TW520447B - Interference filter - Google Patents
Interference filter Download PDFInfo
- Publication number
- TW520447B TW520447B TW90112339A TW90112339A TW520447B TW 520447 B TW520447 B TW 520447B TW 90112339 A TW90112339 A TW 90112339A TW 90112339 A TW90112339 A TW 90112339A TW 520447 B TW520447 B TW 520447B
- Authority
- TW
- Taiwan
- Prior art keywords
- layers
- interference filter
- refractive index
- film
- dielectric layers
- Prior art date
Links
Landscapes
- Optical Filters (AREA)
Abstract
Description
520447 3862twadf . doc/006 A7 B7 五、發明說明(f ) 本發明是有關於一種干涉濾波片(interference filter )’且特別是有關於一種高密度多波分工器(Dense Wavelength Division Multiplexer,DWDM )中之窄帶通薄膜 干涉濾波片(narrow band pass thin film interference filter )。 由於網際網路之成長,人們對於網路頻寬之需求日 增,光纖網路愈來愈朝向大容量、多變化、高可靠度以及 經濟效益方面發展。其中,高密度多波分工器即爲光纖通 訊中最重要的被動元件之一,其基本的功能便是利用分/合 波的原理,讓不同的波長訊號在同一條光纖中傳輸。高密 度多波分工器的使用可以使單一光纖的通訊傳輸容量呈倍 數增加,由此可見高密度多波分工器在高速與高容量通訊 傳輸系統中的重要性。此外,高密度多波分工器分光的原 理可分爲多種,包含薄膜干涉濾波片、光纖光柵以及陣列 導波(arrayed waveguide)等方式,而目前以鍍膜方式形成之 高密度多波分工器干涉濾波片最具熱穩定性也最受市場歡 迎。 一般高密度多波分工器中薄膜干涉濾波片中反射鏡 層之材質係利用具高折射係數之Ta205或Ti02作爲高折射 係數層材質,以及具低折射係數之Si〇2或Al2〇3作爲低折 射係數層材質交互堆貼而成(約20〜25層)° 習知在薄膜干涉濾波片的製作過程中爲了達到較理 想之穿透頻帶,必須製作至少三個空腔(cavity )結構之干 涉濾波片,每一空腔由二反射鏡層與一空間層所構成,就 三個空腔結構而言(四反射鏡層與三空間層)’所需鍍製 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注咅?事項再填寫本頁) > · IBM· V·· MB I 馨 MM . 經濟部智慧財產局員工消費合作社印製 520447 3 862twadf . doc/006 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(2) 的鍍膜數目將近百層,使得其製程非常繁瑣、薄膜厚度監 控不易,良率極低,因而導致製作成本提高,而且其穿透 頻寬最好只能做到1〜2nm,且愈窄愈難作,良率愈低。 在DWDM應用上,窄頻寬,多頻道,是寬頻網路通訊發 展的趨勢。目前薄膜干涉濾波片的技術水準形成進一步發 展的瓶頸,因此必須發展出具有更窄頻寬之薄膜干涉濾波 片以因應未來DWDM技術的需求。 因此’本發明的目的在提供一種以鈦氧化物摻雜一 定比例之矽氧化物材質爲高折射係數材質,搭配低折射係 數材質如Si02或ai2o3交互堆疊以形成干涉濾波片中反射 鏡層,用以降低其光學吸收、提高反射率,降低鍍膜所需 之層數,進而使得薄膜干涉濾波片的穿透光譜具有較窄的 頻寬(band width )。 爲達本發明之上述目的,提出一種干渉濾波片係架 構於一基板上’基板上具有多個反射鏡層與多個空間層交 互堆疊以形成多個空腔,其中,每一個空腔係由二反射層 一空間層所組成。每一反射鏡層係由多層高折射係數層與 多層低折射係數層交互堆疊而成。本發明以各種不同比例 之鈦氧化物與矽氧化物的混合薄膜作爲反射鏡中高折射係 數層之材質,以取代爲習知的Ta205材質,使得高折射係 數層具有較高的折射係數,進而使得穿透干涉濾波片之光 訊號具有較窄的頻寬,以提高DWDM通訊之頻道數。此 外,亦可藉由增加高、低折射係數之差異而降低鍍膜所需 之層數。 4 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公餐) (請先閱讀背面之注意事項再填寫本頁)520447 3862twadf.doc / 006 A7 B7 V. Description of the invention (f) The present invention relates to an interference filter ', and more particularly to a Dense Wavelength Division Multiplexer (DWDM). Narrow band pass thin film interference filter. Due to the growth of the Internet and the increasing demand for network bandwidth, fiber-optic networks are increasingly developing in terms of large capacity, variety, high reliability, and economic benefits. Among them, the high-density multi-wave duplexer is one of the most important passive components in optical fiber communication. Its basic function is to use the principle of splitting / multiplexing to allow different wavelength signals to be transmitted in the same optical fiber. The use of a high-density multi-wavelength divider can increase the communication transmission capacity of a single fiber by a factor of multiples. This shows the importance of high-density multi-wavelength dividers in high-speed and high-capacity communication transmission systems. In addition, the principle of high-density multi-wavelength divider can be divided into various types, including thin-film interference filters, fiber gratings, and arrayed waveguides. The high-density multi-wavelength-wave divider interference filtering currently formed by coating methods The film is the most thermally stable and the most popular in the market. Generally, the material of the mirror layer in the thin-film interference filter in the high-density multi-wavelength divider uses Ta205 or Ti02 with a high refractive index as the material of the high refractive index layer, and Si02 or Al2 03 with a low refractive index as the low Refractive index layer materials are stacked on top of each other (approximately 20 to 25 layers). It is known that in the production process of thin film interference filters, in order to achieve a more ideal transmission frequency band, it is necessary to make at least three cavity structure interferences. Filter, each cavity is composed of two mirror layers and one space layer. As for the three cavity structure (four mirror layers and three space layers), the required plating is 3 CNS) A4 size (210 X 297 mm) (Please read the note on the back? Matters before filling out this page) > · IBM · V ·· MB I Xin MM. Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 520447 3 862twadf.doc / 006 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. The description of the invention (2) The number of coatings is nearly one hundred layers, which makes the process very complicated, the film thickness monitoring is not easy, and the yield is extremely low. Leads to increased production costs, and its penetration of the best bandwidth can do 1~2nm, the more narrow and more difficult to make, the lower the yield. In DWDM applications, narrow bandwidth and multi-channel are the development trend of broadband network communications. The current technological level of thin-film interference filters has formed a bottleneck for further development. Therefore, thin-film interference filters with narrower bandwidths must be developed to meet the needs of future DWDM technologies. Therefore, the purpose of the present invention is to provide a silicon oxide material doped with a certain proportion of titanium oxide as a high refractive index material, and alternately stacked with a low refractive index material such as Si02 or ai2o3 to form a reflective mirror layer in an interference filter. In order to reduce its optical absorption, increase its reflectivity, and reduce the number of layers required for coating, the transmission spectrum of the thin-film interference filter has a narrower band width. In order to achieve the above object of the present invention, a dry filter system structure is proposed on a substrate. The substrate has a plurality of mirror layers and a plurality of space layers stacked alternately to form a plurality of cavities, wherein each cavity system is formed by It consists of two reflection layers and a space layer. Each mirror layer is formed by alternately stacking multiple layers of high refractive index layers and multiple layers of low refractive index layers. In the present invention, a mixed film of titanium oxide and silicon oxide in various proportions is used as the material of the high refractive index layer in the reflector, and the conventional Ta205 material is replaced, so that the high refractive index layer has a higher refractive index, thereby making The optical signal that penetrates the interference filter has a narrower bandwidth to increase the number of channels for DWDM communication. In addition, the number of layers required for coating can be reduced by increasing the difference between high and low refractive index. 4 This paper size applies to China National Standard (CNS) A4 specification (21〇 X 297 meals) (Please read the precautions on the back before filling this page)
520447 3862twaci^ * ^OC / Ο Ο 6 Α7 經濟部智慧財產局員工消費合作社印製 五、發明說明(3 ) 爲_本發明之上述目的、特徵、和優點能更明顯易 懂’下文特舉一實施例,並配合所附圖式,作詳細說明如 下: 81武之簡單說明: 第1 繪示Ti02光學膜不添加Si02w及不同添加量 Si〇2之1育形下,個別光學膜之消光係數與退火溫度兩者之 間的實驗數據圖; 第2圖繪示在各種不同的Si〇2摻雜量下,在不同的 t火丨皿度卞的光學膜之截止波長(cut-off wavelength )的分 佈圖; 第3圖繪示在各種不同的Si02摻雜量下,在不同的 退火溫度下進行退火製程24小時的X-射線的相對繞射強 度比; 第4圖繪示在各種不同的Si02摻雜量下,在不同的 退火溫度下的表面粗糙度;以及 第5A圖繪示在不添加Si02之情形,退火溫度爲150 °(:之Ti02光學膜之表面的結構圖; 第5B圖繪示在不添加Si02之情形,退火溫度爲225 °(:之Ti02光學膜之表面的結構圖; 第5C圖繪示在添加Si02之量爲17%的情形下,且退 火溫度爲40(TC之Ti〇rSi〇2光學混合膜的表面結構圖; 第6圖繪示爲依照本發明一較佳實施例高密度多波分 工器之結構示意圖; 第7圖繪示爲依照本發明一較佳實施例高密度多波分 5 (請先閱讀背面之注咅3事項再填寫本頁)520447 3862twaci ^ * ^ OC / Ο Ο 6 Α7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. The description of the invention (3) is _ the above-mentioned objects, features, and advantages of the present invention can be more clearly understood. The example, combined with the attached drawings, will be described in detail as follows: 81 Wuzhi's brief description: The first plot shows that the optical extinction coefficients of individual optical films and Figure of experimental data between the two annealing temperatures; Figure 2 shows the cut-off wavelength of the optical film at different tO 皿 degrees at various tO2 doping levels. Distribution diagram; Figure 3 shows the relative diffraction intensity ratios of X-rays under different annealing levels of Si02 doped at different annealing temperatures for 24 hours; Figure 4 shows the different diffraction intensity of Si02 Under the doping amount, the surface roughness at different annealing temperatures; and Fig. 5A shows the structure diagram of the surface of the Ti02 optical film without the addition of Si02, and the annealing temperature is 150 ° (: Ti02 optical film; Fig. 5B) In the case of not adding Si02, annealing The temperature is 225 ° (: the structure diagram of the surface of the Ti02 optical film; Figure 5C shows the case where the amount of Si02 added is 17%, and the annealing temperature is 40 (TC of Ti〇rSi〇2 optical hybrid film Surface structure diagram; FIG. 6 shows a structure diagram of a high-density multi-wavelength divider according to a preferred embodiment of the present invention; FIG. 7 shows a high-density multi-wavelength division 5 according to a preferred embodiment of the present invention (please (Please read Note 3 on the back before filling out this page)
本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 520447 3862twadf.d〇c/〇〇6 一 B7 五、發明說明(屮) _ 工器中干涉濾波片之示意圖; 第8A圖繪示爲習知以τ~〇5作爲高折射係數層之穿 透光譜圖;以及 (請先閱讀背面之注意事項再填寫本頁) 第8Β圖至第8D圖分別繪示爲依照本發明〜較佳實 施例以各種不同的Si〇2摻雜量之混合膜作爲高折射係數層 之穿透光譜圖。 圖式之標示說明: 100 :梯度折射係數濾鏡 102、104、106、108 :干涉濾波片 110、112、114、116 :干渉濾波片 200 :基板 202 :空腔 204 :高反射鏡層 206 :空間層 208 :高折射係數層 210 :低折射係數層 較佳實施例 經濟部智慧財產局員工消費合作社印製 本實施例說明一種光學混合膜及其製作方法,其具 有低損耗的特性。此光學混合膜係以鈦氧化物爲主要材質 且摻雜一定比例之矽氧化物,並且以離子束濺鍍法來形成 該光學混合膜。當光入射至該混合膜中時,被吸收及散射 的比例極低。離子束濺鍍鍍製光學混合膜係將小面積矽晶 片以耐高溫真空膠貼附於金屬鈦的濺鍍靶上,並且以一離 子束濺打在該合成靶材之上。在鍍膜真空室內並且灌入適 6 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 經濟部智慧財產局員工消費合作社印製 520447 3862twadf.doc/〇〇6 pj B7 五、發明說明(k) 量的高純度氬氣及氧氣,做反應式濺鑛(reactive sputtenng ),使氧原子與被氬離子濺射而奔向基板之Ti及 Si靶材原子化合,並且在轉動的基板上形成鈦氧化物及矽 氧化物之混合膜。改變矽晶片之面積可改變混合膜中矽氧 化物之比例。 以下將分別以添加5%、9%與17%之矽氧化物到鈦氧 化物中,並以離子束濺鍍法來製作之薄膜的實驗數據,其 用來說明本發明之光學混合膜的實際功效。然而,上述並 非用以來限制本發明。 首先請參照第1圖,其繪示混合膜之消光係數 (extinction coefficient,k )與退火溫度(annealing temperature,°C )兩者之間的實驗數據,其中消光係數係 以HT4爲單一數量級。由電磁波理論,薄膜具有一複折射 係數(complex refractive index )N,N=n+jk。η 即爲一般所 稱之折射係數,而k則爲消光係數。電磁波之傳遞強度即 正比於exp(j(2TTNx/A))之絕對値的平方,將N=n+jk代入 後’便產生一衰減項exp(-4 7Γ · kx/ λ )。此項即表不一電 磁波入射至一介質中強度隨路徑X而衰減,電磁波強度之 衰減系因介質對電磁波之吸收及散射,消光係數k即表示 此介質對電磁波吸收及散射的程度。因此,我們希望消光 係數k的値越小越好。第1圖顯示混合膜之消光係數隨混 合膜中矽氧化物之比例增加而降低。且消光係數於某一特 定溫度由於多晶態之產生而引發之散射而暴增,而此溫度 隨矽氧化物比例之增加而提高。 7 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) .^裝--------訂· -------- 520447 3862twadf . doc/006 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(έ) 由弟1圖可以看出在不添加Si〇2時(即〇%的曲線), 當退火溫度到達200°C時,消光係數k便急劇上升,這表 示純Ti02膜只能承受約200°C的退火溫度。其次,當在Ti〇2 膜中添加Si〇2之量分別爲5%、9%與17%時,其對應的最 高可承受退火溫度則分別約爲250°C、300°C與450°C。因 此,可以看出當添加的Si02量越多,其可承受之退火溫度 也就越高。因此,光學混合膜能承受更高的退火溫度且具 有更低之消光係數,亦即更低之光學吸收及光學散射。 由第1圖中更可以看出,當添加Si02之量越多時, 如添加到17%,1^02-3丨02光學混合膜的消光係數k在達到 暴增之最高退火溫度前,k値約在lx 10·4左右,所以可知 此光學混合膜之透明度極佳。綜上所述,當添加Si02之量 越多時,Ti02-Si02光學混合膜的透明度越高,不易發生吸 收及散射之現象。 接著請參照第2圖,其繪示在各種不同的Si02摻雜 量下,在不同的退火溫度下的光學膜之截止波長(cut-off wavelength,λ c)的分佈圖。截止波長係指在薄膜沉積後, 所能透光的最低波長,低於λ c的雷射光無法穿透薄膜(zero transmittance ),因此,截止波長λ c可以作爲光學膜之吸 收率的一個指標,截止波長愈小則吸收愈小。圖式中分別 繪出未添加,以及分別添加5%、9%與17%之情形的實驗 結果。圖中橫軸表示退火溫度,而縱軸則表示光學膜之截 止波長Ac分佈。由第2圖可以看出曲線係隨著退火溫度 的上升而下降,顯示高溫退火可降低吸收。在分別添加 8 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注咅?事項再填寫本頁)This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) 520447 3862twadf.d〇c / 〇〇6 1 B7 V. Description of the invention (屮) _ Schematic diagram of interference filter in the machine; Section 8A The figure shows the transmission spectrum of the conventional high refractive index layer with τ ~ 〇5; and (please read the precautions on the back before filling this page) Figures 8B to 8D are shown according to the present invention ~ The preferred embodiment uses various SiO 2 doped mixed films as the transmission spectra of the high refractive index layer. Explanation of the labeling of the drawings: 100: gradient refractive index filters 102, 104, 106, 108: interference filters 110, 112, 114, 116: dry filter 200: substrate 202: cavity 204: highly reflective mirror layer 206: Space layer 208: High-refractive-index layer 210: Low-refractive-index layer Preferred embodiment Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs This embodiment describes an optical hybrid film and a method for manufacturing the same, which have low-loss characteristics. This optical hybrid film is made of titanium oxide as the main material and is doped with a certain proportion of silicon oxide. The optical hybrid film is formed by ion beam sputtering. When light is incident into the hybrid film, the proportion of absorption and scattering is extremely low. The optical hybrid film produced by ion beam sputtering is a small-area silicon wafer attached to a metal titanium sputtering target with a high-temperature-resistant vacuum adhesive, and is sputtered on the synthetic target with an ion beam. It is filled in a coating vacuum chamber. 6 paper sizes are applicable to China National Standard (CNS) A4 (210 X 297 public love). Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 520447 3862twadf.doc / 〇〇6 pj B7 V. Description of the invention (k) The amount of high-purity argon and oxygen is used as reactive sputtenng to combine the oxygen atoms with the Ti and Si targets which are sputtered to the substrate by argon ions. A mixed film of titanium oxide and silicon oxide is formed on the substrate. Changing the area of the silicon wafer can change the proportion of silicon oxide in the mixed film. In the following, experimental data of thin films made by adding 5%, 9%, and 17% of silicon oxide to titanium oxide and manufactured by ion beam sputtering are used to explain the actual optical hybrid film of the present invention. efficacy. However, the above is not intended to limit the present invention. First, please refer to FIG. 1, which shows the experimental data between the extinction coefficient (k) and the annealing temperature (° C) of the mixed film. The extinction coefficient is a single order of magnitude of HT4. From the theory of electromagnetic waves, the thin film has a complex refractive index (N), N = n + jk. η is generally called the refractive index, and k is the extinction coefficient. The transmission intensity of the electromagnetic wave is proportional to the square of the absolute value of exp (j (2TTNx / A)). Substituting N = n + jk for ’produces an attenuation term exp (-4 7Γ · kx / λ). This term indicates that the intensity of an electromagnetic wave incident on a medium decreases with the path X. The attenuation of the electromagnetic wave intensity is due to the absorption and scattering of the electromagnetic wave by the medium. The extinction coefficient k indicates the degree of absorption and scattering of the electromagnetic wave by the medium. Therefore, we hope that the smaller the extinction coefficient k is, the better. Figure 1 shows that the extinction coefficient of the hybrid film decreases as the proportion of silicon oxide in the hybrid film increases. And the extinction coefficient increases sharply at a certain temperature due to the scattering caused by the generation of polymorphism, and this temperature increases as the proportion of silicon oxide increases. 7 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page). ---- 520447 3862twadf.doc / 006 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the invention (hand) From the figure of the younger brother, it can be seen that when Si〇2 is not added (that is, the curve of 0%) When the annealing temperature reaches 200 ° C, the extinction coefficient k rises sharply, which means that the pure Ti02 film can only withstand an annealing temperature of about 200 ° C. Secondly, when the amounts of SiO2 added to the Ti〇2 film are 5%, 9%, and 17%, the corresponding maximum withstand annealing temperatures are about 250 ° C, 300 ° C, and 450 ° C, respectively. . Therefore, it can be seen that the more Si02 added, the higher the annealing temperature it can withstand. Therefore, the optical hybrid film can withstand higher annealing temperatures and has a lower extinction coefficient, that is, lower optical absorption and optical scattering. It can be seen from Figure 1 that when the more Si02 is added, such as 17%, the extinction coefficient k of the 1 ^ 02-3 丨 02 optical hybrid film reaches the highest annealing temperature before the explosion, k Is about lx 10 · 4, so we know that the optical hybrid film has excellent transparency. In summary, as the amount of Si02 added is greater, the transparency of the Ti02-Si02 optical hybrid film is higher, and absorption and scattering are less likely to occur. Next, please refer to FIG. 2, which shows the distribution graphs of the cut-off wavelength (λ c) of the optical film under different SiO 2 doping amounts and different annealing temperatures. Cut-off wavelength refers to the lowest wavelength that can be transmitted after the film is deposited. Laser light below λ c cannot penetrate the film (zero transmittance). Therefore, the cut-off wavelength λ c can be used as an indicator of the absorption of optical films. The smaller the cut-off wavelength, the smaller the absorption. The experimental results are shown in the figure without adding, and when adding 5%, 9%, and 17%. In the figure, the horizontal axis represents the annealing temperature, and the vertical axis represents the cutoff wavelength Ac distribution of the optical film. It can be seen from Fig. 2 that the curve system decreases with the increase of the annealing temperature, which shows that high temperature annealing can reduce the absorption. Add 8 paper sizes to the Chinese National Standard (CNS) A4 (210 X 297 mm) (please read the note on the back? Matters before filling this page)
520447 3862twadf.doc/006 A7 B7 五、發明說明(q) 5%、9%與17%之的情形下,可以看出當Si02摻雜量 越大時,光學混合膜的截止波長也就越低’亦即光學混合 膜的吸收越低。 (請先閱讀背面之注音?事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 接著請參照第3圖,其繪示在各種不同的S:i02摻雜 量下,在不同的退火溫度下進行退火製程24小時後的X-射線的相對繞射強度比。此係Ti02銳鈦礦(anatase )結晶 態(101)繞射峰値。其中1〇表示完全結晶時之X光繞射強 度。當薄膜內的結晶成分越多時,其X-射線的相對繞射強 度也就越強。圖式中分別繪出未添加,以及分別添加5%、 9%與17%之Si02摻雜量情形的實驗結果。圖中橫軸表示 退火溫度,而縱軸則表示混合膜之X光相對繞射強度。由 第3圖可以看出在未添加Si02時,在退火溫度到達200°C 時,X-射線的繞射強度就急劇開始變強。而在分別添加 5%、9%與17%之3丨02的情形下,分別在退火溫度約爲250 °C、300°C與450°C左右,其對應之光學混合膜的X-射線 的繞射強度才開始變強。因此,由上述之實驗結果知道, 當Si02摻雜量越大時,光學混合膜的X-射線的相對繞射 強度在較高的退火溫度才開始變大,亦即Si02摻雜量越大 時,薄膜的結晶溫度越高,這與前述消光係數之結果係一 致的。 接著請參照第4圖,其繪示在各種不同的Si02摻雜 量下,在不同的退火溫度下的表面粗糙度。圖式中分別繪 出未添加,以及分別添加5%、9%與17%之Si02摻雜量情 形的實驗結果。圖中橫軸表示退火溫度,而縱軸則表示光 9 本紙張尺度適用中國國家標準(CNS)A4規格(2】0 X 297公釐) 520447 862twadf.doc/006 A7 B7 五、發明說明(f ) 學膜之表面粗糙度。由第4圖可以看出在未添加時’ 在退火溫度到達200°C時,表面就開始急遽粗糙。而在分 別添加5%、9%與17%之Si02的情形下,分別在退火溫度 約爲250°C、300°C與450°C左右,其對應之光學混合膜的 表面才開始變粗糙。因之,由上述之實驗結果知道,當Si02 摻雜量越大時,光學混合膜的表面平整度所能承受的回火 溫度也就越高,亦即光學混合膜的表面平整度越穩定,越 不容易產生表面散射。 接著請同時參照第5A圖、第5B圖及第5C圖。第5A 與5B圖分別繪示在不添加Si02之情形,退火溫度分別爲 150°C與225°C之純Ti02光學膜之表面的原子力顯微鏡 (Atomic Force Microscope,AFM )結構圖。在 150°C 時,Ti〇2 光學膜表面平坦,在退火溫度爲225°C時,Ti02膜已經產 生相變,由非晶態轉變成結晶態,表面因結晶顆粒的產生 而變的粗糙。第5C圖繪示在添加Si02之量爲17%的情形 下,繪出退火溫度爲400°C之Ti0rSi02光學混合膜之AFM 的顯微鏡結構圖。第6C圖明白顯示,摻入17%矽氧化物 之混合膜在400度高溫仍可保持平整之表面。 第1圖至第5A、5B、5C圖一致顯示,摻入矽氧化物 之混合膜較不摻入矽氧化物之純鈦氧化物膜,具有較低之 光學吸收,且可承受較高之退火溫度而不結晶,且保持表 面之高度平整性,因而有較低之光學散射。因此,本實施 例之光學混合膜之光學損耗較低,具有低散射與低吸收率 的特性。在此所添加之矽氧化物之比例,未被加以限制, 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 1> ·1 IV n ϋ 1·— 一OJ· 1— 1· ϋ ϋ 1 1» < 經濟部智慧財產局員工消費合作社印製 520447 3862twadf.doc/006 A7 B7 五、發明說明(C| ) 所添加的量越多,薄膜所可承受的退火溫度也就越高,相 對的入射光被吸收及散射的比例就越低。故由上述之數據 可以得知,本發明以鈦氧化物與矽氧化物作爲干涉濾波片 之材質,使得干涉濾波片具有可承受高退火溫度與低損耗 的特性。 目前高密度多波分工器干涉濾波片的使用波段範圍 主要介於1525nm至1570nm之間。光纖在此波段範圍內不 但具有較低的吸收損耗,且可以和摻餌光纖放大器(EDFA ) 的高增益波段相配合。在如此有限的使用波段範圍內,要 容納更多的通訊頻道,且要避免各個頻道彼此間的干擾, 相對的要求是將每一個通訊頻道的頻寬縮小。而要將每一 通訊頻道之頻寬縮小的方法主要有增加高密度多波分工器 中反射鏡層之反射率,或是使用增加空間層(spacer )之光 學厚度。其中,增加反射鏡層反射率的方法例如爲增加反 射鏡層鍍膜的數目,或是使用高、低折射係數差異較大之 材質。 接著請同時參照第6圖,其繪示爲依照本發明一較佳 實施例高密度多波分工器之結構示意圖。第6圖中,以單 膜光纖傳輸之入射光經由梯度折射係數濾鏡100( Gradient Index Lens,GRIN Lens )將光束發散入射至第一干涉濾波 片102,第一干涉濾波片102僅允許第一頻道之光訊號通 過而將其他光訊號反射。由第一干涉濾波片102反射之光 訊號入射至第二干涉濾波片104,第二干涉濾波片104僅 允許第二頻道之光訊號通過而將其他光訊號反射。依照相 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) -I · ·ϋ Bi- n I n _1 n 一:WJ· ·ϋ n 11 Bi·· ϋ ί ·ϋ - 經濟部智慧財產局員工消費合作社印製 520447 經濟部智慧財產局員工消費合作社印製 3862twadf . doc/006 五、發明說明(10 ) 同的原理,依序藉由第三干涉濾波片106、第四干涉濾波 片108、第五千涉濾波片110、第六干涉濾波片112、第七 干涉濾波片114以及第八干涉濾波片116將第三、第四、 第五、第六、第七以及第八頻道之光訊號分出。 接著請參照第7圖,其繪示爲依照本發明一較佳實施 例高密度多波分工器中干涉濾波片之示意圖。一干涉濾波 片通常架構於一透明基板200上,其上包括的至少三個空 腔202。每一個空腔202由二高反射鏡層204( High Reflector,HR )與一空間層206( spacer )所組成。其中,筒 反射鏡層204是由高折射係數層208與低折射係數層210 交互堆疊而成。 本發明中將鈦氧化物與矽氧化物之混合薄膜作爲高 反射鏡層204中筒折射係數層208之材質,而局折射係數 層208之間的低折射係數層210之材質例如爲Si〇2或 ai2o3等低折射係數材質,在高、低折射係數的差異增加 的情況下,使得每一通道的頻寬縮小。此外,上述高反射 鏡204中之各膜層208、210的厚度例如爲四分之一波長光 學厚度,空間層206之厚度例如爲二分之一波長光學厚度, 而設計波長例如爲1550nm。但本發明之膜層厚度並不侷 限於四分之一波長光學厚度,空間層206厚度不侷限於二 分之一波長光學厚度,而設計波長亦不侷限於1550nm。 此外’本發明中所使用之鈦氧化物與矽氧化物混合膜,泛 指原子數比爲1··χ之鈦氧化物TiOx及矽氧化物SiCC,包含 經由改變鍍膜之製程參數,例如於離子束濺鍍製程中摻入 本紙張尺度適用中國國家標準(CNS)A*4規格(21〇 X 297公爱) (請先閱讀背面之注意事項再填寫本頁)520447 3862twadf.doc / 006 A7 B7 V. Description of the invention (q) 5%, 9% and 17%, it can be seen that the larger the Si02 doping amount, the lower the cutoff wavelength of the optical hybrid film 'That is, the lower the absorption of the optical hybrid film. (Please read the note on the back? Matters before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Then please refer to Figure 3, which shows the different S: i02 doping levels and different annealing. The relative diffraction intensity ratio of X-rays after the annealing process is performed at a temperature for 24 hours. This is the crystalline (101) diffraction peak of Ti02 anatase (anatase). Wherein 10 indicates the X-ray diffraction intensity when completely crystallized. The more crystalline components in the film, the stronger the relative diffraction intensity of its X-rays. The experimental results are plotted in the figure without and with SiO2 doping amounts of 5%, 9%, and 17%. In the figure, the horizontal axis represents the annealing temperature, and the vertical axis represents the X-ray relative diffraction intensity of the mixed film. It can be seen from Fig. 3 that when Si02 is not added, when the annealing temperature reaches 200 ° C, the diffraction intensity of X-rays starts to increase sharply. In the case of adding 5%, 9%, and 17% of 3, 02, respectively, the annealing temperature is about 250 ° C, 300 ° C, and 450 ° C, respectively, which corresponds to the X-ray of the optical hybrid film. Diffraction intensity just started to get stronger. Therefore, from the above experimental results, it is known that when the Si02 doping amount is larger, the relative diffraction intensity of the X-ray of the optical hybrid film starts to increase at a higher annealing temperature, that is, when the Si02 doping amount is larger, The higher the crystallization temperature of the thin film, this is consistent with the result of the extinction coefficient. Next, please refer to FIG. 4, which shows the surface roughness at different annealing temperatures under different doping amounts of SiO 2. The experimental results of SiO2 doping and 5%, 9%, and 17% doped SiO2 doping are plotted in the figure. In the figure, the horizontal axis represents the annealing temperature, and the vertical axis represents the light. 9 The paper size is applicable to the Chinese National Standard (CNS) A4 specification (2) 0 X 297 mm. 520447 862twadf.doc / 006 A7 B7 V. Description of the invention (f ) Learn the surface roughness of the film. It can be seen from Fig. 4 that when the material is not added, when the annealing temperature reaches 200 ° C, the surface starts to roughen sharply. With the addition of 5%, 9%, and 17% of SiO2, respectively, the surfaces of the corresponding optical hybrid films begin to become rough at the annealing temperatures of about 250 ° C, 300 ° C, and 450 ° C, respectively. Therefore, from the above experimental results, it is known that the larger the Si02 doping amount, the higher the tempering temperature that the surface flatness of the optical hybrid film can withstand, that is, the more stable the surface flatness of the optical hybrid film, The less likely that surface scattering will occur. Please refer to FIG. 5A, FIG. 5B, and FIG. 5C at the same time. Figures 5A and 5B show the atomic force microscope (AFM) structure diagrams of the surface of a pure Ti02 optical film with annealing temperatures of 150 ° C and 225 ° C, respectively, without the addition of Si02. At 150 ° C, the surface of the TiO2 optical film is flat. At an annealing temperature of 225 ° C, the Ti02 film has undergone a phase transition from an amorphous state to a crystalline state, and the surface becomes rough due to the generation of crystalline particles. Fig. 5C shows a microscope structure diagram of the AFM of a Ti0rSi02 optical hybrid film with an annealing temperature of 400 ° C when the amount of Si02 is 17%. Figure 6C clearly shows that the mixed film doped with 17% silicon oxide can still maintain a flat surface at 400 ° C. Figures 1 to 5A, 5B, and 5C show that the mixed film doped with silicon oxide has lower optical absorption than the pure titanium oxide film doped with silicon oxide, and can withstand higher annealing. It does not crystallize at temperature and maintains a high degree of flatness on the surface, so it has low optical scattering. Therefore, the optical hybrid film of this embodiment has low optical loss and has characteristics of low scattering and low absorptivity. The proportion of silicon oxide added here is not limited. The paper size applies the Chinese National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before filling this page) 1 > · 1 IV n ϋ 1 · —One OJ · 1— 1 · ϋ ϋ 1 1 »< Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 520447 3862twadf.doc / 006 A7 B7 5. Added to the description of the invention (C |) The greater the amount of ZnO, the higher the annealing temperature the film can withstand, and the lower the ratio of the relative incident light absorbed and scattered. Therefore, it can be known from the above data that the present invention uses titanium oxide and silicon oxide as the material of the interference filter, so that the interference filter has the characteristics of withstanding high annealing temperature and low loss. At present, the use of high-density multi-wavelength-diplexer interference filters ranges from 1525nm to 1570nm. The optical fiber not only has lower absorption loss in this wavelength range, but also can be matched with the high gain band of the EDFA. In such a limited range of use bands, more communication channels must be accommodated, and the interference between each channel must be avoided. The relative requirement is to reduce the bandwidth of each communication channel. The methods of reducing the bandwidth of each communication channel mainly include increasing the reflectivity of the mirror layer in the high-density multi-wavelength division unit, or using increasing the optical thickness of the spacer. Among them, the method of increasing the reflectivity of the mirror layer is, for example, increasing the number of coatings of the mirror layer, or using materials with high and low refractive index differences. Please refer to FIG. 6 at the same time, which is a schematic structural diagram of a high-density multi-wavelength divider according to a preferred embodiment of the present invention. In FIG. 6, the incident light transmitted by a single-film optical fiber diverges the light beam and enters the first interference filter 102 through a gradient refractive index filter 100 (Gradient Index Lens, GRIN Lens). The first interference filter 102 allows only the first The optical signal of the channel passes and reflects other optical signals. The light signal reflected by the first interference filter 102 is incident on the second interference filter 104, and the second interference filter 104 only allows the light signal of the second channel to pass and reflects other light signals. Applicable to China National Standard (CNS) A4 specification (210 X 297 mm) according to the size of the photo paper (Please read the precautions on the back before filling this page) -I · · ϋ Bi- n I n _1 n One: WJ · · ϋ n 11 Bi ·· ϋ ί · ϋ-Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy 520447 Printed by the Employee Cooperatives of the Intellectual Property Bureau of the Ministry of Economy 3862twadf. doc / 006 V. Description of the invention (10) The same principle, in order The third and fourth interference filters 106, fourth interference filters 108, fifth interference filters 110, sixth interference filters 112, seventh interference filters 114, and eighth interference filters 116 The light signals of channels 5, 5, 6, 7 and 8 are separated. Please refer to FIG. 7, which illustrates a schematic diagram of an interference filter in a high-density multi-wave duplexer according to a preferred embodiment of the present invention. An interference filter is generally constructed on a transparent substrate 200 and includes at least three cavities 202 thereon. Each cavity 202 is composed of two high reflector layers 204 (High Reflector, HR) and a space layer 206 (spacer). The cylindrical mirror layer 204 is formed by alternately stacking a high refractive index layer 208 and a low refractive index layer 210. In the present invention, a mixed film of titanium oxide and silicon oxide is used as the material of the cylindrical refractive index layer 208 in the high-reflection mirror layer 204, and the material of the low refractive index layer 210 between the local refractive index layers 208 is, for example, Si02 Low-refractive-index materials, such as ai2o3, reduce the bandwidth of each channel when the difference between the high-refractive index and the low-refractive index increases. In addition, the thickness of each of the film layers 208, 210 in the above-mentioned high mirror 204 is, for example, a quarter-wavelength optical thickness, the thickness of the space layer 206 is, for example, a half-wavelength optical thickness, and the design wavelength is, for example, 1550nm. However, the thickness of the film layer of the present invention is not limited to a quarter-wavelength optical thickness, the thickness of the space layer 206 is not limited to a half-wavelength optical thickness, and the design wavelength is not limited to 1550 nm. In addition, the titanium oxide and silicon oxide mixed film used in the present invention generally refers to titanium oxide TiOx and silicon oxide SiCC with an atomic ratio of 1 ·· χ, and includes changes in the process parameters of the coating, such as ion Beam spattering process incorporated in this paper size applies to Chinese National Standard (CNS) A * 4 specifications (21〇X 297 public love) (Please read the precautions on the back before filling this page)
520447 862twadf.doc/006 A7 五、發明說明(丨丨) 不同氧氣分壓,所得到之一切Ti〇x& SiOx成分。 本發明高折射係數層208之材質爲鈦氧化物與矽氧化 物之混合薄膜相較於習知材質(Ta205 )具有較高的折射係 數,故可以使得穿透干涉濾波片之光訊號具有較窄的頻 寬。此外,亦可藉由增加高、低折射係數之差異而降低鍍 膜所需之層數。 表一即繪示依照本發明一較佳實施例鈦氧化物與矽 氧化物在各種不同的Si02摻雜量下,針對不同波長其折射 係數(η )的變化。由表一可淸楚得知,在各種混合比例如 0%、5%、9%及17%31〇2的摻雜比例下,都具有比習知(丁&2〇5) 更高的折射係數。 0% Si02 5% Si02 9% Si02 17% Si02 Ta2〇5 n(550nm) 〜2·54 〜2.52 〜2·46 〜2.37 〜2.20 n(1550nm) 〜2·40 〜2.40 〜2.30 〜2.20 〜2.02520447 862twadf.doc / 006 A7 V. Description of the invention (丨 丨) With different partial pressures of oxygen, all the TiOx & SiOx components obtained. The material of the high-refractive-index layer 208 of the present invention is a mixed film of titanium oxide and silicon oxide, which has a higher refractive index than a conventional material (Ta205), so that the optical signal penetrating the interference filter can be narrower. Bandwidth. In addition, the number of layers required for coating can be reduced by increasing the difference between high and low refractive index. Table 1 shows changes in the refractive index (η) of titanium oxide and silicon oxide according to a preferred embodiment of the present invention for different wavelengths under different doping amounts of SiO2. It can be clearly seen from Table 1 that under various mixing ratios such as 0%, 5%, 9%, and 17% 31%, the doping ratios are higher than the conventional (Ding & 2005). Refractive index. 0% Si02 5% Si02 9% Si02 17% Si02 Ta2〇5 n (550nm) ~ 2.54 ~ 2.52 ~ 2.46 ~ 2.37 ~ 2.20 n (1550nm) ~ 2.40 ~ 2.40 ~ 2.30 ~ 2.20 ~ 2.02
接著請參照第8Α圖,其繪示爲習知以Ta205作爲高 折 射 係 數 層膜層 結 構 爲 (HL)6HL6H(LH)6L(HL)7HL4H(LH)7L(HL)7L(HL)6HL8H(LH)7L 之穿透光譜圖。此處Η代表四分之一波長光學厚度之高折 射係數膜層,L代表四分之一波長光學厚度之低折射係數 膜層,(HL)6代表6對高低折射係數膜層,L6代表6層低 折射係數膜。Please refer to FIG. 8A, which shows that the conventional structure using Ta205 as the high refractive index layer is (HL) 6HL6H (LH) 6L (HL) 7HL4H (LH) 7L (HL) 7L (HL) 6HL8H (LH ) Transmission spectrum of 7L. Here Η represents a high refractive index film layer with a quarter-wavelength optical thickness, L represents a low refractive index film layer with a quarter-wavelength optical thickness, (HL) 6 represents 6 pairs of high and low refractive index films, and L6 represents 6 Layer of low refractive index film.
由第8Α圖可淸楚得知,在干涉濾波片結構爲 (HL)6HL6H(LH)6L(HL)7HL4H(LH)7L(HL)7L(HL)6HL8H(LH)7L --------------— (請先閱讀背面之注意事項再填寫本頁) ·1111111 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A‘l規格(210 X 297公釐) 520447 3862twadf.doc/006 A7 經濟部智慧財產局員工消費合作社印製 五、發明說明(α) ’其空間層折射係數(ns )爲1.51、低折射係數層折射係數 (nL)爲1.46、以Ta205高折射係數層其折射係數(nH)爲2.02 的條件下,得到穿透光譜的半頻寬(50% bandwidth )爲 〇.74nm 〇 最後請同時參照第8B圖至第8D圖,其分別繪示爲 依照本發明一較佳實施例以各種不同的Si02摻雜量之混合 膜作爲高折射係數層取代習知Ta205,膜層結構仍維持相 同之穿透光譜圖。 由第8B圖中可淸楚得知,在干涉濾波片之結構爲 (HL)6HL6H(LH)6L(HL)7HL4H(LH)7L(HL)7L(HL)6HL8H(LH)7L ,其空間層折射係數(ns )爲1.51、低折射係數層折射係數 (nL )爲1.46、以17% Si02摻雜比例作爲高折射係數層,其 折射係數(nH )爲2.2的條件下,得到穿透光譜的半頻寬 (50% bandwidth )爲 0.18nm。 由第8C圖中可淸楚得知,在干涉濾波片之結構爲 (HL)6HL6H(LH)6L(HL)7HL4H(LH)7L(HL)7L(HL)6HL8H(LH)7L ,其空間層折射係數(ns )爲1.51、低折射係數層折射係數 (nL )爲1.46、以9% Si02摻雜比例作爲高折射係數層,其 折射係數(nH )爲2.3的條件下,得到穿透光譜的半頻寬 (50% bandwidth )爲 0.09nm。 由第8D圖中可淸楚得知,在干涉濾波片之結構爲 (HL)6HL6H(LH)6L(HL)7HL4H(LH)7L(HL)7L(HL)6HL8H(LH)7L ,其空間層折射係數(ns )爲1.51、低折射係數層折射係數 (以)爲1.46、以0%或5% Si02摻雜比例作爲高折射係數層, (請先閱讀背面之注咅?事項再填寫本頁) -I · n ϋ —i ·ϋ ϋ n 一一口1 · >ϋ ϋ «ϋ I n <As can be clearly seen from Figure 8A, the interference filter structure is (HL) 6HL6H (LH) 6L (HL) 7HL4H (LH) 7L (HL) 7L (HL) 6HL8H (LH) 7L ------ --------— (Please read the notes on the back before filling out this page) · 1111111 Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs This paper is compliant with China National Standard (CNS) A'l Specification (210 X 297 mm) 520447 3862twadf.doc / 006 A7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (α) 'The refractive index of the space layer (ns) is 1.51, the refractive index of the low refractive layer (nL) It is 1.46 and the refractive index (nH) of the Ta205 high refractive index layer is 2.02, and the half-band width (50% bandwidth) of the transmission spectrum is 0.74 nm. Finally, please refer to FIGS. 8B to 8D According to a preferred embodiment of the present invention, it is shown that the conventional Ta205 is replaced by a mixed film with various SiO 2 doped amounts as a high-refractive index layer, and the film structure still maintains the same transmission spectrum. As can be clearly seen from Figure 8B, the structure of the interference filter is (HL) 6HL6H (LH) 6L (HL) 7HL4H (LH) 7L (HL) 7L (HL) 6HL8H (LH) 7L), and its spatial layer The refractive index (ns) is 1.51, the refractive index (nL) of the low refractive index layer is 1.46, and the 17% Si02 doping ratio is used as the high refractive index layer. The refractive index (nH) is 2.2, and the transmission spectrum is obtained. The half bandwidth (50% bandwidth) is 0.18nm. As can be clearly seen from Figure 8C, the structure of the interference filter is (HL) 6HL6H (LH) 6L (HL) 7HL4H (LH) 7L (HL) 7L (HL) 6HL8H (LH) 7L), and its spatial layer The refractive index (ns) is 1.51, the refractive index (nL) of the low refractive index layer is 1.46, the doping ratio of 9% Si02 is used as the high refractive index layer, and the refractive index (nH) is 2.3. The half bandwidth (50% bandwidth) is 0.09nm. As can be clearly seen from Figure 8D, the structure of the interference filter is (HL) 6HL6H (LH) 6L (HL) 7HL4H (LH) 7L (HL) 7L (HL) 6HL8H (LH) 7L), and its spatial layer The refractive index (ns) is 1.51, the refractive index (in) of the low refractive index layer is 1.46, and the doping ratio of 0% or 5% Si02 is used as the high refractive index layer. (Please read the note on the back? Matters before filling out this page ) -I · n ϋ —i · ϋ ϋ n One-by-one mouth 1 · > ϋ ϋ «ϋ I n <
本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 520447 3862twadf.doc/006 A7 B7 五、發明說明(丨3 ) 其折射係數(nH )爲2·4的條件下,得到穿透光譜的半頻寬 (50% bandwidth )爲 〇.〇5nm 〇 由第8A圖至第8D圖中得知,以〇%、5%、9%及17%Si〇2 摻雜比例的混合膜作爲高折射係數層之材質,其穿透光譜 的半頻寬都小於習知以Ta205材質的半頻寬,故可在有限 的波段範圍內容納較多的頻道。但由前實驗結果知0%之 純Ti〇2膜,具有甚低之結晶溫度,易造成光學散射提高損 耗增加頻寬,但摻有Si02之混合膜具有較高之結晶溫度, 可保持非結晶態,具有低光學損耗,且能維持較Ta205爲 高之折射係數。 綜上所述,本發明之干涉濾波片至少具有下列優點: 1. 本發明以鈦氧化物及矽氧化物之混合薄膜作爲干涉 濾波片中反射鏡層的高折射係數層之材質,使反射鏡層具 有較高的反射率,故可降低反射鏡層鍍膜所需的層數,進 而簡省鍍膜的製程。 2. 本發明以鈦氧化物及矽氧化物混合薄膜作爲干涉濾 波片中反射鏡層的高折射係數層之材質,藉由高折射係數 層與低折射係數層折射係數之差異增加,使得薄膜干涉濾 波片的穿透光譜具有較窄的頻寬,可有效增加通訊頻道 數。 3·本發明以鈦氧化物及矽氧化物混合薄膜作爲干涉濃 波片中反射鏡層的高折射係數層之材質,薄膜之結構爲非 結晶狀態,使得干涉濾波片具有較佳的溫度穩定性’以及 較低的光學損耗。 1 5 本紙張尺度適用中國國冢標準(CNS)A4規格⑵Gx 297公爱) (請先閱讀背面之注意事項再填寫本頁) 1裝---------訂i ------- 經濟部智慧財產局員工消費合作社印製 520447 3862twadf.doc/006 A7 B7 經濟邹智慧財產局員工消費合作社印製 五、發明說明(4) 綜上所述,雖然本發明已以較佳實施例揭露如上, 然其並非用以限定本發明,任何熟習此技藝者,在不脫離 本發明之精神和範圍內,當可作各種之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者爲 準。 (請先閱讀背面之注意事項再填寫本頁)This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 520447 3862twadf.doc / 006 A7 B7 V. Description of the invention (3) The refractive index (nH) is 2.4 The half-band width (50% bandwidth) of the transmission spectrum is 0.05 nm. From Figs. 8A to 8D, it is known that the mixture is doped with 0%, 5%, 9%, and 17% SiO2. As the material of the high refractive index layer, the half-band width of the transmission spectrum is less than the half-band width of the conventional Ta205 material, so it can contain more channels in a limited band range. However, from the previous experimental results, it is known that 0% pure TiO2 film has a very low crystallization temperature, which is likely to cause optical scattering, increase loss and increase bandwidth, but the mixed film doped with SiO2 has a higher crystallization temperature, which can maintain non-crystallization. State, has low optical loss, and can maintain a higher refractive index than Ta205. In summary, the interference filter of the present invention has at least the following advantages: 1. The present invention uses a mixed film of titanium oxide and silicon oxide as the material of the high refractive index layer of the reflective mirror layer in the interference filter to make the reflective mirror The layer has a high reflectance, so the number of layers required for coating the mirror layer can be reduced, thereby simplifying the coating process. 2. In the present invention, a titanium oxide and silicon oxide mixed film is used as the material of the high refractive index layer of the mirror layer in the interference filter. The difference in refractive index between the high refractive index layer and the low refractive index layer is increased, so that the thin film interferes. The transmission spectrum of the filter has a narrower bandwidth, which can effectively increase the number of communication channels. 3. The invention uses a titanium oxide and silicon oxide mixed film as the material of the high refractive index layer of the reflection layer in the interference concentrated wave plate. The structure of the film is amorphous, which makes the interference filter have better temperature stability. 'And lower optical loss. 1 5 This paper size is applicable to China National Standard (CNS) A4 specification ⑵ Gx 297 public love) (Please read the precautions on the back before filling this page) 1 Pack --------- Order i ---- --- Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 520447 3862twadf.doc / 006 A7 B7 Printed by the Consumer Cooperative of the Zou Intellectual Property Bureau of the People's Republic of China V. Description of the Invention (4) In summary, although the present invention has been The embodiments are disclosed as above, but it is not intended to limit the present invention. Any person skilled in the art can make various modifications and retouches without departing from the spirit and scope of the present invention. The scope of the patent application shall prevail. (Please read the notes on the back before filling this page)
本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90112339A TW520447B (en) | 2001-05-23 | 2001-05-23 | Interference filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90112339A TW520447B (en) | 2001-05-23 | 2001-05-23 | Interference filter |
Publications (1)
Publication Number | Publication Date |
---|---|
TW520447B true TW520447B (en) | 2003-02-11 |
Family
ID=28037049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90112339A TW520447B (en) | 2001-05-23 | 2001-05-23 | Interference filter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW520447B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114325910A (en) * | 2021-12-15 | 2022-04-12 | 西安北方光电科技防务有限公司 | Step characteristic passband narrow-band optical filter |
TWI809511B (en) * | 2017-05-22 | 2023-07-21 | 美商菲爾薇解析公司 | Multispectral filter |
-
2001
- 2001-05-23 TW TW90112339A patent/TW520447B/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI809511B (en) * | 2017-05-22 | 2023-07-21 | 美商菲爾薇解析公司 | Multispectral filter |
US11880054B2 (en) | 2017-05-22 | 2024-01-23 | Viavi Solutions Inc. | Multispectral filter |
CN114325910A (en) * | 2021-12-15 | 2022-04-12 | 西安北方光电科技防务有限公司 | Step characteristic passband narrow-band optical filter |
CN114325910B (en) * | 2021-12-15 | 2024-02-09 | 西安北方光电科技防务有限公司 | Step characteristic passband narrowband optical filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7299346B2 (en) | Near-infrared bandpass optical filter and optical sensing system | |
US3637294A (en) | Interference filter with alternately designed pairs of dielectric layers | |
WO2020253535A1 (en) | Optical filter with temperature compensation effect and sensor system | |
CN110632697A (en) | Polarizing element and preparation method thereof | |
TW584742B (en) | Multilayer film optical filter, method of producing the same, and optical component using the same | |
TW520447B (en) | Interference filter | |
CN112230322B (en) | Preparation method of bandpass filter with insertion loss linearly changing | |
CN114690299A (en) | Optical filter | |
EP0338160A2 (en) | Anti-reflective coatings | |
JPH07209516A (en) | Optical multilayer film filter | |
CN110737099B (en) | Polarization independent beam splitter | |
Asghar et al. | Wide bandpass optical filters with TiO2 and Ta2O5 | |
US11226503B2 (en) | Tunable spectral filters | |
CN106054318B (en) | The design method of one-dimensional membrane cavity type unequal band width optical interleaver | |
CN112230323B (en) | Preparation method of optical filter with linearly changed transmittance | |
CN112130242B (en) | Band-pass filter with linearly-changed insertion loss | |
Willey | Preserving error compensation benefits while changing monitoring wavelengths with each layer | |
Yanagimachi et al. | High-performance and highly stable 0.3-nm-full-width-at-half-maximum interference optical filters | |
JP6656469B2 (en) | Optical components | |
CN112130243A (en) | Optical filter with linearly-changed transmittance | |
GB2070275A (en) | Interference mirrors | |
You et al. | Investigations of Al2O3–Nb2O5 bi-layer Bragg reflector investigations for blue and green lights | |
CN114089460A (en) | Low-angle offset optical filter | |
CN212515112U (en) | Optical filter for high-speed transmission and optical module | |
CN218332036U (en) | O-band thin film filter for 5G forward transmission and optical module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |