US20060105527A1 - Semiconductor device and manufacturing method therefor - Google Patents

Semiconductor device and manufacturing method therefor Download PDF

Info

Publication number
US20060105527A1
US20060105527A1 US11/137,512 US13751205A US2006105527A1 US 20060105527 A1 US20060105527 A1 US 20060105527A1 US 13751205 A US13751205 A US 13751205A US 2006105527 A1 US2006105527 A1 US 2006105527A1
Authority
US
United States
Prior art keywords
gate electrode
gate
semiconductor device
film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/137,512
Inventor
Tomohiro Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to KABUSHIKI KAISHA TOSHIBA reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAITO, TOMOHIRO
Publication of US20060105527A1 publication Critical patent/US20060105527A1/en
Priority to US11/882,621 priority Critical patent/US7754593B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823443MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes silicided or salicided gate conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/82345MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures

Definitions

  • the present invention relates to a semiconductor device and a method of manufacturing the same.
  • a MOSFET having the whole gate electrode silicided hereinafter referred to as a full silicide MOSFET
  • a MOSFET having only an upper part of the gate electrode silicided hereinafter referred to as a normal silicide MOSFET
  • a method of manufacturing a semiconductor device comprises forming a gate insulation film on a semiconductor substrate; forming a first gate electrode and a second gate electrode on the gate insulation film; forming a mask material so as to expose an upper surface of the first gate electrode while keeping the second gate electrode covered; etching an upper part of the first gate electrode by using the mask material as a mask; removing the mask material; depositing a metal film on the first gate electrode and the second gate electrode; and siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
  • a method of manufacturing a semiconductor device comprises forming a gate insulation film on a semiconductor substrate; forming a first gate electrode and a second gate electrode on the gate insulation film; forming a mask material so as to expose an upper surface of the second gate electrode while keeping the first gate electrode covered; forming a silicidation restricting layer inside the second gate electrode, the silicidation restricting layer being less easily silicided than a material of the first and the second gate electrodes; removing the mask material; depositing a metal film on the first gate electrode and the second gate electrode; and siliciding the whole of the first gate electrode and an upper part above the silicidation restricting layer in the second gate electrode.
  • a method of manufacturing a semiconductor device comprises forming a gate insulation film on a semiconductor substrate; forming a first gate electrode and a second gate electrode on the gate insulation film; forming a mask material so as to expose an upper surface of the first gate electrode while keeping the second gate electrode covered; amorphizing an upper part of the first gate electrode by using the mask material as a mask; removing the mask material; depositing a metal film on the first gate electrode and the second gate electrode; and siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
  • a method of manufacturing a semiconductor device comprises forming a gate insulation film on a semiconductor substrate; depositing a gate electrode material on the gate insulation film; depositing a silicidation restricting material on the gate electrode material, the silicidation restricting material being less easily silicided than the gate electrode material; forming a first gate electrode and a second gate electrode, which have the silicidation restricting material on the upper surfaces thereof, on the gate insulation film by patterning the silicidation restricting material and the gate electrode material; forming a mask material on the silicidation restricting material on the upper surfaces of the first and the second gate electrodes; patterning the mask material so as to expose an upper surface of the silicidation restricting material on the first gate electrode while keeping the silicidation restricting material on the second gate electrode covered; removing the silicidation restricting material on the first gate electrode by using the mask material as a mask; removing the mask material; depositing a metal film on the first gate electrode and the second gate electrode; and si
  • a method of manufacturing a semiconductor device comprises forming a gate insulation film on a semiconductor substrate; forming a first gate electrode and a second gate electrode on the gate insulation film; depositing a metal film on the first gate electrode and the second gate electrode; depositing a heat shielding film on the metal film; patterning the heat shielding film so as to expose the metal film on the first gate electrode while keeping the metal film on the second gate electrode covered; and siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
  • a method of manufacturing a semiconductor device comprises forming a gate insulation film on a semiconductor substrate; depositing a gate electrode material on the gate insulation film; depositing a cap material covering the gate electrode material; forming a first gate electrode and a second gate electrode, which have the cap material on the upper surfaces thereof, on the gate insulation film by patterning the cap material and the gate electrode material; forming a sidewall film on sidewalls of the first and the second gate electrodes and the cap material; forming trenches on the first and the second gate electrodes by removing the cap material; forming a mask material so as to expose an upper surface of the first gate electrode while keeping the second gate electrode covered; etching the upper part of the first gate electrode by using the mask material as a mask; removing the mask material; filling a metal material in the trenches on the first and the second gate electrodes; siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
  • a semiconductor device comprises a semiconductor substrate; a gate insulation film provided on the semiconductor substrate; a first gate electrode provided on the gate insulation film and used for a core circuit part of the semiconductor device, the first gate electrode being wholly silicided; and a second gate electrode provided on the gate insulation film and used for a peripheral circuit part of the semiconductor device, the second gate electrode having a laminated structure including a polysilicon layer and a silicide layer.
  • FIG. 1 is a cross-sectional diagram showing a method of manufacturing a semiconductor device according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 1 ;
  • FIG. 3 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 2 ;
  • FIG. 4 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 3 ;
  • FIG. 5 is a cross-sectional diagram showing a modification of the first embodiment
  • FIG. 6 is a cross-sectional diagram showing other modification of the first embodiment
  • FIG. 7 is a cross-sectional diagram showing a further modification of the first embodiment
  • FIG. 8 is a cross-sectional diagram showing a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
  • FIG. 9 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 8 ;
  • FIG. 10 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 9 ;
  • FIG. 11 is a cross-sectional diagram showing a method of manufacturing a semiconductor device according to a third embodiment of the present invention.
  • FIG. 12 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 11 ;
  • FIG. 13 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 12 ;
  • FIG. 14 is a cross-sectional diagram showing a method of manufacturing a semiconductor device according to a fourth embodiment of the present invention.
  • FIG. 15 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 14 ;
  • FIG. 16 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 15 ;
  • FIG. 17 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 16 ;
  • FIG. 18 is a cross-sectional diagram showing a method of manufacturing a semiconductor device according to a fifth embodiment of the present invention.
  • FIG. 19 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 18 ;
  • FIG. 20 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 19 ;
  • FIG. 21 is a cross-sectional diagram showing a method of manufacturing a semiconductor device according to a sixth embodiment of the present invention.
  • FIG. 22 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 21 ;
  • FIG. 23 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 22 ;
  • FIG. 24 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 23 ;
  • FIG. 25 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 24 ;
  • FIG. 26 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 25 .
  • FIG. 1 to FIG. 4 are cross-sectional diagrams showing a flow of a method of manufacturing a semiconductor device according to a first embodiment of the present invention.
  • these diagrams show one full silicide MOSFET and one normal silicide MOSFET, respectively.
  • many full silicide MOSFETs and many normal silicide MOSFETs are formed on a silicon substrate.
  • it is considered to employ a full silicide MOSFET for a core circuit part of a semiconductor device and employ a normal silicide MOSFET for a peripheral circuit part.
  • a leak current through the gate insulation film decreases, the semiconductor device possesses higher reliability.
  • a full silicide MOSFET may be employed for a logic part of a semiconductor device and a normal silicide MOSFET may be employed for an analog part. As a result, since threshold voltages of the transistors become lower, the operation speed of the semiconductor device increases.
  • an element isolation region STI shallow trench isolation 20 is first formed on a silicon substrate 10 as a semiconductor substrate.
  • a silicon oxide film and a silicon nitride film are deposited on the silicon substrate 10 .
  • the silicon nitride film is patterned using a photolithographic technique and an RIE (reactive ion etching) method, or the like.
  • the silicon oxide film and the silicon substrate 10 are etched to a predetermined depth using the patterned silicon nitride film as a mask, thereby forming a trench.
  • a silicon oxide film is deposited on the surface of the silicon substrate 10 , thereby filling the silicon oxide film within the trench.
  • This silicon oxide film is flattened according to CMP (chemical mechanical polishing) or the like.
  • CMP chemical mechanical polishing
  • a gate insulation film 30 is formed on the surface of the silicon substrate 10 .
  • the silicon substrate 10 is thermally oxidized to form a thermally-oxidized film on the surface of the silicon substrate 10 .
  • the gate insulation film 30 may be an oxinitride film or a nitride film that is formed by further nitriding the thermally-oxidized film.
  • the gate insulation film 30 may be a high dielectric film such as a hafnium oxide film or a hafnium silicate film.
  • the thickness of the gate insulation film 30 is equal to or smaller than 3 nm, for example.
  • a first gage electrode 40 and a second gate electrode 42 made of polysilicon are formed on the gate insulation film 30 .
  • polysilicon is deposited on the gate insulation film 30 .
  • the thickness of the polysilicon is 100 nm, for example.
  • This polysilicon is formed in a gate pattern using a photolithographic technique and anisotropic etching such as RIE.
  • RIE anisotropic etching
  • the first and the second gate electrodes 40 and 42 are formed, respectively.
  • amorphous silicon can be used for the material of the first and the second gate electrodes 40 and 42 .
  • an extension (LDD (lightly doped drain)) layer 50 is formed.
  • a spacer 60 is formed on a sidewall of the first and the second gate electrodes 40 and 42 , respectively, and ion implantation is carried out to form a source/drain layer 70 .
  • Annealing is carried out to recover from damage of the silicon substrate 10 due to the ion implantation and to activate impurity.
  • the extension layer 50 and the source/drain layer 70 are formed.
  • An inter-layer insulation film 80 such as a silicon oxide film is deposited on the surface, and this inter-layer insulation film 80 is flattened by using CMP or the like. In this case, the inter-layer insulation film 80 is ground until when the upper surfaces of the first and the second gate electrodes 40 and 42 are exposed.
  • a photoresist 90 is coated as a mask material on the first and the second gate electrodes 40 and 42 , respectively. As shown in FIG. 2 , the photoresist 90 is patterned to expose the upper surface of the first gate electrode 40 while keeping the second gate electrode 42 covered with the photoresist 90 .
  • the first gate electrode 40 is etched according to RIE or the like by using the photoresist 90 as a mask. As a result, the thickness of the first gate electrode 40 becomes smaller than that of the second gate electrode 42 .
  • the thickness of the first gate electrode 40 is 50 nm to 70 nm, and the thickness of the second gate electrode 42 is 100 nm.
  • a nickel film 100 is deposited as a silicide metal film.
  • the thickness of the nickel film 100 is 50 nm to 70 nm, for example.
  • the first and the second gate electrodes 40 and 42 respectively, react with the nickel film 100 in an annealing process of about 500° C.
  • nickel silicide is formed as a gate electrode.
  • FIG. 4 since the height of the first gate electrode 40 is relatively small, the whole of the first gate electrode 40 is silicided. On the other hand, since the height of the second gate electrode 42 is relatively large, only the upper part of the second gate electrode 42 is silicided.
  • the second gate electrode 42 has a polysilicon layer 44 on the gate insulation film 30 , and has a silicide layer 46 on the polysilicon layer 44 .
  • the first gate electrode 40 is fully silicided
  • the second gate electrode 42 has a two-layer configuration including the polysilicon layer 44 and the silicide layer 46 .
  • the subsequent manufacturing process is the same as a normal transistor forming process. For example, after an oxide film (not shown) is deposited as an inter-layer film, a contact and wiring (not shown) are formed. As a result, a semiconductor device is completed.
  • the semiconductor device formed according to the first embodiment includes the semiconductor substrate 10 , the gate insulation film 30 , the first gate electrode 40 , and the second gate electrode 42 .
  • the gate insulation film 30 is formed on the semiconductor substrate 10 .
  • the first gate electrode 40 is formed on the gate insulation film 30 , and is made of silicide in total.
  • the second gate electrode 42 is formed on the gate insulation film 30 , and has the polysilicon layer 44 and the silicide layer 46 in lamination.
  • the film thickness of the first gate electrode 40 is formed smaller than that of the second gate electrode 42 .
  • polysilicon that is present in the gate region of the full silicide MOSFET can be fully silicided, or can be changed into a metal gate, without removing this polysilicon. Therefore, according to the first embodiment, reliability of the gate insulation film 30 is not degraded. In other words, according to the present embodiment, a full silicide MOSFET and a normal silicide MOSFET having high reliability can be formed on the same substrate.
  • both a full silicide MOSFET and a normal silicide MOSFET can be formed on the same substrate in an easier method than that conventionally used.
  • full silicide and “fully silicide” mean that it is not necessary to silicide full of the gate electrode absolutely, but it is sufficient to silicide the gate electrode substantially from the top surface to the bottom surface of the gate electrode.
  • a silicide layer 110 is also formed on the source/drain layer 70 , as shown in FIG. 5 .
  • silicide can be formed on the source/drain layer 70 , the first gate electrode 40 , and the second gate electrode 42 , in the same process.
  • the first and the second gate electrodes 40 and 42 may be covered with a mask material, and the silicide layer 110 is formed on the source/drain layer 70 .
  • the inter-layer insulation film 80 is flattened to expose the upper surfaces of the first and the second gate electrodes 40 and 42 , and suicide is formed on both the first and the second gate electrodes 40 and 42 .
  • a semiconductor substrate is an SOI (silicon-on-insulator) substrate, as shown in FIG. 6 .
  • SOI silicon-on-insulator
  • a partial SOI substrate is used for the semiconductor substrate.
  • a full silicide MOSFET can be formed on an SOI region, and a normal silicide MOSFET can be formed on a bulk substrate.
  • a work function of a metal gate electrode made of nickel suicide is near an intermediate of a silicon band gap. Therefore, when a full silicide MOSFET is formed on a bulk substrate, there is a possibility that a threshold voltage becomes high. However, if a full silicide MOSFET is made a fully depletion type (FD type) transistor by forming the full silicide MOSFET on the SOI, the threshold voltage can be lowered. Therefore, when a full silicide MOSFET is formed in the SOI region and a normal suicide MOSFET is formed on other bulk substrate, the threshold voltages of both of them can be adjusted properly.
  • FD type fully depletion type
  • both a full silicide MOSFET and a normal silicide MOSFET may be formed on the SOI substrate.
  • the thickness of the SOI and the thickness of a BOX in the full silicide MOSFET formation region can be different from the thickness of the SOI and the thickness of a BOX in the normal silicide MOSFET formation region, respectively.
  • the full suicide MOSFET can be made a fully-depletion type (FD type) transistor
  • the normal silicide MOSFET can be made a partially-depletion type (FD type) transistor.
  • FIG. 8 to FIG. 10 are cross-sectional diagrams showing a flow of a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
  • the configuration as shown in FIG. 1 is obtained in a process similar to that according to the first embodiment.
  • the photoresist 90 is coated as a mask material on the first and the second gate electrodes 40 and 42 .
  • the photoresist 90 is patterned to expose the upper surface of the second gate electrode 42 while keeping the first gate electrode 40 covered with the photoresist 90 . Nitrogen ions are implanted into the second gate electrode 42 using the photoresist 90 as a mask, for example.
  • a nitrogen-implanted layer 43 that is less easily silicided than polysilicon is formed as a silicidation restricting layer inside the second gate electrode 42 .
  • the nitrogen-implanted layer 43 is provided between the polysilicon layer 41 and the polysilicon layer 45 .
  • the second gate electrode 42 has a three-layer configuration including the polysilicon layer 41 , the nitrogen-implanted layer 43 , and the polysilicon layer 45 .
  • the nickel film 100 is deposited as a metal film, as shown in FIG. 9 .
  • the first and the second gate electrodes 40 and 42 are reacted with the nickel film 100 in an annealing process, thereby forming nickel silicide as a gate electrode, as shown in FIG. 10 .
  • the polysilicon layer 45 and a part of the nitrogen-implanted layer 43 are silicided, but the polysilicon layer 41 is not silicided. This is because the nitrogen-implanted layer 43 is less easily silicided than the polysilicon layers 41 and 45 .
  • the whole of the first gate electrode 40 is made of polysilicon, the first gate electrode 40 is fully silicided. Thereafter, a semiconductor device is completed in a process similar to that according to the first embodiment.
  • the semiconductor device according to the second embodiment has effect similar to that according to the first embodiment.
  • a silicide layer (not shown) can be formed on the source/drain layer 70 (refer to FIG. 5 ).
  • the first and the second gate electrodes 40 and 42 are covered with a mask material, and the silicide layer 110 is formed on the source/drain layer 70 .
  • the inter-layer insulation film 80 is flattened to expose the upper surfaces of the first and the second gate electrodes 40 and 42 .
  • the first gate electrode 40 is covered by a mask material, and nitrogen ion is implanted into the second gate electrodes 42 .
  • FIG. 11 to FIG. 13 are cross-sectional diagrams showing a flow of a method of manufacturing a semiconductor device according to a third embodiment of the present invention.
  • the configuration as shown in FIG. 1 is obtained in a process similar to that according to the first embodiment.
  • the photoresist 90 is coated as a mask material on the first and the second gate electrodes 40 and 42 , respectively.
  • the photoresist 90 is patterned to expose the upper surface of the first gate electrode 40 while keeping the second gate electrode 42 covered with the photoresist 90 .
  • Germanium ions or silicon ions are implanted into the first gate electrode 40 using the photoresist 90 as a mask.
  • polysilicon on the upper part of the first gate electrode 40 becomes amorphous silicon.
  • the first gate electrode 40 has a two-layer configuration including the amorphous silicon layer 49 and a polysilicon layer 48 .
  • the nickel film 100 is deposited as a metal film, as shown in FIG. 12 .
  • the first and the second gate electrodes 40 and 42 are reacted with the nickel film 100 in an annealing process, thereby forming nickel silicide as a gate electrode, as shown in FIG. 13 .
  • the amorphous silicon layer 49 and the polysilicon layer 48 are fully silicided.
  • the second gate electrode 42 has a two-layer configuration including the silicide layer 46 and the polysilicon layer 44 . This is because amorphous silicon is more easily silicided than polysilicon.
  • the second gate electrode 42 is not yet fully silicided. Accordingly, heat processing is stopped after the first gate electrode 40 is fully silicided and before the second gate electrode 42 is fully silicided. Thereafter, a semiconductor device is completed in a process similar to that according to the first embodiment. According to the third embodiment, effect similar to that by the first embodiment is obtained.
  • a silicide layer (not shown) can be formed on the source/drain layer 70 (refer to FIG. 5 ).
  • the first and the second gate electrodes 40 and 42 are covered with a mask material, and the silicide layer 110 is formed on the source/drain layer 70 .
  • the inter-layer insulation film 80 is flattened to expose the upper surfaces of the first and the second gate electrodes 40 and 42 , and germanium or silicon ion is implanted into the first gate electrodes 40 .
  • FIG. 14 to FIG. 17 are cross-sectional diagrams showing a flow of a method of manufacturing a semiconductor device according to a fourth embodiment of the present invention.
  • the gate insulation film 30 is formed on the silicon substrate 10 in a process similar to that according to the first embodiment.
  • polysilicon and silicon nitride films are deposited on the gate insulation film 30 .
  • the polysilicon film and the silicon nitride film are formed in a gate pattern using a photolithographic technique and anisotropic etching such as RIE.
  • the first and the second gate electrodes 40 and 42 and silicon nitride film caps 170 and 172 are formed, as shown in FIG. 14 .
  • the silicon nitride film caps 170 and 172 cover the upper surfaces of the first and the second gate electrodes 40 and 42 , respectively as silicidation restricting materials.
  • a photoresist (not shown) is coated on the silicon nitride film caps 170 and 172 .
  • the photoresist is patterned so that the silicon nitride film cap 172 on the second gate electrode 42 is covered and the upper surface of the silicon nitride film cap 170 on the first gate electrode 40 is exposed.
  • the silicon nitride film cap 170 is removed using this photoresist as a mask. After the photoresist is removed, a configuration as shown in FIG. 15 is obtained.
  • the nickel film 100 is deposited as a metal film.
  • the first gate electrode 40 is reacted with the nickel film 100 in an annealing process, thereby forming nickel silicide as a gate electrode, as shown in FIG. 17 .
  • the first gate electrode 40 is fully silicided.
  • the second gate electrode 42 is not silicided. This is because the silicon nitride film cap 172 is less easily silicided than polysilicon, and silicidation does not progress to the second gate electrode 42 .
  • FIG. 18 to FIG. 20 are cross-sectional diagrams showing a flow of a method of manufacturing a semiconductor device according to a fifth embodiment of the present invention.
  • the configuration as shown in FIG. 1 is obtained in a process similar to that according to the first embodiment.
  • the nickel film 100 is deposited as a metal film, as shown in FIG. 18 .
  • a titanium nitride film 190 is deposited as a heat shielding film.
  • the titanium nitride film 190 is patterned to cover the nickel film 100 on the second gate electrode 42 and to expose the nickel film 100 on the first gate electrode 40 using a photolithographic technique and wet etching.
  • the first and the second gate electrodes 40 and 42 are, subsequently, reacted with the nickel film 100 in an annealing process, thereby forming nickel silicide as a gate electrode, as shown in FIG. 20 .
  • a lamp heating apparatus or a light heating apparatus is used to facilitate the controlling of the silicidation.
  • only the upper part of the second gate electrode 42 is silicided, and the lower part of the second gate electrode 42 is not silicided. This is because the silicidation of the second gate electrode 42 is restricted due to the shielding of heat by the titanium nitride film 190 .
  • the first gate electrode 40 is fully silicided.
  • the titanium nitride film 190 is removed next.
  • the nickel film 100 and the titanium nitride film 190 that remain are also removed at the same time.
  • the nickel film 100 and the titanium nitride film 190 can be removed by treating them (SH process) using hydrogen peroxide solution and sulfuric acid solution, for example.
  • SH process hydrogen peroxide solution and sulfuric acid solution
  • a semiconductor device is completed in a process similar to that according to the first embodiment.
  • the semiconductor device according to the fifth embodiment has effect similar to that by the first embodiment.
  • the heat shielding film 190 is not limited to titanium nitride, and preferably does not react with the metal film 100 (nickel, for example). This is because if the heat shielding film 190 reacts with the metal film 100 , the metal film 100 is corroded.
  • the heat shielding film 190 is made of a material that is dissolved in hydrogen peroxide solution and sulfuric acid solution. This is because the metal film 100 and the heat shielding film 190 can be removed through the same process after silicide is formed.
  • FIG. 21 to FIG. 26 are cross-sectional diagrams showing a flow of a method of manufacturing a semiconductor device according to a sixth embodiment of the present invention.
  • the gate insulation film 30 is formed on the silicon substrate 10 in a process similar to that according to the first embodiment.
  • polysilicon and silicon nitride films are deposited on the gate insulation film 30 .
  • the polysilicon film and the silicon nitride film are formed in a gate pattern using a photolithographic technique and anisotropic etching such as RIE.
  • the first and the second gate electrodes 40 and 42 and silicon nitride film caps 177 are formed, as shown in FIG. 21 .
  • the silicon nitride film caps 177 cover the upper surfaces of the first and the second gate electrodes 40 and 42 , respectively.
  • the silicon nitride film caps 177 are etched using thermal phosphoric solution or RIE. As a result, trenches 175 are formed at positions where the silicon nitride film caps 177 were present.
  • the photoresist 90 is coated as a mask material on the first and the second gate electrodes 40 and 42 , respectively. As shown in FIG. 23 , the photoresist 90 is patterned to expose the upper surface of the first gate electrode 40 while keeping the second gate electrode 42 covered with the photoresist 90 .
  • the first gate electrode 40 is etched according to RIE or the like by using the photoresist 90 as a mask. As a result, the thickness of the first gate electrode 40 becomes smaller than that of the second gate electrode 42 .
  • the thickness of the first gate electrode 40 is 50 nm to 70 nm, and the thickness of the second gate electrode 42 is 100 nm.
  • Reference numeral 176 denotes a trench on the first gate electrode 40
  • reference numeral 177 denotes a trench on the second gate electrode 42 .
  • the photoresist 90 is removed, and the surface is pre-cleaned. Next, as shown in FIG. 24 , a nickel film 100 is deposited as a metal film.
  • the nickel film 100 is flattened by using CMP. As a result, the nickel film 100 that is present at the outside of the trenches 175 and 176 is removed, and the nickel film 100 within the trenches 175 and 176 remains.
  • the first and the second gate electrodes 40 and 42 are reacted with the nickel film 100 in an annealing process, thereby forming nickel silicide as a gate electrode.
  • the quantity of the nickel film 100 within the trench 176 needs to be sufficient enough to silicide the first gate electrode 40 .
  • the quantity of the nickel film 100 within the trench 175 is at a level that only the upper part of the second gate electrode 42 is silicided and the polysilicon layer 44 remains at a lower part of the second gate electrode 42 .
  • nickel is not supplied from the surrounding of the first and the second gate electrodes 40 and 42 . Therefore, a ratio of the quantity of polysilicon to the quantity of nickel of the nickel film 100 is constant regardless of a gate pattern in the first and the second gate electrodes 40 and 42 , respectively.
  • the thickness of the silicon nitride film cap 177 shown in FIG. 21 and the etching quantity of RIE shown in FIG. 23 are changed. In other words, when the thickness of the silicon nitride film cap 177 and the etching quantity of the first gate electrode 40 are controlled, a ratio of the quantity of polysilicon to the quantity of nickel of the nickel film can be determined.
  • the second gate electrode 42 can be partially silicided and the first gate electrode 40 can be fully silicided.
  • a configuration as shown in FIG. 26 is obtained through the above process.
  • the subsequent manufacturing process is similar to that according to the first embodiment.
  • a semiconductor device is completed.
  • the semiconductor device according to the sixth embodiment has effect similar to that according to the first embodiment.
  • impurities may be introduced into polysilicon that becomes a material of the first and the second gate electrodes, before the polysilicon is formed in a gate pattern.
  • the material of the first and the second gate electrodes may be amorphous silicon. However, according to the third embodiment, the material of the first and the second gate electrodes needs to be polysilicon.
  • the metal film 100 is not limited to nickel, and can be titanium (Ti), cobalt (Co), platinum (Pt), tungsten (W), erbium (Er), or yttrium (Y), for example.
  • the gate insulation film 30 can be a high dielectric, an oxide film, or an oxinitride film that is different from the materials explained above. Gate insulation films having different thicknesses can be formed in a full silicide region or other regions according to a known method. For example, a thin (equal to or smaller than 3 nm, for example) gate insulation film may be formed in a core circuit region where a full silicide MOSFET is formed, and a thick (equal to or larger than 3 nm, for example) gate insulation film may be formed in a peripheral circuit region where a normal silicide MOSFET is formed.
  • an SOI substrate and a partial SOI substrate may be employed for a semiconductor substrate, like in the modifications of the first embodiment shown in FIG. 6 and FIG. 7 .
  • etching according to CMP can be stopped in a state that the silicon oxide film slightly remains on the upper surface of the first and the second gate electrodes 40 and 42 , and the rest of the silicon oxide film can be removed by etching such as RIE.
  • the embodiments can be also applied to transistors in which channels and gate electrodes are in a three-dimensional configuration such as fin-type transistors.

Abstract

A method of manufacturing a semiconductor device comprises forming a gate insulation film on a semiconductor substrate; forming a first gate electrode and a second gate electrode on the gate insulation film; forming a mask material so as to expose an upper surface of the first gate electrode while keeping the second gate electrode covered; etching an upper part of the first gate electrode by using the mask material as a mask; removing the mask material; depositing a metal film on the first gate electrode and the second gate electrode; and siliciding the whole of the first gate electrode and an upper part of the second gate electrode.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is based upon and claims the benefit of priority from the prior Japanese Patent Applications No. 2004-328673, filed on Nov. 12, 2004, the entire contents of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a semiconductor device and a method of manufacturing the same.
  • 2. Background Art
  • Recently, manufacturing both a MOSFET having the whole gate electrode silicided (hereinafter referred to as a full silicide MOSFET) and a MOSFET having only an upper part of the gate electrode silicided (hereinafter referred to as a normal silicide MOSFET) on a same semiconductor substrate is considered.
  • However, in order to form a full silicide MOSFET and a normal silicide MOSFET on the same substrate, it is necessary to individually form a gate electrode of the full silicide MOSFET and the normal silicide MOSFET, respectively, by using a photolithographic technique and an etching technique. This may degrade the reliability of the gate insulation film or the like.
  • SUMMARY OF THE INVENTION
  • A method of manufacturing a semiconductor device according to an embodiment of the present invention comprises forming a gate insulation film on a semiconductor substrate; forming a first gate electrode and a second gate electrode on the gate insulation film; forming a mask material so as to expose an upper surface of the first gate electrode while keeping the second gate electrode covered; etching an upper part of the first gate electrode by using the mask material as a mask; removing the mask material; depositing a metal film on the first gate electrode and the second gate electrode; and siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
  • A method of manufacturing a semiconductor device according to other embodiment of the present invention comprises forming a gate insulation film on a semiconductor substrate; forming a first gate electrode and a second gate electrode on the gate insulation film; forming a mask material so as to expose an upper surface of the second gate electrode while keeping the first gate electrode covered; forming a silicidation restricting layer inside the second gate electrode, the silicidation restricting layer being less easily silicided than a material of the first and the second gate electrodes; removing the mask material; depositing a metal film on the first gate electrode and the second gate electrode; and siliciding the whole of the first gate electrode and an upper part above the silicidation restricting layer in the second gate electrode.
  • A method of manufacturing a semiconductor device according to further embodiment of the present invention comprises forming a gate insulation film on a semiconductor substrate; forming a first gate electrode and a second gate electrode on the gate insulation film; forming a mask material so as to expose an upper surface of the first gate electrode while keeping the second gate electrode covered; amorphizing an upper part of the first gate electrode by using the mask material as a mask; removing the mask material; depositing a metal film on the first gate electrode and the second gate electrode; and siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
  • A method of manufacturing a semiconductor device according to further embodiment of the present invention comprises forming a gate insulation film on a semiconductor substrate; depositing a gate electrode material on the gate insulation film; depositing a silicidation restricting material on the gate electrode material, the silicidation restricting material being less easily silicided than the gate electrode material; forming a first gate electrode and a second gate electrode, which have the silicidation restricting material on the upper surfaces thereof, on the gate insulation film by patterning the silicidation restricting material and the gate electrode material; forming a mask material on the silicidation restricting material on the upper surfaces of the first and the second gate electrodes; patterning the mask material so as to expose an upper surface of the silicidation restricting material on the first gate electrode while keeping the silicidation restricting material on the second gate electrode covered; removing the silicidation restricting material on the first gate electrode by using the mask material as a mask; removing the mask material; depositing a metal film on the first gate electrode and the second gate electrode; and siliciding the first gate electrode.
  • A method of manufacturing a semiconductor device according to further embodiment of the present invention comprises forming a gate insulation film on a semiconductor substrate; forming a first gate electrode and a second gate electrode on the gate insulation film; depositing a metal film on the first gate electrode and the second gate electrode; depositing a heat shielding film on the metal film; patterning the heat shielding film so as to expose the metal film on the first gate electrode while keeping the metal film on the second gate electrode covered; and siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
  • A method of manufacturing a semiconductor device according to further embodiment of the present invention comprises forming a gate insulation film on a semiconductor substrate; depositing a gate electrode material on the gate insulation film; depositing a cap material covering the gate electrode material; forming a first gate electrode and a second gate electrode, which have the cap material on the upper surfaces thereof, on the gate insulation film by patterning the cap material and the gate electrode material; forming a sidewall film on sidewalls of the first and the second gate electrodes and the cap material; forming trenches on the first and the second gate electrodes by removing the cap material; forming a mask material so as to expose an upper surface of the first gate electrode while keeping the second gate electrode covered; etching the upper part of the first gate electrode by using the mask material as a mask; removing the mask material; filling a metal material in the trenches on the first and the second gate electrodes; siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
  • A semiconductor device according to an embodiment of the present invention comprises a semiconductor substrate; a gate insulation film provided on the semiconductor substrate; a first gate electrode provided on the gate insulation film and used for a core circuit part of the semiconductor device, the first gate electrode being wholly silicided; and a second gate electrode provided on the gate insulation film and used for a peripheral circuit part of the semiconductor device, the second gate electrode having a laminated structure including a polysilicon layer and a silicide layer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional diagram showing a method of manufacturing a semiconductor device according to a first embodiment of the present invention;
  • FIG. 2 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 1;
  • FIG. 3 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 2;
  • FIG. 4 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 3;
  • FIG. 5 is a cross-sectional diagram showing a modification of the first embodiment;
  • FIG. 6 is a cross-sectional diagram showing other modification of the first embodiment;
  • FIG. 7 is a cross-sectional diagram showing a further modification of the first embodiment;
  • FIG. 8 is a cross-sectional diagram showing a method of manufacturing a semiconductor device according to a second embodiment of the present invention;
  • FIG. 9 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 8;
  • FIG. 10 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 9;
  • FIG. 11 is a cross-sectional diagram showing a method of manufacturing a semiconductor device according to a third embodiment of the present invention;
  • FIG. 12 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 11;
  • FIG. 13 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 12;
  • FIG. 14 is a cross-sectional diagram showing a method of manufacturing a semiconductor device according to a fourth embodiment of the present invention;
  • FIG. 15 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 14;
  • FIG. 16 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 15;
  • FIG. 17 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 16;
  • FIG. 18 is a cross-sectional diagram showing a method of manufacturing a semiconductor device according to a fifth embodiment of the present invention;
  • FIG. 19 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 18;
  • FIG. 20 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 19;
  • FIG. 21 is a cross-sectional diagram showing a method of manufacturing a semiconductor device according to a sixth embodiment of the present invention;
  • FIG. 22 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 21;
  • FIG. 23 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 22;
  • FIG. 24 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 23;
  • FIG. 25 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 24; and
  • FIG. 26 is a cross-sectional diagram showing a method of manufacturing a semiconductor device following FIG. 25.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the invention is not limited to the embodiments.
  • FIRST EMBODIMENT
  • FIG. 1 to FIG. 4 are cross-sectional diagrams showing a flow of a method of manufacturing a semiconductor device according to a first embodiment of the present invention. For convenience sake, these diagrams show one full silicide MOSFET and one normal silicide MOSFET, respectively. In actual practice, many full silicide MOSFETs and many normal silicide MOSFETs are formed on a silicon substrate. For example, it is considered to employ a full silicide MOSFET for a core circuit part of a semiconductor device and employ a normal silicide MOSFET for a peripheral circuit part. As a result, since a leak current through the gate insulation film decreases, the semiconductor device possesses higher reliability. A full silicide MOSFET may be employed for a logic part of a semiconductor device and a normal silicide MOSFET may be employed for an analog part. As a result, since threshold voltages of the transistors become lower, the operation speed of the semiconductor device increases.
  • As shown in FIG. 1, an element isolation region STI (shallow trench isolation) 20 is first formed on a silicon substrate 10 as a semiconductor substrate. For example, a silicon oxide film and a silicon nitride film (not shown) are deposited on the silicon substrate 10. Next, the silicon nitride film is patterned using a photolithographic technique and an RIE (reactive ion etching) method, or the like. The silicon oxide film and the silicon substrate 10 are etched to a predetermined depth using the patterned silicon nitride film as a mask, thereby forming a trench. Then, a silicon oxide film is deposited on the surface of the silicon substrate 10, thereby filling the silicon oxide film within the trench. This silicon oxide film is flattened according to CMP (chemical mechanical polishing) or the like. The silicon nitride film is removed to complete the shallow trench isolation 20.
  • Next, a gate insulation film 30 is formed on the surface of the silicon substrate 10. For example, the silicon substrate 10 is thermally oxidized to form a thermally-oxidized film on the surface of the silicon substrate 10. The gate insulation film 30 may be an oxinitride film or a nitride film that is formed by further nitriding the thermally-oxidized film. Alternatively, the gate insulation film 30 may be a high dielectric film such as a hafnium oxide film or a hafnium silicate film. The thickness of the gate insulation film 30 is equal to or smaller than 3 nm, for example.
  • Next, a first gage electrode 40 and a second gate electrode 42 made of polysilicon are formed on the gate insulation film 30. For example, polysilicon is deposited on the gate insulation film 30. The thickness of the polysilicon is 100 nm, for example. This polysilicon is formed in a gate pattern using a photolithographic technique and anisotropic etching such as RIE. As a result, the first and the second gate electrodes 40 and 42 are formed, respectively. In place of polysilicon, amorphous silicon can be used for the material of the first and the second gate electrodes 40 and 42.
  • Next, ion implantation is carried out to form an extension (LDD (lightly doped drain)) layer 50. Next, a spacer 60 is formed on a sidewall of the first and the second gate electrodes 40 and 42, respectively, and ion implantation is carried out to form a source/drain layer 70. Annealing is carried out to recover from damage of the silicon substrate 10 due to the ion implantation and to activate impurity. As a result, the extension layer 50 and the source/drain layer 70 are formed. An inter-layer insulation film 80 such as a silicon oxide film is deposited on the surface, and this inter-layer insulation film 80 is flattened by using CMP or the like. In this case, the inter-layer insulation film 80 is ground until when the upper surfaces of the first and the second gate electrodes 40 and 42 are exposed.
  • A photoresist 90 is coated as a mask material on the first and the second gate electrodes 40 and 42, respectively. As shown in FIG. 2, the photoresist 90 is patterned to expose the upper surface of the first gate electrode 40 while keeping the second gate electrode 42 covered with the photoresist 90. The first gate electrode 40 is etched according to RIE or the like by using the photoresist 90 as a mask. As a result, the thickness of the first gate electrode 40 becomes smaller than that of the second gate electrode 42. For example, the thickness of the first gate electrode 40 is 50 nm to 70 nm, and the thickness of the second gate electrode 42 is 100 nm.
  • The photoresist 90 is removed, and the surface is pre-cleaned. Next, as shown in FIG. 3, a nickel film 100 is deposited as a silicide metal film. The thickness of the nickel film 100 is 50 nm to 70 nm, for example. The first and the second gate electrodes 40 and 42, respectively, react with the nickel film 100 in an annealing process of about 500° C. As a result, nickel silicide is formed as a gate electrode. As shown in FIG. 4, since the height of the first gate electrode 40 is relatively small, the whole of the first gate electrode 40 is silicided. On the other hand, since the height of the second gate electrode 42 is relatively large, only the upper part of the second gate electrode 42 is silicided. As a result, the second gate electrode 42 has a polysilicon layer 44 on the gate insulation film 30, and has a silicide layer 46 on the polysilicon layer 44. In this way, the first gate electrode 40 is fully silicided, and the second gate electrode 42 has a two-layer configuration including the polysilicon layer 44 and the silicide layer 46.
  • The subsequent manufacturing process is the same as a normal transistor forming process. For example, after an oxide film (not shown) is deposited as an inter-layer film, a contact and wiring (not shown) are formed. As a result, a semiconductor device is completed.
  • The semiconductor device formed according to the first embodiment includes the semiconductor substrate 10, the gate insulation film 30, the first gate electrode 40, and the second gate electrode 42. The gate insulation film 30 is formed on the semiconductor substrate 10. The first gate electrode 40 is formed on the gate insulation film 30, and is made of silicide in total. The second gate electrode 42 is formed on the gate insulation film 30, and has the polysilicon layer 44 and the silicide layer 46 in lamination. The film thickness of the first gate electrode 40 is formed smaller than that of the second gate electrode 42.
  • Advantages of the present embodiment are explained. According to a conventional manufacturing method, after a polysilicon electrode is formed, polysilicon present in the region of forming a metal gate is once removed. A metal electrode is formed again in this region. Therefore, reliability of the gate insulation film is lowered.
  • However, according to the first embodiment, polysilicon that is present in the gate region of the full silicide MOSFET can be fully silicided, or can be changed into a metal gate, without removing this polysilicon. Therefore, according to the first embodiment, reliability of the gate insulation film 30 is not degraded. In other words, according to the present embodiment, a full silicide MOSFET and a normal silicide MOSFET having high reliability can be formed on the same substrate.
  • According to the conventional method, it is necessary to form a gate electrode twice to form both a full silicide MOSFET and a normal silicide MOSFET on the same substrate, as described above. However, according to the first embodiment, it is sufficient to form a gate electrode only once. As a result, both a full silicide MOSFET and a normal silicide MOSFET can be formed on the same substrate in an easier method than that conventionally used.
  • The words of “full silicide” and “fully silicide” mean that it is not necessary to silicide full of the gate electrode absolutely, but it is sufficient to silicide the gate electrode substantially from the top surface to the bottom surface of the gate electrode.
  • MODIFICATIONS OF THE FIRST EMBODIMENT
  • According to a modification of the first embodiment, a silicide layer 110 is also formed on the source/drain layer 70, as shown in FIG. 5. In this case, silicide can be formed on the source/drain layer 70, the first gate electrode 40, and the second gate electrode 42, in the same process. Alternatively, the first and the second gate electrodes 40 and 42 may be covered with a mask material, and the silicide layer 110 is formed on the source/drain layer 70. After that, the inter-layer insulation film 80 is flattened to expose the upper surfaces of the first and the second gate electrodes 40 and 42, and suicide is formed on both the first and the second gate electrodes 40 and 42.
  • According to another modification of the first embodiment, a semiconductor substrate is an SOI (silicon-on-insulator) substrate, as shown in FIG. 6. Particularly, according to this modification, a partial SOI substrate is used for the semiconductor substrate. For example, a full silicide MOSFET can be formed on an SOI region, and a normal silicide MOSFET can be formed on a bulk substrate.
  • A work function of a metal gate electrode made of nickel suicide is near an intermediate of a silicon band gap. Therefore, when a full silicide MOSFET is formed on a bulk substrate, there is a possibility that a threshold voltage becomes high. However, if a full silicide MOSFET is made a fully depletion type (FD type) transistor by forming the full silicide MOSFET on the SOI, the threshold voltage can be lowered. Therefore, when a full silicide MOSFET is formed in the SOI region and a normal suicide MOSFET is formed on other bulk substrate, the threshold voltages of both of them can be adjusted properly.
  • Further, as shown in FIG. 7, both a full silicide MOSFET and a normal silicide MOSFET may be formed on the SOI substrate. In this case, the thickness of the SOI and the thickness of a BOX in the full silicide MOSFET formation region can be different from the thickness of the SOI and the thickness of a BOX in the normal silicide MOSFET formation region, respectively. With this arrangement, the full suicide MOSFET can be made a fully-depletion type (FD type) transistor, and the normal silicide MOSFET can be made a partially-depletion type (FD type) transistor.
  • SECOND EMBODIMENT
  • FIG. 8 to FIG. 10 are cross-sectional diagrams showing a flow of a method of manufacturing a semiconductor device according to a second embodiment of the present invention. First, the configuration as shown in FIG. 1 is obtained in a process similar to that according to the first embodiment. Next, the photoresist 90 is coated as a mask material on the first and the second gate electrodes 40 and 42. As shown in FIG. 8, the photoresist 90 is patterned to expose the upper surface of the second gate electrode 42 while keeping the first gate electrode 40 covered with the photoresist 90. Nitrogen ions are implanted into the second gate electrode 42 using the photoresist 90 as a mask, for example. As a result, a nitrogen-implanted layer 43 that is less easily silicided than polysilicon is formed as a silicidation restricting layer inside the second gate electrode 42. The nitrogen-implanted layer 43 is provided between the polysilicon layer 41 and the polysilicon layer 45. As explained above, the second gate electrode 42 has a three-layer configuration including the polysilicon layer 41, the nitrogen-implanted layer 43, and the polysilicon layer 45.
  • After the photoresist 90 is removed, the nickel film 100 is deposited as a metal film, as shown in FIG. 9. The first and the second gate electrodes 40 and 42 are reacted with the nickel film 100 in an annealing process, thereby forming nickel silicide as a gate electrode, as shown in FIG. 10. In this process, in the second gate electrode 42, the polysilicon layer 45 and a part of the nitrogen-implanted layer 43 are silicided, but the polysilicon layer 41 is not silicided. This is because the nitrogen-implanted layer 43 is less easily silicided than the polysilicon layers 41 and 45. On the other hand, since the whole of the first gate electrode 40 is made of polysilicon, the first gate electrode 40 is fully silicided. Thereafter, a semiconductor device is completed in a process similar to that according to the first embodiment.
  • The semiconductor device according to the second embodiment has effect similar to that according to the first embodiment.
  • MODIFICATION OF THE SECOND EMBODIMENT
  • According to a modification of the second embodiment, a silicide layer (not shown) can be formed on the source/drain layer 70 (refer to FIG. 5). In this case, the first and the second gate electrodes 40 and 42 are covered with a mask material, and the silicide layer 110 is formed on the source/drain layer 70. After that, the inter-layer insulation film 80 is flattened to expose the upper surfaces of the first and the second gate electrodes 40 and 42. The first gate electrode 40 is covered by a mask material, and nitrogen ion is implanted into the second gate electrodes 42.
  • THIRD EMBODIMENT
  • FIG. 11 to FIG. 13 are cross-sectional diagrams showing a flow of a method of manufacturing a semiconductor device according to a third embodiment of the present invention. First, the configuration as shown in FIG. 1 is obtained in a process similar to that according to the first embodiment. Next, the photoresist 90 is coated as a mask material on the first and the second gate electrodes 40 and 42, respectively. As shown in FIG. 11, the photoresist 90 is patterned to expose the upper surface of the first gate electrode 40 while keeping the second gate electrode 42 covered with the photoresist 90. Germanium ions or silicon ions are implanted into the first gate electrode 40 using the photoresist 90 as a mask. As a result, polysilicon on the upper part of the first gate electrode 40 becomes amorphous silicon. With this arrangement, the first gate electrode 40 has a two-layer configuration including the amorphous silicon layer 49 and a polysilicon layer 48.
  • After the photoresist 90 is removed, the nickel film 100 is deposited as a metal film, as shown in FIG. 12. The first and the second gate electrodes 40 and 42 are reacted with the nickel film 100 in an annealing process, thereby forming nickel silicide as a gate electrode, as shown in FIG. 13. In this process, in the first gate electrode 40, the amorphous silicon layer 49 and the polysilicon layer 48 are fully silicided. On the other hand, only the upper part of the second gate electrode 42 is silicided, and the second gate electrode 42 has a two-layer configuration including the silicide layer 46 and the polysilicon layer 44. This is because amorphous silicon is more easily silicided than polysilicon. Therefore, at the time when the first gate electrode 40 is fully silicided, the second gate electrode 42 is not yet fully silicided. Accordingly, heat processing is stopped after the first gate electrode 40 is fully silicided and before the second gate electrode 42 is fully silicided. Thereafter, a semiconductor device is completed in a process similar to that according to the first embodiment. According to the third embodiment, effect similar to that by the first embodiment is obtained.
  • MODIFICATION OF THE THIRD EMBODIMENT
  • According to a modification of the third embodiment, a silicide layer (not shown) can be formed on the source/drain layer 70 (refer to FIG. 5). In this case, the first and the second gate electrodes 40 and 42 are covered with a mask material, and the silicide layer 110 is formed on the source/drain layer 70. After that, the inter-layer insulation film 80 is flattened to expose the upper surfaces of the first and the second gate electrodes 40 and 42, and germanium or silicon ion is implanted into the first gate electrodes 40.
  • FOURTH EMBODIMENT
  • FIG. 14 to FIG. 17 are cross-sectional diagrams showing a flow of a method of manufacturing a semiconductor device according to a fourth embodiment of the present invention. First, the gate insulation film 30 is formed on the silicon substrate 10 in a process similar to that according to the first embodiment. Next, polysilicon and silicon nitride films are deposited on the gate insulation film 30. The polysilicon film and the silicon nitride film are formed in a gate pattern using a photolithographic technique and anisotropic etching such as RIE. As a result, the first and the second gate electrodes 40 and 42 and silicon nitride film caps 170 and 172 are formed, as shown in FIG. 14. The silicon nitride film caps 170 and 172 cover the upper surfaces of the first and the second gate electrodes 40 and 42, respectively as silicidation restricting materials.
  • A photoresist (not shown) is coated on the silicon nitride film caps 170 and 172. The photoresist is patterned so that the silicon nitride film cap 172 on the second gate electrode 42 is covered and the upper surface of the silicon nitride film cap 170 on the first gate electrode 40 is exposed. The silicon nitride film cap 170 is removed using this photoresist as a mask. After the photoresist is removed, a configuration as shown in FIG. 15 is obtained.
  • As shown in FIG. 16, the nickel film 100 is deposited as a metal film. The first gate electrode 40 is reacted with the nickel film 100 in an annealing process, thereby forming nickel silicide as a gate electrode, as shown in FIG. 17. In this process, the first gate electrode 40 is fully silicided. On the other hand, the second gate electrode 42 is not silicided. This is because the silicon nitride film cap 172 is less easily silicided than polysilicon, and silicidation does not progress to the second gate electrode 42.
  • In a case that a silicide is formed on the upper surface of the second gate electrode 42 to lower the gate resistance of the second gate electrode 42, it is necessary to remove the silicon nitride film cap 172 and to form a film of nickel again on the upper surface of the second gate electrode 42 and to anneal the film.
  • FIFTH EMBODIMENT
  • FIG. 18 to FIG. 20 are cross-sectional diagrams showing a flow of a method of manufacturing a semiconductor device according to a fifth embodiment of the present invention. First, the configuration as shown in FIG. 1 is obtained in a process similar to that according to the first embodiment. Next, the nickel film 100 is deposited as a metal film, as shown in FIG. 18.
  • Next, as shown in FIG. 19, a titanium nitride film 190, for example, is deposited as a heat shielding film. The titanium nitride film 190 is patterned to cover the nickel film 100 on the second gate electrode 42 and to expose the nickel film 100 on the first gate electrode 40 using a photolithographic technique and wet etching.
  • The first and the second gate electrodes 40 and 42 are, subsequently, reacted with the nickel film 100 in an annealing process, thereby forming nickel silicide as a gate electrode, as shown in FIG. 20. I this silicidation process, it is preferred that a lamp heating apparatus or a light heating apparatus is used to facilitate the controlling of the silicidation. In this process, only the upper part of the second gate electrode 42 is silicided, and the lower part of the second gate electrode 42 is not silicided. This is because the silicidation of the second gate electrode 42 is restricted due to the shielding of heat by the titanium nitride film 190. On the other hand, since the titanium nitride film 190 is not present on the first gate electrode 40, the first gate electrode 40 is fully silicided.
  • The titanium nitride film 190 is removed next. Preferably, the nickel film 100 and the titanium nitride film 190 that remain are also removed at the same time. The nickel film 100 and the titanium nitride film 190 can be removed by treating them (SH process) using hydrogen peroxide solution and sulfuric acid solution, for example. Thereafter, a semiconductor device is completed in a process similar to that according to the first embodiment. The semiconductor device according to the fifth embodiment has effect similar to that by the first embodiment.
  • The heat shielding film 190 is not limited to titanium nitride, and preferably does not react with the metal film 100 (nickel, for example). This is because if the heat shielding film 190 reacts with the metal film 100, the metal film 100 is corroded. Preferably, the heat shielding film 190 is made of a material that is dissolved in hydrogen peroxide solution and sulfuric acid solution. This is because the metal film 100 and the heat shielding film 190 can be removed through the same process after silicide is formed.
  • SIXTH EMBODIMENT
  • FIG. 21 to FIG. 26 are cross-sectional diagrams showing a flow of a method of manufacturing a semiconductor device according to a sixth embodiment of the present invention. First, the gate insulation film 30 is formed on the silicon substrate 10 in a process similar to that according to the first embodiment. Next, polysilicon and silicon nitride films are deposited on the gate insulation film 30. The polysilicon film and the silicon nitride film are formed in a gate pattern using a photolithographic technique and anisotropic etching such as RIE. As a result, the first and the second gate electrodes 40 and 42 and silicon nitride film caps 177 are formed, as shown in FIG. 21. The silicon nitride film caps 177 cover the upper surfaces of the first and the second gate electrodes 40 and 42, respectively.
  • Next, as shown in FIG. 22, the silicon nitride film caps 177 are etched using thermal phosphoric solution or RIE. As a result, trenches 175 are formed at positions where the silicon nitride film caps 177 were present.
  • The photoresist 90 is coated as a mask material on the first and the second gate electrodes 40 and 42, respectively. As shown in FIG. 23, the photoresist 90 is patterned to expose the upper surface of the first gate electrode 40 while keeping the second gate electrode 42 covered with the photoresist 90. The first gate electrode 40 is etched according to RIE or the like by using the photoresist 90 as a mask. As a result, the thickness of the first gate electrode 40 becomes smaller than that of the second gate electrode 42. For example, the thickness of the first gate electrode 40 is 50 nm to 70 nm, and the thickness of the second gate electrode 42 is 100 nm. Reference numeral 176 denotes a trench on the first gate electrode 40, and reference numeral 177 denotes a trench on the second gate electrode 42.
  • The photoresist 90 is removed, and the surface is pre-cleaned. Next, as shown in FIG. 24, a nickel film 100 is deposited as a metal film.
  • As shown in FIG. 25, the nickel film 100 is flattened by using CMP. As a result, the nickel film 100 that is present at the outside of the trenches 175 and 176 is removed, and the nickel film 100 within the trenches 175 and 176 remains. The first and the second gate electrodes 40 and 42 are reacted with the nickel film 100 in an annealing process, thereby forming nickel silicide as a gate electrode. The quantity of the nickel film 100 within the trench 176 needs to be sufficient enough to silicide the first gate electrode 40. On the other hand, the quantity of the nickel film 100 within the trench 175 is at a level that only the upper part of the second gate electrode 42 is silicided and the polysilicon layer 44 remains at a lower part of the second gate electrode 42.
  • According to the present embodiment, nickel is not supplied from the surrounding of the first and the second gate electrodes 40 and 42. Therefore, a ratio of the quantity of polysilicon to the quantity of nickel of the nickel film 100 is constant regardless of a gate pattern in the first and the second gate electrodes 40 and 42, respectively. In order to change the ratio of the quantity of polysilicon to the quantity of nickel of the nickel film, the thickness of the silicon nitride film cap 177 shown in FIG. 21 and the etching quantity of RIE shown in FIG. 23 are changed. In other words, when the thickness of the silicon nitride film cap 177 and the etching quantity of the first gate electrode 40 are controlled, a ratio of the quantity of polysilicon to the quantity of nickel of the nickel film can be determined. As a result, the second gate electrode 42 can be partially silicided and the first gate electrode 40 can be fully silicided.
  • A configuration as shown in FIG. 26 is obtained through the above process. The subsequent manufacturing process is similar to that according to the first embodiment. As a result, a semiconductor device is completed. The semiconductor device according to the sixth embodiment has effect similar to that according to the first embodiment.
  • In the first to the sixth embodiments, in order to control the threshold voltage of transistors, impurities may be introduced into polysilicon that becomes a material of the first and the second gate electrodes, before the polysilicon is formed in a gate pattern.
  • The material of the first and the second gate electrodes may be amorphous silicon. However, according to the third embodiment, the material of the first and the second gate electrodes needs to be polysilicon.
  • The metal film 100 is not limited to nickel, and can be titanium (Ti), cobalt (Co), platinum (Pt), tungsten (W), erbium (Er), or yttrium (Y), for example.
  • The gate insulation film 30 can be a high dielectric, an oxide film, or an oxinitride film that is different from the materials explained above. Gate insulation films having different thicknesses can be formed in a full silicide region or other regions according to a known method. For example, a thin (equal to or smaller than 3 nm, for example) gate insulation film may be formed in a core circuit region where a full silicide MOSFET is formed, and a thick (equal to or larger than 3 nm, for example) gate insulation film may be formed in a peripheral circuit region where a normal silicide MOSFET is formed.
  • As a modification of the second to the sixth embodiments, an SOI substrate and a partial SOI substrate may be employed for a semiconductor substrate, like in the modifications of the first embodiment shown in FIG. 6 and FIG. 7.
  • In the process of flattening the inter-layer insulation film 80, etching according to CMP can be stopped in a state that the silicon oxide film slightly remains on the upper surface of the first and the second gate electrodes 40 and 42, and the rest of the silicon oxide film can be removed by etching such as RIE.
  • While the above embodiments are applied to a plane transistor, the embodiments can be also applied to transistors in which channels and gate electrodes are in a three-dimensional configuration such as fin-type transistors.

Claims (20)

1. A method of manufacturing a semiconductor device comprising:
forming a gate insulation film on a semiconductor substrate;
forming a first gate electrode and a second gate electrode on the gate insulation film;
forming a mask material so as to expose an upper surface of the first gate electrode while keeping the second gate electrode covered;
etching an upper part of the first gate electrode by using the mask material as a mask;
removing the mask material;
depositing a metal film on the first gate electrode and the second gate electrode; and
siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
2. The method of manufacturing a semiconductor device according to claim 1, wherein
a bottom part of the second gate electrode is made of polysilicon.
3. The method of manufacturing a semiconductor device according to claim 1, wherein
the metal film is made of nickel (Ni).
4. A method of manufacturing a semiconductor device comprising:
forming a gate insulation film on a semiconductor substrate;
forming a first gate electrode and a second gate electrode on the gate insulation film;
forming a mask material so as to expose an upper surface of the second gate electrode while keeping the first gate electrode covered;
forming a silicidation restricting layer inside the second gate electrode, the silicidation restricting layer being less easily silicided than a material of the first and the second gate electrodes;
removing the mask material;
depositing a metal film on the first gate electrode and the second gate electrode; and
siliciding the whole of the first gate electrode and an upper part above the silicidation restricting layer in the second gate electrode.
5. The method of manufacturing a semiconductor device according to claim 4, wherein
the silicidation restricting layer is formed by implanting nitrogen (N) into the second gate electrode.
6. A method of manufacturing a semiconductor device comprising:
forming a gate insulation film on a semiconductor substrate;
forming a first gate electrode and a second gate electrode on the gate insulation film;
forming a mask material so as to expose an upper surface of the first gate electrode while keeping the second gate electrode covered;
amorphizing an upper part of the first gate electrode by using the mask material as a mask;
removing the mask material;
depositing a metal film on the first gate electrode and the second gate electrode; and
siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
7. The method of manufacturing a semiconductor device according to claim 6, wherein
when the upper part of the first gate electrode is amorphized, germanium or silicon are implanted into the first gate electrode.
8. A method of manufacturing a semiconductor device comprising:
forming a gate insulation film on a semiconductor substrate;
depositing a gate electrode material on the gate insulation film;
depositing a silicidation restricting material on the gate electrode material, the silicidation restricting material being less easily silicided than the gate electrode material;
forming a first gate electrode and a second gate electrode, which have the silicidation restricting material on the upper surfaces thereof, on the gate insulation film by patterning the silicidation restricting material and the gate electrode material;
forming a mask material on the silicidation restricting material on the upper surfaces of the first and the second gate electrodes;
patterning the mask material so as to expose an upper surface of the silicidation restricting material on the first gate electrode while keeping the silicidation restricting material on the second gate electrode covered;
removing the silicidation restricting material on the first gate electrode by using the mask material as a mask;
removing the mask material;
depositing a metal film on the first gate electrode and the second gate electrode; and
siliciding the first gate electrode.
9. The method of manufacturing a semiconductor device according to claim 8, wherein
the silicidation restricting material is made of a silicon nitride film.
10. A method of manufacturing a semiconductor device comprising:
forming a gate insulation film on a semiconductor substrate;
forming a first gate electrode and a second gate electrode on the gate insulation film;
depositing a metal film on the first gate electrode and the second gate electrode;
depositing a heat shielding film on the metal film;
patterning the heat shielding film so as to expose the metal film on the first gate electrode while keeping the metal film on the second gate electrode covered; and
siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
11. The method of manufacturing a semiconductor device according to claim 10, wherein
the heat shielding film is made of a material which does not react with the metal film.
12. The method of manufacturing a semiconductor device according to claim 10, wherein
the heat shielding film is made of a material that is dissolved in hydrogen peroxide solution and sulfuric acid solution.
13. The method of manufacturing a semiconductor device according to claim 10, wherein
the whole of the first gate electrode and an upper part of the second gate electrode are silicided by using a lamp heating apparatus or a light heating apparatus.
14. A method of manufacturing a semiconductor device comprising:
forming a gate insulation film on a semiconductor substrate;
depositing a gate electrode material on the gate insulation film;
depositing a cap material covering the gate electrode material;
forming a first gate electrode and a second gate electrode, which have the cap material on the upper surfaces thereof, on the gate insulation film by patterning the cap material and the gate electrode material;
forming a sidewall film on sidewalls of the first and the second gate electrodes and the cap material;
forming trenches on the first and the second gate electrodes by removing the cap material;
forming a mask material so as to expose an upper surface of the first gate electrode while keeping the second gate electrode covered;
etching the upper part of the first gate electrode by using the mask material as a mask;
removing the mask material;
filling a metal material in the trenches on the first and the second gate electrodes; and
siliciding the whole of the first gate electrode and an upper part of the second gate electrode.
15. The method of manufacturing a semiconductor device according to claim 14, wherein
the cap material is made of a silicon nitride.
16. A semiconductor device comprising:
a semiconductor substrate;
a gate insulation film provided on the semiconductor substrate;
a first gate electrode provided on the gate insulation film and used for a core circuit part of the semiconductor device, the first gate electrode being wholly silicided; and
a second gate electrode provided on the gate insulation film and used for a peripheral circuit part of the semiconductor device, the second gate electrode having a laminated structure including a polysilicon layer and a silicide layer.
17. The semiconductor device according to claim 16 further comprising:
a silicidation restricting layer provided below the suicide layer in the second gate electrode, the silicidation restricting layer being less easily silicided than polysilicon.
18. A semiconductor device comprising:
a semiconductor substrate;
a gate insulation film provided on the semiconductor substrate;
a first gate electrode provided on the gate insulation film, the first gate electrode being wholly silicided; and
a second gate electrode provided on the gate insulation film, the second gate electrode having a laminated structure including a polysilicon layer and a silicide layer, wherein
the film thickness of the first gate electrode is formed smaller than that of the second gate electrode.
19. The semiconductor device according to claim 18, wherein
the silicide layer is made of nickel silicide.
20. The semiconductor device according to claim 18, wherein
the first gate electrode includes germanium (Ge).
US11/137,512 2004-11-12 2005-05-26 Semiconductor device and manufacturing method therefor Abandoned US20060105527A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/882,621 US7754593B2 (en) 2004-11-12 2007-08-03 Semiconductor device and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-328673 2004-11-12
JP2004328673A JP4181537B2 (en) 2004-11-12 2004-11-12 Semiconductor device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/882,621 Division US7754593B2 (en) 2004-11-12 2007-08-03 Semiconductor device and manufacturing method therefor

Publications (1)

Publication Number Publication Date
US20060105527A1 true US20060105527A1 (en) 2006-05-18

Family

ID=36386909

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/137,512 Abandoned US20060105527A1 (en) 2004-11-12 2005-05-26 Semiconductor device and manufacturing method therefor
US11/882,621 Expired - Fee Related US7754593B2 (en) 2004-11-12 2007-08-03 Semiconductor device and manufacturing method therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/882,621 Expired - Fee Related US7754593B2 (en) 2004-11-12 2007-08-03 Semiconductor device and manufacturing method therefor

Country Status (2)

Country Link
US (2) US20060105527A1 (en)
JP (1) JP4181537B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050243762A1 (en) * 2004-04-29 2005-11-03 Interdigital Technology Corporation Wireless communication method and system for configuring radio access bearers for enhanced uplink services
US20070077740A1 (en) * 2005-10-04 2007-04-05 Lee Han C Methods of fabricating fully silicide gate and semiconductor memory device having the same
US20070178683A1 (en) * 2006-02-02 2007-08-02 Texas Instruments, Incorporated Semiconductive device fabricated using a two step approach to silicide a gate and source/drains
US20070210351A1 (en) * 2006-03-08 2007-09-13 Yoshinori Tsuchiya Semiconductor device, and method for manufacturing the same
US20080135955A1 (en) * 2006-12-08 2008-06-12 Hayato Korogi Semiconductor device and method for fabricating the same
US20080227278A1 (en) * 2007-03-14 2008-09-18 Nec Electronics Corporation Method of manufacturing semiconductor device
US20090001483A1 (en) * 2007-02-28 2009-01-01 Interuniversitair Microelektronica Centrum (Imec) Method for Forming a Nickelsilicide FUSI Gate
US20100019324A1 (en) * 2006-12-22 2010-01-28 Hiroyuki Ohara Manufacturing method of semiconductor device and semiconductor device
US20130200442A1 (en) * 2012-02-07 2013-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Salicide formation using a cap layer
US9362180B2 (en) 2014-02-25 2016-06-07 Globalfoundries Inc. Integrated circuit having multiple threshold voltages
US9401362B2 (en) * 2014-04-04 2016-07-26 Globalfoundries Inc. Multiple threshold voltage semiconductor device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268065B2 (en) * 2004-06-18 2007-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of manufacturing metal-silicide features
US7151023B1 (en) * 2005-08-01 2006-12-19 International Business Machines Corporation Metal gate MOSFET by full semiconductor metal alloy conversion
US7786537B2 (en) 2005-11-14 2010-08-31 Nec Corporation Semiconductor device and method for manufacturing same
US7297618B1 (en) * 2006-07-28 2007-11-20 International Business Machines Corporation Fully silicided gate electrodes and method of making the same
JP4458129B2 (en) * 2007-08-09 2010-04-28 ソニー株式会社 Semiconductor device and manufacturing method thereof
JP5130834B2 (en) * 2007-09-05 2013-01-30 ソニー株式会社 Semiconductor device and manufacturing method thereof
DE102014111140B4 (en) * 2014-08-05 2019-08-14 Infineon Technologies Austria Ag Semiconductor device with field effect structures with different gate materials and method for the production thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562718B1 (en) * 2000-12-06 2003-05-13 Advanced Micro Devices, Inc. Process for forming fully silicided gates
US6872627B2 (en) * 2001-07-16 2005-03-29 Taiwan Semiconductor Manufacturing Company Selective formation of metal gate for dual gate oxide application
US6929992B1 (en) * 2003-12-17 2005-08-16 Advanced Micro Devices, Inc. Strained silicon MOSFETs having NMOS gates with work functions for compensating NMOS threshold voltage shift
US20050199963A1 (en) * 2004-03-12 2005-09-15 Semiconductor Leading Edge Technologies, Inc. Semiconductor device and manufacturing method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058822A (en) 1998-08-12 2000-02-25 Fujitsu Ltd Manufacture of semiconductor device
US20020061639A1 (en) * 2000-10-02 2002-05-23 Kazuichiroh Itonaga Semiconductor device and method for manufacturing the same
JP4457688B2 (en) 2004-02-12 2010-04-28 ソニー株式会社 Semiconductor device
JP2005353655A (en) 2004-06-08 2005-12-22 Sanyo Electric Co Ltd Manufacturing method of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562718B1 (en) * 2000-12-06 2003-05-13 Advanced Micro Devices, Inc. Process for forming fully silicided gates
US6872627B2 (en) * 2001-07-16 2005-03-29 Taiwan Semiconductor Manufacturing Company Selective formation of metal gate for dual gate oxide application
US6929992B1 (en) * 2003-12-17 2005-08-16 Advanced Micro Devices, Inc. Strained silicon MOSFETs having NMOS gates with work functions for compensating NMOS threshold voltage shift
US20050199963A1 (en) * 2004-03-12 2005-09-15 Semiconductor Leading Edge Technologies, Inc. Semiconductor device and manufacturing method therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050243762A1 (en) * 2004-04-29 2005-11-03 Interdigital Technology Corporation Wireless communication method and system for configuring radio access bearers for enhanced uplink services
US20070077740A1 (en) * 2005-10-04 2007-04-05 Lee Han C Methods of fabricating fully silicide gate and semiconductor memory device having the same
US20070178683A1 (en) * 2006-02-02 2007-08-02 Texas Instruments, Incorporated Semiconductive device fabricated using a two step approach to silicide a gate and source/drains
US20090032884A1 (en) * 2006-03-08 2009-02-05 Kabushiki Kaisha Toshiba Semiconductor device, and method for manufacturing the same
US20070210351A1 (en) * 2006-03-08 2007-09-13 Yoshinori Tsuchiya Semiconductor device, and method for manufacturing the same
US7416967B2 (en) * 2006-03-08 2008-08-26 Kabushiki Kaisha Toshiba Semiconductor device, and method for manufacturing the same
US20080135955A1 (en) * 2006-12-08 2008-06-12 Hayato Korogi Semiconductor device and method for fabricating the same
US20100019324A1 (en) * 2006-12-22 2010-01-28 Hiroyuki Ohara Manufacturing method of semiconductor device and semiconductor device
US20110237036A1 (en) * 2006-12-22 2011-09-29 Renesas Electronics Corporation Manufacturing method of semiconductor device and semiconductor device
US20090001483A1 (en) * 2007-02-28 2009-01-01 Interuniversitair Microelektronica Centrum (Imec) Method for Forming a Nickelsilicide FUSI Gate
US7989344B2 (en) * 2007-02-28 2011-08-02 Imec Method for forming a nickelsilicide FUSI gate
US8344460B2 (en) 2007-02-28 2013-01-01 Imec Method for forming a nickelsilicide FUSI gate
US20080227278A1 (en) * 2007-03-14 2008-09-18 Nec Electronics Corporation Method of manufacturing semiconductor device
US7858462B2 (en) * 2007-03-14 2010-12-28 Renesas Electronics Corporation Method of manufacturing semiconductor device
US20130200442A1 (en) * 2012-02-07 2013-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Salicide formation using a cap layer
US9343318B2 (en) * 2012-02-07 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Salicide formation using a cap layer
US9978604B2 (en) 2012-02-07 2018-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. Salicide formation using a cap layer
US9362180B2 (en) 2014-02-25 2016-06-07 Globalfoundries Inc. Integrated circuit having multiple threshold voltages
US9401362B2 (en) * 2014-04-04 2016-07-26 Globalfoundries Inc. Multiple threshold voltage semiconductor device

Also Published As

Publication number Publication date
US7754593B2 (en) 2010-07-13
US20080293226A1 (en) 2008-11-27
JP2006140319A (en) 2006-06-01
JP4181537B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
US7754593B2 (en) Semiconductor device and manufacturing method therefor
US6908801B2 (en) Method of manufacturing semiconductor device
US7573106B2 (en) Semiconductor device and manufacturing method therefor
EP2257977B1 (en) Method for manufacturing an integrated circuit having long and short channel metal gate devices
US9281390B2 (en) Structure and method for forming programmable high-K/metal gate memory device
TWI390666B (en) Method for fabricating soi device
JP5011196B2 (en) Semiconductor device and manufacturing method thereof
US20080085590A1 (en) Method of making FUSI gate and resulting structure
US7582934B2 (en) Isolation spacer for thin SOI devices
US20050048722A1 (en) Method of manufacturing semiconductor device
US20070278587A1 (en) Semiconductor device and manufacturing method thereof
US20060170047A1 (en) Semiconductor device and method of manufacturing the same
JP2009545168A (en) Method of selectively forming a fully silicided (FUSI) gate electrode on a gate dielectric and a semiconductor device having the fully silicided gate electrode
JP2003037264A (en) Semiconductor device and manufacturing method therefor
JP4904472B2 (en) Manufacturing method of semiconductor device
US7179714B2 (en) Method of fabricating MOS transistor having fully silicided gate
US20060228885A1 (en) Method of manufacturing semiconductor device
JP2006156807A (en) Semiconductor device and its manufacturing method
JP2008288364A (en) Semiconductor device, and manufacturing method of semiconductor device
US7915695B2 (en) Semiconductor device comprising gate electrode
JP2010098157A (en) Process of fabricating semiconductor device
JP2005294799A (en) Semiconductor device and its manufacturing method
US9076818B2 (en) Semiconductor device fabrication methods
KR100247811B1 (en) Method for manufacturing semiconductor device
JP2010056239A (en) Semiconductor device, and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAITO, TOMOHIRO;REEL/FRAME:016875/0172

Effective date: 20050725

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION