TW583406B - Method for analyzing final test parameters - Google Patents
Method for analyzing final test parameters Download PDFInfo
- Publication number
- TW583406B TW583406B TW091138168A TW91138168A TW583406B TW 583406 B TW583406 B TW 583406B TW 091138168 A TW091138168 A TW 091138168A TW 91138168 A TW91138168 A TW 91138168A TW 583406 B TW583406 B TW 583406B
- Authority
- TW
- Taiwan
- Prior art keywords
- post
- product group
- item
- test
- package
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000013100 final test Methods 0.000 title abstract description 14
- 238000004806 packaging method and process Methods 0.000 claims abstract description 26
- 238000012360 testing method Methods 0.000 claims description 156
- 238000004458 analytical method Methods 0.000 claims description 58
- 238000007689 inspection Methods 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 20
- 238000012858 packaging process Methods 0.000 claims description 11
- 235000012431 wafers Nutrition 0.000 claims description 6
- 206010003497 Asphyxia Diseases 0.000 claims 1
- 230000002596 correlated effect Effects 0.000 abstract 2
- 230000000875 corresponding effect Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 17
- 239000004065 semiconductor Substances 0.000 description 15
- 230000002159 abnormal effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 5
- 238000012372 quality testing Methods 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 241000282994 Cervidae Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011257 shell material Substances 0.000 description 1
- 210000004722 stifle Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41875—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32222—Fault, defect detection of origin of fault, defect of product
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45031—Manufacturing semiconductor wafers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Factory Administration (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
583406 五、發明說明(1) ' )、【發明所屬之技術領域】 本發明係關於一種製程參數分析方法,特別關於一種 封裝後測試參數之分析方法。 在 過許多 等;亦 台,以 於確保 題點以 及品質 資料著 (I η- 1 資料、 test ) 封裝後 製得之 在 此時熟 件進行 (pin ) 接 【先前技術】 半導體製造技術中 個製程,例如微影 即在半導體製造過 及許多繁瑣的程序 機台運作正常、維 及機台維修等作業 能夠合乎客戶需求 般而言,要探討半 手進行分析,包括 ine QC )資料、缺 樣 σσ,則 §式(sample 資料以及封裝後測 測试資料乃是當晶 半導體元件進行產 習知技術中,請灸 知技術者會針對經 各項封裝後測試^ 的電性測試。 著’在步驟1 〇 2中, ’要完成一半導體產品通常要經 製程、蝕刻製程、離子植入製程 程中必須應用到魔大數量的機 。因此,熟悉該項技術者皆致力 持或提高產品良率、偵測確認問 ’以期使半導體產品的生產速度 〇 導體製程的問題可以從下列數項 製程參數資料、線上品質測試 陷檢測(defect inspection) test )資料、晶圓測試(wafe;r 域(final test)資料。其中, 圓切割並進行封裝程序後,對所 品測試所得到的檢測值。 照圖1所示,首先進行步驟1 〇 1, 過封裝製程之後的每一半導體元 目的測試,如半導體元件之接腳 熟知技術者會觀察每一半導體583406 V. Description of the invention (1) '), [Technical field to which the invention belongs] The present invention relates to a method for analyzing process parameters, and more particularly to a method for analyzing test parameters after packaging. I have waited many times; also Taiwan, in order to ensure the title and quality data (I η-1 data, test) after packaging, it is produced at this time (pin) to the cooked part. [Previous technology] Semiconductor manufacturing technology Manufacturing processes, such as lithography, which has been used in semiconductor manufacturing and many tedious procedures. The machine is operating normally, and maintenance and repair of the machine can meet customer needs. Generally speaking, half-hand analysis should be discussed, including ine QC data, missing samples σσ, then the § formula (sample data and post-package test data are used in the production technology of crystal semiconductor components. Please know that the technicians will conduct electrical tests for various post-package tests ^. 着 '在In Step 102, 'To complete a semiconductor product, it is usually necessary to use a large number of machines in the process, etching process, and ion implantation process. Therefore, those who are familiar with this technology are committed to maintaining or improving product yield. Detect and confirm the question 'In order to speed up the production of semiconductor products. Conductor process problems can be determined from the following several process parameter data, online quality test trap detection ( defect inspection (test) test) data, wafer test (wafe; r field (final test) data. Among them, after the circle is cut and the packaging process is performed, the inspection value obtained by the product test is performed. As shown in FIG. 1, the first step is to perform 1 〇1, the test of each semiconductor element after the packaging process, such as the pins of semiconductor components, a skilled person will observe each semiconductor
第8頁 583406Page 8 583406
元件的各項封裝後測試項目之結果 結果有偏差的產品。 以便找出封裝後測試 步 戶斤選出 的製程 題,如 最 斷之製 新設定 4列而言 題,可 的機台 驟〇 \係由熟知技術者根據經驗,以及自步驟1 0 2中 勺異吊產口口之封裝後測試結果,來判斷可能有問 站別,如封裝製程,或是其他測試資料之站別有 線上品質檢測站別、樣品測試站別等。 °The results of various post-package test items of the component. In order to find out the process questions selected by the tester after packaging, such as the newest set of 4 new questions, the available machine steps are based on the experience of skilled technicians and from step 102. The results of the post-encapsulation test of the different production ports can be used to determine the station type, such as the packaging process, or the station type of other test data, the quality inspection station line, the sample test station, etc. °
後,在步驟104中,熟知技術者係檢查步驟丨〇3所 程站別中的各機台,以便找出異常的機台,或是重 步驟1 03所判斷之測試站別的各項測試設定值。舉 ,若熟知技術者判斷半導體元件之某一接腳有問+ 以搜索進行此封裝製程的製程站別,並檢查出異常 ’如打線接合(wire bonding)機台、封膠 (m ο 1 d i n g )機台等;另外,若熟知技術者判斷半導體元 件之問4係與先前的製造過程有關,則可能是之前的某一 線上檢測站別有問題,導致無法有效地檢出有問題之產 品,所以熟知技術者會修正此一線上檢測站別的各項預設 規格,以期在後續產品中避免相同問題發生。 、° 然而’由於在習知技術中乃是利用人為經驗判斷來決 定分析結果(步驟1 〇 3 )及修正的數值(步驟丨〇 4 ),所以 最後分析出來之結果的精確度及可信度將有待商榷;再加 上半導體製造業之人士更迭頻繁’導致前後期工程師之間 的經驗傳承不易,且每/位工程師能力有限、無法兼顧廠 區2有機台的操作狀態,故當半導體產品的測試結果發生 異常時,工程師不見得有足夠的經驗快速且正確地判斷出After that, in step 104, a skilled technician checks each of the stations in the station in step 3 in order to find the abnormal station or repeat the tests in the test station in step 103. Set value. For example, if a person skilled in the art judges that a certain pin of the semiconductor device is questionable + to search for the process station for this packaging process, and check for abnormalities such as wire bonding machines, sealing (m ο 1 ding) ) Machines, etc .; In addition, if a skilled technician judges that the semiconductor device 4 is related to the previous manufacturing process, it may be that there is a problem with a previous online testing station, resulting in the inability to effectively detect the defective product. Therefore, those skilled in the art will modify various preset specifications of this online testing station to avoid the same problem in subsequent products. 、 ° However, because in the conventional technology, artificial analysis is used to determine the analysis result (step 103) and the revised value (step 丨 〇4), the accuracy and credibility of the final analysis result To be discussed; coupled with the frequent change of people in the semiconductor manufacturing industry, it is difficult to pass on the experience between engineers in the early and late stages, and each engineer has limited capabilities and cannot take into account the operating status of the plant 2 machine station. Therefore, when testing semiconductor products When the result is abnormal, the engineer may not have enough experience to quickly and correctly determine
583406583406
是哪一個環節出問 相關研究,甚至有 降低製程的效率、 產情形以提高良率 題,因而可能必須 可能做出錯誤的判 增加生產成本,還 耗費許多時間來進行 斷,如此-來,不但 無法及日寺改善線上生 &的封裝後測試 哪一個環節出問 ’正是當前半導 因此,如何提供一種能夠在半導體產 資料發生異常時,快速且正確地判斷出是 題、以及正確地更正預設規格的分析方法 體製造技術的重要課題之一。 (三)、【發 有鑑於 導體彥品的 明内容】 上述課題,本發明之目 封裝後測試資料發生異 斷出是哪一個環節出問題的封裝後 本發明 線上於質檢 品測試之管 析方法。 本發明 共通性分析 資料。 緣是, 析方法係用 品係經過複 係經過複數 之另一目的為提供一種 測或樣品測試之結果來 制標準(control spec 之特徵係以較佳之產品 手法來分析較差之產品 為達上述目的,依本發 以分析複數批分別具有 數個機台所製得,且每 道封裝後測試項目之檢 的為提供一種能夠在半 常時,快速且正確地判 測試參數分析方法。 能夠依據封裝後測試及 修正線上品質檢測或樣 )的封裝後測試參數分 為對照組,並以統計及 的各項測試資料及機台 明之封裝後測試參數分 批號之產品,每批產 批產品中的每一片晶圓 測以產生複數個封裝後Which part of the question is related research, even reducing the efficiency of the process and the production situation to improve the yield rate problem, so it may be necessary to make a wrong judgment to increase production costs, and it takes a lot of time to break, so-come, not only I ca n’t improve the post-package test of Risheng & what is the question of the current semi-conductor? Therefore, how to provide a method to quickly and correctly determine the problem when the semiconductor product data is abnormal, and correctly Corrects one of the important issues of the analytical method body manufacturing technology of preset specifications. (Three), [the content of the conductor in accordance with the clear content of the above issue] The above-mentioned subject, the purpose of the present invention is that the test data after the package is broken, which is the problem of the link after the package analysis of the online testing of the quality inspection product of the present invention method. Common analysis data of this invention. The reason is that the analysis method is that the supplies are complex and complex. Another purpose is to provide a test or sample test result to make the standard (the characteristic of the control spec is to analyze the poor products with better product methods to achieve the above purpose. According to the present invention, it is made by analyzing multiple batches with several machines, and the inspection of each post-packaging test item is to provide a method for analyzing the test parameters quickly and correctly in the semi-permanent manner. (Modify the online quality inspection or sample) after packaging test parameters are divided into control groups, and the statistics and test data and machine package after the test parameters of the batch number of products, each batch of each batch of products After circular testing to produce multiple packages
583406 五、發明說明(4) ----- 測试參數值’該等封裝後測試項目、該等封裝後測試參數 ί於Ϊ ί ::封裝後測試項目相關的-封裝製程站別係儲 子;貝料庫中,本方法包括以下數個步驟··搜尋資斜座 以取彳于每批產品之封裝後測試參數值;比較裝後 :參數值以選出-具代表性之封裝後測試參數二= 、"Ϊ : ί性之封裝後測試項目;判斷具代表性之封裝後 比較複數批產品的具代表性之封裝後測試項目^數= 預设規格,以便將具代表性之封裝後 大於預設規袼者區分為一第一不人尥吝σ 抑 刀苟第不合格產品,而將具代表性 之封衷後測試項目的參數值小於預設規格者區分為一第一 :格產組,搜尋第一合格產品組之各批產品於封裝製程 站經過之機台;搜尋第一不合格產品組之各批產品於 封4製程站別所經過之機台;以及判斷第一不合格產品組 經過機率高於第一合格產品組經過機率的機台。 此外,每批產品中的每一片晶圓係曾經經過與封裝後 2試項目相關的-線上品質檢測項目及一樣品測試項目之 双測以產生一線上品質檢測參數值及一樣品測試參數值, 而#料庫中更儲存有這些資料,而依本發明之封裝後測試 ,^分析方法更以統計分析手法來分析封裝後測試及線上 口口質檢測或樣品測試之結果,以便修正線上品質檢測或樣 品測試之管制標準。 、 承上所述,因依本發明之封裝後測試參數分析方法係 以較佳之數批產品為對照組,並以統計及共通性分析手法583406 V. Description of the invention (4) ----- Test parameter values' These post-package test items, the post-package test parameters ί Yu Ϊ :: Related to the post-package test items-packaging process station In the shell material library, the method includes the following steps: • Search for the tilt seat to obtain the test parameter values after packaging for each batch of products; compare after mounting: the parameter values are selected-a representative post-package test Parameter two = 、 " Ϊ: 性 general post-package test items; judging a representative post-package comparison of a plurality of batches of representative post-package test items ^ number = preset specifications in order to make the representative Those who are larger than the preset specifications after encapsulation are classified as a first unqualified product, and those whose representative parameter values are less than the preset specifications are classified as a first. : Ge product group, search for the machine that each batch of products of the first qualified product group passes at the packaging process station; search for the machine that each batch of products of the first unqualified product group passes at the 4 process station; and judge the first The probability of passing the unqualified product group is higher than the first Product group through the chances of the machine. In addition, each wafer in each batch of products has undergone double testing of the online quality inspection project and a sample test project related to the 2 test items after packaging to generate an online quality inspection parameter value and a sample test parameter value. The # material library further stores these data, and according to the post-package testing of the present invention, the ^ analysis method uses statistical analysis methods to analyze the results of the post-package test and online mouth quality inspection or sample testing in order to correct the online quality inspection. Or regulatory standards for sample testing. As mentioned above, the method for analyzing the test parameters after packaging according to the present invention is to use a better number of products as a control group, and use statistical and common analysis methods.
第11頁 五、發明說明(5) f =析較差之產品的各項測試資料及機台資料,所以能夠 妯,f體產品的封裝後测試資料發生異常時,快速且正確 ^斷出是哪一個環節出問題,以便能夠正確地判斷▲出有 結^ :製程站別’進而找出異常之機台’並能夠依據分析 :古1修正線上品質檢測或樣品測試之管制標準,所以能 產成1地減少人為判斷的錯誤來提高製程的效率、減少生 產成本、並及時改善線上生產情形以提高良率 (四)、【實施方式】 裝後測:ί 4::::4,說明依本發明較佳實施例之封 符號加以說明。 '’其中相同的元件將以相同的參照 σ月參照圖2所示,盆鹿_ 測試參數分析方法不本發明較佳實施例之封裝後 封裝機台。 、_程圖。此實施例係分析並找出問題 如圖2所示,首先, + 例之封裝後測試參數八 ν、驟20 1中,依本發明較佳實施 封裝後測試參數值,缺法係先搜尋數批產品之複數個 參數值,然後選出一具二,2 0 2係比較該等封裝後測試 應之一具代表性之封裝^ j之封裝後測試參數值及相對 n批產品,而所分析之封努接項^目。舉例而言’假設共有 項目三種,則所有 、^忒項目有A項目、B項目及c 于破後測試參數值係如下表所示 583406 五、發明說明(6) c項目 7% g Μ 、 ”、、員示的各項百分比為各批號在各封穿#、4 制钟s 、羊,在本步驟中,所選出的具代表性之^ & 、 二“、目為平均值最高者,即A項目。換言之 、裝後 之封裝後測試項目係為扼殺(k i 11 ed )封穿後/、代表 目’其係為數批產品中不合格率之平均值最高項 目。 对裝後測 在本實施例中,每一批(lot)產品係呈 (lot麵ber) ’且每批產品包括有25片晶圓有一抵a號 :係;經過複數道製程的複數個機台,最後 批產 一 -a衣设测試參意 接著,步驟2。3係判斷具代表性 :值。 否與封装製程站別相關。一般而言,々试項目是 @會與某些特定的製程機台相了 了二5封裝後測試項 性儲存於一資謝,以避免二=施例係將此相關 後測試項目之檢測以產生複數個封裝後 J道封裝 接著,步驟2 0 3伤刻斷呈处士、. " ^ ^ 第13頁 583406 五、發明說明(7) q 。當步驟20 3判斷此具代表性之封裝後測試項目與封裝 ,ί占別不相關時,本方法會從其他相關製程著手進行分 斤如圖3所示),如線上品質檢測、或樣品測試洛 步驟203判斷此具代表性之封裝後測試項目與封裝製程二 時,接著進行步驟2〇4,其係依據具代表性‘封裝 、員目將數批產品區分為至少一第一合格產品組及一 Ϊ :Α不頂合格產品組。舉例而t,本步驟係分析比較每批產 :(如2二的參數值(不合格率)是否大於A項目之預設規 〇 U/o },若否則將此批產品歸類於Α組(第一合格產 口口組j產品,例如包括批號1、2、3、4、及5 (如 5 所不,若是則將此批產品歸類於B組(第一不合格產口 …例如包括批號 別系計算“產品中,所有產品經過此封 哀衣权站別之複數個機台的機率;一般而言,一封 二別係包括數個機台’例如Ε 1,Ε 2,Ε 3...。另外, ㈣此封裝製程站別之該等機^ Ϊ1ΓΪ⑽ 驟2°9中,利用共通性分析手法,找出ΐ组 產。口、,二k機率咼於Α組產品經過機率之。 , 驟2 0 9所求得的這些B組產品經過機率高之°機台,就是依步本Page 11 V. Description of the invention (5) f = Various test data and machine data of the product with poor analysis, so that it can be quickly and correctly when the test data of the f-body product is abnormal after packaging. Which link has a problem so that you can correctly judge ▲ if there is a conclusion ^: The process station 'and then find the abnormal machine' and can be based on the analysis: ancient 1 to modify the online quality inspection or sample test control standards, so it can produce Reduce artificial judgment errors to improve process efficiency, reduce production costs, and improve online production in a timely manner to improve yield (four), [implementation method] Post-installation testing: ί 4 :::: 4 The seal symbol of the preferred embodiment of the present invention will be described. '' Where the same components will be shown with the same reference, as shown in FIG. 2, the deer _ test parameter analysis method is not a packaged machine according to a preferred embodiment of the present invention. , _ Cheng map. This embodiment analyzes and finds the problem as shown in Figure 2. First, in the + case of the test parameters after encapsulation, eight ν and step 20 1, the test parameter values after encapsulation are preferably implemented according to the present invention. A plurality of parameter values of several batches of products, and then one is selected. The 202 is to compare the post-package test parameters to one of the representative packages. The post-package test parameter values and relative n batch products are compared. The seal is connected to the project ^ project. For example, 'assuming there are three types of projects, all, ^ 忒 items have A items, B items, and c. The test parameter values after the break are shown in the following table. 583406 V. Description of the invention (6) c item 7% g M, The percentages indicated by the staff members are the batch numbers in each seal wearing #, 4 clocks, and sheep. In this step, the representative ^ &, "", which is the highest average, A project. In other words, the post-packaging test items after assembly are strangling (k i 11 ed) after sealing /, and the representative item ′ is the item with the highest average failure rate among several batches of products. After installation testing In this embodiment, each lot of product is “lot surface ber”, and each lot of products includes 25 wafers. One lot is a number: a; system; Taiwan, the last batch of a-a clothing test test participation, then, step 2.3 is a representative judgment: value. Whether it is related to the packaging process station. Generally speaking, the test items are @ will be compared with some specific process machines. The test items are stored in a credit after packaging. To avoid two = the example is to test the related post-test items. After a plurality of packages are generated, the J-channel package is then followed by step 203, and the scoring is performed. &Quot; ^ ^ page 13 583406 V. Description of the invention (7) q. When it is judged in step 20 3 that this representative post-package test item is not related to the package, this method will start from other related processes to perform the weight distribution (as shown in Figure 3), such as online quality testing or sample testing. Step 203 judges this representative post-package test item and the packaging process two, and then proceeds to step 204, which is based on representative 'packages, personnel, and several batches of products are divided into at least one first qualified product group And a Ϊ: Α does not top the qualified product group. For example, t, this step is to analyze and compare each batch of production: (such as whether the value of the parameter (disqualification rate) of 2 2 is greater than the preset rule of item A 〇U / o}; otherwise, this batch of products is classified as group A (Products in the first qualified product group j include, for example, batch numbers 1, 2, 3, 4, and 5 (as in No. 5, if so, this batch of products is classified as group B (the first unqualified product ... for example Including the batch number is used to calculate the "probability that all products in this product will pass through the multiple stations of this cover; in general, a two-line system includes several stations'" such as Ε 1, Ε 2, Ε 3 .... In addition, Ϊ1 封装 该等 of these packaging process stations ^ Ϊ⑽1ΓΪ⑽ In step 2 ° 9, use the common analysis method to find out the group 产 product. The probability of two k is 咼 in the group Α product passing probability Therefore, these Group B products obtained in step 209 have a high probability of passing through the machine.
第14頁 583406Page 583406
五、發明說明(8) 發明較佳實施例之封裝後測試參數分析方法所分析 能有問題之封裝機台。 /另外,請參照圖3所示,當步驟2 0 3判斷具代表性之封 裝後測試項目與封裝製程站別不相關時,接著會進行步驟 3^1、,其係依據具代表性之封裝後測試項目將數批產品區 分為一第二合格產品組及第二不合格產品組。在本實施例 中’,本步驟係分析比較每批產品之A項目的參數值(不合 格率)是否大於A項目之預設規格(如2〇% ),若否則將"此 批產品歸類於第二合格產品組;若是則將此批產品歸類於 第二不合格產品組。 接著’步驟3 0 2係自資料庫中分別搜尋第一八格產。 組及第二不合格產品組中,與A項目(具= : = ; 測试項目)相關之線上品質檢測項目或樣品測試項目及其 參數,。在本實施例中,本步驟係選出與A項目相關的一 線上品質檢測項目(如步驟3 0 3所示)。 然後,步驟3 0 4及步驟3 0 5係以統計方式分析第二不合 才。產。口,、且之搜哥結果與第一合格產品組之搜尋結果是否有 差異在本貫施例中,步驟3 0 4係先分析步驟3 〇 3所搜尋到 之線上品質檢測項目的參數值,以計算出其平均數 (mean)及變異數(variance);然後步驟3〇5比較第二V. Description of the invention (8) A packaging machine which can be analyzed by the analysis method of the post-package test parameter analysis method of the preferred embodiment of the invention. / In addition, please refer to FIG. 3, when it is judged in step 203 that the representative post-package test items are not related to the packaging process station type, then step 3 ^ 1 is performed, which is based on the representative package The post-test project divided several batches of products into a second qualified product group and a second unqualified product group. In this embodiment, 'this step is to analyze and compare whether the parameter value (disqualification rate) of item A of each batch of products is greater than the preset specification of item A (such as 20%). If otherwise, " Classified in the second qualified product group; if so, this batch of products is classified in the second unqualified product group. Then 'step 3 2 2 searches the database for the first eight cells. In the group and the second unqualified product group, the online quality inspection items or sample test items and their parameters related to item A (with =: =; test items). In this embodiment, this step is to select an online quality detection item related to item A (as shown in step 303). Then, steps 304 and 305 are used to statistically analyze the second incompetence. Production. Is there a difference between the search results of the search results of the first qualified product group and the search results of the first qualified product group? In the present embodiment, step 3 0 4 is the first analysis of the parameter values of the online quality inspection items searched at step 3 3. To calculate its mean and variation; then step 30 compares the second
第15頁 583406P. 15 583406
五、發明說明(9) 不合格產品組之線上品曾从 嚷一入紙备〇々h 檢測參數值的平均數及變異數與 :一格產α口組之線上品質檢測參數 數,以判斷出二者之間是否古圼s J双汉文兵 ^ ,¾ - ^ s ^疋否有差異。右步驟3 0 5之判斷結 语…、一者…、差異時,則表示造成A項目不合格率過高的 原因並非為步驟3 0 2所選出之绫上σ皙於、目s ( 的 π 一、 丨疋Ώ <踝上。口質檢測項目(如步驟 Λ不Λ ^此時便停止分析;若步驟305之判斷結果顯示 :者有差異日守,則表示造成Α項目不合格率過高的原因與 =驟302所選出之線上品質檢測項目(如步驟3〇3所示)可 此相關,於是便接著進行步驟3 〇 6。 .在步驟3 0 6〜31i中,主要是要分析出造成線上品質檢 測項目出問題的原因為何,並設法提供修正線上品質檢測 項目之管制標準(control spec)的方法。 在步驟3 0 6中,依據依據步驟3 0 2所選出之線上品質檢 測項目(如步驟3 0 3所示)之預設規格,以統計方式計算 出第一不合格產品組之不合規格(out of spec)部分與 第二合格產品組之不合規格部分的數量,及二者分別佔第 二不合格產品組與第二合格產品組之產品批數的比例。在 本實施例中,線上品質檢測項目之預設規格為一定範圍, 其具有一預設規格上限(UP spec limit)及一預設規格 下限(low spec limit)。因此,本步驟係計算出第二不V. Description of the invention (9) The online products of the unqualified product group have been prepared from the first paper and the average number and variation number of the detection parameter values are: Find out whether there is a difference between the ancient 圼 s J double Han literate soldiers ^, ¾-^ s ^ 疋. The judgment conclusion of the right step 3 0 5 ..., one ... difference, it means that the cause of the unacceptable rate of the A item is not too high. I. 丨 疋 Ώ & on the ankle. Mouth testing items (such as step Λ not Λ ^ analysis will be stopped at this time; if the result of step 305 shows that there is a difference between the day guards, it means that the A rate of the project failed. The reason for the high value is related to the online quality inspection item selected in step 302 (as shown in step 3003), so the next step is step 3 06. In steps 3 06 to 31i, the main analysis is Find out what caused the problem with the online quality inspection project, and try to provide a method to modify the control spec of the online quality inspection project. In step 3 06, according to the online quality inspection project selected according to step 3 2 (As shown in step 303), the number of out of spec parts of the first unqualified product group and the out of spec parts of the second qualified product group are calculated statistically, and both The second unqualified product The ratio of the number of product batches of the group to the second qualified product group. In this embodiment, the preset specifications of the online quality testing items are a certain range, which has a preset spec upper limit (UP spec limit) and a preset spec lower limit. (Low spec limit). Therefore, this step is to calculate the second
583406583406
五、發明說明(ίο) 合格產品組中超過預設規格上限之產品批數佔第二不合格 產品組之總產品批數的比例p a L,與第二合格產品組中超 過預設規格上限之產品批數佔第二合格產品組之總產:品批 數的比例PaH ;另外,本步驟亦計算出第二不合格產品組 中低於預設規格下限之產品批數佔第二不合格產品組之總 產品批數的比例PbL,與第二合格產品組中低於預設規格 下限之產品批數佔第二合格產品組之總產品批數的比例V. Description of the Invention (ίο) The ratio of the number of batches of products in the qualified product group exceeding the preset specification limit to the total number of product batches in the second unqualified product group pa L, and the ratio of the second qualified product group exceeding the preset specification limit The number of product batches in the total production of the second qualified product group: the proportion of product batches PaH; In addition, this step also calculates that the number of product batches in the second unqualified product group that is lower than the lower limit of the preset specification accounts for the second unqualified product The ratio of the total number of product batches in the group, PbL, to the ratio of the number of product batches in the second qualified product group below the preset lower limit to the total number of product batches in the second qualified product group.
PbH。 接著,步驟307係分別比較PaL與PaH、及PbL與PbH, 以便判斷在第二合格產品組及第二不合格產品組中超過預 設規格上限的部分及低於預設規格下限的部分是否有差 異。若步驟30 7判斷之結果為有差異時,進行步驟3〇8,其 係判斷造成具代表性之封裝後測試參數值(扼殺封裝後測 試項目之參數值)過高的原因是由步驟3 0 2所搜尋到之線 上品質檢測項目(如步驟3 0 3所示)的測試結果偏移所造 成。在本貫施例中’步驟308可以利用一CDF圖輸出步驟 3 0 2所搜尋到之線上品質檢測項目(如步驟3 〇 3所示)的測 試結果,因此,工程師可以參考此CDF圖來校準修正線上 品質檢測之規格資料。 另外,若步驟3 0 7判斷之結果為無差異時,進行步驟PbH. Next, step 307 compares PaL and PaH, and PbL and PbH, respectively, in order to determine whether there is a portion in the second qualified product group and a second unqualified product group that exceeds the upper limit of the preset specification and a portion that is lower than the lower limit of the preset specification. difference. If there is a difference in the result of step 30 7 judgment, proceed to step 3 08, which is judged to cause the representative post-package test parameter value (the parameter value that stifles the post-package test item) is too high. 2 The deviation of the test results of the online quality inspection items (as shown in step 303) found. In the present embodiment, step 308 can use a CDF chart to output the test results of the online quality detection items (shown in step 3 03) searched in step 3 02. Therefore, the engineer can refer to the CDF chart to calibrate Correct the specifications of online quality inspection. In addition, if the result of the judgment in step 3 7 is no difference, go to step
第17頁 583406 五、發明說明(11) 3 0 9,其係依據一縮小規格(n a r r 〇 w e d s p e c )以統計方式 分析第二不合格產品組之不合縮小規格(ou t 〇 f n a r r o w e d s p e c )部分與該第二合格產品組之不合縮小規 格部分的數量,及二者分別佔第二不合格產品組與第二人 格產品組之產品批數的比例。在本實施例中,線上品質^ 測項目之縮小規格為一定範圍,其具有一縮小規格上限双 (up narrowed spec limit)及一縮小規格下限(1〇w narrowed spec 1 i mi t )。需注意者,上述之預設規格之 範圍通常為此線上品質檢測製程之標準差的六倍,而縮小 規格上限與預設規格上限相差一倍之標準差,縮小規格下 限與預設規格上限相差一倍之標準差,所以縮小規格之範 圍通常為此標準差的四倍。 因此’步驟3 0 9係計算出第二不合格產品組中超過縮 小規格上限之產品批數佔第二不合格產品組之總產品批數 的比例PaL’ ,與第二合格產品組中超過縮小規格上限之產 品批數佔第二合格產品組之總產品批數的比例paH,;另 外,本步驟亦计异出第二不合格產品組中低於縮小規袼下 限之產品批數佔第二不合格產品組之總產品批數的比例 PbL* _與第一合格產品組中低於縮小規格下限之產品批數 佔第二合格產品組之總產品批數的比例PM,。Page 583406 5. Description of the invention (11) 3 0 9 is a statistical analysis of the second unqualified product group (ou t 〇fnarrowedspec) and the first The number of non-conforming product groups of the second qualified product group is reduced, and the proportion of the two is the product batches of the second unqualified product group and the second personality product group. In this embodiment, the reduced specification of the online quality measurement item is a certain range, which has an up narrowed spec limit and a reduced specification lower limit (10 w narrowed spec 1 imit). It should be noted that the range of the above-mentioned preset specifications is usually six times the standard deviation of the online quality inspection process, while reducing the standard deviation of the difference between the upper limit of the specification and the upper limit of the preset specification by one, and reducing the difference between the lower limit of the specification and the upper limit of the preset specification Double the standard deviation, so narrowing down the range of the specification is usually four times this standard deviation. Therefore, 'Step 3 0 9 calculates the ratio of the number of product batches in the second unqualified product group that exceeds the upper limit of the reduced specification to the total number of product batches in the second unqualified product group, PaL', and exceeds the reduction in the second qualified product group. The ratio of the number of product batches with the upper specification limit to the total product batches of the second qualified product group paH; In addition, this step also counts the number of product batches that are lower than the lower limit of the reduced specification in the second unqualified product group, accounting for the second Proportion of the total product batches of the non-conforming product group PbL * _The ratio of the number of product batches below the lower specification limit in the first qualified product group to the total product batches of the second qualified product group.
583406 發明說明(12) 接著,步驟3 1 〇從八, 削,,以便判斷i第係分別比較PaL,與PaH’、及pbL,與 超過縮小規格上限的:合格產品組及第二不合格產品組中 有差異。若步驟3〇 7、丄分及低於縮小規格下限的部分:是否 項目不合格率過言:列斷之結果為無差異時,則表示造成A 質檢測項目(如=、原因並非為步驟3 0 2所選出之線上品 驟310判斷之社果^驟303所示),此時便停止分析;若步 成具代表性之封#有差異時,進行步驟311,其係判斷造 參數值)過高的、後測試參數值(扼殺封裝後測試項目之 測項目(如$驟原因是由步驟3 02所搜尋到之線上品質檢 實施例中,二碰0 3所示)的測試結果偏移所造成。在本 尋到之飧μ 口挤1亦可以利用一CDF圖輸出步驟3 0 2所搜 果,因此,工1知’則項目(如步驟3 0 3所示)的測試結 檢測之規格i ί師可以參考此CDF圖來校準修正線上品質 另外,在本I ΒΒ > σ , 尋到的I、θ \明之另一較佳實施例中,步驟3 0 2所搜 3 11中, 八 豫品測試項目,此時,在上述步驟3 0 3〜 試項目(所@分析比較者即從線上品質檢測項目改為樣品測 師以於1圖中未顯示),其分析結果同樣能夠提供給工程 t率修正樣品測試之規格資料。 、、、示上所述,+ 由於依本發明之封裝後測試參數分析方法583406 Description of the invention (12) Next, step 3 1 〇 from the eight, cut, in order to determine the i-th series respectively PaL, and PaH ', and pbL, and those that exceed the upper limit of the reduced specifications: qualified product group and the second unqualified product There are differences in the group. If step 307, points, and the part below the lower limit of the reduced specification: whether the project failure rate is too large: if the result of the judgment is no difference, it means that the quality inspection item A is caused (eg, the reason is not step 3 0) 2 The selected online product is judged by the social fruit in step 310 (shown in step 303), and the analysis is stopped at this time; if there is a difference in the representative seal #, step 311 is performed, which determines the value of the parameter). The test results of high, post-test parameter values (kill the test items of the post-package test items (as shown in the example of online quality inspection in step 3 02, as shown in step 2 02) are offset by the test results. Cause: In this case, we can also use a CDF chart to output the results of step 302. Therefore, the worker knows the specifications of the test knot detection of the item (as shown in step 303). i ί can refer to this CDF chart to calibrate and correct the online quality. In addition, in this preferred embodiment of I Β > σ, I, θ \ Ming found, step 3 2 2 3 3 11 8 Yupin test items, at this time, in the above steps 3 0 3 ~ the test items (all @analytic comparators ie The online quality testing project was changed to the sample tester (not shown in Figure 1), and the analysis results can also provide the specification data of the engineering t-rate correction sample test. The above-mentioned, because of the package according to the present invention Post-test parameter analysis method
第19頁 583406 五、發明說明(13)Page 19 583406 V. Description of the invention (13)
:系以較佳之數批產品為對照,板,並以共通性 能有問題之封裳機台,或是以統計分析手法來 2差之產品的線上品質檢測或樣品測試資料,所以处二 半導體產品的封裝後測試資料發生異 化^在 判斷出是哪一個環節出問題,&、’、速且正確地 題的製程站別,進而找出異常之^ ^ i,地判斷出有問 結果來修正線上品質檢測或 二能夠依據分析的 夠有效地減少人為判斷的錯誤=二管制標準,所以能 產成本、並及時改善線上/问4程的效率、減少 以上所述僅為舉例性,而1形以提高良率。 本發明之精神與範疇,❿對I:為:制性者。任何未脫離 應包含於後附之申請專利範圍中。丁之等效修改或變更,均: It is based on better batches of products as a control, board, and a common sealer with problematic performance, or online quality inspection or sample test data of 2 poor products using statistical analysis methods, so it is the second semiconductor product. Alienation of the test data after encapsulation ^ In determining which link is the problem, &, ', quickly and correctly answer the process station, and then find the abnormal ^ ^ i, and determine the results to correct Online quality inspection or analysis can effectively reduce human judgment errors according to analysis = two control standards, so the production cost and timely improvement of the efficiency of the online / question process, and the reduction of the above is only exemplary, and the 1 form To improve yield. The spirit and scope of the present invention are: Any departure shall be included in the scope of the attached patent application. Ding's equivalent modification or change, both
第20頁 583406 圖式簡單說明 (五)、【圖式簡單說明】 圖1為一流程圖,顯示習知封裝後測試參數分析方法 的流程, 圖2為一流程圖,顯示依本發明較佳實施例之封裝後 測試參數分析方法的流程;以及 圖3為一流程圖,顯示延續圖3所示之流程圖的流程。 元件符號說明: 101-104 習知封裝後測試參數分析方法的流程 201- 2 0 9 本發明較佳實施例之封裝後測試參數分析方法 的流程 301〜311 延續步驟2 0 3之流程Page 583406 Brief description of the drawings (five), [Simplified description of the drawings] Fig. 1 is a flowchart showing a conventional method for analyzing test parameters after packaging, and Fig. 2 is a flowchart showing a preferred method according to the present invention. The flow of the post-package test parameter analysis method of the embodiment; and FIG. 3 is a flowchart showing a flow continuing the flowchart shown in FIG. 3. Description of component symbols: 101-104 The flow of the analysis method of the test parameter analysis after packaging 201- 2 0 9 The flow of the analysis method of the test parameter analysis after packaging in the preferred embodiment of the present invention 301 ~ 311 Continue the flow of step 203
第21頁Page 21
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW091138168A TW583406B (en) | 2002-12-31 | 2002-12-31 | Method for analyzing final test parameters |
US10/604,979 US6898539B2 (en) | 2002-12-31 | 2003-08-29 | Method for analyzing final test parameters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW091138168A TW583406B (en) | 2002-12-31 | 2002-12-31 | Method for analyzing final test parameters |
Publications (2)
Publication Number | Publication Date |
---|---|
TW583406B true TW583406B (en) | 2004-04-11 |
TW200411197A TW200411197A (en) | 2004-07-01 |
Family
ID=32710134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW091138168A TW583406B (en) | 2002-12-31 | 2002-12-31 | Method for analyzing final test parameters |
Country Status (2)
Country | Link |
---|---|
US (1) | US6898539B2 (en) |
TW (1) | TW583406B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7254513B2 (en) | 2004-09-22 | 2007-08-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Fault detection and classification (FDC) specification management apparatus and method thereof |
CN117276120A (en) * | 2023-08-30 | 2023-12-22 | 中国电力科学研究院有限公司 | Differentiated chip intelligent packaging system based on credit-wound environment |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6968280B2 (en) * | 2003-03-24 | 2005-11-22 | Powerchip Semiconductor Corp. | Method for analyzing wafer test parameters |
US6999897B2 (en) * | 2004-03-11 | 2006-02-14 | Powerchip Semiconductor Corp. | Method and related system for semiconductor equipment early warning management |
WO2011034674A2 (en) | 2009-09-18 | 2011-03-24 | National Beef Packing Company, Llc | Antimicrobial packaging system |
US9229446B2 (en) * | 2012-05-08 | 2016-01-05 | International Business Machines Corporation | Production line quality processes |
JP5956094B1 (en) * | 2015-03-10 | 2016-07-20 | 三菱化学エンジニアリング株式会社 | Manufacturing process analysis method |
JP2016177324A (en) * | 2015-03-18 | 2016-10-06 | 株式会社リコー | Information processing apparatus, information processing system, information processing method, and program |
CN110147935B (en) * | 2019-04-18 | 2022-07-05 | 红云红河烟草(集团)有限责任公司 | Method for establishing quality comprehensive decision model of tobacco wrapping workshop |
CN114935703B (en) * | 2022-07-26 | 2022-11-29 | 成都市克莱微波科技有限公司 | Automatic testing method, device and system for frequency conversion assembly |
CN117130844B (en) * | 2023-10-27 | 2024-03-12 | 四川华鲲振宇智能科技有限责任公司 | Hard disk testing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100216066B1 (en) * | 1997-05-20 | 1999-08-16 | 윤종용 | Control system and control method for ic test process |
TW569373B (en) * | 2002-12-31 | 2004-01-01 | Powerchip Semiconductor Corp | Method for analyzing defect inspection parameters |
-
2002
- 2002-12-31 TW TW091138168A patent/TW583406B/en not_active IP Right Cessation
-
2003
- 2003-08-29 US US10/604,979 patent/US6898539B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7254513B2 (en) | 2004-09-22 | 2007-08-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Fault detection and classification (FDC) specification management apparatus and method thereof |
CN117276120A (en) * | 2023-08-30 | 2023-12-22 | 中国电力科学研究院有限公司 | Differentiated chip intelligent packaging system based on credit-wound environment |
Also Published As
Publication number | Publication date |
---|---|
TW200411197A (en) | 2004-07-01 |
US20040138856A1 (en) | 2004-07-15 |
US6898539B2 (en) | 2005-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW583406B (en) | Method for analyzing final test parameters | |
JP5080526B2 (en) | Method and apparatus for data analysis | |
US6701204B1 (en) | System and method for finding defective tools in a semiconductor fabrication facility | |
US7386420B2 (en) | Data analysis method for integrated circuit process and semiconductor process | |
US20030208286A1 (en) | Method for analyzing manufacturing data | |
TW201513249A (en) | Inspection system, inspection method, and readable recording medium | |
US7991497B2 (en) | Method and system for defect detection in manufacturing integrated circuits | |
TW200411508A (en) | Method for analyzing in-line QC parameters | |
US10656204B2 (en) | Failure detection for wire bonding in semiconductors | |
TW200411801A (en) | Method for analyzing defect inspection parameters | |
US6792386B2 (en) | Method and system for statistical comparison of a plurality of testers | |
TW201627877A (en) | Method for calculating yield loss of test pattern of wafer | |
US20070276623A1 (en) | Semiconductor Component Test Process and a System for Testing Semiconductor Components | |
CN112147557A (en) | Method for testing repeatability and reproducibility | |
KR102367597B1 (en) | AI based Manufacturing quality inspection system | |
CN1285110C (en) | After-package test parametric analysis method | |
US7822567B2 (en) | Method and apparatus for implementing scaled device tests | |
CN115189219A (en) | Method for obtaining optimal aging condition of edge-emitting laser chip and method for screening chip by adopting condition | |
TWI234217B (en) | Method for analyzing wafer test parameters | |
US20030069706A1 (en) | Latent defect classification system | |
WO2022052696A1 (en) | Up-to-standard checking method and up-to-standard checking system for added detection tool | |
JP2003037143A (en) | System, method and program for analyzing cause of fault, method for manufacturing industrial product | |
CN114416514B (en) | Automatic checking and verifying method and system based on test packaging Mapping | |
US11994837B2 (en) | Acceptability check method and check system for newly-added production tools | |
CN118655443A (en) | Wafer test classification method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |