TW556238B - One-cylinder stack capacitor and method for fabricating the same - Google Patents
One-cylinder stack capacitor and method for fabricating the same Download PDFInfo
- Publication number
- TW556238B TW556238B TW91120456A TW91120456A TW556238B TW 556238 B TW556238 B TW 556238B TW 91120456 A TW91120456 A TW 91120456A TW 91120456 A TW91120456 A TW 91120456A TW 556238 B TW556238 B TW 556238B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- mold layer
- lower mold
- cylindrical wall
- diameter
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
556238 五、發明説明(1 ) 發明背景 1 ·發明範疇 本發明通常相關於單柱體堆疊(ocs)電容器及其製造方 法’本發明尤其相關於已由雙模形成的oc 雙模製造OCS電容器的方法。 2 ·相關技藝說明 由於半導體裝置的記憶單元密度增加,而已減少記情單 疋所佔面積,容量係與電容器電介質的介電常數及電容器 電極的表面積成比例,因此需要選擇增加介電常數的電介 質’及/或增加電容器電極的表面積以增加容量。惟採用新 介電材料通常為昂貴且耗時,其中常需要供應新製造設備 ,查證介電材料的可靠性,及碟定具備介電材料量產裝置 的能力。因此,常以增加電極表面積為 ’以滿足增加具備習用電介質(如由氣㈣及氧二= 組成的介電(NO)層等)的裝置容量。 在習用128百萬位元(或更少wDRAM中使用半球形顆粒 (HSG)電極’以增加電極的有效表面積,惟由於在電極表 面存在则,而使電極間空間的任何減少受限,因而在W 百萬位70 (或更高)的高積體裝置中無法施加這些電極。如 是這般,在單柱體堆疊(0CS)健存電極的例子,例如通常 將電極高度由i.4㈣增加至!.6 _的高度,視為增加其容 量最有效率的方法。 兹將參照至圖W說明習用〇以儲存電極的製造,尤1 是一般使用單模而形成具有少於1>2帥設計規定的⑽電 裝 訂 t -6- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 五、發明説明(2 ) 合為儲存電極。參照至圖1,其表面具有接觸插頭1 $的内 層絕緣層H)上形成―姓刻停止層(未示),及形成一氧化層 (未:)至厚度hl,其大致上與想要的電極高度對應。接續 將乳化層及㈣停止層姓刻人具有下钱刻停止層20的氧化 权 乂此方式,在接觸插頭i 5上界定一開口 4〇,藉此曝 露接觸插頭15。之後,如圖2所示,在開口 40的側壁上及 接觸插頭15上沈積多晶矽,而形成-柱形電極50。 參照圖3的電子掃描顯微鏡(sem)像片,如前述,如高積 體裝置的例子’為增加其容量,想、增加〇cs電容器電極的 问度至1.6 #m(或更高)。惟如果氧化模層的高度由μ增加 至h2(、力1.8 //m)及仍維持開口 4()的較低關鍵尺寸⑷,則須注 ^刻限制設定開口 4G的側壁斜度,@可在相鄰的⑽電 容器儲存電極間形成橋接B(圖2及3),藉此而引起雙位元 破壞。著力於避開雙位元破壞,可藉由減少開口 4〇的下關 鍵尺寸⑷而減少開口 4〇的上關鍵尺寸(a)。惟,此方法不利 之處在於,在開口 4〇底部減少表面積而減少容量。 亦應注意,發生雙位元破壞會造成儲存電極掉落而觸及 鄰近電極,如是這般,有必要考量電極的結構性整合。 茲參照至圖4,意即已確定分開儲存電極而使單元隔離 之後,即藉由濕蝕將氧化模3〇移除。在此濕蝕過程期間, 可將蝕刻劑滲入各儲存電極50與一蝕刻停止層2〇間的介面 ,藉此而蝕刻夾層絕緣層10。此可使儲存電極的底座變弱 而造成儲存電極傾斜且觸及鄰近的電極,圖5A以電子掃描 顯微鏡(SEM)像片說明一範例,其中掉落的電極造成具有@ 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱) 五、 發明說明( 形狀圖案的凹陷;而圖5B以電子 電極掉入只+ T描頌极叙(SEM)像片說明 评入另一電極的剖面圖。 因此,對新的OCS電容器結構及1制1 增加,A + p π + /、衣仏方法的需求不斷 其中即使電容器高度在h6 ,亦可古ϋ μ (次更阿)專級的例子 有效避免鄰近電極間的凹陷及橋接。 發明總結 根據本發明一方面,製 層絕綾展^ 电谷扣電極的方法,包括於夾 層#而二 衣度延伸入該夾層絕緣 表面而形成之表面上形成一 上沈積-下^ ρ 層;於姓刻停止層 採雜物Γ 由於下模層形成期間在下模層添加 下❹ 將下模層退火而調整下模層之濕蝕比;於 广镇層上沈積一上模層,I中 之濕#比小於調整過 形成一、曰,乾姓上模層、下模層及姑刻停止層,以 :模声:口 ’其中至少曝露接觸插頭表面之-部分;㈣ 近==層,致使下模層之開口尺寸增加,並曝露鄰 =表面之㈣停止層之表面部分;及於上及下模 :開口表面、I虫刻停止層之表面部分及導電插頭之曝露 表面上沈積一導電材料。 根據本發明另一方面,製造電容器之方法,包括於夾声 絕緣層上形成一下電極,於下電極上形成一介電層,及於 介電層上形成一上電極’在此下電極的形成,包括於夾声 絕緣層表面上及-導電插頭以一深度延伸入該夾層絕緣層 表面而形成之表面上形成一蚀刻停止層;於敍刻停止層上 沈積-下模層’及藉由於下模層形成期間在下模層 雜物,及藉由將下模層退火而 „a π I下模層之濕蝕比;於下 模層上沈積一上模層,其中上模声 、曰之濕姓比小於調整過 下模層濕#比;乾蚀上模層、下模層及姓刻停止層… 成一開口’其中至少曝露接觸插頭表面之-部㈡姓: 杈層及下模層,致使在下模層之 ] 尺寸增加,並曝露鄭 近導電插頭表面之蝕刻停止層 +备郇 噌之表面部分;及於上及下模 層之開口表面、|虫刻停止層之矣 、 層之表面部分及導電插頭之曝露 表面上沈積一導電材料。 仍根據本發明另—方面’一電容器包括具有一表面之爽 層絕緣層;-導電插頭以一深度延伸入夹層絕緣層内;— 蚀刻停止層於絕緣層上延伸並曝露導電插頭;—柱形下電 極由柱形侧壁及底部壁界定,底部壁於導電插頭表面及鄰 近導電插頭之部分蚀刻停止層上延伸,其中柱形侧壁由底 部壁向上延伸而遠離夹層絕緣層表面;一介電層於柱形下 電極上形成;及一上電極於介電層上形成。柱形電極之柱 ㈣由-上柱㈣部分、—下柱形壁部分及位於上下柱形 i 4刀間之中間柱形壁部分而界定。上柱形壁部分之直徑 及下柱形壁部分之直徑越遠離底部壁表面越增加,其中中 間柱形側壁部分之直徑越遠離底部壁表面越減少,及556238 V. Description of the invention (1) Background of the invention 1. The scope of the present invention is generally related to single-cylinder stacked (OCs) capacitors and manufacturing methods thereof. method. 2 · Relevant technical descriptions Due to the increase in the density of memory cells in semiconductor devices, the area occupied by memory cards has been reduced. The capacity is proportional to the dielectric constant of the capacitor dielectric and the surface area of the capacitor electrodes. Therefore, it is necessary to choose a dielectric with an increased dielectric constant. 'And / or increase the surface area of the capacitor electrode to increase capacity. However, the use of new dielectric materials is usually expensive and time-consuming. Often, new manufacturing equipment needs to be supplied to verify the reliability of the dielectric materials, and it is determined that the dielectric materials have the capacity to mass-produce devices. Therefore, increasing the surface area of the electrode is often used to increase the device capacity with conventional dielectrics (such as a dielectric (NO) layer composed of gas and oxygen). Hemispherical particle (HSG) electrodes' are used in conventional 128 megabit (or less wDRAM) to increase the effective surface area of the electrodes, but any reduction in inter-electrode space is limited due to the presence on the electrode surface, and therefore in These electrodes cannot be applied in W million-bit 70 (or higher) high-volume devices. As such, examples of single-cylinder stacked (0CS) viable electrodes, for example, usually increase the electrode height from i.4㈣ to The height of! .6 _ is regarded as the most efficient way to increase its capacity. The following will explain the manufacturing of storage electrodes with reference to Figure W, especially 1 is generally formed using a single mode with less than 1 &2; handsome design Prescribed book binding t -6- This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) V. Description of the invention (2) Combined into storage electrode. Refer to Figure 1, the surface has a contact plug 1 $ An inner-layer insulation layer (H) is formed on the inner-layer insulation layer (not shown), and an oxide layer (not :) is formed to a thickness hl, which substantially corresponds to the desired electrode height. The emulsion layer and the stop layer are engraved to have the right to oxidize the stop layer 20. In this way, an opening 40 is defined in the contact plug i5, thereby exposing the contact plug 15. Thereafter, as shown in FIG. 2, polycrystalline silicon is deposited on the side wall of the opening 40 and the contact plug 15 to form a columnar electrode 50. Referring to the scanning electron microscope (SEM) image of FIG. 3, as mentioned above, as an example of a high-volume device, to increase its capacity, it is desired to increase the resolution of the capacitor capacitor electrode to 1.6 #m (or higher). However, if the height of the oxide mold layer is increased from μ to h2 (, force 1.8 // m) and the lower critical dimension of the opening 4 () is still maintained, it is necessary to note ^ to limit the setting of the sidewall slope of the opening 4G, @ 可A bridging B is formed between the storage electrodes of the adjacent pseudocapacitors (Figs. 2 and 3), thereby causing double-bit destruction. Focusing on avoiding double bit destruction, the upper key size (a) of the opening 40 can be reduced by reducing the lower key size ⑷ of the opening 40. However, this method has the disadvantage that the surface area is reduced at the bottom of the opening 40 and the capacity is reduced. It should also be noted that the occurrence of double-bit destruction will cause the storage electrode to fall and touch adjacent electrodes. If so, it is necessary to consider the structural integration of the electrodes. Reference is made to FIG. 4, which means that it has been determined that after the storage electrodes are separated to isolate the cells, the oxide mold 30 is removed by wet etching. During this wet etching process, an etchant can be infiltrated into the interface between each storage electrode 50 and an etch stop layer 20 to thereby etch the interlayer insulating layer 10. This can weaken the base of the storage electrode, causing the storage electrode to tilt and touch the adjacent electrode. Figure 5A illustrates an example using an SEM image, where a falling electrode causes a @ (CNS) A4 specification (210X297 public love) 5. Description of the invention (concave of shape and pattern; and Figure 5B shows the cross section of the other electrode when the electronic electrode is dropped into the + T tracing polar (SEM) picture. Therefore, the new structure of OCS capacitors and the increase of one system and one system have increased the demand for A + p π + / and clothing methods. Even if the capacitor height is h6, ancient (μ) second grade examples can be effectively avoided. Depressions and bridges between adjacent electrodes. Summary of the invention According to one aspect of the present invention, a method for forming a layered valley valley electrode includes forming an insulating layer on the surface of the interlayer # and the second layer extending into the insulating surface of the interlayer. Upper deposition-lower ^ ρ layer; stop collecting debris at the last engraving layer. Γ As the lower mold layer is added during the formation of the lower mold layer, the lower mold layer is annealed to adjust the wet erosion ratio of the lower mold layer; deposited on the Guangzhen layer A mold , I 中 的 湿 # ratio is less than adjusted to form one, that is, the dry mold upper mold layer, lower mold layer, and engraved stop layer, with: mold sound: mouth 'which at least exposes the-contact part of the plug surface; ㈣ near = = Layer, which causes the opening size of the lower mold layer to increase and expose the adjacent surface parts of the ㈣stop layer; and on the upper and lower molds: the opening surface, the surface portion of the engraved stop layer, and the exposed surface of the conductive plug A conductive material is deposited. According to another aspect of the present invention, a method of manufacturing a capacitor includes forming a lower electrode on an acoustic insulation layer, forming a dielectric layer on the lower electrode, and forming an upper electrode on the dielectric layer. The formation of the lower electrode includes forming an etch stop layer on the surface of the sandwich insulation layer and a surface formed by the conductive plug extending into the sandwich insulation layer at a depth; depositing a lower mold layer on the narration stop layer 'And due to the inclusions in the lower mold layer during the formation of the lower mold layer, and by annealing the lower mold layer, the wet erosion ratio of the' a π I lower mold layer; depositing an upper mold layer on the lower mold layer, wherein the upper mold The ratio of the sound and the wet surname is less than the adjustment Lower mold layer wet # ratio; dry-etch the upper mold layer, the lower mold layer and the engraved stop layer ... to form an opening 'where at least the exposed contact surface of the plug-name]: the branch layer and the lower mold layer, resulting in the lower mold layer] Increase the size, and expose the surface of the etch stop layer + the surface of the conductive plug on Zheng Jin; and the opening surfaces of the upper and lower mold layers, the worm stop layer, the surface portion of the layer and the exposure of the conductive plug A conductive material is deposited on the surface. Still according to another aspect of the present invention-a capacitor includes a layered insulating layer having a surface;-a conductive plug extends into the interlayer insulating layer at a depth;-an etch stop layer extends on the insulating layer And expose the conductive plug;-the cylindrical lower electrode is defined by the cylindrical side wall and the bottom wall, the bottom wall extends on the surface of the conductive plug and a part of the etching stop layer adjacent to the conductive plug, wherein the cylindrical side wall extends upward from the bottom wall and away from The surface of the interlayer insulation layer; a dielectric layer is formed on the pillar-shaped lower electrode; and an upper electrode is formed on the dielectric layer. The pillar ㈣ of the cylindrical electrode is defined by-the upper pillar ㈣ part,-the lower cylindrical wall part, and the middle cylindrical wall part located between the upper and lower cylindrical i 4 blades. The diameter of the upper cylindrical wall portion and the diameter of the lower cylindrical wall portion increase as they move away from the bottom wall surface, and the diameter of the intermediate cylindrical side wall portion decreases as they move away from the bottom wall surface, and
A ^ C,C>B,及 C>D 其中A係上柱形壁部分最遠離底部壁表面之位置之直徑, B係上柱形壁部分最靠近底部壁表面之位置之直徑,c係下 柱形壁部分最遠離底部壁表面之位置之直徑,而D係下柱 形壁部分在底部壁之直徑。 -9 - 本紙張尺度適用中國國家標準(CNS) A4規格(2i〇x297公着) 55623δA ^ C, C > B, and C &D; where A is the diameter of the upper cylindrical wall portion farthest from the bottom wall surface, B is the diameter of the upper cylindrical wall portion closest to the bottom wall surface, and c is the lower The diameter of the cylindrical wall part farthest from the surface of the bottom wall, and D is the diameter of the lower cylindrical wall part at the bottom wall. -9-This paper size applies to Chinese National Standard (CNS) A4 (2i × x297) 55623δ
附圖簡單説明 以下由附圖所作詳細說明中,本發明上述及其他方面與 優點將更明朗化,其中: 圖1及2以剖面圖說明使用單模型製造電容器之習用方法; 圖3係以習用方法製造的儲存電極的電子掃描顯微鏡 (SEM)像片; 圖4以另一剖面圖說明使用單模型製造電容器之習用方 法; 圖5Α及5Β各別以上視及側視角度所取得由習用方法製成 的儲存電極SEM像片; 圖ό至13以剖面圖說明根據本發明一實例,使用雙模型製 造單柱體電容器的方法; 圖14以剖面圖說明未滿足本發明製造條件時會發生的瑕 疵; 圖15至17以圖表說明而比較藉由習用使用單模型方法與 本發明使用雙模型方法製成的電容器特性; 圖18及19以SEM像片說明未清除下模絕緣層而製成的儲存 電極中所見到的雙位元破壞;及 圖20以圖表說明本發明電極的濕蝕時間與某些關鍵尺寸 間的關係。 發明詳細説明 茲將參照至附圖說明本發明實例,請注意所呈現的圖示 係為έ兒明及解釋,不一定按比例繪製。 將參照至圖6-13說明根據本發明的單柱體堆疊(〇cs)電容 -10- i張尺度適用巾a a家料(CNS) A4規格(21GX 297公复〉 -------- 556238Brief Description of the Drawings The above and other aspects and advantages of the present invention will be made clearer in the following detailed description made with the accompanying drawings, in which: Figures 1 and 2 illustrate a conventional method for manufacturing a capacitor using a single model in a sectional view; Figure 3 is a conventional method Electron scanning microscope (SEM) image of the storage electrode manufactured by the method; Figure 4 illustrates another conventional method for manufacturing a capacitor using a single model; Figures 5A and 5B are obtained by conventional methods from above and side views respectively SEM image of the storage electrode formed; FIGS. 13 to 13 illustrate cross-sectional views of a method for manufacturing a single-cylinder capacitor using a dual model according to an example of the present invention; and FIG. 14 illustrates cross-sectional views of defects that may occur when the manufacturing conditions of the present invention are not met. Figures 15 to 17 compare the characteristics of capacitors made by the conventional single-model method with the dual-model method of the present invention in a graphical illustration; Figures 18 and 19 illustrate storage made without removing the lower mold insulating layer with SEM images Double bit failures seen in the electrode; and Figure 20 graphically illustrates the relationship between the wet etch time of the electrode of the present invention and certain key dimensions. Detailed Description of the Invention An example of the present invention will be described with reference to the accompanying drawings. Please note that the illustrations shown are for clarity and explanation, and are not necessarily drawn to scale. A single-cylinder stacked (0cs) capacitor according to the present invention will be described with reference to Figs. 6-13. The i-size sheet is suitable for aa household materials (CNS) A4 specifications (21GX 297 public reply) ------- -556238
’柱形(cylindrical)—詞 電極,具有籠統的圓形 ’而非表示任何以純數 器製造方法,如熟諳此藝者所理解 在此用以表示一特殊型式的電容器 、橢圓或橢圓側壁(可作成傾斜的) 學觀念定義的精確幾何形狀。 ;然後如所示’在姓刻停止層12〇上連續地形成下及上模層 130及 135 〇 百先參照至圖6,藉由習用製程,在一基板(未示)上形 成一夾層絕緣層削及-接觸插頭__深度延伸入層1〇〇 的表面内;然後在層嶋插頭155上形成一姓刻停止層12〇 在姓刻4丁止層120上形成的上下模絕緣層135及13〇的後續 蝕刻(稍後說明)期間,蝕刻停止層12〇係作為蝕刻障壁層,' 因此選擇蝕刻停止層120的材料要考量上下模絕緣層135及 130的#刻特性。僅以_例說明’如果上下模絕緣層⑴及 130為氧化層,則蝕刻停止層12〇可由厚度1〇〇_5⑼入的氮化矽 形成。 上下模絕緣層135及130構成一雙層,將蝕刻成一雙模以 製造下電容器電極,形成下模絕緣層13〇的材料比上模絕緣 層135的材料顯示更大的濕蝕比。 矣巴緣材料的濕蝕比受植入其中的摻雜物濃度影響,劑量 越大’濕餘比越高。因此,為達到上述不同的濕蝕比,下 換絕緣層130可由掺雜絕緣層形成,而上模絕緣層135則由 未摻雜(或較少摻雜)絕緣層形成。 下模絕緣層130最好以化學氣體沈積(CVD)由摻雜氧化層 形成,合適的摻雜氧化層包括硼磷矽酸鹽玻璃(BPSG)及磷 -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 556238 五、發明説明(7 ) 矽酸鹽玻璃(PSG)。上模絕緣層135最好以電漿增強化學氣 體沈積(CVD)由未摻雜氧化層形成,合適的未摻雜氧化層包 括電聚增強四乙正矽酸鹽(PE_丁E〇s)層、高密度電聚⑽p) 氧化層及P-SiH4氧化層。 下模絕緣層130的高度H1及上模絕緣層135的高度抝,係 根據將製造的儲存電極的目標高度及上下模絕緣層出及 U0㈣刻特性而判定。尤其是下模絕緣層⑽的高度出的 判定’應使其中將形成的開口能顯示上下最大直徑(稍後說 明),例士口 ’下模絕緣層13〇抑觸層形成且所製成的儲存 電極為L6Mm(或更大)時,下模絕緣層13〇的高度出最好在 0.5-0.6叫的範圍内’而上模絕緣層135的高度H2則在丄μ 4 範圍内。下模絕緣層職高度m及上模絕緣層出的 南細’會依絕緣層所用的材料及所製成的儲存電極的目 標兩度而有所不同。 沈積下模絕緣層130之後,及沈積上模絕緣層⑴之前, 視^可對下模絕緣層13G進行退火及/或表面清除製程。 意即可藉由退火而控制下模絕緣層130的濕姓比,更特別 地,為增加㈣比而在下模絕緣層_人離子,常 Ϊ Π匕I加太多,植入離子後有效地使用退火而更精確地 降低濕I虫比,如士 _啦 此來,植入後進行退火為微調渴蝕比的 有效機制。例如,當下模絕緣層13。係由換雜糊及::) 層形成’以重量計…各為2-3%漢度時,最二) 火使濕蝕比降低·叉一七二丄 取灯足 的_形成,以’重量;農二 十濃度未大於5❶/❶時,下模絕緣層130 I________ _ k 巧張尺奴財晴 12- B7 8 五、發明説明( 則無需退火。 退火本身係在避免下模絕緣層13〇龜裂的溫度範圍内執行 ’溫度最好低於蝕刻停止層120的沈積溫度,例如,當蝕刻 停止層120以氮化矽層形成時,最好以小於7〇〇t的溫度將 下模絕緣層130退火。 退火之後,亦可將下模絕緣層13〇進行表面清除製程,例 如’下模絕緣層130及上模絕緣層135並非在原地形成,則 形成下模絕緣層130及形成上模絕緣層135已經過一段可觀 的時間,此情形下,水份會由植入下模絕緣層13〇的摻雜物 吸收’因此在下模絕緣層130表面形成非晶系瑕疵層,此非 晶系瑕蔽層可呈現大於其餘下模絕緣層13〇的濕蝕比。因此 ,最好在退火或沈積下模絕緣層13〇後,執行表面清除以移 除非晶系瑕疵層;為達成此目的可使用硫酸溶劑。 如一開始即避免形成非晶系瑕疵層(即在原地形成下模 絕緣層130及上模絕緣層135),或在沈積上模絕緣層135之前 ’完全未(或只一小段期間)將下模絕緣層130曝露在空氣中 則可省略移除非晶系瑕疵層的清除過程。 接下來’參照至圖7,使用一罩幕(未示)連續乾蚀上模 絕緣層135、下模絕緣層13〇及蝕刻停止層12〇 ,以形成一開 口 140 ’可使用CFX氣體(如C4f4*C3F8氣體)執行乾蝕。乾蝕 的製程限制造成開口將由斜(非垂直)側壁(相對於夾層絕緣 層100)而界定’換言之,開口向外以一高度方向逐漸變細 ’而使開口直徑係頂部大於底部。 兹參照至圖8 ’執行一選擇性濕蝕以完成雙模138的形成 _ -13- 本紙張尺度適用中國國家標準(CNS) A4‘格(21〇X297&^)----- 五、發明説明(9 ) ’由於下絕緣模UG由難比大於上絕緣模135的材料形成 ,由濕蝕移除的下絕緣模13〇會多於上絕緣模135,如此一 來如所不,在雙模138中界定一花瓶狀開口 14〇,。雖然只 稍微蝕刻上絕緣模135,但此稍微蝕刻有利地作為形成儲存 電極(猶後說明)之前的預先清除,最好按次序使用sci (NH4〇H/H2〇2/去離子水)及氫氟酸(HF)執行濕蝕。 執行濕蝕有條件限制,即須在開口 14〇,内達成某些設計 好的尺寸’在此稱為關鍵尺寸A、B、c、〇及£。如圖8所 不,A為上絕緣模135的開口 14〇,的最大宽度(或直徑);b為 上絕緣模135的開口 140,的最小寬度(或直徑);〔為下絕緣 請的開口⑽的最大寬度(或直徑);d為下絕緣_的 開口刚’的最小寬度(或直徑);㈣為開口⑽,底部姓刻停 止層竭曝露量。舉例而言,開口 14〇,的關鍵尺寸C最好 等於或小於關鍵尺寸A,此外,關鍵尺寸E最好在後續則虫 過程_說明)中,於移除雙模138期間足以防止 入夾層絕緣層中。 ^ 度的儲存電極,開 nm,而蝕刻停止層 例如,為形成具有1 ·ό μηι(或更大)高 口 140’的下關鍵尺寸d最好不少於145 120的曝露長度Ε不少於15 nm。 兵他影響雙模138濕蝕條件 雜物濃度(即材料的姓刻比),及濕蝕時間u 參照至圖9,順著雙模138的側壁、底部及頂 電層150,導電層150界定一下電極,且可由一夕:成 -摻雜多晶矽層形成,導電層i 夕曰曰矽月 _____ -14- I紙張尺度適财a ®家標準(CNS) A4規格(21GX 297公g 14_子度F可介於㈣ 556238 五、發明説明(1〇 ’如果儲存電極具有1>6卿(或更大)的高度,則厚度F大約 為 45 nm 〇 接下來,如圖10所示,在使用流動性好的材料(如BPSG 、PSG或未摻雜㈣鹽玻璃_))的結果結構的整個表面沈 積、,、邑緣層160,以填補開口 14〇,。然後,如圖u所示,藉 由化干機械式研磨法(CMp)或乾#回,將絕緣層⑽及導電 層150作部分移除,直到露出雙模138的頂部為止。 接下來,如圖12A所示,使用姓刻劑將雙模138及絕緣層 160移除’而使各單元形成一具有單柱體堆疊結構的儲存電 極150,在移除雙模138時,最好使用册及簡㈣混合物作 為移除1虫刻劑。此處由於導電層150重疊餘刻停止層12〇, ㈣劑在移除雙模138期間,必須實質移動—段距離以參入 央層絕緣層⑽,如此一來,可避免㈣劑的滲透。圖ΐ2β 以SEM像片說明根據本發明較佳實例形成的儲存電極⑼, 如所示,並未見到先前製造方法的缺點。 接下來,如圖13所示,形成一介電層17〇以覆蓋儲存電極 150 ’並由習肖t程形成一上電極18〇以得到一 $整的電容 裔。’I電層170可為一氮氧(N〇)層,但亦可使用具夠大介電 常數(k)的其他材料。 再參照至圖12A,儲存電極150與接觸插頭115接觸,並具 有類似花瓶的單柱體結構。特別地,儲存電極的柱形壁由 在A與B之間延伸的上柱形壁部分、在之間延伸的下 柱形壁部分及在B#C之間延伸的中柱形壁部分所界定。距 離底部壁表面越遠,上柱形壁部分的直徑及下柱形壁部分 本纸張尺度適财B a家標準(CNS) A4規格(21GX297公 -15- 556238 五、發明説明(11 ) 的直徑則越增加(向外變細),而中柱形壁部分的直徑則距 離底部壁表面越遠越減少(向内變細)。根據本發明較佳實 例’在配置儲存電極150時,會建立以下的關係:'Cylindrical'-the word electrode, with a general round shape, rather than any method of making a pure number, as understood by those skilled in the art, is used here to mean a special type of capacitor, ellipse or elliptical sidewall (may be Create precise geometric shapes as defined by the scientific concept. Then, as shown, 'the lower and upper mold layers 130 and 135 are successively formed on the last stop layer 120. Referring to FIG. 6, a conventional process is used to form a sandwich insulation on a substrate (not shown). The layer-cutting and -contact plug __ deeply extend into the surface of the layer 100; then, a layer 131 stop layer 12 is formed on the layer 155 plug 155 and an upper and lower mold insulating layer 135 is formed on the layer 120 During subsequent etching (described later) of 13 °, the etch stop layer 120 is used as an etching barrier layer. Therefore, when selecting the material of the etch stop layer 120, the #etching characteristics of the upper and lower mold insulating layers 135 and 130 must be considered. It will be described by way of example only. If the upper and lower mold insulating layers ⑴ and 130 are oxide layers, the etch stop layer 120 may be formed of silicon nitride with a thickness of 100-5. The upper and lower mold insulating layers 135 and 130 constitute a double layer, which will be etched into a double mold to manufacture the lower capacitor electrode. The material forming the lower mold insulating layer 13o shows a larger wet-etching ratio than the material of the upper mold insulating layer 135. The wet erosion ratio of the sampan marginal material is affected by the concentration of the dopants implanted in it. The larger the dose, the higher the wet residual ratio. Therefore, in order to achieve the above-mentioned different wet etching ratios, the replacement insulating layer 130 may be formed of a doped insulating layer, and the upper mold insulating layer 135 is formed of an undoped (or less doped) insulating layer. The lower mold insulating layer 130 is preferably formed of a doped oxide layer by chemical gas deposition (CVD). Suitable doped oxide layers include borophosphosilicate glass (BPSG) and phosphorus-11. CNS) A4 specification (210X297 mm) 556238 5. Description of the invention (7) Silicate glass (PSG). The upper mold insulating layer 135 is preferably formed of an undoped oxide layer by plasma-enhanced chemical gas deposition (CVD). Suitable undoped oxide layers include electropolymer-enhanced tetraethylorthosilicate (PE_Buteos). Layer, high-density electrodeposited p) oxide layer and P-SiH4 oxide layer. The height H1 of the lower mold insulating layer 130 and the height of the upper mold insulating layer 135 are determined based on the target height of the storage electrode to be manufactured, the upper and lower mold insulating layers, and U0 engraving characteristics. In particular, the judgement of the height of the lower mold insulating layer 应 should be such that the opening to be formed can show the maximum diameter up and down (explained later). When the storage electrode is L6Mm (or larger), the height of the lower mold insulating layer 13 is preferably in the range of 0.5-0.6, and the height H2 of the upper mold insulating layer 135 is in the range of 丄 μ4. The height m of the insulating layer of the lower mold and the thickness of the upper layer of the insulating layer of the upper mold will be different depending on the material used for the insulating layer and the target of the storage electrode made twice. After the lower mold insulating layer 130 is deposited and before the upper mold insulating layer is deposited, the lower mold insulating layer 13G may be subjected to an annealing and / or surface cleaning process, as appropriate. That is to say, the wet lasting ratio of the lower mold insulating layer 130 can be controlled by annealing. More specifically, in order to increase the ratio, the lower mold insulating layer_human ion is added too much, which is effectively used after implanting ions. Annealing to more accurately reduce the wet I-worm ratio. For example, annealing after implantation is an effective mechanism for fine-tuning the thirst erosion ratio. For example, the current mold insulating layer 13. It is formed by changing the miscellaneous paste and: :) The layers are formed 'by weight ... when each is 2-3% Han degrees, the second is) the fire reduces the wet erosion ratio. Weight; when the concentration of Nongji is not more than 5❶ / ❶, the lower mold insulation layer 130 I________ _ k Qiao Zhang Nu Nu Caiqing 12- B7 8 V. Description of the invention (There is no need for annealing. The annealing itself is to avoid the lower mold insulation layer 13 〇 The temperature within the cracking temperature range is preferably lower than the deposition temperature of the etch stop layer 120. For example, when the etch stop layer 120 is formed of a silicon nitride layer, it is preferable to lower the lower mold at a temperature of less than 700 t. The insulating layer 130 is annealed. After annealing, the lower mold insulating layer 130 can also be subjected to a surface cleaning process, for example, 'the lower mold insulating layer 130 and the upper mold insulating layer 135 are not formed in place, then the lower mold insulating layer 130 is formed and the upper layer is formed. A considerable amount of time has passed in the mold insulating layer 135. In this case, moisture will be absorbed by the dopants implanted in the lower mold insulating layer 130. Therefore, an amorphous defect layer is formed on the surface of the lower mold insulating layer 130. This amorphous The imperfect layer can exhibit a wet erosion ratio larger than that of the remaining lower mold insulating layer 13 Therefore, it is best to perform surface cleaning to remove the amorphous defect layer after annealing or depositing the lower mold insulating layer 13; for this purpose, a sulfuric acid solvent can be used. Avoid the formation of the amorphous defect layer (ie in the original The lower mold insulating layer 130 and the upper mold insulating layer 135) are formed on the ground, or before the upper mold insulating layer 135 is deposited, the lower mold insulating layer 130 is completely (or only for a short period of time) exposed to the air, and the removal of non- Removal process of the crystal defect layer. Next, referring to FIG. 7, a mask (not shown) is used to continuously dry-etch the upper mold insulating layer 135, the lower mold insulating layer 13 and the etch stop layer 12 to form an opening. 140 'CFX gas (such as C4f4 * C3F8 gas) can be used to perform dry etching. The process limitation of dry etching causes the opening to be defined by oblique (non-vertical) sidewalls (relative to the sandwich insulation layer 100)' In other words, the opening is outward with a height The direction is gradually tapered 'so that the diameter of the opening is larger at the top than at the bottom. Refer to Figure 8' Perform a selective wet etch to complete the formation of the dual mold 138_ -13- This paper size applies to China National Standard (CNS) A4 ' (21〇X 297 & ^) ----- V. Description of the invention (9) 'Since the lower insulating mold UG is formed of a material that is harder than the upper insulating mold 135, the lower insulating mold 13 removed by wet etching will be more than the upper insulating The mold 135, as it does, defines a vase-like opening 14 in the dual mold 138. Although the insulating mold 135 is only slightly etched, this slight etching is advantageously used as a pre-formation for the storage electrode (described later). Clear in advance, it is best to use sci (NH4〇H / H2〇2 / deionized water) and hydrofluoric acid (HF) in order to perform wet etching. Wet etching is conditionally limited, that is, a certain amount of These designed dimensions are referred to herein as critical dimensions A, B, c, 0 and £. As shown in Fig. 8, A is the maximum width (or diameter) of the opening 14o of the upper insulating mold 135; b is the minimum width (or diameter) of the opening 140, of the upper insulating mold 135; [the opening for the lower insulation please ⑽ is the maximum width (or diameter) of ⑽; d is the minimum width (or diameter) of the opening of the lower insulation _; ㈣ is the opening ⑽, and the bottom is engraved with the stop-exposure exposure. For example, the critical dimension C of the opening 14 is preferably equal to or smaller than the critical dimension A. In addition, the critical dimension E is preferably in the subsequent process (description), which is sufficient to prevent interlayer insulation during the removal of the dual mold 138. Layer. Storage electrode, in nm, and the etch stop layer, for example, in order to form a lower critical dimension d having a high opening 140 ′ of 1 μm (or greater), it is preferable that the exposure length E is not less than 145 120 15 nm. He influences the impurity concentration of the dual-mode 138 wet-etching conditions (that is, the material-to-cut ratio), and the wet-etching time u Refer to FIG. 9, along the side wall, the bottom and the top electrical layer 150 of the dual-mode 138, the conductive layer 150 is defined The lower electrode can be formed overnight: doped-doped polycrystalline silicon layer, and the conductive layer is a silicon layer _____ -14- I paper size suitable for a standard (CNS) A4 specification (21GX 297 g 14_ The sub-degree F can be between ㈣ 556238 and 5. Description of the invention (10) If the storage electrode has a height of 1 > 6 mm (or greater), the thickness F is about 45 nm. Next, as shown in FIG. 10, Using a flowable material (such as BPSG, PSG, or undoped osmium salt glass)), the entire structure of the structure is deposited on the entire surface of the structure 160, to fill the opening 14. Then, as shown in Figure u Using the dry mechanical grinding method (CMp) or dry back, the insulating layer 导电 and the conductive layer 150 are partially removed until the top of the dual mold 138 is exposed. Next, as shown in FIG. 12A, the last name is used. The etchant removes the dual mold 138 and the insulating layer 160, so that each unit forms a storage electrode 150 having a single pillar stack structure. When removing the dual-mode 138, it is best to use a mixture of album and simplification as an insecticide. Here, since the conductive layer 150 overlaps the rest stop layer 12o, the tincture must be substantially moved during the removal of the dual-mode 138. -A distance is used to enter the central insulating layer ⑽. In this way, the penetration of the elixir can be avoided. Figure 以 2β illustrates the storage electrode 形成 formed according to the preferred embodiment of the present invention with an SEM image. As shown, no visible Disadvantages of the previous manufacturing method. Next, as shown in FIG. 13, a dielectric layer 170 is formed to cover the storage electrode 150 ′, and an upper electrode 180 is formed by the Xi process to obtain a whole capacitor. The I electric layer 170 may be a nitrogen oxide (NO) layer, but other materials having a large dielectric constant (k) may be used. Referring to FIG. 12A again, the storage electrode 150 is in contact with the contact plug 115 and has a similar structure. The single cylindrical structure of the vase. In particular, the cylindrical wall of the storage electrode is composed of an upper cylindrical wall portion extending between A and B, a lower cylindrical wall portion extending between, and B # C It is defined by the middle cylindrical wall portion. The further away from the bottom wall surface, the straighter the upper cylindrical wall portion is. And the lower column-shaped wall portion of this paper is suitable for the standard of B home standard (CNS) A4 specifications (21GX297 public -15-556238) V. Description of the invention (11) the diameter increases (thinner), and the center column The diameter of the shaped wall portion decreases as it gets farther from the bottom wall surface (thinner). According to the preferred embodiment of the present invention, when the storage electrode 150 is configured, the following relationship is established:
A g C,C > β,及 c > D 其中Α係上柱形壁部分距離底部壁表面最遠位置之直徑, B係上柱形壁部分距離底部壁表面最近位置之直徑,c係下 柱形壁部分距離底部壁表面最遠位置之直徑,而D係下柱 形壁部分在底部壁之直徑。 則述尺寸的要求防止鄰近儲存電極間的橋接,且能在製 造儲存電極期間,藉由僅測量儲存電極頂部外徑的關鍵Z 寸A,即可線上監控儲存電極底部外徑的關鍵尺寸◦。 圖14况明如果儲存電極15〇的關鍵尺寸c,大於關鍵尺寸 A ’則會發生橋接的情形,而且,即使在鄰近儲存電極間 未實際發生橋接’除非設定C,小於或等於A,,不然無法確 保足夠的處理邊際。 根據本發明的ocs電容器特性,及製造OCS電容器中施 加的多種處理參數係經由以下說明的實驗範例加以判定, 應2下列實驗範例中出現的數值,會根據將製造的健存 電容器的目標高度及電容而有所不同。 實驗範例1 方:二用用單模製造的電容器特性,與根據本發明 务使用雙模製造的電容器特性,作一比較。 除了本發明係以〇.5μηι厚度的BPSg 厚度的PE-職層作為上模以形成雙模=及^ ^ 而習用方法則由 _____ - I。 本紙張尺度適用中g g *標準(CNS) 4视格(咖〉〈297公着) 16- 556238 五、發明説明(12 ) 單- 1.7叫厚度的PE_TE〇s層形成單模外,係在相同條件下 使用該兩種方法’製造具有16吨(或更大)儲存電 容器。 參照至圖15」使用單模製造的電容器各單元中大約顯示 元 用 雙 15個雙位疋破壞’是本發明使用雙模製造的電容器(各單 中=造成5個雙位元破壞)中的三倍,證明根據本發明使 雙模的電容器製造方法’可在形成的單元中明顯地減少 位元破壞。 存 所 法 使 〃對習用方法及根據本發明方法所製造的電容器測量儲 即點電容Cs,如圖16所示’各單元中,根據本發明方法 製造的電容器的儲存節點電容Cs約為15作,大於習用方 所製造的電容器的儲存節點電容Cs。原因是根據本發明r 用雙模的方法所形成的儲存電極,較習用方法使用單模戶) 形成者,具有更大的底面積。 實驗範例2 ^用由習时法使料模所製造具有14_高 μ】 =電容器’與根據本發明方法使用雙模所製造具有μ ::存的電“ ’調查位元瑕疵與充電(更新)時間的 關係。如圖Π所示,根據本發明方法所形成 同單位元瑕疵位準上,頬干f ^n±Ba 在相 帝― 更新時間比習用方法所形成的A g C, C > β, and c > D where A is the diameter of the upper cylindrical wall portion furthest from the bottom wall surface, B is the diameter of the upper cylindrical wall portion closest to the bottom wall surface, c is The diameter of the lower cylindrical wall portion farthest from the surface of the bottom wall, and D is the diameter of the lower cylindrical wall portion at the bottom wall. Then the size requirements prevent bridges between adjacent storage electrodes, and during the manufacturing of the storage electrodes, the critical dimensions of the outer diameter at the bottom of the storage electrode can be monitored online by measuring only the key Z inch A of the outer diameter at the top of the storage electrode. Figure 14 shows that if the critical dimension c of the storage electrode 15 is larger than the critical dimension A ', bridging will occur, and even if no bridging actually occurs between adjacent storage electrodes, unless C is set to be less than or equal to A, otherwise Unable to ensure adequate processing margins. According to the characteristics of the OCs capacitor of the present invention and the various processing parameters applied in the manufacture of OCS capacitors, they are determined through the experimental examples described below. The values appearing in the following experimental examples will be based on the target height of the surviving capacitors to be manufactured and Capacitance varies. Experimental Example 1 Fang: The characteristics of a capacitor manufactured using a single mode are compared with the characteristics of a capacitor manufactured using a dual mode according to the present invention. Except that in the present invention, a PE-layer with a thickness of 0.5 μm and a thickness of BPSg is used as the upper mold to form a dual mold = and ^ ^, and the conventional method consists of _____-I. This paper is applicable to gg * standard (CNS) 4 visual grid (Ca> <297) 16- 556238 V. Description of the invention (12) Single-1.7 PE_TE0s layer with a thickness of 1 forms a single mode, and is in the same mode These two methods are used under conditions to manufacture a storage capacitor with 16 tons (or more). "Refer to Fig. 15" In each unit of a capacitor manufactured using a single-mode capacitor, approximately 15 double-bit 疋 failures are shown in each unit of the capacitor. Three-fold proves that the method of making a dual-mode capacitor according to the present invention can significantly reduce bit destruction in the formed cell. The storage method uses the conventional method and the capacitor manufactured according to the present invention to measure the storage point capacitance Cs. As shown in FIG. 16 'in each unit, the storage node capacitance Cs of the capacitor manufactured according to the present method is about 15 Is larger than the storage node capacitance Cs of the capacitor manufactured by the customer. The reason is that the storage electrode formed by the dual-mode method according to the present invention has a larger bottom area than the conventional method using a single-mode user. Experimental example 2 ^ 14_high μ manufactured by using the conventional method to make the material mold] = capacitor 'and μ :: stored electricity manufactured by using the dual mode according to the method of the present invention' 'Investigate bit defects and charging (update ) The relationship between time. As shown in Figure Π, at the same unit element defect level formed according to the method of the present invention, the f ^ n ± Ba is formed by the relative emperor-update time than the conventional method
電谷窃增加。根據本發明的各 A 現象。 早70中各多出電容造成此 實驗範例3 為根據本發明的電容器製 谷杰Ik方法,筛選合適的絕緣材料 本紙張尺_家標準(⑽)A4規格 556238 A7 B7 五、 發明説明(13 ) 層用於雙模的下模,各別以一 P-SiH4層及一摻雜BPSG層形 成下模,以PE-TEOS層形成上模。測量由各別雙模形成的 儲存電極、開口頂部外徑的關鍵尺寸A、第二彎曲點外徑 的關鍵尺寸C,及底部外徑的關鍵尺寸D,結果如表一所 示0 表1 材料 頂部外徑的關 第二彎曲點外徑的 底部外徑的關 底部至頂部(D:A) 鍵尺寸A(nm) 關鍵尺寸C(nm) 鍵尺寸D(nm) 開口比率(%) P-SiH4 215 170 109 51 BPSG 205 192 149 73 如表1所示,根據本發明電容器的製造中所使用的雙模 ,摻雜絕緣層適合作為下模的材料層。 實驗範例4 為決定下模絕緣層的適當摻雜物濃度,在相同條件下根 據本發明方法製造儲存電極,但BPSG下模層中的摻雜物、 硼及磷的濃度不同,然後在各別電容器測量開口頂部外徑 的關鍵尺寸A、第二彎曲點外徑的關鍵尺寸C,及底部外 徑的關鍵尺寸D,結果如表2所示。 -18- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Electric valley theft increased. A phenomenon according to the present invention. The extra capacitance in the early 70 caused this experimental example. 3 In accordance with the Gu Jie method of capacitor manufacturing of the present invention, a suitable insulating material is selected. This paper ruler_Home standard (⑽) A4 specification 556238 A7 B7 V. Description of the invention (13 ) Layer is used for the lower mold of the dual mode. Each of the P-SiH4 layer and a doped BPSG layer is used to form the lower mold, and the PE-TEOS layer is used to form the upper mold. The storage electrodes formed by the respective dual molds, the critical dimension A of the outer diameter at the top of the opening, the critical dimension C of the outer diameter of the second bending point, and the critical dimension D of the outer diameter at the bottom are shown in Table 1. 0 Table 1 Materials Top outer diameter off Second bending point outer diameter Bottom outer diameter off Bottom to top (D: A) Key size A (nm) Key size C (nm) Key size D (nm) Opening ratio (%) P- SiH4 215 170 109 51 BPSG 205 192 149 73 As shown in Table 1, according to the dual mode used in the manufacture of the capacitor of the present invention, the doped insulating layer is suitable as the material layer of the lower mold. Experimental Example 4 In order to determine the proper dopant concentration of the lower mold insulating layer, the storage electrode was manufactured according to the method of the present invention under the same conditions, but the concentrations of dopants, boron and phosphorus in the lower mold layer of BPSG were different, and then The capacitor measures the critical dimension A of the outer diameter at the top of the opening, the critical dimension C of the outer diameter of the second bending point, and the critical dimension D of the outer diameter at the bottom. The results are shown in Table 2. -18- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
裝 訂 % 556238 BPSG層中B及P 的濃度(重量百分 比) 頂部外徑 的關鍵尺 寸 A(nm) 底部外徑 的關鍵尺 寸 D(nm) 中間至頂 部(C:A)開 底部至頂 部(D:A)開 丄主 一 一---———— ---二_ a、1所不,當下模絕緣層的BPSG層中的濃度增加 時’顯示儲存電極由於濕蝕比增加,在底部及第二彎曲點 裝Binding% 556238 Concentrations of B and P in BPSG layer (percent by weight) Critical dimension of top outer diameter A (nm) Critical dimension of bottom outer diameter D (nm) Middle to top (C: A) Open bottom to top (D: A) Kailuo main one ----------- --- two_ a, 1 No, when the concentration in the BPSG layer of the lower mold insulation layer increases, 'storage electrode' Second bending point
外,的關鍵尺寸DM皆增加。由35重量百分比的MW 重量百分比的P所形成的健存電極,其第二脊曲點外徑關 訂 鍵尺寸C大於頂部外徑的關鍵尺寸A,而造成謝。的中間 開口比率。 f 此外’由於形㈣存電極之前的㈣製程同時亦作為預 先/月除製’下模絕緣層的高蝕刻比確保足夠的預先清除 效果,因此B及P濃度最好為2-3重量百分比。 “ 實驗範例5 進行實驗以決定下模絕緣層的最優厚度,其中當開口底 部外控的關鍵尺寸D最大時,可伴拄 ** 第一曲點外徑的關 2寸不大於開口頂部外徑的關鍵尺寸A。特別地,當 'ϋτ模絕緣層的總厚度維持在17 μ 的厚度在〇·3μ„^〇·5μηι間變動 GTM層 θ网 勒對所形成的儲存電極,測 1開口頂部外徑的關鍵尺寸Α、 、 I - · 本纸張尺度適财城格(⑽㈣7公爱y 19乐一豸曲點外徑的關鍵尺 556238 五、 A7 ____B7 發明説明(15 ) 寸C ’及開π底部外徑的關鍵尺寸D,結果如表3所示 表3 BPSG 層 厚度(μηι) 頂部外徑的關 鍵尺寸A(nm) 第二彎曲點外徑 的關鍵尺寸 C(nm) 底部外徑的關 鍵尺寸D(nm) 底部至頂部 (D:A)開口比率 (%) 0.3 217 164 138 64 0.5 207 198 163 79 如表3所示,厚度為0.3 pm的BPSG層,其底部開口比率 (D · A)及儲存電極的第二彎曲點外徑的關鍵尺寸◦,皆大於 厚度為0.5 μηι的BPSG層者。 使用具有1 ·9 μιη雙模厚度的雙模製造另外的儲存電極, 但各以〇·5 μηι、0.6 μηι、0.7 μηι及0.8 μηι等不同厚度的BPSG下 模層’測量各別儲存電極在開口頂部外徑的關鍵尺寸A、 第二彎曲點外徑的關鍵尺寸C,及開口底部外徑的關鍵尺 寸D ’結果如表4所示。 表4 BPSG層的 厚度(μηι) 頂部外徑的 關鍵尺寸 A(nm) 第二彎曲點 外徑的關鍵 尺寸C(nm) 底部外徑的 關鍵尺寸 D(nm) 中間開 口 (C:A) 比率(%) 底部開口 (d:a)比 率(%) 0.5 243 206 183 85 75 0.6 248 216 176 87 71 0.7 235 221 188 94 80 0.8 243 233 186 96 77 如表4所示,即使BPSG層的厚度增加至〇·5 μηι以上,雖然 第二彎曲點外徑的關鍵尺寸C顯著改變,但底部開口比率 -20- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 556238 A7 B7 五、發明説明(16 ) 率改變極小,因此證明一旦作為下模的BPSG層,其厚度達 到特定位準,在儲存電極底部外徑的關鍵尺寸D實質上不 會受到BPSG層厚度增加的影響。因此,當下模絕緣層由 BPSG層形成時,BPSG層的厚度最好在0.5-0.6 μηι的範圍内。 實驗範例6 在各別的氮化矽層上形成BPSG層,然後各別在650°C退 火60分鐘及在750°C退火10分鐘,以決定形成BPSG下模層之 後將執行的最優退火溫度。以750°C(大於形成氮化矽層的 沈積溫度)退火之後,可在BPSG層見到許多裂縫,因此證 明執行退火的溫度應低於氮化矽層的沈積溫度。 實驗範例7 將BPSG下模絕緣層退火之後,不先清除BPSG層表面以 移除表面瑕疵,即在BPSG層上形成上模絕緣層,然後根據 本發明使用雙模形成儲存電極,然後以電子掃描顯微鏡 (SEM)觀察。結果,如圖18及19所示,在儲存電極的上下模 絕緣層間的介面見到受環圈束缚的鄰近儲存電極(所謂的翼 狀瑕疯(wing defects))。 此類翼狀瑕疵為雙位元破壞的成因,且被認定在前述 BPSG層上形成具高蝕刻比的非晶系瑕疵層所造成,為移除 這些瑕疵,形成BPSG下模絕緣層之後接著在表五所示條件 下進行瑕疵層的移除,使用硫酸溶劑以執行移除瑕疵層的 過程。 -21 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)In addition, the key dimensions DM are increased. For a surviving electrode formed by 35 weight percent of MW weight percent of P, the outer diameter of the second ridge curvature of the key is larger than the key dimension A of the outer diameter of the top, which is a cause of gratitude. The middle opening ratio. f In addition, the high etching ratio of the lower insulating layer of the lower mold insulation layer also ensures sufficient pre-cleaning effect because the fabrication process before forming the electrode is also used as a pre / month removal. Therefore, the concentration of B and P is preferably 2-3% by weight. "Experimental Example 5 Experiments are performed to determine the optimal thickness of the lower mold insulation layer. When the critical dimension D of the external control at the bottom of the opening is the largest, it can be accompanied by **. The critical dimension of the diameter A. In particular, when the total thickness of the ϋτ mode insulating layer is maintained at 17 μ, the thickness varies between 0.3 μm and 5 μm, and the GTM layer is θ meshed against the formed storage electrode, and 1 opening is measured. The key dimensions of the outer diameter of the top A,, I-· The paper size is suitable for the financial city (⑽㈣7 公 爱 y 19, a key point of the outer diameter of the bending point 556238 V, A7 ____B7 Description of the invention (15) inch C 'and Open the key dimension D of the outer diameter at the bottom. The results are shown in Table 3. Table 3 BPSG layer thickness (μηι) Key dimension of the top outer diameter A (nm) Key dimension of the outer diameter of the second bending point C (nm) Bottom outer diameter Key dimension D (nm) bottom to top (D: A) opening ratio (%) 0.3 217 164 138 64 0.5 207 198 163 79 As shown in Table 3, the thickness of the BPSG layer with a thickness of 0.3 pm, the bottom opening ratio (D A) and the critical dimension of the outer diameter of the second bending point of the storage electrode, which are all larger than the BPSG with a thickness of 0.5 μηι Additional storage electrodes were made using a dual mold with a thickness of 1.9 μm dual mold, but each BPSG lower mold layer with different thicknesses, such as 0.5 μm, 0.6 μm, 0.7 μm, and 0.8 μm, was used to measure each storage. The critical dimension A of the outer diameter of the electrode at the top of the opening, the critical dimension C of the outer diameter of the second bending point, and the critical dimension D 'of the outer diameter of the bottom of the opening are shown in Table 4. Table 4 Thickness of the BPSG layer (μηι) Outside the top Critical dimension A (nm) Critical dimension of the outer diameter of the second bending point C (nm) Critical dimension of the bottom outer diameter D (nm) Middle opening (C: A) ratio (%) Bottom opening (d: a) ratio (%) 0.5 243 206 183 85 75 0.6 248 216 176 87 71 0.7 235 221 188 94 80 0.8 243 233 186 96 77 As shown in Table 4, even if the thickness of the BPSG layer is increased to 0.5 μm or more, although the second bend The critical dimension C of the point outer diameter changes significantly, but the bottom opening ratio is -20- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 556238 A7 B7 V. Description of the invention (16) The rate change is extremely small, Therefore, it proves that once the BPSG layer as the lower mold, its thickness reaches a special Level, not substantially affected by the increase in the thickness of the BPSG layer critical dimension D of the outside diameter of the reservoir electrode. Therefore, when the lower mold insulating layer is formed of a BPSG layer, the thickness of the BPSG layer is preferably in the range of 0.5-0.6 μm. Experimental Example 6 BPSG layers were formed on respective silicon nitride layers, and then annealed at 650 ° C for 60 minutes and 750 ° C for 10 minutes to determine the optimal annealing temperature to be performed after forming the BPSG lower mold layer. . After annealing at 750 ° C (greater than the deposition temperature at which the silicon nitride layer is formed), many cracks can be seen in the BPSG layer. Therefore, it is proved that the annealing temperature should be lower than the deposition temperature of the silicon nitride layer. Experimental Example 7 After annealing the BPSG lower mold insulating layer, the surface of the BPSG layer is not removed to remove surface defects, that is, an upper mold insulating layer is formed on the BPSG layer, and then a storage electrode is formed using a dual mold according to the present invention, and then scanned by electrons Microscope (SEM) observation. As a result, as shown in Figs. 18 and 19, adjacent storage electrodes (so-called wing defects) bound by a ring were seen at the interface between the upper and lower mold insulating layers of the storage electrode. Such wing-like defects are the cause of double-bit destruction and are believed to be caused by the formation of an amorphous defect layer with a high etching ratio on the aforementioned BPSG layer. In order to remove these defects, a BPSG undermold insulation layer is formed followed by The defective layer is removed under the conditions shown in Table 5. A sulfuric acid solvent is used to perform the process of removing the defective layer. -21-This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
裝 訂Binding
.線 556238 A7 B7 五、 發明説明(π ) 表5 樣本 清除之前的中止 時間(小時) 清除之後的中止 時間(小時) 翼狀瑕疵 1 18 0 無 2 24 0 無 3 0 8 無 4 0 18 無 5 0 24 無 6 0 48 有 如表5所示’即使下模絕緣層在退火之後,在以硫酸溶 劑清除之前閒置不處理約24小時,如樣本i及2,可由清除 而避免雙位元破壞。同理,如樣本3、4及5,如果以硫酸 溶劑清除下模絕緣層24小時内形成上模層,亦可避免雙位 元破壞。 實驗範例8 在不同條件下(即SCI 5分鐘/HF 90秒、SCI 7分鐘/HF 90秒 ,及SCI 10分鐘/HF 90秒)進行上下模絕緣層的濕蝕,測量 各別儲存電極的下關鍵尺寸D及底部開口比率(D ·· A ),结 果如圖20所示。如圖20所示,當濕蝕時間增加,則在底部 外徑的關鍵尺寸D及儲存電極的底部開^比率(〇 : a )皆增 加,因此可藉由調整濕蝕時間而適當控制儲存電極在底部 外徑的關鍵尺寸D。 根據本發明使用雙模製造單柱體堆疊(〇cs)電容器的方法 中’在避免雙位元破壞時可增加儲存電極的高度。〇cs電 容器的製造方法亦確保在儲存電極的底部有夠大的關鍵尺 寸足以滿足電容要求。亦可在線上監控正在製造的儲存電 •22- 本紙張尺度適财a 81家標i (CNS) A4規格(21GX 297公羞) ' -------.Line 556238 A7 B7 V. Description of the invention (π) Table 5 Suspension time before sample removal (hours) Suspension time after removal (hours) Wing defect 1 18 0 No 2 24 0 No 3 0 8 No 4 0 18 No 5 0 24 No 6 0 48 Yes As shown in Table 5, 'Even after the lower mold insulation layer is annealed, it is left untreated for about 24 hours before being cleared with sulfuric acid solvent. Samples i and 2 can be removed to avoid double-bit damage. Similarly, for samples 3, 4 and 5, if the upper mold layer is formed within 24 hours by removing the lower mold insulation layer with sulfuric acid solvent, double-bit damage can also be avoided. Experimental example 8 Under different conditions (ie, SCI 5 minutes / HF 90 seconds, SCI 7 minutes / HF 90 seconds, and SCI 10 minutes / HF 90 seconds), wet etching of the upper and lower mold insulation layers was performed, and the measurement of the respective storage electrodes was measured. The critical dimension D and the bottom opening ratio (D ·· A) are shown in Fig. 20. As shown in FIG. 20, when the wet etching time is increased, both the critical dimension D of the bottom outer diameter and the bottom opening ratio (0: a) of the storage electrode are increased. Therefore, the storage electrode can be properly controlled by adjusting the wet etching time. Key dimension D at the bottom outer diameter. In the method for manufacturing a single-cylinder stacked (Ocs) capacitor using a dual mode according to the present invention, the height of the storage electrode can be increased while avoiding double-bit destruction. 〇cs capacitor manufacturing method also ensures that there is a large enough key size at the bottom of the storage electrode to meet the capacitor requirements. It is also possible to monitor the storage electricity being manufactured online. 22- The paper size is suitable for a 81 standard i (CNS) A4 specification (21GX 297 public shame) '-------
裝 訂Binding
556238 A7 B7 五、 發明説明(18 ) j 極,而能防止#刻劑滲入夾層絕緣層,及餘刻劑滲透所產 ; 生的瑕/疵。 ; 雖然本發明以較佳實例加以說明,但較佳實例僅作為說 」 明用途,熟諳此藝者應了解,不背離本發明的精神及範疇 j f l ,可對所說明的實例加以修改,不可將後附申請專利範圍 | 的範疇理解為侷限在這些實例。 丨 Φ 裝 f -23- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)556238 A7 B7 V. Description of the invention (18) J pole, which can prevent #etching agent from penetrating into the interlayer insulation layer, and the remaining flaws produced by penetrating agent. Although the present invention is described with a preferred example, the preferred example is only for illustrative purposes. Those skilled in the art should understand that the illustrated example may be modified without departing from the spirit and scope of the present invention. The scope of the appended patent application | is understood to be limited to these examples.丨 Φ Pack f -23- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/136,385 US6700153B2 (en) | 2001-12-11 | 2002-05-02 | One-cylinder stack capacitor and method for fabricating the same |
Publications (1)
Publication Number | Publication Date |
---|---|
TW556238B true TW556238B (en) | 2003-10-01 |
Family
ID=32228393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91120456A TW556238B (en) | 2002-05-02 | 2002-09-09 | One-cylinder stack capacitor and method for fabricating the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW556238B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI386445B (en) * | 2003-10-17 | 2013-02-21 | Samsung Electronics Co Ltd | Etching composition, method of preparing the same, method of etching an oxide film, and method of manufacturing a semiconductor device |
-
2002
- 2002-09-09 TW TW91120456A patent/TW556238B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI386445B (en) * | 2003-10-17 | 2013-02-21 | Samsung Electronics Co Ltd | Etching composition, method of preparing the same, method of etching an oxide film, and method of manufacturing a semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW383494B (en) | Structure and manufacturing method for capacitors | |
JP3309060B2 (en) | Fabrication method of composite stack electrode | |
US7329917B2 (en) | Permeable capacitor electrode | |
KR100434496B1 (en) | One cylinder stack capacitor and fabrication method thereof using double mold | |
TW296469B (en) | ||
EP1610379A2 (en) | Dram cell capacitors having enhancing electrode surface area and method of their manufacture | |
TW200414307A (en) | Semiconductor device and method of manufacturing the same | |
TWI280640B (en) | Method for fabricating semiconductor memory device having cylinder type storage node | |
JP2004111624A (en) | Semiconductor device | |
TW200307960A (en) | Capacitor manufacturing method | |
KR20110012348A (en) | Semiconductor device and method for manufacturing the same | |
US6911364B2 (en) | One-cylinder stack capacitor and method for fabricating the same | |
TW200531203A (en) | Method for forming capacitor of semiconductor device | |
TW556238B (en) | One-cylinder stack capacitor and method for fabricating the same | |
JPH06196649A (en) | Manufacture of semiconductor device | |
TWI291231B (en) | Semiconductor device having a capacitor and method of fabricating same | |
TW200404351A (en) | Method of manufacturing semiconductor device | |
KR101068394B1 (en) | Method for manufacturing semiconductor device | |
TW479353B (en) | Manufacturing method of MIM capacitor | |
US7776738B2 (en) | Method for fabricating a storage electrode of a semiconductor device | |
TW408486B (en) | The manufacture method of crown shape capacitor with rough surface | |
KR20000044884A (en) | Method for forming capacitor of semiconductor device | |
KR100663338B1 (en) | Method For Fabricating Capacitor in Memory Cell | |
KR101110388B1 (en) | Semiconductor device and method for manufacturing the same | |
KR20120007710A (en) | Method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |