TW557634B - Digital-to-analog converter having error correction - Google Patents

Digital-to-analog converter having error correction Download PDF

Info

Publication number
TW557634B
TW557634B TW091117664A TW91117664A TW557634B TW 557634 B TW557634 B TW 557634B TW 091117664 A TW091117664 A TW 091117664A TW 91117664 A TW91117664 A TW 91117664A TW 557634 B TW557634 B TW 557634B
Authority
TW
Taiwan
Prior art keywords
error
value
input
dac
output
Prior art date
Application number
TW091117664A
Other languages
English (en)
Inventor
Ola Andersson
Jacob Wikner
Original Assignee
Ericsson Telefon Ab L M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ericsson Telefon Ab L M filed Critical Ericsson Telefon Ab L M
Application granted granted Critical
Publication of TW557634B publication Critical patent/TW557634B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1033Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

557634 ⑴ 故、;發明說明 . (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) 技術範疇 本發明和具有誤差校正之數位至類比轉換器(DACs)有關。 發明背景 許多電子裝置使用數位至類比轉換器提供電輸出信號或物理 非電輸出信號。此裝置包含如行動電話或CD播放器之如具天線 以傳送電磁波或提供音頻信號之電子數位裝置。DAC在週期性 重覆時間接收輸入數位信號及在該重覆時間稍後之時間提供為 如電壓或電流之輸出信號,該信號大小應和先前輸入信號表示 之值成正比。該週期性重覆時間之間之時間週期稱為更新週 期。 除了如元件不匹配,影響DAC線性之一重要限制因素是寄生 電阻和電容造成之電流源和開關之不理想行為。討論此問題之 文獻有:J.J. Wikner and Ν. Tan,“Modeling of CMOS digital-to-analog converters for telecommunication’’,IEEE Trans. On Circuits and Systems II,Vol· 46, No. 5,pp. 489-499,May 1999,A. van den Bosch, M. Steyaert,and W. Sansen,“SFDR-bandwidth limitations for high speed high resolution current steering CMOS D/A converters’’,Proc. 6th IEEE Int. Conf. On Electronics, Circuits,and Systems,Vol. 3,1999, pp. 1 193-1 196,J.J· Wikner and N. Tan,“Influence of Circuit Imperfections on the Dynamic Performance of DACs”,NorChip’97 Conference, Tallinn, Estonia,Nov. 1997,K. 0. Andersson and J,J. Wikner, “Characterization of a CMOS current-steering DAC using state-space models95, Proc. IEEE 2000 Midwest Symposium on Circuits -6- 557634 (2) and Systems, MWSCAS,00, Lansing, MI,USA,Aug. 2000, J.J. Wikner, “Studies on CMOS Digital-to-Analog Converters”,Link^ping Studies in Science and Technology,Dissertation No. 667, ISBN 91-7219-910-5, 2001,and M· Gustavsson,J.J. Wikner, and N· Tan,“CMOS dataconverters for communications”,Kluwer Academic Publishers,2000 ° 電流源及電流開關之輸出節點寄生電容之影響常最嚴重,所 得到之务態非線性隨信號頻率增加而變大,如單音輸入信號之 三次諧波項目之增加是15-20 dB/信號頻率增加10倍,參閱上述 最後三個文獻。這一般適用在DAC輸出值無法由無記憶體表示 估計之較高頻率。 發明概論 本發明之一目的是提供上述現象低複雜度之模型。 本發明之另一目的是提供之模型可使誤差補償系統使用很便 宜之晶片上實施。 本發明之另一目的是提供決定誤差校正技術及具有用以校正 決定誤差之校正裝置之DAC。 故一般為補償DAC之誤差會將DAC之輸入值在進入DAC前 予以修正,以使誤差降低。輸入值之修正是用以依照特定模型 補償產生之誤差。依照該模型,DAC之各輸出值是直接和個別 輸入值成正比之所要值和一誤差之和。該誤差是決定輸出值即 所要值和DAC實際提供之先前輸出值間差和只為個別輸入信號 之相對函數之步階誤差之乘積。 圖式簡述 現利用非限制性實施例,參照附圖描述本發明,其中: (3)
-圖1是理想數位至類比轉換器之電路圖, -圖2 a是具有内電阻之單位電流源等效電路模型, -圖2b是具有内電阻之一般電流源等效電路模型, -圖2c是和負載連接及包含具有内電阻之電流源之等效電路 模型, -圖3是和負載連接及包含具有内電阻之電流源之數位至類比 轉換器之較複雜等效電路模型, -圖4是和電阻負載連接及具有和該電阻負載並聯之多個電容 寄生負載之數位至類比轉換器等效電路模型, -圖5是數位至類比轉換器產生輸出值之方式模型方塊圖, 圖6a疋數位至類比轉換器之輸入值函數之相對步階誤差負 值, -圖6b是為輸入值和數位至類比轉換器中所要轉換符號之乘 積之函數之相對步階誤差負值, -圖7之方塊圖和圖5類似,是數位至類比轉換器產生輸出值之 方式改良模型方塊圖, -圖8之方塊圖和圖5類似,是數位至類比轉換器產生輸出值之 方式另一改良模型方塊圖, -圖9之方塊圖說明用以產生數位至類比轉換器之修正輸入值 之程序, -圖10是依照先前技術之數位至類比轉換器之誤差補償方法 方塊圖, -圖11a及lib分別是沒有誤差補償及具有誤差補償之數位至 類比轉換器頻率函數之輸出信號頻譜。 557634 (4)
發明細述 理梘DAC 圖1顯示理想數位至類比轉換器概略電路圖。在N個並聯線J 上’連接提供電流強度1〇, Ιι,…,In之電流源3。控制開關5亦和 線1相連,其輸出終端和輸出線9摘合之共節點7相連,線9之輸 出電流強度Iout供至負載或終端電阻R。 節點7之輸出電壓是V。u t。開關5由表示數位輸入向量 X = [bNel,…,bG]之輸入電信號控制,接著X表示整數值 /V-1 X = ,其中w^bi之權重,在大部分情形Wi是整 數及bi s {0, 以下字母X將用來表示整數值及向量,因混淆 之機率很小。DAC所要進行之作用是架構和X成正比之輸出電 流或壓即 lLbrwrIunit^ x^unit .-Ο ⑴ 或 hh']unit 含 R’x、iunit / »〇 若分析圖1之概圖可發現,若線1之開關5在卜=!時N〇 i為打 開及在bi ==: 〇時為關閉,可達成此作用,因電流源3之電流是依 照柯西荷夫電流定律相加。 見在考量電流源3非理想狀況之情形。如圖2a之概圖所示, : %流源之輸出或明顯電卩且,即權重w = 1之電流源設定為 557634
Runit °提供具有權重弋之電流強度1(之一般電流源是由並聯%等 單位電流源架構,則對應輸出電阻如圖2b所示為
% 若考量特定輸入值X之DAC 電流為亦為所要輸出電流·· ^mrX 該等效輸出電阻為: (2) 可分析圖2c之等效電路。該等效(3)
分析圖1之電路及由等式(3)及(4)得到:
1+ΡΜ·Χ (5)
其中Κ是#數及Pll是單位電流源之負載電阻和輸出電阻間比 率。雖然因電晶體是非線性裝置等使此電路模型對提供實際電 路輸入-輸出關係之精確表示而言太過簡化,但可提供用以架構 具有極向、實際無限輸出電阻之電流源以達到高度線性所需之 觀念。但要知道若有考量過上述文獻實質揭示之設計準則,則 要達到很高輸出電阻很少且實際不是問題。 電流源之輸it有限是DAC靜態性能之艮制因素,但如先前 所述實際並非問題。但對高頻作用很重要之DAC動態行為受電 源〈有限輸出電容及其它寄生電容之影響很大。it已在一歧 -10· 557634 ⑹ 上述文獻中討論。 在所提Andersson及Wikner之文獻中揭示較精巧之模型,其考 量寄生電容和開關電阻之影響。圖3顯示依照此模型之電路 圖。此模型在動態轉換特性上較可和實際DAC對應。故寄生電 容和部分電流源内電阻並聯。寄生電容和終端或負載電阻並 聯。另外在開關之關閉位置,開關和包含並聯電阻及電容之關 閉負載連接。 除了上述之模型,該文獻亦提供其它非理想因素之型,如元 件不匹配及取樣時鐘速度偏差之影響。這些現象未包含於以下 所述之模型中。但並不表示這些現象不重要,但在此考量主要 受寄生元件影響之情形。 觀察上述模型可得到以下結果··除了所要或理想電流源,尚 有寄生網料寄ϋ件網路存在和#出節點相$,造成非線性 行為產生。此寄生網路造成電流損失,即一部分要到負的電 流,在寄生網路流失。 例如可考量純為電容之寄生網路情形。在此情形可由圖4之 電路圖將DAC模型化,而不考量電流源之内寄生電容。該電路 和圖i之電路不同’電容Cx和負載電㈣並聯。電容Cx表示和輸 入碼X有關之寄生電容。這是合理的假設,因和輸出連接之電 成源數目包含擁有之電容,{由輸入碼決定。對此簡化電路模 型可由以下微分等式得到輸出電壓: 其中所要輸出電流為 (6) 557634 ⑺
【X = knit·又· (7) 可發現等式(6)表示所有固定碼x之一次線性決定處理。此等式 之一般解答為 〜 (8) 其中A及B由物理上施加之邊界條件決定,一般做為決定處理之 起始及結束值: 匕财(〇卜%(起始電壓) 以及 =/χ·ϋ!=心(所要輸出電壓), 得到 (10) 時間t之相對步階誤差^心,χ)定義為 ere^t,X) = V〇ut(〇 = !心- Vx^V〇利用等式(11)得到 (11) (12) erei(^^0 ^ e ^ (13) 嘖取樣3坪間(即當x為固定則cx時)之間輸出· 壓又瞬變特性之—此 >荷出% , 二運續時間分析表示。間歇性時間分i/Μθ i 的是此期間結束時之電 〒间刀析想要承、 壓值,即電·Υ(η) = νοια(η·Τ), JL 中 主 更新瞬間之整數及Τ為更新期間。 中η為表示 利用等式(11)及(13)得到 -12 - 557634 (8) γ(η) " Voukn · ^ " Vm - ere^ Ά^)) * ( νχ- ^out((n - 1) · Ό) ( i 4) 雖然Y(n)及X(n)間之關係為動態,即和輸入信號χ之所有先前 取樣有關,已發現信號erel是輸入信號χ之動態函數,即只和目 月|J < X值有關。另外計算輸出Υ(η)只需要值加上目前輸入 X(n)及先前輸出 γ(η-ΐ) = vout((n-l).T))。 現將討論依照圖4模型電路,實際實施DAC之決定誤差特性。 首先將輸出電壓Vout歸一化,使所要輸出電壓Vx = χ。根據等式(14) 進行以下假設(稍後將略做修正) 7(n) = X(n) - erel(X(n)) · (X(n) ^ Y(n - 1)) 故一般特定更新瞬間之輸出值是所要值x (n)加上另外外之誤 差。此另外之誤差是二個因數的乘積: -決定輸出步驟X(n) — 以及 ,-相對步階誤差erei(X(n)),只是目前輸入信號之函數,即輸入 k號X之靜態函數。 右刀析依照等式〇 5)之基本假設,將發現估計輸出值只需二 個函數值’即估計先前輸出值冲·1)及目前輸入值X(n)。另外估 ^乎估)相對步階誤差0⑻)需要如檢查表之幻箱。若使用檢 -胃U相對步階ere|(x)是幾個值之分段常數,如相對步階 誤差〜⑻只是\之_些謂的函數時,檢查表大小可維持很 輸出說明依照等式(15)’輸出值γ⑻和輸入值x⑻及先前 (Limn、:1)有關之方塊圖。故將輸入值Χ(η)提供給如檢查表 值。該二Γ:方塊,以在其輸出產生相對步階誤差⑽⑽ '疋供到卜和節點13之第—輸出,節點13之第二 -13 - (9) 557634 "輸入接收儲存於記憶體或暫存器15之先前或舊的輸出值 第-和節點13之輸出輸人到亦自功能方塊㈣收步障 疾差erel(X(n))之積節點17。在節點17由將輸入終端相乘得到之 值㈣亦自暫存器15接收舊的輸出值γ㈤)之第二和節點Η。 在第二和節點之輸出終端提供該所要新的和節點。
圖6a是利用提及之Anderss〇n及之文獻揭示之模型得到 之/、的步1¾為差_erei模擬值。該輸入信號是隨機白色雜訊信號, 具有矩形機率密度使所有信號轉換大略機率相等。由此可看到 假設相對步階誤差erei只為χ之函數並不完全正確,因有些值會 是一片。但可看到相對步階誤差erel值大略遵循由χ決定之曲 線。右包含為不要之轉換符號,即輸入值和舊的輸出值間差的 符號sgr^XhyY^i))之新的參數,該估計引入之誤差方差降 低。這示於圖6b,其中負的相對步階誤差乂⑻畫成不要旳轉換符 號乘上輸入值或所要輸出值,即X(n).Sgn(X(n)-Y(lM》。 此發現使得對依照等式(15)及圖5之模型做些修正而得到二 個替代但類似之模型,以Μγ&Μχ表示,以下將進行描述。
模型Μγ 以上發現之直接結論是假設相對步階誤差erei 一般可視為X⑷ 及Y(n-l)之函數。這較相對誤差心61是乂(11)及如上建議轉換符號之 函數之表示常見。執行估計之功能方塊可再次為檢查表,及再 次此檢查表可如只以X(n)及γ(η-1)之一些MSB處理以維持該表 大小很小。圖7之方塊圖說明此DAC模型。 圖7之方塊圖和圖5不同之處是舊的輸出值γ(η-1)是功能方塊 Π之第二輸入。 -14- 557634
(ίο) 模型Mx 上述之模型需要在相對步階誤差之&可開始決定或估計 前,估計Y(n-l)。若假設舊的輸入或所要值x(n_1}和舊的輸出值 Y(n-l)間之絕對誤差丨很小,在估計相對步階誤差 erel時可將Y(n-l)以X⑻取代。這在只使用幾個丫⑻丨)之msb估計 相對步階誤差erel時特別合理。這得到圖8之改良方塊圖,說明 DAC之輸出值產生方式。 圖8之方塊圖和圖5不同之處是舊的輸入或所要值是功 月匕方塊11心第二輸入,其儲存於第二記憶體單元或暫存器21。 現在描述根據以上DAC操作模型之誤差校正方法。為求簡 早,使用依照圖5及等式(15)之基本假設之模型。決定可得到所 要輸出信號Υ(η) = χ(η)之修正輸入信號j(n)。然後假設在最後更 新瞬間,誤差校正成功即丫㈤卜乂⑹)。若引用輸入信號z(n), 由等式(15)得到以下輸出信號: 設定Y(n) = χ(η)得到 X[n) = X(n- 1) +勒)-❸-” eUX{n)) 右另假設該校正很小或和輸入信號差異不大,可亦假設 〜如))Ά⑷) 得到 如0 35 办-1) ^^η)-Άη - \) ere^)) (16) 值可儲存於檢查表。利用等式(16)得到提供該調整值X⑻ -15- 557634
⑼ 之處理,由圖9之方塊圖說明。可接著在稍後描述用以校正DAC 模型之裝置中執行此處理。
輸入X(n)供至如檢查表(LUT)31之功能方塊,以在輸出產生相 對步階誤差erel(X(n))之倒數值。該輸入值亦供至第一和節點33 之第一輸入,在節點33之第二反向輸入接收儲存於記憶體或暫 存器35之先前或舊的輸入值X(n-l)。第一和節點33之輸出輸入 到亦接收來自功能方塊3 1之相對步階誤差erel(X(n))倒數之積節 點37。利用將輸入終端之值相乘於節點37得到之值供至亦接收 來自暫存器15之舊的輸入值X(n-l)之第一和節點39。在第二和 節點39輸出終端提供修正輸入值i(n)。
在 K. 0. Andersson,Niklas U. Andersson, and J. J. Wikner, “Spectral shaping of DAC nonlinearity errors through modulation of expected errors59, Proc. IEEE International Symposium on Circuits and Systems (ISCAS’01),Vol· 3,pp. 417-420,Sydney,Australia,May 6-9, 2001揭示根據delta-sigma調變之誤差校正方法。圖10之方塊圖概 略顯示此先前誤差校正方法所用之基本方法。先前方法之觀念 是於回授迴路使用估計誤差抑制此信號頻帶中之非線性失真造 成高頻失真。可於類比範圍中過濾掉此高頻失真。此技術需要 如上述DAC引入之非線性誤差之好的模型。 該輸入信號供至亦在反向輸入提供一校正之第一和節點 41。利用DAC模型方塊43計算此校正以估計輸出信號。此估計 供至亦在反向輸入終端提供輸入信號之第二和節點45。則第二 和提供之輸出信號是估計誤差。此估計誤差通過具有轉換函數 之濾波器47,並做為第一和節點4 1之校正。該校正輸入信號輸 -16- 557634
(12) 入到DAC 49。 現將描述一些量測結果以顯示該型在真實世界之正確性。圖 11 a及11 b顯示具有及不具有補償之量測單音頻譜範例。所用模 型是將依照圖5之模型極簡化°檢查表只有二個值及由輸入信 號之MSB控制。假設當Xmsb = 0,相對誤差erei = 〇及當XMSB = 1時, erei = a,其中a是一些常數。雖然這只是粗略估計,但圖11 a、11 b 仍可看到主要之亂真音(第二諧波)降低12 dB,造成高頻失真。 已依最佳可能性能選擇參數a。 故已描述之低複雜度模型將和寄生元件造成之決定信號有 關之信號納入考量。該模型之低複雜度使之適於用於信號補償 技術之晶片上實施。使用該模型之誤差補償技術量測結果顯示 該模型有助於誤差補償。應儲存於檢查表之相對步階誤差絕對 值因不同之電路而異,並可如由模擬及/或線上量測輸出信號而 得到此值。

Claims (1)

  1. 557634 拾、申請專利範圍 1· 一種補償DAC中誤差之方法,包含將1)八(:之輸入值在進入 DAC前予以修正,其特徵在於該修正係用以補償依照一模 型產生之誤差’其中DAC之各輸出值是與個別輸入值直接 成正比之一所要值及一誤差之和,該誤差是決定輸出值(亦 即DAC實際提供之前一輸出值和所要值間之差)及只為個 別輸入信號之一函數之一相對步階誤差之乘積。 2·如申請專利範圍第1項之方法,其特徵在於相對步階誤差亦 為先前輸出信號之函數。 3 ·如申請專利範圍第1項之方法,其特徵在於相對步階誤差亦 為先前輸入信號之函數。 4· 一種具有誤差校正之數位至類比轉換器(DAC),該dac以週 期性重覆時間在輸入線接收表示輸入數位值之輸入信號及 在輸出線提供輸出電信號,該輸出信號大小表示該輸入 值,孩DAC包含誤差校正單元連接以直接接收輸入值或接 收輸入信號及在該輸入線提供修正輸入信號,特徵在於該 誤差修正單元是用以提供修正輸入信號以提供校正輸出信 號,該校正是用以補償依照一模型產生之誤差,該模型其 中DAC之各輸出值是與個別輸入值直接成正比之所要及一 誤差足和,孩誤差是決定輸出值(即DAC實際提供之前一輸 出值和所要值間差)與只為個別輸入信號之一函數之一相
    557634 對步階誤差之乘積。 5. 如申請專利範圍第4項之DAC,特徵在該模型配置為使相對 步階信號亦為先前輸出信號之函數。 6. 如申請專利範圍第4項之DAC,特徵在於該模型配置為使相 對步階誤差亦為先前輸入信號之函數。
TW091117664A 2002-04-26 2002-08-06 Digital-to-analog converter having error correction TW557634B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE0201272A SE523353C2 (sv) 2002-04-26 2002-04-26 Digital-/Analogomvandlare med felkompensering

Publications (1)

Publication Number Publication Date
TW557634B true TW557634B (en) 2003-10-11

Family

ID=20287700

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091117664A TW557634B (en) 2002-04-26 2002-08-06 Digital-to-analog converter having error correction

Country Status (5)

Country Link
CN (1) CN100517973C (zh)
AU (1) AU2003224536A1 (zh)
SE (1) SE523353C2 (zh)
TW (1) TW557634B (zh)
WO (1) WO2003092164A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004015276D1 (de) 2004-08-06 2008-09-04 Verigy Pte Ltd Singapore Verbesserte Analogsignalerzeugung mittels eines Delta-Sigma Modulators
CN100498900C (zh) * 2004-11-24 2009-06-10 罗姆股份有限公司 基准电流产生电路、有机el驱动电路和采用该有机el驱动电路的有机el显示装置
CN101507117B (zh) * 2006-06-28 2011-10-26 美国亚德诺半导体公司 用于dac输出级的归于保持的切换方案
FR3005815B1 (fr) * 2013-05-17 2019-09-20 Thales Systeme de generation d'un signal analogique
CN109639276B (zh) * 2018-11-23 2022-12-02 华中科技大学 具有drrz校正功能的双倍时间交织电流舵型dac

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9103777D0 (en) * 1991-02-22 1991-04-10 B & W Loudspeakers Analogue and digital convertors
WO1998042077A1 (fr) * 1997-03-18 1998-09-24 Nippon Columbia Co., Ltd. Detecteur de distorsion, correcteur de distorsion, et procede de correction de distorsion pour signal audio numerique
US6271781B1 (en) * 1998-06-10 2001-08-07 Lockheed Martin Corporation Nonlinear filter correction of multibit ΣΔ modulators
US6404369B1 (en) * 2000-09-29 2002-06-11 Teradyne, Inc. Digital to analog converter employing sigma-delta loop and feedback DAC model

Also Published As

Publication number Publication date
WO2003092164A2 (en) 2003-11-06
SE0201272L (sv) 2003-10-27
WO2003092164A3 (en) 2003-12-11
SE523353C2 (sv) 2004-04-13
CN100517973C (zh) 2009-07-22
SE0201272D0 (sv) 2002-04-26
AU2003224536A1 (en) 2003-11-10
CN1650524A (zh) 2005-08-03

Similar Documents

Publication Publication Date Title
Lu et al. A sixth-order 200 MHz IF bandpass sigma-delta modulator with over 68 dB SNDR in 10 MHz bandwidth
US10924128B2 (en) VCO-based continuous-time pipelined ADC
US8842033B1 (en) Dynamic linearity corrector for digital-to-analog converters
KR20160140571A (ko) 스위치 모드 연산 증폭기에 대한 회로 및 방법
US6946983B2 (en) Digital-to-analog converter having error correction
Malloug et al. Practical harmonic cancellation techniques for the on-chip implementation of sinusoidal signal generators for mixed-signal BIST applications
Wang et al. Adaptive background estimation for static nonlinearity mismatches in two-channel TIADCs
TW557634B (en) Digital-to-analog converter having error correction
Mouton et al. Digital control of a PWM switching amplifier with global feedback
Schmidt et al. Methodology and measurement setup for analog-to-digital converter postcompensation
Balasubramanian et al. Current and emerging trends in the design of digital-to-analog converters
US8779831B2 (en) Integrator
Babaie-Fishani et al. Analytical expressions for the distortion of asynchronous sigma–delta modulators
Schmidt et al. Non-linearities modelling and post-compensation in continuous-time ΣΔ modulators
WO2022125288A1 (en) Circuit element pair matching method and circuit
Schoukens et al. Linearization of nonlinear dynamic systems
Koksal et al. A versatile signal flow graph realization of a general transfer function by using CDBA
US11545989B2 (en) Time-interleaved analog-to-digital converter
JP6512092B2 (ja) 周波数特性補正回路
Bechthum et al. Timing error measurement for highly linear wideband digital to analog converters
Huang et al. A 1.2 V direct background digital tuned continuous-time bandpass sigma-delta modulator
Sotiriadis et al. Fast State-Space Harmonic-Distortion Estimation in Weakly Nonlinear $ G_m {-} C $ Filters
Jiang et al. Dynamic pre-compensation of memory nonlinear distortion for high-speed signal generator based on Volterra inverse
Kelleci et al. THD+ noise estimation in class-D amplifiers
Dong et al. Fast time-domain noise simulation of sigma-delta converters and periodically switched linear networks