TW538323B - Electron beam exposure apparatus - Google Patents

Electron beam exposure apparatus Download PDF

Info

Publication number
TW538323B
TW538323B TW089108042A TW89108042A TW538323B TW 538323 B TW538323 B TW 538323B TW 089108042 A TW089108042 A TW 089108042A TW 89108042 A TW89108042 A TW 89108042A TW 538323 B TW538323 B TW 538323B
Authority
TW
Taiwan
Prior art keywords
offset
sub
electron beam
beams
integer
Prior art date
Application number
TW089108042A
Other languages
Chinese (zh)
Inventor
Shin-Ichi Hamaguchi
Takamasa Sato
Mitsuhiro Nakano
Tomohiko Abe
Takeshi Haraguchi
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Application granted granted Critical
Publication of TW538323B publication Critical patent/TW538323B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31761Patterning strategy
    • H01J2237/31764Dividing into sub-patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31776Shaped beam

Abstract

An electron beam exposure apparatus is disclosed that does not require lead time and that can achieve high effective throughput. The electron beam exposure apparatus comprises a beam source for generating an electron beam, shaping means for shaping the electron beam, deflecting means for changing the position of the electron beam irradiated on a sample, and projection means for focusing the shaped electron beam onto the sample, wherein the shaping means comprises splitting means for generating a plurality of sub-beams by splitting the electron beam, rectangular shaping means for respectively shaping each of the plurality of sub-beams into a desired rectangular shape, and sub-beam deflection means for respectively moving the irradiation position of each of the plurality of sub-beams. The electron beam exposure apparatus thus splits the electron beam generated by a single electron beam source into a plurality of sub-beams, applies shaping to each sub-beam using a variable size rectangle method, and deflects each shaped beam. If the axial distance between the sub-beams is small, the effects of the displacement between the sub-beams can be held small and the problem of displacements at joints does not occur. Moreover, all the sub-beams can be deflected over a wide range using prior known deflection means. As a result, the beam can be split into a large number of sub-beams, and the throughput improves greatly.

Description

538323 A7 B7 五、發明説明(!) 經濟部智慧財產局員工消費合作社印製 本發明係關於一種電子束曝光裝置,尤其是關於改進 電子束曝光裝置中產量之一種技術。 近年來,半導體技術已經以迅速的速度進展,達到半 導體積體電路電路(ic)之較高的積集位準以及較高的功能, 並且接著被期待扮演橫跨廣大的多種工業領域,包含電腦 和通訊設備控制,之先進技術中核心技術之重要角色。1C 之積集位準每兩年至三年以四的倍數在增加,並且在動態 隨機存取記憶體(DRAM)情況中,其儲存容量成四的倍數而 遞增,從1 Μ至4M,至16M,至25 6M,以及接著至1G。這些 高1C積集位準使得發展半導體技術之小型化技術成爲大有 可能。 目前,小型化技術之限度是由樣型曝光技術(照相製版 術技術)決定。現今樣型曝光技術普遍使用一種稱爲分節器 的光學曝光(光學照相製版術)裝置。在這光學照相製版術裝 置中,被形成樣型之最小線寬度是受限制於因爲繞射現象 而被使用之曝光光源的波長。目前是使用發射紫外線之光 源,但是使用較短波長之光源是不易的,並且除光學照相 製版術之外各種新的曝光方法被硏究以得到較佳特點的處 理。在它們之間,電子束曝光是比光學照相製版術較能夠 處理許多較小之特點和樣型。在已經被使用的實際機器中, 電子束曝光技術之發展已比其他的方法更進步,並且已針 對電子束曝光技術給予更多的注目,認爲它可取代光學照 相製版術。但是,因爲與分節器相比較,電子束曝光技術 是低產量的’所以它被認爲無法被使用於大量之LSI生產。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先間讀背面之注意事項再填寫本頁} 訂 538323 Α7 Β7 五、發明説明(>) 經濟部智慧財產局員工消費合作社印製 這想法是依據,例如,單一衝程寫入型式之電子束曝光的 範例,其中一組單一電子束是連續地被掃瞄以便曝光,並 且在嚴肅地分析以及調查用於產量改進之物理上和技術障 礙的原因之後並未達成結論。換言之,電子束曝光無法被 使用於大量之LSI生產,因爲使用先前習知單一束曝光方法 的電子束曝光僅具有低產量。 近年來,各種用於改進電子束曝光產量之方法被提出。 在使用一組單一電子束之電子束曝光中,利用重複地掃瞄 電子束跨越樣型部份而寫入一組樣型以充塡樣型影像。爲 精確地寫入良好的樣型角落,電子束必須被聚焦成爲一較 小光點,其對應地增加用於充塡影像所需的時間。於此情 況中,一種阻隔孔口陣列(B A A)方法已經被提出,其中多數 個電子束被產生並且同時地掃瞄跨越該樣型,而該等多數 個電子束是各自能夠獨立地被具有多數個排列孔口且被稱 爲阻隔孔口陣列(B A A)之元件所導通以及被切斷。該BAA方 法,如同單一電子束方法,不需要使用在光學照相製版術 中所需要的遮罩。實際上,該等多數個電子束二維地被配 置,增加曝光數量,而同時減低在樣型邊緣之總電流數量 的改變速率,等等。與單一電子束方法相比較,當垂直於 掃瞄方向被量測的樣型寬度是大時,根據B A A方法之影像 充塡效率大量地被改進,但是,例如,當一組精緻的樣型 在平行於掃瞄方向之方向延伸時,則並沒有改進許多。在 任何情況中,該BAA方法需要掃瞄整個曝光範圍並且,當 欲曝光之樣型少時,則曝光時間增加,相反於想要之目的, -----5 本紙張尺度適用中國國家標準(CNS ) A4規格(210χ:297公釐) (請先閱讀背面之注意事項再填寫本頁)538323 A7 B7 V. Description of the invention (!) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs This invention relates to an electron beam exposure device, and in particular to a technology for improving the output of an electron beam exposure device. In recent years, semiconductor technology has progressed at a rapid rate, reaching higher integration levels and higher functions of semiconductor integrated circuit circuits (ICs), and then is expected to play across a wide variety of industrial fields, including computers And communication equipment control, the important role of core technology in advanced technology. The accumulation level of 1C increases every four to three years, and in the case of dynamic random access memory (DRAM), its storage capacity increases by a multiple of four, from 1M to 4M, to 16M, to 25 6M, and then to 1G. These high 1C accumulation levels make it possible to develop miniaturization technologies for semiconductor technology. At present, the limit of miniaturization technology is determined by the pattern exposure technology (photoengraving technology). Today's model exposure technology commonly uses an optical exposure (optical photoengraving) device called a segmenter. In this optical photoengraving device, the minimum line width of the pattern to be formed is limited to the wavelength of the exposure light source used due to the diffraction phenomenon. Currently, a light source emitting ultraviolet rays is used, but it is not easy to use a light source with a shorter wavelength, and various new exposure methods other than photolithography have been studied to obtain better characteristics. Among them, electron beam exposure is more capable of processing many smaller features and patterns than photolithography. In actual machines that have been used, the development of electron beam exposure technology has been more advanced than other methods, and more attention has been paid to the electron beam exposure technology, which is considered to replace optical photolithography. However, because the electron beam exposure technology is low-yield 'compared to the segmenter, it is considered that it cannot be used for mass production of LSIs. This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) (please read the precautions on the back before filling out this page) Order 538323 Α7 Β7 V. Description of Invention (>) Staff of Intellectual Property Bureau, Ministry of Economic Affairs Consumer cooperatives printed this idea on the basis of, for example, a single-stroke write-type electron beam exposure paradigm in which a set of single electron beams are continuously scanned for exposure and are being analyzed and investigated seriously for yield improvement. Physical and technical obstacles have not been reached after the conclusion. In other words, electron beam exposure cannot be used for mass production of LSIs, because electron beam exposure using the previously known single beam exposure method has only a low yield. In recent years, various applications A method for improving the yield of the electron beam exposure is proposed. In the electron beam exposure using a set of a single electron beam, a set of patterns is written by repeatedly scanning the electron beam across the pattern portion to fill the pattern image. In order to accurately write a good pattern corner, the electron beam must be focused into a smaller spot, which correspondingly increases the need for filling the image In this case, a blocking aperture array (BAA) method has been proposed in which a plurality of electron beams are generated and scanned across the pattern simultaneously, and the plurality of electron beams can be independently independently A component called a blocking aperture array (BAA) having a plurality of aligned apertures is turned on and cut off. This BAA method, like the single electron beam method, does not require the mask required in photolithography. In fact, the plurality of electron beams are arranged two-dimensionally, increasing the number of exposures while reducing the rate of change of the total current amount at the edge of the pattern, etc. Compared to the single electron beam method, when perpendicular to the scanning When the width of the pattern measured in the direction is large, the image filling efficiency according to the BAA method is greatly improved, but, for example, when a set of delicate patterns extends in a direction parallel to the scanning direction, there is no There are many improvements. In any case, the BAA method needs to scan the entire exposure range, and when there are few patterns to be exposed, the exposure time increases, as opposed to wanting The purpose, the paper ----- 5 scale applicable Chinese National Standard (CNS) A4 size (210χ: 297 mm) (Please read the back of the precautions to fill out this page)

538323 Α7 Β7 五、發明説明(> ) 因此在目訪之技術狀態是無法得到足夠的產量。進一步地’ (請先閱讀背面之注意事項再填寫本頁) B A A具有多數的孔口,該等孔口需要比樣型標準之50至70% 還要小,並且所有的BAA方法需要適當地操作。因此’該BAA 必須被嚴密地管理,這增加管理時間以及導致產量減少之 問題。 經濟部智慧財產局員工消費合作社印製 其他被提出用於改進產量之方法包含有一種可變化尺 寸矩形方法。在可變化尺寸矩形方法中,各具有一組矩形 孔口之兩組基片被配置而使彼此孔口相對,並且利用傳送 經由第一基片中孔口而被矩形地整型之一電子束被偏移以 便發射在第二基片之孔口上面,接著,被傳送經由第二基 片中孔口的電子束被偏移以便被帶回其原始方位。被傳送 經由第二基片中孔口的電子束形狀是由偏移數量所決定, 亦即,由在孔口以及照射在第二基片上面的電子束之間的 重疊度所決定;因此電子束可利用控制偏移數量而被整型 成爲任何所需的矩形形狀。曝光樣型被分解成爲一些矩形, 並且在矩形地被整型之後的電子束朝向發射位置偏移以便 曝光。因此,可變化尺寸矩形方法也不需要使用光學照相 製版術所需要的遮罩。利用可變化尺寸矩形方法,一種大 矩形樣型可在單一曝光中被曝露;因此,當暴露可被分解 成爲大矩形之樣型時,則曝光可有效率地大量改進,但是 S暴露小型的分離矩形時’則無法得到足夠的產量〇 雖然上面說明的單一電子束方法,B A A方法,以及可 變化尺寸矩形方法都不需要使用如光學照相製版術所需要 的遮罩,但有人提出使用遮罩之不同的電子束曝光方法, 6 本紙張尺度適用中國國家標準(CNS )八4規格(2i〇X297公釐) 538323 A7 B7 五、發明説明(今) 經濟部智慧財產局員工消費合作社印製 稱爲區塊曝光方法。在半導體元件中,尤其是記憶體或類 似者’其中相同樣型被重複的區域佔據晶圓的主要部份。 如果具有對應至此等重複樣型的孔口樣型之方塊遮罩被準 備’則重複的樣型可在單一曝光中被曝露。在實際的半導 體元件中,具有各種重複的樣型;因此,如果對應至各種 重複樣型之各種孔口樣型被準備並且供選擇,則大多數半 導體元件樣型可使用可用的方塊遮罩樣型而被曝露。對於 無對應方塊遮罩可用的樣型而言,曝光是使用方塊遮罩與 可變化尺寸矩形方法或類似者的組合而被形成。因爲任何 複雜的樣型可在單一曝光中被曝露,只要能供應對應的方 塊遮罩,利用此方塊曝光方法則可大量地改進產量。但是, 對於具有供用於邏輯或其他目的之隨機樣型的半導體元件 (微處理機,等等)而言,其中可被應用方塊曝光方法的區域 是受到限制並且產量之增加是無法令人滿意地。進一步地, 因爲方塊曝光方法,如同光學照相製版術,是使用一種遮 罩,而該遮罩必須被分別的產生,其在曝光可實際上被形 成之前增加計ai實現時間。進一步地,該遮罩必須被嚴密 地管理,因爲在遮罩上面的灰塵將導致曝光樣型有所缺陷。 因此,用於遮罩管理所需的時間增加裝置的管理時間, 如光學照相製版術之情況,導致實際產量並非如預期改進 的問題。同時也有用於遮罩產品和管理所需的成本增加產 品成本的問題。 用於改進電子束曝光產量之先前技術中被提出的各種 方法已經在上面被說明。爲了改進產量,每次曝光可被曝 (請先閱讀背面之注意事項再填寫本頁)538323 Α7 Β7 V. Description of the invention (>) Therefore, it is impossible to obtain sufficient output in the technical state of the visual inspection. Further '(Please read the notes on the back before filling out this page) BAA has a large number of orifices, which need to be smaller than 50 to 70% of the sample standard, and all BAA methods need to be properly operated . So 'the BAA must be tightly managed, which increases management time and causes problems with reduced yield. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Other methods proposed to improve output include a variable size rectangular method. In the variable-size rectangular method, two sets of substrates each having a set of rectangular apertures are arranged so that the apertures are opposed to each other, and an electron beam that is rectangularly shaped via the apertures in the first substrate is transmitted by using The beam is shifted so as to be emitted above the aperture of the second substrate, and then the electron beam transmitted through the aperture in the second substrate is shifted so as to be brought back to its original orientation. The shape of the electron beam being transmitted through the aperture in the second substrate is determined by the amount of offset, that is, the degree of overlap between the aperture and the electron beam irradiated onto the second substrate; therefore, the electrons The beam can be shaped into any desired rectangular shape by controlling the number of offsets. The exposure pattern is decomposed into rectangles, and the electron beam after being rectangularly shaped is shifted toward the emission position for exposure. Therefore, the variable-size rectangular method does not require the use of a mask required for photolithography. Using the variable size rectangle method, a large rectangular pattern can be exposed in a single exposure; therefore, when the exposure can be decomposed into a large rectangular pattern, the exposure can be effectively improved a lot, but the S exposure is small and separated In the case of rectangles, sufficient yield cannot be obtained. Although the single electron beam method, the BAA method, and the variable-size rectangular method described above do not require the use of masks such as those required for photolithography, it has been proposed Different electron beam exposure methods. 6 This paper size is applicable to China National Standard (CNS) 8 4 specifications (2i × 297 mm) 538323 A7 B7. 5. Description of the invention (today) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Block exposure method. In semiconductor devices, especially the area of the memory or the like 'in which the same type is repeated occupies a major part of the wafer. If a block mask having an aperture pattern corresponding to these repeated patterns is prepared ', the repeated patterns can be exposed in a single exposure. In actual semiconductor devices, there are various repeated patterns; therefore, if various orifice patterns corresponding to various repeated patterns are prepared and selected, most of the semiconductor element patterns can use the available block mask patterns. While being exposed. For patterns that do not have a corresponding block mask, exposure is formed using a combination of a block mask and a resizable rectangle method or the like. Because any complex pattern can be exposed in a single exposure, as long as a corresponding block mask can be supplied, the use of this block exposure method can greatly improve the yield. However, for semiconductor elements (microprocessors, etc.) with random patterns for logic or other purposes, the area in which the block exposure method can be applied is limited and the increase in yield is not satisfactory. . Further, because the square exposure method, like photolithography, uses a mask, and the mask must be generated separately, which increases the implementation time before the exposure can be actually formed. Further, the mask must be carefully managed, as dust on the mask will cause defects in the exposure pattern. Therefore, the time required for mask management increases the management time of the device, as in the case of photolithography, resulting in a problem that the actual yield is not improved as expected. At the same time, there is a problem that the cost required for masking products and management increases the cost of the product. Various methods proposed in the prior art for improving the electron beam exposure yield have been described above. In order to improve the yield, each exposure can be exposed (please read the precautions on the back before filling this page)

、1T 7_ 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐) 538323 Α7 Β7 五、發明説明(ς ) 經濟部智慧財產局員工消費合作社印製 露的區域必須被增加,同時減低一次曝光所需的時間。欲 減低每次曝光所需的時間可減少將電子束設定妥當所需的 時間,例如曝光樣型之整型和偏移所需的時間,或利用增 加每單元區域之電子束電流密度以縮短每次曝光的曝光時 間。設定時間是從一方法至另一方法而不同並且必須依據 被採用之方法而定。當電子束電流密度增加時,電子束因 受到庫倫作用以及解析度之降低而模糊。庫倫作用的影響 同時也與電子束的尺寸相關;如果電子束尺寸被增加同時 電子束電流密度亦保持未改變,則發生因爲庫倫作用而解 析度降低的問題。 爲了解決此等問題,T.R.Groves和R.A.Kendall,於 Nov/Dec 1998 在 J. Vac. Sci. Technol. Β16(6),ρρ.3168- 3 1 73 , 提 出一種 具有多 數個可 變化矩 形型式 電子束 投射系 統之電子束曝光裝置。在這裝置中,各投射行包含一組獨 立電子束源,一組可變化的矩形整型裝置,以及具有小偏 移範圍的一組靜電偏移裝置。本發明之發明者同時也在日 本未審查專利公告編號10-128795以及其他的文獻中提出具 有多數個投射行之一種電子束曝光裝置。在此等具有多數 個獨立投射行的裝置中,上面說明之庫倫作用的問題被減 輕。但是,在投射行之間之軸距離無法被縮短於某種限制, 因而限制可在一組裝置中被提供之投射行數目,並且因此 無法足夠地增加產量。進一步地,因爲在投射行之間的軸 距離是大的’由於在溫度分佈中溫度之改變或變化使得行 軸距離之變化與將被曝露的樣型之最小線寬度比較是相對 8 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 538323 A7 __ B7 經濟部智慧財產局員工消費合作社印製 五、發明説明) 地大’因而導致在樣型接合處之偏移問題。目前,與光學 的照相製版術相比較,則電子束曝光可提供足夠地良好的 解析度而不受庫倫作用的影響,並且在實際的裝置中,產 量之改進是一種較重要的問題。 如上面之說明,各種用於在電子束曝光中改進產量的 方法已經被提出,但是各方法各有其自己的問題。於目前 的技術狀況下,方塊遮罩曝光方法提供最高的產量,但是 如先前提到的問題,它需要用於預備遮罩的計劃實現時間, 並且其管理不容易,同時也增加管理時間,由於上面之結 果使得有效的產量並沒有如所預期的改進許多。在BAA方 法和可變化尺寸矩形方法之情況中,用於預備遮罩之計劃 實現時間是不需要的,但是與方塊曝光方法比較則其產量 是較低的。該BAA方法有管理BAA之增加管理時間的進一 步之問題。另一方面,多重投射行方法不容易自己改進對 於足夠產量之問題,並且還有在樣型接合處樣型解析度下 降的問題。 本發明之摘要 本發明之一目的在提供一種電子束曝光裝置,其不需 要計劃實現時間並且可達成高度有效的產量。 爲達成上述之目的,本發明之電子束曝光裝置包含用 於分割從一組單一電子束源發射之電子束成爲多數個子光 束並且接著分別地將各子光束整型成爲可變化尺寸矩形形 狀之整型裝置,該整型裝置進一步地包含用於分別地偏移 各子光束之裝置,雖然在小範圍之上,並且本發明使用先 ____9 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 2W公釐) (請先閱讀背面之注意事項再填寫本頁)、 1T 7_ This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) 538323 Α7 Β7 V. Description of invention (ς) The area printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs must be increased and reduced The time required for one exposure. To reduce the time required for each exposure, you can reduce the time required to properly set the electron beam, such as the time required to shape and shift the exposure pattern, or increase the electron beam current density per unit area to reduce each Exposure time for multiple exposures. The set time varies from one method to another and must depend on the method being used. When the electron beam current density increases, the electron beam becomes blurred due to the coulomb effect and the decrease in resolution. The effect of coulomb effect is also related to the size of the electron beam; if the size of the electron beam is increased while the current density of the electron beam remains unchanged, the problem of reduced resolution due to coulomb effect occurs. In order to solve these problems, TRGroves and RAKendall, in Nov / Dec 1998, J. Vac. Sci. Technol. B16 (6), ρρ. 3168-3 1 73, proposed an electron beam with a plurality of variable rectangular patterns. Electron beam exposure device for projection system. In this device, each projection line contains a set of independent electron beam sources, a set of variable rectangular shaped devices, and a set of electrostatic offset devices with a small offset range. The inventor of the present invention also proposed an electron beam exposure apparatus having a plurality of projection lines in Japanese Unexamined Patent Publication No. 10-128795 and other documents. In such devices having a plurality of independent projection lines, the problem of the Coulomb effect described above is reduced. However, the axial distance between the projection lines cannot be shortened to some limit, thus limiting the number of projection lines that can be provided in a group of devices, and therefore cannot sufficiently increase the yield. Further, because the axial distance between the projected lines is large ', the change in the line-axis distance due to a change or change in temperature in the temperature distribution is relatively relative to the minimum line width of the pattern to be exposed. Applicable to China National Standard (CNS) A4 specification (210 × 297 mm) (Please read the precautions on the back before filling this page) Order 538323 A7 __ B7 Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Consumption Cooperative V. Invention Description) This leads to offset problems at the pattern joints. At present, compared with optical photoengraving, electron beam exposure can provide sufficiently good resolution without being affected by Coulomb's effect, and in practical devices, improvement in yield is a more important issue. As explained above, various methods for improving the yield in electron beam exposure have been proposed, but each method has its own problems. In the current state of the art, the square mask exposure method provides the highest yield, but as mentioned previously, it requires planning implementation time for preparing the mask, and its management is not easy, and it also increases management time. The above results make the effective yield not as much improved as expected. In the case of the BAA method and the variable-size rectangular method, the realization time of the plan for preparing the mask is not required, but the yield is lower compared with the square exposure method. This BAA method has the further problem of increasing the management time of managing BAA. On the other hand, the multi-projection method is not easy to improve the problem of sufficient output on its own, and it also has the problem that the resolution of the pattern decreases at the pattern joint. SUMMARY OF THE INVENTION It is an object of the present invention to provide an electron beam exposure apparatus which does not require planning for realizing time and can achieve highly efficient yield. In order to achieve the above-mentioned object, the electron beam exposure device of the present invention includes a device for dividing an electron beam emitted from a single electron beam source into a plurality of sub-beams, and then shaping each sub-beam into a rectangular shape of a variable size. Type device, the shaping device further includes a device for separately shifting each sub-beam, although in a small range, and the present invention uses first ____9 This paper size applies to Chinese National Standard (CNS) A4 specifications (210X 2W mm) (Please read the notes on the back before filling this page)

538323 A7 ___ B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(^ ) 前習知之聚焦裝置和偏移裝置整體地聚焦多數個子光束並 I在較寬的範圍偏移電子束。 更明確地說,本發明之電子束曝光裝置包含用於產生 電子束之一電子束源;用於整型電子束之整型裝置;用於 改變在樣本上面之電子束照射位置的偏移裝置;以及用於 聚焦被整型之電子束至樣本上面之投射裝置,其中該整型 裝置包含:利用分割電子束而產生多數個子光束之分割裝 置;用於分別地將各多數個子光束整型成爲所需的矩形之 矩形整型裝置;以及用於分別地移動各多數個子光束之發 射位置的子光束偏移裝置。 本發明之電子束曝光裝置分割單一電子束源產生之電 子束成爲多數個子光束,使用可變化尺寸矩形方法而將各 子光束整型,並且偏移各被整型之電子束。如果在子光束 之間的軸距離是小的,則在子光束之間的偏移效應可被保 持小量並且在接合處之偏移問題不會發生。進一步地,所 有的子光束可使用先前習知之偏移裝置而在大範圍被偏 移。結果,光束可被分割成爲多數子光束,並且大量地改 進產量。同時也可能提供多數個電子束源並且對於各電子 束源提供上面所說明之構造,亦即,系統分割被電子束源 產生之電子束成爲多數個子光束,接著使用可變化尺寸矩 形方法將各子光束整型,並且偏移各被整型之子光束。 進一步地,最好是,多數個子光束各被整型並且彼此 無關地被偏移。雖然多數個子光束是利用分割相同的電子 束而被產生,但是當多數個子光束分別地具有不同的電流 10 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇'乂297公釐) (請先閱讀背面之注意事項再填寫本頁)538323 A7 ___ B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the Invention (^) The focusing device and the offset device previously known focus the majority of the sub-beams and offset the electron beams over a wide range. More specifically, the electron beam exposure device of the present invention includes an electron beam source for generating an electron beam; a shaping device for shaping the electron beam; and a shifting device for changing the irradiation position of the electron beam on the sample And a projection device for focusing the shaped electron beam onto the sample, wherein the shaping device includes: a dividing device for generating a plurality of sub-beams by dividing the electron beam; and separately shaping each of the plurality of sub-beams into A required rectangular rectangular shaping device; and a sub-beam shifting device for separately moving the emission positions of the plurality of sub-beams. The electron beam exposure device of the present invention divides the electron beams generated by a single electron beam source into a plurality of sub-beams, uses a rectangular method of variable size to shape each sub-beam, and offsets each shaped electron beam. If the axial distance between the sub-beams is small, the offset effect between the sub-beams can be kept small and the problem of offset at the joint does not occur. Further, all sub-beams can be shifted over a wide range using previously known shifting devices. As a result, the beam can be split into a large number of sub-beams, and the yield can be greatly improved. At the same time, it is also possible to provide a plurality of electron beam sources and provide the configuration described above for each electron beam source, that is, the system divides the electron beam generated by the electron beam source into a plurality of sub-beams, and then uses a variable-size rectangular method to separate each sub-beam. Beam shaping, and offset each shaped beam. Further, it is preferable that the plurality of sub-beams are each shaped and shifted independently of each other. Although most of the sub-beams are generated by dividing the same electron beam, when most of the sub-beams have different currents, respectively, the paper size is applicable to the Chinese National Standard (CNS) A4 specification (21〇'297 mm) (Please (Read the notes on the back before filling out this page)

II

、1T 線·!· 538323 A7 B7 五、發明説明($ ) 經濟部智慧財產局員工消費合作社印製 分配時,可能必須使用重複的操作,使得在樣本上面相同 區域的照射被分割成爲多數個不同子光束的曝光。在那情 況中,一組相同的子光束控制信號被供應至在分別的族群 中之子光束,其利用添加所需的延遲時間而曝露相同的樣 型。進一步地,在這情況中,可能需要依據一些分割以減 低各子光束之劑量。 進一步地,可以提供一組阻隔器裝置同時地控制所有 子光束而決定所有的子光束是否一起被發射至該樣本上 面,或可以提供一組子光束阻隔器裝置用於彼此無關地控 制各該多數個子光束而決定各該子光束是否發射至該樣本 上面;或者,兩種裝置皆可以被提供並且被組合使用。如 果子光束阻隔器被提供,則各子光束可獨立地發射。當使 用此兩裝置之組合時,例如,當改變具有大偏移範圍之偏 移器的偏移數量時,例如形成偏移裝置之主要偏移器或次 要偏移器,公同阻隔器裝置被使用,並且在其他的時間裏, 該子光束阻隔器裝置被使用。 用於分割電子束成爲接近的子光束之分割裝置,使用 具有以預定間隙配置之多數個預定矩形形狀的第一整型孔 口之基片而被實現。使用這基片,具有預定矩形形狀並且 以預定間隙被配置之多數個子光束被產生。該矩形整型裝 置包含用於分別地偏移各多數個子光束之第一整型偏移裝 置,具有對應於該預定間隙配置之矩形形狀的多數個第二 整型孔口之一組整型孔口陣列,以及用於將經由多數個第 二整型孔口而被整型的該等多數個子光束偏移回復之第二 11 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 、11 538323 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(彳) 整型偏移裝置;使用該第一整型偏移裝置’多數個子光束 被發射在整型孔口陣列中之對應的第二整型孔口上面’並 且各子光束被整型成爲子光束以及子光束所照射之第二整 型孔口之間的重疊區域所定義的形狀。第一和第二整型偏 移裝置各包含兩組整型偏移基片,每組基片各包含被配置 對應於多數個子光束之配置的多數個孔口、形成於各孔口 兩側用於形成一靜電場之一對偏移電極、以及形成於除了 該組對偏移電極被形成位置之外而側鄰於各該孔口之其他 位置的屏障電極,其中利用一組整型偏移基片上面偏移電 極組對形成之靜電場方向是與利用另一整型偏移基片上面 對應的偏移電極組對形成之靜電場方向成90° ’並且兩組整 型偏移基片彼此近接地配置。 子光束偏移裝置包含兩組偏移基片,各包含配置對應 於該等多數個子光束之配置的多數個孔口、形成於各孔口 兩側用於形成一靜電場之一對偏移電極、以及形成於除了 該組對偏移電極被形成位置之外而側鄰於各該孔口之其他 位置的屏障電極,其中利用一組整型偏移基片上面偏移電 極組對形成之靜電場方向是與利用另一整型偏移基片上面 對應的偏移電極組對形成之靜電場方向成90°,並且兩組整 型偏移基片彼此近接地配置。 在本發明中,在多數個接近的子光束彼此獨立地被整 型之後,它們需要被精確地偏移,並且可以說,爲實現上 述之目的,事實上矩形整型裝置和子光束偏移裝置已經可 以被整合而製作於單一基片上面,如上面之說明,在本發 _______12 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公董) (請先閱讀背面之注意事項再填寫本頁)Line 1T 538323 A7 B7 V. Description of the Invention ($) When the consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs prints and distributes, it may be necessary to use repeated operations, so that the irradiation in the same area above the sample is divided into many different Sub-beam exposure. In that case, a set of the same sub-beam control signals are supplied to the sub-beams in the respective ethnic groups, which use the delay time required to add to expose the same pattern. Further, in this case, it may be necessary to reduce the dose of each sub-beam according to some divisions. Further, a set of blocker devices may be provided to control all sub-beams simultaneously to determine whether all the sub-beams are emitted onto the sample together, or a set of sub-beam blocker devices may be provided to control each of the majority independently Individual sub-beams to determine whether each of the sub-beams is emitted onto the sample; or, both devices can be provided and used in combination. If a fruit beam blocker is provided, each sub-beam can be emitted independently. When using a combination of these two devices, for example, when changing the number of offsets of an offset device with a large offset range, such as a primary offset device or a secondary offset device forming the offset device, the same barrier device Is used, and at other times, the sub-beam blocker device is used. A division device for dividing an electron beam into close sub-beams is realized using a substrate having a plurality of first rectangular shaped apertures arranged in a predetermined gap. Using this substrate, a plurality of sub-beams having a predetermined rectangular shape and arranged with a predetermined gap are generated. The rectangular shaping device includes a first shaping shifting device for respectively shifting each of the plurality of sub-beams, and a set of shaping holes having a plurality of second shaping openings in a rectangular shape corresponding to the predetermined gap configuration. Aperture array, and a second 11 for offsetting and reverting the plurality of sub-beams that have been shaped by a plurality of second integer apertures. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm). (Please read the precautions on the back before filling this page), 11 538323 Printed by A7 B7, Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (彳) Integer offset device; use this first integral offset device 'A plurality of sub-beams are emitted on the corresponding second shaping aperture in the shaping aperture array' and each sub-beam is shaped into a sub-beam and the overlap between the second shaping aperture illuminated by the sub-beam The shape defined by the area. The first and second integer offset devices each include two sets of integer offset substrates, each of which includes a plurality of apertures configured to correspond to the configuration of the plurality of sub-beams, and is formed on both sides of each aperture. A pair of offset electrodes forming an electrostatic field and a barrier electrode formed besides the position where the pair of offset electrodes are formed and adjacent to each of the apertures, wherein a set of integer offsets are used The direction of the electrostatic field formed by the pair of offset electrode groups on the substrate is 90 ° from the direction of the electrostatic field formed by the corresponding pair of offset electrode groups on the top of the other offset substrate, and the two sets of integer offset substrates Place them close to each other. The sub-beam offset device includes two sets of offset substrates, each including a plurality of apertures corresponding to the configuration of the plurality of sub-beams, and a pair of offset electrodes formed on both sides of each aperture for forming an electrostatic field. And a barrier electrode formed at a position other than the position where the pair of offset electrodes are formed and adjacent to each of the apertures, wherein the static electricity formed by the pair of offset electrodes on a set of integral offset substrates is used The field direction is 90 ° from the direction of the electrostatic field formed by the offset electrode group pair corresponding to the top of the other integral offset substrate, and the two sets of integral offset substrates are arranged close to each other. In the present invention, after a plurality of close sub-beams are shaped independently of each other, they need to be accurately shifted, and it can be said that, in order to achieve the above-mentioned purpose, in fact, the rectangular shaping device and the sub-beam shifting device have been Can be integrated and produced on a single substrate. As explained above, in this issue _______12 This paper size applies Chinese National Standard (CNS) A4 specifications (210X297). (Please read the precautions on the back before filling this page. )

538323 A7 B7 五、發明説明(νϋ ) 經濟部智慧財產局員工消費合作社印製 明中它是可能有效地增加產量的要素。 子光束阻隔器裝置包含:一組阻隔器偏移基片,其包 含被配置對應於該等多數個子光束配置的多數個孔口、用 於形成一靜電場而被形成於各孔口兩側之一對偏移電極、 以及形成於除了該組對偏移電極被形成位置之外而側鄰於 各該孔口之其他位置的屏障電極;以及用於阻隔被偏移電 極組對所偏移之多數個子光束的屏障平板。 最好是,分割裝置之基片包含各含有多數個第一整型 孔口之多數個整型孔口組,並且該等多數個整型孔口組之 任何一組選擇地可被移動進入該電子束之一通道。在分割 裝置之基片中,僅必須形成多數個第一整型孔口,而不需 要提供接線或類似者;因此,多數個整型孔口組可被提供。 因爲分割裝置的基片被電子束之照射所毀壞,所以提供多 數個整型孔口組並且選擇地使用它們以改進服務能力。 一般而言,具有較大偏移範圍之偏移需要較長的設定 時間。在先前習知裝置中,因此,一組主要偏移器、一組 次要偏移器、以及,如果必須的話,一組次次要偏移器被 組合以便子光束實際上可以高速率在寬偏移範圍被偏移。 在本發明之裝置中,同時也需要具有不同偏移範圍以及需 要不同設定時間之偏移器被組合使用。在本發明中,因爲 各子光束可分別地被偏移,並且因爲主要偏移器、次要偏 移器、次次要偏移器,等等以相同數量一起偏移所有的子 光束,偏移方法依據子光束偏移之範圍各有不同。 在第一情況中,子光束之偏移範圍彼此連續或彼此重 _______ 13 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁)538323 A7 B7 V. Description of Invention (νϋ) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, it is an element that may effectively increase output. The sub-beam blocker device includes: a set of blocker offset substrates, which include a plurality of apertures configured to correspond to the plurality of sub-beam configurations, and are formed on both sides of each aperture for forming an electrostatic field. A pair of offset electrodes, and a barrier electrode formed at a position adjacent to each of the openings except for the position where the pair of offset electrodes are formed; and a barrier electrode for blocking the offset of the offset electrode group pair Barrier plate for most sub-beams. Preferably, the substrate of the dividing device includes a plurality of integer orifice groups each including a plurality of first integer orifices, and any one of the plurality of integer orifice groups can be selectively moved into the One of the electron beam channels. In the substrate of the split device, only a plurality of first integer orifices need to be formed without wiring or the like; therefore, a plurality of integer orifice groups can be provided. Since the substrate of the singulation device is destroyed by the irradiation of the electron beam, a plurality of integer shaped orifice groups are provided and selectively used to improve the service capability. Generally speaking, offsets with a larger offset range require a longer setting time. In previously known devices, therefore, a set of primary deflectors, a set of secondary deflectors, and, if necessary, a set of secondary deflectors are combined so that the sub-beams can actually be high-rate and wide The offset range is shifted. In the device of the present invention, it is also necessary to use a combination of offsetters having different offset ranges and different setting times. In the present invention, because each sub-beam can be separately shifted, and because the main deflector, the secondary deflector, the secondary deflector, etc., shift all the sub-beams together by the same number, the deflection The shift method varies depending on the range of the sub-beam shift. In the first case, the offset ranges of the sub-beams are continuous or heavy each other. _______ 13 This paper size applies to China National Standard (CNS) A4 (210X297 mm) (Please read the precautions on the back before filling this page )

538323 A7 B7 經濟部智慧財產局員工消費合作社印製 i、發明説明(u ) 疊。在這情況中,所有被排列的子光束之偏移範圍被設定 爲最低順序偏移裝置的偏移範圍,並且偏移是以組合具有 較大的偏移範圍之較高順序的偏移裝置之方式而被形成, 如先前裝置中所習知。在所有子光束的偏移範圍之樣型曝 光被完成之後,偏移裝置之偏移位置被移動至鄰接著的偏 移位置’並且相冋處理程序被重複。 在子光束偏移範圍彼此不連續之情況中,構成偏移裝 置的其他偏移器(最低順序偏移器)之偏移位置利用等於子光 束偏移範圍寬度之數量而被移動,以曝露子光束陣列之全 部範圍。其餘的程序是與先前習知之裝置相同。例如,當 子光束偏移範圍之中心以等於四倍子光束範圍寬度之距離 彼此分離時,在各相鄰子光束偏移範圍之間的區域可利用 移置中心位置四次而完全地被曝露。如果子光束偏移範圍 之中心以等於四倍子光束範圍寬度之距離在X軸和γ軸方向 彼此分離,則曝光應該利用總共移置中心位置16次而被形 成。通常地,偏移裝置是利用結合主要偏移器與次要偏移 器而被構成;在這情況中,用於暴露在各相鄰子光束偏移 範圍間之區域的偏移可使用次要偏移器而被形成,但是最 好是使用一組次次要偏移器進行偏移,其偏移範圍是較小 於次要偏移器而其偏移設定時間是較短。 最好是,各子光束偏移範圍被設定較小於其最大偏移 範圍,並且在分割偏移範圍之間的範圍上進行之樣型以一 次曝光方式而被曝露。這適合於防止在接合處之偏移。 進一步地,當子光束偏移範圍彼此重疊被配置時,可 14 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 訂 (請先閲讀背面之注意事項再填寫本頁)538323 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs i. Invention Description (u). In this case, the offset range of all the aligned sub-beams is set to the offset range of the lowest order offset device, and the offset is a combination of a higher order offset device having a larger offset range. Mode is formed, as is known in the previous device. After the type exposure of the offset range of all the sub-beams is completed, the offset position of the offset device is moved to the adjacent offset position 'and the related processing procedure is repeated. In the case where the sub-beam offset ranges are not continuous with each other, the offset positions of the other offset devices (lowest sequential offset devices) constituting the offset device are moved by an amount equal to the width of the sub-beam offset range to expose the sub-beams. The full range of the beam array. The rest of the procedure is the same as the previously known device. For example, when the centers of the sub-beam offset ranges are separated from each other by a distance equal to four times the width of the sub-beam range, the area between each adjacent sub-beam offset range can be completely exposed by shifting the center position four times. . If the centers of the sub-beam offset ranges are separated from each other in the X-axis and γ-axis directions by a distance equal to four times the width of the sub-beam range, the exposure should be formed using a total of 16 shifted center positions. Normally, the offset device is constructed by combining a primary offset and a secondary offset; in this case, the offset for exposing the area between the offset ranges of adjacent sub-beams may use a secondary The offset is formed, but it is best to use a set of secondary offsets for offset, the offset range is smaller than the secondary offset and the offset setting time is shorter. Preferably, each sub-beam offset range is set smaller than its maximum offset range, and the pattern performed over the range between the divided offset ranges is exposed in a single exposure mode. This is suitable to prevent offset at the joint. Further, when the sub-beam offset ranges are configured to overlap each other, 14 paper sizes can be applied to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the precautions on the back before filling this page)

538323 A7 B7 五、發明説明) 經濟部智慧財產局員工消費合作社印製 使得當某種子光束偏移範圍中之樣型曝光被完成時,如果 在其相鄰子光束偏移範圍中之曝光尙未被完成,則已經被 完成曝光之子光束被使用以曝露在其相鄰子光束偏移範圍 中之樣型。這可改進產量。 圖形之說明 參考圖形以及從下面較佳實施例的說明,本發明之其 他的特點、目的和優點將更明顯,其中: 第1圖是展示依據本發明之一實施例的電子束曝光裝置 之整個構造的圖形; 第2圖是展示在本發明實施例的電子束曝光裝置中電子 光學系統之電子束通道的圖形; 第3A和3B圖是展示在本發明實施例的電子束曝光裝置 中電子光學系統之一組電子束通道的圖形; 第4A和4B圖是展示在本發明實施例的電子束曝光裝置 中第一和第二整型孔口陣列之一組結構上的範例之圖形; 第5圖是展示在本發明實施例的電子束曝光裝置中之一 組偏移陣列基片的圖形; 第6圖是一組偏移陣列基片之頂部平面圖; 第圖7是展示在偏移陣列基片之一組孔口單元中之孔 口、電極形狀、以及由電極形成之電場的圖形; 第8圖展示第一整型偏移陣列4、第二整型偏移陣列5、 以及子光束偏移陣列9之一種側視圖和放大截面圖; 第9A至9D圖是用於說明依據實施例之一組偏移範圔之 分割的圖形; (請先閲讀背面之注意事項再填寫本頁) 、11 _線·!· __15 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 538323 A7 B7 五、發明説明u 3 ) 第1 Ο A和1 OB圖是用於說明依據實施例之一組偏移範圍 之分割的圖形;以及 第1 1圖是展示在被修改範例中偏移陣列基片之一組孔 口單元中的孔口、電極形狀、以及由電極形成之電場的圖 形。 _佳實施例之說明 第1圖是分解地展示依據本發明之一實施例的一組電子 束曝光裝置之構造圖形,第2圖是用於說明第1圖之電子光 學系統中的電子束通道之圖形,以及第3A和3B圖是用於說 明在中心之一組子光束通道的圖形。 第1圖中,參考號碼1是一組電子槍、3是一組第一整型 孔口陣列、4是一組第一整型偏移陣列、5是一組第二整型 偏移陣列、6是一組第二整型孔口陣列、7是一組子光束阻 隔器、8是一組快門、9是一組子光束偏移陣列、10-1至10-9 是磁鏡片、11是一組共同阻隔器、12是一組主要偏移器、13 是一組次要偏移器、14是一組像差/庫倫模糊更正器、15是 一組晶圓、1 6是利用真空裝置鉗緊在其上之晶圓1 5而移動 晶圓1 5之平台機構、1 7是用於平台機構之一組控制器、1 8 是一組被使用以檢測聚焦狀況以及參考標誌之位置的反射 電子檢測器、1 9是一組檢測信號處理電路、20是一組主要 偏移控制器、2 1是一組次要偏移控制器、22是一組像差/庫 倫模糊更正器控制器、23是一組子光束偏移陣列控制器、24 是一組共同阻隔器控制器、25是一組子光束阻隔器控制器、 26是一組第二整型偏移陣列控制器、27是一組第一整型偏 ___16 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁)538323 A7 B7 V. Description of the invention) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs so that when a certain type of exposure in the sub-beam offset range is completed, if the exposure in its adjacent sub-beam offset range is not When completed, the sub-beams that have already been exposed are used to expose patterns in the offset range of their adjacent sub-beams. This can improve yield. Description of the figures With reference to the figures and the following description of the preferred embodiment, other features, objects, and advantages of the present invention will be more obvious, of which: Figure 1 shows the whole of an electron beam exposure apparatus according to an embodiment of the invention Fig. 2 is a diagram showing an electron beam channel of an electron optical system in an electron beam exposure apparatus according to an embodiment of the present invention; Figs. 3A and 3B are diagrams showing an electron optics in an electron beam exposure apparatus according to an embodiment of the present invention Figures of a group of electron beam channels of the system; Figures 4A and 4B are diagrams showing examples of the structure of a group of first and second integer aperture arrays in an electron beam exposure apparatus according to an embodiment of the present invention; FIG. Is a diagram showing a group of offset array substrates in an electron beam exposure apparatus according to an embodiment of the present invention; FIG. 6 is a top plan view of a group of offset array substrates; and FIG. 7 is a view showing the offset array substrates. Figures of apertures, electrode shapes, and electric fields formed by electrodes in a set of aperture units; Figure 8 shows the first integer offset array 4, the second integer offset array 5, and the sub-light A side view and an enlarged cross-sectional view of the offset array 9; Figures 9A to 9D are figures for explaining the division of the offset range according to one of the embodiments; (Please read the precautions on the back before filling this page) 、 11 _line ·! · __15 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 538323 A7 B7 V. Description of the invention u 3) The first 10 A and 1 OB drawings are used to explain according to the embodiment A group of offset patterns; and FIG. 11 is a graph showing the apertures, electrode shapes, and electric fields formed by the electrodes in the group of aperture units of the offset array substrate in the modified example. . _Description of the preferred embodiment. FIG. 1 is an exploded view showing the structure of a group of electron beam exposure devices according to an embodiment of the present invention. FIG. 2 is a diagram for explaining an electron beam channel in the electron optical system of FIG. 1. The patterns, and Figures 3A and 3B are graphs illustrating a group of sub-beam channels in the center. In the figure, the reference number 1 is a group of electron guns, 3 is a group of first integer aperture arrays, 4 is a group of first integer offset arrays, 5 is a group of second integer offset arrays, 6 Is a set of second integer aperture arrays, 7 is a set of sub-beam blockers, 8 is a set of shutters, 9 is a set of sub-beam offset arrays, 10-1 to 10-9 are magnetic lenses, and 11 is a Set of common barriers, 12 is a set of primary offsets, 13 is a set of secondary offsets, 14 is a set of aberration / Coulomb blur correctors, 15 is a set of wafers, and 16 is a vacuum device clamp The platform mechanism on which the wafer 15 is fastened and the wafer 15 is moved, 17 is a set of controllers for the platform mechanism, and 18 is a set of reflections used to detect the focus condition and the position of the reference mark Electronic detector, 19 is a set of detection signal processing circuits, 20 is a set of primary offset controllers, 21 is a set of secondary offset controllers, 22 is a set of aberration / Coulomb blur corrector controllers, 23 is a group of sub-beam offset array controllers, 24 is a group of common blocker controllers, 25 is a group of sub-beam blocker controllers, 26 is a group of second integral Offset array controller, 27 is a first set of integer partial ___16 this paper scale applicable Chinese National Standard (CNS) A4 size (210X 297 mm) (Please read the back of the precautions to fill out this page)

、1T 線·! 經濟部智慧財產局員工消費合作社印製 538323 A7 B7 五、發明説明() (請先閱讀背面之注意事項再填寫本頁) 移陣列控制器、28是一組電子光學系統控制器、29是一組 控制電腦、30是一組大規模之儲存元件、3 1是用於接介控 制電腦至各種裝置部份之一組界面、32是用於連接至主系 統電腦之一組網路轉接器、33是一組電腦匯流排、34是一 組控制匯流排、3 5是一組法拉第杯、以及3 6是一組次次要 偏移器。在圖形中,從電子槍1引導至晶圓1 5的實線和虛線 分別地指示從電子槍兩邊緣放射的電子束之最外面通道和 光學軸。 本發明實施例之電子束曝光裝置的基本構造與先前習 知的裝置是相同的,並且未展示在此的細節與那些先前習 知之裝置是相同的。例如,電子束通道、晶圓1 5、平台機 構16、偏移器、以及更正器均包含在圓柱形真空容室之內。 下面的說明僅關於那些具有本發明特徵之部份。 經濟部智慧財產局員工消費合作社印製 在實施例中電子光學系統的電子束通道將參考第2圖以 及第3A和3B圖而予以說明。參考號碼2-1至2-8指示被分別 的磁鏡片1 〇-1至10-8所產生之磁場軸。從電子槍1放射的電 子束首先被磁場2-1匯聚並且接著被發射至第一整型孔口陣 列3之上面。該第一孔口陣列3包含以陣列被配置之許多矩 形孔口,稍後將予以說明,並且由那裡經過的電子束被分 割成爲許多子光束。穿經過中心之孔口 42之電子束同時也 如一組子光束般地被顯露,如第3圖所展示。子光束之族群 被磁場2-2匯聚,並且經由匯聚程序之中途而進入第一整型 偏移陣列4。該第一整型偏移陣列4被設置在電子束放大率 比率與第一整型孔口陣列3相同的位置上面。而第二整型偏 17 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 538323 _ B7 五、發明説明() 經濟部智慧財產局員工消費合作社印製 A7 移陣列5、第二整型孔口陣列6、子光束阻隔器7、以及子光 束偏移陣歹!J 9亦是相同地被設置。第一整型偏移陣列4同時 也包含如在第一整型孔口陣列3中之孔□,並且偏移電極被 形成在各孔口兩側上面以便子光束可在垂直於光學軸(Z軸) 的X軸和Y軸方向以一所需的數量被偏移。第3A圖展示子光 束不是被其對應的第一整型偏移4-1所偏移之情況,以及第 3B圖展示子光束是被其對應的第一整型偏移4-1所偏移之情 況。在被匯聚之後,子光束之族群穿經過磁場2-3並且進入 第二整型偏移陣列5。在第二整型偏移陣列5中,對應至各 子光束的偏移將在第一整型偏移陣列4中所形成之對應偏移 的偏移反向,因此將通道反向回至原始方位。第二整型孔 口陣列6即時地跟隨著第二整型偏移陣列5,其中在各子光 束以及其對應孔口之間的重疊度依據在第一整型偏移陣列4 中之對應偏移器所施加的偏移數量而變化。如第3 A圖所展 示,當子光束不被第一整型偏移4-1偏移時,則一半子光束 穿經過孔口。另一方面,當子光束是被如第3B圖所展示之 第一整型偏移4-1偏移時,則多數的子光束穿經過孔口。參 考號碼5-2展示被第二整型偏移陣列5-1施加之偏移;如所 見,偏移方向被來自被第一整型偏移4-1施加之偏移所倒 反。如果偏移方向是從展示之第3B圖中被倒反,則子光束 穿經過孔口成爲更狹窄。此等偏移被施加於X軸和Y軸方向 以將電子束整形成爲各種矩形形狀。 子光束之族群接著被磁場2-4匯聚並且降落在子光束阻 隔器7上面。當一組子光束被子光束阻隔器7中其對應的偏 __18 本紙張尺度適用中國國家標準(CNS ) A4規格(2!〇X297公釐) (請先閱讀背面之注意事項再填寫本頁}Line 1T! Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 538323 A7 B7 V. Description of the invention () (Please read the precautions on the back before filling this page) Shifting array controller, 28 is a set of electronic optical system control Device, 29 is a group of control computers, 30 is a large-scale storage element, 3 1 is a group interface for connecting the control computer to various device parts, 32 is a group for connecting to the main system computer Network adapters, 33 is a group of computer buses, 34 is a group of control buses, 35 is a group of Faraday cups, and 36 is a group of secondary shifters. In the figure, the solid line and the dotted line leading from the electron gun 1 to the wafer 15 indicate the outermost channels and optical axes of the electron beams emitted from both edges of the electron gun, respectively. The basic configuration of the electron beam exposure apparatus of the embodiment of the present invention is the same as that of the conventionally known apparatus, and the details not shown here are the same as those of the conventionally known apparatus. For example, the electron beam channel, wafer 15, stage mechanism 16, deflector, and corrector are contained within a cylindrical vacuum chamber. The following description relates only to those features which are characteristic of the present invention. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. The electron beam path of the electron optical system in the embodiment will be described with reference to Figs. 2 and 3A and 3B. Reference numerals 2-1 to 2-8 indicate the magnetic field axes generated by the respective magnetic lenses 1 0-1 to 10-8. The electron beam emitted from the electron gun 1 is first focused by the magnetic field 2-1 and is then emitted onto the first integer aperture array 3. The first aperture array 3 contains a plurality of rectangular apertures arranged in an array, which will be described later, and the electron beam passing there is divided into a plurality of sub-beams. The electron beam passing through the central aperture 42 is also exposed as a set of sub-beams, as shown in FIG. The sub-beam group is converged by the magnetic field 2-2, and enters the first integer offset array 4 halfway through the converging procedure. The first integer-shaped offset array 4 is provided above the electron beam magnification ratio at the same position as the first integer-shaped aperture array 3. And the second integer type is 17 and this paper size is applicable to Chinese National Standard (CNS) A4 specification (210X 297 mm) 538323 _ B7 V. Description of the invention () Printed by A7 shift array of the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs Two integer aperture array 6, sub-beam blocker 7, and sub-beam offset array! J 9 is also set the same. The first integer-shaped offset array 4 also contains holes □ as in the first integer-shaped aperture array 3, and offset electrodes are formed on both sides of each aperture so that the sub-beams can be perpendicular to the optical axis (Z The X- and Y-axis directions are shifted by a desired amount. Figure 3A shows the case where the sub-beam is not shifted by its corresponding first integer offset 4-1, and Figure 3B shows the sub-beam is shifted by its corresponding first integer offset 4-1 Situation. After being converged, the group of sub-beams passes through the magnetic field 2-3 and enters the second integer-type offset array 5. In the second integer offset array 5, the offset corresponding to each sub-beam reverses the offset corresponding to the offset formed in the first integer offset array 4, so the channel is reversed back to the original Direction. The second integer-shaped aperture array 6 immediately follows the second integer-shaped offset array 5, wherein the degree of overlap between each sub-beam and its corresponding aperture is based on the corresponding offset in the first integer-shaped offset array 4. The amount of offset applied by the shifter varies. As shown in Figure 3A, when the sub-beams are not shifted by the first integer offset 4-1, half of the sub-beams pass through the aperture. On the other hand, when the sub-beams are shifted by the first integer offset 4-1 as shown in FIG. 3B, most of the sub-beams pass through the aperture. Reference number 5-2 shows the offset applied by the second integer offset array 5-1; as seen, the offset direction is reversed from the offset applied by the first integer offset 4-1. If the offset direction is inverted from Figure 3B of the display, the sub-beam passes through the aperture to become narrower. These offsets are applied to the X-axis and Y-axis directions to shape the electron beam into various rectangular shapes. The sub-beam groups are then converged by the magnetic field 2-4 and land on the sub-beam blocker 7. When a group of sub-beams is deflected by the sub-beam blocker 7 __18 This paper size is applicable to China National Standard (CNS) A4 (2! 〇X297 mm) (Please read the precautions on the back before filling this page}

538323 Α7 Β7 五、發明説明((Μ 經濟部智慧財產局員工消費合作社印製 移器所偏移時,如第3Α圖所展示,則子光束被快門8阻擋。 另一方面,當子光束不被子光束阻隔器7中之偏移器所偏移 時,則子光束穿經過快門8,如第3Β圖所展示。以此方式, 開/關控制可被形成於各子光束上面以便發射或不發射子光 束至晶圓1 5上面。在穿經過磁場2-5之後,子光束之族群進 入子光束偏移器陣列9。如第3 Α和3Β圖所展示,在晶圓1 5上 面之照射位置依據子光束偏移器陣列9中對應的偏移器是否 施加偏移而改變。子光束之族群接著經由磁場2-6、2-7、和 2-8而被聚焦至晶圓15上面。 第4A和4B圖展示第一和第二整型孔口陣列3和6之結構 範例。如第4 A圖所展示,該等整型孔口陣列是由矽晶圓薄 板或類似者所形成。形成孔口陣列的孔口區域4 1利用蝕刻 或類似技術而減低其厚度,並且方形孔口 42利用蝕刻而在 孔口區域4 1中被打開。本實施例中,例如,20x20,亦即, 總共有400個各爲15μπι平方的孔口,以60μηι之間隙被形成。 因爲一組整型孔口陣列之60 : 1的縮小影像被投射在晶圓1 5 的平面上面,如果該被投射的影像未變形,則各被聚焦成 爲各爲0.2 5μηι平方之矩形子光束,其以Ι.Ομιη之間隙被配置 在晶圓1 5上面。 如所展示,5x5,亦即,總共有25個孔口區域41被提供。 因爲孔口 42簡單地被打開並且不需要接線,所以多數個孔 口區域41可被提供在整型孔口陣列基片上面。因爲該等孔 口可以在使用長時間之後由於熱等等原因而變形,所以該 等整型孔口陣列基片,尤其是在其整個表面之上接收電子 ___19 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁)538323 Α7 Β7 V. Description of the invention ((M When the printed device of the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economy is shifted, as shown in Figure 3A, the sub-beam is blocked by the shutter 8. On the other hand, when the sub-beam is not When the deflector in the beam blocker 7 is shifted, the sub-beams pass through the shutter 8 as shown in Figure 3B. In this way, the on / off control can be formed on each sub-beam to emit or not emit sub-beams. The beam reaches the wafer 15. After passing through the magnetic field 2-5, the sub-beam groups enter the sub-beam shifter array 9. As shown in Figures 3A and 3B, the irradiation position on the wafer 15 is based on Whether the corresponding deflector in the sub-beam shifter array 9 is shifted by applying an offset. The sub-beam groups are then focused onto the wafer 15 via the magnetic fields 2-6, 2-7, and 2-8. Section 4A Figures 4B show structural examples of the first and second shaped aperture arrays 3 and 6. As shown in Figure 4A, the shaped aperture arrays are formed from a silicon wafer sheet or the like. The aperture area 41 of the aperture array is reduced in thickness by etching or the like, And the square aperture 42 is opened in the aperture area 41 by etching. In this embodiment, for example, 20 × 20, that is, a total of 400 apertures each having a square of 15 μm are formed with a gap of 60 μm. A set of 60: 1 reduced images of the integer aperture array are projected on the plane of the wafer 1 5. If the projected images are not deformed, they are each focused into a rectangular sub-beam of 0.2 5 μm square each. It is arranged on the wafer 15 with a gap of 1.0 μm. As shown, 5x5, that is, a total of 25 aperture areas 41 are provided. Since the aperture 42 is simply opened and no wiring is required, most Each aperture region 41 can be provided on the shaped aperture array substrate. Because the apertures can be deformed due to heat or the like after a long period of use, the shaped aperture array substrates, especially Receives electrons on its entire surface ___19 This paper size applies Chinese National Standard (CNS) Α4 specification (210X 297 mm) (Please read the precautions on the back before filling this page)

«8323 A7 B7 i、發明説明(q ) 束之第一整型孔口陣列3,依據其使用狀況而需要更換或其 他的維修工作。利用提供多數個孔口區域4 1,以及利用建 造該系統,以致各孔口區域4 1可利用移動機構(未展示出)而 選擇地被置放於電子束通道中,其更換週期可被延長,且 容易維持。 第4B圖是展示整型孔口陣列之截面結構圖形;在這範 例中,一組孔口陣列區域41被展示。參考號碼43是一組矽(Si) 基片,44是一組硼擴散絕緣層,46是矽,以及47是一組保 護金屬薄膜。在進一步地利用蝕刻減低孔口區域4 1之厚度 後孔口 42被形成。 第5圖是構成第一整型偏移陣列4、第二整型偏移陣列 5、子光束阻隔器7、以及子光束偏移陣列9所被使用的偏移 陣列基片5 0。這基片50也是由一組矽晶圓薄板或類似者所 形成,並且形成偏移陣列之一組偏移陣列區域5 1被減低其 厚度,如在整型孔口陣列之孔口區域4 1之情況中。參考號 碼52展示信號電極板,用於供應將被施加至被形成於偏移 陣列區域5 1中之偏移電極的信號,並且53指示一組接地 (GND)電極板。 第6圖是一組偏移陣列區域5 1之頂部平面圖。如所展 示,方形孔口 56是對應至在整型孔口陣列中孔口 42之配置 而被配置。一組正電極53以及一組負電極54沿著各孔口 56 之兩相對側被配置,而一組屏障接地電極5 5是被形成於其 他兩側之各側上面。 因此,在本實施例中,20x20,亦即,總共有400個方 20 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -訂 線_· 經濟部智慧財產局員工消費合作社印製 538323 B7 五、發明説明((s ) 經濟部智慧財產局員工消費合作社印製 A7 形孔口 56以60μηι之間隙被形成。各孔口 56大約是25μιη平 方,其稍微地大於整型孔口陣列中之各孔口 42。 第7圖是展示孔口、電極形狀、以及利用一組孔口單元 57中之電極而被形成的電場之圖形。如所展示,正電極53 和負電極5 4是彼此對稱的,其中心部份因兩末端稍微地彎 曲而形成平行電極。屏障接地電極5 5與分別的相鄰孔口單 元分用。被展示之均勻電場具有在中心部份中平行以及等 距之電力線,其利用具有上面說明之形狀的電極而形成。 如果偏移陣列基片50提供的偏移數量不精確,則可能得不 到所需形狀的子光束或曝光位置可能被偏移;因此,就所 提供之偏移數量而論,偏移陣列基片50是需要極度地高精 確性。有鑑於此,各孔口 56被形成爲方形以確保均勻電場 的結構。整型孔口陣列中之各孔口 42具有參考號碼5 8展示 的形狀;子光束經由孔口 42被整型,因此,相當容易地穿 經過孔口 5 6並且精確地被均勻電場所偏移。 轉回至第5圖,在偏移陣列區域5 1中用於連接信號電極 板52和GN D電極板53至正電極53和負電極54的許多接線在 中心內之偏移陣列區域51以及周圍的信號電極板52和GND 電極板5 3之間的多重層區域中被形成。 子光束阻隔器7可僅使用展示於第5至7圖之一組偏移陣 列基片50而被構成,因爲其功能是偏移子光束於唯一的方 向;另一方面,對於第一整型偏移陣列4,第二整型偏移陣 列5,以及子光束偏移陣列9而言,因爲子光束必須被偏移 在垂直於電子光學系統之軸的兩方向上面,所以兩組偏移 21 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁)«8323 A7 B7 i. Description of the Invention (q) The first integer aperture array 3 of the bundle needs to be replaced or other repaired according to its use condition. Utilizing the provision of a plurality of aperture areas 41 and constructing the system so that each aperture area 41 can be selectively placed in the electron beam channel using a moving mechanism (not shown), and its replacement cycle can be extended And easy to maintain. Fig. 4B is a cross-sectional structure diagram showing an integer array of apertures; in this example, a group of arrays of aperture arrays 41 are shown. Reference number 43 is a set of silicon (Si) substrates, 44 is a set of boron diffusion insulating layers, 46 is silicon, and 47 is a set of protective metal films. After the thickness of the aperture area 41 is further reduced by etching, the aperture 42 is formed. Fig. 5 is an offset array substrate 50 used to constitute the first integer offset array 4, the second integer offset array 5, the sub-beam blocker 7, and the sub-beam offset array 9. This substrate 50 is also formed of a set of silicon wafer sheets or the like, and a set of offset array regions 5 1 is formed to form an offset array, and its thickness is reduced, such as in the aperture region 4 1 of the shaped aperture array. In the case. Reference numeral 52 shows a signal electrode plate for supplying a signal to be applied to an offset electrode formed in the offset array area 51, and 53 indicates a group of ground (GND) electrode plates. Figure 6 is a top plan view of a group of offset array regions 51. As shown, the square apertures 56 are configured corresponding to the configuration of the apertures 42 in the integer aperture array. A set of positive electrodes 53 and a set of negative electrodes 54 are arranged along two opposite sides of each aperture 56, and a set of barrier ground electrodes 55 are formed on each of the other sides. Therefore, in this embodiment, 20x20, that is, a total of 400 square meters of 20 paper sizes are applicable to China National Standard (CNS) A4 specifications (210X297 mm) (Please read the precautions on the back before filling this page)- Order line _ · Printed by the Employees 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 538323 B7 V. Description of the Invention ((s) The A7-shaped orifices 56 printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economy are formed with a gap of 60 μm. Each orifice 56 It is about 25 μm square, which is slightly larger than each aperture 42 in the array of integral apertures. Figure 7 is a diagram showing the aperture, the shape of the electrode, and the electric field formed using the electrodes in a set of aperture units 57 As shown, the positive electrode 53 and the negative electrode 54 are symmetrical to each other, and the center portion thereof is slightly bent at both ends to form a parallel electrode. The barrier ground electrode 55 is divided from the respective adjacent aperture units. The uniform electric field shown has parallel and equidistant power lines in the central portion, which are formed using electrodes having the shape described above. If the number of offsets provided by the offset array substrate 50 is inaccurate Then, a sub-beam of a desired shape may not be obtained or the exposure position may be shifted; therefore, in terms of the number of shifts provided, the shift array substrate 50 requires extremely high accuracy. In view of this, each The apertures 56 are formed in a square shape to ensure a uniform electric field structure. Each aperture 42 in the shaped aperture array has the shape shown by reference number 5 8; the sub-beams are shaped through the aperture 42, so it is relatively easy to penetrate Pass through the opening 5 6 and be accurately offset by the uniform electric field. Turn back to FIG. 5 and connect the signal electrode plate 52 and the GN D electrode plate 53 to the positive electrode 53 and the negative electrode in the offset array area 51. Many of the wirings of 54 are formed in the offset array area 51 in the center and in the multi-layer area between the surrounding signal electrode plate 52 and the GND electrode plate 53. The sub-beam blocker 7 can be used only as shown in the fifth to seventh One set of offset array substrates 50 is constructed in the figure, because its function is to shift the sub-beams in a single direction; on the other hand, for the first integer offset array 4 and the second integer offset array 5, And the sub-beam offset array 9 because the sub-beam Must be offset in two directions perpendicular to the axis of the electronic optical system, so two sets of offset 21 paper sizes are applicable to China National Standard (CNS) Α4 size (210X 297 mm) (Please read the precautions on the back before (Fill in this page)

經濟部智慧財產局員工消費合作社印製 538323 A7 _B7___ 五、發明説明(^ ) 陣列基片50被使用。 第8圖是展示第一整型偏移陣列4,第二整型偏移陣列 5,以及子光束偏移陣列9之結構圖形。 如第8圖所展示,兩組偏移陣列基片50彼此接近地配 置。在基片50之偏移陣列區域51中,孔口 56形成於基片中, 並且正電極53、負電極54、以及屏障接地電極55形成於基 片之一側上面。信號電極板52和GND電極板相同地形成於 基片之一側上面。在另一基片50’之偏移陣列區域5 1’中,孔 口 56’形成於基片中,並且正電極53’、負電極54’、以及屏 障接地電極55’形成於基片之其他側上面。信號電極板52’和 GND電極板相同地形成於基片一側上面。兩組基片50和50’ 被配置使他們的非電極側彼此相向並且孔口 56對齊對應的 孔口 56’,$口圖中所展示。因爲電極,等等不是形成於相向 側上面,因此兩組基片可彼此非常靠近地被置放。 正電極53和負電極54是在正電極53’和負電極54’之90° 的方向。因此,利用施加電壓在正電極5 3和負電極5 4之間 以及在正電極53’和負電極54’之間,電場在展示之參考號碼 6 1和6 1 ’的方向被形成,以便子光束穿經過對應的孔口 5 6和 5 6’而可在彼此形成90°的方向被偏移。而且,被達成之偏移 可獨立地將子光束偏移於垂直光學軸之X軸和Y軸方向的兩 個方向。 在本實施例中,於X軸和Y軸兩方向之孔口 56、5 6’以及 他們的間隙之數目是相同。因此,當使用相同製造程序以 製造兩組偏移陣列基片50時,則各偏移被構成,並且將它 _____22 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 538323 A7 _B7___ V. Description of the Invention (^) The array substrate 50 is used. FIG. 8 is a diagram showing the structure of the first integer offset array 4, the second integer offset array 5, and the sub-beam offset array 9. As shown in Fig. 8, two sets of offset array substrates 50 are arranged close to each other. In the offset array region 51 of the substrate 50, apertures 56 are formed in the substrate, and a positive electrode 53, a negative electrode 54, and a barrier ground electrode 55 are formed on one side of the substrate. The signal electrode plate 52 and the GND electrode plate are formed on one side of the substrate in the same manner. In the offset array region 5 1 ′ of another substrate 50 ′, an aperture 56 ′ is formed in the substrate, and a positive electrode 53 ′, a negative electrode 54 ′, and a barrier ground electrode 55 ′ are formed in the other of the substrate. Side up. The signal electrode plate 52 'and the GND electrode plate are formed on the substrate side. The two sets of substrates 50 and 50 'are arranged such that their non-electrode sides face each other and the aperture 56 is aligned with the corresponding aperture 56', as shown in the figure. Since the electrodes, etc. are not formed on the opposite side, the two sets of substrates can be placed very close to each other. The positive electrode 53 and the negative electrode 54 are in a direction of 90 ° between the positive electrode 53 'and the negative electrode 54'. Therefore, with the applied voltage between the positive electrode 53 and the negative electrode 54, and between the positive electrode 53 'and the negative electrode 54', an electric field is formed in the direction of the reference numbers 6 1 and 6 1 'of the display so that the The light beam passes through the corresponding apertures 56 and 56 'and may be shifted in a direction forming 90 ° with each other. Moreover, the achieved offset can independently shift the sub-beams in two directions of the X-axis and Y-axis directions of the vertical optical axis. In this embodiment, the numbers of the apertures 56 and 56 'in the X-axis and Y-axis directions and their gaps are the same. Therefore, when two sets of offset array substrates 50 are manufactured using the same manufacturing process, each offset is constituted, and it is _____22 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please (Read the notes on the back before filling out this page)

538323 Α7 Β7 五、發明説明(/) 經濟部智慧財產局員工消費合作社印製 們背對背地以他們的軸彼此成90°的方向予以配置。 如早先的說明,在本實施例中,第一整型偏移陣列4、 第二整型偏移陣列5、子光束偏移陣列9、以及子光束阻隔 器7各被配置在電子束放大率比率與第一整型孔口陣列3相 同的位置上面。這使得對於被使用的各基片使用相同的孔 口配置以構成偏移成爲可能。因此,第一整型偏移陣列4、 第二整型偏移陣列5、以及子光束偏移陣列9是使用兩組偏 移陣列基片50而各被構成,該兩組偏移陣列基片50使用相 同製造程序被製造,並且子光束阻隔器7也使用相同基片而 被構成。這對於在製造程序中,減低被引發的錯誤效應是 有用的。 轉回至第1圖,第一整型偏移陣列控制器27、第二整型 偏移陣列控制器26、子光束偏移陣列控制器23、以及子光 束阻隔器控制器25產生一些驅動信號,該等驅動信號將分 別地被施ϋα至第一整型偏移器陣列4、第二整型偏移器陣列 5、子光束阻隔器7、以及子光束偏移陣列9上面之信號電極。 在本實施例之裝置中,作爲一組電磁反射器之主要偏 移器12、作爲一組靜電偏移器之次要偏移器13、以及作爲 一組電磁偏移之次次要偏移器36—起構成一組公共偏移裝 置。偏移範圍之大小依主要偏移器1 2、次要偏移器1 3、以 及次次要偏移器36之順序而減少,而偏移速率(代表偏移設 定時間之長度)則依次次要偏移器36、次要偏移器1 3、以及 主要偏移器1 2之順序而減少。於展示之構造中,次次要偏 移器36被配置在次要偏移器13之外,但是它可被配置於次 _-_23 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閱讀背面之注意事項再填寫本頁)538323 Α7 Β7 V. Description of Invention (/) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs They are arranged back to back with their axes at 90 ° to each other. As explained earlier, in this embodiment, the first integer offset array 4, the second integer offset array 5, the sub-beam offset array 9, and the sub-beam blocker 7 are each disposed at the electron beam magnification. The ratio is the same as that of the first integer orifice array 3. This makes it possible to use the same aperture configuration for each substrate to be used to constitute an offset. Therefore, the first integer offset array 4, the second integer offset array 5, and the sub-beam offset array 9 are each formed using two sets of offset array substrates 50, which are two sets of offset array substrates. 50 is manufactured using the same manufacturing procedure, and the sub-beam blocker 7 is also constructed using the same substrate. This is useful for reducing the effects of errors that occur during the manufacturing process. Turning back to FIG. 1, the first integer offset array controller 27, the second integer offset array controller 26, the sub-beam offset array controller 23, and the sub-beam blocker controller 25 generate some driving signals. The driving signals will be applied to the signal electrodes on the first integer offset array 4, the second integer offset array 5, the sub-beam blocker 7, and the sub-beam offset array 9, respectively. In the device of this embodiment, a primary deflector 12 as a group of electromagnetic reflectors, a secondary deflector 13 as a group of electrostatic deflectors, and a secondary deflector as a group of electromagnetic offsets 36—to form a group of common offset devices. The size of the offset range decreases according to the order of the primary offset device 1, 2, the secondary offset device 1, 3, and the secondary offset device 36, and the offset rate (representing the length of the offset setting time) is sequentially The order of the primary offsetter 36, the secondary offsetter 1, 3, and the primary offsetter 12 is reduced. In the structure shown, the secondary deflector 36 is arranged outside the secondary deflector 13, but it can be arranged at the secondary _-_ 23. This paper size applies the Chinese National Standard (CNS) Α4 specification (210 × 297 mm) Li) (Please read the notes on the back before filling in this page)

538323 A7 B7 五、發明説明(y ) 要偏移益13上面’在此情況中’次次要偏移器36可作爲一-組靜電偏移器而被構成。 上面已說明關於依據本實施例之電子束曝光裝置之構 造;而上面未明確地說明之其他部份基本上是如先前習知 的那些裝置一般。 接著,參看第9A至9D圖以及第10A和10B圖,將依據本 實施例而說明關於被分割的偏移範圍。 如先前之說明,在先前習知的電子束曝光裝置中,不 同特性的偏移器被組合以便電子束可在寬偏移範圍內高速 率有效地被偏移。實際上,使用次要偏移器等等,連續地 進行曝光以更正當平台被移動時之平台移動量,產量可進 一步地被增加。本實施例使用基礎上相同之方法。在本實 施例中,因爲各子光束可獨立地被偏移,並且因爲主要偏 移器、次要偏移器、次次要偏移器,等等利用相同數量一 起偏移所有的子光束,依據子光束偏移之範圍而有不同的 偏移方法。當相鄰子光束偏移範圍是彼此重疊或彼此連續 時的偏移方法,與當它們是彼此分離時的偏移方法是不同 的。本實施例中將利用假定相鄰子光束之偏移範圍79是彼 此分離而加以說明,如第1 0圖所展示。 第9A圖展示形成於晶圓15上面晶片70的配置。因爲各 晶片70是比電子束曝光裝置之偏移範圍較大,所以平台必 須被移動以曝露整個晶片70。有兩組方法可被使用:一種 方法稱爲步驟-及-重複法,其中平台被移動並且接著被停 止以曝露在偏移範圍之內的樣型,並且當完成曝光時,該 ____24 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁)538323 A7 B7 V. Description of the invention (y) To offset 13 above, in this case, the secondary secondary offset device 36 may be constituted as a group of electrostatic offset devices. The construction of the electron beam exposure apparatus according to this embodiment has been described above; the other parts not explicitly explained above are basically the same as those of the conventionally known apparatus. Next, referring to Figs. 9A to 9D and Figs. 10A and 10B, the divided offset range will be explained according to this embodiment. As explained earlier, in the conventionally known electron beam exposure apparatus, different characteristics of the shifter are combined so that the electron beam can be shifted efficiently at a high speed over a wide shift range. In fact, using a secondary shifter, etc., to continuously perform exposures to correct the amount of platform movement when the platform is moved, the yield can be further increased. This embodiment uses the same basic method. In this embodiment, because each sub-beam can be independently shifted, and because the primary deflector, the secondary deflector, the secondary deflector, etc., shift all the sub-beams together with the same number, There are different offset methods depending on the range of the sub-beam offset. The offset method when the adjacent sub-beam offset ranges are overlapping or continuous with each other is different from the offset method when they are separated from each other. This embodiment will be described by assuming that the offset ranges 79 of adjacent sub-beams are separated from each other, as shown in FIG. 10. FIG. 9A shows the arrangement of the wafer 70 formed on the wafer 15. Since each wafer 70 has a larger offset range than the electron beam exposure apparatus, the stage must be moved to expose the entire wafer 70. There are two sets of methods that can be used: one method is called a step-and-repeat method, in which the platform is moved and then stopped to expose the pattern within the offset range, and when the exposure is completed, the ____24 sheets of paper Standards are applicable to China National Standard (CNS) A4 specifications (210X 297 mm) (Please read the precautions on the back before filling this page)

、1T 經濟部智慧財產局員工消費合作社印製 五、發明説明(>> ) 經濟部智慧財產局員工消費合作社印製 538323 A7 _ _ B7 平台再次被移動並且接著被停止以曝露相鄰區域;而另外 一種方法是連續移動方法,其中當平台被移動而進入偏移 範圍時一部份樣型被曝露,同時當平台被移動時,使用次 要偏移器等等以更正平台移動量。 於本發明中兩種方法皆可被採用,但是爲了說明之方 便’下面所給予的說明是採取步驟-和-重複之方法作爲範 例。 如第9 A圖所展示,利用將平台移動數量在唯一的一組 方向中(固定於X方向並且僅在Y方向中步驟移動)改變對應 至電子束曝光裝置之主要偏移範圍的第一偏移範圍(適當地 被設定在最大偏移範圍之內)之寬度,,而使得在相同行中 之晶片依序地被曝露。在這時間以上面寬度被曝露之區域 被稱爲一作用框71。當一組作用框71曝光被完成時,·下一 作用框利用在相對方向移動平台而被曝露,如第9B圖所展 示。參考號碼72指示平台移動之方向。在展示之範例中, 電子束裝置第一偏移範圍73的寬度是各方形晶片一側之 1/3;因此,一組晶片之整個區域可在九個步驟-及-重複操 作中被曝露,並且於一組作用框內,一組晶片在三個步驟 內被曝露。 如第9C圖所展示,第一偏移範圍73被分割成爲各對應 於次要偏移範圍之第二偏移範圍75(在展示範例中之35範 圍)。以主要偏移器12之偏移位置被固定在一組第二偏移範 圍75之中心,在次要偏移器13、次次要偏移器36、以及子 光束偏移陣列9中之偏移數量被改變以曝露在第二偏移範圍 25 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)Printed by 1T Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs V. Invention Description (> >) Printed by Employee Cooperative of Intellectual Property Bureau of Ministry of Economic Affairs 538323 A7 _ _ B7 The platform was moved again and then stopped to expose adjacent areas ; Another method is the continuous movement method, in which a part of the pattern is exposed when the platform is moved into the offset range, and when the platform is moved, a secondary offsetter is used to correct the amount of platform movement. Both methods can be used in the present invention, but for the sake of explanation 'the explanation given below is to take the step-and-repeated method as an example. As shown in Figure 9A, the first offset corresponding to the main offset range of the electron beam exposure device is changed by moving the number of platforms in a unique set of directions (fixed in the X direction and moving in steps only in the Y direction). The width of the shift range (appropriately set within the maximum shift range), so that the wafers in the same row are sequentially exposed. The area exposed by the upper width at this time is called an action frame 71. When the exposure of a set of action frames 71 is completed, the next action frame is exposed by moving the platform in the opposite direction, as shown in Fig. 9B. Reference number 72 indicates the direction in which the platform moves. In the example shown, the width of the first offset range 73 of the electron beam device is 1/3 of one side of each square wafer; therefore, the entire area of a set of wafers can be exposed in nine steps-and-repeated operations, And within a set of action frames, a set of wafers are exposed in three steps. As shown in Fig. 9C, the first offset range 73 is divided into second offset ranges 75 (35 ranges in the display example) each corresponding to the secondary offset range. The offset position of the primary offset device 12 is fixed at the center of a group of the second offset range 75, and the offset in the secondary offset device 13, the secondary offset device 36, and the sub-beam offset array 9. The number of shifts is changed to expose the second offset range. 25 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page)

538323 五 經濟部智慧財產局員工消費合作社印製 Α7 Β7 發明説明( 75之內的樣型。當在第二偏移範圍75內樣型之曝光被完成 時,主要偏移器12之偏移位置被移動並且被固定在緊接著 的第二偏移範圍75之中心,並且相同程序被重複。當這程 序已在第一偏移範圍73內之所有的第二偏移範圍75上面被 形成時,第一偏移範圍73之曝光被完成,並且在第9B圖中 對於下一個第一偏移範圍73,重複曝光程序。參考號碼74 展示主要偏移位置改變之路徑。 如第9D圖所展示,各第二偏移範圍75被分割成爲第三 偏移範圍(在展示範例中之1 6範圍)。以次要偏移器1 3的偏移 位置被固定在第三偏移範圍77中心,在次次要偏移器36以 及子光束偏移陣列9中之偏移數量被改變以曝露在第三偏移 範圍77之內的樣型。當在第三偏移範圍77之內樣型之曝光 被完成時,次要偏移器13之偏移位置被移動並且被固定在 緊接著的第三偏移範圍77之中心,並且相同程序被重複。 當這程序已在第二偏移範圍75之內所有的第三偏移範圍77 上面被形成時,第二偏移範圍75之曝光被完成,並且在第9C 圖中對於緊接著的第二偏移範圍75重複曝光程序。參考號 碼76展示次要偏移位置改變之路徑。 第10A和10B圖展示在各第三偏移範圍77中曝光進展之 圖形。參考號碼79指示子光束偏移陣列9之各子光束偏移範 圍。有20x20 = 400個子光束,如前所述,該子光束在晶圓上 面之偏移範圍是各爲0.25 μιη平方並且彼此分離1.0 μιη。各第 三偏移範圍77被分割成爲400個第四偏移範圍82,各個第四 偏移範圍82進一步地被分割成爲16個各對應至一組子光束 26 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閲讀背面之注意事項再填寫本頁)538323 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Five Ministry of Economic Affairs A7 B7 Invention specifications (models within 75. When the exposure of the models within the second offset range 75 is completed, the offset position of the main offset 12 It is moved and fixed at the center of the next second offset range 75, and the same procedure is repeated. When this procedure has been formed on all the second offset ranges 75 within the first offset range 73, The exposure of the first offset range 73 is completed, and the exposure procedure is repeated for the next first offset range 73 in Figure 9B. Reference number 74 shows the path of the main offset position change. As shown in Figure 9D, Each second offset range 75 is divided into a third offset range (16 range in the display example). The offset position of the secondary offset device 13 is fixed at the center of the third offset range 77, at The number of shifts in the secondary minor shifter 36 and the sub-beam shift array 9 is changed to expose the pattern within the third shift range 77. When the pattern is exposed within the third shift range 77 When completed, the offset position of the secondary offsetter 13 It is moved and fixed at the center of the immediately following third offset range 77, and the same procedure is repeated. When this procedure has been formed on all the third offset ranges 77 within the second offset range 75, the first The exposure of the second offset range 75 is completed, and the exposure procedure is repeated for the next second offset range 75 in Figure 9C. Reference number 76 shows the path of the secondary offset position change. Figures 10A and 10B are shown in Graph of exposure progress in each third offset range 77. Reference number 79 indicates each sub-beam offset range of the sub-beam offset array 9. There are 20x20 = 400 sub-beams, and as described above, the sub-beams are on the wafer The offset ranges are each 0.25 μm squared and separated from each other by 1.0 μm. Each third offset range 77 is divided into 400 fourth offset ranges 82, and each fourth offset range 82 is further divided into 16 each. Corresponds to a group of sub-beams 26 This paper size is applicable to China National Standard (CNS) Α4 size (210 × 297 mm) (Please read the precautions on the back before filling this page)

538323 Α7 Β7 五、發明説明(>4) 經濟部智慧財產局員工消費合作社印製 偏移範圍之第五偏移範圍。在改變次要子光束偏移器36之 偏移數量以便置放次要子光束偏移器3 6在各第S偏移範圍 83中心之後,如第10B圖所展示,400個第五偏移範圍83使 用子光束偏移陣列9而被曝露。當曝光被完成時’次要子光 束偏移器3 6之偏移數量被改變以便被置放在下一個第五偏 移範圍8 3之中心,如第1 0B圖中之路徑所指示,並且相同程 序被重複。當16個第五偏移範圍已對於各子光束被曝露時, 所有的第四偏移範圍82之曝光,亦即,第三偏移範圍77之 曝光,被完成。 在這範例中,次次要偏移器36之偏移範圍應該含蓋至 少4x4個第五偏移範圍83,亦即,次要偏移器13之偏移範圍 的1/8 0(其對應至一組第二偏移範圍75)。 在各子光束偏移範圍79中,各子光束利用第一整型偏 移陣列4和第二整型偏移陣列5獨立地被整型而成爲矩形 81,並且依據曝光位置在被子光束偏移陣列9偏移之後被發 射以便曝光,如參考號碼80所展示。爲了在一組子光束偏 移範圍79之內多次曝露該矩形,相同程序被重複相等之次 數。例如,在左方之範例中,該矩形被曝露一次;在中心, 矩形被曝露兩次;以及在右邊,矩形被曝露四次。如所展 示’矩形下方左側區被設定爲參考位置;甚至在整型之後, 矩形下方左側區被保持在相同位置上面,並且在這情況中, 子光束被偏移以便矩形下方左側區被移動至所需的位置。 如上面之說明,在本實施例中,平台被移動以便第一 偏移範圍73之中心對齊於光學軸,接著主要偏移器12之偏 ______27 本紙張尺度適用中國國家標隼(CNS ) M規格(21〇Χ297公釐) (請先閱讀背面之注意事項再填寫本頁)538323 Α7 Β7 V. Description of the invention (&4; 4) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Employee Consumer Cooperative, the fifth offset range of the offset range. After changing the number of offsets of the secondary sub-beam shifter 36 to place the secondary sub-beam shifter 36 at the center of each S-th offset range 83, as shown in FIG. 10B, 400 fifth offsets The range 83 is exposed using the sub-beam offset array 9. When the exposure is completed, the number of shifts of the 'secondary sub-beam shifter 36' is changed so as to be placed at the center of the next fifth shift range 83, as indicated by the path in Figure 10B, and the same The procedure is repeated. When 16 fifth offset ranges have been exposed for each sub-beam, all the exposures of the fourth offset range 82, that is, the exposures of the third offset range 77 are completed. In this example, the offset range of the secondary offset device 36 should include at least 4 × 4 fifth offset ranges 83, that is, 1/8 0 of the offset range of the secondary offset device 13 (which corresponds to To a set of second offset ranges 75). In each sub-beam offset range 79, each sub-beam is independently shaped into a rectangle 81 using the first integer offset array 4 and the second integer offset array 5 and is shifted by the sub-beam according to the exposure position. The array 9 is shifted after being emitted for exposure, as shown by reference number 80. In order to expose the rectangle multiple times within a set of sub-beam offset ranges 79, the same procedure is repeated an equal number of times. For example, in the example on the left, the rectangle is exposed once; in the center, the rectangle is exposed twice; and on the right, the rectangle is exposed four times. As shown, the left area below the rectangle is set as the reference position; even after integer shaping, the left area below the rectangle is kept above the same position, and in this case, the sub-beams are shifted so that the left area below the rectangle is moved to Desired location. As explained above, in this embodiment, the platform is moved so that the center of the first offset range 73 is aligned with the optical axis, and then the offset of the main deflector 12 is ______27. This paper size applies to the Chinese National Standard (CNS) M Specifications (21〇 × 297 mm) (Please read the precautions on the back before filling this page)

538323 A7 B7 五、發明説明(><) 經濟部智慧財產局員工消費合作社印製 移位置被設定在一組第二偏移範圍75的中心,次要偏移器1 3 之偏移位置被設定在一組第三偏移範圍77的中心,以及次 次要偏移器36的偏移位置被設定以便各子光束偏移範圍對 齊於第五偏移範圍83之一組,構成第三偏移範圍77之各第 四偏移範圍82被分割成第五偏移範圍83 ;在這狀況中,被 第一整型偏移器陣列4和第二整型偏移器陣列5整型的矩形 子光束被子光束偏移器陣列9偏移以便曝光。當各子光束偏 移範圍之曝光被完成時,次次要偏移器36之偏移位置被移 動至下一個第五偏移範圍83,並且相同程序被重複。這程 序被重複16次以完成第三偏移範圍77之曝光。接著,次要 偏移器13之偏移位置被移動至下一個第三偏移範圍77之中 心,並且相同程序被重複。這程序被重複16次以完成第二 偏移範圍75之曝光。進一步地,主要偏移器12之偏移位置 被移動至下一個第二偏移範圍75之中心,並且相同程序被 重複。這程序被重複36次以完成第一偏移範圍73的曝光。 接著,平台沿著Y方向被移動並以相同方式而進行下一個第 一偏移範圍73之曝光,並且曝光程序被重複直至一組作用 框曝光被完成爲止。接著,平台沿著X方向被移動以進行下 一個作用框之相同處理。以此方式,所有在晶圓1 5上面的 樣型被曝露。 接著,在本實施例電子束曝光裝置中所形成之曝光程 序將被說明於下。 首先,各單元被調整。在這調整中,各單元被設定在 最佳狀況,並且同時,在子光束相關單元中子光束之間差 ___28 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)538323 A7 B7 V. Description of the invention (> <) The print shift position of the employee consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs is set at the center of a second offset range 75, and the offset position of the secondary offset device 1 3 Is set at the center of a third offset range 77, and the offset position of the secondary offset device 36 is set so that each sub-beam offset range is aligned with one of the fifth offset ranges 83 to form a third Each of the fourth offset ranges 82 of the offset range 77 is divided into fifth offset ranges 83; in this case, the first integer offset array 4 and the second integer offset array 5 are integer The rectangular sub-beam is shifted by the sub-beam shifter array 9 for exposure. When the exposure of each sub-beam offset range is completed, the offset position of the secondary minor shifter 36 is moved to the next fifth offset range 83, and the same procedure is repeated. This process is repeated 16 times to complete the exposure of the third offset range 77. Next, the offset position of the secondary offsetter 13 is moved to the center of the next third offset range 77, and the same procedure is repeated. This procedure is repeated 16 times to complete the exposure of the second offset range 75. Further, the offset position of the main offset device 12 is moved to the center of the next second offset range 75, and the same procedure is repeated. This procedure is repeated 36 times to complete the exposure of the first offset range 73. Next, the stage is moved in the Y direction and the exposure of the next first offset range 73 is performed in the same manner, and the exposure procedure is repeated until a set of action frame exposures are completed. Then, the platform is moved in the X direction to perform the same processing of the next action frame. In this way, all the patterns on the wafer 15 are exposed. Next, an exposure procedure formed in the electron beam exposure apparatus of this embodiment will be described below. First, the units are adjusted. In this adjustment, each unit is set to the best condition, and at the same time, the difference between the sub-beams in the sub-beam-related units ___28 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (please first (Read the notes on the back and fill out this page)

538323 五、發明説明(乂) 經濟部智慧財產局員工消費合作社印製 A7 B7 量有關的資料被收集。電子槍1以及磁鏡片10-1至10-9使用 電子光學系統控制器28而被調整。進一步地,主要偏移器 12、次要偏移器13、以及次次要偏移器36被調整,並且有 關於他們偏移數量的資料被收集。這些調整與先前習知裝 置形成之調整相同。第一整型孔口陣列3和第二整型孔口陣 列6各被提供多數個孔口區域4 1,如先前之說明,並且一組 孔口區域41被選擇。第一整型孔口陣列3、第二整型孔口陣 列6、第一整型偏移陣列4、第二整型偏移陣列5、子光束阻 隔器7、子光束偏移陣列9以及快門8被調整且使用對齊夾具 或類似者以便對齊。此時,有關於子光束偏移之各偏移器 特性之資料也被收集並且被儲存。進一步地,像差/庫倫模 糊更正器14等等,被調整並且他們的資料被收集。針對上 面之調整和資料收集,反射電子檢測器1 8、法拉第杯36等 等,被使用。 依據因此被收集之資料,更正資料被設定於主要偏移 控制器20、次要偏移控制器2 1、像差/庫倫模糊更正器控制 器22、子光束偏移陣列控制器23、共同阻隔器控制器24、 子光束阻隔器控制器25、第二整型偏移陣列控制器26、第 一整型偏移陣列控制器27、電子光學系統控制器28,等等 之中。 控制電腦29對於各寫入框從被儲存在大尺度之儲存元 件3 0中的” L SI晶片-寫入資料”以及”晶圓佈局和曝光狀況資 訊’’產生曝光資訊。此時,針對各分割曝光範圍,曝光資訊 被產生,如參考第9A至9D圖以及第10A和10B圖之說明。 29 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)538323 V. Description of the invention (乂) The data related to A7 B7 printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs were collected. The electron gun 1 and the magnetic lenses 10-1 to 10-9 are adjusted using an electronic optical system controller 28. Further, the primary offsetter 12, the secondary offsetter 13, and the secondary offsetter 36 are adjusted, and information on the number of their offsets is collected. These adjustments are the same as those made by previously known devices. The first integer orifice array 3 and the second integer orifice array 6 are each provided with a plurality of orifice regions 41, as described previously, and a set of orifice regions 41 are selected. First integer aperture array 3, second integer aperture array 6, first integer offset array 4, second integer offset array 5, sub-beam blocker 7, sub-beam offset array 9, and shutter 8 is adjusted and uses alignment jigs or the like for alignment. At this time, information on the characteristics of each deflector of the sub-beam offset is also collected and stored. Further, the aberration / Coulomb blur corrector 14 and the like are adjusted and their data are collected. For the above adjustment and data collection, the reflection electron detector 18, Faraday cup 36, etc. are used. Based on the data thus collected, the correction data is set in the primary offset controller 20, the secondary offset controller 21, the aberration / Coulomb blur corrector controller 22, the sub-beam offset array controller 23, and the common block Controller 24, sub-beam blocker controller 25, second integer offset array controller 26, first integer offset array controller 27, electronic optical system controller 28, and so on. The control computer 29 generates exposure information for each writing frame from the "L SI chip-writing data" and "wafer layout and exposure status information" stored in the large-scale storage element 30. At this time, for each The exposure range is divided, and the exposure information is generated, as described with reference to Figures 9A to 9D and Figures 10A and 10B. 29 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the note on the back first (Fill in this page again)

538323 A7 B7 五、發明説明(d ) (請先閱讀背面之注意事項再填寫本頁) 爲了曝光,利用公共阻隔器1 1被設定以阻隔整個光束 並且子光束阻隔器也被設定在阻隔位置中,晶圓15被鉗緊 在平台16上面,並且平台16被移動,如先前參考第9A至9D 圖以及第10A和10B圖之說明,以設定主要偏移器12和次要 偏移器1 3之偏移位置。在這情況中,公共阻隔器1 1阻隔之 狀況被釋放。接著,次次要偏移器36之偏移位置被設定, 並且曝光開始。 經濟部智慧財產局員工消費合作社印製 對於其形狀和偏移位置,各子光束可獨立地被控制並 且順序地在分別的範圍中曝露樣型,但是如先前所提示, 由於庫倫作用而發生子光束模糊。這模糊使用像差/庫倫模 糊更正器14而被更正,但是對於子光束而言,如果電流數 量變大或如果電流大量改變,則其更正並非需要的。一些 子光束寫入範圍包含大量之樣型,並且有些僅包含一些樣 型或完全沒有樣型。基本地,曝光數目是由被包含在被曝 露範圍中的樣型數目所決定;依據將被曝露之範圍,曝光 數目可以是大的或可以是小的。有鑑於此,在其中曝光數 目是小的範圍中,曝光順序被調整以便使得每次曝光最大 電流數量儘可能地小並且減低在曝光之間電流數量的改 變。 例如,第10A圖左方之範圍(3,1)包含有一次曝光之大 樣型,並且在中心之範圍(5,1)包含有兩次曝光之相對地小 樣型,同時在左方之範圍(m,1)包含有四次曝光之小樣型。 在展示之範例中,曝光是在一些步驟中利用暴露而被形成, 例如’在(m,1)中只一組樣型在第一次曝光中被暴露,在(5, 30 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 538323 A7 B7 i、發明説明(>2 ) 經濟部智慧財產局員工消費合作社印製 1)中之一組樣型以及在(m,1)中之一組樣型是在第二次曝光 中被暴露,在(5,1)中其餘一組樣型以及在(m,1)中之一組 樣型在第三次曝光中被暴露,並且在(3,1)中之樣型以及在 (m,1)中之其餘一組樣型在第四次曝光中被暴露。實際上, 此等曝光是對於400個子光束之曝光範圍而被形成。這足夠 減低每次曝光之最大電流數量而同時也減低在曝光之間電 流數量的改變。 利用如上面之說明所形成的曝光,在400個第五偏移範 圍83中之樣型曝光被完成。之後,相同曝光程序利用移動 平台並且改變次次要偏移器36、次要偏移器13、以及主要 偏移器1 2之偏移位置而重複地被形成,直至在晶圓1 5上面 之所有的樣型已經被曝露爲止。 依據本發明之實施例,電子束曝光裝置已經於上面被 說明,但是它也可能有各種的修改。 例如,被形成於實施例之偏移器陣列基片50上面之正 電極53和負電極54已經被說明具有第7圖中展示之形狀,但 是這些可以被形成如同在第11圖中展示之平行電極。但是, 在這修改中,因爲其中一組均勻電場可被形成之範圍成爲 較小,因此如果在這裡也使用相同子光束尺寸,則孔口單 元57之尺寸以及子光束之間隙必須被增加。在第7圖之範例 中,孔口間隙是電子束尺寸的1 /4並且子光束利用效率是 1 /1 6,而在第1 1圖之範例中,孔口間隙是電子束尺寸的1 /6 並且子光凍利用效率是1/36。雖然子光束利用效率下降大 約一半,但對於實際用途它是足夠地。 31 本紙張尺度適用中國國家標绰(CNS ) A4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) -- 訂 線·! 538323 A7 B7 i、發明説明(yp 在實施例中,除了主要偏移器12和次要偏移器13之外, 次要子光束偏移器36被提供,並且離散地被配置的子光束 偏移範圍79被移動,但是次要子光束偏移器36可以被省略 並且子光束偏移器1 3可以被組態以進行這偏移。 進一步地,在實施例中,子光束偏移範圍79已經被說 明彼此分離,如第1 0A圖中所展示,但是該子光束偏移範圍 79可以利用增加在子光束偏移陣列9中各組偏移器之偏移數 量而使之彼此連續。在那情況中,利用次要子光束偏移器 而改變位置,如第10B圖所展示,並不需要被達成,但是第 三偏移範圍77利用僅改變各子光束之偏移位置而被曝露。 進一步地,各子光束偏移範圍79可以被設定比其最大 偏移範圍較小,隨著供應使得在分割偏移範圍間在一次曝 光中曝露經過界線的樣型。這減低在接合處之偏移的可能 性。 當子光束偏移範圍彼此重疊被配置時,可以供應使得 當在某種子光束偏移範圍中之樣型曝光被完成時,如果在 其相鄰子光束偏移範圍中之曝光尙未被完成,則被完成曝 光之子光束被使用以曝露其相鄰子光束偏移範圍中之樣 型。這可改進產量。 進一步地,當使用數個子光束曝光在一些步驟中進行 曝光時,整個看來,子光束之總電流數量之上限可被預置, 並且即使曝光程序被分割成爲一些步驟而當電流値超過這 上限時,曝光數目可以被設定比在子光束偏移範圍中之樣 型的最大數目還要大。在這情況中,因爲被增加的曝光數 32 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁)538323 A7 B7 V. Description of the invention (d) (Please read the notes on the back before filling this page) For exposure, the common blocker 11 is set to block the entire beam and the sub-beam blocker is also set in the blocking position. The wafer 15 is clamped on the platform 16 and the platform 16 is moved, as previously described with reference to FIGS. 9A to 9D and FIGS. 10A and 10B to set the primary deflector 12 and the secondary deflector 1 3 Offset position. In this case, the blocking condition of the common barrier 11 is released. Then, the offset position of the secondary minor shifter 36 is set, and the exposure starts. For the consumer property cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, each sub-beam can be independently controlled and exposed in a separate range for its shape and offset position, but as previously suggested, The beam is blurred. This blur is corrected using the aberration / Coulomb blur corrector 14, but for a sub-beam, if the current amount becomes larger or if the current changes significantly, its correction is not required. Some sub-beam write ranges contain a large number of patterns, and some contain only a few patterns or no patterns at all. Basically, the number of exposures is determined by the number of patterns included in the exposed range; depending on the range to be exposed, the number of exposures can be large or small. In view of this, in a range in which the number of exposures is small, the exposure order is adjusted so that the maximum current amount per exposure is as small as possible and the change in the amount of current between exposures is reduced. For example, the range (3,1) on the left of Figure 10A contains a large pattern with one exposure, and the range (5,1) in the center contains a relatively small pattern with two exposures, and is on the left. (M, 1) contains a small sample with four exposures. In the example shown, exposure is formed using exposure in some steps, such as' Only a set of patterns in (m, 1) were exposed during the first exposure, and (5, 30 paper sizes apply China National Standard (CNS) A4 specification (210X 297 mm) 538323 A7 B7 i. Invention description (> 2) Printed by the consumer property cooperative of the Intellectual Property Bureau of the Ministry of Economy 1) One of the sample types and (m, 1 One of the patterns in) was exposed in the second exposure, the remaining patterns in (5,1) and one of the patterns in (m, 1) were exposed in the third exposure And the patterns in (3,1) and the remaining set of patterns in (m, 1) were exposed in the fourth exposure. In fact, these exposures are made for an exposure range of 400 sub-beams. This is sufficient to reduce the maximum amount of current per exposure while also reducing the change in the amount of current between exposures. Using the exposures formed as described above, pattern exposures in 400 fifth offset ranges 83 are completed. Thereafter, the same exposure procedure is repeatedly formed using the moving platform and changing the offset positions of the secondary offsetter 36, the secondary offsetter 13, and the primary offsetter 12 until it is above the wafer 15 All patterns have been exposed so far. The electron beam exposure apparatus according to the embodiment of the present invention has been described above, but it is also possible to have various modifications. For example, the positive electrode 53 and the negative electrode 54 formed on the shifter array substrate 50 of the embodiment have been described as having the shapes shown in FIG. 7, but these can be formed in parallel as shown in FIG. 11 electrode. However, in this modification, since a range in which a set of uniform electric fields can be formed becomes smaller, if the same sub-beam size is also used here, the size of the aperture unit 57 and the gap of the sub-beams must be increased. In the example in FIG. 7, the aperture gap is 1/4 of the electron beam size and the sub-beam utilization efficiency is 1/16, and in the example in FIG. 11, the aperture gap is 1/4 of the electron beam size. 6 And the utilization efficiency of the photo-freeze is 1/36. Although the sub-beam utilization efficiency is reduced by about half, it is sufficient for practical use. 31 This paper size applies to China National Standards (CNS) A4 specifications (210 X 297 mm) (Please read the notes on the back before filling this page)-Threading !! 538323 A7 B7 i. Description of the invention (yp in In the embodiment, in addition to the primary deflector 12 and the secondary deflector 13, a secondary sub-beam offsetter 36 is provided, and the discretely configured sub-beam offset range 79 is moved, but the secondary The beam shifter 36 may be omitted and the sub beam shifter 13 may be configured to perform this shift. Further, in the embodiment, the sub beam shift range 79 has been explained to be separated from each other, such as the 10A It is shown in the figure, but the sub-beam offset range 79 can be made continuous by increasing the number of offsets of each group of offsets in the sub-beam offset array 9. In that case, the secondary sub-beam offset is used. As shown in FIG. 10B, the position does not need to be achieved, but the third offset range 77 is exposed by changing only the offset position of each sub-beam. Further, each sub-beam offset range 79 Can be set more than its maximum offset range With the supply, the pattern that passes the boundary line is exposed in one exposure between the divided offset ranges. This reduces the possibility of offset at the joint. When the sub-beam offset ranges are configured to overlap each other, it can be supplied so that When the pattern exposure in a certain sub-beam offset range is completed, if the exposure 尙 in its adjacent sub-beam offset range is not completed, the sub-beam that has been completed exposure is used to expose its adjacent sub-beam offset. Move the pattern in the range. This can improve the yield. Further, when using several sub-beam exposures to perform exposure in some steps, it appears that the upper limit of the total current amount of the sub-beams can be preset, and even the exposure program Is divided into steps and when the current 値 exceeds this upper limit, the number of exposures can be set larger than the maximum number of patterns in the sub-beam offset range. In this case, because the number of exposures increased by 32 Paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) (Please read the precautions on the back before filling this page)

、1T 線·! 經濟部智慧財產局員工消費合作社印製 538323 A7 B7 五、發明説明(7° ) 目而使得曝光時間增加’但是因爲此一情況並非時常發生, 有效的產量之惡化是可以被忽略的° 如上面之說明,依據本發明’因爲許多曝光利用繼續 進行可變ί七尺寸矩形方法而被形成’使得產量大幅地改進’ 並且其所達成之產量是比得上或較高於利用方塊曝光方法 所可得到之產量。進一步地,因爲它既不需要,在方塊曝 光方法中月?需的使用於方塊遮罩準備措施之計劃實現時 間,同時也不需要方塊遮罩管理,因而管理時間被減低並 且有效的產量進一步地被增加。 這得_!]可被使用於大量之LSI生產程序中,並使得高度 積集LSI以低成本被大量產生之電子束曝光裝置。 (請先閱讀背面之注意事項再填寫本頁) 訂 線·! 經濟部智慧財產局員工消費合作社印製 ____33 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 538323 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(々1 ) 元件標號對照表 1……電子槍 2-1至2-8……磁場軸 3……第一整型孔口陣列 4……第一整型偏移器陣列 4- 1......第一整型偏移器 5……第二整型偏移器陣列 5- 1……第二整型偏移器陣列 5-2......偏移 6……第二整型孔口陣列 7……子光束阻隔器 8……快門 9……子光束偏移器陣列 10-1至10-9……磁鏡片 11……阻隔器 12……主要偏移器 13……次要偏移器 14……像差/庫倫模糊更正器 15 ......晶圓 16 ......平台 17……控制器 18……電子檢測器 19……檢測信號處理電路 (請先閲讀背面之注意事項再填寫本頁)Line 1T !! Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 538323 A7 B7 V. The description of the invention (7 °) increases the exposure time ', but because this situation does not happen often, the deterioration of effective output can be reduced. Ignored ° As explained above, according to the present invention, 'because many exposure uses continue to make a variable seven-size rectangular method, it is formed to' make a substantial improvement in yield 'and the yield achieved is comparable or higher than the utilization Yield from the block exposure method. Further, since it neither needs to be in the square exposure method? The time required for the plan realization of the block mask preparation measures is not required, and the block mask management is not required, so the management time is reduced and the effective output is further increased. This can be used in a large number of LSI production processes, and allows electron beam exposure apparatuses with a high accumulation of LSIs to be mass-produced at low cost. (Please read the precautions on the back before filling in this page) Ordering line! Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ____33 This paper size applies to China National Standard (CNS) A4 (210X297 mm) 538323 A7 B7 Economy Printed by the Consumer Cooperatives of the Ministry of Intellectual Property Bureau. 5. Description of the invention (々1) Component reference table 1 ... Electron gun 2-1 to 2-8 ... Magnetic field axis 3 ... First integer aperture array 4 ... One integer offset shifter array 4- 1 ... first integer offset shifter 5 ... second integer offset shifter array 5- 1 ... second integer offset shifter array 5-2 ... offset 6 ... second integer aperture array 7 ... sub-beam blocker 8 ... shutter 9 ... sub-beam shifter array 10-1 to 10-9 ... magnetic lens 11 ... Baffle 12 ... Main Offset 13 ... Second Offset 14 ... Aberration / Coulomb Blur Corrector 15 ... Wafer 16 ... Platform 17 ... Control 18 ... electronic detector 19 ... detection signal processing circuit (please read the precautions on the back before filling in this page)

、1T __34 本紙張尺度適用中國國家標率(CNS ) A4規格(210X 297公釐) 538323 五、發明説明($7) 經濟部智慧財產局員工消費合作社印製 A7 B7 20……主要偏移控制器 21……次要偏移控制器 22……像差/庫倫模糊更正器控制器 23……子光束偏移陣列控制器 24……阻隔器控制器 25……子光束阻隔器控制器 26……第二整型偏移陣列控制器 27……第一整型偏移陣列控制器 28……電子光學系統控制器 29……控制電腦 30……儲存元件 3 1......界面 32……網路轉接器 33……電腦匯流排 34……控制匯流排 3 5......法拉第杯 3 6......次次要偏移器 4 1……孔口區域 4 2......孔口 4 3......石夕某片 44......硼擴散絕緣層 4 6 ······石夕 47……保護金屬薄膜 50……偏移器陣列基片 35 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)、 1T __34 This paper size is applicable to China National Standards (CNS) A4 specification (210X 297mm) 538323 V. Description of the invention ($ 7) A7 B7 20 printed by the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs ... Main offset controller 21 ... secondary offset controller 22 ... aberration / Coulomb blur corrector controller 23 ... sub-beam offset array controller 24 ... blocker controller 25 ... sub-beam blocker controller 26 ... 2nd integer offset array controller 27 ... 1st integer offset array controller 28 ... electronic optical system controller 29 ... control computer 30 ... storage element 3 1 ... interface 32 ... ... network adapter 33 ... computer bus 34 ... control bus 3 5 ... Faraday cup 3 6 ... secondary offset 4 1 ... orifice area 4 2 ... orifice 4 3 ... a piece of Shi Xi 44 ... a boron diffusion insulation layer 4 6 ... Shi Xi 47 ... protective metal film 50 ... … Offset Array Substrate 35 This paper size applies to China National Standard (CNS) A4 (210X297 mm) (Please read the precautions on the back before filling this page)

538323 A7 B7 五、發明説明( 經濟部智慧財產局員工消費合作社印製 50,·.· …基片 5 1". …偏移陣列區域 52 ··· …信號電極板 53… ·· ·正電極 53,.·. • ··正電極 54 ··· …負電極 54,··. •…負電極 55 ··· …屏障接地電極 56··· …孔口 56'··· .···孔口 57··· …孔口單元 58… …形狀 6 1··· …方向 61,·· • · ··方向 70·.· ···晶圓 7 1··· …作用框 72··· …平台移動方向 73… …第一偏移範圍 74·.· …主要偏移位置改變路徑 75 ··· …第二偏移範圍 76". …次要偏移位置改變路徑 77··· …第三偏移範圍 78··· …子先束偏移範圍 79". …子光束偏移範圍 36 本紙張尺度適用中國國家標率(CNS ) Α4規格(210Χ 297公釐) (請先閱讀背面之注意事項再填寫本頁)538323 A7 B7 V. Description of the Invention (Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, 50, ..... Substrate 5 1 ".… Offset Array Area 52 ···… Signal Electrode Plate 53 ···· Positive Electrode 53, ······ Positive electrode 54 ····· Negative electrode 54 ······ Negative electrode 55 ···… Barrier ground electrode 56 ···· Aperture 56 '······ Orifice 57 ... Orifice unit 58 ... Shape 6 1 ... Direction 61, ... Direction 70 ... Wafer 7 1 ... Action frame 72 ... ·… Platform movement direction 73… first offset range 74 ···… main offset position change path 75 ···… second offset range 76 ".… secondary offset position change path 77 ···… The third offset range 78 ... The sub-beam offset range 79 " .... the sub-beam offset range 36 This paper size is applicable to China National Standard (CNS) Α4 specification (210 × 297 mm) (please read the back first) (Notes for filling in this page)

、1T 線· 538323 A7 B7 五、發明説明(令+ ) 發矩第第 向 方 射 圍圍 範 产 luij 移移 偏偏 形四五 (請先閱讀背面之注意事項再填寫本頁) #1Line 1T · 538323 A7 B7 V. Description of the invention (Order +) The first direction of the moment shots Wai Fan Fans luij shifted deviation 45 (Please read the precautions on the back before filling this page) # 1

、1T 線· 經濟部智慧財產局員工消費合作社印製 麝 t 37 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐)Line 1T · Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs t 37 This paper size applies to China National Standard (CNS) A4 (210X 297 mm)

Claims (1)

538323538323 j·^ A8 B8 C8 D8 經濟部智慧財產局員工消費合作社印製 '申請專利範園 1. 一種電子束曝光裝置,其包含: 一組用於產生電子束之束源; 用於將該電子束整型之整型裝置; 用於改變該電子束於一組樣本上面之發射位置的偏移 裝置;以反 用於聚焦該被整型電子束至該樣本上面之投射裝置, 其中 該整型裝置包含: 利用分割該電子束用於產生多數個子光束之分割裝 置; 用於將各該多數個子光束整型成爲所需矩形形狀之矩 形整型裝置;和 用於移動各該多數個子光束之發射位置之子光束偏移 裝置。 2 · $口申請專利範圍第1項之電子束曝光裝置,該矩形 整型裝置波此無關地將至少一些該等多數個子光束整型成 爲所需的矩形形狀,並且該子光束偏移裝置彼此無關地移 動至少一fe該等多數個子光束之發射位置。 3· $□申請專利範圍第2項之電子束曝光裝置,進一步 地包含用於控制該電子束而使得該電子束是否發射至該樣 本上面之阻隔器裝置。 4. $口申請專利範圍第2項之電子束曝光裝置,進一步 地包含用於彼此無關地控制各該多數個子光束而使得該各 子光束是否發射至該樣本上面之子光束阻隔器裝置。 38 本紙張尺度適用中國國家標赛(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 s'. 538323 Α8 Β8 C8 D8 々、申請專利範圍 (請先閱讀背面之注意事項再填寫本頁) 5. ί口申請專利範圍第3項之電子束曝光裝置,進一步 地包含用於彼此無關地控制各該多數個子光束而使得該各 子光束是否發射至該樣本上面之子光束阻隔器裝置。 6. $口申請專利範圍第2項之電子束曝光裝置,其中 該分割裝置是具有以預定間隙配置之預定矩形形狀之 多數個第一整型孔口的一組基片,並且 該等多數個子光束是以該預定間隙配置之預定矩形形 狀之多數偭電子束,並且其中 該矩肜整型裝置包含: 用於波此無關地偏移各該多數個子光束之第一整型偏 移裝置; 具有對應於該預定間隙配置之矩形形狀的多數個第二 整型孔口之一組整型孔口陣列,其中利用該第一整型偏移 裝置被偏移之各該多數個子光束被發射於該等多數個第二 整型孔口之:對應的一組上面;以及 第二整型偏移裝置,用於將經由多數個第二整型孔口 而被整型的該等多數個子光束偏移回復。 7. $口申請專利範圍第3項之電子束曝光裝置,其中 該分割裝置是具有以預定間隙配置之預定矩形形狀之 經濟部智慧財產局員工消費合作社印製 多數個第一整型孔口的一組基片,並且 該等多數個子光束是以該預定間隙配置之預定矩形形 狀之多數個電子束,並且其中 該矩形整型裝置包含: 用於彼此無關地偏移各該多數個子光束之第一整型偏 39 本紙張尺度適用中國國家標參(CNS ) Α4規格(210Χ297公釐) 經濟部智慧財產局員工消費合作社印製 538323 A8 B8 C8 D8 六、申請專利範園 移裝置; 具有封應於該預定間隙配置之矩形形狀的多數個第二 整型孔口之一組整型孔口陣列,其中利用該第一整型偏移 裝置被偏移之各該多數個子光束被發射於該等多數個第二 整型孔口之對應的一組上面;以及 第二整型偏移裝置,用於將經由多數個第二整型孔口 而被整型的該等多數個子光束偏移回復。 8. $口申請專利範圍第4項之電子束曝光裝置,其中 該分割裝置是具有以預定間隙配置之預定矩形形狀之 多數個第一整型孔口的一組基片,並且 該等多數個子光束是以該預定間隙配置之預定矩形形 狀之多數個電子束,並且其中 該矩胗整型裝置包含: 用於波此無關地偏移各該多數個子光束之第一整型偏 移裝置; 具有對應於該預定間隙配置之矩形形狀的多數個第二 整型孔口之一組整型孔口陣列,其中利用該第一整型偏移 裝置被偏移之各該多數個子光束被發射於該等多數個第二 整型孔口之對應的一組上面;以及 第二整型偏移裝置,用於將經由多數個第二整型孔口 而被整型旳該等多數個子光束偏移回復。 9. 妇申請專利範圍第5項之電子束曝光裝置,其中 該分割裝置是具有以預定間隙配置之預定矩形形狀之 多數個第一整型孔口的一組基片,並且 40 ^紙張尺度適用中國國家標赛(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁)j · ^ A8 B8 C8 D8 Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs to apply for a patent application park 1. An electron beam exposure device comprising: a set of beam sources for generating an electron beam; Shaping device; an offset device for changing the emission position of the electron beam on a group of samples; and a projection device for focusing the shaped electron beam onto the sample, wherein the shaping device Including: a dividing device for generating a plurality of sub-beams by dividing the electron beam; a rectangular shaping device for shaping each of the plurality of sub-beams into a desired rectangular shape; and a moving position for moving each of the plurality of sub-beams Child beam shifting device. 2. The electron beam exposure device of the first scope of the patent application, the rectangular shaping device shapes at least some of the plurality of sub-beams into a desired rectangular shape regardless of the shape, and the sub-beam shifting devices are mutually Unnecessarily move the emission positions of the plurality of sub-beams. 3. The electron beam exposure device according to item 2 of the patent application scope further includes a barrier device for controlling the electron beam so that the electron beam is emitted to the sample. 4. The electron beam exposure device according to item 2 of the patent application scope further includes a sub-beam blocker device for controlling the plurality of sub-beams independently of each other so that the sub-beams are emitted to the sample. 38 This paper size is applicable to China National Standards (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page) Order s'. 538323 Α8 Β8 C8 D8 々 、 Scope of patent application (please read first (Notes on the back of this page are to be completed on this page) 5. The electron beam exposure device of item 3 of the patent application scope further includes a method for controlling the plurality of sub-beams independently of each other so that the sub-beams are emitted to the sample. The top child beam blocker device. 6. The electron beam exposure device according to item 2 of the patent application scope, wherein the dividing device is a group of substrates having a plurality of first integer shaped apertures of a predetermined rectangular shape arranged at a predetermined gap, and the plurality of The light beam is a plurality of 偭 electron beams of a predetermined rectangular shape arranged in the predetermined gap, and wherein the moment 肜 shaping device includes: a first shaping deflecting device for irrelevantly shifting each of the plurality of sub-beams; A set of shaped aperture arrays corresponding to the rectangular shaped plurality of second shaped apertures arranged in the predetermined gap arrangement, wherein each of the plurality of sub-beams shifted by the first shaped offset device is emitted to the Waiting for a plurality of second integer apertures: a corresponding set of tops; and a second integer offset device for offsetting the plurality of sub-beams that are shaped by the plurality of second integer apertures Reply. 7. The electron beam exposure device of item 3 in the scope of patent application, wherein the dividing device has a plurality of first integer apertures printed by a consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs and the Intellectual Property Bureau with a predetermined rectangular configuration arranged at a predetermined gap. A set of substrates, and the plurality of sub-beams are a plurality of electron beams of a predetermined rectangular shape arranged in the predetermined gap, and wherein the rectangular shaping device includes: An integer type 39 This paper size is applicable to China National Standards (CNS) A4 specifications (210 × 297 mm) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 538323 A8 B8 C8 D8 6. Application for patent Fanyuan transfer device; A set of shaped aperture arrays of a plurality of second shaped apertures of a rectangular shape arranged at the predetermined gap, wherein each of the plurality of sub-beams shifted by the first shaped offset device is emitted to the A corresponding one of the plurality of second integer orifices; and a second integer offset device for passing the plurality of second integer orifices through Most of these type of sub-beam displacement reply. 8. The electron beam exposure device according to item 4 of the patent application scope, wherein the dividing device is a group of substrates having a plurality of first integer shaped apertures of a predetermined rectangular shape arranged at a predetermined gap, and the plurality of The light beam is a plurality of electron beams of a predetermined rectangular shape arranged in the predetermined gap, and wherein the moment-shaping shaping device includes: a first shaping shifting device for shifting each of the plurality of sub-beams independently; A set of shaped aperture arrays corresponding to the rectangular shaped plurality of second shaped apertures arranged in the predetermined gap arrangement, wherein each of the plurality of sub-beams shifted by the first shaped offset device is emitted to the And waiting for the top of the corresponding group of the plurality of second integer apertures; and a second integer offset device for offsetting and restoring the plurality of sub-beams through the plurality of second integer apertures . 9. The electron beam exposure device according to item 5 of the patent application, wherein the dividing device is a group of substrates having a plurality of first integer shaped apertures of a predetermined rectangular shape arranged at a predetermined gap, and a 40 ^ paper size is applicable China National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page) 經濟部智慧財產局員工消費合作社印製 538323 A8 B8 C8 D8 六、申請專利範園 靜電場之一對偏移電極,以及形成於除了該組對偏移電極 被形成位置之外而側鄰於各該孔口之其他位置的屏障電 極,並且其中 利用一組整型偏移基片上面偏移電極組對形成之靜電 場方向是舆利用另一整型偏移基片上面對應的偏移電極組 對形成之靜電場方向成90°,並且兩組整型偏移基片彼此近 接地配置。 14. 如申請專利範圍第6項之電子束曝光裝置,其中 該分Μ裝置基片包含各具有該等多數個第一整型孔口 之多數個整型孔口組,並且 該等多數個整型孔口組之任何一組是選擇地可移動進 入該電子束之一通道。 15. 如[申請專利範圍第7項之電子束曝光裝置,其中 該分割裝置基片包含各具有該等多數個第一整型孔口 之多數個整型孔口組,並且 該等多數個整型孔口組之任何一組是選擇地可移動進 入該電子束之一通道。 16·如申請專利範圍第8項之電子束曝光裝置,其中 該分割裝置基片包含各具有該等多數個第一整型孔口 之多數個簦型孔口組,並且 該等多數個整型孔口組之任何一組是選擇地可移動進 入該電子束之一通道。 17· $口申請專利範圍第9項之電子束曝光裝置,其中 該分割裝置基片包含各具有該等多數個第一•整型孔□ 43 本紙張尺度適用中國國家標參(CNS ) Α4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁)Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 538323 A8 B8 C8 D8 VI. One of the pair of offset electrodes of the patent application Fanyuan electrostatic field is formed beside the offset electrode where the pair of offset electrodes are formed and is adjacent to each other The barrier electrode at another position of the aperture, and the direction of the electrostatic field formed by a pair of offset electrode groups on a set of integral offset substrates is the corresponding offset electrode group on the other offset substrate. The direction of the formed electrostatic field is 90 °, and two sets of integral offset substrates are arranged close to each other. 14. The electron beam exposure device according to item 6 of the patent application, wherein the substrate of the M device includes a plurality of integer shaped aperture groups each having the plurality of first integer shaped apertures, and the plurality of integral shaped aperture groups Any of the set of apertures is selectively movable into a channel of the electron beam. 15. For example, an electron beam exposure device according to item 7 of the scope of patent application, wherein the segmentation device substrate includes a plurality of integer shaped aperture groups each having the plurality of first integer shaped apertures, and the plurality of integer shaped aperture groups Any of the set of apertures is selectively movable into a channel of the electron beam. 16. The electron beam exposure device according to item 8 of the patent application, wherein the dividing device substrate includes a plurality of 簦 -shaped aperture groups each having the plurality of first integer apertures, and the plurality of integer types Any group of aperture groups is selectively movable into a channel of the electron beam. 17. · The electron beam exposure device of the 9th scope of the patent application, in which the substrate of the dividing device includes each of the plurality of first-shaped holes □ 43 This paper standard is applicable to China National Standards (CNS) Α4 specifications (210X297 mm) (Please read the notes on the back before filling this page) 538323 8 8 8 8 A B c D 六、申請專利範圍 之多數個整型孔口組,並且 該等多數個整型孔口組之任何一組是選擇地可移動進 入該電子束之一通道。 1 8 .如申請專利範圍第2項之電子束曝光裝置,其中 該子光束偏移裝置包含: 兩組偏移基片,各包含配置對應於該等多數個子光束之 配置的多數個孔口,形成於各孔口兩側用於形成一靜電場之 一對偏移電極,以及形成於除了該組對偏移電極被形成位置 之外側而鄰於各該孔口之其他位置的屏障電極,和其中 利用一組整型偏移基片上面偏移電極組對形成之靜電 場方向是與利用另一整型偏移基片上面對應的偏移電極組 對形成之靜電場方向成90°,並且兩組整型偏移基片彼此近 接地配置。 19.如申請專利範圍第4項之電子束曝光裝置,其中 該子光束阻隔器裝置包含: 一組阻隔器偏移基片,各包含配置對應於該等多數個子 光束之配置的多數個孔口,形成於各孔口兩側用於形成一靜 電場之一對偏移電極,以及形成於除了該組對偏移電極被形 成位置之外側而鄰於各該孔口之其他位置的屏障電極;以及 一組屏障平板,用於阻隔利用該偏移電極組對被偏移之 該等多數個子光束。 2 0.如申請專利範圍第5項之電子束曝光裝置,其中 44 本紙張尺度適用中國國家標準(CNS) A4規格(21 OX297公釐) 538323 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範園 該子光束阻隔器裝置包含: 一組阻隔器偏移基片,其包含配置對應於該等多數個 子光束之配置的多數個孔口,形成於各孔口兩側用於形成 一靜電場之一對偏移電極,以及形成於除了該組對偏移電 極被形成位置之外側而鄰於各該孔口之其他位置的屏障電 極;以及 一組屏障平板,用於阻隔利用該偏移電極組對被偏移 之該等多數個子光束。 21.如申請專利範圍第2項之電子束曝光裝置,其中 該偏移裝置包含主要偏移裝置和次要偏移裝置,該次 要偏移裝置之偏移範圍是較小於該主要偏移裝置之偏移範 圍,並且其中 對應至該主要偏移裝置之可偏移範圍之一組主要偏移 範圍被分割成爲各對應至該等次要偏移裝置之可偏移範圍 的多數個芡要偏移範圍, 各該欠要偏移範圍被分割成爲各對應至該等子光束偏 移裝置之可偏移範圍之多數個子光束偏移範圍, 以該芏要偏移裝置和該次要偏移裝置之偏移位置被保 持固定,利J用變化該子光束偏移裝置之偏移位置使得曝光 被形成在各該子光束偏移範圍之內, 利用變化該次要偏移裝置之偏移位置而重複在各該子 光束偏移範圍之內的曝光,曝光被形成在各該次要偏移範 圍之內,以及 利用變化該主要偏移裝置之偏移位置而重複在各該主 45 本紙張尺度適用中國國家標參(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁)538323 8 8 8 8 A B c D VI. The majority of integer orifice groups in the scope of patent application, and any one of the plurality of integer orifice groups is selectively movable into one of the channels of the electron beam. 18. The electron beam exposure device according to item 2 of the scope of patent application, wherein the sub-beam shifting device includes: two sets of shifting substrates, each including a plurality of apertures corresponding to the configurations of the plurality of sub-beams, A pair of offset electrodes formed on both sides of each aperture for forming an electrostatic field, and a barrier electrode formed on the side other than the position where the pair of offset electrodes are formed and adjacent to each of the apertures, and The direction of the electrostatic field formed by the pair of offset electrode groups on one integer offset substrate is 90 ° with the direction of the electrostatic field formed by the pair of offset electrode groups on the other integer offset substrate, and The two sets of integer offset substrates are arranged close to each other. 19. The electron beam exposure device according to item 4 of the patent application, wherein the sub-beam blocker device comprises: a set of blocker offset substrates, each including a plurality of apertures configured corresponding to the configuration of the plurality of sub-beams A pair of offset electrodes formed on both sides of each aperture for forming an electrostatic field, and a barrier electrode formed on the side other than the position where the pair of offset electrodes are formed and adjacent to each of the apertures; And a set of barrier plates for blocking the plurality of sub-beams that are shifted by using the offset electrode group pair. 2 0. If the electron beam exposure device in the fifth item of the scope of patent application, 44 paper sizes are applicable to the Chinese National Standard (CNS) A4 specification (21 OX297 mm) 538323 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 VI. Patent application Fan Yuan The sub-beam blocker device includes: a set of blocker offset substrates, which includes a plurality of apertures corresponding to the configuration of the plurality of sub-beams, and are formed on both sides of each aperture A pair of offset electrodes forming an electrostatic field, and a barrier electrode formed on a side other than the position where the pair of offset electrodes are formed and adjacent to each of the apertures; and a set of barrier plates for blocking The offset electrode group is used to offset the plurality of sub-beams. 21. The electron beam exposure device according to item 2 of the patent application range, wherein the offset device includes a primary offset device and a secondary offset device, and the offset range of the secondary offset device is smaller than the primary offset The offset range of the device, and a set of primary offset ranges corresponding to the offset range of the primary offset device is divided into a plurality of major points each corresponding to the offset range of the secondary offset devices An offset range, each of the minor offset ranges is divided into a plurality of sub-beam offset ranges each corresponding to an offset range of the sub-beam offset devices, with the primary offset device and the secondary offset The offset position of the device is kept fixed, and the offset position of the sub-beam offset device is changed so that the exposure is formed within the offset range of each of the sub-beams, and the offset position of the secondary offset device is changed by using Repeating the exposure within the offset range of each of the sub-beams, the exposure is formed within each of the secondary offset ranges, and repeating at each of the main 45 sheets by changing the offset position of the primary offset device ruler China's national standard applicable parameters (CNS) A4 size (210X297 mm) (Please read the back of the precautions to fill out this page)
TW089108042A 1999-04-28 2000-04-27 Electron beam exposure apparatus TW538323B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12244399 1999-04-28

Publications (1)

Publication Number Publication Date
TW538323B true TW538323B (en) 2003-06-21

Family

ID=14835986

Family Applications (1)

Application Number Title Priority Date Filing Date
TW089108042A TW538323B (en) 1999-04-28 2000-04-27 Electron beam exposure apparatus

Country Status (4)

Country Link
KR (1) KR100339140B1 (en)
DE (1) DE10020714A1 (en)
GB (1) GB2349737B (en)
TW (1) TW538323B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579884B (en) * 2011-10-03 2017-04-21 Param Corp Electron beam rendering device and its rendering method

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008062450B4 (en) 2008-12-13 2012-05-03 Vistec Electron Beam Gmbh Arrangement for illuminating a substrate with a plurality of individually shaped particle beams for high-resolution lithography of structural patterns
NL2006868C2 (en) 2011-05-30 2012-12-03 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus.
EP2913838B1 (en) 2014-02-28 2018-09-19 IMS Nanofabrication GmbH Compensation of defective beamlets in a charged-particle multi-beam exposure tool
US9443699B2 (en) 2014-04-25 2016-09-13 Ims Nanofabrication Ag Multi-beam tool for cutting patterns
EP2937888B1 (en) * 2014-04-25 2019-02-20 IMS Nanofabrication GmbH Multi-beam tool for cutting patterns
EP2950325B1 (en) 2014-05-30 2018-11-28 IMS Nanofabrication GmbH Compensation of dose inhomogeneity using overlapping exposure spots
JP6892214B2 (en) 2014-07-10 2021-06-23 アイエムエス ナノファブリケーション ゲーエムベーハー Customization of particle beam lithography system using convolution kernel
US9568907B2 (en) 2014-09-05 2017-02-14 Ims Nanofabrication Ag Correction of short-range dislocations in a multi-beam writer
US9653263B2 (en) 2015-03-17 2017-05-16 Ims Nanofabrication Ag Multi-beam writing of pattern areas of relaxed critical dimension
EP3096342B1 (en) 2015-03-18 2017-09-20 IMS Nanofabrication AG Bi-directional double-pass multi-beam writing
US10410831B2 (en) 2015-05-12 2019-09-10 Ims Nanofabrication Gmbh Multi-beam writing using inclined exposure stripes
US10325756B2 (en) 2016-06-13 2019-06-18 Ims Nanofabrication Gmbh Method for compensating pattern placement errors caused by variation of pattern exposure density in a multi-beam writer
US10325757B2 (en) 2017-01-27 2019-06-18 Ims Nanofabrication Gmbh Advanced dose-level quantization of multibeam-writers
US10522329B2 (en) 2017-08-25 2019-12-31 Ims Nanofabrication Gmbh Dose-related feature reshaping in an exposure pattern to be exposed in a multi beam writing apparatus
US11569064B2 (en) 2017-09-18 2023-01-31 Ims Nanofabrication Gmbh Method for irradiating a target using restricted placement grids
US10651010B2 (en) 2018-01-09 2020-05-12 Ims Nanofabrication Gmbh Non-linear dose- and blur-dependent edge placement correction
US10840054B2 (en) 2018-01-30 2020-11-17 Ims Nanofabrication Gmbh Charged-particle source and method for cleaning a charged-particle source using back-sputtering
JP7275647B2 (en) 2019-02-27 2023-05-18 株式会社ニューフレアテクノロジー Multi-beam aperture substrate set and multi-charged particle beam device
US11099482B2 (en) 2019-05-03 2021-08-24 Ims Nanofabrication Gmbh Adapting the duration of exposure slots in multi-beam writers
KR20210132599A (en) 2020-04-24 2021-11-04 아이엠에스 나노패브릭케이션 게엠베하 Charged­particle source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8200559A (en) * 1982-02-15 1983-09-01 Ir Jan Bart Le Poole Prof Dr IRRADIATION DEVICE WITH BUNDLE SPLIT.
US6014200A (en) * 1998-02-24 2000-01-11 Nikon Corporation High throughput electron beam lithography system
US6989546B2 (en) * 1998-08-19 2006-01-24 Ims-Innenmikrofabrikations Systeme Gmbh Particle multibeam lithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579884B (en) * 2011-10-03 2017-04-21 Param Corp Electron beam rendering device and its rendering method

Also Published As

Publication number Publication date
GB2349737B (en) 2001-06-13
GB2349737A (en) 2000-11-08
KR20010014831A (en) 2001-02-26
KR100339140B1 (en) 2002-05-31
GB0010288D0 (en) 2000-06-14
DE10020714A1 (en) 2001-01-25

Similar Documents

Publication Publication Date Title
TW538323B (en) Electron beam exposure apparatus
TW559883B (en) Charged particle beam exposure apparatus, device manufacturing method, and charged particle beam applied apparatus
JP6491842B2 (en) Charged particle multiple beam apparatus with correction plate
US20150311031A1 (en) Multi-Beam Tool for Cutting Patterns
US20020036273A1 (en) Methods for manufacturing reticles for charged-particle-beam microlithography exhibiting reduced proximity effects, and reticles produced using same
JPH06132203A (en) Charged particle beam exposure method
US4198569A (en) Electron beam exposure system
JP2000058450A (en) Method of optimizing corrector of charged particle beam and charged particle beam exposure system
US6361911B1 (en) Using a dummy frame pattern to improve CD control of VSB E-beam exposure system and the proximity effect of laser beam exposure system and Gaussian E-beam exposure system
US6444374B1 (en) Manufacturing method of mask for electron beam proximity exposure and mask
Yasuda et al. Fast electron beam lithography system with 1024 beams individually controlled by blanking aperture array
JP2003045789A (en) Lithographic system and method
JPH05190435A (en) Electron beam lithography method of semiconductor device
US20220384143A1 (en) Pattern Data Processing For Programmable Direct-Write Apparatus
US5847402A (en) Charged particle beam pattern transfer apparatus and method
JP2001093831A (en) Method and system of charged particle beam exposure, data conversion method, manufacturing method for semiconductor device and mask
JP2001015428A (en) Electron beam exposure system
US6437352B1 (en) Charged particle beam projection lithography with variable beam shaping
CN106019821A (en) Electron-Beam Lithography Process with Multiple Columns
JP3247700B2 (en) Scanning projection electron beam drawing apparatus and method
JP3201846B2 (en) Charged particle beam exposure system
US6218058B1 (en) Charged particle beam transfer mask
TWI776400B (en) Inspection device
Suzuki et al. Full-field exposure performance of electron projection lithography tool
CN111433881A (en) Image contrast enhancement in sample inspection