磁驅動裝置之其他例 的示意圖。其中,第26A圖所示係爲具備有單一之口狀 驅動線圈與四個被驅動磁鐵之情況下之例的說明圖,第 2 6 B圖所不係爲具備有四個驅動線圈與八個被驅動磁鐵之 情況下之例的說明圖。 第27圖所示係爲在本發明中之電磁驅動裝置之其他例 的示意圖。其中,第27A圖所示係爲具備有單一之口狀 驅動線圈與四個被驅動磁鐵之情況下之其他例的說明圖, 第27B圖係爲具備有用以形成爲十字框狀之十字框形驅動 線圈與八個被驅動磁鐵之情況下之例的說明圖。 第2 8圖所示係爲本發明之第八實施例之局部省略槪略 斷面圖。 第29圖所是係爲表示在本發明中之各個實施例所揭示 之驅動線圈之其他例的示意圖,且係爲將驅動線圈設爲菱 形形狀之情況下之例的說明圖。 第30圖所示係爲在本發明中之各個實施例所揭不之田 字型驅動線圈之其他例的示意圖’且係爲將驅動線圈設爲 圓形形狀之情況下之例的說明圖。 第3 1圖所示係爲在本發明中之各個實施例所揭示之驅 動線圈之其他例的示意圖,且係爲將驅動線圈設爲八角形 形狀之情況下之例的說明圖。 第3 2圖所示係爲本發明之第十實施例之縱斷面圖。 第33圖所示係爲於第32圖所示之第十實施例之局部 259 1220875 平面圖。 第3 4圖所示係爲沿著第3 2圖之A - A線所觀看之槪略 橫斷面圖。 第35圖所是係爲包含有在第32圖中所揭示之第十實 施例之動作控制系統之裝置整體的方塊圖。 第36圖所示係爲揭示於第32圖之輔助桌體部分之動 作與位置資訊檢測用之電容檢測電極間之關係的說明圖。 第37圖所示係爲揭示在第35圖之第十實施例中之桌 體驅動控制裝置所實施的多數之通電控制模式A 1至 A4 之控制內容與被驅動磁鐵整體之移動方向(可動桌體之移 動方向)的圖表。 第38圖所示係爲揭示在第35圖之第十實施例中之桌 體驅動控制裝置所實施的多數之通電控制模式A5至A8 之控制內容與被驅動磁鐵整體之移動方向(可動桌體之移 動方向)的圖表。 第39圖所示係爲在第32圖中所揭示之致動平板的示 意圖。其中,第39A圖所示係爲其構造之說明圖,第39B 圖所示係爲其動作原理之說明圖。 第4 〇圖所示係爲在第3 2圖中所揭示之第十實施例之 整體動作的說明圖。 第4 1圖所是係爲電容檢測電極爲在檢測出於第40圖 中所示之動作實施例中產生之輔助桌體部分之移動量變化 之情況狀態的說明圖。 第4 2圖所示係爲在第3 2圖中所揭示之驅動線圈之其 260 1220875 他例的示意圖。 第4 3圖所示係爲在第3 2圖中所揭示之驅動線圈之其 他例的示意圖。其中,第4 3 A圖所示係爲將驅動線圈設 爲三角形之情況下之例的說明圖,第43B圖所示係爲將驅 動線圈設爲圓形形狀之情況下之例的說明圖,第4 3 C圖所 示係爲將驅動線圈設爲六角形形狀之情況下之例的說明 圖,第4 3 D圖所示係爲將驅動線圈設爲八角形形狀之情 況下之例的說明圖。 第44圖所示係爲本發明之第十一實施例之縱斷面圖。 第4 5圖所不係爲沿者弟4 4圖之A - A線所觀看的槪略 橫斷面圖。 第46圖所示係爲包含揭示在第44圖之第十一實施例 中之動作控制系統之裝置的方塊圖。 第47圖所示係爲揭示在第46圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式B 1至B4之控 制內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。 第48圖所示係爲揭示在第46圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式B 5至B 8之控 制內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。 第49圖所示係爲本發明之實施例的縱斷面圖。 第5 0圖所示係爲沿著第4 9圖之A - A線所觀看之槪略 橫斷面圖。 261 1220875 第5 1圖所是係爲包含於第49圖中所揭示之實施例之 動作控制系統之裝置整體的方塊圖。 第5 2圖所示係爲揭示在第4 9圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式C 1至C4之控 制內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。 第5 3圖所示係爲揭示在第49圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式C5至C8之控 制內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。 第5 4圖所示係爲本發明之第十三實施例之縱斷面圖。 第55圖所示係爲沿著第54圖之A-A線所觀看之槪略 橫斷面圖。 第5 6圖所示係爲包含於第5 4圖中所揭示之實施例之 動作控制系統之裝置整體的方塊圖。 第57圖所示係爲揭示在第54圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式D 1至D4之控 制內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。 第5 8圖所示係爲揭示在第5 4圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式D5至D8之控 制內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。、 第5 9圖所示係爲本發明之第十四實施例之縱斷面圖。 262 1220875 第60圖所示係爲沿著第59圖之A-A線所觀看之槪略 橫斷面圖。 第6 1圖所示係爲包含於第5 9圖中所揭示之實施例之 動作控制系統之裝置整體的方塊圖。 第62圖所示係爲揭示在第59圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式E1至E4之控 制內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。 第63圖所示係爲揭示在第59圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式E5至E8之控 制內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。 第6 4圖所示係爲揭示在第5 9圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式E9至E 1 0之控 制內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。 第6 5圖所示係爲本發明之第十五實施例之縱斷面圖。 第6 6圖所不係爲沿者弟6 5圖之A - A線所觀看之槪略 橫斷面圖。 第6 7圖所不係爲包含於弟6 5圖中所揭示之實施例之 動作控制系統之裝置整體的方塊圖。 第6 8圖所示係爲揭示在第6 5圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式F 1至F 4之控制 內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 263 1220875 向)的圖表。 第69圖所示係爲揭示在第65圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式F5至F8之控制 內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。 第70圖所示係爲揭示在第65圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式F9至F10之控 制內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。 第71圖所示係爲本發明之第十六實施例之縱斷面圖。 第7 2圖所7P:係爲沿者弟7 1圖之A - A線所觀看之槪略 橫斷面圖。 第73圖所示係爲包含於第71圖中所揭示之實施例之 動作控制系統之裝置整體的方塊圖。 第74圖所示係爲揭示在第7 1圖之實施例中之桌體驅 .動控制裝置所實施的多數之通電控制模式K 1至K4之控 制內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。 第7 5圖所示係爲揭示在第7 1圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式K5至K8之控 制內容與被驅動磁鐵整體之移動方向(可動桌體之移動方 向)的圖表。 第7 6圖所示係爲揭示在第7 1圖之實施例中之桌體驅 動控制裝置所實施的多數之通電控制模式K9至K1 0 (旋 264 1220875 轉動作)之控制內容與被驅動磁鐵整體之移動方向(可動 桌體之移動方向)的圖表。 第7 7圖所示係爲本發明之第十七實施例之縱斷面圖, 爲表示將電磁致動機構安裝至可動桌體以及桌體維持機構 之雙方之力之沿著第77圖的VIII-VIII線之裝置整體的斷 面圖。 第7 8圖所示係爲,將本體之底部由本體卸下,且卸下 致動用平板之狀態下,於電磁致動機構中之致動用磁鐵的 示意圖。 第7 9圖所示係爲比較第十七實施例與習知例之間的致 動特性之結果的特性圖。 【主要部分之代表符號說明】 :反力(致動力) IC :正向電流 r :低電阻 ID :負向電流 EV :電動勢 Π :移動力 1 :可動桌體 1 a :定位孔 2 :桌體維持機構 2A :鋼琴線 2G :中繼平板 3 :外殻本體 265 1220875 3A :本體側突出部 3 B :本體側突出部 2A,2B :棒狀彈性構件 4 :電磁驅動裝置 5 A :定位孔 5 :輔助桌體 6 :被驅動磁鐵 6 A :被驅動磁鐵 6B :被驅動磁鐵 6C :被驅動磁鐵 6D :被驅動磁鐵 7 :田字形驅動線圈 8 ·固疋平板 9 :致動用平板 1 〇 :連結支柱 1 0a,1 Ob :突起 1 〇 A :鍔部 1 0 B :鍔部 1 5 ·可動桌體部 9A,9B :隔件構件 2 0 :動作控制系統 2 1 B :線圈選擇驅動控制部 2 1 _·桌體驅動控制裝置 2 1 A :主要控制部 266 1220875 22 :程式記憶部 2 3 :資料記憶部 24 :動作指令輸入部 2 5 :位置檢測感測機構 2 6 :電容感測器群 2 6 X 1 :電容檢測電極 2 6X2:電容檢測電極 2 6 X 3 :電容檢測電極 2 6X4 :電容檢測電極 26Y1 :電容檢測電極 2 6 Y 2 :電容檢測電極 2 6 Y 3 :電容檢測電極 2 6 Y 4 :電容檢測電極 27B :位置信號演算電路部 2 7 :位置資訊演算電路 2 7 A :信號轉換電路 7 a,7 b,7 c,7 d :線圈邊 7a,7b,7c,7d :角形小線圈 3 1 B :隔件 3 1 C :桌體側腳部 3 1 :可動桌體 3 1 A :平坦作業面 3 1 B a :共通電極 3 3 :外殼本體 267 1220875 3 3 A :驅動裝置維持部 3 4 :電磁驅動裝置 3 8 :固定平板 4 1 :電磁驅動機構 4 6 :致動用磁鐵 4 9 :致動用平板 6 1 :田字形驅動線圈 6 2 :田字形驅動線圈 64 :電磁驅動裝置 7 1 : 口狀驅動線圈 7 2 : 口狀驅動線圈 74 :十字狀框形驅動線圈 7 4 :環狀驅動線圈 38A,39A:貫通孔 8 4 :電磁鐵 1 4 3 :電磁驅動裝置 2 0 2 :動作控制系統 2 1 3 :桌體驅動控制裝置 6 1 a,6 1 b,6 1 c,6 1 d :角形小線圈 6 2 a,6 2 b,6 2 c,6 2 d :角形小線圈 7 2 1〜7 2 4 :日字形驅動線圈 7 3 2 :外側環狀驅動線圈 7 2 1,7 22 :驅動線圈 7 2 3,7 24 :驅動線圈 268In addition, in the aforementioned sixteenth embodiment, the installation place of the driven magnets 6A 243 1220875 to 6D, 16A to 16D, and the installation place of the cross-shaped driving coil 771 may be replaced. This case is such that the driven magnets 6 A to 6D, 16 A to 16 D are mounted on the fixture side, and the cross-shaped driving coil 7 7] [and the actuating plate 9 are mounted on Movable side. Here, in each of the foregoing embodiments, the movable table body 1 is exemplified by a circular shape, but it may be a quadrangular shape or other shapes. For the case where the auxiliary table body 5 is an example of a quadrangular shape, if it can realize the above-mentioned functions of the device, it may be circular or other shapes. In addition, even for the driven magnets 6A to 6D, if the members are of the same shape, the magnetic pole surface may be a circle other than a square. Furthermore, in each of the foregoing embodiments, the case where the actuation plate 9 has been installed is exemplified, but the actuation plate 9 may not be provided, particularly if the speed of movement is not a concern. In addition, the aforementioned table body maintaining mechanism 2 is a component for the movable table body portion 15 to have the function of restoring the original position, but it may also be constituted as a separate installation for the movable table body portion 15 The device for restoring the original position is a structure for removing the function of restoring the original position for the table maintenance mechanism 2. Regarding the actuation plate 9 installed in each of the foregoing embodiments, it may be a member installed in each of the driven magnets 6A to 6D, 16A to 16D, or it may be provided in most of each of the driven magnets. There is a common single actuation plate 9. In this case, it is configured to maintain the periphery of the actuation plate 9 by the outer casing 244 1220875, and at the same time, the actuation plate 9 is provided with a driving coil in each of the foregoing embodiments. Alternatively, it may be configured to delete the fixed flat plate 8. When the drive coil is mounted on such an actuation plate 9, the actuation plate 9 is formed of a conductive and non-magnetic member, and it is also advantageous while maintaining the original function of the actuation plate 9. To effectively maintain the drive coil. Thereby, since the structure is more simplistic, there is an advantage that the size and weight of the entire device can be further promoted. In addition, in each of the foregoing embodiments, the case where four driven magnets are mounted on the rectangular coordinate (XY coordinate) to be equidistant from the origin is illustrated, but the present invention is not necessarily limited to this. , Even if it is not installed to be equidistant from the origin, even if it is arranged at a position offset from the coordinate axis, or the number is not four. In this case, in each of the foregoing embodiments, it can also be constituted as follows, that is, with its motion control system 2, 2 0, 2 0 3, 2 0 4 ..., toward the moving direction indicated from the outside, in In a better state (for example, in a position where the function is more efficient in the transfer direction), most of the driven magnets are selected for current driving, and the aforementioned movable table body portion 15 is transferred toward the outside by the external force with its combined force. Direction to move. In each of the foregoing embodiments, the case where the movable table body portion 15 is composed of the movable table body 1 and the auxiliary table body 5 is exemplified. However, the movable table body portion 15 may be constituted only by the movable table body 1. In this case, each of the driven magnets 6A to 6D (or 6A to 6D, 16 A to 16 D) may be configured as follows, that is, fixed to the movable table body 245 1220875 1 side, and The driving coils 7, 721, 731,... And the actuating plate 9 are opposite to each other, and the actuating plate 9 is installed on the opposite side of the fixed plate. In addition, the table maintenance mechanism 2 may be formed in a structure that directly maintains the movable table 1 without going through the auxiliary table 5. In this way, the overall miniaturization and weight reduction of the device can be further promoted, and in a better state, portability and versatility can be improved. Moreover, in each of the foregoing embodiments, the mechanism for restoring the original position of the movable table body 1 is provided as an example to maintain the table body. However, the function of restoring the original position relative to the movable table body may also be provided. Separate from the table maintenance mechanism (as a device to restore the original function) and install it separately. In this case, the device provided with such a function of restoring the original position is limited to operate simultaneously with the table body maintaining mechanism. In terms of technical ideas, it is a component equivalent to the table body maintaining device in the foregoing embodiments. In addition, in each of the foregoing embodiments, the case where each driving coil is mounted on the fixed coil 8 is exemplified. However, each driving coil may be embedded in the fixed coil 8 separately. Respective coil portions of the driven magnets 6A to 6D and 16A to 16D are exposed to the driven magnets 6A to 6D and 16A to 16D. In this way, the space area of the electromagnetic drive device can be set smaller, and in the best case, the size and weight of the entire device can be promoted. As described above, this embodiment is to operate the electromagnetic driving device to energize the ring-shaped driving coil, and at the same time, select one or two 246 corresponding to the moving direction in each of the driven magnets according to the external instructions from the word. 1,220,875 or more driven magnets, and then, by the combined force of the electromagnetic driving force (repulsive force) acting on each of the driven magnets, the movable table body can be placed on a designated line maintained by the table body maintaining mechanism. Plane transfer in any direction on the same plane within a certain range (direction from the center of the annular drive coil to the outside). In this case, the magnitude of the electromagnetic driving force can be obtained by variable control of the energization currents of both the ring-shaped driving coil and the driven magnet. Therefore, the transfer speed of the movable table can be set. For any size, in this kind of characteristics, it can further improve the versatility. In addition, the transfer system of the movable table body is formed in such a manner that the magnitude of the electric current energized in the ring-shaped driving coil of the electromagnetic driving device and the designated driven magnet can be continuously changed by analogy, The OR setting is controlled to a specified size. Therefore, by obtaining a balance with the original position restoring force of the table maintenance mechanism, the setting can be performed in micrometer units of the transfer distance. Therefore, the movable table body used for precision work is moved in a specified direction in the same plane with high accuracy and smoothness. Furthermore, the electromagnetic drive device is structured to maintain the space between the movable table body and the fixed plate, so that the entire electromagnetic drive device can be arranged in a thin plate-like space. In addition, as the drive mechanism has a double structure that intersects the X-axis direction and the γ-axis direction, it is formed to achieve the miniaturization and weight reduction of the electromagnetic drive device, and even the miniaturization and weight reduction of the entire device. In addition, as the driving coil, a single-shaped one is used as the driving coil. Therefore, in order to easily perform assembly and installation operations during production, 247 1220875 is intended to improve productivity, even during operation. No complicated power-on control is required. Therefore, it is possible to provide a stage device for precision processing which is not provided in the conventional technology and can quickly switch the entire device to start. Furthermore, the coil sides of at least four sets of driving coils are individually arranged on the X-axis and the γ-axis, respectively, as described above, and corresponding driven magnets are arranged accordingly. When moving along the X-axis direction, the energizing operation of the drive coils on the Y-axis and the corresponding driven magnets can be stopped. In this feature, the power consumption and temperature rise can be effectively suppressed. The driving coil is constituted as a small angular coil that abuts two, and the coil side of the driving coil is assumed to be a state in which a central portion on a fixed flat plate is set as an origin and orthogonal to each axis on the XY plane. The driving coils can be individually arranged on the X-axis and the Y-axis, respectively. Therefore, each electromagnetic force can be output individually and efficiently with respect to the corresponding driven magnets. In addition, it is possible to generate an electromagnetic driving force having a large individual difference with respect to each driven magnet. In addition, by simultaneously operating the energizing currents of both the driven magnets corresponding to the driving coils, the transfer speed in the specified direction can be set to be large. In addition, for example, when the movement direction is shifted, it is possible Achieve the corresponding effect more quickly. Furthermore, as the driving coils, two ring-shaped driving coils having the same central axis on the same surface and two ring-shaped driving coils can be installed. At the same time, four ring-shaped driving coils corresponding to the respective ring-shaped driving coils can be installed. Driven magnets. Therefore, during the transfer control of the movable table body, it is possible to implement the movement of the movable table body more quickly and with high accuracy 248 1220875. In addition, in the precision table device, at the intersection with the X-axis and the Y-axis of the driving coil, a coil side portion corresponding to the driving coil can be formed, and the driven magnet can be provided separately. structure. Because the installation position of most of the driven magnets is limited to the X-axis and Y-axis of the drive coil, it is actually a special designation (calculation) of the transfer direction, so it is overall. This simplifies the drive control of the driven magnet. Therefore, even if the movement direction of the movable table body is changed, it can correspond to it quickly, and at the same time, even in the movement control of the movable table body, etc. (for example, the direction switching control or the occurrence of position shift, etc.) You can also respond to it quickly. Furthermore, as the driving coil is a square driving coil having at least four, and the number of driven magnets is doubled at the same time, thereby the electromagnetic driving force generated between the square driving coil and each driven magnet can be slightly doubled. As a result, it is possible to more quickly and accurately perform the transfer drive for the movable table body. Furthermore, as the driving line 圏, at least four sets of driving coils are installed, and the coil sides of each of the driving coils are arranged along the aforementioned X-axis or γ-axis, and are formed as possible. Opposite to the coil side, the driven magnets are individually arranged on the X-axis or the Y-axis. Therefore, it is formed to output each electromagnetic driving force output by the electromagnetic driving device to a direction orthogonal to the X-axis or the γ-axis, and to output the direction of rotation. Therefore, without the need to install a new rotary drive device, 249 1220875 can be achieved to form a rotary drive within a specified angle of the movable table. It can increase its versatility and provide a superior Mounting device for precision machining. As the driving coil, it can be formed by installing at least four directional driving coils, and each of the aforementioned driven magnets can be individually arranged at the X corresponding to the square driving coils. Each coil side at which the axis and the Y axis are parallel. Therefore, it is possible to slightly generate the electromagnetic driving force generated between each driving coil and each driven magnet corresponding to the entire device, thereby enabling more rapid and high-precision implementation with respect to the movable table body. Drive control. In the pedestal device for precision machining, since each driven magnet is replaced by a permanent magnet instead of an electromagnet, there is no need to control the energization of each driven magnet, and there is no need for a wiring circuit for each driven magnet. Make the structure of the electromagnetic drive device more simplistic, smaller and lighter, and reduce the control object when driving the movable table body, so in order to improve the response of the control action, it can also improve the overall productivity of the device And the effect of durability. ® Furthermore, the drive coil can be formed as follows. That is, the cross-shaped drive coil is formed in a cross-frame shape as a whole, and the X-axis corresponding to the one cross-shaped drive coil is formed. Or the coil sides at the positions where the Y axis is parallel, and each of the aforementioned drive magnets can be separately and individually arranged. Therefore, each electromagnetic driving force output from the electromagnetic driving device can be output to a direction formed in a direction orthogonal to the X-axis or the γ-axis and rotating. Therefore, it is not necessary to install a new rotary 250 1220875 rotary drive device, and the effect of rotating the movable table body within a specified angle can be achieved. Therefore, the so-called versatility can be further enhanced, and a superior precision processing table device not available in the past can be provided. An actuation plate formed of a conductive member is disposed while facing the respective driven magnets and through a small gap, and at the same time, the actuation plate is fixedly mounted on the drive coil side. Therefore, even if the electromagnetic driving device is driven rapidly or its operation is stopped quickly, the eddy current generated between each driven magnet and the actuating plate is actuated, and the movable table body is contactlessly moved. Appropriate driving force is generated, so that the movable table body can be smoothly transferred in a stable state without causing slight vibration. Here, 'the actuation plate may be constituted by a single plate-like member corresponding to the commonality among the respective driven magnets. In this way, the number of components can be reduced, the entire assembly procedure of the device can be simplified, or the maintainability can be improved. This can increase the durability of the entire device. Each of the above-mentioned driving magnets and a plurality of installed magnets corresponding to the driven magnets may be configured as follows. That is, they are installed so as to maintain the correspondence between the respective driving coils and the driven magnets, and replace the whole. The driving plate may be fixedly mounted on the actuating plate while the fixing plate is maintained by the main body, so as to delete the fixed plate. Therefore, since it is not necessary to fix the flat plate, the size and weight can be further promoted. The electromagnetic drive device can also be configured as a device provided with an action control system 251 1220875. The action control system is operated in response to an external command, and the drive coil and the respective coils of the electromagnetic drive device are provided. The driving magnets are individually energized and controlled to output a specified driving force toward a specified moving direction of the movable table body. Therefore, one or two or more driven magnets which are effective in functioning toward the moving direction of the movable table body are selected and actuated. Therefore, the reliable movement of the movable table body can be controlled in a specified direction. Here, the motion control system may be configured as follows: it has a function of setting the energizing direction to set and maintain the energizing direction of the driving coil in one direction; the function of controlling the energization of the driving coil is to The magnitude of the energizing current of the driving coil is variable; the magnetic pole variable setting function is to set and maintain the setting of the magnetic poles of each of the driven magnets that are operated in accordance with the energizing direction of the driving coil; the table body motion control function is The magnetic strength of each of the driven magnets is set individually according to the designation from the outside. At the same time, the direction and force of the movable table body are adjusted. In this way, it can provide a superior precision machining platform device that has not been available in the past. It can simply adjust the driving current of the driving coil or the driving coil and the current of each driven magnet. In-plane, high-precision and reliable transfer to any direction at any speed. [Seventeenth Embodiment] The seventeenth embodiment of the present invention shown in Figs. 77 and 78 relates to the electromagnetic actuator 252 1220875 of the first embodiment shown in Fig. 1. Institutional improvements. That is, the first embodiment shown in FIG. 1 is to enumerate that only the actuation of the movable table body 1 is applied by the electromagnetic actuating mechanism (actuating magnet and actuation plate). However, in FIG. 77, The seventeenth embodiment shown is related to the actuation of both the movable table body 1 and the table body maintaining mechanism 2 by an electromagnetic actuating mechanism. The seventeenth embodiment shown in FIG. 77 is to disclose a relay plate (relay member) 2 G is particularly selected in the table body maintenance mechanism 2, and the relay plate 2G is electromagnetically Actuating mechanism to perform actuation. In FIG. 7 to FIG. 7, the configuration for applying the actuation to the movable table body 1 by the electromagnetic actuating mechanism is the same as that in FIG. 1. A description will be given of a structure of the relay plate 2G. In addition, the structure for applying the actuation to the movable table body 1 by the electromagnetic actuating mechanism is not limited to the structure shown in FIG. 1 and is an electromagnetic actuating mechanism that can be used as described in the above embodiment. As shown in FIG. 77, the table body maintaining mechanism, particularly the electromagnetic actuating mechanism that applies actuation to the relay plate 2G, is the same structure as that used in the above embodiment, and the actuating magnet 800a It is constituted by a combination of 8000b and 8001 for actuation. The actuation plate 80 1 is held on a support shaft 8 02 standing upright on the bottom 3 B of the housing body 3 and is held in parallel with the relay plate 2 G. The actuation plate 801 is supported on the support shaft 802 and faces the relay plate 2G. In this embodiment, four actuating magnets are used. These four kinds of 253 1220875 moving magnets 800a to 800b are supported on the bottom portion 3B of the housing body 3. The actuating magnets 800a to 800b are supported on the housing body 3 and face the relay plate 801. That is, the actuating magnets 8 0 a to 8 0 b are disposed at positions facing each other while holding the relay plate 2G. The actuating magnets 800a to 800b are centered on the support shaft 802, and are disposed at positions spaced at equal intervals in the circumferential direction of the support shaft 802, respectively. Furthermore, the actuating magnets 800a to 800b are arranged so as to be extremely different from the magnetism of each of the actuating magnets. That is, for example, when the magnetic poles of the adjacent actuating magnets 800a are S poles, the actuating magnets 800b or 800d are arranged to be N poles. Therefore, in this embodiment, the magnetic flux 804 from the N pole of the actuating magnet (800b or 800d) is an actuating magnet (800a or 800c) that flows into the S pole via the actuation plate 801, and forms a magnetic field. road. The electromagnetic actuation mechanism (actuation magnets 800a to 800d, actuation plate 801) shown in FIG. 77 and FIG. 78 is based on the actuation principle shown in FIG. By applying this kind of actuating force to the table body maintaining mechanism 2, especially to the relay plate 2G, the minute reciprocating action generated in the table body maintaining mechanism 2 can be suppressed in a short time. Next, the results of comparing the actuation force between this embodiment and a conventional example without an electromagnetic actuating mechanism are disclosed in Figs. 7A and 7B. In Figure 79A and 79B, the horizontal axis is set to time, and the vertical axis is set.  The board width is a small reciprocating action. As shown in FIG. 7A, the seventeenth embodiment of the present invention is to apply the actuation to both the movable table body 1 and the table body maintaining mechanism 2 by an electromagnetic actuating mechanism. Under the conventional example shown in Figure 254 1220875 7 9B, it can be known that it can achieve a small amount of reciprocating action generated when the actuation force is applied in a short time. [Industrial Applicability] According to the present invention as described above, the actuation magnet of the electromagnetic actuation mechanism and the non-magnetic and conductive actuation plate are synchronized with each other on the movement of the movable table body. The relative displacement is performed / such that an eddy current of a magnitude proportional to the moving speed of the movable table body is generated on the actuating plate, and the eddy current generated on the actuating plate is based on the magnetic force and the foregoing The mutual magnetic action between the magnetic forces of the actuating magnets causes the actuating force to be generated. Therefore, it can withstand the actuating force of the electromagnetic actuating mechanism and aggregate the small reciprocating motion of the movable table body in a short time. [Brief description of the drawings] FIG. 1 is a schematic cross-sectional view of a part of the first embodiment of the present invention, which is partially omitted. Figure 2 is a partial plan view of Figure 1. Fig. 3 is a schematic cross-sectional view taken along line A-A of Fig. 1. Figure 4 is a partial bottom view as viewed from below the first figure. Fig. 5 is an explanatory diagram showing the positional relationship between the field-shaped driving coil, the driven magnet, and the actuation plate in Fig. 1. Fig. 6 is a block diagram showing the relationship between each component of Fig. 1 and its motion control system. Fig. 7 is a schematic diagram showing an example of the operation of the auxiliary table (movable table) that is operated by the operation control system disclosed in Fig. 6. 255 1220875 Among them, Fig. 7A is an explanatory diagram showing the case where the movable table body is moved in the direction of 45 ° from the top, and Fig. 7B is an auxiliary table body (movable table body) which is only rotated Explanatory diagram at the angle 0. Figure 8 shows the power on the first! The four energizing modes of the four angular small coils of the driving coils disclosed in Figs. To 4 (the energizing program is stored in the program memory section in advance) and its function chart. Fig. 9 is a schematic diagram showing the control mode and the movement direction of the auxiliary table (movable table) when the motion control system in Fig. 6 drives and controls four driving coils. Among them, Fig. 9A is an explanatory diagram of the first control mode and the movement toward the X-axis (positive) direction of the auxiliary table (movable table), and Fig. 9B is the magnitude of the driving force in this case. Explanatory diagram of the relationship with the action point. Figure 10 is a schematic diagram showing the control mode and the direction of operation of the auxiliary tablet (movable table) when the motion control system in Figure 6 is driving control of four driving coils. Among them, figure i0A is an explanatory diagram of the third control mode and the movement toward the Y-axis (positive) direction of the movable table, and figure 10B is the magnitude and function of the driving force in this case. An illustration of the relationship between points. Figure 11 is a schematic diagram showing the control mode and the direction of operation of the auxiliary tablet (movable table) when the motion control system in Figure 6 is driving control of four driving coils. Among them, Figure ΠΑ is an explanatory diagram of the fifth control mode and the movement toward the first quadrant on the XY coordinate of the auxiliary table (movable table). Figure 1B shows the situation in this case. Explanation of the relationship between the magnitude of the driving force and the point of action 256 1220875 Figure. Figure 12 shows a schematic diagram showing the control mode and the direction of operation of the auxiliary tablet (movable table) when the motion control system in Figure 6 is driving control of four driving coils. Among them, Figure 1 2A is an explanatory diagram of the seventh control mode and the movement toward the second quadrant on the XY coordinate of the auxiliary table (movable table), and Figure 12B shows the situation in this case. An explanatory diagram of the relationship between the magnitude of the driving force and the action point. Figure 13 is a schematic diagram showing the control mode and the direction of operation of the auxiliary tablet (movable table) when the motion control system in Figure 6 is driving control of four driving coils. Among them, Fig. 13A is an explanatory diagram of the ninth control mode and the case where the origin on the XY coordinate of the auxiliary table body (movable table body) is rotated as the center. This is an explanatory diagram of the relationship between the magnitude of the driving force and the action point in this case. Fig. 14 is a schematic diagram showing the positional relationship between the actuation plate, the four driving coils, and the driven magnets in Fig. 1. Among them, Figure 14A is a partial cross-sectional view including a part of the structure of the actuating plate, and Figure 14B is a plan view viewed along line A-A in Figure 14A . Fig. 15 is a schematic diagram showing the principle of the actuating force generation of the actuating plate disclosed in Fig. 1. Among them, Fig. 15A is an enlarged sectional view of the actuating plate portion of Fig. 1. Figure 1 5B is an explanatory diagram of the state of the eddy current actuation generated on the actuation plate 257 1220875 as viewed along line A-A in Fig. 14 A in this case. Figure 16 is a schematic diagram showing the electrical relationship between the drive coil and the actuating plate shown in Figure 1. Among them, Figure 16A is the equivalent of the state when the two parties are connected. The circuit, shown in Figure 16B, is an equivalent circuit of the state of the drive coil without the actuation plate. Fig. 17 is an explanatory diagram showing an example of the overall operation of the first embodiment shown in Fig. 1. Fig. 18 is an explanatory diagram showing an example in which the operation example of Fig. 17 is viewed on a plane. Fig. 19 is a schematic cross-sectional view showing a part of the second embodiment of the present invention which is omitted. Figure 20 is a partial plan view of Figure 19. Fig. 21 is a schematic sectional view showing a part of the third embodiment of the present invention which is omitted. Among them, FIG. 2A is a partially omitted plan view, and FIG. 21B is a partially omitted plan view viewed along arrow A-A of FIG. 21A. Fig. 22 is a schematic sectional view showing a part of the fourth embodiment of the present invention, which is omitted. Fig. 23 is a schematic sectional view showing a part of the fifth embodiment of the present invention, which is omitted. Fig. 24 is a schematic sectional view showing a part of the sixth embodiment of the present invention, which is partially omitted. Fig. 25 is an explanatory diagram showing the relationship between the other arrangement examples and the driven magnetic 258 1220875 iron on the fixed flat plate of the four driving coils disclosed in each embodiment of the present invention. Fig. 26 is a schematic view showing another example of the electromagnetic driving device in the present invention. Among them, FIG. 26A is an explanatory diagram of an example in which a single mouth-shaped driving coil and four driven magnets are provided, and FIG. 26B is not shown with four driving coils and eight driving coils. An explanatory diagram of an example in the case of a driven magnet. Fig. 27 is a schematic view showing another example of the electromagnetic driving device in the present invention. Among them, FIG. 27A is an explanatory diagram of another example in the case where a single mouth-shaped driving coil and four driven magnets are provided, and FIG. 27B is a cross-frame shape having a cross-shaped frame usefully formed. An explanatory diagram of an example in the case of a driving coil and eight driven magnets. Figures 2 to 8 show a partially omitted section of the eighth embodiment of the present invention. Fig. 29 is a schematic diagram showing another example of the driving coil disclosed in each embodiment of the present invention, and is an explanatory diagram of an example when the driving coil is formed in a rhombus shape. Fig. 30 is a schematic diagram of another example of a field-shaped driving coil which is not disclosed in each embodiment of the present invention, and is an explanatory diagram of an example when the driving coil is formed in a circular shape. Fig. 31 is a schematic diagram showing another example of the driving coil disclosed in each embodiment of the present invention, and is an explanatory diagram of an example in a case where the driving coil is formed in an octagonal shape. Figures 3 and 2 are longitudinal sectional views of the tenth embodiment of the present invention. Fig. 33 is a plan view of part 259 1220875 of the tenth embodiment shown in Fig. 32. Figure 34 shows a schematic cross-sectional view taken along line A-A in Figure 32. Fig. 35 is a block diagram of the entire apparatus including the operation control system of the tenth embodiment disclosed in Fig. 32. Fig. 36 is an explanatory diagram showing the relationship between the operation of the auxiliary table body portion shown in Fig. 32 and the capacitance detection electrode for position information detection. Figure 37 shows the control contents of most of the power-on control modes A 1 to A4 implemented by the table body drive control device in the tenth embodiment of Figure 35 and the direction of movement of the entire driven magnet (movable table). The direction of movement of the body). Figure 38 shows the control contents of most of the power-on control modes A5 to A8 implemented by the table drive control device in the tenth embodiment of Figure 35 and the direction of movement of the driven magnet as a whole (movable table body). (Moving direction). Figure 39 shows the actuation plate disclosed in Figure 32. Among them, FIG. 39A is an explanatory diagram of its structure, and FIG. 39B is an explanatory diagram of its operation principle. Fig. 40 is a diagram for explaining the overall operation of the tenth embodiment disclosed in Fig. 32. Fig. 41 is an explanatory diagram showing a state in which the capacitance detection electrode detects a change in the amount of movement of the auxiliary table body portion caused by the action embodiment shown in Fig. 40. Fig. 42 is a schematic diagram of another example of the driving coil disclosed in Fig. 32 260 1220875. Fig. 43 is a diagram showing another example of the driving coil disclosed in Fig. 32. Among them, Fig. 4 3A is an explanatory diagram of an example when the driving coil is formed in a triangle, and Fig. 43B is an explanatory diagram of an example when the driving coil is formed in a circular shape. Figure 4 3C shows an example of a case where the drive coil is in a hexagonal shape, and Figure 4 3 D shows an example of a case where the drive coil is in an octagonal shape Illustration. Fig. 44 is a longitudinal sectional view showing an eleventh embodiment of the present invention. Figure 4 5 is not a schematic cross-sectional view taken along line A-A of Figure 4 4. Fig. 46 is a block diagram showing a device including the motion control system disclosed in the eleventh embodiment of Fig. 44. Figure 47 shows the control contents of most of the energized control modes B 1 to B4 implemented by the table drive control device in the embodiment of Figure 46 and the direction of movement of the driven magnet as a whole (movable table body). Direction of movement). Figure 48 shows the control contents of most of the power-on control modes B 5 to B 8 implemented by the table drive control device in the embodiment of Figure 46 and the movement direction of the driven magnet as a whole (movable table body). (Moving direction). Fig. 49 is a longitudinal sectional view showing an embodiment of the present invention. Figure 50 is a schematic cross-sectional view taken along line A-A of Figure 49. 261 1220875 FIG. 51 is a block diagram of the entire device of the motion control system of the embodiment disclosed in FIG. 49. Figure 5-2 shows the control contents of most of the power-on control modes C 1 to C4 and the moving direction of the driven magnet as a whole (movable table). The direction of movement of the body). Figure 5-3 shows the control contents of most of the power-on control modes C5 to C8 implemented by the table body drive control device in the embodiment of Figure 49 and the direction of movement of the driven magnet as a whole (movable table body). Direction of movement). Figure 54 is a longitudinal sectional view of a thirteenth embodiment of the present invention. Figure 55 is a schematic cross-sectional view taken along line A-A of Figure 54. Fig. 56 is a block diagram showing the entire apparatus of the motion control system of the embodiment disclosed in Fig. 54. Figure 57 shows the control contents of most of the power-on control modes D 1 to D4 implemented by the table drive control device in the embodiment of Figure 54 and the direction of movement of the driven magnet as a whole (movable table body). Direction of movement). Figure 5-8 shows the control contents of most of the power-on control modes D5 to D8 and the moving direction of the driven magnet as a whole (movable table body). (Moving direction). 5 and 9 are longitudinal sectional views of a fourteenth embodiment of the present invention. 262 1220875 Figure 60 shows a schematic cross-sectional view taken along line A-A in Figure 59. Fig. 61 is a block diagram showing the entire apparatus of the motion control system of the embodiment disclosed in Fig. 59. Figure 62 shows the control contents of most of the power-on control modes E1 to E4 implemented by the table drive control device in the embodiment of Figure 59 and the movement direction of the driven magnet as a whole (movement of the movable table body). Direction). Figure 63 shows the control contents of most of the power-on control modes E5 to E8 implemented by the table drive control device in the embodiment of Figure 59 and the movement direction of the driven magnet as a whole (movement of the movable table body). Direction). Fig. 64 shows the control contents of most of the energization control modes E9 to E 1 0 implemented by the table driving control device in the embodiment of Fig. 59 and the moving direction of the entire driven magnet (movable). Table movement direction). Fig. 65 is a longitudinal sectional view showing a fifteenth embodiment of the present invention. Figure 66 is not a schematic cross-sectional view taken along line A-A of Figure 65. Fig. 67 is not a block diagram of the entire device of the motion control system of the embodiment disclosed in Fig. 65. Figures 6 and 8 show the control contents of most of the power-on control modes F 1 to F 4 implemented by the table drive control device in the embodiment of Figure 6 and the moving direction of the entire driven magnet (movable). Table of the moving side 263 1220875 direction) chart. Figure 69 shows the control contents of most of the power-on control modes F5 to F8 implemented by the table body drive control device in the embodiment of Figure 65 and the direction of movement of the driven magnet as a whole (movement of the movable table body). Direction). Figure 70 shows the control contents of most of the power-on control modes F9 to F10 implemented by the table drive control device in the embodiment of Figure 65 and the direction of movement of the driven magnet as a whole (movement of the movable table). Direction). Fig. 71 is a longitudinal sectional view of a sixteenth embodiment of the present invention. Figure 7 2 Figure 7P: This is a schematic cross-sectional view viewed along line A-A of Figure 7 1 of the follower. Fig. 73 is a block diagram showing the entire apparatus of the motion control system of the embodiment disclosed in Fig. 71; Figure 74 shows the table body drive in the embodiment shown in Figure 71. Diagrams of the control contents of most of the energization control modes K 1 to K4 implemented by the motion control device and the movement direction of the driven magnet as a whole (moving direction of the movable table body). Figure 7-5 shows the control contents of most of the power-on control modes K5 to K8 implemented by the table drive control device in the embodiment in Figure 71 and the direction of movement of the entire driven magnet (movable table body). (Moving direction). Figure 7-6 shows the control contents and driven magnets of most of the power-on control modes K9 to K1 0 (rotation of 264 1220875 rotation) implemented by the table drive control device in the embodiment of Figure 71. Diagram of the overall movement direction (movement direction of the movable table body). Fig. 7 is a longitudinal sectional view of a seventeenth embodiment of the present invention, and shows the force along both sides of Fig. 77 for mounting the electromagnetic actuating mechanism to the movable table body and the table body maintaining mechanism. A sectional view of the entire device of line VIII-VIII. Figure 7-8 is a schematic diagram of the actuating magnet in the electromagnetic actuating mechanism with the bottom of the body removed from the body and the actuating plate removed. Figures 7 and 9 are characteristic diagrams showing the results of comparing the actuation characteristics between the seventeenth embodiment and the conventional example. [Description of Representative Symbols of Main Parts]: Reaction Force (Induced Force) IC: Forward Current r: Low Resistance ID: Negative Current EV: Electromotive Force Π: Moving Force 1: Movable Table 1 a: Positioning Hole 2: Table Maintenance mechanism 2A: piano wire 2G: relay plate 3: housing body 265 1220875 3A: body side protrusion 3 B: body side protrusion 2A, 2B: rod-shaped elastic member 4: electromagnetic drive device 5 A: positioning hole 5 : Auxiliary table 6: Driven magnet 6 A: Driven magnet 6B: Driven magnet 6C: Driven magnet 6D: Driven magnet 7: Tee-shaped drive coil 8 · Fixed plate 9: Actuation plate 1 〇: Link Pillar 1 0a, 1 Ob: protrusion 1 〇A: crotch 1 0 B: crotch 1 5 · movable table body 9A, 9B: spacer member 2 0: motion control system 2 1 B: coil selection drive control portion 2 1 _ · Table drive control device 2 1 A: Main control unit 266 1220875 22: Program memory unit 2 3: Data memory unit 24: Motion command input unit 2 5: Position detection and sensing mechanism 2 6: Capacitive sensor group 2 6 X 1: capacitance detection electrode 2 6X2: capacitance detection electrode 2 6 X 3: capacitance detection electrode 2 6X4: capacitance detection Electrode 26Y1: Capacitance detection electrode 2 6 Y 2: Capacitance detection electrode 2 6 Y 3: Capacitance detection electrode 2 6 Y 4: Capacitance detection electrode 27B: Position signal calculation circuit section 2 7: Position information calculation circuit 2 7 A: Signal conversion Circuit 7 a, 7 b, 7 c, 7 d: coil side 7a, 7b, 7c, 7d: small angular coil 3 1 B: spacer 3 1 C: table side leg 3 1: movable table body 3 1 A : Flat working surface 3 1 B a: Common electrode 3 3: Housing body 267 1220875 3 3 A: Driving device maintenance unit 3 4: Electromagnetic driving device 3 8: Fixed flat plate 4 1: Electromagnetic driving mechanism 4 6: Actuating magnet 4 9: Actuating plate 6 1: Tian-shaped driving coil 6 2: Tian-shaped driving coil 64: Electromagnetic driving device 7 1: Mouth-shaped driving coil 7 2: Mouth-shaped driving coil 74: Cross-shaped frame-shaped driving coil 7 4: Ring Shaped drive coils 38A, 39A: through-hole 8 4: electromagnet 1 4 3: electromagnetic drive device 2 0 2: motion control system 2 1 3: table body drive control device 6 1 a, 6 1 b, 6 1 c, 6 1 d: small angular coil 6 2 a, 6 2 b, 6 2 c, 6 2 d: small angular coil 7 2 1 to 7 2 4: Japanese-shaped driving coil 7 3 2: outer ring driving Ring 72 1,7 22: driving coil 72 3,7 24: drive coil 268

Claims (1)

1220875 拾、申請專利範圍: 1 · 一種精密加工用座台裝置,其特徵在於: 具有: 可動桌體,係被組裝至本體部,且支撐被加工物; 桌體維持機構’係被組裝置前述本體部,且容許將 前述可動桌體朝同一面內之任意方向來移動; 電磁驅動裝置,係被組裝置前述本體部,爲賦予在 前述可動桌體中進行前述同一面內的傳送; 電磁致動機構,係爲產生用以使前述可動桌體停止# 在前述同一面內之任意位置上的致動力; 目II述電磁驅動裝置係爲’具有多數之被驅動磁鐵、 以及用以藉由通電方向而產生作用於前述被驅動磁鐵之 磁力的驅動線圈,藉由前述被驅動磁鐵與前述驅動線圈 間之相互磁性作用,而產生前述可動桌體之傳送; 前述被驅動磁鐵與前述驅動線圈之內,係被設置成1220875 Patent application scope: 1 · A precision processing platform device, which is characterized by: It has: a movable table body, which is assembled to the main body and supports the workpiece; the table body maintenance mechanism is the aforementioned device. The main body part allows the movable table body to be moved in any direction within the same plane; the electromagnetic drive device is a device that is assembled to the aforementioned main body part to give the aforementioned movable table body transmission in the same plane; The moving mechanism is for generating the driving force for stopping the movable table body at any position in the same plane as described above; the electromagnetic driving device described in the heading II is' having a large number of driven magnets, and The driving coil that generates magnetic force acting on the driven magnet in the direction generates the transmission of the movable table body through the magnetic interaction between the driven magnet and the driving coil; within the driving magnet and the driving coil Is set to 一方爲被固定在一定位置,而另一方則可在前述可動桌 體一體性移動狀; 前述電磁致動機構係包含有相互面對且與前述可動 桌體之動作爲同步、而相對性進行移動的致動用磁鐵, 以及非磁性與導電性之致動平板; 前述致動用磁鐵與前述致動平板之內,係被設置成 一方爲被固定在一定位置,而另一方則設置成可與前述 可動桌體之動作爲同步移動,該致動用磁鐵與該致動用 平板之間的組合,係採用產生有致動力之構造,該致動 269 1220875 力係爲基於伴隨於前述可動桌體之移動而藉由在該致動 平板中所產生之渦電流所造成的磁力與該致動用磁鐵之 磁力間之相互磁性作用。 2.如申請專利範圍第1項之精密加工用座台裝置,其中前 述電磁致動機構係爲一種僅將致動施加至前述可動桌體 之機構。 3.如申請專利範圍第1項之精密加工用座台裝置,其中前 述電磁致動機構係爲一種僅將致動施加至前述可動桌體 以及前述桌體維持機構之機構。 4.如申請專利範圍第1項之精密加工用座台裝置,其中前 述電磁致動機構係多數具有HU述致動用磁鐵與前述致動 平板成對之構造。 5 ·如申請專利範圍第1項之精密加工用座台裝置,其中前 述電磁致動機構係裝設在前述可動桌體之中央部上。 6.One is fixed at a certain position, while the other can be moved integrally in the movable table body; the electromagnetic actuating mechanism includes moving oppositely to each other and synchronized with the movement of the movable table body; Of the actuating magnet and the non-magnetic and conductive actuating plate; one of the actuating magnet and the actuating plate is set to be fixed at a certain position, and the other is set to be movable with the aforementioned The action of the table body is synchronous movement. The combination between the actuation magnet and the actuation plate adopts a structure generating an actuation force. The actuation force 269 1220875 is based on the movement accompanying the aforementioned movable table body. The magnetic force caused by the eddy current generated in the actuation plate and the magnetic force of the actuation magnet are mutually magnetic. 2. The precision table base device according to item 1 of the patent application scope, wherein the aforementioned electromagnetic actuating mechanism is a mechanism that applies actuation only to the aforementioned movable table body. 3. For the precision processing platform device of the first scope of the patent application, the aforementioned electromagnetic actuation mechanism is a mechanism that applies actuation only to the aforementioned movable table body and the aforementioned table body maintaining mechanism. 4. For the precision machining platform device as described in the first item of the patent application scope, most of the aforementioned electromagnetic actuating mechanisms have a structure in which the actuating magnets described in HU are paired with the aforementioned actuating plates. 5. The precision machining base device as described in the first item of the patent application, wherein the electromagnetic actuating mechanism is installed on the central part of the movable table body. 6. 如申請專利範圍第1項之精密加工用座台裝置,其中前 述電磁致動機構之前述致動平板係相對於前述多數之致 動用磁鐵爲設成單一的平板而形成。 7 ·如申請專利範圍第1項之精密加工用座台裝置,其中前 述可動桌體係爲,經由與該可動桌體平行、且連結成一 體狀之輔助桌體,或是直接的維持在前述桌體維持機 構。 8 .如申請專利範圍第7項之精密加工用座台裝置,其中前 述桌體維持機構係構成如下’即: 至少三根的一方之棒狀彈性構件,係在前述可動桌 270 1220875 體之周端部的同一圓周上隔有指定間隔,並且一端部係 爲植設於該可動桌體上; 至少三根的另一方之棒狀彈性構件,爲對應於前述 一方之各個棒狀彈性構件,並且在該各個棒狀彈性構件 之外側上,爲於相同圓周上隔有指定間隔、且配置成平 行狀,而一端部係爲維持在前述本體部上而爲相同長 度; 中繼構件,係將前述一方與另一方之各個棒狀彈性 構件之另一端部維持成平行狀態,同時維持成一體狀;· 前述桌體維持機構之三組的各個棒狀彈性構件係 爲,藉由以分別爲相同強度、相同長度之鋼琴線等棒狀 彈性構件所構成。 9 ·如申請專利範圍第8項之精密加工用座台裝置,其中在 前述電磁致動機構之前述致動用磁鐵與前述致動平板間 之內,一方係被設置成與前述可動桌體成一體性的移For example, the precision processing platform device of the first patent application range, wherein the aforementioned actuating plate of the aforementioned electromagnetic actuating mechanism is formed as a single plate with respect to most of the aforementioned actuating magnets. 7 · If the precision table base device of the first scope of the patent application, wherein the movable table system is an auxiliary table body parallel to the movable table body and connected into an integrated body, or directly maintained at the aforementioned table Body maintenance organization. 8. The precision table base device according to item 7 of the scope of patent application, wherein the table body maintaining mechanism is constituted as follows: namely, at least three of the rod-shaped elastic members are attached to the peripheral end of the movable table 270 1220875 body. The same circumference of the part is separated by a specified interval, and one end is planted on the movable table body; at least three of the other rod-shaped elastic members are corresponding rod-shaped elastic members corresponding to the aforementioned one, and On the outer side of each rod-shaped elastic member, a predetermined interval is arranged on the same circumference, and the rod-shaped elastic members are arranged in parallel, and one end portion is maintained on the main body portion and has the same length. The other end of each rod-shaped elastic member on the other side is maintained in a parallel state and at the same time as an integrated body; · Each of the three groups of rod-shaped elastic members of the aforementioned table body maintenance mechanism is made by using the same strength and the same It consists of a rod-like elastic member such as a piano wire. 9 · As for the precision processing table device of the patent application item 8, wherein one of the magnets for the aforementioned electromagnetic actuation mechanism and the aforementioned actuation plate is arranged to be integrated with the movable table body Sexual shift 動、另一方則被設置在前述本體部上。 1 0 ·如申請專利範圍第8項之精密加工用座台裝置,其中前 述電磁致動機構之前述致動用磁鐵與前述致動平板間之 內’一方係被設置成與前述可動桌體成一體性的移動、 另~方則被設置在前述本體部上 再者’在前述電磁致動機構之前述致動用磁鐵與前 述致動平板間之內,亦可將一方設置成與前述中繼構件 成一體性的移動、另一方則被設置在前述本體部上。 11.如申請專利範圍第1項之精密加工用座台裝置,其中前 271 1220875 述電磁致動機 所形成。 1 2 .如申請專利範 述電磁致動機 磁鐵成另件所 1 3 .如申請專利範 述電磁致動機 電磁鐵之任一^ 14.如申請專利範 述桌體維持機 置的恢復原始 1 5 ·如申請專利範 述被驅動磁鐵 前述可動桌體 別配置在圓周 定在指定位置 1 6 ·如申請專利範 前述多數之軸 動桌體之面內 1 7 ·如申請專利範 前述多數軸線 之面內的原點 1 8 ·如申請專利範 前述可動桌體 構之前述致動用磁鐵係由前述被驅 圍第1項之精密加工用座台裝置, 構之前述致動用磁鐵係藉由與前述 構成。 圍第1項之精密加工用座台裝置, 構之前述致動用磁鐵係可由永久磁 方所形成。 圍第1項之精密加工用座台裝置, 構爲具備有使前述可動桌體恢復成 位置之力。 圍第1項之精密加工用座台裝置, 與前述驅動線圈係爲,將通過設定 之面內之原點的一條軸線作爲基準 方向等分所形成之多數的軸線上、 上。 圍第15項之精密加工用座台裝置 線係設定成作爲通過、正交於移動 所設定之原點的多數軸線。 圍第1 5項之精密加工用座台裝置 係被設定爲,將設定在移動前述可 作爲中心、而朝向放射方向的多條 圍第14項之精密加工用座台裝置 爲藉由前述桌體維持機構而恢復的 動磁鐵 其中前 被驅動 其中前 鐵或是 其中前 原始位 其中前 在移動 ,而分 且被固 ,其中 前述可 ,其中 動桌體 軸線。 ,其中 原始位 272 1220875 置係爲’設定成與形成設定在移動前述可動桌體之面內 的軸線基點的原點成一致狀。 1 9 .如申請專利範圍第1 5項之精密加工用座台裝置,其中 前述被驅動磁鐵與前述驅動線圈間之組合係被配置在對 於前述軸線爲偏移的位置上。 20·如申請專利範圍第1 5項之精密加工用座台裝置,其中 形成述電磁驅動裝置之多數的被驅動磁鐵係爲,以與 由前述原點爲等距離之位置而配置在前述各個軸線上; 形成前述電磁驅動裝置之多數的驅動線圈係爲,以 配置成對應於前述多數之被驅動磁鐵。 2 1 ·如申請專利範圍第2 0項之精密加工用座台裝置,其中 被配置在前述軸線之多數的被驅動磁鐵係爲,被配置呈 現對稱的位置關係。The other side is provided on the main body. 10 · As for the precision processing table device of item 8 of the scope of patent application, wherein one of the 'between the actuating magnet and the actuating plate of the electromagnetic actuating mechanism is provided to be integrated with the movable table body In addition, it is provided on the main body part, and further, it may be provided between the actuating magnet and the actuating plate of the electromagnetic actuating mechanism. The integral movement is provided on the main body. 11. The precision machining base device according to item 1 of the scope of patent application, wherein the electromagnetic actuator described in the previous 271 1220875 is formed. 1 2. If the patent application model describes the electromagnetic actuator magnet as an additional part 1 3. As the patent application model describes any of the electromagnetic actuator electromagnet ^ 14. If the patent application model describes the table body maintenance machine to restore the original 1 5 · As described in the patent application, the movable table body is arranged at a specified position on the circumference 1 6 · As in the majority of the axis of the patent application table, within the plane of the movable table body 1 7 · As in the most axis surface of the patent application model Internal origin 1 8 · If the above-mentioned movable magnet structure of the movable table body is a patent application, the aforementioned actuating magnet system is driven by the precision machining base device of the first item, and the above-mentioned actuating magnet system is composed of the aforementioned structure. . In the precision machining base device according to item 1, the aforementioned actuating magnet system may be formed of a permanent magnet. The pedestal device for precision machining surrounding item 1 is configured to have a force for restoring the movable table body into position. The pedestal device for precision machining surrounding item 1 and the drive coil system are divided into a plurality of axes formed by dividing an axis of an origin in a set plane into a reference direction and dividing it into a plurality of axes. The line device for precision machining around item 15 is set as a majority axis passing through and orthogonal to the origin set by the movement. The precision machining platform device around item 15 is set to move the plurality of precision machining platform devices around item 14 that can be used as the center and face the radiation direction. The moving magnet which maintains the mechanism and recovers the front is driven by the front iron or the front original position and the front is moved while divided and fixed, wherein the aforementioned is possible, wherein the table axis is moved. , Where the original position 272 1220875 is set to be 'set to coincide with the origin forming the axis base point set in the plane of the movable table body. 19. The precision processing table device according to item 15 of the scope of patent application, wherein the combination between the driven magnet and the driving coil is arranged at a position offset from the axis. 20. The precision processing table device according to the 15th patent application range, in which the driven magnets forming the majority of the electromagnetic driving device are arranged on each of the aforementioned axes at a position equidistant from the aforementioned origin. On-line; the drive coils forming the majority of the aforementioned electromagnetic driving devices are arranged so as to correspond to the majority of the driven magnets. 2 1 · As for the precision machining table device of the scope of patent application No. 20, most of the driven magnets arranged on the aforementioned axis are arranged in a symmetrical positional relationship. 22·如申請專利範圍第1項之精密加工用座台裝置,其中前 述電磁驅動裝置之被驅動磁鐵係藉由永久磁鐵所形成。 23 .如申請專利範圍第1項之精密加工用座台裝置,其中前 述電磁驅動裝置之被驅動磁鐵係爲,藉由電磁鐵所形 成,爲使對於該被驅動磁鐵之通電與對於前述驅動線圈 之通電爲同步,而選擇性的控制成順向或是逆向。 24.如申請專利範圍第1項之精密加工用座台裝置,其中前 述驅動線圈係具有線圈片,該線圈片係用以產生作用於 前述被驅動磁鐵之磁力的磁力。 25 .如申請專利範圍第1項之精密加工用座台裝置,其中前 述驅動線圈係由尺寸相異、且配列在內外之多數的線圈 273 1220875 所形成。 2 6 .如申請專利範圍第1項之精密加工用座台裝置,其中前 述驅動線圈之線圈邊係被形成爲十字狀或是直線狀的形 2 7 ·如申請專利範圍第2 6項之精密加工用座台裝置,其中 前述驅動線圈之十字狀線圈邊係爲,被配置成以沿著配 置前述被驅動磁鐵之前述軸線的姿勢。 2 8 ·如申請專利範圍第2 6項之精密加工用座台裝置,其中 前述驅動線圈之直線狀線圈邊係爲,被配置成以沿著配 置前述被驅動磁鐵、或是橫越前述軸線的姿勢。 29·如申請專利範圍第26項之精密加工用座台裝置,其中 前述驅動線圈係爲,將獨立且組合被通電之多數的小線 圈所形成,係爲可將前述十字狀或是直線狀之線圈邊形 成在該各個小線圈之突接部上。 3 0 ·如申請專利範圍第2 9項之精密加工用座台裝置,其中 前述小線圈係形成爲角形形狀。 3 1 ·如申請專利範圍第29項之精密加工用座台裝置,其中 前述小線圈之角形形狀係爲四角形、三角形、五角形、 或是扇形之任一種形狀。 3 2 ·如申請專利範圍第1項之精密加工用座台裝置,其中前 述電磁驅動裝置係具有多數之前述被驅動磁鐵與前述驅 動線圈之對。 3 3 ·如申請專利範圍第1項之精密加工用座台裝置,其中前 Μ驅動線圈之外型尺寸係被設定爲大於前述被驅動磁鐵 274 1220875 之外型尺寸。 3 4 .如申請專利範圍第1項之精密加工用座台裝置,其中前 述電磁驅動裝置係具備有動作控制系統,係爲控制對於 前述驅動線圈之通電,而使前述可動桌體進行直線移 動、或是直線移動以及旋轉移動之裝置。 3 5 .如申請專利範圍第3 4項之精密加工用座台裝置,其中 前述動作控制系統係可構成爲包含有:22. The precision processing platform device as described in the first item of the patent application scope, wherein the driven magnet of the electromagnetic drive device is formed by a permanent magnet. 23. The precision processing platform device according to the first patent application range, wherein the driven magnet of the electromagnetic drive device is formed by an electromagnet so that the current to the driven magnet and the drive coil are The energization is synchronous, and the selective control is forward or reverse. 24. The precision processing platform device according to item 1 of the patent application range, wherein the aforementioned driving coil system has a coil piece for generating a magnetic force acting on the magnetic force of the driven magnet. 25. As described in the patent application for item No. 1 of the precision processing platform device, the aforementioned drive coil is formed by a large number of coils 273 1220875 which are different in size and arranged inside and outside. 2 6. As for the precision processing table device of the first scope of the patent application, wherein the coil side of the aforementioned driving coil is formed into a cross shape or a straight shape 2 7 · As the precision of the second scope of the patent application area is 26 The processing table device, wherein the cross-shaped coil side of the driving coil is arranged in a posture along the axis where the driven magnet is disposed. 2 8 · According to the precision machining platform device of the scope of application for patent No. 26, wherein the linear coil side of the drive coil is arranged along the drive magnet or across the axis. posture. 29. As described in the patent application for item 26 of the precision machining platform device, the aforementioned drive coil is formed by combining small coils that are independent and combined with the majority of the current. The coil sides are formed on the protruding portions of the respective small coils. 30. The precision machining base device according to item 29 of the patent application range, wherein the small coil system is formed in an angular shape. 3 1 · If the precision table device for item 29 of the scope of patent application, the angular shape of the small coil is any of a quadrangular shape, a triangular shape, a pentagonal shape, or a fan shape. 3 2 · For the precision machining platform device according to item 1 of the patent application scope, wherein the aforementioned electromagnetic driving device has a plurality of pairs of the aforementioned driven magnets and the aforementioned driving coils. 3 3 · As for the precision machining platform device in the first scope of the patent application, the outer dimension of the front M driving coil is set to be larger than the outer dimension of the driven magnet 274 1220875. 3 4. As for the precision processing platform device of the first scope of the patent application, the aforementioned electromagnetic driving device is provided with a motion control system for controlling the energization of the driving coils and moving the movable table body linearly. Or a device that moves linearly and rotates. 35. If the precision processing platform device according to item 34 of the patent application scope, the aforementioned motion control system may be configured to include: 線圈驅動控制裝置,爲將前述電磁驅動裝置之驅動 線圈依據控制馬達而進行通電控制; 程式記憶部,係記憶有用以特別指定前述控動桌體 之移動方向、旋轉方向、以及其動作量等的多數之控制 程式; 資料記憶部,係記憶有在實施前述各個控制程式之 實施時所使用的指定之座標資料等;The coil drive control device is used to control the drive coil of the electromagnetic drive device according to the control motor; the program memory section is used to store the movement direction, rotation direction, and the amount of movement of the control table body. Most control programs; The data memory section stores the specified coordinate data used in the implementation of the foregoing control programs; 動作指令輸入部,係在前述線圈驅動控制裝置中, 進行有對於前述驅動線圈之指定的控制動作之指令。 3 6 ·如申請專利範圍第3 5項之精密加工用座台裝置,其中 前述動作控制系統之控制碼係構成爲如下: 第一至第四控制模式,爲將前述正交之二軸的交點 作爲原點,而用以使前述可動桌體移動至各軸的正負方 向; 第五至第八控制模式,係用以使前述可動桌體移動 至藉由前述正交之二軸所區隔的各個象限內之方向; 第九至第十之各個控制模式,係在藉由前述正交之 275 1220875 二軸所形成的面內,用以使前述可動桌體旋轉於順時針 方向或是逆時針方向。 37. 如申請專利範圍第3 5項之精密加工用座台裝置,其中 則述動作控制系統係構成爲,加上如上述之構造,而可 倂設有: 多數之位置檢測感測器,爲檢測、輸出至外部的前 述可動桌體之移動資訊; 位置資訊演算電路,爲基於以前述位置檢測感測器 所檢測而出之資訊來進行指定的運算,特別指定前述可θ 動桌體之移動方向以及其變化量,且作爲位置資訊而進 行外部輸出。 38. 如申請專利範圍第1項之精密加工用座台裝置,其中前 述電磁驅動裝置係採用具備有如下述之動作控制系統的 構造,即,係個別的控制因應於來自外部之指令所作動 之該電磁驅動裝置所具有的驅動線圈與被驅動磁鐵,而 使前述可動桌體移動至指定之移動方向。 &amp; 39. 如申請專利範圍第3 8項之精密加工用座台裝置,其中 前述動作控制系統係構成具有: 通電方向設定機能,爲將對於前述驅動線圈之通電 方向設定、維持在一方之方向上; 線圈通電控制機能,係可變更設定對於前述驅動線 圈之通電方向的大小; 磁極可變設定機能,爲因應對於前述驅動線圈之通 電方向來進行作動,且將對於前述各個驅動磁鐵的磁極 276 1220875 爲成個別的設定、維持; 磁力強度設定機能’係將前述各個被驅動磁鐵之磁 力強度因應於來自外部的指令’而可個別地進行變更設 定; 桌體動作控制機能,爲使該等各個機能適度地進行 作動’而對於可動桌體來進行移送方向以及移送力的調 整。The operation command input unit is a command for a specified control operation for the drive coil in the coil drive control device. 3 6 · If the precision processing table device for item 35 of the scope of patent application, the control code of the aforementioned motion control system is constituted as follows: The first to fourth control modes are the intersection points of the two orthogonal axes. As the origin, it is used to move the movable table body to the positive and negative directions of each axis. The fifth to eighth control modes are used to move the movable table body to the area separated by the two orthogonal axes. Directions in each quadrant; Each of the ninth to tenth control modes is in a plane formed by the aforementioned two orthogonal 275 1220875 axes, used to rotate the movable table body clockwise or counterclockwise direction. 37. For the precision machining platform device of the 35th scope of the patent application, the motion control system is structured as described above, and can be provided with: a majority of position detection sensors, Detect and output the movement information of the aforementioned movable table body; The position information calculation circuit performs specified calculations based on the information detected by the aforementioned position detection sensor, and specifically specifies the aforementioned θ movable table body movement The direction and the amount of change are externally output as position information. 38. In the case of the precision machining platform device in the scope of the first patent application, the aforementioned electromagnetic drive device adopts a structure provided with an operation control system as follows, that is, individual control is performed in response to an instruction from the outside. The driving coil and the driven magnet of the electromagnetic driving device move the movable table body to a specified moving direction. &amp; 39. For example, the precision processing platform device of the 38th scope of the patent application, wherein the aforementioned motion control system is configured to have: an energizing direction setting function for setting and maintaining the energizing direction of the driving coil in one direction The coil energization control function can be changed to set the size of the energizing direction of the drive coil. The magnetic pole variable setting function is to act according to the energization direction of the drive coil, and it will be used for the magnetic pole 276 of each drive magnet. 1220875 is set and maintained individually. The magnetic strength setting function 'sets the magnetic strength of each of the aforementioned driven magnets in response to an instruction from the outside' and can be individually changed and set; The function can be performed moderately, and the transfer direction and the transfer force of the movable table are adjusted. 277277
TW92124873A 2002-03-11 2003-09-09 Stage equipment for precision processing TWI220875B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002065069A JP4139608B2 (en) 2002-03-11 2002-03-11 Precision machining stage equipment
JP2002071994A JP4139612B2 (en) 2002-03-15 2002-03-15 Precision machining stage equipment
JP2002221545 2002-07-30

Publications (2)

Publication Number Publication Date
TWI220875B true TWI220875B (en) 2004-09-11
TW200510108A TW200510108A (en) 2005-03-16

Family

ID=34139353

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92124873A TWI220875B (en) 2002-03-11 2003-09-09 Stage equipment for precision processing

Country Status (1)

Country Link
TW (1) TWI220875B (en)

Also Published As

Publication number Publication date
TW200510108A (en) 2005-03-16

Similar Documents

Publication Publication Date Title
JPWO2004012260A1 (en) Precision machining stage equipment
JP5003681B2 (en) Magnetic field control method and magnetic field generator
JP5363357B2 (en) Magnetic levitation device
US10635178B2 (en) Multi-directional actuating module
KR102498082B1 (en) Electromechanical actuators and improvements therewith
US11276518B2 (en) Haptic engine module with array-riddled-of-dual (AROD) magnets
TWI220875B (en) Stage equipment for precision processing
Zhou Magnetically suspended reaction sphere with one-axis hysteresis drive
JP4139608B2 (en) Precision machining stage equipment
JP5952243B2 (en) Force sense operating device
JP2006162024A (en) Vibration damping device and its control method
JP2011145286A (en) Magnetic force sensor
JP4139612B2 (en) Precision machining stage equipment
JP5439663B2 (en) Electromagnetic actuator and joint device
KR100598996B1 (en) Precision processing stage apparatus
US20210159091A1 (en) Magnetically-Levitated Transporter
CN108582050A (en) A kind of control system of Multi-freedom-degreemanipulator manipulator
JP4340794B2 (en) Magnetic support balance device without air-core coil and control method using the same
Wang et al. Multicoil torque modeling of reluctance spherical motor based on linear interpolation
Gao et al. Support characteristics and application of permanent magnet suspension active mass drive system
Byron Dynamic Modeling of a Three Degree of Freedom Reaction Sphere
JP2003070272A (en) Spherical ultrasonic motor and magnetized sphere suitable therefor
Nakamura et al. A micro operation hand and its application to microdrawing
JPH036713A (en) 6-axial attitude controller
CN115904116A (en) Multi-point force touch representation method and system based on Halbach array

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees