TW512441B - Silicon-germanium mesa transistor - Google Patents
Silicon-germanium mesa transistor Download PDFInfo
- Publication number
- TW512441B TW512441B TW090129304A TW90129304A TW512441B TW 512441 B TW512441 B TW 512441B TW 090129304 A TW090129304 A TW 090129304A TW 90129304 A TW90129304 A TW 90129304A TW 512441 B TW512441 B TW 512441B
- Authority
- TW
- Taiwan
- Prior art keywords
- type
- collector
- region
- type doped
- silicon
- Prior art date
Links
- 229910000577 Silicon-germanium Inorganic materials 0.000 title claims abstract description 46
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 title claims abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 50
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 39
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000010703 silicon Substances 0.000 claims abstract description 38
- 239000002019 doping agent Substances 0.000 claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 claims abstract description 20
- 238000000151 deposition Methods 0.000 claims abstract description 19
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 16
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000002955 isolation Methods 0.000 claims abstract description 11
- 239000004065 semiconductor Substances 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 239000013078 crystal Substances 0.000 claims description 23
- 230000008021 deposition Effects 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 14
- 238000005516 engineering process Methods 0.000 claims description 13
- 230000004913 activation Effects 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 claims description 5
- 238000004151 rapid thermal annealing Methods 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 239000012634 fragment Substances 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 1
- 238000005137 deposition process Methods 0.000 claims 1
- 238000011065 in-situ storage Methods 0.000 claims 1
- 238000000038 ultrahigh vacuum chemical vapour deposition Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 22
- 239000010410 layer Substances 0.000 description 67
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- SFBODOKJTYAUCM-UHFFFAOYSA-N Ipriflavone Chemical compound C=1C(OC(C)C)=CC=C(C2=O)C=1OC=C2C1=CC=CC=C1 SFBODOKJTYAUCM-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910008310 Si—Ge Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- UMVBXBACMIOFDO-UHFFFAOYSA-N [N].[Si] Chemical compound [N].[Si] UMVBXBACMIOFDO-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 229960005431 ipriflavone Drugs 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66242—Heterojunction transistors [HBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8248—Combination of bipolar and field-effect technology
- H01L21/8249—Bipolar and MOS technology
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/73—Bipolar junction transistors
- H01L29/737—Hetero-junction transistors
- H01L29/7371—Vertical transistors
- H01L29/7378—Vertical transistors comprising lattice mismatched active layers, e.g. SiGe strained layer transistors
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
512441 A7 B7 五、發明説明(1 ) 發明技術領域 本發明一般而言係關於矽I C技術領域,更特定而言,本 發明係關於在一半導體製程流程中形成一 SiGe高台電晶體 ,其特別設計給雙極RF-1C ;關於形成的SiGe高台電晶體 ;及關於包含這種SiGe高台電晶體的積體電路。 相關技藝説明及發明背景 現今先進的矽雙極,CMOS或BiCMOS電路已用於在1 - 5 GHz頻率範圍中的高速應用,其已取代先前僅可能使用III-V爲主之技術來實施的電路。其主要應用範圍在於最新的 電信系統。該電路大部份用於類比功能,例如用於切換電 流及電壓,及用於高頻無線功能,例如用於混合,放大及 偵測功能。 爲了得到可良好適合於像是電信應用的電晶體,其不僅 需要一低轉換時間(高fT),但也需要一高的最大振盪頻率 (fmax),及需要良好的線性行爲。目前的矽雙極功能電晶體 (BJT)技術可提供fT最高到50 GHz,但已達到其物理極限, 係因爲該基極層的厚度與阻抗之間的抗衡。 藉由加入一些鍺(基本上爲1 0 - 2 0 %)到一習用BJT的積極 ,該高頻特性可實質地改善。該新裝置爲一 SiGe(矽-鍺) HBT(異質接面雙極電晶體)結構。該基極層結構通常以 MBE(分子束磊晶)或CVD(化學氣相沉積)來成長,但其有 可能植入鍺到該矽中,但較少控制該摻雜輪廓。在最近幾 年,SiGe爲主的電晶體已經顯示關於fT及fmax(最大振盪頻 率)之記錄高頻效能,參見π具有160 GHz fmax之加強型SiGe -4 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 512441 A7 B7 五、發明説明(2 ) 異質接面雙極電晶體 ’’("Enhanced SiGe Heterojunction Bipolar Transistors with 160 GHz-fmax”),由 A. Schappen等 人所提,IEEE IEDM Tech Dig.,743頁,1995年。對於高頻 應用,例如無線通訊,該SiGe HBT可用來加強既有的雙重 複晶矽RF-1C及BiCMOS技術的效能。一篇大量回顧SiGe磊 晶基礎技術的論文爲”矽-鍺HBT技術:Si爲主的RF及微波 電路應用的新競爭者”(”SiGe HBT Technology: A New Contender for Si-Based RF and Microwave Circuit Applications”),由 J.D. Cressler提出,IEEE TED-46,572 頁 ,1998年 5 月。512441 A7 B7 V. Description of the Invention (1) Technical Field of the Invention The present invention relates generally to the field of silicon IC technology, and more specifically, the present invention relates to the formation of a SiGe high-power transistor crystal in a semiconductor manufacturing process, which is specially designed Give bipolar RF-1C; about the formed SiGe high-stage power crystal; and about the integrated circuit containing this SiGe high-stage power crystal. Description of the Related Art and Background of the Invention Today's advanced silicon bipolar, CMOS or BiCMOS circuits have been used for high-speed applications in the 1-5 GHz frequency range, and they have replaced circuits that previously could only be implemented using III-V-based technologies . Its main application lies in the latest telecommunications systems. This circuit is mostly used for analog functions, such as switching current and voltage, and for high-frequency wireless functions, such as mixing, amplification, and detection functions. To obtain a transistor that is well-suited for applications such as telecommunications, it requires not only a low transition time (high fT), but also a high maximum oscillation frequency (fmax), and good linear behavior. Current silicon bipolar function transistor (BJT) technology can provide fT up to 50 GHz but has reached its physical limit due to the counterbalance between the thickness of the base layer and the impedance. By adding some germanium (basically 10-20%) to the positivity of a conventional BJT, this high frequency characteristic can be substantially improved. The new device has a SiGe (silicon-germanium) HBT (heterojunction bipolar transistor) structure. The base layer structure is usually grown by MBE (Molecular Beam Epitaxial) or CVD (Chemical Vapor Deposition), but it is possible to implant germanium into the silicon but less control the doping profile. In recent years, SiGe-based transistors have shown recording high-frequency performance regarding fT and fmax (maximum oscillation frequency), see π reinforced SiGe -4 with a fmax of 160 GHz-This paper is in accordance with Chinese national standards (CNS ) A4 specification (210X 297 mm) 512441 A7 B7 V. Description of the invention (2) "Enhanced SiGe Heterojunction Bipolar Transistors with 160 GHz-fmax", by A. Schappen et al. References, IEEE IEDM Tech Dig., P. 743, 1995. For high frequency applications, such as wireless communications, this SiGe HBT can be used to enhance the performance of existing dual-repeated silicon RF-1C and BiCMOS technologies. A large review The thesis of SiGe epitaxial basic technology is "Si-Ge german HBT technology: a new competitor for Si-based RF and microwave circuit applications" ("SiGe HBT Technology: A New Contender for Si-Based RF and Microwave Circuit Applications"), Proposed by JD Cressler, IEEE TED-46, page 572, May 1998.
SiGe可用不同方式加入到既有的IC製程流程。一些以 SiGe爲主的電晶體來擴充BiCMOS製程的典型範例可見於 ”BiCMOS6G :無線應用的高效能0.35 μιη SiGe BiCMOS技 術 ”("BiCMOS6G ·· A high performance 0.35 μιη SiGe BiCMOS technology for wireless applications”),由 A. Monroy等人提出,IEEE BCTM 1999,121 頁,及 ”0.24 μιη SiGe BiCMOS混合信號RF生產技術以47 GHz Ft HBT及0.18 μιη Leff CMOS爲特徵 ”(,,A 0·24 μιη SiGe BiCMOS Mixed-Signal RF Production Technology Featuring a 47 GHz Ft HBT and 0.18 μιη Leff CMOS”,由S.A. St.Onge 等人提出,IEEE BCTM99,117 頁,1999 年。 另有一種較簡單但實用的方法來製造高效能SiGe HBT電 晶體,係使用該裝置層的磊晶沉積,然後由高台電晶體蝕 刻形成該裝置結構,其類似於製造複合半導體裝置(例如 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)SiGe can be added to the existing IC process flow in different ways. Some typical examples of SiGe-based transistors to expand the BiCMOS process can be found in "BiCMOS6G: High-performance 0.35 μιη SiGe BiCMOS technology for wireless applications" (" BiCMOS6G ·· A high performance 0.35 μιη SiGe BiCMOS technology for wireless applications ") Proposed by A. Monroy et al., IEEE BCTM 1999, p. 121, and "0.24 μm SiGe BiCMOS mixed-signal RF production technology is characterized by 47 GHz Ft HBT and 0.18 μm Leff CMOS" (, A 0 · 24 μm SiGe BiCMOS "Mixed-Signal RF Production Technology Featuring a 47 GHz Ft HBT and 0.18 μm Leff CMOS", proposed by SA St. Onge et al., IEEE BCTM99, p. 117, 1999. There is another simpler but practical method for manufacturing high performance The SiGe HBT transistor is epitaxially deposited using the device layer, and then the device structure is formed by etching from a high-level transistor, which is similar to the manufacture of a compound semiconductor device (for example, this paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm)
裝 訂Binding
512441 A7 B7 五、發明説明(3 )512441 A7 B7 V. Description of the invention (3)
GaAlAs HBT)。該高台結構已被廣泛應用來快速地驗證觀 念及探測裝置特性,因爲其簡易及容易製造的特性,請參 見nSi/SiGe HBTs應用於低功率積體電路”(”Si/SiGe HBTs for Applications in Lower Power ICsn) ?由 D. Behammer等人 提出,Solid-State Electronics,Vol. 39,No. 4,p. 471,1996 0 I C形式的電路通長需要比一些電晶體更爲複雜的結構, 而在前述所討論的高台觀念通常不適用於此。例於改進的 製造方式,例如U. Kdnig等人所提出的美國專利5,587,327 ,及A. Schttppen等人所提的美國專利5,821,149中,能夠避 開一些缺點。但是,仍存在一些關键的製程步驟,例如差 動蟲晶(同時在梦基板開口上系晶成長及沉積非系晶材料在 場效區域及其它結構上),及關鍵性移除在該外在基極區域 上的射極層部份,其使得該觀念很難實用於高產量的半導 體生產。 因此需要一種較簡單的方法來實施及整合一高台形式的 SiGe HBT電晶體到一適合高產量生產的半導體製程流程中。 發明概要 因此,本發明的目的在於提供一種方法用以整合一高台 形式的SiGe電晶體結構到一習用的製程流程中,例如一矽 雙極雙重複晶矽製程流程。 本發明另一目的在於提供這一種方法,其中該高台層的 磊晶成長較爲簡單及容易。 本發明另一目的在於提供這一種方法,其需要製程步驟 的最小化。 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 512441 A7 B7 五、發明説明( ) 爲此目的,本發明根據第一方面包含一種在一半導體製 程流程中製造一矽-鍺高台電晶體的方法,特別是在設計給 射頻應用的雙極積體電路之製程流程中,其包含以下步驟: -提供一 p型摻雜矽塊基板,其具有一 n+型次集極區域用 於其表面中的高台電晶體; -在該n +型次集極區域上系晶沉積一包含η型掺雜物的碎 層; -於其上蟲晶生長一碎層,包括褚及ρ型雜質; 裝 -在該磊晶層中形成場域隔離區域,較佳地爲在一水平平 面上環繞的淺溝渠,該蟲晶層的一部份,較佳地是藉由 蝕刻,來同時定義該次集極上的一η型摻雜集極區域; 該集極區域上的一ρ型摻雜高台基極區域;及在該次集 極上的一 η型摻雜集極插塞,但與該η型摻雜集極區域及 該ρ型捧雜基極區域相隔離;及 -在該ρ型摻雜基極區域中形成該高台電晶體的一η型摻雜 射極區域。GaAlAs HBT). This high-level structure has been widely used to quickly verify concepts and characteristics of detection devices because of its simplicity and ease of manufacturing. See nSi / SiGe HBTs for low-power integrated circuits "(" Si / SiGe HBTs for Applications in Lower " Power ICsn)? Proposed by D. Behammer et al., Solid-State Electronics, Vol. 39, No. 4, p. 471, 1996 0 The circuit length of an IC form requires a more complex structure than some transistors. The aforementioned concept of a grandstand does not generally apply here. Examples of improved manufacturing methods, such as U.S. Patent 5,587,327 by U. Kdnig et al., And U.S. Patent 5,821,149 by A. Schttppen et al., Can avoid some disadvantages. However, there are still some key process steps, such as differential insect crystals (simultaneous crystal growth on the dream substrate opening and deposition of non-anamorphic materials on field effect areas and other structures), and critical removal The part of the emitter layer on the base region makes it difficult to apply the concept to high-volume semiconductor production. Therefore, a simpler method is needed to implement and integrate a high-level SiGe HBT transistor into a semiconductor process flow suitable for high-volume production. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for integrating a SiGe transistor structure in the form of a high plateau into a conventional process flow, such as a silicon bipolar double repetitive silicon silicon process flow. Another object of the present invention is to provide such a method, wherein the epitaxial growth of the mesa layer is relatively simple and easy. Another object of the present invention is to provide such a method, which requires minimization of process steps. This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 512441 A7 B7 V. Description of the invention () For this purpose, the present invention includes a method for manufacturing a silicon in a semiconductor process according to the first aspect- The method of germanium high-level transistor, especially in the process flow of the bipolar integrated circuit designed for radio frequency applications, includes the following steps:-Providing a p-type doped silicon block substrate with an n + -type secondary collector region Used for high-level crystals in its surface;-depositing a fragmentary layer containing n-type dopants on the n + -type sub-collector region;-growing a fragmentary layer on the worm crystal, including Chu and ρ -Type impurities; device-forming a field isolation region in the epitaxial layer, preferably a shallow trench surrounding a horizontal plane, a part of the worm crystal layer, preferably by etching, at the same time Define an n-type doped collector region on the secondary collector; a p-type doped high- terrace base region on the collector region; and an n-type doped collector plug on the secondary collector, but with The n-type doped collector region and the p-type doped base region are isolated; - forming a crystal of the high-TPC η-type doped emitter region of the ρ-doped base regions.
線 較佳地是’包含錯及ρ型捧雜物的該碎層係提供成一多層 結構,其包含堆疊的複數疊層。一些疊層可僅包含原有的 石夕。 碳可加入到包含鍺及Ρ型摻雜物的該碎層來延緩該Ρ型掺 雜物的擴散。 該溫度預算將在製造該矽-鍺高台電晶體期間被保持在最 小値。較佳地是,在後續有可能獨立於一射極活化及驅入 步驟之沉積包含鍺及ρ型摻雜物之矽層的步驟之後,溫度可 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 512441 A7 _B7 1、發明説明(5 「 保持低於或約在800°C。這種射極活化及驅入步驟可使用一 RTA(快速熱退火)來在一較高的溫度下執行,用以電性地 活化掺雜物,並用以設定該SiGe高台電晶體的射極-基極接 面的最終摻雜輪廓。基本上,該射極活化及驅入步驟係在 高溫下進行,例如約在105〇°C,但是在約5 - 2 0秒的短時間 之内。 再者,本發明包含根據第二方面,及根據本發明第一方 面製造的SiGe高台電晶體。 另外’本發明根據一第三方面包含一積體電路,其包含 根據本發明第二方面之至少一個該SiGe高台電晶體。 該基極層的沉積係以一平面矽上層構成晶圓上的覆蓋層 ,其提供一種較簡單的磊晶成長,其要求比先前技藝之技 術要少。 在一水平平面中形成環繞的場域隔離區域,該磊晶層(基 極與η井)的一部份,較佳地是藉由STI(淺溝渠隔離)蝕刻, 同時定義了該集極區域;該高台基極區域;及該Si〇e高台 電晶體的集極插塞。較佳地是,該STI姓刻被執行下到該次 集極。 使用具有淺溝渠隔離的習用RF-1C雙極製程流程,該基極 的SiGe羞晶層可在該集極的本質羞晶層之後直接沉積。該 淺溝渠的蚀刻同時形成該南台電晶體結構,其不需要進一 步額外的步驟。 本發明的進一步特性及其好處,將可藉由下述的本發明 之較佳具體實施例的詳細説明及所附圖面i _4而更加瞭解, -8- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 512441 A7 B7 五、發明説明(6 ) 其係僅做爲説明,而非本發明的限制。 圖式之簡單説明 圖1 - 4爲根據本發明一較佳具體實施例之製程期間,一半 導體結構的一部份之高度放大的橫截面圖。 參照編號表列 10 基板 11 高度p +摻雜晶圓 12 低摻雜矽層 3 1 埋入的η摻雜區域 3 3 埋入的ρ掺雜區域 4 1 蟲晶碎層 42 氧化層 43 氮化硬層 7 1 薄成長氧化物及沉積的氧化物 72 複晶砍 8 1 淺溝渠氧化物 111 熱氧化物 141 氮化矽層 151 外部基極層 152 氧化層 171 次級植入集極 172 基極氧化物 173 Ρ型基極接觸路徑 174 磊晶SiGe基極層The threads are preferably ' comprising the staggered and p-type inclusions provided in a multi-layered structure comprising a plurality of stacked layers. Some stacks may contain only the original stone eve. Carbon can be added to the broken layer containing germanium and the P-type dopant to retard the diffusion of the P-type dopant. This temperature budget will be kept to a minimum during the fabrication of the silicon-germanium high-stage transistor. Preferably, after a subsequent step of depositing a silicon layer containing germanium and a p-type dopant, which may be independent of an emitter activation and drive-in step, the temperature may be in accordance with the Chinese National Standard (CNS) A4 specification at this paper scale. (210 X 297 mm) 512441 A7 _B7 1. Description of the invention (5 "Keep below or about 800 ° C. This emitter activation and driving step can use a RTA (rapid thermal annealing) to a higher temperature It is performed at a temperature of 50 ° C. to electrically activate the dopants and to set the final doping profile of the emitter-base junction of the SiGe high-terrestrial crystal. Basically, the steps of activation and driving of the emitter are at It is performed at a high temperature, for example, at about 1050 ° C., but within a short time of about 5 to 20 seconds. Furthermore, the present invention includes a SiGe high-level power transistor manufactured according to the second aspect and according to the first aspect of the present invention. In addition, the invention includes a integrated circuit according to a third aspect, which includes at least one SiGe high-level transistor according to the second aspect of the invention. The base layer is deposited on a wafer by a planar silicon layer. Overlay, which provides a simpler Crystal growth requires less than the previous technology. Forming a surrounding field isolation region in a horizontal plane, a part of the epitaxial layer (base and η well), preferably by STI ( Shallow trench isolation) etching, while simultaneously defining the collector region; the high platform base region; and the collector plug of the SiOe high platform transistor. Preferably, the STI surname is performed to the next set Using the conventional RF-1C bipolar process flow with shallow trench isolation, the base SiGe crystal layer can be deposited directly after the collector ’s essential crystal layer. The etching of the shallow trench simultaneously forms the Nantai transistor. The structure does not require further additional steps. Further features and benefits of the present invention will be better understood by the following detailed description of the preferred embodiments of the present invention and the attached drawings i_4, -8 -This paper size is in accordance with the Chinese National Standard (CNS) A4 (210 X 297 mm) 512441 A7 B7 V. Description of the invention (6) It is for illustration only, and not a limitation of the present invention. 1-4 is a preferred embodiment according to the present invention A highly enlarged cross-sectional view of a part of a semiconductor structure during the manufacturing process of the embodiment. Reference number table 10 Substrate 11 Height p + doped wafer 12 Low-doped silicon layer 3 1 Embedded n-doped region 3 3 buried p-doped regions 4 1 Worm crystal fragment 42 Oxidation layer 43 Hard nitrided layer 7 1 Thin growth oxide and deposited oxide 72 Polycrystalline cut 8 1 Shallow trench oxide 111 Thermal oxide 141 Nitrogen Silicon layer 151 External base layer 152 Oxide layer 171 Secondary implanted collector 172 Base oxide 173 P-type base contact path 174 Epitaxial SiGe base layer
裝 訂Binding
線 -9- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 512441 A7 B7 五、發明説明(7 ) 181 側壁間隙壁 191 射極接觸區域 192 集極接觸區域 200 氧化物 201 氮化物 202 射極 具體實施例之詳細説明 一種較佳的方法來製造SiGe高台電晶體,其參考圖1-4在 以下進行説明。 提供一包含高度P +摻雜晶圓11的基板10,其上成長—p 型的低摻雜矽層1 2。另外,該p型晶圓可爲一均勻低捧雜 的p型晶圓(未示出)。 在疊層12中,形成埋入的η型31及p型33區域,其藉由 (i)在該疊層12上形成一二氧化碎的薄保護層;(丨丨)藉由微 影方法在其上形成一罩幕,以疋義該Si Ge高台電晶體的區 域;(iii) η型捧雜由該罩幕界定的區域;(jv)移除該罩幕; (v)熱處理所得到的結構;(vi)視需要p型摻雜該結構;及 (vii)曝光該區域31及33之上表面。該區域31也稱之爲一埋 入的n +型掺雜次集極。 然後’一磊晶矽層4 1,較佳地爲0 6_〇 7 μιη厚,其成長 於該表面上’其疊層掺雜在選擇的區域中來得到η塹及ρ型 區域(η井及ρ井)。該疊層較佳地是使用碎甲燒或二氣碎曱 燒來以RP-CVD(降壓化學氣相沉積)進行沉積。在圖1中, 該完成的疊層41爲η型摻雜。 -10- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Line-9- This paper size applies to Chinese National Standard (CNS) A4 (210 X 297 mm) 512441 A7 B7 V. Description of the invention (7) 181 Side wall gap 191 Emitter contact area 192 Collector contact area 200 Oxide 201 Nitride 202 Detailed description of the specific embodiment of the emitter A preferred method for manufacturing a SiGe high-level transistor is described below with reference to FIGS. 1-4. A substrate 10 including a highly P + doped wafer 11 is provided, on which a p-type low-doped silicon layer 12 is grown. In addition, the p-type wafer may be a uniform and low impurity p-type wafer (not shown). In the stack 12, the embedded n-type 31 and p-type 33 regions are formed, which (i) forms a thin protective layer of pulverized dioxide on the stack 12; (丨 丨) by lithography A mask is formed thereon to define the area of the Si Ge high-level transistor; (iii) the n-type doped region defined by the mask; (jv) remove the mask; (v) obtained by heat treatment (Vi) p-type doping the structure as needed; and (vii) exposing the upper surfaces of the regions 31 and 33. This region 31 is also referred to as a buried n + -type doped secondary collector. Then 'a epitaxial silicon layer 41, preferably 0 6_07 μm thick, grows on the surface', and its stack is doped in selected regions to obtain η 堑 and ρ-type regions (η wells And ρ well). The stack is preferably deposited using RP-CVD (reduced pressure chemical vapor deposition) using crushed formazan or two-gas sintering. In FIG. 1, the completed stack 41 is n-type doped. -10- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
裝Hold
kk
現在根據本發明之製程 其將形成該SiGe高台電 繼續進行另一個磊晶層174的沉積 田曰體的基極0Now according to the process of the present invention, it will form the SiGe high Taipower, and continue to deposit another epitaxial layer 174.
碎-錯層係磊晶地沉積,並摻雜P 在最化的版本中Fragmented-stratified epitaxially deposited and doped with P in the most optimized version
Si/SiGe/Si輪廊。其包含如表丨所列之多層堆叠來用於 沉積。 該基極結構可使用不同的方法 u W 万 /:&來 >几積:RP — CVD,UHV· CVD或MBE。在每個例子φ 二合甘 节叫灼亍宁,琢基極多重層174最佳地是在 一個沉積順序或行程中成長。 其將可瞭解到,該基極層174可包含具有其它厚度及组成 的少於或多於5個4層,只要财爲主的多重層174包含褚 及p型摻雜物》該鍺及P型摻雜物可在磊晶成長期間加入, 但其中之一或兩者可在一純矽層的磊晶成長之後被交替地 加入。 當使用RP-CVD時,該疊層41及174可使用相同的沉積設 備來在一個沉積順序中成長。 在剩下的製程中,其基本上要保持一嚴格的溫度預算, 即時間與溫度的組合,否則在該基極中的尖銳硼掺雜輪廓 會藉由熱活化的擴散而加寬,且所得到的SiGe高台電晶體 的高頻特性(例如fT)將會劣化。因此,在所有可能的步驟 中’熱氧化將在常用於此種製程步驟的低範圍溫度下完成 ,較佳地是不高於約800°C。 表1。基極結構的沉積層,用於沉積(疊層1最爲接近集極 ’疊層5爲上表面層)。在該表中,埃値(A)代表個別疊層 -11 - 本紙張尺度適用中國國家標準(CNS) A4规格(210 χ 297公董) 512441 A7 _ B7 五:發明説明(9 ) ~ ^ ' 的厚度’ i - S i代表未掺雜(原有)矽,百分比値代表原子百 分比中的平均鍺濃度(Si^xGex),而b代表與硼濃度掺雜的 基極,其單位爲cm·3。對於第三層,一梯度輪廓可以達到 ’其鍺含量由12變化到0%,係由下往上變化。 疊層編號 材料 1 200 A i-Si 2 400 A i-SiGe,12% 3 250 A SiGe, 12-0 %, β 5E18 4 250 A Si, B 5E18 5 400 A i-Si 另外要注意來避免基極加寬,在其磊晶沉積期間或之後 可加入碳到該基極層174。這種供應將延遲硼擴散,並可在 熱處理之後維持一窄的摻雜輪廓。對於進一步關於此的細 節’可參考到 DE 19652423 (B· Heinemann,G· Lippert,及!·!· Osten,1998),其在此引用做爲參考。 該$層174的厚度在表1的範例中顯示爲woo a。在接下 來的触刻及掺雜步驟中’此必須考慮到,因此植入能量及 蝕刻深度相較於習用的製程必須略微增加,其中在製程中 的此點不加入基極層174。此處係參考瑞典專利申請編號 0101567-6,其在此引用做爲參考。但是,該基極層174的 厚度很小,所以不必要對植入能量及蝕刻深度做任何改變。 爲了定義疊層41及174中的主動區域及隔離這些區域,即 -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公爱)Si / SiGe / Si contour. It contains multiple stacks as listed in Table 丨 for deposition. The base structure can use different methods uW /: & to several products: RP — CVD, UHV · CVD or MBE. In each example, the φ-dioxane is called Zhuo Ning, and the basal multiple layer 174 is best grown in a deposition sequence or stroke. It will be understood that the base layer 174 may include less than or more than 5 4 layers with other thicknesses and compositions, as long as the multi-layer 174 mainly contains Chu and p-type dopants. The germanium and P Type dopants can be added during epitaxial growth, but one or both of them can be added alternately after epitaxial growth of a pure silicon layer. When RP-CVD is used, the stacks 41 and 174 can be grown in a deposition sequence using the same deposition equipment. In the remaining processes, it is basically necessary to maintain a strict temperature budget, that is, the combination of time and temperature, otherwise the sharp boron doping profile in the base will be widened by thermally activated diffusion, and The high-frequency characteristics (for example, fT) of the obtained SiGe high-power transistor will be deteriorated. Therefore, in all possible steps, the 'thermal oxidation' will be performed at a low range of temperatures commonly used in such process steps, preferably no higher than about 800 ° C. Table 1. The deposited layer of the base structure is used for deposition (Layer 1 is closest to the collector 'Layer 5 is the upper surface layer). In the table, Ai (A) represents individual stacks -11-This paper size applies Chinese National Standard (CNS) A4 specifications (210 χ 297 public directors) 512441 A7 _ B7 V: Description of the invention (9) ~ ^ ' The thickness' i-S i represents undoped (original) silicon, the percentage 値 represents the average germanium concentration (Si ^ xGex) in atomic percentage, and b represents the base doped with the boron concentration, and its unit is cm · 3. For the third layer, a gradient profile can be reached, and its germanium content changes from 12 to 0%, which changes from bottom to top. Stacking number material 1 200 A i-Si 2 400 A i-SiGe, 12% 3 250 A SiGe, 12-0%, β 5E18 4 250 A Si, B 5E18 5 400 A i-Si The electrode is widened, and carbon may be added to the base layer 174 during or after its epitaxial deposition. This supply will delay boron diffusion and maintain a narrow doping profile after heat treatment. For further details' on this, reference can be made to DE 19652423 (B. Heinemann, G. Lippert, and!!! Osten, 1998), which is incorporated herein by reference. The thickness of the $ layer 174 is shown as woo a in the example in Table 1. This must be taken into account in the subsequent lithography and doping steps. Therefore, the implantation energy and etch depth must be slightly increased compared to the conventional process, and the base layer 174 is not added at this point in the process. Reference is made here to Swedish Patent Application No. 0101567-6, which is hereby incorporated by reference. However, the thickness of the base layer 174 is small, so it is not necessary to change the implantation energy and the etching depth. In order to define the active areas in the stacks 41 and 174 and isolate these areas, that is, -12- this paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 public love)
裝 訂Binding
512441 A7 B7 五、發明説明(1()~) _ " ~ 形成淺溝渠。首先’在該基極層174之上形成一氧化層42 ,且在其上沉積一氮化矽層4 3。所得到的結構示於圖j。 然後一硬罩幕由圖案化及蚀刻掉在要形成溝渠的區域中 的氮化矽4 3及氧化物4 2層來形成。然後該淺溝渠使用該叠 層42及43的剩餘部份做爲硬罩幕來蝕刻該結構來定義。同 時’定義了在該次集極31之上一 η型摻雜集極區域(11井)41 ’·其上有該SiGe南台電晶體的一ρ型摻雜基極區域174;及 該次集極31上一 η型摻雜集極插塞41,但由該淺溝渠隔離 於該η型摻雜集極區域41及該ρ型摻雜基極區域174。 該淺溝渠在製程流程中稍後將以氧化物81填入,例如參 考圖3。 其將可瞭解到,該淺溝渠可形成使得其由該上矽表面垂 直地延伸,即疊層174的上表面,並下到該次集極3丨(在圖 1-4中未示出)。 接下來,在該SiGe高台電晶體周圍形成深溝渠做爲元件 隔離。但是深溝渠的形成可依需要進行。 該深溝渠係由以下步驟形成:(i)藉由沉機一二氧化硬層 來形成該深溝渠的硬罩幕;及圖案化及蝕刻此二氧化碎層 來定義該深溝渠的開口;(ii)蚀刻該深溝渠;(iii)移除該氧 化層的剩餘部份;(iv)成長一薄氧化物在該結構之上;(v) 以沉積的氧化物填入該深溝渠(該薄成長氧化物及該沉積的 氧化物共同標示爲71)及複晶矽72 ; (vi)視需要平面化該 複晶矽;及(vii)回蚀刻該結構來由該淺溝渠區域移除所有 的複晶矽。所得到的結構示爲圖2。 -13- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 512441 A7 B7 五、發明説明( ) 接下來,該淺溝渠以氧化物8 1填入,並移除該氮化物4 3 及氧化物42層,以及在該氮化層43之上的該沉積氧化物。 該隔離方式進一步描述於國際專利申請編號W0 0120664 ,其在此引用做爲參考。 藉此,一熱氧化物即成長在曝光的矽表面上(在圖3中其 部份可見於氧化物111)。 對於該SiGe高台電晶體的形成,需要由該晶圓的表面到 該次集極3 1之η型摻雜低阻抗路徑。這種路徑係由在η型掺 雜之後的微影圖案化來形成,以由該結構的上表面下到該 次集極3 1來定義一低阻抗集極插塞4 1,174。該能量及劑 量選擇的細節係討論在WO 9853489,其在此引用做爲參考 。請注意在該η型摻雜集極插塞41之上,在蝕刻該淺溝渠( 圖2 )期間所得到的疊層1 7 4之剩餘部份可達到一 ^沒淨掺雜 ’而完成的集極插塞在圖3中標示爲41,174。存在於該集 極插塞41,174上的氧化層即被移除。 然後,一薄氮化矽層被沉積(其剩餘部份在圖3中標示爲 141),其目的是要加入到在.SiGe高台電晶體的射極/基極 區域中沉積的絕緣層U1$,造成該基極-集極接面的低寄 生電容;並且做爲該集極插塞41,174的抗氧化罩幕。 接下來,在製k SiGe南台電晶體的一些習用製程步驟之 後,包含:(i)形成一射極/基極開口;(ii)形成一外部的基 極層151 ; (iii)形成一氧化層152 ; (iv)在該射極/集極開口 内形成一射極開口;(v)視需要形成一次級植入的集極171 ;(v〇形成p型基極接觸路徑173 ; (νΗ)在該射極開口中形512441 A7 B7 V. Description of the invention (1 () ~) _ " ~ Form a shallow trench. First, an oxide layer 42 is formed on the base layer 174, and a silicon nitride layer 43 is deposited thereon. The resulting structure is shown in Figure j. A hard mask is then formed by patterning and etching away the silicon nitride 4 3 and oxide 42 layers in the area where the trench is to be formed. The shallow trench is then defined using the remaining portions of the stacks 42 and 43 as a hard mask to etch the structure. At the same time, 'an n-type doped collector region (well 11) 41 above the sub-collector 31' is defined. A p-type doped base region 174 on which the SiGe Nantai transistor is located; An n-type doped collector plug 41 is disposed on the electrode 31, but is isolated from the n-type doped collector region 41 and the p-type doped base region 174 by the shallow trench. This shallow trench will be filled later with oxide 81 during the process flow, for example, refer to Figure 3. It will be understood that the shallow trench can be formed such that it extends vertically from the upper silicon surface, ie, the upper surface of the stack 174, and down to the secondary collector 3 (not shown in Figures 1-4) . Next, a deep trench is formed around the SiGe high-level transistor as an element isolation. However, deep trenches can be formed as needed. The deep trench is formed by the following steps: (i) forming a hard cover of the deep trench by a sinker-dioxide hard layer; and patterning and etching the fragmented oxide layer to define the opening of the deep trench; ( ii) etching the deep trench; (iii) removing the remaining portion of the oxide layer; (iv) growing a thin oxide over the structure; (v) filling the deep trench with the deposited oxide (the thin The growth oxide and the deposited oxide are collectively designated 71) and polycrystalline silicon 72; (vi) planarize the polycrystalline silicon as needed; and (vii) etch back the structure to remove all of the shallow trench area Polycrystalline silicon. The resulting structure is shown in FIG. 2. -13- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 512441 A7 B7 V. Description of the invention () Next, the shallow trench is filled with oxide 8 1 and the nitrogen is removed A layer of compound 4 3 and an oxide 42, and the deposited oxide on the nitride layer 43. This isolation method is further described in International Patent Application No. WO 0120664, which is incorporated herein by reference. As a result, a thermal oxide is grown on the exposed silicon surface (a portion can be seen in oxide 111 in Fig. 3). For the formation of the SiGe high-level transistor, an n-type doped low-impedance path from the surface of the wafer to the sub-collector 31 is required. This path is formed by lithographic patterning after n-type doping to define a low impedance collector plug 4 1,174 from the upper surface of the structure down to the secondary collector 31. Details of this energy and dosage selection are discussed in WO 9853489, which is incorporated herein by reference. Please note that on the n-type doped collector plug 41, the remaining portion of the stack 1 74 obtained during the etching of the shallow trench (Fig. 2) can reach a net doping. Collector plugs are labeled 41,174 in FIG. The oxide layer existing on the collector plugs 41, 174 is removed. Then, a thin silicon nitride layer is deposited (the remainder is labeled 141 in FIG. 3), the purpose of which is to add to the insulating layer U1 $ deposited in the emitter / base region of the .SiGe high-level transistor. , Resulting in low parasitic capacitance of the base-collector interface; and serves as an anti-oxidation mask for the collector plugs 41,174. Next, after some conventional process steps for manufacturing a kSiGe Nantai transistor, it includes: (i) forming an emitter / base opening; (ii) forming an external base layer 151; (iii) forming an oxide layer 152; (iv) forming an emitter opening in the emitter / collector opening; (v) forming a primary implanted collector 171 as needed; (v0 forming a p-type base contact path 173; (νΗ) Shaped in the emitter opening
裝 訂Binding
線 -14-Line -14-
512441 A7 _______B7 五、發明説明(12~) — ' " 成基極氧化物1 7 2,例如在藉由在一 8〇〇π的氧化環境中的 短壓縮之後沉積一 TE0S(此處可使用一較低溫度預算);及 (viii)形成氮化物側壁間隙壁18ι。在此最後一個步驟中, 該薄氮化矽層14 1被移除,除了貢獻於間隙壁丨8丨,及該外 部基極層151之下。所得到的結構示於圖3。 該貫際側壁間隙壁可在一兩步驟製程中形成,其中該氮 化物18 1先選擇性地移洽到該射極開口中的氧化物丨,其 中如果需要的話可移除在該集極插塞上曝光的矽(該上基極 的剩餘物)。該射極在此蝕刻期間由該氧化層182保護。在 該射極開口中剩餘的氧化物1 7 2接著被移除。 然後,形成一 η型摻雜複晶矽層,後續被蝕刻來定義接觸 區域191及192到該SiGe高台電晶體的射極與集極。請注意 ’在該p型複晶矽層151之上的該氧化層152被移除,除了該 射極接觸區域191之下。 接下來,一由氧化物及氮化物構成的雙層2〇〇,201沉積在 該結構上。然後該結構即暴露在高溫中來活化及驅入該先 前植入的摻雜物。 在一較佳具體實施例中,該熱處理係使用一 RTA(快速熱 退火)在約10 5 0 °C之氮氣中進行5 - 2 0秒。此退火的目的在 於電性活化該植入的物種,並設定該SiGe高台電晶體的射 極-基極接面的最終摻雜輪靡。 請注意該先前沉積的氧化矽200及氮化矽201層留在該晶 圓上。其目的在於在該熱處理期間停止該植入的摻雜物向 外擴散到週遭環境。 -15- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 512441 A7 _____ B7 五、發明説明(13 ) 也請注意到,此熱處理在該製程流程中爲該高台基極層 174的沉積之後唯一的製程,其係在約8〇〇i的溫度之上進 行0 在該射極接點191中的n型摻雜物將藉由擴散穿透到該基 極174中,並形成該射極2〇2。同時,該疊層151的ρ型摻雜 物將擴散到基極接觸路徑173中。所得到的結構示於圖4。 最後’該結構被非等向性餘刻,所以形成外側間隙壁; 暴露的矽表面視需要提供矽化物來降低該電阻;並形成保 護層及金屬層。 因此所述的製造SiGe高台電晶體的製程流程具有一些好 處。 該磊晶基極層的關鍵沉積(參見圖i )係以一平面矽上層構 成晶圓上的覆蓋層。其它已知的製程需要具有小製程裕度 的選擇性磊晶沉積(僅在由罩幕部份覆蓋的結構上之暴露的 碎區域),其對於該磊晶成長有高的需求,或差動沉積(在 矽及氧化物區域上),其中在不同區域上的成長參數可以不 同0 因爲此步驟結合於該STI蝕刻,其不需要獨立的高台蝕刻 。同時,藉由蝕刻該高台基極174,形成該淺溝渠,並定義 了該η型摻雜集極區域(n井),及該η型摻雜集極插塞。蝕 刻該STI下到該埋入的η +層可完全隔離該最後的高台結構。 所提出的製程流程可輕易地整合到既有的雙重複製程流 程。 其很明顯可看出,本發明可以不同的方式來改變。這些 -16- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 裝 訂512441 A7 _______B7 V. Description of the invention (12 ~) — '" Formation of base oxide 1 72, for example by depositing a TEOS after short compression in an oxidizing environment of 800 π (usable here) A lower temperature budget); and (viii) forming nitride sidewall spacers 18m. In this last step, the thin silicon nitride layer 141 is removed, except that it contributes to the spacer wall 丨 8 丨 and below the external base layer 151. The resulting structure is shown in FIG. 3. The inter-wall spacer can be formed in a two-step process, in which the nitride 181 is first selectively transferred to the oxide in the emitter opening, and can be removed in the collector plug if necessary. Plug the exposed silicon (the remainder of the upper base). The emitter is protected by the oxide layer 182 during this etching. The remaining oxide 1 72 in the emitter opening is then removed. Then, an n-type doped polycrystalline silicon layer is formed and subsequently etched to define the contact regions 191 and 192 to the emitter and collector of the SiGe high-level transistor. Note that the oxide layer 152 above the p-type polycrystalline silicon layer 151 is removed, except under the emitter contact region 191. Next, a double layer 200,201 composed of an oxide and a nitride is deposited on the structure. The structure is then exposed to high temperatures to activate and drive the previously implanted dopants. In a preferred embodiment, the heat treatment is performed using a RTA (rapid thermal annealing) in nitrogen at about 1050 ° C for 5-20 seconds. The purpose of this annealing is to electrically activate the implanted species, and to set the final doping of the emitter-base junction of the SiGe high-level transistor crystal. Note that the previously deposited layers of silicon oxide 200 and silicon nitride 201 remain on the wafer. The purpose is to stop the implanted dopants from diffusing out to the surrounding environment during the heat treatment. -15- This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210 X 297 mm) 512441 A7 _____ B7 V. Description of the invention (13) Please also note that this heat treatment is the high platform base in the process flow The only process after the deposition of the layer 174 is performed above a temperature of about 800i. The n-type dopant in the emitter contact 191 will penetrate into the base 174 by diffusion. And the emitter electrode 202 is formed. At the same time, the p-type dopant of the stack 151 will diffuse into the base contact path 173. The resulting structure is shown in FIG. 4. Finally, the structure is anisotropically etched, so an outer barrier wall is formed; the exposed silicon surface provides silicide as needed to reduce the resistance; and a protective layer and a metal layer are formed. Therefore, the process flow for manufacturing SiGe high-level transistor has some advantages. The key deposition of the epitaxial base layer (see Figure i) is to form a cover layer on the wafer with a flat top layer of silicon. Other known processes require selective epitaxial deposition with a small process margin (only on the exposed broken areas on the structure covered by the mask portion), which has high demand for the epitaxial growth, or differential Deposition (on silicon and oxide regions), where the growth parameters on different regions can be different. Because this step is combined with the STI etch, it does not require a separate elevated etch. At the same time, the high trench base 174 is etched to form the shallow trench, and the n-type doped collector region (n-well) and the n-type doped collector plug are defined. Etching the η + layer under the STI can completely isolate the last mesa structure. The proposed process flow can be easily integrated into an existing dual copy process flow. It is clear that the invention can be modified in different ways. These -16- This paper size applies to China National Standard (CNS) A4 size (210 X 297 mm) binding
512441 A7 B7五、發明説明(14 ) 變化並不應視爲背離本發明的範圍。所有這些修正對於本 技藝專業人士將可瞭解到皆是要包含在所附申請專利範圍 内0 裝 訂512441 A7 B7 V. Description of the invention (14) Changes should not be regarded as departing from the scope of the present invention. All of these amendments will be understood by those skilled in the art to be included in the scope of the attached patent application.
-17- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇x 297公釐)-17- This paper size applies to China National Standard (CNS) A4 (21 × 297 mm)
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0103726A SE522891C2 (en) | 2001-11-09 | 2001-11-09 | A silicon-germanium mesa transistor, a method for its preparation and an integrated circuit comprising such a transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
TW512441B true TW512441B (en) | 2002-12-01 |
Family
ID=20285918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW090129304A TW512441B (en) | 2001-11-09 | 2001-11-27 | Silicon-germanium mesa transistor |
Country Status (4)
Country | Link |
---|---|
US (1) | US7008851B2 (en) |
SE (1) | SE522891C2 (en) |
TW (1) | TW512441B (en) |
WO (1) | WO2003041152A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7002221B2 (en) * | 2003-08-29 | 2006-02-21 | International Business Machines Corporation | Bipolar transistor having raised extrinsic base with selectable self-alignment and methods of forming same |
US7550787B2 (en) * | 2005-05-31 | 2009-06-23 | International Business Machines Corporation | Varied impurity profile region formation for varying breakdown voltage of devices |
TW200849556A (en) * | 2006-06-14 | 2008-12-16 | Nxp Bv | Semiconductor device and method of manufacturing such a device |
KR100839786B1 (en) | 2006-09-20 | 2008-06-19 | 전북대학교산학협력단 | SiGe semiconductor device structure and its manufacture method |
EP2250666A1 (en) * | 2008-02-28 | 2010-11-17 | Nxp B.V. | Semiconductor device and method of manufacture thereof |
JP2010251368A (en) * | 2009-04-10 | 2010-11-04 | Renesas Electronics Corp | Bipolar transistor and method of manufacturing the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4417916A1 (en) * | 1994-05-24 | 1995-11-30 | Telefunken Microelectron | Method of manufacturing a bipolar transistor |
DE19609933A1 (en) * | 1996-03-14 | 1997-09-18 | Daimler Benz Ag | Method of manufacturing a heterobipolar transistor |
SE512813C2 (en) * | 1997-05-23 | 2000-05-15 | Ericsson Telefon Ab L M | Method of producing an integrated circuit comprising a dislocation-free collector plug connected to a buried collector in a semiconductor component, which is surrounded by a dislocation-free trench and integrated circuit made according to the method |
JP5172060B2 (en) | 1999-09-17 | 2013-03-27 | インフィネオン テクノロジーズ アクチェンゲゼルシャフト | Self-aligned method for forming deep trenches in shallow trenches for semiconductor device isolation |
US6251738B1 (en) * | 2000-01-10 | 2001-06-26 | International Business Machines Corporation | Process for forming a silicon-germanium base of heterojunction bipolar transistor |
US6346453B1 (en) * | 2000-01-27 | 2002-02-12 | Sige Microsystems Inc. | Method of producing a SI-GE base heterojunction bipolar device |
US6797580B1 (en) * | 2003-02-21 | 2004-09-28 | Newport Fab, Llc | Method for fabricating a bipolar transistor in a BiCMOS process and related structure |
-
2001
- 2001-11-09 SE SE0103726A patent/SE522891C2/en not_active IP Right Cessation
- 2001-11-27 TW TW090129304A patent/TW512441B/en not_active IP Right Cessation
-
2002
- 2002-10-15 WO PCT/SE2002/001875 patent/WO2003041152A1/en not_active Application Discontinuation
-
2004
- 2004-04-21 US US10/828,712 patent/US7008851B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US7008851B2 (en) | 2006-03-07 |
SE522891C2 (en) | 2004-03-16 |
WO2003041152A1 (en) | 2003-05-15 |
SE0103726D0 (en) | 2001-11-09 |
US20040201039A1 (en) | 2004-10-14 |
SE0103726L (en) | 2003-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9508824B2 (en) | Method for fabricating a bipolar transistor having self-aligned emitter contact | |
US7911024B2 (en) | Ultra-thin SOI vertical bipolar transistors with an inversion collector on thin-buried oxide (BOX) for low substrate-bias operation and methods thereof | |
US7615457B2 (en) | Method of fabricating self-aligned bipolar transistor having tapered collector | |
US6812545B2 (en) | Epitaxial base bipolar transistor with raised extrinsic base | |
US7190046B2 (en) | Bipolar transistor having reduced collector-base capacitance | |
US6656809B2 (en) | Method to fabricate SiGe HBTs with controlled current gain and improved breakdown voltage characteristics | |
US8673726B2 (en) | Transistor structure with a sidewall-defined intrinsic base to extrinsic base link-up region and method of forming the transistor | |
US6989557B2 (en) | Bipolar junction transistor and fabricating method | |
EP2062291B1 (en) | Method of manufacturing a bipolar transistor | |
TWI582853B (en) | Transistor structure with a sidewall-defined intrinsic base to extrinsic base link-up region and method of forming the structure | |
JP2816122B2 (en) | Method for manufacturing high-frequency bipolar transistor structure | |
US7132344B1 (en) | Super self-aligned BJT with base shorted field plate and method of fabricating | |
EP0233202A4 (en) | Fabricating a semiconductor device with buried oxide. | |
TW512441B (en) | Silicon-germanium mesa transistor | |
US6586818B1 (en) | Self-aligned silicon germanium heterojunction bipolar transistor device with electrostatic discharge crevice cover for salicide displacement | |
KR20030047274A (en) | a Super self-aligned heterojunction bipolar device and a method for fabricating the same | |
JP2005510867A (en) | Semiconductor device and method for manufacturing the semiconductor device | |
US7235861B1 (en) | NPN transistor having reduced extrinsic base resistance and improved manufacturability | |
TWI285963B (en) | Semiconductor device | |
JP2001189321A (en) | Horizontal heterobipolar transistor and manufacturing method therefor | |
JP2006310590A (en) | Semiconductor device and its manufacturing method | |
JP2005251888A (en) | Horizontal hetero-bipolar transistor and its manufacturing method | |
WO2013142862A1 (en) | Sige heterojunction bipolar transistor with shallow out-diffused p+ emitter region |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |