TW556408B - Control-module for a bridge-converter - Google Patents

Control-module for a bridge-converter Download PDF

Info

Publication number
TW556408B
TW556408B TW090121969A TW90121969A TW556408B TW 556408 B TW556408 B TW 556408B TW 090121969 A TW090121969 A TW 090121969A TW 90121969 A TW90121969 A TW 90121969A TW 556408 B TW556408 B TW 556408B
Authority
TW
Taiwan
Prior art keywords
motor
bridge
switch
pulse wave
control module
Prior art date
Application number
TW090121969A
Other languages
Chinese (zh)
Inventor
Lutz Goebel
Peter Klaus Budig
Original Assignee
Gebhardt Ventilatoren
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebhardt Ventilatoren filed Critical Gebhardt Ventilatoren
Application granted granted Critical
Publication of TW556408B publication Critical patent/TW556408B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/525Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency
    • H02M7/527Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency by pulse width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A control-module for a bridge-converter (UM) is suggested to commutate the currents (IA, IB, 1C) for a motor (MO). The bridge-converter (UM) has bridge-branches (A, B, C) with an upper switch (HSA, HSB, HSC) and an under switch (LSA, LSB, LSC) respectively and some tapping lines (LA, LB, LC) arranged respectively between each upper and under switch to apply an output-voltage (UA, UB, UC) to the motor-windings (XA, XB, XC) of the motor. The control-module controls with pulse-sending-device (PG) the switch with switch-pulses (T11, T12) according to the respective rotor-state of the motor (MO), so that at least one bridge-branch (C) is inactive, where the upper and under switch (HSC, LSC) are open, while other two bridge-branches (A, B) are active in pair, where in each active bridge-branch (A, B) either the upper switch (HSA, HSB) is open and the under switch (LSA, LSB) is closed or vice versa. In addition, the active bridge-branches (A, B) operate in counter-clock.

Description

556408 五、發明説明(1 )556408 V. Description of the invention (1)

本發明涉及一種橋式轉換器用之控制模組’其用來 對電動機(或馬達)之電流進行整流’此橋式整流器具有 至少三個由直流電壓中間回路所供電之橋式分支,即, 一種上部(upper)開關,一種下部(under)開關及一種配 置在此二個開關之間之測定點,使輸出電壓施加至電動 機(或馬達)之繞組,其中此種具有脈波發出元件之控制 模組可控制此開關以形成該開關脈波,此控制模組藉此 可調整這些位於馬達繞組上之輸出電壓。本發明亦涉及 一種橋式整流器及一種通風模組,其分別設有上述之控 制模組。The invention relates to a control module for a bridge converter, which is used to rectify the current of a motor (or motor). The bridge rectifier has at least three bridge branches powered by a DC voltage intermediate circuit, that is, a An upper switch, an under switch, and a measuring point arranged between the two switches, so that the output voltage is applied to the winding of the motor (or motor), where the control mode has a pulse wave emitting element The group can control the switch to form the switching pulse, and the control module can adjust the output voltages on the motor windings. The invention also relates to a bridge rectifier and a ventilation module, which are respectively provided with the aforementioned control modules.

最近使用所謂電子式整流直流馬達(亦稱爲EC馬達) 以特別用在通風機中,其中不需一些易磨損之電刷。此 種電動機藉助於電子式功率調整元件來操作,例如,以 6脈波式橋式整流器來操作,此種整流器藉助於中間回 路-直流電壓而達成之脈波調變來產生一種頻率及振幅 都可變之三相交流電壓系統,其具有矩形之電壓方塊。 電動機繞組之電流是由其各別之轉子狀態所決定。 電動機之繞組是與橋式整流器之電壓測定點相連, 橋式整流器配屬於橋式分支且其上存在一種輸出電壓 (相對於接地電位),其依據橋式整流器之開關之時脈 (clock)變化而改變,因此稱爲直流時脈電壓。 若馬達繞組中流過正弦形式之電流,則使用一種切 換方式來切換此橋式整流器之開關,其中只有各別橋式 分支之上部開關或下部開關會閉合,因此總共形成23 556408 五、發明説明(2 ) =8個切換狀態。由於中間回路未具有一種對參考電位 之固定參考點,則電壓測定點上相對於地而測得之直流 時脈電壓會在中間回路電壓之正半部和負半部之間切 換。這樣所造成之直流時脈星形接點電位是由三個在電 壓測定點上測得之直流時脈電壓之和(sum)之三分之一。 就上述之EC馬達而言,理想情況下矩形(不是正弦 形式)變化之電流當然會自我調整。因此,依據轉子狀 態一種繞組可完全由中間回路所隔離,此時所屬之”未 驅動’’之橋式分支之二個開關斷開,其它二個繞組藉由 所屬之π驅動’’之橋式分支之開關之脈波式切換而被施加 電壓脈波。依據已驅動之橋式分支之開關之開關狀態, 則正或負的中間回路電壓之半,或在橋式分支之上部開 關及下部開關斷開時電壓0,施加至其對接地電位之電 壓測定點作爲直流時脈電壓。這樣所造成之直流時脈-星形接點電位因此跳至下述這些値:正的中間回路電壓 之半,〇及負的中間回路電壓之半。直流時脈電壓波形 例如顯示在第5a圖中。 由於寄生電容,則直流時脈電壓會傳送至電壓測定 點以及使所形成之直流時脈-星形接點電位由繞組傳送 至電動機之轉子。轉子因此相對於接地電位而充電至轉 子-直流時脈電壓,其依據繞組和轉子之間之電容及轉 子和接地之間之電容之比而與所形成之直流時脈-星形 接點電位成反比。在最不利之電容比(ratio)之情況下, 轉子·直流時脈電壓之値例如可爲所屬橋式整流器之直 -4- 556408 五、發明説明(= ) 流 時 脈 電 壓 之 25%, 具 ‘體 ί而 ί Έ ‘是50V(伏) 〇 在 接 觸 轉 子 時 會 有 電 擊 之危 險 存在 追 在 事實上 會 使 特 殊 問 題 擴 大 在 引 導 轉 子 之 直 流 時 脈 電壓時 流 經 轉 子 軸 承 之 電 流 會 使 轉 子 軸 承 受 損 〇 本 發 明 之 巨 的 是 在 操 作 橋 式 整流器 時 使 受 損 之 直 流 時 脈 電 壓 最 小化 〇 本 發 明 中 此 巨 的 在本 文 開 頭 所述之 控 制 模 組 中 是 以 下 述 方 式 來 達 成 脈 波 發 出 元 件依據 各 別 之 轉 子 狀 態 來 控 制 此 開 關 使 至 少 — 個 橋 式 分支未 受 驅 動 , 其 中 該 上 部 -及下音丨 '開 1 i i T関 Ϊ, iff I ^ :個橋式分支以成對方式 受 驅 動 , 其 中 在 每 一 已 驅 動 之 橋式分 支 中 該 上 部 開 關 斷 開 且 下 部 開 關 閉 合 或 反 之 亦 可 ,且已 驅 動 之 橋 式 分 支 以 反 時 脈 來 操 作 其 中 在 -已驅動之橋式分支之上部開關 斷 開 且 下 部 開 關 閉 合 時 另 —* 已 驅動之 橋 式 分 支 之 上 部 開 關 及 下 部 開 關 分 別 閉 合 或 斷 開 ,或反 之 〇 爲 了 達 成 上 述 S 的 , 須 設 有 另一橋 式 整 流 器 及 通 風 模 組 , 其 分別 設 有 本 發 明 之 控制模組 〇 本 發 明 之 基 本 構 想 是 : 藉 由 橋式整 流 器 之 開 關 之 適 當 之控 制 > 使 星 形 接 點 -直流時脈電壓之受損程度儘可 能 小 〇 因 此 5 可依 據 各 別 轉 子 狀態在 二 相 脈 波 式 之 橋 式 整 流 器 中 分 別使 — 個 橋 式 分 支未受 驅 動 5 此 時 其 上 部 開 關 及 下 部 開 關 是 斷 開 的 〇 其 它二個 橋 式 分 支 受 到 驅 動 每 —* 個 橋 式 分 支 中 上 部 開 關斷開 且 下 部 開 關 閉 合 或 反 之 〇 此 外 , 已 驅 動 之 橋 式 分 -5- 支以反 時 脈 操 作 其 中 在 556408 五、發明説明(4 ) 一個橋式分支之上部開關斷開且下部開關閉合時,另一 橋式分支之上部開關及下部開關則閉合或斷開,或反 之。 本發明有利之形式描述在申請專利範圍各附屬項 中〇 適當之方式是在已驅動之橋式分支之電壓測定點之 間藉助於脈寬調變來改變該輸出電壓。 在另一方式中,此輸出電壓藉助於脈波頻率調變來 改變。 亦可各別使用脈寬調變或脈波頻率調變,或同時使 用此二種調變方式。在每一情況中重要的是:使用本發 明之切換計劃,其中已驅動之橋式分支之開關是以反時 脈來操作,這些已驅動之橋式分支之開關狀態是互補的。 在所謂外轉子式電動機中本發明特別有利,依據本 發明,其轉子不是由反時脈電壓所充電。 本發明之實施例將依附圖來詳述。 圖式簡單說明: 第1圖一種配置,其具有輸入級,橋式整流器, 電動機及控制模組。 第2圖 第1圖中橋式整流器及電動機之細節。 第3圖一序列之脈波,其由第1圖之橋式整流器 上之控制模組來調整。 第4a圖 第1圖之橋式整流器之等效電路圖。 第4b圖 第1圖之電動機之模型。 556408 五、發明説明(5 ) 第5a圖 橋式整流器之開關未以本發明來控制時所 測得之直流時脈電壓波形。 第5b圖 第5a圖之電壓波形以本發明來控制時之 情形。 第6圖 第2圖之橋式整流器之切換狀態及所產生 之電壓。Recently, so-called electronic rectified DC motors (also known as EC motors) have been used especially for ventilators, in which some abrasive brushes are not required. This motor is operated by means of an electronic power adjustment element, for example, a 6-pulse bridge rectifier. This rectifier generates a frequency and amplitude by means of pulse wave modulation achieved by the intermediate circuit-DC voltage. Variable three-phase AC voltage system with rectangular voltage blocks. The current of the motor winding is determined by its respective rotor state. The winding of the motor is connected to the voltage measurement point of the bridge rectifier. The bridge rectifier is assigned to the bridge branch and there is an output voltage (relative to the ground potential). Instead, it is called the DC clock voltage. If a sinusoidal current flows in the motor winding, a switchover method is used to switch the bridge rectifier switch. Only the upper or lower switch of each bridge branch will be closed, so a total of 23 556408 is formed. 2) = 8 switching states. Since the intermediate circuit does not have a fixed reference point for the reference potential, the DC clock voltage measured with respect to ground at the voltage measurement point will switch between the positive half and the negative half of the intermediate circuit voltage. The resulting DC clock star contact potential is one third of the sum (sum) of the DC clock voltages measured at the three voltage measurement points. In the case of the above EC motor, of course, the rectangular (not sinusoidal) current will of course adjust itself. Therefore, according to the state of the rotor, one kind of winding can be completely isolated by the intermediate circuit. At this time, the two switches of the “undriven” bridge type branch are opened, and the other two windings are driven by the “π driven” bridge type. The pulse switch of the branch switch is applied with a voltage pulse. According to the switching state of the bridge switch that has been driven, half of the positive or negative intermediate circuit voltage or the upper and lower switches of the bridge branch When disconnected, the voltage 0 is applied to the voltage measurement point of the ground potential as the DC clock voltage. The DC clock-star contact potential thus caused jumps to the following: 正 Half of the positive intermediate circuit voltage , 0 and half of the negative intermediate circuit voltage. For example, the DC clock voltage waveform is shown in Figure 5a. Due to the parasitic capacitance, the DC clock voltage will be transmitted to the voltage measurement point and the formed DC clock-star The contact potential is transmitted from the winding to the rotor of the motor. The rotor is therefore charged to the rotor-DC clock voltage relative to the ground potential, which is based on the capacitance between the winding and the rotor and the rotor The ratio of the capacitance to ground is inversely proportional to the DC clock-star contact potential formed. In the case of the most unfavorable capacitance ratio, the rotor / DC clock voltage can be Straight bridge rectifier -4- 556408 V. Description of the invention (=) 25% of the current clock voltage, with 'body ί and Έ 是' is 50V (volt) 〇 there is a danger of electric shock when contacting the rotor, there is chasing after In fact, it will expand the special problem. The current flowing through the rotor bearing will damage the rotor bearing when the DC clock voltage of the rotor is guided. The great thing of the present invention is to minimize the damaged DC clock voltage when operating the bridge rectifier. 〇 This giant in the present invention in the control module described in the beginning of this article is achieved in the following way to achieve the pulse wave emitting element according to the state of each rotor to control this switch so that at least one bridge branch is not driven, where on -And the lower voice 丨 'on 1 ii T off, iff I ^: the bridge branches are driven in pairs, where the upper switch is open and the lower switch is closed or vice versa in each of the driven bridge branches It is also possible, and the driven bridge branch is operated in anticlockwise when the-switch of the driven bridge branch is open and the lower switch is closed-the other of the driven bridge branch switches-the upper switch and the lower switch Closed or opened separately, or vice versa. In order to achieve the above S, another bridge rectifier and ventilation module must be provided, which are respectively provided with the control module of the present invention. The basic idea of the present invention is: by the bridge rectifier Appropriate control of the switch > Make the star contact-DC clock voltage damage as small as possible. Therefore, 5 bridges can be used in a two-phase pulse-type bridge rectifier according to the rotor status. Branch Driven 5 The upper switch and the lower switch are open at this time. The other two bridge branches are driven. Each of the * branches of the bridge is opened and the lower switch is closed or vice versa. In addition, the driven bridge Divide -5- branch to operate anti-clockwise. Among them, 556408 V. Description of the invention (4) When the upper switch of one bridge branch is opened and the lower switch is closed, the upper switch and lower switch of the other bridge branch are closed or opened. Or vice versa. An advantageous form of the invention is described in the subordinates of the scope of the patent application. The appropriate way is to change the output voltage by means of pulse width modulation between the voltage measurement points of the driven bridge branches. In another way, the output voltage is changed by means of pulse frequency modulation. You can also use pulse width modulation or pulse wave frequency modulation separately, or use both modulation methods at the same time. What is important in each case is to use the switching plan of the present invention, in which the switches of the driven bridge branches are operated in anticlockwise, and the switching states of these driven bridge branches are complementary. The invention is particularly advantageous in so-called outer rotor type motors, according to which the rotor is not charged by an anticlockwise voltage. Embodiments of the present invention will be described in detail with reference to the drawings. Brief description of the drawings: Figure 1 shows a configuration with an input stage, a bridge rectifier, a motor and a control module. Figure 2 Details of the bridge rectifier and motor in Figure 1. Fig. 3 is a sequence of pulse waves, which is adjusted by the control module on the bridge rectifier of Fig. 1. Figure 4a The equivalent circuit diagram of the bridge rectifier in Figure 1. Figure 4b. Model of the motor in Figure 1. 556408 V. Description of the invention (5) Figure 5a The DC clock voltage waveform measured when the switch of the bridge rectifier is not controlled by the present invention. Fig. 5b Fig. 5a shows the situation when the voltage waveform is controlled by the present invention. Figure 6 The switching state of the bridge rectifier in Figure 2 and the generated voltage.

第1圖是進行本發明所用之配置,其具有一種由輸 入電壓UI所供電之輸入級PFC,其對此橋式整流器 UM提供一種中間回路電壓UZK。輸入級PFC例如具有 一種整流器(使輸入電壓UI整流)以及一種緩衝電容器 CK(第2圖)。輸入級PFC另有一種所謂功率因數控制 器(其可調整該中間回路電壓UZK),藉助於此功率因 數控制器使輸入側以輸入電壓UI表示之電源儘可能只 受到歐姆電阻之負載。橋式整流器UM在本實施例中是 一種三相六脈波式橋式整流器且在導線LA,LB,LC 上可提供此電動機MO —種三相式電壓系統(其具有以 矩形電壓方塊所形成之輸出星形電壓UA,UB或UC及 輸出電流ΙΑ,IB或1C)。橋式整流器UM受到控制而 依據馬達MO之轉子RO之轉子狀態經由控制連接線 CS而產生此控制模組CTR之電壓系統。 馬達MO是一種無刷之所謂電子式整流之直流電動機 (EC馬達),其具有永久磁鐵式或電子式激勵之轉子RO 及星形連接之馬達繞組XA,XB或XC。馬達MO驅動 一種通風機之圖中未顯示之轉輪。馬達MO之構造類似 -7- 556408 五、發明説明(6 ) 於同步機。但馬達MO不同於一般同步機之處是此MO 不是以正弦形式之電流來受電而是以理想形式之矩形電 流方塊供電至此馬達MO。馬達MO經由未顯示之感測 器(例如,其馬達繞組所屬之霍耳(Hall)感測器)來測得 轉子狀態且經由通知連接件MRL而將轉子狀態告知該 控制模組CTR。 控制模組CTR是一種控制用之數位式控制模組’其 包括:連接件EA,控制件CPU及記憶元件,其藉由未 顯示之連接件而互相連接。控制件CPU是一種處理 器,例如,數位信號處理器,其執行程式模組(例如脈 波發送模組PG)之程式碼命令序列。模組所設置在記憶 元件MEM中。控制模組CTR之基本功能是由操作系統 所控制,脈波發送模組PG測知本發明中橋式整流器 UM之控制而亦稱爲脈波發送元件。記憶元件MEM例 如是快閃式ROM模組且可以各別之模組構成或整合在 控制信CPU中。連接件EA是輸入/輸出模組,類比 及/或數位信號經由通知連接件MRL而被接收且可傳 送至脈波發送模組PG,且以相反方向由脈波發送模組 所給定之命令可經由控制連接件c S發出。Fig. 1 is a configuration for carrying out the present invention, which has an input stage PFC powered by an input voltage UI, which provides an intermediate loop voltage UZK to this bridge rectifier UM. The input stage PFC has, for example, a rectifier (rectifies the input voltage UI) and a snubber capacitor CK (Fig. 2). The input stage PFC also has a so-called power factor controller (which can adjust the intermediate circuit voltage UZK). With this power factor controller, the power represented by the input voltage UI on the input side is only subject to the load of the ohmic resistor as much as possible. The bridge rectifier UM in this embodiment is a three-phase six-pulse bridge rectifier and this motor MO can be provided on the wires LA, LB, LC-a three-phase voltage system (which has a rectangular voltage block formed Output star voltage UA, UB or UC and output current IA, IB or 1C). The bridge rectifier UM is controlled to generate a voltage system of the control module CTR according to the rotor state of the rotor RO of the motor MO via the control connection line CS. The motor MO is a brushless so-called electronically rectified DC motor (EC motor), which has a permanent magnet or electronically excited rotor RO and a star-connected motor winding XA, XB or XC. The motor MO drives a runner (not shown) of a fan. The structure of the motor MO is similar to -7- 556408. V. Description of the invention (6) In the synchronous machine. However, the motor MO is different from a general synchronous machine in that this MO does not receive electricity in a sinusoidal form of current, but supplies power to this motor MO in a rectangular current box of an ideal form. The motor MO measures the state of the rotor through an unshown sensor (for example, a Hall sensor to which the motor winding belongs), and informs the control module CTR of the state of the rotor through the notification connector MRL. The control module CTR is a digital control module for control. It includes: a connector EA, a controller CPU, and a memory element, which are connected to each other through a connector not shown. The control part CPU is a processor, for example, a digital signal processor, which executes a code command sequence of a program module (for example, a pulse transmission module PG). The module is set in the memory element MEM. The basic function of the control module CTR is controlled by the operating system. The pulse wave transmission module PG detects the control of the bridge rectifier UM in the present invention and is also called a pulse wave transmission element. The memory element MEM is, for example, a flash ROM module and can be constituted by various modules or integrated in a control CPU. The connector EA is an input / output module. Analog and / or digital signals are received via the notification connector MRL and can be transmitted to the pulse wave transmission module PG. The commands given by the pulse wave transmission module in the opposite direction can be Emitted via the control connection c S.

連接件EA用來連接至匯流排-連接件DS,其例如以 所謂CAN匯流排構成,且在連接件DS上接收此種由 中央控制單元ZS而來之在橋式整流器UM及/或馬達 MO上調整之操作參數(例如,馬達MO之轉數預設値) 。控制模組CTR用來使馬達MO之實際轉數及馬達MO 556408 五、發明説明(7 ) 及/或橋式整流器UM之其他操作狀態(例如,操作時 之干擾)傳送至中央控制單元。 第2圖是橋式整流器UM及馬達MO之細節。UM具 有三個橋式分支A,B,C其上分別存在中間回路電壓 UZK。橋式分支A,B,C分別具有上部開關HSA, HSB,HSC(其位於正的中間回路電壓UZK上)及下部開 關LSA,LSB,LSC(其位於負的中間回路電壓UZK上) 。這些開關以功率半導體組件構成且可藉由連接件CS 及未顯示之控制線而由控制模組CTR來切換。線LA, LB,LC以測定件之形式在上部開關HSA,HSB或HSC 及下部開關LSA,LSB或LSC之間與橋式分支A,B, C相連。電壓UAO,UBO或UCO相對於接地電位而施 加在線LA,LB,LC上,這些電壓隨著開關HSA,HSB ,HSC,LSA,LSB及LSC之切換時脈而改變而稱爲直 流時脈電壓(共模(common mode)電壓)。由電壓UA0, UB0或UC0所造成之整流器直流時脈星形接點電壓 UM0由第4a圖中可看出且以下稱爲整流器直流時脈電 壓 UM0。 第2圖中這些與線LA,LB,LC相連之馬達繞組 XA,XB或XC亦顯示在馬達MO中,其以星形方式連 接在星形接點MX上且各繞組上有星形壓降υχa, UXB或UXC。星形接點MX和接地電位之間施加一種 馬達直流時脈電壓UMX0,其比例於整流器直流時脈電 壓 UM0。 -9- 556408 五、發明説明(8 ) 馬達直流時脈電壓UMX0(在第4b圖之模型中可辨認) 施加至繞組和接地之間之電容CWG上且施加至與電容 CWG並聯之由CWR(在繞組和轉子之間)和CRG(在轉子 和接地之間)所形成之串聯電容上。由轉子之電容性充 電而施加在轉子上之電壓URG因此是依據CWR及 CRG之比而與UMX0成比例。 方塊LG中第4b圖又顯示馬達MO之軸承之等效電 路。電壓URG施加至軸承電阻RL及軸承電容CL上且 亦施加至軸承阻抗ZL上,其中CL及ZL互相並聯且串 聯至RL。電壓URG在適當之電壓値時會造成本文開頭 所述先前技藝中之軸承損害。 控制模組CTR須控制橋式整流器UM,使馬達MO在 理想情況時施加矩形電流IA,IB,1C。依據各別之轉 子狀態,則馬達之二個繞組XA,XB或XC分別施加電 流,第三個繞組則與中間回路電壓UZK相隔開。在主 管第三繞組XA,XB或XC供電用之”未驅動'’之橋式分 支A,B或C中,二個開關HSA,LSA,或HSB,LSB ,或HSC,LSC是斷開的。 第6圖中之表顯示電壓UAO,UB0及UM0,其在未 驅動之橋式分支C(開關HSC,LSC斷開)中可藉由二個 已驅動之橋式分支A,B之開關HSA,LSA及HSB, LSB之不同之開關狀態來調整。在開關HSA,LSA, HSB,LSB之各欄中”〇”表示”開關斷開”且”1”表示”開關 閉合’’。行ZST表示所屬之開關狀態Z1至Z8。電壓UA0 -10- 556408 五、發明説明(9 ) ,UB0及UM0用之値’’-1/2”,”0”及” + 1/2”是與中間回 路電壓UZK有關。在狀態Z1至Z4時,整流器直流時 脈電壓UMO是電壓UAO及UBO之算術平均値。狀態 Z5 和 Z6 時,UMO= UB0= -UZK/2 或 UMO= UA0= -UZK/2,狀態 Z7 和 Z8 時,UMO = UBO = +UZK/2 或 UMO = UAO 二 +UZK/2。 當控制模組CTR調整此狀態序列Z1-Z2-Z4-Z2-Z1 時,則會形成UMX0及轉子電壓URG之波形,如第5a 圖上部(UMX0)及下部(URG)所示。此二個電壓UMX0 及URG比例於UM0而波動,UM0之値是-UZK/2及 + UZK/2。 但本發明中在橋式分支C未驅動時須切換各開關 HSA,LSA及HSB,LSB,使各電壓UA0及UB0’在切 換週期中互相補償。依據第6圖之表,開關狀態Z3和 Z4交替地調整。所造成之UM0之値在理想切換時是 ·’0”,因此,UMX0及URG之値亦分別是。在與第 5a圖相同之測量條件下,於是形成第5b圖所示之電壓 波形。如第5a圖所示,其上部曲線對應於UMX0且下 部曲線對應於轉子電壓URG。 依據轉子RO之狀態,控制模組CTR依序使橋式分支 A,B,C切換成”inactive(未驅動)"且使其它橋式分支 B,C或C,A或A,B成對地切換成nactive(受驅動)” 。控制模組CTR例如可調整各切換順序,其顯示在第 3圖中。切換順序就開關HSA,HSB,HSC,LSA, -11- 556408 五、發明説明(1G ) LSB,LSC而言分別以時軸t表示,t劃分成等長之時 段P1至P6。如表6所示,”0”表示”開關斷開”且”1”表 示”開關閉合”。 在第一時段P1中,橋式分支B未受驅動;開關 HSB,LSB斷開。在橋式分支A受驅動時,開關HSA 重複在切入時段T 1 1由控制模組CTR所閉合且在斷開 時段T12中斷開。開關LSA在HSA閉合時斷開,反之 亦同。已驅動之橋式分支C在時段P1中是以與橋式分 支A相反之時脈來操作,開關LSC與HSA同步且HSC 與LSA同步地被切換。 在時段P2中橋式分支C未受驅動且橋式分支B以脈 波序列FBI開始其驅動(active)相位。橋式分支A就像 時段P 1中一樣地操作,使橋式分支B接管該以與橋式 分支A相反之時脈來操作之橋式分支之功能。因此, 開關LSB與HSA同步且HSB與LSA同步地被切換。 時段P2中所產生之開關狀態X(其中只有開關HSA, LSB閉合)顯示在第2圖中。 然後在時段P3中此橋式分支A成爲”未驅動”。開關 HSA,LSA斷開且橋式分支A之經由時段P1和P2而 延伸之脈波序列FA1因此結束。橋式分支C然後被驅 動且由橋式分支A中接管此種以與另外已驅動之橋式 分支B相反之時脈來操作之橋式分支之功能。在起始 用之脈波序列FC1中,開關HSC,LSC以相同於時段 PI,P2中此開關HSA,LSA操作時之時脈圖樣來操作 -12- 556408 五、發明説明(11 ) 。即,開關LSC與HSB同步且HSC與LSB同步地切 換。 橋式分支B之驅動相位利用時段P3之結束而結束。 橋式分支C在時段P4時繼續此脈波序列FC 1且橋式分 支A又被驅動。橋式分支A因此又開始脈波序列FA2 ,此時開關HSA和LSA以與HSC,LSC相反之時脈來 操作,即,開關HSA,LSC及LSA,HSC分別成對地 同時斷開或閉合。 在時段P5中,橋式分支C未受驅動,橋式分支B又 受驅動,使脈波序列FC 1結束且橋式分支B以脈波序 歹ij FB2開始,此時開關HSB及LSB以和HSA,LSA相 反之時脈來操作。然後在時段P6中橋式分支A又未受 驅動,橋式分支C驅動。脈波序列FA2以時段P5結束 。開關HSC,LSC在時段P6中由控制模組CTR以與開 關HSB,LSB相反之時脈所控制且以時脈序列FC2開 始。 脈波序列FB2以時段P6結束,脈波序列FC2則繼 續。然後在時段P6時例如以與時段P 1相對應之脈波 圖樣來繼續。 在第3圖之例子中,脈波圖樣以定値之接通/斷開 期間T 1 1,T 1 2 (即,以定値之比例)來顯示。此外,脈 波週期是固定的。在脈寬調變之範圍中’此控制模組 CTR改變此接通/斷開期間之週期比,以便改變此種 施加於受驅動之橋式分支之間之輸出電壓。在時段P4 -13- 556408 五、發明説明(12 ) 中一種相對於開關期間τ 1 1而延長之開關期間T2 i及 一種相對於T1 2而縮短之T22是已調變之週期比(rati〇) 之例子。由調變所調整之輸出電壓是針對馬達M0之反 電壓,其與各別之馬達轉速有關。在週期比是1 : 1時 (即,接通期間之長度等於斷開期間時),則輸出電壓之 値是。 由於控制模組CTR依據轉子RO之狀態來對各橋式 分支A,B,C進行驅動或去(de-)驅動,則時段P1至 P6在馬達轉速上升時變小,在馬達轉速下降時變大。 控制模組CTR因此可改變各輸出電壓UA,UB,UC, 以便調整一種預設之額定-馬達轉速。 控制模組CTR亦可進行一種脈波頻率調變以取代脈 波寬度調變,其中各開關HS A至LSC之接通期間是定 値的,但接通頻率會改變。此外,控制模組CTR可以 脈波寬度調變及脈波頻率調變相組合以改變該接通期間 及該接通頻率。 在第1圖之簡單之圖解中,轉子RO以所謂內轉子來 表示。實際上此轉子RO依據應用情況亦可爲所謂外轉 子。 本實施例之配置適用於許多應用中。例如,轉子R〇 上可安裝一種轉輪,使第1圖之整個配置形成一種通風 模組。若此馬達MO以一種外轉子馬達構成’則通風翼 可直接配置在轉子RO上。 控制模組CTR此處以一種數位式電子模組(其具有由 -14- 556408 五、發明説明(13 ) 脈波發送模組PG所控制之軟體控制器)所構成,但此 控制模組CTR亦可以控制器來構成,其以積體電路及 /或類比元件來控制各開關HSA,HSB,HSC,LSA, LSB,LSC且因此藉助於施加在三角-信號電壓上之參 考電壓來測得各開關HSA,HSB,HSC,LSA,LSB, LSC之接通-及斷開期間。 脈波發送模組PG亦可形成該控制模組。須構成此脈 波發送模組PG,使其程式碼載入一般控制用之控制模 組之記憶體中且可由控制模組之處理器所執行。控制模 組然後形成此種至橋式整流器UM之實際之介面且依據 脈波發送模組PG之指示來對該通知連接件MRL及控 制連接件CS進行服務。 符號之說明 MO......馬達 RO......轉子 XA,XB,XC....馬達繞組 EA……連接件 CPU.....控制件 CTR.....控制模組 MEM……記憶元件 PG……脈波發送模組 UM......橋式整流器 DS......匯流排-連接件 MRL……通知連接件 -15- 556408 五、發明説明(14 ) cs……控制連接件 A,B,C,..橋式分支 HSA,HSB,HSC,LSA,LSB,LSC....開關 LA,LB,LC··.·線 MX……星形接點 CWG,CWR,CRG···.電容 CL......軸承電容 -16-The connecting piece EA is used to connect to the busbar-connecting piece DS, which is formed, for example, as a so-called CAN busbar, and receives on the connecting piece DS such a central control unit ZS from the bridge rectifier UM and / or the motor MO Adjust the operating parameters (for example, the preset number of revolutions of the motor MO). The control module CTR is used to transmit the actual number of rotations of the motor MO and the motor MO 556408. V. Invention description (7) and / or other operating states of the bridge rectifier UM (for example, interference during operation) are transmitted to the central control unit. Figure 2 shows the details of the bridge rectifier UM and the motor MO. UM has three bridge branches A, B, and C, each of which has an intermediate loop voltage UZK. The bridge branches A, B, and C respectively have upper switches HSA, HSB, HSC (which are located on the positive intermediate circuit voltage UZK) and lower switches LSA, LSB, LSC (which are located on the negative intermediate circuit voltage UZK). These switches are composed of power semiconductor components and can be switched by the control module CTR through the connection CS and control lines not shown. Lines LA, LB, and LC are connected to the bridge branches A, B, and C between the upper switches HSA, HSB, or HSC and the lower switches LSA, LSB, or LSC in the form of test pieces. The voltage UAO, UBO or UCO is applied to the line LA, LB, LC with respect to the ground potential. These voltages change with the switching clocks of the switches HSA, HSB, HSC, LSA, LSB and LSC and are called DC clock voltage Common mode voltage). The rectifier DC clock star contact voltage UM0 caused by the voltage UA0, UB0 or UC0 can be seen in Figure 4a and is hereinafter referred to as the rectifier DC clock voltage UM0. The motor windings XA, XB or XC connected to the lines LA, LB, and LC in Figure 2 are also shown in the motor MO, which are connected in a star manner to the star contact MX and each of the windings has a star voltage drop. υχa, UXB or UXC. A motor DC clock voltage UMX0 is applied between the star contact MX and the ground potential, which is proportional to the DC clock voltage UM0 of the rectifier. -9- 556408 V. Description of the invention (8) The DC clock voltage UMX0 of the motor (identifiable in the model in Figure 4b) is applied to the capacitor CWG between the winding and ground and to the capacitor CWG connected in parallel with the capacitor CWG ( Between the windings and the rotor) and CRG (between the rotor and ground). The voltage URG applied to the rotor by the capacitive charging of the rotor is therefore proportional to UMX0 according to the ratio of CWR and CRG. Figure 4b in the box LG shows the equivalent circuit of the bearing of the motor MO. The voltage URG is applied to the bearing resistance RL and the bearing capacitance CL and also to the bearing impedance ZL, where CL and ZL are connected in parallel with each other and in series to RL. Voltage URG can cause bearing damage in the prior art described at the beginning of this article at the appropriate voltage. The control module CTR must control the bridge rectifier UM so that the motor MO applies a rectangular current IA, IB, 1C under ideal conditions. Depending on the state of each rotor, current is applied to the two windings XA, XB or XC of the motor, and the third winding is separated from the intermediate circuit voltage UZK. In the "undriven" bridge branch A, B or C for the third winding XA, XB or XC, the two switches HSA, LSA, or HSB, LSB, or HSC, LSC are open. The table in Figure 6 shows the voltages UAO, UB0 and UM0, which can be driven by two driven bridge branches A, B in the undriven bridge branch C (switch HSC, LSC open), LSA, HSB, LSB different switch states to adjust. In the columns of switches HSA, LSA, HSB, LSB, "0" means "switch is open" and "1" means "switch is closed". Line ZST indicates the respective switching states Z1 to Z8. Voltage UA0 -10- 556408 V. Description of the invention (9), "-1/2", UB0 and UM0 are used, "0" and "+ 1/2" are related to the intermediate circuit voltage UZK. In states Z1 to At Z4, the rectifier DC clock voltage UMO is the arithmetic mean of the voltages UAO and UBO. In states Z5 and Z6, UMO = UB0 = -UZK / 2 or UMO = UA0 = -UZK / 2, and in states Z7 and Z8, UMO = UBO = + UZK / 2 or UMO = UAO 2 + UZK / 2. When the control module CTR adjusts this state sequence Z1-Z2-Z4-Z2-Z1, the waveform of UMX0 and the rotor voltage URG will be formed, as shown in the figure. Figure 5a shows the upper part (UMX0) and lower part (URG). The ratio of the two voltages UMX0 and URG fluctuates with UM0. The 値 of UM0 is -UZK / 2 and + UZK / 2. But in the present invention, the bridge type C When not driving, the switches HSA, LSA and HSB, LSB must be switched so that the voltages UA0 and UB0 'compensate each other during the switching cycle. According to the table in Figure 6, the switching states Z3 and Z4 are adjusted alternately.値 is "'0" in ideal switching, so 値 of UMX0 and URG are also respectively. Under the same measurement conditions as in Figure 5a, the voltage waveform shown in Figure 5b is formed. As shown in Figure 5a, the upper curve corresponds to UMX0 and the lower curve corresponds to the rotor voltage URG. According to the state of the rotor RO, the control module CTR sequentially switches the bridge branches A, B, C to "inactive (not driven)" and makes other bridge branches B, C or C, A or A, B paired. Ground to passive (driven) ". The control module CTR can adjust each switching sequence, for example, and is shown in FIG. 3. The switching sequence is as follows: switches HSA, HSB, HSC, LSA, -11-556408 V. Description of the invention (1G) LSB and LSC are respectively represented by time axis t, and t is divided into equal-length time periods P1 to P6. As shown in Table 6, "0" means "the switch is open" and "1" means "the switch is closed". In the first period P1, the bridge branch B is not driven; the switches HSB and LSB are turned off. When the bridge type branch A is driven, the switch HSA is repeatedly closed by the control module CTR during the cut-in period T 1 1 and is opened during the open period T 12. The switch LSA is opened when the HSA is closed, and vice versa. The driven bridge branch C is operated at a clock opposite to the bridge branch A in the period P1, and the switches LSC are synchronized with HSA and HSC and LSA are switched in synchronization. In the period P2, the bridge branch C is not driven and the bridge branch B starts its active phase with the pulse sequence FBI. The bridge branch A operates as in the period P1, causing the bridge branch B to take over the function of the bridge branch which is operated at a timing opposite to that of the bridge branch A. Therefore, the switch LSB is synchronized with the HSA and the HSB is switched in synchronization with the LSA. The switching state X generated in the period P2 (only the switch HSA and the LSB is closed) is shown in the second figure. This bridge branch A then becomes "undriven" in the period P3. The pulse sequence FA1 of the switches HSA, LSA is opened and the bridge branch A extends through the periods P1 and P2, thus ending. The bridge branch C is then driven and the bridge branch A takes over the function of the bridge branch which operates at a clock opposite to the other driven bridge branch B. In the starting pulse wave sequence FC1, the switches HSC and LSC are operated with the same clock pattern as when the switches HSA and LSA are operated in the period PI and P2. -12- 556408 5. Description of the invention (11). That is, the switch LSC is synchronized with the HSB and the HSC is switched in synchronization with the LSB. The driving phase of the bridge branch B ends with the end of the period P3. The bridge branch C continues this pulse wave sequence FC 1 during the period P4 and the bridge branch A is driven again. The bridge branch A therefore starts the pulse wave sequence FA2 again. At this time, the switches HSA and LSA are operated with the opposite clocks to HSC and LSC, that is, the switches HSA, LSC and LSA, HSC are opened or closed simultaneously in pairs. In the period P5, the bridge branch C is not driven, and the bridge branch B is driven again, so that the pulse sequence FC 1 ends and the bridge branch B starts with the pulse sequence 歹 ij FB2. At this time, the switches HSB and LSB start with HSA, LSA operate on the opposite clock. Then in the period P6, the bridge branch A is not driven, and the bridge branch C is driven. The pulse wave sequence FA2 ends with a period P5. The switches HSC and LSC are controlled by the control module CTR in the period P6 with a clock opposite to the switches HSB and LSB and start with the clock sequence FC2. The pulse wave sequence FB2 ends with period P6, and the pulse wave sequence FC2 continues. Then, in the period P6, for example, a pulse wave pattern corresponding to the period P1 is continued. In the example of Fig. 3, the pulse wave pattern is displayed in the on / off periods T 1 1 and T 1 2 (i.e., in a fixed ratio). In addition, the pulse period is fixed. In the range of pulse width modulation ', the control module CTR changes the cycle ratio during this on / off period in order to change the output voltage applied between the driven bridge branches. In the period P4 -13- 556408 5. In the description of the invention (12), a switching period T2 i extended relative to the switching period τ 1 1 and a shortened T22 relative to T1 2 are modulated cycle ratios (rati. ). The output voltage adjusted by the modulation is the inverse voltage for the motor M0, which is related to the respective motor speed. When the period ratio is 1: 1 (that is, when the length of the on-period is equal to the off-period), then 値 is the output voltage. Because the control module CTR drives or de-drives each of the bridge branches A, B, and C according to the state of the rotor RO, the periods P1 to P6 become smaller when the motor speed increases and become lower when the motor speed decreases. Big. The control module CTR can therefore change each output voltage UA, UB, UC in order to adjust a preset rated-motor speed. The control module CTR can also perform a pulse frequency modulation to replace the pulse width modulation. The switching period of each switch HS A to LSC is fixed, but the switching frequency will change. In addition, the control module CTR can be combined with pulse width modulation and pulse frequency modulation to change the on period and the on frequency. In the simple diagram of Fig. 1, the rotor RO is shown as a so-called inner rotor. In fact, this rotor RO can also be a so-called outer rotor depending on the application. The configuration of this embodiment is suitable for many applications. For example, a rotor can be installed on the rotor R0, so that the entire configuration of Fig. 1 forms a ventilation module. If this motor MO is constituted by an external rotor motor ', the ventilation wing can be directly arranged on the rotor RO. The control module CTR is here a digital electronic module (which has a software controller controlled by -14-556408 V. Invention Description (13) Pulse wave sending module PG), but this control module CTR also It can be constructed by a controller that controls the switches HSA, HSB, HSC, LSA, LSB, LSC with integrated circuits and / or analog components and therefore measures each switch by means of a reference voltage applied to the delta-signal voltage HSA, HSB, HSC, LSA, LSB, LSC on-and-off periods. The pulse wave transmission module PG can also form the control module. This pulse transmission module PG must be constructed so that its code is loaded into the memory of the control module for general control and can be executed by the processor of the control module. The control module then forms such an actual interface to the bridge rectifier UM and services the notification connection MRL and the control connection CS according to the instructions of the pulse wave transmission module PG. Explanation of symbols MO ...... Motor RO ...... Rotor XA, XB, XC .... Motor winding EA ... Connection piece CPU ..... Control piece CTR ..... Control Module MEM ... Memory element PG ... Pulse wave transmission module UM ... Bridge rectifier DS ... Bus-connector MRL ... Notify connector-15-556408 V. Invention Explanation (14) cs ... control connection A, B, C, .... bridge branch HSA, HSB, HSC, LSA, LSB, LSC ... ... switch LA, LB, LC. Star contact CWG, CWR, CRG ... Capacitance CL ...... Bearing capacitor -16-

Claims (1)

556408556408 六、申請專利範圍 第90 1 221 969號「橋式轉換器用之控制模組」專利案 (92年5月修正) 六、申請專利範圍: 1. 一種橋式轉換器(UM)用之控制模組,用來對電動機 (MO)之電流(IA,IB,1C)進行整流,橋式整流器(UM) 具有至少三個由直流電壓中間回路(UZK)所供電之橋 式分支(A,B,C),各分支分別具有一個上部開關 (HSA,HSB,HSC)及一個下部開關(LSA,LSB,LSC) ,且分別具有一個配置在各別上部-及下部開關(HS A ,HSB,HSC,LSA,LSB,LSC)之間之測定線(LA,LB ,LC ),使輸出電壓(UA,UB,UC )可分別施加在馬達 (MO)之繞組(XA ’ XB,XC)上,控制模組(CTR)利用脈 波發送元件(PG)來控制各開關(HSA,HSB,HSC,LSA ’ LSB,LSC)以形成各切換脈波(ΤΙ 1,T12),藉此使 控制模組(CTR)可調整馬達各繞組(XA,XB,XC)上之 輸出電壓(UA,UB,UC),其特徵爲:脈波發送元件 (PG )依據馬達(M0 )之各別之轉子狀態來控制各開關 (HSA,HSB,HSC,LSA,LSB,LSC),使至少一橋式 分支(C )是未受驅動的,此時上部-和下部開關(HSC ,LSC)斷開,另二個橋式分支(A,B)以成對方式受 到驅動,在橋式分支(A,B)受到驅動時上部開關 (HSA,HSB)斷開且下部開關(LSA,LSB)閉合或反之 ,受驅動之橋式分支(A,B)以相反時脈來操作,受 556408 六、申請專利範圍 驅動之橋式分支(A )之上部開關(HS A )斷開且下部開 關(LSA)閉合時,則另一受驅動之橋式分支(B)之上 部開關(HSB)及下部開關(LSB)分別閉合及斷開,且 反之亦同。 2·如申請專利範圍第1項之控制模組,其中脈波發送元 件(PG)藉由切換脈波(T12,T11)之脈波寬度(T12, T11)之改變來調整各別之輸出電壓(UA,UB,UC)。 3·如申請專利範圍第1或第2項之控制模組,其中脈波 發送元件(PG )藉由切換脈波(T1 2,T1 1 )之脈波頻率 之改變來調整各別之輸出電壓(UA,UB,UC)。 4·如申請專利範圍第1或2項之控制模組,其中脈波 發送元件(PG)依據預設値而構成以調整馬達(M0)之 轉速。 5.如申請專利範圍第1項之控制模組,其中形成脈波 發送元件(PG)以形成方塊式之切換脈波序列(FA1, FBI,FC1,FA2,FB2,FC2),這樣可在馬達繞組(XA ,XB,XC )上形成矩形之電流波形。 6·如申請專利範圍第1或5項之控制模組,其中形成 程式模組(PG ),其含有程式碼,且此程式模組可由 控制模組(CTR )之控制件(CPU )所構成以控制該橋式 整流器(UM)。 7· —種馬達(M0)用之橋式整流器(UM),其特徵是具有申 請專利範圍第1至6項中任一項之控制模組(CTR)。 556408 六、申請專利範圍 8· —種通風模組,其具有至少一個馬達(M0 )作爲驅動器 ’其特徵是具有:至少一個橋式整流器(UM),用來供 應電流到該至少一個馬達(M0)處;及至少一個控制模 組(CTR ),其是依據申請專利範圍第1至6項中任一 項所述者以用來控制至少一個橋式整流器(UM )。 9. 如申請專利範圍第8項之通風模組,其中馬達(M0 )具 有至少一個霍耳(Ha 1 1 )感測器以測得馬達(M0)之轉 子狀態。 10. 如申請專利範圍第8或9項之通風模組,其中馬達 (MO)以一種外轉子馬達構成。 11·如申請專利範圍第8或 9項之通風模組,其中馬達 (MO)以所謂電子式整流之直流馬達構成。 12·如申請專利範圍第8 或9項之通風模組,其中馬 達(MO)由具有永久磁鐵式轉子之同步機所構成。6. Patent Application No. 90 1 221 969 "Control Module for Bridge Converter" Patent (Amended in May 1992) 6. Patent Application: 1. A control module for bridge converter (UM) Group for rectifying the current (IA, IB, 1C) of the motor (MO), the bridge rectifier (UM) has at least three bridge branches (A, B, C), each branch has an upper switch (HSA, HSB, HSC) and a lower switch (LSA, LSB, LSC), and each has a respective upper and lower switch (HS A, HSB, HSC, LSA, LSB, LSC) between the measurement lines (LA, LB, LC), so that the output voltage (UA, UB, UC) can be applied to the windings (XA 'XB, XC) of the motor (MO), control mode The group (CTR) uses a pulse wave transmitting element (PG) to control each switch (HSA, HSB, HSC, LSA 'LSB, LSC) to form each switching pulse wave (TI, T12), thereby enabling the control module (CTR ) The output voltage (UA, UB, UC) on each winding (XA, XB, XC) of the motor can be adjusted, which is characterized by: the pulse wave transmitting element (PG) according to The state of each rotor of the motor (M0) controls each switch (HSA, HSB, HSC, LSA, LSB, LSC), so that at least one bridge branch (C) is undriven. At this time, the upper and lower switches ( HSC, LSC) is opened, and the other two bridge branches (A, B) are driven in pairs. When the bridge branch (A, B) is driven, the upper switch (HSA, HSB) is opened and the lower switch ( LSA, LSB) is closed or vice versa, the driven bridge branch (A, B) is operated at the opposite clock, driven by 556408 6. The patented patented bridge branch (A) upper switch (HS A) is opened When the lower switch (LSA) is closed, the upper switch (HSB) and the lower switch (LSB) of the other driven bridge branch (B) are closed and opened respectively, and vice versa. 2. The control module of item 1 in the scope of patent application, in which the pulse wave transmitting element (PG) adjusts the respective output voltages by switching the pulse wave width (T12, T11) of the pulse wave (T12, T11). (UA, UB, UC). 3. If the control module of the first or second item of the patent application scope, the pulse wave transmitting element (PG) adjusts the respective output voltage by switching the pulse wave frequency of the pulse wave (T1 2, T1 1) (UA, UB, UC). 4. The control module of item 1 or 2 of the patent application scope, in which the pulse wave transmitting element (PG) is configured according to the preset value to adjust the rotation speed of the motor (M0). 5. For example, the control module of the scope of patent application, where a pulse wave transmitting element (PG) is formed to form a block-type switching pulse wave sequence (FA1, FBI, FC1, FA2, FB2, FC2). A rectangular current waveform is formed on the windings (XA, XB, XC). 6 · If the control module of the scope of application for the patent is No. 1 or 5, a program module (PG) is formed, which contains the code, and this program module can be composed of the control part (CPU) of the control module (CTR) To control the bridge rectifier (UM). 7 · —A bridge rectifier (UM) for a motor (M0), which is characterized by having a control module (CTR) according to any one of the claims 1 to 6. 556408 6. Application patent scope 8 · A ventilation module having at least one motor (M0) as a driver 'is characterized by having at least one bridge rectifier (UM) for supplying current to the at least one motor (M0 ); And at least one control module (CTR), which is used to control at least one bridge rectifier (UM) according to any one of claims 1 to 6 of the scope of patent application. 9. If the ventilation module of item 8 of the patent application scope, the motor (M0) has at least one Hall (Ha 1 1) sensor to measure the rotor state of the motor (M0). 10. If the ventilation module of the patent application No. 8 or 9, the motor (MO) is constituted by an outer rotor motor. 11. The ventilation module according to item 8 or 9 of the scope of patent application, wherein the motor (MO) is constituted by a so-called electronic rectified DC motor. 12. If the ventilation module of the patent application No. 8 or 9, the motor (MO) is composed of a synchronous machine with a permanent magnet rotor.
TW090121969A 2000-09-06 2001-09-05 Control-module for a bridge-converter TW556408B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10043934A DE10043934A1 (en) 2000-09-06 2000-09-06 Control module for static frequency changer or converter bridge for commutation of electric motor currents has pulse source providing switching pulses for series switches in each converter path dependent on rotor position

Publications (1)

Publication Number Publication Date
TW556408B true TW556408B (en) 2003-10-01

Family

ID=7655195

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090121969A TW556408B (en) 2000-09-06 2001-09-05 Control-module for a bridge-converter

Country Status (3)

Country Link
CN (1) CN1217475C (en)
DE (1) DE10043934A1 (en)
TW (1) TW556408B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10301275B4 (en) * 2003-01-15 2016-06-16 Siemens Aktiengesellschaft Method for reducing common-mode parasitic currents in an electric drive system and corresponding electric drive system
US7521883B1 (en) * 2005-08-02 2009-04-21 Minebea Co., Ltd. Motor current shaping
DE102010028479A1 (en) * 2010-05-03 2011-11-03 Robert Bosch Gmbh Method and device for driving a permanent magnet excited electrical machine

Also Published As

Publication number Publication date
CN1217475C (en) 2005-08-31
CN1343038A (en) 2002-04-03
DE10043934A1 (en) 2002-03-14

Similar Documents

Publication Publication Date Title
JP4406967B2 (en) DC power supply
JP5047582B2 (en) Inverter device
JP2010284029A (en) Power supply circuit for driving inverter
JP5996031B1 (en) Control device for rotating electrical machine
WO2015115226A1 (en) Power conversion device
JP6844716B2 (en) Inverter control board
JP2017200284A (en) Motive force output device
JP2010154714A (en) Power converter and vacuum cleaner using the same
JP4641124B2 (en) Multiple coupled inverter device
TW556408B (en) Control-module for a bridge-converter
JP2020102933A (en) Switching power supply device and method for controlling the same
CN106464147A (en) Frequency converter
JP3584686B2 (en) Voltage source power conversion circuit
JP2015065754A (en) Motor system
EP1174998A1 (en) Brushless motor,method and circuit for its control
JP2005006478A (en) Bidirectional switching circuit and motor driving device
JP4448300B2 (en) Control device for synchronous machine
US9502999B2 (en) Apparatus for driving motor and controlling method thereof
JP4736155B2 (en) Inverter device
JP7035407B2 (en) Power converter
JP3246584B2 (en) AC / DC converter
KR20150062149A (en) Power converting circuit
JP2000324891A (en) Inverter drive motor
JP2755057B2 (en) DC brushless motor drive circuit
JP2015204636A (en) Driving circuit and semiconductor device using the same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent