TW565876B - Method for fabricating recessed source/drain junction of a semiconductor device - Google Patents

Method for fabricating recessed source/drain junction of a semiconductor device Download PDF

Info

Publication number
TW565876B
TW565876B TW91115385A TW91115385A TW565876B TW 565876 B TW565876 B TW 565876B TW 91115385 A TW91115385 A TW 91115385A TW 91115385 A TW91115385 A TW 91115385A TW 565876 B TW565876 B TW 565876B
Authority
TW
Taiwan
Prior art keywords
forming
source
drain
patent application
semiconductor device
Prior art date
Application number
TW91115385A
Other languages
Chinese (zh)
Inventor
Kent Kuo-Hua Chang
Weng-Hsing Huang
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW91115385A priority Critical patent/TW565876B/en
Application granted granted Critical
Publication of TW565876B publication Critical patent/TW565876B/en

Links

Abstract

A method for fabricating a recessed source/drain junction of a semiconductor device is described. A substrate is provided. A gate structure is formed on the substrate, wherein a cap layer is formed on a top of the gate structure. A spacer is formed on the sidewall of the gate structure. Using the cap layer and the spacer as an etching mask, an opening is formed in the substrate beside the side of the spacer. A selective thin film is then formed in the opening as the source/drain region.

Description

565876 五、發明說明(1) 本發明是有關於一種半導體元件的製造方法,且特別 是有關於一種形成凹陷式源極/汲極接面(R e c e s s e d Source/Drain Junction)之半導體元件的方法。 金氧半導體元件(MOS )除了具備閘氧化層以及閘極結 構之外,在閘極結構兩旁的基底中更包括具備有電性與矽 基底相反的半導體區’其稱為源極/没極。在超大型積體 電路(VLSI )的領域裡,金氧半導體元件的應用相當廣泛, 舉凡邏輯電路以及記憶體元件等等,金氧半導體元件都是 不可或缺的一種半導體元件。 第1A圖至弟1C圖所示,其繪示為習知一種半導體元件 的製造流程剖面示意圖。 請參照第1 A圖,首先提供一基底丨〇 〇,接著再於基底 1 0 0上形成一薄氧化層1 〇 2以及一多晶矽層丨〇 4。 繼之,請參照第1 B圖,圖案化多晶矽層丨〇 4以及薄氧 化層1 0 2以形成一閘極導電層1 〇 4 a以及一閘氧化層1 〇 2 a。 之後,以閘極導電層1 〇4a為一植入罩幕進行一離子植入步 驟’以在閘極導電層l〇4a兩側之基底丨00中形成一輕摻雜 汲極區(LDD) 1 08。 之後’請參照第1 C圖,在閘極導電層1 0 “之兩側形成 一間隙壁110。接著,以間隙壁u〇為一離子植入罩幕進行 一離子植入步驟,以在間隙壁11〇兩側之基底1〇〇中形成一 源極/汲極區112。之後,於閘極導電層1〇“之表面以及源 ,/汲極11 2上方之基底丨00表面形成一金屬矽化物層丨丨4, 藉以降低閘極導電層1 〇4a與源極/汲極區丨丨2之電阻值。565876 V. Description of the invention (1) The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for forming a semiconductor device with a recessed source / drain junction (R e c s s e d Source / Drain Junction). In addition to the metal oxide semiconductor device (MOS) having a gate oxide layer and a gate structure, the substrate on both sides of the gate structure further includes a semiconductor region having electrical properties opposite to the silicon substrate. In the field of very large scale integrated circuits (VLSI), metal-oxide-semiconductor devices are widely used. For example, logic circuits, memory devices, and the like, metal-oxide semiconductor devices are indispensable semiconductor devices. Figures 1A to 1C are schematic cross-sectional views showing the manufacturing process of a conventional semiconductor device. Referring to FIG. 1A, a substrate is first provided, and then a thin oxide layer 102 and a polycrystalline silicon layer are formed on the substrate 100. Next, referring to FIG. 1B, the polycrystalline silicon layer 04 and the thin oxide layer 102 are patterned to form a gate conductive layer 104a and a gate oxide layer 102a. After that, an ion implantation step is performed using the gate conductive layer 104a as an implant mask to form a lightly doped drain region (LDD) in the substrate 丨 00 on both sides of the gate conductive layer 104a. 1 08. After that, please refer to FIG. 1C, a gap wall 110 is formed on both sides of the gate conductive layer 10 ". Then, an ion implantation step is performed using the gap wall u0 as an ion implantation mask to A source / drain region 112 is formed in the substrate 100 on both sides of the wall 110. Then, a metal is formed on the surface of the gate conductive layer 10 "and the source, and the surface of the substrate above the drain 12 12 The silicide layer 4 reduces the resistance values of the gate conductive layer 104a and the source / drain regions 2 and 3.

9166twf.ptd 第5頁 565876 五、發明說明(2) 然而’當元件之尺寸隨著積體電路積集度之提高而逐 漸縮小之後,半導體元件之源極/汲極的尺寸亦必須隨之 縮小。然而,源極/汲極尺寸的縮小會造成其阻值之上 升,使得元件之電流變小而導致過高的負載(Qver Loading)。倘若利用增加源極/汲極的接面深度(Juncti〇n Depth),以解決源極/汲極阻值提高之問題,不但會衍生 短通道效應(Short Channel Effect),還容易產生曰接面漏 電(Junction Leakage)等問題。倘若是利用高濃度之摻雜 來製作淺接面的源極/汲極,以避免因接面過深而引起的 短通道效應以及接面漏電等問題,則又會因固態溶解度之 ,制,而無法克服源極/汲極負載過高的問題。此外,&在 習知方法中,更有利用縮小間隙壁並形成淺接面之源極/ f極的方式以解決短通道效應,但是此種方法卻容易使 j面源極/汲極上之金屬矽化物層產生無法接受的接面漏 因此,本發明的目的就是在提供一 /值及極接面之半導體元件的方法,以降低源極 == 接面= : = ΐ提供一種形成凹陷式源極"及極 淺,的方法’以使源極"及極之接面能作 免產生短通道效應及接面漏電等問題。 元件的式源極/汲極接面之半導體 閘極結構,苴/中門 ,、基底,接著在基底上形成一 其中閘極結構之頂部係形成有一氧化矽頂蓋 9)66twi .plc] 565876 五、發明說明(3) \之後在閘極結構之側壁形成一間隙壁,並且利用氧化 ^ 了f蓋層以及間隙壁為一蝕刻罩幕,以在間隙壁兩側之基 一形成▲開口。接著,在淺開口中形成一矽化鍺層 h-xGex)以作為一淺接面源極/汲極。其中,形成矽化鍺 曰之方法係利用一快速熱製裎化學氣相沉積法(RTCVD), ^1快速熱製程化學氣相沉積法中所使用之一反應氣體係 :i2H6/GeH4之混合氣體或SiH2Cl2/GeH4之混合氣體。本 =更包括於形成石夕化錯層之過程中加入W,如此,在 =成f化鍺時可同時達到活化♦化鍺層之目的,後續便可 乂1去矽化鍺層之雜質回火活化之步驟。之後,本發明更 U矽化鍺源極/汲極上形成一金屬矽化物層,藉以降 =/J及極之電阻值。除此之外,本發明亦可以先將閘 /、及:卜了上之頂蓋層移除之後,#同時於閘極結構與源極 //及極上形成金屬矽化物層。 一本發明提出一種形成凹陷式源極/汲極接面 二::法’其係首先提供-基底,接著在基底上形成-用p/rJ冓。之後在閘極結構之側壁形成一間隙壁,並且利 壁广餘刻單幕,以在間隙壁兩侧之基底中= 二移二I”步驟中, 作在淺開°中形成—石夕化錯層⑻心)以 成此石夕化鍺極,同時在閘極結構之頂部也會形 埶制々务與:。中,形成矽化鍺層之方法係利用一快速 …、衣私化予軋相沉積法(RTCVD),且於快速熱 、々逮 相沉積法中所使用之-反應氣體係為Si2H6/GeH4 1 565876 五、發明說明(4) 體或3丨1^(:12/66114之混合氣體。 鍺層之過程中加入b2 h6,如此,'明更包括於形成矽化 到活化矽化鍺層之目的,後嘖形成矽化鍺時可同時達 回火活化之步⑳。之後,本二:以省去矽化鍺層之雜質 極之表面以及形成於閘極結i f包括於矽化鍺源極/汲 -金屬石夕化物I,藉以降低…化鍺層之表面形成 几仵之電阻值。 本發明之形成凹陷式源炻/ 方φAa ^ 及極接面之半導體元件的 万法,由於其係以具有較佳蘧 ^ ^ ^ ^ X ^ ^ 導電性之矽化鍺材質取代習知 以離子植入法所形成之源極/ ^ ^ ^ ^ 々從7/及極區,因此可有效降低源 極/汲極之電阻值。 本發明之形成凹陷式源極/汲極接面之半導體元件之 ^法,由於以矽化鍺材質所形成之源極/汲極其接面可以 淺,因此可避免短通道效應以及接面漏電等問題。 本發明之形成凹陷式源極/汲極接面之半導體元件之 方法,可有效提高源極/汲極接面之可靠度,進而提高整 個元件之可靠度。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂’下文特舉一較佳實施例,並配合所附圖式,作詳 細說明如下: 圖式之標示說明: 100、200 :基底 1 0 2、2 0 2 :薄氧化層 1 0 4、2 0 4 ·•多晶石夕層 102a、202a :閘氧化層9166twf.ptd Page 5 565876 V. Description of the Invention (2) However, when the size of the device gradually decreases with the increase of the integration degree of the integrated circuit, the size of the source / drain of the semiconductor device must also be reduced accordingly. . However, the reduction of the source / drain size will cause its resistance to rise, which will reduce the component current and cause excessive load (Qver Loading). If the junction depth of the source / drain is increased (Junction Depth) to solve the problem of increasing the source / drain resistance, not only the short channel effect (Short Channel Effect) will be derived, but also the junction will be easily generated. Leakage (Junction Leakage) and other issues. If the source / drain of the shallow junction is made by using a high concentration of doping to avoid problems such as short channel effects and junction leakage caused by the junction being too deep, then it will be produced due to the solubility of the solid state. It cannot overcome the problem of excessive source / drain load. In addition, in the conventional method, the method of reducing the gap wall and forming a shallow junction source / f pole is more used to solve the short channel effect, but this method is easy to make the j-plane source / drain on the Metal silicide layer produces unacceptable junction leakage. Therefore, the object of the present invention is to provide a method for semiconductor devices with a junction and junction to reduce the source == junction = = = ΐ to provide a recessed formation Source " and extremely shallow, 'so that the junction of the source " and the pole can avoid problems such as short-channel effects and junction leakage. Element-type source / drain junction semiconductor gate structure, 苴 / middle gate, substrate, and then a silicon oxide cap is formed on the top of the gate structure. 9) 66twi.plc] 565876 V. Description of the invention (3) Afterwards, a gap wall is formed on the side wall of the gate structure, and the f cap layer is oxidized and the gap wall is an etching mask to form a ▲ opening on the base of both sides of the gap wall. Next, a germanium silicide layer (h-xGex) is formed in the shallow opening to serve as a shallow junction source / drain. Among them, the method for forming germanium silicide is to use a rapid thermal rhenium chemical vapor deposition method (RTCVD), a reaction gas system used in ^ 1 rapid thermal process chemical vapor deposition method: i2H6 / GeH4 mixed gas or SiH2Cl2 / GeH4 mixed gas. This = also includes adding W in the process of forming a staggered layer of lithium, so that the purpose of activating the germanium layer can be achieved at the same time when germanium is formed, and the impurities of the germanium silicide layer can be subsequently tempered. Steps of activation. After that, the present invention forms a metal silicide layer on the germanium silicide source / drain, so as to reduce the resistance value of / J and the electrode. In addition, the present invention can also first remove the gate and, after the cap layer is removed, a metal silicide layer is formed on the gate structure and the source // and the electrode at the same time. First, the present invention proposes a method for forming a recessed source / drain junction. The 2 :: method is firstly provided-a substrate, and then formed on the substrate-using p / rJ 冓. After that, a gap wall is formed on the side wall of the gate structure, and Libi is wide-screened to form a single screen in the base on both sides of the gap wall = two shifts two I "step, formed in shallow opening °-Shi Xihua Staggered layer) In order to form this silicon oxide germanium electrode, at the same time, on the top of the gate structure, the manufacturing process and:... The method of forming the germanium silicide layer is to use a rapid ... Phase deposition method (RTCVD), and used in the rapid thermal, trapped phase deposition method-the reaction gas system is Si2H6 / GeH4 1 565876 V. Description of the invention (4) Bulk or 3 丨 1 ^ (: 12/66114 of Mixed gas. Add b2 h6 in the process of germanium layer. In this way, 'Ming also includes the purpose of forming silicidation to activate germanium silicide layer, and the subsequent step of tempering activation can be achieved at the same time when germanium silicide is formed. Then, this second: In order to eliminate the surface of the impurity electrode of the germanium silicide layer and the gate junction formed if is included in the germanium silicide source / drain-metal fossil compound I, thereby reducing the resistance value of the surface of the germanium silicide layer by several millimeters. A method for forming a recessed source / square φAa ^ and a semiconductor device with a pole junction, because of its Replace the conventional source formed by the ion implantation method with a material with better conductivity ^ ^ ^ ^ X ^ ^ ^ ^ ^ ^ X ^ ^ from 7 / and the polar region, so it can effectively reduce the source / Drain resistance value. According to the method for forming a semiconductor device with a recessed source / drain junction in the present invention, the source / drain junction formed with germanium silicide can be shallow, so short channels can be avoided. Effect, and leakage at the interface. The method for forming a semiconductor device with a recessed source / drain interface can effectively improve the reliability of the source / drain interface, thereby improving the reliability of the entire component. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below, and in conjunction with the accompanying drawings, the detailed description is as follows: Symbols of the drawings: 100, 200: Substrate 1 0 2, 2 0 2: thin oxide layer 104, 2 0 4 • polycrystalline stone layer 102a, 202a: gate oxide layer

565876 五、發明說明(5) -〜--^ 1 04a、204a ··閘極導電層 1 0 8 ·輕·推雜〉及極區 1 1 0、2 0 8 :間隙壁 I 1 2 :源極/汲極區 II 4、2 1 4 :金屬矽化物層 206 :介電層 206a :頂蓋層 210 ··開口 212、212a :選擇性薄膜 第一實施例 第2A圖至第2G圖,其繪示為依照本發明一較佳 之形成凹陷式源極/汲極接面之半導體元件之流程貝 意圖。 w ®不 川9請一參二第2A圖’首先在一基底200上形成一薄氧化屛 202、一導電層2〇4以及一介電層2〇6。其中,導電層2日 材貝例如是多晶矽或是其他適用於作為閘極導電層之之 質’而介電層206之材質例如是TEOS。 之後,請參照第2B圖,以一微影蝕刻製程圖案 層206、導電層204以及薄氧化層2〇2,以形成一頂蓋層1 、 2〇6a、一閘極導電層2〇4a以及一閘氧化層2〇2&, 日 閘極結構。 傅成一 然後’請參照第2 c圖,在閘極結構之側壁形成一門 壁208。纟中,間隙壁2〇8係以一低壓化學氣相沉積法曰承 (LPCVD)以及一非等向蝕刻製程所形成,意即形成間隙壁565876 V. Description of the invention (5)-~-^ 1 04a, 204a · · Gate conductive layer 1 0 · Light · Dopant> and pole region 1 1 0, 2 0 8: Gap wall I 1 2: Source Electrode / Drain Region II 4, 2 1 4: Metal silicide layer 206: Dielectric layer 206a: Top cap layer 210 ... Openings 212, 212a: Selective thin film FIGS. 2A to 2G of the first embodiment, which A schematic diagram of a semiconductor device for forming a recessed source / drain junction according to the present invention is shown. w ® Buchuan 9 Please refer to FIG. 2A. First, a thin hafnium oxide 202, a conductive layer 204, and a dielectric layer 206 are formed on a substrate 200. Among them, the material of the conductive layer 2 is, for example, polycrystalline silicon or other materials suitable for use as a gate conductive layer ', and the material of the dielectric layer 206 is, for example, TEOS. Then, referring to FIG. 2B, a lithographic etching process is performed on the pattern layer 206, the conductive layer 204, and the thin oxide layer 202 to form a cap layer 1, 206a, a gate conductive layer 204a, and A gate oxide layer 202 &, a gate structure. Fu Chengyi Then, please refer to FIG. 2c, a gate wall 208 is formed on the side wall of the gate structure. In the middle, the partition wall 208 is formed by a low pressure chemical vapor deposition method (LPCVD) and an anisotropic etching process, which means the partition wall is formed.

9166twf.ptd 第9頁9166twf.ptd Page 9

565876 五、發明說明(6) 208之方法係首先於基底200上以低壓化學氣相沉積法形成 一共形介電層,覆蓋住頂蓋層2 0 6 a,之後再利用非等向蝕 刻製私回蝕刻此共形介電層,而形成間隙壁2 0 8。在此, 間隙壁208之材質例如是氮化矽或氧化矽。 接著’請參照第2 D圖,以頂蓋層2 〇 6 a以及間隙壁2 0 8 為一姓刻罩幕,圖案化間隙壁2 〇 8兩側之基底2 〇 〇而形成開 口 2 1 0。其、中,圖案化間隙壁2 〇 8兩側之基底以形成開口 2 1 0之方法例如是一非等向蝕刻製程,且此非等向蝕刻製 耘中所使用之一反應氣體例如是六氟化硫(SF 6 )。 之後,請參照第2 E圖,在開口 21 〇中形成一選擇性薄 膜212,以作為半導體元件之源極/汲極。換言之,此源極 /汲極2 1 2係利用於基底2 〇 〇中挖出開口 2丨〇,再於開口 2 j 〇 =積選擇性薄膜212而形成的。因此,此種源極/汲極 :僅二一Λ陷式源極/沒極。值得一提的h此選擇性薄 T僅::成在石夕材質上’而不會形成於氧化石夕等介電材質 你,囡士、壁撙从@ T破頁盍層2〇6a以及間隙壁208覆蓋 住,因此選擇性薄膜212僅會成長於開口21〇中。 (Si 選擇性薄膜212係為-石夕化錯層 (ο 12 u Θχ ) 而形成碎化錯層212夕古、、17丨》 « 化學氣相沉積法,且此快速熱製程化逮熱製程 應氣體例如是Si2H6/GeH4之混合氣體或二一反 合氣體。另外’以快速熱製程化學氣相沉積“ 混 層2 1 2之溫度例如是約攝氏5 〇 〇度,、/夕化鍺 Torr。 又且其壓力例如是1〜2〇 565876 五、發明說明(7) 由於本發明之矽化鍺層2〗2係以快速埶 :積法在低溫(約攝氏5〇〇度)之條件下形成、,因王此:戶 =之源極/〉及極接面之輪廓會呈現近幾完美的陡哺。/ 外,倘若於形成矽化鍺層212之過程中加入B2He, 化鍺層21 2時會同時使此矽化鍺層2丨2達到增進活化/ (Enhanced ACtivati〇n)之功效,如此,後續就不需再 灯石夕化鍺層212之雜質回火活化步驟。再纟,本發 以利用控制石夕化錯之鍺的濃度,藉以減少其能帶間隙 (Band Gap)進而降低源極/汲極電阻值。 在此,特別值得一提的是,由於矽化鍺之電阻值一 般半導體矽基底之電阻值更低,且如上所述,藉由調整矽 化鍺之鍺的濃度可減少其能帶間隙進而達到降低其電阻值 之目的。因此,本發明之源極/汲極之接面深度可以作 淺,以避免短通道效應以及接面漏電之問題。意即在形成 開口 210時便可將開口21〇之深度作淺,而後續於開口21〇 中形成石夕化錯層以作為源極/汲極之後,便可避免短通道 效應以及接面漏電之問題。 繼之’請參照第2F圖,在源極/汲極212上形成一金屬 矽化物層214,藉以再降低源極/汲極之電阻值。在本發明 中,倘若間隙壁2 0 8是使用氮化石夕材質,則可以先將頂蓋 層2 0 6 a移除之後,再同時於閘極導電層2 〇 4 a以及源極/汲 極212上形成一金屬矽化物層21 4(如第2G圖所示)。而形成 金屬矽化物層2 1 4之方法例如先於基底2 〇 〇上形成一金屬 層,之後再進行一熱製程,以使金屬層與矽反應而形成自 w 9166twf.ptd 第11頁 565876565876 V. Description of the invention (6) 208 The method is to first form a conformal dielectric layer on the substrate 200 by a low pressure chemical vapor deposition method to cover the capping layer 2 6 a, and then use non-isotropic etching to make the private layer. This conformal dielectric layer is etched back to form a spacer 208. Here, the material of the partition wall 208 is, for example, silicon nitride or silicon oxide. Next, please refer to FIG. 2D, the top cover layer 2 06a and the partition wall 2 0 8 are used as the mask, and the bases 2 on both sides of the partition wall 2 0 8 are patterned to form the opening 2 1 0 . Among them, the method of patterning the substrates on both sides of the spacer wall 08 to form the opening 2 10 is, for example, an anisotropic etching process, and one of the reaction gases used in this anisotropic etching process is, for example, six Sulfur fluoride (SF 6). After that, referring to FIG. 2E, a selective thin film 212 is formed in the opening 21o as a source / drain of the semiconductor device. In other words, the source / drain 2 12 is formed by digging out the opening 2 丨 0 in the substrate 2000, and then forming the selective film 212 in the opening 2 j 0. Therefore, this type of source / drain: only two Λ trapped source / non-polar. It is worth mentioning that this selective thin T is only :: formed on the material of Shi Xi ', and will not be formed on dielectric materials such as Shi Xixi. You, the niche from @ T 破 页 盍 层 2〇6a and The partition wall 208 is covered, so the selective film 212 will only grow in the opening 21o. (Si selective film 212 is-Shi Xihua staggered layer (ο 12 u Θχ) to form fragmented staggered layer 212, and 17 丨 "« chemical vapor deposition method, and this rapid thermal process The reaction gas is, for example, a mixed gas of Si2H6 / GeH4 or a two-reaction gas. In addition, the temperature of the mixed layer 2 1 2 is chemical vapor deposition by a rapid thermal process, and the temperature of the mixed layer 2 12 is, for example, about 500 degrees Celsius, and germanium Torr. Moreover, the pressure is, for example, 1 to 2565565. V. Description of the invention (7) Since the germanium silicide layer 2 of the present invention 2 is formed by a rapid hafnium: product method at low temperature (about 500 degrees Celsius), Because of this: the profile of the source electrode of the household = and the electrode junction will show a nearly perfect steep feed./ In addition, if B2He is added during the formation of the germanium silicide layer 212, the germanium layer 21 2 will At the same time, the germanium silicide layer 2 丨 2 can achieve the effect of enhancing activation / (Enhanced ACtivati0n), so that the subsequent step of impurity tempering activation of the germanite layer 212 is not required. Then, the present invention uses Controlling the concentration of germanium in the Shixihua, so as to reduce its band gap and thus reduce the source / drain resistance Here, it is particularly worth mentioning that because the resistance value of germanium silicide is generally lower on the semiconductor silicon substrate, and as mentioned above, by adjusting the concentration of germanium silicide, the band gap can be reduced to achieve a reduction. The purpose of its resistance value. Therefore, the depth of the source / drain junction of the present invention can be made shallow to avoid short-channel effects and leakage problems at the junction. This means that when the opening 210 is formed, the opening 21 can be removed. The depth is shallow, and after the subsequent formation of the Shixihua staggered layer in the opening 21 as the source / drain, the problems of short channel effect and junction leakage can be avoided. Then, please refer to FIG. 2F. A metal silicide layer 214 is formed on the electrode / drain 212, so as to reduce the resistance value of the source / drain. In the present invention, if the spacer 208 is made of nitride material, the top cover can be firstly covered. After the layer 2 0 a is removed, a metal silicide layer 21 4 (as shown in FIG. 2G) is formed on the gate conductive layer 2 04 a and the source / drain 212 at the same time, and a metal silicide is formed. The method of layer 2 1 4 is, for example, formed before the substrate 200 A metal layer, and then a thermal process is performed to make the metal layer react with silicon to form self-w 9166twf.ptd page 11 565876

五、發明說明(8) 行準金屬石夕化物層。在本實 材皙你丨‘ a a ^ 貫知例中’金屬矽化物層2 1 4之V. Description of the invention (8) A quasi-metallic oxide material layer is formed. In this example, 『a a ^ Conventional Example』 metal silicide layer 2 1 4

材貝:如:石夕化鈷(coSix)或是石夕化鎳(N 第二實施例 x 第3A圖至第3D圖,其綸干幺# n刀丄 例之擗占ππ *』、 、、日不為依照本發明另一較佳實施 示意圖。式源極/没極接面之半導體元件之流程剖面 202 /及參圖,首先在—基底200上形成-薄氧化層 曰曰二電層2°4。其中,導電層…之材質例如是多 26H他適用於作為問極導電層之材質,而介電層 ZUb之材質例如是TE0S—氧化石夕。 居204之以後/„照第3BSI,以一微影蝕刻製程圖案化導電 ^ Λ缚氧化層202 ’以形成—閘極導電層馳以及一 :丄:—02a,而構成一閘極結構。然後,在閘極結構之 仆二Ϊ 間隙壁208。其中’間隙壁208之材質例如是氮 ^石夕或氧化石夕。而形成間隙壁208之方法與第一實施例之 万法相同,在此不在贅述。 接著,請參照第3C圖,以間隙壁2〇8為一蝕刻罩幕, 圖案化間隙壁208兩側之基底20〇而形成開口21〇。由於閘 極導電層204a上方並未有任何蝕刻罩幕覆蓋,因此在此蝕 刻步驟中,可能會同時將閘極導電層2〇4a之部分厚度移 除。其中,形成開口 2 1 0之方法例如是一非等向蝕刻製 程,且此非等向蝕刻製程中所使用之一反應氣體例如是六 氟化硫(S F6)。 之後’請參照第3D圖,在開口 2 1 〇中形成一選擇性薄Material: For example: CoSix or Nickel (N Second Embodiment x Figures 3A to 3D), the number of examples of which is ππ * ′,, It is not a schematic diagram of another preferred implementation according to the present invention. The flow section 202 of the semiconductor device with the source / non-electrode junction is shown in the figure and referenced. First, a thin oxide layer is formed on the substrate 200. 2 ° 4. Among them, the material of the conductive layer is, for example, 26H, which is suitable for use as an interfacial conductive layer, and the material of the dielectric layer ZUb is, for example, TE0S—Stone Oxide. After 204 / „According to 3BSI A conductive etching layer 202 ′ is patterned by a lithographic etching process to form a gate conductive layer and a: 丄: —02a to form a gate structure. Then, the second structure of the gate structure is formed. The partition wall 208. The material of the partition wall 208 is, for example, nitrogen or stone oxide. The method for forming the partition wall 208 is the same as the method of the first embodiment, and is not repeated here. Next, please refer to 3C. In the figure, the partition wall 208 is used as an etching mask, and the substrates 20 on both sides of the partition wall 208 are patterned to form an opening. 21〇. Since there is no etching mask over the gate conductive layer 204a, during this etching step, part of the thickness of the gate conductive layer 204a may be removed at the same time. Among them, the opening 2 1 0 is formed. The method is, for example, an anisotropic etching process, and one of the reaction gases used in the anisotropic etching process is, for example, sulfur hexafluoride (S F6). Afterwards, please refer to FIG. 3D, in the opening 2 1 0 Selectivity

imam Μ aimam Μ a

9166twf.ptd 565876 五、發明說明(9) ' 膜2^ 2,以作為半導體元件之源極/汲極。在此同時,也在 f露的閘極導電層2〇4a之表面形成有選擇性薄膜212a。換 言之,此源極/汲極2 1 2係利用於基底2 〇 〇中挖出開口 2丨〇, 再於開口210中長出選擇性薄膜212而形成的。另"外,雖閘 極導電層2 0 4 a在先前步驟可能會被移除部分厚度,但由於 ,擇性薄膜2 12a也會形成在閘極導電層2〇“上^因此可補 領原先失去的閘極導電層2 〇 4 a厚度。 在本實施例中,選擇性薄膜212、212a係為一矽化鍺 層(ShxGex)。而形成矽化鍺層212、212a之方法例如是快 速熱製程化學氣相沉積法,且此快速熱製程化學氣相沉積 法之一反應氣體例如是Shl/GeH4之混合氣體或 SiHgClg/GeH4之混合氣體。另外,以快速熱製程化學氣相 沉積法形成石夕化鍺層212、212a之溫度例如是約攝氏5〇〇 度’且其壓力例如是卜20 T〇rr。 由於本發明之矽化鍺層2 1 2係以快速熱製程化學氣相 沉積法在低溫(約攝氏500度)之條件下形成,因此,所形 成之源極/汲極接面之輪廓會呈現近幾完美的陡峭。另 外,倘若於形成矽化鍺層212、212a之過程中加入b2h6,在 形成矽化鍺212、212a時會同時使此矽化鍺層212、212a達 到增進活化(Enhanced Activation)之功效,如此,後續 就不需再進行矽化鍺層212、212a之雜質回火活化步驟。 再者’本發明更可以利用控制矽化鍺之鍺的濃度,藉以減 少其能帶間隙(Band Gap)進而降低源極/汲極電阻值。 在此’特別值得一提的是,由於;ε夕化鍺之電阻值較一9166twf.ptd 565876 V. Description of the invention (9) 'The film 2 ^ 2 is used as a source / drain of a semiconductor element. At the same time, a selective thin film 212a is formed on the surface of the exposed gate conductive layer 204a. In other words, the source / drain 2 12 is formed by digging the opening 2 丨 in the substrate 2000 and then growing a selective film 212 in the opening 210. In addition, although the gate conductive layer 2 0 4 a may be partially removed in the previous step, the selective film 2 12 a may also be formed on the gate conductive layer 20 ″ so it can be replaced The thickness of the gate conductive layer 2 0a that was lost previously. In this embodiment, the selective films 212 and 212a are a germanium silicide layer (ShxGex). The method for forming the germanium silicide layers 212 and 212a is, for example, a rapid thermal process. A chemical vapor deposition method, and one of the reaction gases of the rapid thermal process chemical vapor deposition method is, for example, a Shl / GeH4 mixed gas or a SiHgClg / GeH4 mixed gas. In addition, a rapid thermal process chemical vapor deposition method is used to form Shi Xi The temperature of the germanium silicide layers 212 and 212a is, for example, about 500 ° C and the pressure is, for example, 20 Torr. Since the germanium silicide layer 2 1 2 of the present invention uses a rapid thermal process chemical vapor deposition method at a low temperature, (Approximately 500 degrees Celsius), so the profile of the formed source / drain junction will show almost perfect steepness. In addition, if b2h6 is added during the formation of the germanium silicide layers 212, 212a, When forming germanium silicide 212, 212a, At this time, the germanium silicide layers 212 and 212a can achieve the effect of enhanced activation. In this way, the subsequent step of impurity tempering activation of the germanium silicide layers 212 and 212a is not necessary. Furthermore, the present invention can be used to control silicide The germanium concentration of germanium reduces the band gap and thereby reduces the source / drain resistance. It is particularly worth mentioning here that the resistance value of germanium ε is relatively low.

^166twf.pt d^ 166twf.pt d

565876 五、發明說明(10) 般半導體矽基底之電阻值更低,且如上所述,藉由調整石夕 化鍺之鍺的濃度可減少其能帶間隙進而達到降低其電阻值 之目的。因此,本發明之源極/汲極之接面深度可以作 淺,以避免短通道效應以及接面漏電之問題。意即在形成 開口 2 1 0時便可將開口 2 1 0之深度作淺,而後續於開口 2 1 0 中形成矽化鍺層以作為源極/汲極之後,便可避免短通道 效應以及接面漏電之問題。 繼之,請參照第3E圖,在選擇性薄膜212、212a之表 面上形成一金屬矽化物層2 1 4,藉以再降低元件之電阻 值。形成金屬矽化物層214之方法例如先於基底200上形成 一金屬層,之後再進行一熱製程,以使金屬層與矽反應而 形成自行準金屬矽化物層。在本實施例中,金屬矽化物層 214之材質例如是矽化鈷(c〇Six)或是矽化鎳(Νίδίχ)。 由於本發明之半導體元件,其源極/汲極2 1 2係以矽化 錯材質取代習之以離子植入法所形成之源極/汲極區,且 由於矽化鍺具有較佳的導電性,因此所形成之源極/汲極 21 2之電阻值可以有效的降低,藉以解決元件尺寸縮小化 後源極/汲極之阻值會上升之問題。另外,由於矽化鍺之 導電性較佳,因此本發明之源極/汲極2丨2之接面可以作 淺,以避免短通道效應以及接面漏電之問題。如此,便可 以提高源極/汲極2 1 2接面之可责择,、隹而担古針7 土 饮回罪度,進而提咼整個元件之 罪又再者由於本發明形成源極/沒極之方法係利用 低溫條件之快速孰製藉彳卜與^ ^ 朽/ %扰9·^ & Γ 學軋相沉積法,因此所形成之源 極7及極212接面輪靡將會呈現近幾完美的㈣,且倘若於565876 V. Description of the invention (10) Generally, the resistance value of semiconductor silicon substrate is lower, and as mentioned above, by adjusting the concentration of germanium in fossilized germanium, the band gap can be reduced and the resistance value can be reduced. Therefore, the depth of the source / drain junction of the present invention can be made shallow to avoid the problems of short channel effects and junction leakage. This means that the depth of the opening 2 10 can be made shallow when the opening 2 10 is formed, and after a germanium silicide layer is formed in the opening 2 10 as a source / drain, the short channel effect and the connection can be avoided. Surface leakage problem. Next, referring to FIG. 3E, a metal silicide layer 2 1 4 is formed on the surfaces of the selective films 212 and 212a, thereby reducing the resistance value of the device. The method for forming the metal silicide layer 214 is, for example, forming a metal layer on the substrate 200, and then performing a thermal process to react the metal layer with silicon to form a self-quasi-metal silicide layer. In this embodiment, the material of the metal silicide layer 214 is, for example, cobalt silicide (coSix) or nickel silicide (Nδδ). Due to the semiconductor element of the present invention, the source / drain 2 1 2 is replaced with a silicide material instead of the source / drain region formed by the ion implantation method, and because germanium silicide has better conductivity, Therefore, the resistance value of the formed source / drain electrode 21 2 can be effectively reduced, thereby solving the problem that the resistance value of the source / drain electrode will increase after the component size is reduced. In addition, since the germanium silicide has better conductivity, the interface between the source / drain electrodes 2 and 2 of the present invention can be made shallow, so as to avoid the problems of short channel effect and leakage at the interface. In this way, the source / drain 2 1 2 interface can be increased to blame, and the guilty degree of the ancient needle 7 soil drinking is returned, and then the sin of the entire component is raised. Furthermore, the source / drain is formed due to the present invention. The method of non-polarity is to use the rapid production of low temperature conditions. 彳 ^ 朽 /% 99 · ^ & Γ Learn the rolling facies deposition method, so the formation of the source electrode 7 and electrode 212 will be popular. Presents almost perfect encounters, and if

565876 五、發明說明(11) 形成矽化鍺之過程中加入B2 H6,更可以省去矽化鍺之雜質 回火活化步驟,進而簡化了製程。 綜合以上所述,本發明具有下列優點: 1 ·本發明之形成凹陷式源極/汲極接面之半導體元件 之方法,可有效降低源極/汲極之電阻值。 2 ·本發明之形成凹陷式源極/汲極接面之半導體元件 之方法,可避免短通道效應以及接面漏電等問題。 3·本發明之形成凹陷式源極/汲極接面之半導體元件 之方法,可有效提高源極/汲極接面之可靠度, 人 整個元件之可靠度。 致南 雖然本發明已以較佳實施例揭露如上,然1 限定本發明η壬何熟習此技藝者,在不脫離:;明Μ以 和範圍内,當可作些許之更動與潤飾,因此本^之精神 範圍當視後附之申請專利範圍所界定者為準。*明之保護565876 V. Description of the invention (11) Adding B2 H6 in the process of forming germanium silicide can further eliminate the impurity tempering activation step of germanium silicide, thereby simplifying the manufacturing process. To sum up, the present invention has the following advantages: 1. The method for forming a semiconductor device with a recessed source / drain junction according to the present invention can effectively reduce the resistance value of the source / drain. 2. The method for forming a semiconductor device with a recessed source / drain junction according to the present invention can avoid problems such as short channel effects and junction leakage. 3. The method for forming a semiconductor device with a recessed source / drain interface according to the present invention can effectively improve the reliability of the source / drain interface and the reliability of the entire device. Zhinan Although the present invention has been disclosed as above with a preferred embodiment, 1 restricts the person who is familiar with this art without departing from :; within the scope and scope of the Ming, there can be some changes and retouching, so this The spiritual scope of ^ shall be determined by the scope of the attached patent application. * Protection of Ming

9166twf.ptd 第15頁 5658769166twf.ptd Page 15 565876

缂16頁缂 Page 16

Claims (1)

565876 六、申請專利範圍 法二種形成凹陷式源極/及極接面之半導體元件的方 提供一基底; 在該基底上形成一閘極結構 係形成有-頂蓋層; 其中该閉極結構之頂部 在δ亥閘極結構之側壁形成一間隙壁; 以該頂蓋層以及該間隙壁為—罩 兩側之該基底中形成一開口;以及 早举在忒間隙壁 在該開口中形成一選擇性薄 2.如申請專利範圍第】項所:乂作/ 一源極/沒極。 接面之半導體元件的方法,1中;;:凹陷式源極/汲極 包括-快速;製程化學氣相=(=)擇性薄膜 接面之半導體元件::J2項:述進之形成凹陷式源極/汲極 4·如申請專利範圍第丨項所述之形 接面之半導體元件的方& 攻凹陷式源極/汲極 錯層⑻心)。其中該㈣性薄膜包括一石夕化 5. 如申請專利範圍第4項所式 接面之半導體元件的方味 驭凹^式源極/及極 $ f肖括Si H /r ιΓ方法,其中形成該矽化鍺層之一反應 ^體包括Sl2H6/GeH4之混合氣體或叫〜/㈤〆混合氣 6. 如申請專利範圍第5項所述之形成凹陷式源極/汲極 9166twf.ptd 第17頁 565876 六 '申請專利範圍 接面之半導體元件的方法,其中該反應氣體中更包括加入 B2H6。 7 ·如申請專利範圍第1項所述之形成凹陷式源極/汲極 接面之半導體元件的方法,其中該源極/汲極係為一淺接 面源極/汲極。 8 ·如申請專利範圍第1項所述之形成凹陷式源極/汲極 接面之半導體元件的方法,其中更包括在該源極/汲極上 形成一金屬石夕化物層。 9.如申請專利範圍第8項所述之形成凹陷式源極/汲極 接面之半導體元件的方法,其中該金屬矽化物層包括一石夕 化鈷層(CoSix)或一矽化鎳層(Nisix)。 極接1面〇·之如丰申//Λ範目第1項所述之形成凹陷式源極/汲 隙壁之材質相同或不相;法,、中4頂盍層之材質與該間 法,=.括-種形成凹陷式源極/汲極接面之半導體元件的方 提供一基底; 在該基底上形成一閘極多士 , 係形成有一頂蓋層; 、’"* 八中該閘極結構之頂部 在該閘極結構之側㈣& 以該頂蓋層以及該間隙壁為一 壁兩側之該基底中形成一開口 [ xlj罩幕,以在該間隙 在該開口中形成一選擇性薄膜以 移除該頂蓋層,暴露出該閘極社j為一源極/汲極; -構;以及 9166twf.ptd 第18頁 565876 六、申請專利範圍 --- 在該閘極結構以及該源極/汲極上形成一金屬矽化物 層。 1 2 ·如申請專利範圍第11項所述之形成凹陷式源極/沒 極接面之半導體元件的方法,其中形成該選擇性薄膜之方 法包括一快速熱製程化學氣象沉積法(RTCVD)。 1 3 ·如申請專利範圍第1 2項所述之形成凹陷式源極/汲 極接面之半導體元件的方法,其中進行該快速熱製程化學 氣相沉積法之溫度係為攝氏5〇〇度,且其壓力係為1〜2〇予 Torr ° 1 4·如申請專利範圍第11項所述之形成凹陷式源極/汲 極接面之半導體元件的方法,其中該選擇性薄膜包括一石夕 化鍺層(SiwGex)。 1 5 ·如申請專利範圍第1 4項所述之形成凹陷式源極/沒 極接面之半導體元件的方法,其中形成該石夕化鍺層之一反 應氣體包括8丨2}16/〇6114之混合氣體或3丨112(:12/(^札之混合 氣體。 1 6 ·如申請專利範圍第1 5項所述之形成凹陷式源極/汲 極接面之半導體元件的方法,其中$亥反應氣體中更包括加 入 B2H6。 1 7 ·如申請專利範圍第11項戶斤述之形成凹陷式源極/没 極接面之半導體元件的方法,其中該源極/汲極係為一淺 接面源極/汲極。 1 8 ·如申請專利範圍第丨丨項所述之形成凹陷式源極/汲 極接面之半導體元件的方法,其中該金屬矽化物層包括一 1 Pill ill I IS _ ill 9166twf.ptd 第19頁 565876 六、申請專利範圍 石夕化始層(C〇Six)或一矽化鎳層(Nis[ 1 9·如申請專利範圍第】】項所之’ 極接面之半導體元件的太、土 . ^ 心成凹陷式源極/汲 隙壁之材質不相同。 、盖層之材質與該間 20. -種形成凹陷式源極/汲極 法,包括·· <半導體元件的方 提供一基底; 在該基底上形成一閘極結構; 在該閘極結構之側壁形成一間隙壁; 以該間隙壁為一斜办丨$ g ^ ^ „ 中形成一開口 ’·:及刻罩幕…間隙壁兩側之該基底 一在該開口中形成一選擇性薄膜以作為〜呢搞/ ^ , 同時在暴露的該閘極社# ^合$ ° 搞拉Μ ·如申、請專利範圍第20項所述之形成凹陷式源極/汲 :面之半導體元件的方法,其中形成該選擇性薄膜之方 /包括一快速熱製程化學氣相沉積法(RTcvd)。 。2 2 ·如申請專利範圍第21項所述之形成凹陷式源極/汲 f接面之半導體元件的方法,其中進行該快速熱製程化學 氣相沉積法之溫度係為攝氏5〇〇度,且其壓力係為1〜20 T〇rr 〇 2 3 ·如申請專利範圍第2 〇項所述之形成凹陷式源極/沒 極接面之半導體元件的方法,其中該選擇性薄膜包括一矽 化鍺層(SiHGex)。 C)l66twf •Ptd m 第20頁 565876565876 VI. Method of applying for patent scope Two methods for forming a semiconductor element with a recessed source / and electrode junction provide a substrate; forming a gate structure on the substrate is formed with a cap layer; wherein the closed-pole structure A top wall forms a gap on the side wall of the delta gate structure; an opening is formed in the base on both sides of the cover with the capping layer and the gap wall; and an opening is formed in the opening early in the gap wall Selective thin 2. As in the scope of patent application]: operation / one source / non-polar. Method of junction semiconductor device, 1 ;;: recessed source / drain includes-fast; process chemical vapor phase = (=) selective thin film junction semiconductor device: item J2: described in formation of depression Source / Drain 4. The square-shaped junction of the semiconductor device as described in the first item of the patent application & tapping recessed source / drain offset). Wherein, the thin film includes a lithography. 5. As described in the application for the scope of the patent application No. 4 of the semiconductor elements of the Fang Weiyu concave ^ source electrode and the method of Si H / r ΓΓ method, wherein One reaction body of the germanium silicide layer includes a mixed gas of Sl2H6 / GeH4 or a mixed gas of ~ / 〜. 6. The formation of a recessed source / drain as described in item 5 of the patent application 9166twf.ptd page 17 565876 A method for joining semiconductor devices in the scope of a six-patent application, wherein the reaction gas further includes adding B2H6. 7. The method for forming a semiconductor device with a recessed source / drain junction as described in item 1 of the scope of patent application, wherein the source / drain is a shallow junction source / drain. 8. The method for forming a semiconductor device with a recessed source / drain junction as described in item 1 of the scope of patent application, further comprising forming a metal oxide layer on the source / drain. 9. The method for forming a semiconductor device with a recessed source / drain junction as described in item 8 of the scope of the patent application, wherein the metal silicide layer includes a CoSix layer or a NiSix layer ). The pole is connected to one side. The material of the recessed source / dip wall as described in Fengshen // Λ Fanmu item 1 is the same or different. Method, =. Includes a semiconductor element forming a recessed source / drain junction to provide a substrate; forming a gate toast on the substrate, forming a capping layer; "" * eight The top of the gate structure is on the side of the gate structure, and an opening is formed in the base with the cap layer and the gap wall on both sides of the wall, so that the gap is in the opening in the gap. Forming a selective film to remove the capping layer, exposing that the gate electrode j is a source / drain; and a structure; and 9166twf.ptd page 18 565876 6. Scope of patent application --- at the gate A metal silicide layer is formed on the source structure and the source / drain. 1 2 · The method for forming a recessed source / inverted semiconductor device as described in item 11 of the scope of patent application, wherein the method for forming the selective thin film includes a rapid thermal process chemical weather deposition method (RTCVD). 1 3 · The method for forming a recessed source / drain junction semiconductor device as described in item 12 of the scope of patent application, wherein the temperature for performing the rapid thermal process chemical vapor deposition method is 500 degrees Celsius And the pressure is 1 ~ 20 to Torr ° 1 4 · The method for forming a semiconductor device with a recessed source / drain junction as described in item 11 of the scope of patent application, wherein the selective film includes a stone eve Germanium layer (SiwGex). 1 5 · The method for forming a semiconductor device with a recessed source / non-electrode junction as described in item 14 of the scope of the patent application, wherein one of the reaction gases for forming the petrochemical germanium layer includes 8 丨 2} 16 / 〇 6114 mixed gas or 3 丨 112 (: 12 / (^ mixed gas. 1 6) The method for forming a semiconductor device with a recessed source / drain junction as described in item 15 of the patent application scope, wherein The reaction gas includes adding B2H6. 1 7 · The method of forming a recessed source / deposited semiconductor device as described in item 11 of the patent application scope, wherein the source / drain is a Shallow junction source / drain. 1 8 · The method for forming a recessed source / drain junction semiconductor device as described in item 丨 丨 of the patent application scope, wherein the metal silicide layer includes a 1 ill ill I IS _ ill 9166twf.ptd Page 19 565876 VI. Scope of patent application Shi Xihua starting layer (CoSix) or a nickel silicide layer (Nis [1 9 · as in the scope of patent application] item] 'pole connection The surface of the semiconductor element is too soil, ^ The material of the heart-shaped recessed source / dip wall is not the same The material of the capping layer and the space 20. A method of forming a recessed source / drain method, including a semiconductor device providing a substrate; forming a gate structure on the substrate; and forming a gate structure on the substrate A gap wall is formed on the side wall of the structure; an opening is formed in the gap wall as a slanting plate; and a mask is engraved ... The bases on both sides of the gap wall form a selectivity in the opening The thin film is used as a semiconductor device, and at the same time, the gate electrode company is exposed at the same time. The semiconductor device is formed as a recessed source / drain: as described in the patent application, please refer to item 20 of the patent scope. A method for forming the selective thin film / including a rapid thermal process chemical vapor deposition (RTcvd). 2 2 · Forming a recessed source / dip junction as described in item 21 of the scope of patent application The method of semiconductor device, wherein the temperature of performing the rapid thermal process chemical vapor deposition method is 500 degrees Celsius, and the pressure thereof is 1 to 20 T0rr 02. Said semiconductor element forming a recessed source / non-electrode interface Method, wherein the selective film includes a germanium silicide layer (SiHGex) C) 166twf • Ptd m page 20 565876 六、申請專利範圍Scope of patent application 24·如申請專利範圍第23項所述之形成凹陷式源極/汲 極接面之半導體元件的方法,其中形成該石夕化鍺層之一反 應氣體包括Si2H6/GeH4之混合氣雜或SiH2C1“GeH4之混合 氣體。 2 5 ·如申請專利範圍第2 4項所述之形成凹陷式源極/沒 極接面之半導體元件的方法,其中$亥反應氣體中更包括加 入 B2H6。 2 6.如申請專利範圍第2 〇項所述之形成凹陷式源極/及 極接面之半導體元件的方法,其中該源極/汲極係為—淺 接面源極/沒極。24. The method for forming a semiconductor device with a recessed source / drain junction as described in item 23 of the scope of patent application, wherein one of the reactant gases forming the germanium layer includes a Si2H6 / GeH4 mixed gas or SiH2C1 "Mixed gas of GeH4. 2 5 · The method for forming a semiconductor device with a recessed source / electrode junction as described in item 24 of the scope of patent application, wherein the $ Hai reaction gas further includes the addition of B2H6. 2 6. The method for forming a recessed source / and-junction semiconductor device as described in item 20 of the scope of patent application, wherein the source / drain is-shallow junction source / non-electrode. 27·如申請專利範圍第20項所述之形成凹陷式源極/沒 極接面之半導體元件的方法,其中更包括在該選擇性薄膜 之表面形成一金屬石夕化物層。 、 28·如申請專利範圍第27項所述之形成凹陷式源極/沒 極接面之半導體元件的方法,其中該金屬矽化物層包括/一 矽化鈷層(CoSix)或一矽化鎳層(NiSix)。27. The method for forming a recessed source / inverted semiconductor device as described in item 20 of the scope of patent application, further comprising forming a metal oxide layer on the surface of the selective film. 28. The method for forming a recessed source / deposited semiconductor device as described in item 27 of the scope of the patent application, wherein the metal silicide layer includes a cobalt silicide layer (CoSix) or a nickel silicide layer ( NiSix). 9166twf.ptd 第21頁9166twf.ptd Page 21
TW91115385A 2002-07-11 2002-07-11 Method for fabricating recessed source/drain junction of a semiconductor device TW565876B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91115385A TW565876B (en) 2002-07-11 2002-07-11 Method for fabricating recessed source/drain junction of a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91115385A TW565876B (en) 2002-07-11 2002-07-11 Method for fabricating recessed source/drain junction of a semiconductor device

Publications (1)

Publication Number Publication Date
TW565876B true TW565876B (en) 2003-12-11

Family

ID=32502587

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91115385A TW565876B (en) 2002-07-11 2002-07-11 Method for fabricating recessed source/drain junction of a semiconductor device

Country Status (1)

Country Link
TW (1) TW565876B (en)

Similar Documents

Publication Publication Date Title
CN102110611B (en) Method for fabricating NMOS (n-type metal-oxide semiconductor) with improved carrier mobility
EP1565931B1 (en) Strained finfet cmos device structures
US9281390B2 (en) Structure and method for forming programmable high-K/metal gate memory device
US20060105527A1 (en) Semiconductor device and manufacturing method therefor
JP2007300090A (en) Cmos structure using self-aligned stressed dual layer and method therefor
CN102110612B (en) Semiconductor device and manufacturing method thereof
JP2004289061A (en) Semiconductor device and its manufacturing method
US20050145943A1 (en) Method for fabricating semiconductor devices having silicided electrodes
CN103632972A (en) Semiconductor structure and manufacture method thereof
JP2007208242A (en) Method of controlling height of gate electrode
JP4904472B2 (en) Manufacturing method of semiconductor device
TW200406047A (en) Metal spacer gate for CMOS fet
US7098120B2 (en) Method of manufacturing semiconductor devices
US20230282725A1 (en) Semiconductor Devices and Methods of Forming the Same
US8829587B2 (en) Flash memory device and manufacturing method of the same
TWI262561B (en) Method of forming ultra-shallow junction devices and its application in a memory device
KR950027916A (en) Manufacturing Method of Semiconductor Device
KR100549006B1 (en) fabrication method of a MOS transistor having a total silicide gate
TW565876B (en) Method for fabricating recessed source/drain junction of a semiconductor device
US8962431B2 (en) Methods of forming metal silicide-comprising material and methods of forming metal silicide-comprising contacts
US7902021B2 (en) Method for separately optimizing spacer width for two or more transistor classes using a recess spacer integration
US7544553B2 (en) Integration scheme for fully silicided gate
US6939770B1 (en) Method of fabricating semiconductor device having triple LDD structure and lower gate resistance formed with a single implant process
JP2006352127A (en) Method of forming self-aligned silicide film by using multiple heat treatment processes
KR20030047556A (en) Method of manufacturing a semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent