TW531908B - Group-III nitride semiconductor device and group-III nitride semiconductor substrate - Google Patents

Group-III nitride semiconductor device and group-III nitride semiconductor substrate Download PDF

Info

Publication number
TW531908B
TW531908B TW91103085A TW91103085A TW531908B TW 531908 B TW531908 B TW 531908B TW 91103085 A TW91103085 A TW 91103085A TW 91103085 A TW91103085 A TW 91103085A TW 531908 B TW531908 B TW 531908B
Authority
TW
Taiwan
Prior art keywords
layer
scope
gan
patent application
multilayer structure
Prior art date
Application number
TW91103085A
Other languages
Chinese (zh)
Inventor
Chiaki Sasaoka
Original Assignee
Nec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corp filed Critical Nec Corp
Application granted granted Critical
Publication of TW531908B publication Critical patent/TW531908B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3054Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping

Abstract

A group-III nitride semiconductor laser has an AlGaN cladding layer with a reduced defect density. Over a GaN substrate 501, there are sequentially grown an n-type cladding layer 502, an n-type optical confinement layer 503, a 3-periods multiple quantum well (MQW) layer 504, a cap layer 505, a p-type optical confinement layer 506 comprising Mg-doped p-GaN, a p-AlGaN cladding layer 507, and a p-type contact layer 508 comprising Mg-doped p-GaN, whereby an LD-structure is formed. The p-AlGaN cladding layer 507 has a multi-layered structure, wherein three Mg-doped GaN crystal recovery layers (thickness: 5nm) are inserted at a constant pitch into Mg-doped p-Al0.1Ga0.9N (Mg concentration: 2x10<19> cm<-3>/thickness: 0.5 micrometers).

Description

^319〇8 ^發明說明(l) 【發明領域】 〜 本發明係 &lt;族氮化物半 【發明背景與 因為三族 間遷移也為直 倍受熱烈探討 由異面接合所 也期待其可應 構成該等 金屬氣相成長 化物氣相成長 行蟲晶成長而 晶格常數之底 層,所得到的 其是,由於含 格常數之差異 由於如此 因,故於氮化 的三族氮化物 題。 相關技術 體雷射中特別 光束集中率之 關於結晶缺陷少的三族氮化物半導體元件、 導體基板及其製作技術。 習用技術】 氣化物半導體材料係禁制帶寬相當大,能帶 接遷移型’因而其對短波長發光元件之適用 。另外’由於電子之飽和漂移速度很大、藉 造成的2次元載子氣體之利用為可行等等, 用於電子元件。 兀件之二族氮化物半導體層可藉由利用有機 法(MOVPE)、分子線氣相成長法(MBE)、氫 法(HVPE)等氣相成長法,於底層基板上進 得到。但是,由於整合該氮化物半導體層與 【存在’故不易省到良質的成長 導體層中含有許多的結晶缺陷。尤 化物半導體層與底層基板之晶 甚大故4易產生結晶缺陷。 般之結晶缺陷成么注- 物半導體元件特性改善的要 +V體層中之結晶缺陷已成為重要的技術課 :!之Ϊ決於使用三族氮化物半導體的半導 重要。於三族氮化物半 的牛導 改善的觀點來看,射[從期望 J !匕覆層之低折射率化^ 319〇8 ^ Explanation of the Invention (l) [Field of the Invention] ~ The present invention &lt; Group nitrides semi- [Background of the invention and because the migration between the three groups is also directly heated Discussion from the heterogeneous junction is also expected to be applicable The bottom layer of the lattice constant that forms the vapor growth of these metal vapor-forming compounds and the lattice constant is obtained. Because of the difference in the lattice constant, it is caused by the nitride of the group III nitride. Related technologies Special beam concentration ratios in body lasers. Group III nitride semiconductor devices with fewer crystal defects, conductor substrates, and fabrication techniques. Conventional technology] The forbidden bandwidth of gaseous semiconductor materials is quite large, and it can be connected with a migration type, so it is suitable for short-wavelength light-emitting devices. In addition, it is used for electronic components due to the large saturation drift speed of electrons, and the use of 2D carrier gas is feasible. The group II nitride semiconductor layer of the element can be obtained on the underlying substrate by using a vapor phase growth method such as an organic method (MOVPE), a molecular wire vapor phase growth method (MBE), or a hydrogen method (HVPE). However, since the nitride semiconductor layer is integrated with [existence], it is difficult to save good growth. The conductor layer contains many crystal defects. The crystals of the semiconductor layer and the underlying substrate are very large, so crystal defects are liable to occur. What is the general crystal defect? Note-the improvement of the characteristics of the semiconductor device + crystal defects in the V bulk layer has become an important technical lesson:! Depends on the use of a group III nitride semiconductor semiconductor is important. From the point of view of the improvement of the three nitrides, it is expected that the low refractive index of the J!

第5頁 531908 五、發明說明(2) _ 及厚膜化。藉由此方式隹一 以期望延長使用壽命,便可能1^半導體雷射之臨界值 點形狀之整形、溫度特性之改1 间輸出化、雷射光束圓 光碟(DVD)用途之半導#恭。另外,例如於數據視訊 J視野影像多圓點化心體:重 麵因於光束集中效果不&amp;入 技術課喊,而該現象也 ,低折射率化及厚膜化高光希望藉由包覆層 AlGaN層作為三族氮化物半導體♦木中率。—般採用 高該AlGaN層之A1組成,辦加=、、匕覆層,而藉由提 高,可有效地改善光査金曰士 ^、予U使包覆層之折射率提 時,由於壯晶成底屎果。但是,於如此之情形 熱膨脹係數之差,而於包霜岸黎座到間^曰曰格书數之差及 束集中效果降低及元件壽务;^知’有時反而造成光 之弊害、提高AlGaN包覆可/之Α1έ且。/、此,,避免導致如此般 圖改善氮化物半導體雷覆射層=^成重^膜厚,成為企 到無:ί:ί或觀點來看,非常希望得 了將此實現,雖然期望化物半導體層。為 .说“ β:…月望改良§亥層之成長技術,但除此之 卜’:代、,,&quot;曰成長底層基板也是有效的。如上所 ίΠ石用二氮化物半導體層成長之底層基板,可二】 ,▲貝、/lC荨之不同種材料基板或塊狀GaN基板。但 是,AlGaN等含有銘的三族氮化物半導體,由於晶格常數 小於該f之基板’故成膜之後,於層中產生拉伸歪斜以致 於容易毛生裂損。針對於此’於減少底層晶格常數之情形 第6頁 五、發明說明(3) 日守,右於其上方阳恶n 生壓縮歪斜。一船而阳格常數較大之層次,則於該層將產 造體,相較於且古’由於具有壓縮模式殘留歪斜的構 高的強度(此係利式之殘留歪斜的構造體,顯示更 用晶格常數小的材料^的Matthewss子得知),故若使 a上方所雄》沾丄枓作為底層基板,便能夠有效地改善於 八上方所堆豐的半導體層之強度。 於此,杜晶忐旦m 代該習知之i板,之底層基板若使用A1GaN基板以取 之A1組成差,直社里減於上方所形成的半導體層與底層 歪斜或是比較上方半導體層中,便會產生壓縮 體層中之裂1。 斜。藉此,能有效防止上方半導 術,目Ϊ尚生裂損地形成不使塊狀A1GaN基板之技 望減t ΐ :: Ϊ :,在從元件之高性能化觀點來•,強烈期 1減低含鋁的二族氮化物半導體層之缺陷。 件中另用氮化物半導體之半導體雷射等之發光元 膜严之Λ光束集中率’要求實現高的A1組成與厚的 制二姑$ =匕覆層,除了如此之使包覆層不發生裂損之 : 術外,期望開發利用AlGaN以構成結晶底層的技 術0 右此貝現向σ口質之A 1 G a N基板,則由於增加在 ^上方所形成的半導體多層膜材料之選擇寬度,故對於電 子凡件之設計亦有助益。 有鑑於上述要求,本發明之目的在於提供具有低缺陷Page 5 531908 V. Description of the invention (2) _ and thickening. In this way, it is possible to shape the critical point of the semiconductor laser, change the temperature characteristics, and change the output of the semiconductor laser. It is possible to use a semi-conductor for laser beam circular disc (DVD) applications. . In addition, for example, in the data video J field of view multi-dots, the body is heavy: due to the beam concentration effect is not &amp; entered into the technical class, and this phenomenon also, low refractive index and thick film highlights hope to be covered by The AlGaN layer serves as a group III nitride semiconductor. -Generally, the A1 composition of the AlGaN layer is high, and the coating layer is added, and by increasing, the optical inspection can be effectively improved, and the refractive index of the coating layer is increased when U is increased. Crystals into the bottom shit. However, in such a case, the difference in thermal expansion coefficient, and the difference between the number of grid books and the reduced beam concentration effect, and the service life of the components; AlGaN coating can be made of Al. /, Therefore, to avoid causing such a plan to improve the nitride semiconductor laser coating = ^ into heavy ^ film thickness, to achieve nothing: ί: From a viewpoint, I very much hope to achieve this, although the semiconductor Floor. To say, "β: ... Yuewang improves the growth technology of the helium layer, but in addition to this, it is also effective to grow the underlying substrate. As mentioned above, the growth of the dinitride semiconductor layer with silicon nitride is also effective. The underlying substrate can be a substrate of different materials or a bulk GaN substrate. However, AlGaN and other group-containing nitride semiconductors with inscriptions are formed because the lattice constant is smaller than the substrate of f. After that, stretching distortion occurs in the layer, so that hair cracks are easily caused. In response to this, in the case of reducing the lattice constant of the underlying layer, page 6 V. Description of the invention Compression and skewness. A layer with a large Yangtze constant will produce a body at this layer, compared with the ancient structure that has a residual skewed structure due to the compression mode. It shows that Matthewss, who uses a material with a small lattice constant, knows), so if the substrate above “a” is used as the underlying substrate, the strength of the semiconductor layer stacked on the above can be effectively improved. At this point, Du Jing Duan m should learn If the A1GaN substrate of the i-plate is used as the bottom substrate to obtain a poor A1 composition, the semiconductor layer formed on the top of the direct lens is skewed or compared with the bottom layer, and cracks in the compressed layer will occur. . This can effectively prevent the upper semiconductor, effectively prevent the formation of bulk A1GaN substrates with reduced fracture t ΐ :: Ϊ: From the point of view of high-performance components, a strong period 1 Reduce the defects of the aluminum-containing group II nitride semiconductor layer. In addition, nitride semiconductor semiconductor lasers and other light-emitting element films are strictly required to achieve a high A1 composition and a thick system. In addition to the cladding layer, in order to prevent the cladding layer from cracking: In addition to the technology, it is expected to develop a technology that uses AlGaN to form the crystalline bottom layer. The selected width of the semiconductor multilayer film material formed above ^ is also helpful for the design of electronic parts. In view of the above requirements, the object of the present invention is to provide a low defect

531908531908

密度且無裂損之含鋁三族_各μ , A也IV ^ , ^ 矢最化物半導體層έ f板,以及為了付到該等之 【發明之概述】 n ‘ 為了解決該課題’本發明提供—種半導 備分別將由GaN或AlGaN所形成的結晶回復層 氮化物半導體層相互堆疊―層以上而形成的 結晶回復層相較於接合於該上方及下方之任 化物半導體層,其層厚較薄且鋁組成較低。 另外,本發明提供一種半導體基板,其 GaN專AlGaN所形成的結晶回復層與鋁的三族 層相互堆豐一層以上而形成多層構造。 又,本發明提供一種多層構造之形成方 別將由GaN或AlGaN所形成的結晶回復層與含 物半導體層相互堆疊一層以上的製程,.該結 於接合於其上方及下方之任意一假三族氮化 其層厚較薄且銘組成較低。 曰於含有鋁的三族氮化物半導體層的成膜 晶成長之底層材料與晶格常數之不同,於層 因而成長表面之階梯流動混亂,變得容易導 陷。尤其是,於成膜同時摻入雜質之情形時 導入缺陷之方向。 、、針對於此’由於本發明設置結晶回復層 含有銘的三族氮化物半導體層之結晶缺 結晶回復層,’可回復階梯流動而形成良質的 半導體元件、 ,體元件,其具 與含鋁的三族 多層構造,該 意一個三族氮 具備分別將由 氮化物半導體 法’其包含分 链的三族氮化 晶回復層相較 物半導體層, 過程中,因結 中積存歪斜。 入孔洞等缺 ’更易於形成 ,故能夠有效 陷。藉由形成 成長表面,其 531908Density and non-cracked aluminum-containing three groups _ each μ, A is also IV ^, ^ Yazuide semiconductor layer f plate, and in order to pay for these [Summary of the invention] n 'In order to solve the problem' the present invention Provides a kind of semiconducting device. The crystalline recovery layer nitride semiconductor layers formed of GaN or AlGaN are stacked on each other. The crystalline recovery layer formed above the layer is thicker than any compound semiconductor layer bonded above and below. Thinner and lower aluminum composition. In addition, the present invention provides a semiconductor substrate in which a crystalline recovery layer formed of GaN and AlGaN and a three-layer layer of aluminum are stacked on each other to form a multilayer structure. In addition, the present invention provides a process for forming a multilayer structure by stacking a crystalline recovery layer formed of GaN or AlGaN and an object-containing semiconductor layer on each other by more than one layer. Nitriding has a thinner layer and a lower composition. In the formation of a group III nitride semiconductor layer containing aluminum, the underlying material of the crystal growth is different from the lattice constant, and the step flow on the surface of the layer and thus the growth is disordered and becomes easily trapped. In particular, in the case where impurities are simultaneously formed during film formation, the direction of the defect is introduced. In response to this, because the present invention sets a crystal-recovery layer containing a crystallized group III nitride semiconductor layer containing an inscription, the crystal-depleted crystal-recovery layer is capable of recovering step flow to form a good-quality semiconductor element. The three-layer multi-layer structure of the present invention means that one of the three-group nitrogen is equipped with a nitride semiconductor method, which includes a branched three-group nitride crystal recovery layer, compared with the object semiconductor layer. During the process, the deposits are distorted in the junction. Defects such as holes are easier to form, so they can be effectively trapped. By forming a growth surface, its 531908

五、發明說明(5) 結果,可使成膜於其上方之半導體層膜質變佳。 【較佳實施例之詳細説明】 本發明的多層構造可以 化物半導體層上形成,也可 料基板上形成。本發明的多 以下,更理想的話,設為由 組成太高,則於多層構造中 回復層之間的能帶間隙將變 本發明的多層構造也可 氮化物半導體層分別二層以 話’可以於抑制結晶缺陷或 有高銘組成之三族氮化物半 於本發明中,一結晶回 之間的平均距離的下限,最 為5 Onm以上,最理想的話設 h 則為了提高了多層構造 晶回復層間之三族氮化物半 結果’將增大堆疊方向之阻 2之阻抗,則必須降低三族 結果’則不易提高多層構造 之上限最好設為250nm以下: 下。如此的話,參照圖3,4 率之上升。 於GaN、A1N或AlGaN等三族氮 以於藍寶石或SiC等不同種材 層構造之鋁組成最好設為〇. i 〇· 9以下之層次所形成。若銘 變得容易發生裂損,且盥莊曰 /、 、、'〇 曰曰 大’增大堆疊方向之阻抗值。 以將結晶回復層與含鋁的三族 上父互堆疊而形成。如此的 裂損同時,形成膜厚較厚的含 導體層之多層構造。 復層與相鄰的另一結晶回復層 好設為30nm以上,更好的話設 為100 .nm以上。若平均距離太 中之平均鋁組成,不得不將結 導體層的鋁組成設定為高,其 抗。相反的,若欲減低堆疊方 氮化物半導體層之鋁組成,其 中之平均銘組成。該平均距離 ’更理想的話設為1 5 0 n m以 口後所述,能夠有效減低阻抗 於本發明中,多層構造中之平均鋁組成最好設為〇〇55. Description of the invention (5) As a result, the quality of the semiconductor layer film formed on the semiconductor layer can be improved. [Detailed description of the preferred embodiment] The multilayer structure of the present invention can be formed on a semiconductor layer or on a substrate. The following aspects of the present invention are more ideal. If the composition is too high, the band gap between the recovery layers in the multilayer structure will be changed. The multilayer structure of the present invention can also be a two-layer nitride semiconductor layer. In the present invention, the group III nitrides which suppress crystal defects or have high-composition composition are half of the present invention. The lower limit of the average distance between crystals is more than 5 Onm, and the most ideal setting is h to improve the multilayer structure between the crystal recovery The half-result of the group III nitrides will increase the resistance of the resistance 2 in the stacking direction, and the three-result result must be reduced. It is not easy to increase the upper limit of the multilayer structure. The lower limit is preferably set to 250nm or less. In this case, referring to Figures 3 and 4, the rate increases. It is preferable that the aluminum composition of the three group nitrogens such as GaN, A1N, or AlGaN, and the structure of the aluminum layer of different material layers such as sapphire or SiC is set to a level of 0.1 to 0.9. If the Ming becomes prone to cracking, and the bathroom is large, the resistance value in the stacking direction is increased. It is formed by stacking a crystalline recovery layer on top of the three families containing aluminum. Such cracks also form a multilayer structure with a thicker conductor layer. The multi-layer and another adjacent crystal recovery layer are preferably set to 30 nm or more, and more preferably 100. Nm or more. If the average distance is too medium to the average aluminum composition, the aluminum composition of the junction conductor layer has to be set to be high and its resistance. Conversely, if the aluminum composition of the stacked nitride semiconductor layer is to be reduced, the average composition thereof is to be reduced. The average distance ′ is more ideally set to 150 nm, which will be described later, and can effectively reduce the impedance. In the present invention, the average aluminum composition in the multilayer structure is preferably set to 0.05.

第9頁 531908 五、發明說明(6) 以上、0 · 1以下。若設為如此般之鋁組成,則能夠適宜適 用於構成電場效應型電晶體的層次。在此,多層構造之平 均鋁組成則定義如下。亦即,設定結晶回復層之合計層厚 為a ( nm )、平均鋁組成為X,設定構成多層構造之詰晶回 復層以外之三族氮化物半導體層之合計層厚為b (nm)、平 均链組成為y ’多層構造之平均紹組成2則定義成下式 y=(ax+by)/(a+b) 於本發明中’結晶回復層之厚度最好設為2ηιη以上, 更理想的話設為5 nm以上。藉由如此般之設定,將有效消 除階梯流動之混亂,可以得到極佳之結晶構造。另一方 面’至於上限可根據多層構造之平均銘組成^可以適宜加 以選擇,一般而言最好設為l〇nm以下。 於本發明中,構成多層構造之各三族氮化物半導體層 可以設為含有以鈣、鎂鎂或鋅作為摻雜·雜質之構造。另 外,於本發明中,可以適用於具有活性層與由該多層構造 所形成的包覆層之構造,亦即,具有以該特定構造之多層 構造作為包覆層的半導體雷射。於設定如此般構造之情形 時,利用本發明之減低結晶缺陷等效果,使摻雜物能有效 作用。因此,例如若將該多層構造適用於包覆層,則能期 差包覆層之低阻抗化,而更明顯得到本發明之效果。以 下,針對此點加以說明。 使用三族氮化物半導體之高輸出用途的半導體+射 由於電流電流大,故防止因發熱而造成元件裂損將二為重 要的技術課題。為了降低發熱,必須減低振盪臨界;穷Page 9 531908 V. Description of the invention (6) or more and 0 · 1 or less. With such an aluminum composition, it can be suitably applied to a layer constituting an electric field effect transistor. Here, the average aluminum composition of the multilayer structure is defined as follows. That is, the total layer thickness of the crystal recovery layer is set to a (nm), the average aluminum composition is set to X, and the total layer thickness of the group III nitride semiconductor layer other than the rhenium recovery layer constituting the multilayer structure is set to b (nm), The average chain composition is y ', and the average composition of the multilayer structure is defined as the following formula y = (ax + by) / (a + b) In the present invention, the thickness of the crystalline recovery layer is preferably set to 2 ηη or more, and more preferably If it is set to 5 nm or more. With such a setting, the chaos of the step flow can be effectively eliminated, and an excellent crystal structure can be obtained. On the other hand, as for the upper limit, it can be appropriately selected according to the average composition of the multilayer structure. Generally, it is preferably set to 10 nm or less. In the present invention, each of the three group nitride semiconductor layers constituting the multilayer structure may be a structure containing calcium, magnesium, or zinc as doping and impurities. In addition, in the present invention, it can be applied to a structure having an active layer and a cladding layer formed of the multilayer structure, that is, a semiconductor laser having a multilayer structure having the specific structure as a cladding layer. When such a structure is set, the effect of reducing crystal defects and the like of the present invention is used to enable the dopant to function effectively. Therefore, if the multilayer structure is applied to a cladding layer, for example, the resistance of the cladding layer can be reduced, and the effect of the present invention can be more clearly obtained. This point is explained below. The use of semiconductors and high-output semiconductors of the Group III nitride semiconductors for high-output applications has a large current and current, so preventing cracks due to heat generation is an important technical issue. In order to reduce the fever, the oscillation threshold must be reduced;

531908 五、發明說明(7) ' ---- 度及内部損失以降低電流電流,並降低元件阻抗減少電流 電壓。關於元件阻抗,P —AlGaN包覆層之貢獻很大。一般 之氮化鎵系LD中,使用A1組成左右之p_A1GaN&amp;覆層。 相對於n-GaN、n-AlQ JauN之阻抗率為〇. ! Qcm以下,p_531908 V. Description of the invention (7) '---- Degree and internal loss to reduce current and current, and reduce component impedance and current and voltage. Regarding the element impedance, the contribution of the P-AlGaN cladding layer is significant. In a general gallium nitride-based LD, a p_A1GaN &amp; The resistivity to n-GaN and n-AlQ JauN is 0. Qcm or less, p_

Al^Ga^N之阻抗率為5 Qcm左右。典型之元件構造(元件 長5 0 0mm、條狀寬2_、p-A1GaN包覆厚〇 5_)之情形時, P包覆之阻抗率增大至25 Ω,變得佔有大部分元件阻抗。 因而,為了減低元件阻抗,降低p_A1GaN層的 課題。 门 降低p-AlGaN層的阻抗率的方法,於特開平1〇_335757 號公報中,已揭示將p包覆層作為超晶格層之構造。此處 所謂的超晶格層,如記載於同一公報之專利說明書段落 (0022),定義為「堆疊極為不同組成薄層者,為了薄化各 層的厚度,不產生因晶格不整所造成缺―陷而所堆疊的層, 稱為超晶格層,包含量子井構造之廣義概念」。超晶格層 構造之具體揭示,於實施例等揭示設定丨〇nffl以下之薄層 的堆疊體。再者Μ乍為如此般超晶格層之作用效果為「曰本 發明之氮化物半導體元件中,由於將具有出現量子效果般 之層,設置作為包覆層’或是注入電流的接觸層,可降低 包覆層層側之阻抗率」,已記載於同一公報之專利說明 段落(0 1 2 7 )。 但是利用該超晶格層之技術中,雖因量子效果導致增 加電洞濃度,而對於超晶格層之平面方向之阻抗降低,^ 與超晶格層成垂直方向,亦即,堆疊方向之阻抗增加。亦The impedance of Al ^ Ga ^ N is about 5 Qcm. In the case of a typical element structure (element length 500 mm, strip width 2_, and p-A1GaN cladding thickness 0_ 5), the resistivity of the P cladding increases to 25 Ω, and it occupies most of the element impedance. Therefore, in order to reduce the element impedance, the problem of reducing the p_A1GaN layer is reduced. A method for reducing the resistivity of a p-AlGaN layer is disclosed in Japanese Unexamined Patent Publication No. 10-335757, in which a p-cladding layer is used as a superlattice layer. The so-called superlattice layer, as described in the paragraph (0022) of the patent specification of the same gazette, is defined as "those who stack very thin layers with very different compositions. In order to reduce the thickness of each layer, no defects caused by lattice irregularities are generated- The stacked layers are called superlattice layers and contain the broad concept of quantum well construction. " The specific disclosure of the structure of the superlattice layer is disclosed in the examples and the like. In addition, the effect of such a superlattice layer is as follows: "In the nitride semiconductor device of the present invention, since a layer exhibiting a quantum effect is provided as a cladding layer" or a contact layer for injecting current, "It is possible to reduce the resistivity of the cladding layer side", which is described in the patent description paragraph (0 1 2 7) of the same publication. However, in the technology using the superlattice layer, although the hole concentration is increased due to the quantum effect, the resistance to the plane direction of the superlattice layer is reduced, and the vertical direction of the superlattice layer is ^, that is, the stacking direction Increased impedance. also

531908 五、發明說明(8) 即,超晶格層中,藉由利用阻障層與井層之能帶間隙差, 產生二次疋電子氣體而減低各層之内侧方向之阻抗,但另 一方面,於堆疊方向(膜厚方向)產生大的位能阻障,使 :抗增加。其結果’就元件阻抗而言,實際上不一定可以 :到足夠的阻抗減低效果。針對該點,以下將由AiGaN阻 障層與GaN井層所形成的超晶格層使用於半導體雷射之包 覆層的情形為例加以說明。將如此般之超晶格層作為包覆 :之f月形%•,為了確保光束集中,有必要提高a丄_阻障 二=A1組成至一定程度。例如’ MGaN阻障層與GaN井層之 =比為1 : 1之情形時’ $ 了實現平均組成〇1,作為阻 早白之A1組成便必須為〇. 2。於圖1顯示此時之價電子帶的 能階圖。於圖+,橫軸表示位置、縱軸表示能量。在此, 由於AlGaN與GaN之晶格常數不同,堆疊於GaN (〇〇〇1)上 =情形時將產生壓電電場。於圖上顯示-也包含壓電電場。 從圖形得知,於AlGaN/GaN界面,因各自材料之能帶間隙 ^降電流將變得難以流動。當MGaN阻障層之“組成為高 的和形時,因為能帶間隙差變大,堆疊方向之阻抗變 大。 針對於此,本發明由於形成結晶回復層, =方向之阻抗上昇之下減低整體上之層阻抗。本 二太知之AlGaN包覆層之阻抗過高為理由,因為於包覆層 中產生的結晶缺陷而無法有效地使摻雜物作用,社果推則 上昇。例如’若於GaN基板上堆疊咖層了因為晶 才。爷數之不同,於成長之同時,於△1(^1^層中積存歪斜。 第12頁 531908 五、發明說明(9) &quot;一~&quot; 口此,成長表面之階梯流動混,變得容易導入孔洞等缺 陷。尤其是P-AlGaN成長中因為進行1〇19〜丨⑽㈣―3之高濃 度摻雜,故變成導入更多缺陷的方向。於此種狀況下,Mg 等雜質不摻入受體侧,變成無法生成載子。本發明人推測 P-AlGaN之阻抗率高的理由為歸因於上面所敘。根據相關 的推測,本發明人發現導入使階梯流動回復之結晶回復層 的構造是有效的,於是完成本發明。本發明之具體態樣列 如於成長第1 A1 GaN層之後,堆積作為連續結晶回復層之 層,更進行第2 AlGaN層的成長製程。於該製程中,於 第1 A—1 GaN層所混亂之階梯流動可藉由於其上所形成的GaN 而回復,而於該良質表面狀態之GaN上成長第2 AiGaN層, 因此整體而言,將可以得到結晶缺陷少的良質結晶構造。 實施例1 (多層構造之形成及評估) - 圖2係以本實施例所製作之層構造的概略圖。以下, 針對形成該層構造之製程加以說明。 首先,於藍寶石C面基板1上,利用2階段成長以長成 2mm之未摻雜的GaN層2,接著,摻雜Mg以長成〇·5_之531908 V. Description of the invention (8) That is, in the superlattice layer, by using the difference between the band gap between the barrier layer and the well layer, a secondary tritium electron gas is generated to reduce the impedance in the inner direction of each layer, but on the other hand In the stacking direction (film thickness direction), a large potential energy barrier is generated, so that the resistance is increased. As a result, as far as the element impedance is concerned, it is not always possible to achieve a sufficient impedance reduction effect. In this regard, a case where a superlattice layer formed of an AiGaN barrier layer and a GaN well layer is used as a coating layer of a semiconductor laser will be described below as an example. With such a superlattice layer as a coating: f moon shape% •, in order to ensure the beam concentration, it is necessary to increase a 丄 _blocking barrier 2 = A1 composition to a certain degree. For example, when the ratio of the MGaN barrier layer to the GaN well layer is 1: 1, the average composition is achieved, and the A1 composition as the early white must be 0.2. The energy level diagram of the valence band at this time is shown in Fig. 1. In Figure +, the horizontal axis represents position and the vertical axis represents energy. Here, since the lattice constants of AlGaN and GaN are different, a piezoelectric electric field will be generated when stacked on GaN (001). Shown on the diagram-also includes piezoelectric electric fields. It can be seen from the figure that at the AlGaN / GaN interface, the current will become difficult to flow due to the band gap of the respective materials. When the composition of the MGaN barrier layer is high, the impedance in the stacking direction becomes larger because the band gap difference becomes larger. In view of this, the present invention reduces the resistance in the direction due to the formation of the crystalline recovery layer. The overall layer impedance. The reason why the resistance of the AlGaN cladding layer of this second knowledge is too high is because the crystal defects generated in the cladding layer cannot effectively make the dopants work, and the social effect will rise. For example, 'If Stacked the coffee layer on the GaN substrate because of the crystal talents. The difference in the number of masters, while growing, accumulates skew in the △ 1 (^ 1 ^ layer. Page 12 531908 V. Description of the invention (9) &quot; 一 ~ & quot Because of this, the step flow on the growth surface is mixed, which makes it easy to introduce defects such as holes. Especially in the growth of P-AlGaN, due to the high concentration doping of 1019 ~ 丨 ⑽㈣-3, it becomes the direction to introduce more defects. In this case, impurities such as Mg are not doped into the acceptor side, and carriers cannot be generated. The inventors speculate that the reason for the high resistivity of P-AlGaN is attributed to the above. Based on related speculations, this The inventor found that the introduction restores the flow of the steps The structure of the crystal recovery layer is effective, so the present invention is completed. A specific aspect of the present invention is as follows after growing the first A1 GaN layer, and then stacking it as a continuous crystal recovery layer, and further performing the growth process of the second AlGaN layer In this process, the chaotic step flow in the 1 A-1 GaN layer can be recovered by the GaN formed thereon, and the second AiGaN layer is grown on the GaN in this good surface state, so the whole A good crystalline structure with few crystal defects will be obtained. Example 1 (Formation and Evaluation of Multilayer Structure)-Figure 2 is a schematic diagram of the layer structure produced in this example. Hereinafter, the process of forming the layer structure will be described below. Explanation: First, on a sapphire C-plane substrate 1, an undoped GaN layer 2 is grown to a thickness of 2 mm by two-stage growth, and then, Mg is doped to grow to a thickness of 0.5 mm.

AluGa。9Ν層3。於該Al〇9Ν層3中插入摻雜Mg之GaN結晶 回復層4。 摻雜Mg之GaN層4係被等間隔地配置,改變厚度及插入 的層^以進行试料评估。試料成長結束後,於氮氣環境中 以8 0 0 C進行Mg之活化性退火,利用電洞測定以求得阻抗AluGa. 9Ν 层 3。 9N layer 3. A Mg-doped GaN crystal recovery layer 4 is inserted into the AlO9N layer 3. The Mg-doped GaN layers 4 are arranged at regular intervals, and the thickness and intervening layers are changed for sample evaluation. After the growth of the sample was completed, the activation annealing of Mg was performed at 800 ° C in a nitrogen atmosphere, and the impedance was measured using a hole to obtain the impedance.

第13頁 531908 五、發明說明(ίο) ------ 以如下之條件進行GaN及AlQiGauN之成長。成 用30 0 hPa之減壓m〇CVD裝置。於成長前,將藍寶石木 氫氣載子氣體中,以丨丨〇 〇 〇c進行清洗了 土反於 v 认下μγ糾产田 J ^ ^ I現後,降溫至5〇〇 C,於TMG么應1為29 mm〇1/min、NIj3供應量為〇. % mol/min之下長成30 nm之低溫GaN緩衝層。接 1〇5(rC之成長溫度,於氫氣載子氣體中,於TMG供 ” 、龍3供應量為〇. 36 ffl〇1/min之下長成『龍之Page 13 531908 V. Description of Invention (ίο) ------ The growth of GaN and AlQiGauN is performed under the following conditions. A reduced pressure CVD apparatus of 300 hPa was used. Before the growth, the sapphire wood was washed with hydrogen carrier gas at 丨 丨 00c. The soil was reversed to v. The μγ correction field J ^ I was now cooled down to 500 ° C. At TMG? The low-temperature GaN buffer layer should grow to 30 nm at a thickness of 29 mm / 1 / min and a supply of NIj3 of 0.1% mol / min. After growing at a temperature of 105 (rC) in a hydrogen carrier gas, TMG was supplied, and the supply of Dragon 3 was 0.36 ffl〇1 / min.

GaN層。接者,於TMG供應量為36 mm〇1/min、了肫供應量 58 mmol/min、NH3供應量為0.36 mol/min之下進行摻雜 之AUauN成長。使用egg作為Mg源,經SIMS測定而得 到的Mg摻雜量為2 x 1〇19 cm-3。於該A1〇iGa〇9&quot;3中插入 掺雜M g之G a N層4作為結晶回復層。 圖3係顯示插入5nm結晶回復層時之阻抗率的插入層數 相關圖。圖中之插入回復層數目與鄰接洄復層間距離之 係如下。 插入回復層數目 鄰接回復層間之距離 1 250 nm 2 167 nm 3 125 nm 4 100 nm 未插入之情形時,阻抗率為4· 7 Ω(:Π1,但隨著插入層 ^目之增加’阻抗率將減少,3層以上則降至丨· 1 Ω cm。此 時之載子濃度,相對於未插入情形之15 X 1(ρ cm-3,增 加至6· 1 X i〇i7 cnr3。該結果被認為是因為GaN結晶回復層GaN layer. Then, the AUauN growth was performed at a TMG supply of 36 mm / 1 / min, a scandium supply of 58 mmol / min, and an NH3 supply of 0.36 mol / min. Using egg as the Mg source, the Mg doping amount obtained by SIMS measurement was 2 x 1019 cm-3. A Mg-doped G a N layer 4 was inserted into the AlOiGa9 &quot; 3 as a crystal recovery layer. Fig. 3 is a correlation diagram showing the number of insertion layers for the resistivity when a 5 nm crystal recovery layer is inserted. The relationship between the number of intervening layers and the distance between adjacent layers is shown below. Number of insertion recovery layers The distance between adjacent recovery layers 1 250 nm 2 167 nm 3 125 nm 4 100 nm When not inserted, the resistivity is 4 · 7 Ω (: Π1, but as the insertion layer increases, the resistivity It will be reduced, and it will be reduced to 丨 · 1 Ω cm for more than 3 layers. At this time, the carrier concentration will be increased to 6.1 X i〇i7 cnr3 relative to 15 X 1 (ρ cm-3 in the case of no insertion). This result Is thought to be due to the GaN crystal recovery layer

531908 五、發明說明(11) 之插入而抑制缺陷之導入,而使所生成的載子增加。 圖4係顯示將結晶回復層之插入層數目固定為3,使結 晶回復層之厚度從2nm變化至1 〇nm時之阻抗率的變化圖 形。即使於結晶回復層厚度2 n m ’也可觀察到阻抗率之減 少,隶小成為5 nm以上。由此,藉由設定結晶回復層厚度 為5nm以上,能夠明顯更有效地減低阻抗率。 (半導體雷射之評估) 如上所述’利用結晶回復層之插入,能夠減低電洞測 定上的阻抗率。與此配合,為了調查將電流流入堆疊方向 曰守之減低阻抗效果’進行雷射構造之製作、評估。 於圖5,顯示本實施例製作出的ld構造。利用FIEL〇 法’使用成長2 5 0mm之n型GaN基板作為基板。該基板於 HVPE成長後之基板冷卻過程,由於藍寳石與GaN之熱膨脹 係數之不同,造成GaN層之剝離,成為GaN厚200mm之獨立 式(Free Standing,FS)GaN 基板 於該 FS - GaN 基板 501531908 V. Description of the invention (11) The insertion of defects suppresses the introduction of defects and increases the generated carriers. Fig. 4 is a graph showing a change in resistivity when the number of insertion layers of the crystal recovery layer is fixed to 3, and the thickness of the crystal recovery layer is changed from 2 nm to 10 nm. A decrease in the resistivity was observed even at a thickness of 2 n m ′ of the crystal recovery layer, and it became smaller than 5 nm. Therefore, by setting the thickness of the crystal recovery layer to 5 nm or more, the resistivity can be reduced significantly more effectively. (Evaluation of Semiconductor Laser) As described above, 'the insertion of the crystal recovery layer can reduce the resistivity in hole measurement. In conjunction with this, in order to investigate the effect of reducing the impedance of the current flowing in the stacking direction, the laser structure was manufactured and evaluated. FIG. 5 shows the ld structure produced in this embodiment. The FIEL0 method was used as an n-type GaN substrate having a length of 250 mm. The substrate cooling process after the HVPE growth of the substrate, due to the difference in thermal expansion coefficients of sapphire and GaN, resulted in the peeling of the GaN layer, which became a 200 mm thick GaN free standing (FS) GaN substrate on the FS-GaN substrate 501

上’依序成長由摻雜Si之η型AlG1GaG9N (Si濃度4 X 1(F cm 3、厚度l 2mm)所形成的n型包覆層5〇2、由摻雜&amp;之口 型GaN (Si濃度4 X ΙΟ!7 cm-3、厚度〇· lmm)所形成的n型光 束集中層503、由In^GauN (厚度3nm)井層與摻雜Si之 In〇-〇iGa0&gt;99N (Si 濃度5 X l〇18cnr3、厚度4nm)阻障層所形 成的重覆3次多重量子井(MQW)層5〇4、由摻雜“之口型 A1〇.2GaG8N所形成的罩層5〇5、由摻雜Mg之p型GaN (Mg濃度 2 X l〇19cm-3、厚度〇lmm)所形成的p型光束集中層5〇6、 厚度0.5mm之p型AlGaN包覆層507、由摻雜Mg之p型GaNThe n-type cladding layer 502 formed by doped Si-doped η-type AlG1GaG9N (Si concentration 4 X 1 (F cm 3, thickness 12 mm)) was sequentially grown by doping &amp; Si concentration 4 X 10! 7 cm-3, thickness 0.1 mm), an n-type beam concentration layer 503, an In ^ GauN (thickness 3nm) well layer, and Si-doped In〇-〇iGa0 &gt; 99N (Si Concentration 5 X 1018cnr3, thickness 4nm) 3 times of multiple multiple quantum well (MQW) layer formed by the barrier layer 504, a capping layer 5 formed by doped "A10.2 GaG8N" , P-type beam concentration layer 506 formed of Mg-doped p-type GaN (Mg concentration 2 X 1019cm-3, thickness 0.1mm), p-type AlGaN cladding layer 507 with a thickness of 0.5 mm, Hetero-Mg p-type GaN

第15頁 531908 五、發明說明(12) (Mg濃度2 X l〇2Gcm-3、厚度〇· lmm)所形成的p型接觸層 508,而形成LD構造。 使用以下3種之p型AlGaN包覆層507。 試料A :摻雜Mg之ρ型AlG1GaQ 9N (Mg濃度2 X l〇19cnr3、厚度〇. 5mm) 試料B :於摻雜Mg之p型AlQ1GaQ9N (Mg濃度2 x l〇19cnr3、厚度〇· 5mm)中,等間隔插入3層摻雜Mg之GaN結 晶回復層(厚度5 n in ) 試料C :重覆1〇〇次堆疊摻雜社之1)型人1() 26'0 (Mg濃 度2 X l〇i9cnr3、厚度2 5nm)與未摻雜之GaN (厚度2.5nm) 於未摻雜之GaN上製作出同樣的構造,電洞測定之結 果’分別是試料A : 4· 7 Qcm ;試料B : 1. 1 Qcm ;試料C : 〇· 5 Ω cm 〇 LD構造形成後’利用乾式姓刻部分.殘留含有p型包覆 層507及p型接觸層508之高台地形5t〇9之後,設置Si〇2絕緣 膜5 1 0 ’利用曝光技術進行高台地形部分之前頭標示,形 成了脊形構造。於η型基板背面,形成由Ti/A1所形成的η 電極511,於ρ接觸層上,形成由Ni/Au所形成的ρ電極 51 2 ,。對於兀件,因剖開而形成雷射共振器邊緣表面,利 用Ti〇2/ si〇2進行單面之高反射塗布(反射率95%)。 依照試料A、B、C之順序,製作出的LD振盪臨界電流 密度分別為大致上相等之3. 〇 kA cm_2、3.工kA 、3 〇 ”㈣六另〆方面,振置時之微分元件阻抗及光輪出30mW 牯之電 電壓,分別是試料a : 26 Ω、6· 1V ;試料b : ηPage 15 531908 V. Description of the invention (12) A p-type contact layer 508 formed by (Mg concentration 2 X 102 Gcm-3, thickness 0.1 mm) to form an LD structure. The following three types of p-type AlGaN cladding layers 507 were used. Sample A: Mg-doped p-type AlG1GaQ 9N (Mg concentration 2 X 1019cnr3, thickness 0.5mm) Sample B: Mg-doped p-type AlQ1GaQ9N (Mg concentration 2 x 1019cnr3, thickness 0.5mm) , 3 layers of Mg-doped GaN crystal recovery layer (thickness 5 n in) are inserted at equal intervals. Sample C: Repeated 100 times of stacking doping company 1) type human 1 () 26'0 (Mg concentration 2 X l 〇i9cnr3, thickness 25nm) and undoped GaN (thickness 2.5nm) The same structure was fabricated on undoped GaN. The results of hole measurement were 'sample A: 4 · 7 Qcm; sample B: 1. 1 Qcm; Sample C: 0.5 Ω cm 〇LD after the formation of the structure, using the dry type engraved part. Remaining topography containing p-type cladding layer 507 and p-type contact layer 508 after 5t09, Si was set. 2 Insulating film 5 1 0 'The front part of the elevated terrain is marked with exposure technology to form a ridge structure. On the back surface of the n-type substrate, an n-electrode 511 made of Ti / A1 is formed, and on the p-contact layer, a p-electrode 51 2 made of Ni / Au is formed. For the element, the edge surface of the laser resonator is formed by cutting, and Ti02 / si02 is used for high-reflection coating on one side (reflectance 95%). In accordance with the order of samples A, B, and C, the critical current densities of the LD oscillations produced were approximately equal to 3.0 kA cm_2, 3. kA, and 3 〇 ”. In addition, in terms of differential components during vibration, Impedance and the electric voltage of 30mW 光 from the light wheel are sample a: 26 Ω, 6 · 1V; sample b: η

531908 五、發明說明(13) Ω、4· 4V ;試料C : 18 Ω、4. 9V。 另一方面,於未摻雜之GaN上製作與試料A、B及C同樣 的構造,電洞測定該等之結果,分別是試料A : 4. 7 Ω cm ; 試料B : 1· 1 Qcm ;試料C : 0. 5 Dcm。 關於p-A 1 GaN包覆層之電洞阻抗,雖然試料c最低,但 作為LD之元件阻抗則高於試料B。此係如上所述,此係因 為ΔΕν大,而使得縱方向之阻抗變高所致。以上之結果, 顯示藉由插入結晶回復層,可以製作縱方向之阻抗甚低的 AlGaN 層。 雖然於該實施例中,以AlGaN作為含有A1之層,而以 GaN作為結晶回復層,但於其中任意一個或兩者之層中, 即使含有數%左右之I η,也可以得到同樣的效果。 實施例2 於本實施例,製作由A1 GaN層為主所形成如下之半導 體基板,評估裂痕之發生狀況。, 基板評估 (i) AlGaN塊狀試料(圖6) (i i ) 插入GaN結晶回復層的a 1 GaN塊狀試料(塊狀屑 之厚度:1 · 225mm、圖7) ^ (ill)插入GaN結晶回復層的AlGaN塊狀試料(塊壯 層之厚度:1· 4mm、圖7、圖8) 圖6係一般之A1 GaN塊狀試料的概略剖面圖。於圖6, 於藍寶石(000 1 )面(以下稱為〇面)基板1〇1上,利用’ 機金屬氣相成長法(M〇VPE)法,形成厚度〇58mm之未^531908 V. Description of the invention (13) Ω, 4.4V; Sample C: 18 Ω, 4.9V. On the other hand, the same structure as that of samples A, B, and C was fabricated on undoped GaN, and the results of hole measurement of these were respectively sample A: 4. 7 Ω cm; sample B: 1.1 Qcm; Sample C: 0.5 Dcm. Regarding the hole impedance of the p-A 1 GaN cladding layer, although the sample c is the lowest, the element impedance of the LD is higher than that of the sample B. This is as described above. This is due to the large ΔΕν, which increases the resistance in the vertical direction. The above results show that by inserting the crystal recovery layer, an AlGaN layer having a very low vertical resistance can be formed. Although in this embodiment, AlGaN is used as the layer containing A1 and GaN is used as the crystal recovery layer, the same effect can be obtained even if I or η is contained in a layer of either or both of them. . Example 2 In this example, a semiconductor substrate formed mainly of an A1 GaN layer as follows was fabricated to evaluate the occurrence of cracks. Substrate evaluation (i) AlGaN bulk sample (Figure 6) (ii) a 1 GaN bulk sample with GaN crystal recovery layer (thickness of crumbs: 1 · 225mm, Figure 7) ^ (ill) Insert GaN crystal AlGaN bulk sample of recovery layer (thickness of bulk layer: 1.4mm, Fig. 7, Fig. 8) Fig. 6 is a schematic cross-sectional view of a general A1 GaN bulk sample. As shown in FIG. 6, on a sapphire (000 1) plane (hereinafter referred to as “0 plane”) substrate 101, a metal organic vapor phase growth method (MOVPE) method is used to form a thickness of 58 mm.

531908 五、發明說明(14) 〜- 雜的GaN層102、厚度〇· 5_之摻雜Si的GaN層103、及厚户 l-4mm或1·65ππη之摻雜Si的仏^、^塊狀層1〇4。任&amp;二 個Si摻雜密度均為5 X l(p cir3。 圖7係插入GaN結晶回復層之A1GaN塊狀試料之概略剖 面圖。於圖7,在藍寶石(:面基板2〇1上,利用仙¥?£法,形 成厚度0· 5匪之未摻雜的GaN層202、厚度〇· 5匪之摻雜si的 GaN層203、及内部含有GaN結晶回復層之摻雜Si的 、 A1〇.〇7GaGwN塊狀層204。於含有GaN結晶回復層之摻雜Si的 A1〇.〇7GaG93N塊狀層204中,對於厚度〇 lmfll之摻雜si的 A1〇.〇7GaQ 93N塊狀層插入1層厚度〇· 〇1_之摻雜Si的GaN結晶 回復層。任意一個Si摻雜密度均為5 χ 1〇n cm-3。除去(^Ν 結晶回復層後合計之摻雜Si的A1u7GaQ93N塊狀層之厚度設 為1· 2 2 5mm或1· 4mm。基板上之各層係利用M〇vpE法形成。 圖8係顯示除去GaN結晶回復層後合計掺雜Si的 狀層之厚度為i 4mm之,情形時,其插入結 晶回復層之摻雜Si的A1G 塊狀層204詳細之概略剖 面圖。厚度0.1mm之摻雜Si的A1G Q7GaG 93N塊狀層及厚度 〇· 01mm之摻雜Si的GaN結晶回復層,重覆14次交互堆疊。 針對該(i)〜(iii)之試料,測定裂損密度。於圖1〇 顯示結果。在此,所謂裂損密度,定義為任意拍攝試料表 面之任意數個位置的顯微鏡照片,將其上所拍攝出之裂損 長度除以照片之面積的數值。得知相較於一斤般:㈣ 狀試料,插入GaN結晶回復層之a 1GaN塊狀試料之裂損密 度,將大幅度減低。其原因可能在於藉由利用GaN層之插531908 V. Description of the invention (14) ~-Heterogeneous GaN layer 102, Si-doped GaN layer 103 with a thickness of 0.55, and Si-doped 仏, ^ blocks with a thickness of 1-4mm or 1.65ππη Like layer 104. Ren &amp; both Si doping densities are 5 X l (p cir3. Figure 7 is a schematic cross-sectional view of an A1GaN bulk sample inserted into a GaN crystal recovery layer. In Figure 7, on a sapphire (: surface substrate 201) Using the centrifugal method, an undoped GaN layer 202 with a thickness of 0.5 Å, an GaN-doped SiO layer 203 with a thickness of 0.5 Å, and a Si-doped SiO 2 doped GaN crystal recovery layer are formed. A10.07GaGwN bulk layer 204. In the Si-doped A10.07GaG93N bulk layer 204 containing the GaN crystal recovery layer, for the Si-doped A10.07GaQ 93N bulk layer with a thickness of 0lmfll. Insert a Si-doped GaN crystal recovery layer with a thickness of 0 · 〇1_. Any Si doped density is 5 x 10n cm-3. The total Si-doped The thickness of the A1u7GaQ93N bulk layer is set to 1 · 2 2 5mm or 1 · 4mm. Each layer on the substrate is formed by the MovpE method. Figure 8 shows that the total thickness of the doped Si layer after removing the GaN crystal recovery layer is i In the case of 4mm, detailed schematic cross-sectional view of the Si-doped A1G bulk layer 204 inserted into the crystalline recovery layer. Si-doped A1G Q7GaG 93N bulk layer with a thickness of 0.1mm A Si-doped GaN crystal recovery layer having a thickness of 0.01 mm was repeatedly stacked 14 times. For the samples (i) to (iii), the crack density was measured. The results are shown in FIG. 10. Here, the so-called crack Loss density is defined as the number of photomicrographs taken at any number of locations on the surface of a sample. The length of the cracked area divided by the area of the photo is taken. It is compared to a pound: a ㈣-shaped sample is inserted. The crack density of the a 1GaN bulk sample of the GaN crystal recovery layer will be greatly reduced. The reason may be that by using the insertion of the GaN layer

第18頁 531908 五、發明說明(15) 入而回復因AlGaN成長而混亂的階梯流動,而使A1GaN層之 結晶性整體提高等等。 實施例3 本實施例製作具有A1GaN包覆層之半導體雷射。 圖9係將具有插入GaN結晶回復層之A1GaN塊材作為^侧 包覆層之GaN系雷射的概略剖面圖。以利用1?1訃〇法成長 250mm之η型GaN基板作為基板。該基板於HVpE成長後之基 板冷卻過程,由於藍寶石與GaN之熱膨脹係數不同而產生 GaN層之剝離,成為厚度2〇〇_獨立式(化“ standing, FS)GaN 基板。 於該FS-GaN基板401上,依序成長由插入GaN結晶回復 層之4雜Si之η型Al〇 jN所形成的!;!型包覆層402、由 摻雜Si之n型GaN (Si濃度4 χ 1〇17 cnr3、厚度〇1_)所形 成的η型光束集中層403、由lnQ lsGa()85N (厚度3nm)井層 /、推雜$1之111().〇1〇3().991^(81漢度5兀1〇18(^111-3、厚度411111) 阻障層所形成的重覆3次多重量子井(MQW)層4〇4、由摻 雜型AUauN所形成的罩層4〇5、由摻雜Mg之p型 hN (Mg濃度2 x 1〇19cm-3、厚度〇 lmm)所形成的p型光束 集中層406、厚度0.5mm之i^A1〇iGaG9N包覆層m、由摻 雜Mg之p型GaN (Mg濃度2 x 1(Pcm-3、厚度ο.—)所形成 的P型接觸層408,而形成LD構造。 LD構造形成後,利用乾式蝕刻部分殘留含有5型包覆 層407及p型接觸層408之高台地形4 〇9之後,設置Si〇2絕緣 膜41〇,利用曝光技術進行高台地形部分之前頭標示,形 531908 五、發明說明(16) &quot; -- 成了脊形構造。於η型基板背面,形成由Ti/Al所形成的11 電極411,於p接觸層上,形成由Ni/Au所形成的p電極 41 2。對於元件,利用劈開而形成雷射共振器邊緣表面, 利用TiO〆 Si〇2進行單面之高反射塗布(反射率95%)。 插入GaN結晶回復層之摻雜Si包覆層4〇2 中,對於厚度0· lfflm之摻雜Si的八1〇 (^%9,塊狀層,插入! 層厚度0· 01mm之摻雜Si的GaN結晶回復層。任意一個Si摻 雜密度均為4 X l〇n cm_3。除去GaN結晶回復層後合計之摻 雜Si的A1G G7GaQ 93N塊狀層之厚度設為1· 2mm。 本實施例之GaN系雷射係藉由具有插入GaN結晶回復層 之A1 GaN塊狀層作為n侧包覆層,期望能抑制裂損。此處所 谓的,損’不僅是於半導體層之形成時因結晶成長所產生 的裂扣,包括於隨後之電極形成製程、元件分離製程等產 生的全部裂損·。該等之裂損,不僅是元·件之良率,因漏電 流之誘發致使I-V特性(電流—電壓特性)惡化,或因活性 層之物理性破壞致使臨界值特性惡化。亦即,藉由採用插 入GaN結晶回復層之a 1GaN塊狀層作為包覆層,可以期望元 件之良率及特性之改善。 還有’插入GaN結晶回復層之A1GaN塊狀層,不僅^側 包覆層,採用ρ侧包覆層也是有效的。當然此情形亦可以 得到元件阻抗減低之效果。另外,插入GaN結晶回復層之 技術,不僅η側及ρ側包覆層,若GaN系雷射具有其他的 AlGaN層,則可有效適用於所有的人16』層。另外,不僅是 GaN系雷射,未技術也可適用於所有的GaN系元件,例如電Page 18 531908 V. Description of the invention (15) The step flow flowing chaotically due to the growth of AlGaN is restored, and the crystallinity of the A1GaN layer is improved as a whole. Embodiment 3 In this embodiment, a semiconductor laser with an A1GaN cladding layer is fabricated. Fig. 9 is a schematic cross-sectional view of a GaN-based laser using an A1GaN bulk material with a GaN crystal recovery layer as a cladding layer. An n-type GaN substrate was grown as a substrate with a 250 mm growth using the 1.1-1.0 method. The substrate cooling process after the HVpE growth of the substrate resulted in the peeling of the GaN layer due to the different thermal expansion coefficients of sapphire and GaN, resulting in a thickness of 200_ standalone (FS) GaN substrate. In this FS-GaN substrate On 401, a n-type AlOjN formed of 4 hetero-Si inserted in a GaN crystal recovery layer is sequentially grown! A cladding layer 402 is formed of a doped Si-type n-type GaN (Si concentration 4 x 1 107). cnr3, thickness 〇1_) formed by the n-type beam concentration layer 403, lnQ lsGa () 85N (thickness 3nm) well layer /, 111 () .0101 () .991 ^ (81 汉) Degree 5 × 1018 (^ 111-3, thickness 411111) 3 times of multiple multiple quantum well (MQW) layer formed by the barrier layer 404, a capping layer formed by doped AUauN 405, A p-type beam focusing layer 406 formed of p-type hN doped with Mg (Mg concentration 2 x 1019 cm-3, thickness 0.1 mm), i ^ A10iGaG9N cladding layer m with a thickness of 0.5 mm, and The P-type contact layer 408 formed by Mg's p-type GaN (Mg concentration 2 x 1 (Pcm-3, thickness ο.—)) forms an LD structure. After the LD structure is formed, the dry etching portion partially contains a type 5 coating. Plateau of layer 407 and p-type contact layer 408 After the shape 4 〇09, an Si0 2 insulating film 41 0 is set, and the front part of the elevated terrain is marked by exposure technology. The shape is 531908. V. Description of the invention (16)-It has a ridge structure. On the back of the n-type substrate 11 electrodes 411 made of Ti / Al are formed, and p electrodes 41 2 made of Ni / Au are formed on the p-contact layer. For the element, the edge surface of the laser resonator is formed by cleaving, and TiO〆Si is used. 〇2 single-sided high-reflective coating (reflectance 95%). Inserted into the doped Si cladding layer 402 of the GaN crystal recovery layer, for the doped Si with a thickness of 0.1 lflm (80% ^ 9) Bulk layer, insert! Si thickness doped GaN crystal recovery layer with a thickness of 0.01mm. Any Si doped density is 4 X l0 cm_3. After removing the GaN crystal recovery layer, the total Si doped A1G The thickness of the G7GaQ 93N bulk layer is set to 1.2 mm. The GaN-based laser system of this embodiment uses the A1 GaN bulk layer with a GaN crystal recovery layer as the n-side cladding layer, which is expected to suppress cracking. This The so-called "loss" is not only the cracks caused by the crystal growth during the formation of the semiconductor layer, but also the All cracks in the subsequent electrode formation process, component separation process, etc. These cracks are not only the yield of components and parts, but the IV characteristics (current-voltage characteristics) are deteriorated due to the leakage current, or The physical destruction of the active layer causes the threshold characteristics to deteriorate. That is, by using a 1GaN bulk layer inserted into the GaN crystal recovery layer as the cladding layer, improvement in the yield and characteristics of the element can be expected. There is also an A1GaN bulk layer inserted into the GaN crystal recovery layer. It is effective to use not only the cladding layer but also the ρ-side cladding layer. Of course, in this case, the effect of reducing the impedance of the device can also be obtained. In addition, the technology of inserting the GaN crystal recovery layer is not only the η-side and ρ-side cladding layers, but if the GaN-based laser has other AlGaN layers, it can be effectively applied to all 16 'layers. In addition, not only GaN-based lasers, but also technology can be applied to all GaN-based devices, such as electrical

第20頁 531908 五、發明說明(17) 子元件等。 【產業上利用之可能性】 如上所說明,根據本發明的話,由於設置結晶回復 層,可以得到缺陷少且良好品質之含有鋁的三族氮化物半 導體多層構造,及使用該等之元件、基板。Page 20 531908 V. Description of the invention (17) Sub-components, etc. [Possibility of industrial use] As described above, according to the present invention, since a crystal recovery layer is provided, a high-quality aluminum nitride-containing tri-nitride semiconductor multilayer structure with few defects and good quality can be obtained. .

若將有關本發明之多層構造適用於半導體雷射之包覆 層,不僅能夠實現極佳之光束集中率,尤其是適用於P型 包覆層之情形時,能減低元件阻抗而能夠實現適宜高輸出 用途之半導體雷射。If the multilayer structure of the present invention is applied to a cladding layer of a semiconductor laser, not only an excellent beam concentration ratio can be achieved, especially when it is applied to a P-type cladding layer, the element impedance can be reduced and a suitable high level can be achieved. Semiconductor laser for output applications.

第21頁 531908 圖式簡單說明 -- 圖1係顯示p-型2. 5nm-AlGaN/2· 5nm-GaN歪斜超晶袼之 價電子帶能階之圖形。 圖2係顯示電洞測定用試料構造之圖。 圖3係顯示插入5ηιη結晶回復層時之阻抗率的插入声 相關性之圖。 s 圖4係顯示將結晶回復層之插入層數目固定為3時之阻 抗率的結晶回復層厚度相關性之圖。 圖5係顯示製作出的LD構造之圖。 圖6係一般之a 1 GaN塊狀試料之概略剖面圖。 圖7係插入GaN結晶回復層之AlGaN塊狀試料之概略剖 面圖。 圖8係顯示插入GaN結晶回復層之摻雜Si之 A 1〇. 〇7 G a0 93 N塊狀層詳細之概略剖面圖。 圖9係具有將插入GaN結晶回復層之材作為η侧 包覆層之GaN系雷射的概略剖面圖尸 圖1 0係顯示一般之A1G a N塊狀試料與插入g a N結晶回復 層之A1 GaN塊狀試料的裂損密度差值之圖形。 [符號說明] 1 :藍寶石C面基板 2 : GaN 層 3 · A 1。」Ga。9N 層 4 : GaN結晶回復層 1 0 1 :藍寶石C面基板Page 21 531908 Schematic description-Figure 1 shows the p-type 2. 5nm-AlGaN / 2 · 5nm-GaN skewed supercrystal 袼 valence electron band energy pattern. FIG. 2 is a diagram showing a sample structure for hole measurement. Fig. 3 is a graph showing the dependence of the insertion acoustic impedance on the resistivity when a 5nm crystal recovery layer is inserted. Fig. 4 is a graph showing the dependence of the thickness of the crystal recovery layer on the impedance when the number of the insertion layers of the crystal recovery layer is fixed at 3. FIG. 5 is a diagram showing the structure of the LD produced. FIG. 6 is a schematic cross-sectional view of a general a 1 GaN bulk sample. Fig. 7 is a schematic cross-sectional view of an AlGaN bulk sample inserted with a GaN crystal recovery layer. FIG. 8 is a detailed schematic cross-sectional view showing a Si-doped A 10.07 G a0 93 N bulk layer inserted into a GaN crystal recovery layer. Fig. 9 is a schematic cross-sectional view of a GaN-based laser with a material inserted into a GaN crystal recovery layer as an η-side cladding layer. Fig. 10 shows a general A1G a N bulk sample and A1 with a ga N crystal recovery layer. Graph of the difference in crack density between GaN bulk samples. [Description of symbols] 1: Sapphire C-plane substrate 2: GaN layer 3 · A 1. "Ga. 9N layer 4: GaN crystal recovery layer 1 0 1: Sapphire C-plane substrate

第22頁 531908 圖式簡單說明 102 : GaN 層 103 ·· GaN 層 1 04 : A1Q Q7GaQ 93N 塊狀層 2 0 1 :藍寶石C面基板 20 2 : GaN 層 2 0 3 : GaN 層 2 04 : Al〇 Q7Ga。93N 塊狀層 401 : FS-GaN 基板 402 : η型包覆層 403 :η型光束集中層 404 : 3周期多重量子井(MQW)層 40 5 :罩層 406 :ρ型光束集中層 407 :ρ型包覆層 4 0 8 : ρ型接觸層 · 4 0 9 :高台地形 41 0 : S i 02絕緣膜 411 : η電極 41 2 : ρ電極 501 : GaN 基板 502 :n型包覆層 50 3 : η型光束集中層 504 :重覆3次多重量子井(MQW)層 50 5 :罩層Page 22 531908 Brief description of the diagram 102: GaN layer 103 · GaN layer 1 04: A1Q Q7GaQ 93N bulk layer 2 0 1: sapphire C-plane substrate 20 2: GaN layer 2 0 3: GaN layer 2 04: Al〇 Q7Ga. 93N bulk layer 401: FS-GaN substrate 402: n-type cladding layer 403: n-type beam concentration layer 404: 3-cycle multiple quantum well (MQW) layer 40 5: cover layer 406: p-type beam concentration layer 407: p Type cladding layer 4 0 8: ρ-type contact layer 4 0 9: elevated terrain 41 0: Si 02 insulating film 411: η electrode 41 2: ρ electrode 501: GaN substrate 502: n-type cladding layer 50 3: η-type beam focusing layer 504: 3 times multiple quantum well (MQW) layer 50 5: cover layer

第23頁 531908Page 531908

第24頁Page 24

Claims (1)

531908 六、申請專利範圍 I ^一種半導體元件,其含有由GaN或AlGaN所形成的結晶 回復層與含鋁的三族氮化物半導體層相互堆疊各一層以上 而开y成的多層構造,該結晶回復層的層厚較接合於其上方 及下方之任一個三族氮化物半導體層為薄,且鋁組成較 .低0 如申請專利範圍第1項之半導體元件,豆中, 成為0 · 1以下之層所形成 2· 該多層構造係由鋁組成马U · 1以下之層所形 3. 如申/青專利範圍第!項之半導體元件,其中, =夕層構以係該結晶回復層與該含鋁的三族氮化物半 導體層分別堆疊二層以上而形成。 4. 如申請專利範圍第丨項之半導體元件,其中, 相郴接的2個該結晶回復層之間的平均距離為丨〇 〇 以 上〇 5· 如甲請專利範圍第1項之半導體元件-,其中, 6. 該夕層構造中之平均鋁組成為〇. 〇5以上、〗以下。 專利範圍第1項之半導體元件,其中, 7· Μ、、Ό晶回復層之厚度為2ηπι以上。 如兮申:請又利範圍第1項之半導體元件,其中, 個作化物半導體層包含鈣、鎂或鋅之中的至少1 8’如該申半請導專體利範,圍第1項之半導體元件,其中’ 層。 件更具備活性層與含有該多層構造之包覆 種半^體基板’其包含分別將由GaN或AlGaN所形成531908 VI. Patent application scope I ^ A semiconductor device comprising a multi-layer structure in which a crystalline recovery layer formed of GaN or AlGaN and an aluminum-containing group III nitride semiconductor layer are stacked on top of each other, and the crystal recovery The thickness of the layer is thinner than any of the Group III nitride semiconductor layers bonded above and below it, and the aluminum composition is relatively low. For example, the semiconductor element in the scope of patent application No. 1 is less than 0 · 1 Layer formation 2. The multi-layer structure is formed by layers composed of aluminum and horses U. 1 or lower. 3. The scope of the Rushen / Qing patent! In the semiconductor device, the layer structure is formed by stacking two or more layers of the crystalline recovery layer and the group III nitride semiconductor layer containing aluminum, respectively. 4. For a semiconductor device according to the scope of the patent application, wherein the average distance between the two adjacent crystal recovery layers is above 〇〇〇〇5. For the semiconductor device under the scope of the patent, please refer to the first category- Among them, 6. The average aluminum composition in the layer structure is 0.05 or more and 〖or less. The semiconductor device according to the first item of the patent, wherein the thickness of the 7 · M, Ό crystal recovery layer is 2ηπm or more. Ru Xishen: Please refer to the semiconductor device in the first item of the scope, wherein the semiconductor layer contains at least 18 ′ of calcium, magnesium, or zinc. Semiconductor element, where 'layer. The device further includes an active layer and a cladding semi-substrate containing the multilayer structure. The substrate includes an GaN or AlGaN layer, respectively. 531908 六、申請專利範圍 的結日日回復層與含鋁的三^ ^ ^ ^ ^ ^ ^ 以上而形成的多層構造。、虱化物+蛤體層相互堆疊一層 如申請專利範圍第9項之 該結晶回復声之屌層“—體土板其中, 三族氮化物半導▲層;交接合於該上方及下方之任-個 11如由^^ Ϊ為4,且紹組成較低。 口:;t範圍第9項之半導體基板,苴中, 該多層構造係由鋁紐 低/、τ, 12·如申請專利範圍第;成為°」二下之層所形成。 該多層構造係由ίΛ之Λ導體基板,其中, 化物半導體層分別相互堆=二=回復層與該含鋁的三族氮 13 如申蝽糞剎r FI铪 且一層以上而形成。 如甲明專利靶圍第9項之 相鄰接的2個該結晶回 二^其中, 上。 设臂之間的平均距離為lOOnm以 14.如申請專利範圍第9項之半 該多層構造中之平均叙έτ+、體基板,其中, 15. 如申請專利範圍ΐ 以上、ο.1以 16 該結晶回復層之厚度項丄=基板’其中, 如申請專利範圍第9項之半導體基板, 該^族:化物半導體層包含舞、 -中 個作為摻雜物。 甲的至V = = = ’其含有將由㈣或AlGaN户斤 形成的結曰曰::層與含銘的三族氮化物半導體層相互堆疊 各一層以上的士程,使該結晶回復層之層厚較接合於其上 方及下方之任思-個三族氮化物半導體層為薄,且銘組成 531908 六、申請專利範圍 較低。 18·如申請專利範圍第1 7項之多層構造的形成方法,其 中, 將構成該多層構造的各層鋁組成設為〇 · 1以下。 19·如申請專利範圍第1 7項之多層構造的形成方法,其 中, 將含有該結晶回復層與該含鋁的三族氮化物半導體層 相互堆疊各二層以上。 20·如申請專利範圍第17項之多層構造的形成方法,其 中, 相鄰接的2個該結晶回復層之間的平均距離為丨〇 〇ηιη以 上。 21.如申請專利範圍第1 7項之多層構造的形成方法,其 中, - 違多層構造中之平均鋁組成為〇 · 〇 5以上、〇 · 1以下。 22·如申請專利範圍第1 7項之多層構造的形成方法,其 中, 、 該結晶回復層之厚度為2ηιη以上。 23.如申請專利範圍第17項之多層構造的形成方法,盆 t, 八 _ 於形成構成該多層構造之各三族氣化物半導體層之 際,導入鈣、鎂或鋅作為摻雜物。 9531908 VI. The multi-layer structure formed by the day-to-day recovery layer with patent application and aluminum containing more than three ^ ^ ^ ^ ^ ^ ^. The lice compound + the clam body layer are stacked on top of each other, such as the sacral layer of the crystalline reverberation of the patent application No. 9—a body soil plate, among which the group of nitride semiconducting ▲ layer; The number 11 is ^^ Ϊ is 4, and the composition is relatively low. Mouth: The semiconductor substrate of item 9 in the range t, in which the multilayer structure is made of aluminum button /, τ, 12 ; Become a layer formed by ° ”. The multi-layer structure is formed by a Λ conductive substrate of Λ, wherein the compound semiconductor layers are stacked on each other = two = recovery layer and the aluminum-containing group III nitrogen 13 such as Shen septic brake r FI 铪 and more than one layer. For example, two adjacent crystals of item 9 of Jiaming's patent target are crystallized back to the above two. Let the average distance between the arms be 100 nm to 14. For example, the average length of the multilayer structure in the multi-layer structure and the substrate in half of item 9 of the scope of the patent application, where 15. If the scope of the patent application is ΐ or more, ο.1 is 16 The thickness term of the crystalline recovery layer 层 = substrate ', where, for example, the semiconductor substrate of the ninth scope of the application for a patent, the ^ family: compound semiconductor layer contains 、,-as a dopant. A to V = = = 'It contains a knot that will be formed by gadolinium or AlGaN households, said: a layer and a three-nitride semiconductor layer with an indentation are stacked on top of each other to make the crystal recover the layer of the layer The thickness is thinner than that of any of the three Group III nitride semiconductor layers bonded above and below, and the composition is 531908. 6. The scope of patent application is relatively low. 18. The method for forming a multilayer structure according to item 17 of the scope of patent application, wherein the aluminum composition of each layer constituting the multilayer structure is set to 0.1 or less. 19. The method for forming a multilayer structure according to item 17 of the scope of patent application, wherein the crystal recovery layer and the aluminum-containing group III nitride semiconductor layer are stacked on each other in two or more layers. 20. The method for forming a multilayer structure according to item 17 of the scope of the patent application, wherein the average distance between two adjacent crystal recovery layers is equal to or greater than 〇〇ηιη. 21. The method for forming a multilayer structure according to item 17 of the scope of patent application, wherein-the average aluminum composition in the multilayer structure is not less than 0.5 and not more than 0.1. 22. The method for forming a multilayer structure according to item 17 of the scope of the patent application, wherein the thickness of the crystal recovery layer is 2 nm or more. 23. According to the method for forming a multilayer structure according to item 17 of the scope of the patent application, when forming the three-group gaseous semiconductor layers constituting the multilayer structure, calcium, magnesium, or zinc is introduced as a dopant. 9 第27頁Page 27
TW91103085A 2001-02-23 2002-02-21 Group-III nitride semiconductor device and group-III nitride semiconductor substrate TW531908B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001048642A JP2002252427A (en) 2001-02-23 2001-02-23 Group iii nitride semiconductor device and group iii nitride semiconductor substrate

Publications (1)

Publication Number Publication Date
TW531908B true TW531908B (en) 2003-05-11

Family

ID=18909876

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91103085A TW531908B (en) 2001-02-23 2002-02-21 Group-III nitride semiconductor device and group-III nitride semiconductor substrate

Country Status (3)

Country Link
JP (1) JP2002252427A (en)
TW (1) TW531908B (en)
WO (1) WO2002069466A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405940A (en) * 2015-12-14 2016-03-16 华灿光电股份有限公司 Light emitting diode epitaxial wafer with novel structure and preparation method thereof
CN105514233A (en) * 2015-11-30 2016-04-20 华灿光电股份有限公司 High-luminous efficiency light emitting diode epitaxial slice and preparation method thereof
CN114583557A (en) * 2022-03-03 2022-06-03 中国科学院苏州纳米技术与纳米仿生研究所 Preparation method of gallium nitride-based laser limiting layer, limiting layer obtained by preparation method and laser

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044430B2 (en) 2006-01-18 2011-10-25 Panasonic Corporation Nitride semiconductor light-emitting device comprising multiple semiconductor layers having substantially uniform N-type dopant concentration
JP2009238834A (en) * 2008-03-26 2009-10-15 Sanyo Electric Co Ltd Support substrate having nitride-based semiconductor layer, and method of forming same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737826A (en) * 1993-07-16 1995-02-07 Konica Corp Manufacturing method of gallium nitride compound single crystal film and gallium nitride compound semiconductor element
JP3219231B2 (en) * 1995-08-14 2001-10-15 シャープ株式会社 Compound semiconductor light emitting device and method of manufacturing the same
JP3776536B2 (en) * 1996-12-06 2006-05-17 ローム株式会社 Semiconductor light emitting device
JP3647236B2 (en) * 1997-12-22 2005-05-11 日亜化学工業株式会社 Nitride semiconductor laser device
JPH11298039A (en) * 1998-03-20 1999-10-29 Ind Technol Res Inst Method of growing gan layer ad buffer layer and structure thereof
JP3171180B2 (en) * 1999-02-04 2001-05-28 日本電気株式会社 Vapor phase epitaxial growth method, semiconductor substrate manufacturing method, semiconductor substrate and hydride vapor phase epitaxy apparatus
JP4712169B2 (en) * 1999-09-10 2011-06-29 シャープ株式会社 Nitride-based semiconductor laser device and optical information reproducing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514233A (en) * 2015-11-30 2016-04-20 华灿光电股份有限公司 High-luminous efficiency light emitting diode epitaxial slice and preparation method thereof
CN105405940A (en) * 2015-12-14 2016-03-16 华灿光电股份有限公司 Light emitting diode epitaxial wafer with novel structure and preparation method thereof
CN114583557A (en) * 2022-03-03 2022-06-03 中国科学院苏州纳米技术与纳米仿生研究所 Preparation method of gallium nitride-based laser limiting layer, limiting layer obtained by preparation method and laser
CN114583557B (en) * 2022-03-03 2023-04-07 中国科学院苏州纳米技术与纳米仿生研究所 Preparation method of gallium nitride-based laser limiting layer, limiting layer obtained by preparation method and laser

Also Published As

Publication number Publication date
WO2002069466A1 (en) 2002-09-06
JP2002252427A (en) 2002-09-06

Similar Documents

Publication Publication Date Title
JP3785970B2 (en) Method for manufacturing group III nitride semiconductor device
US8680509B2 (en) Nitride semiconductor device and method of producing the same
TWI283954B (en) Semiconductor light emitting device and its manufacturing method
JP3770014B2 (en) Nitride semiconductor device
JP3548735B2 (en) Method of manufacturing gallium nitride based compound semiconductor
TW201123530A (en) Long wavelength nonpolar and semipolar (Al,Ga,In) N based laser diodes
JP2006173621A (en) Semiconductor laser
JP3551751B2 (en) Method for growing nitride semiconductor
JP5082444B2 (en) Nitride semiconductor light emitting device
JP4665394B2 (en) Nitride semiconductor laser device
JP5257967B2 (en) Semiconductor optical device
US20150115220A1 (en) (Al, In, Ga, B)N DEVICE STRUCTURES ON A PATTERNED SUBSTRATE
JP2007227832A (en) Nitride semiconductor element
JP3951973B2 (en) Nitride semiconductor device
JP5334501B2 (en) Nitride semiconductor device
TW531908B (en) Group-III nitride semiconductor device and group-III nitride semiconductor substrate
JP5305588B2 (en) GaN-based light emitting device and manufacturing method thereof
JP3794530B2 (en) Nitride semiconductor laser device
JP5561629B2 (en) Semiconductor optical device
JP4628651B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP4442093B2 (en) Manufacturing method of nitride semiconductor laminated substrate
JP2004047867A (en) Manufacturing method of nitride semiconductor light emitting element
JP3857417B2 (en) Nitride semiconductor device
JP2001308464A (en) Nitride semiconductor element, method for manufacturing nitride semiconductor crystal, and nitride semiconductor substrate
JP3772651B2 (en) Nitride semiconductor laser device