TW511273B - Semiconductor memory device and its manufacturing method - Google Patents

Semiconductor memory device and its manufacturing method Download PDF

Info

Publication number
TW511273B
TW511273B TW090119919A TW90119919A TW511273B TW 511273 B TW511273 B TW 511273B TW 090119919 A TW090119919 A TW 090119919A TW 90119919 A TW90119919 A TW 90119919A TW 511273 B TW511273 B TW 511273B
Authority
TW
Taiwan
Prior art keywords
layer
diffusion layer
memory device
impurity
semiconductor memory
Prior art date
Application number
TW090119919A
Other languages
Chinese (zh)
Inventor
Takashi Ohsawa
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Application granted granted Critical
Publication of TW511273B publication Critical patent/TW511273B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/404Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7841Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4097Bit-line organisation, e.g. bit-line layout, folded bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/02Arrangements for writing information into, or reading information out from, a digital store with means for avoiding parasitic signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/18Bit line organisation; Bit line lay-out
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/005Transfer gates, i.e. gates coupling the sense amplifier output to data lines, I/O lines or global bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/2281Timing of a read operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/229Timing of a write operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/4016Memory devices with silicon-on-insulator cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

A semiconductor memory device is provided. Its one-bit memory cell (MC) is composed by a MOS transistor with an electrically isolated floating body. The gate 13 of the MOS transistor connects to the word line (WL), its drain diffusion layer 14 connects to the bit-line (BL) and its source diffusion layer 15 connects to the constant source line (SL). Inject carriers that are generated from the impact ionization into the floating body 12 to keep the first threshold state. Release the carriers of the floating body into the second threshold state by applying a forward bias on the drain side PN junction. These two states are the bi-state of memory. Employ this simple transistor structure as a memory unit to get a dynamic memory with less signal lines.

Description

五、發明説明(1 ) 發明背景 發明領域 本發明係有關動態型半導體記憶裝置(DRAM)。 相關之先前技藝描述 先前之DRAM以MOS電晶體與電容器構成有記憶體單元 。DRAM的微細化因採用溝渠電容器構造及堆疊電容器構 造而獲得很大進步。目前單位記憶體單元的大小(單元尺寸) ,若最小加工尺寸爲F,則面積縮小至2F X 4F = 8F2。亦即 ,最小加工尺寸F隨時代而縮小,單元尺寸一般爲aF2時, 係數a也隨時代而縮小,目前F = 0 · 1 8 μπι,而達到了 oc = 8 〇 今後爲求保持與過去不變之單元尺寸或晶片尺寸的發展 趨勢,於FC0.18 μηι時,要求達到a < 8,於F < 0.1 3 μπι時 ,更要求達到a < 6,如何隨微細加工而縮小單元尺寸的面 積乃成爲重大課題。因此也提出各種使1個電晶體/1個電容 器之記憶體單元爲6F2及4F2大小的方案。但是有電晶體必 須爲直立型之技術性困難、鄰接記憶體單元間之電性干擾 大的問題、更有加工及膜生成等製造技術上的困難,不容 易實用化。 另外,也提出許多不使用電容器,而將一個電晶體做爲 記憶體單元的DRAM方案,列舉如下: (1) JOHN E. LEISS et al5 1 丨dRAM Design Using the Taper-Isolated Dynamic CellM (IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-29, NO. 4, APRIL 1982, __ 本紙張尺度適用中國國家標準(CNS) A4規格(210x 297公釐) 5(11273 A7 B7 五、發明説明(2 ) pp707-714) (2) 特開平3-171768號公報 (3) Marnix R. Tack et al, ”The Multistable Charge-Controlled Memory Effect in SOI MOS Transistors at Low Temperatures”(IEEE TRANSACTIONS ON ELECTRON DEVICES,VOL. 37, MAY,1990, ppl373-1382) (4) Hsing-jen Wann et al,"A Capacitorless DRAM Cell on SOI Substrate1 丨(IEDM93, pp635-638) (1) 的記憶體單元係使用埋入通道構造的MOS電晶體構 成。利用形成在元件分離絕緣膜之錐角部的寄生電晶體, 進行表面反轉層的充放電,進行雙値記憶。 (2) 的記憶體單元係使用各個.井被分離的MOS電晶體,並 將由MOS電晶體之井電位所決定的臨限値作爲雙値資料。 (3) 的記憶體單元係由SOI基板上的MOS電晶體構成。自 SOI基板外加大的負電壓,利用矽層氧化膜與界面部的空穴 儲存’藉由該空穴的釋放、注入來執行雙値記憶。 (4) 的記憶體單元係由SOI基板上的MOS電晶體構成。 MOS電晶體是一種構造,另外一種構造係重疊在没極擴散 層的表面,形成有反向導電型層,將實質上寫入用pM〇s 電晶體與讀出用NMOS組合成一體。將NMOS電晶體的基板 區域作爲漂浮的節點,藉由其電位記憶雙値資料。 但是,(1)項的構造複雜,因利用寄生電晶體,因此特性 的控制性有困難。(2)項的構造雖簡單,但是電晶體的汲極 、源極均需要連接於信號線來控制電位。此外,因採井分 —. -5 嫌 本紙張尺度適财目目^^^(CNS) A4規格(21()><297公^ " ~":-- 511273 A7 B7 五、發明説明(3 ) 離,因此單元尺寸大,且無法逐位元改寫。(3)項需要自SOI 基板端控制電位,因此無法逐位元改寫,控制上有困難。 (4)項需要採特殊電晶體構造,且因記憶體單元上需要字線 、寫入位元線、讀出位元線、清除線,因此信號線數量多 〇 發明概述 本發明目的之一爲提供一種半導體記憶裝置及其製造方 法,可將單純的電晶體構成記憶體單元,並以較少的信號 線執行雙値資料的動態記憶。 本發明一種實施形態之半導體記憶裝置的1位元記憶體 早元由1個電晶體構成5 上述電晶體包含: 半導體層,其係第一導電型,與其他記憶體單元電性分 離,呈漂浮狀態; 汲極擴散層,其係第二導電型,形成在上述第一導電型 的半導體層上,連接於位元線; 源極擴散層,其係第二導電型,形成在上述第一導電型 的半導體層上與上述汲極擴散層隔離,連接於源極線;及 閘極,其係經由閘極絕緣膜形成在上述汲極擴散層與上 述源極擴散層間之上述半導體層上,連接於字線; 其中 上述電晶體具有:第一資料狀態,其具有在上述半導體 層上保持有過剩之許多載體的第一臨限値電壓;及第二資 料狀態,其具有上述半導體層上過剩之許多載體被釋放的 _-6^___ 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 511273 A7 B7 五、發明説明(4 ) 第二臨限値電壓。 此外,本發明一種實施形態之半導體記憶裝置的製造方 法爲, 在半導體基板上形成絕緣膜, 在上述絕緣膜上形成第一導電型的半導體層, 在上述半導體層上形成閘極形成區域上有開口的掩膜, 在上述掩膜的開口側壁形成側壁絕緣膜, 通過上述掩膜的上述開口,在上述半導體層上添加雜質 ,形成雜質濃度高於上述半導體層之第一導電型的雜質添 加層, 除去上述側壁絕緣膜之後,在上述掩膜之上數開口埋入 閘極絕緣膜與閘極來形成, 除去上述掩膜之後,在上述半導體層上添加雜質,形成 第二導電型的汲極擴散層及源極擴散層。 圖式之簡要説明 圖1爲顯示本發明第一種實施形態之DRAM之記憶體單 元構造的剖面圖。 圖2爲該DRAM之記憶體單元的等效電路。 圖3爲該DRAM之記憶體單元陣列的布局。 圖4A爲圖3之A-Af剖面圖。 圖4B爲圖3之B-B^j面圖。 圖5顯示該DRAM單元之字線電位與表體電位的關係圖。 圖6爲該DRAM單元之讀出方式的説明圖。 圖7爲該DRAM單元之其他讀出方式的説明圖。 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 511273 A7 B7 五、發明説明(5 ) 圖8爲顯示該DRAM之”1"資料讀出/再新的操作波形圖。 圖9爲顯示該DRAM之”0”資料讀出/再新的操作波形圖。 圖10爲顯示該DRAM之”1”資料讀出/”0”資料寫入的操作 波形圖。 圖11爲顯示該DRAM之”0”資料讀出/”1”資料寫入的操作 波形圖。 圖12爲顯示該DRAM其他讀出方式之”1"資料讀出/再新 的操作波形圖。 圖13爲顯示該DRAM其他讀出方式之”0”資料讀出/再新 的操作波形圖。 ·、 圖14爲顯示該DRAM其他讀出方式之”1"資料讀出/·’0"資 料寫入的操作波形圖。 圖15爲顯示該DRAM其他讀出方式之”0”資料讀出/ΠΓ·資 料寫入的操作波形圖。 圖16爲顯示該DRAM單元之閘極電容Cgb-電壓Vgb的特 性圖。 圖17該DRAM單元之定電流讀出方式的等效電路圖。 圖18顯示該DRAM單元之讀出操作的位元線電位變化圖 〇 圖19爲用於説明該DRAM單元之π0”寫入速度的等效電路 〇 圖20爲顯示圖19之ρ型層的電位變化圖。 圖21爲顯示該DRAM單元之π0”資料單元之閘極電容Cgb-電壓Vgb的曲線(ρ型多結晶梦閘極時)圖。 -8- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 511273 A7 B7 五、發明説明(6 ) 圖22同樣顯示Π0Π資料單元之字線電位Vwl與表體電位 VB的關係圖。 圖23顯示該DRAM單元之”1”資料單元之字線電位Vwl與 表體電位VB的關係圖。 圖24爲顯示該DRAM單元之”1"資料單元之閘極電容Cgb-電壓Vgb的曲線(p型多結晶石夕閘極時)圖。 圖25爲顯示該DRAM單元之’’ 1 ”資料單元之閘極電容Cgb-電壓Vgb的曲線(p型多結晶碎閘極時)圖。 圖26顯示ffln資料單元之字線電位Vwl與表體電位VB的 關係(η型多結晶矽閘極時)圖。 圖27爲顯示該DRAM單元之”0"資料單元之閘極電容Cgb-電壓Vgb的曲線(p型多結晶矽閘極時)圖。 圖28顯示該”0ff資料單元之字線電位Vwl與表體電位VB 的關係(η型多結晶矽閘極時)圖。 圖29爲顯示使用薄的矽層時之ff 1π資料單元之閘極電容 Cgb-電壓Vgb的曲線(ρ型多結晶矽閘極時)圖。 圖3 0顯示該”Γ’資料單元之字線電位Vwl與表體電位VB 的關係圖。 圖3 1爲顯示使用薄的矽層時之Π0Π資料單元之閘極電容 Cgb-電壓Vgb的曲線(ρ型多結晶梦閘極時)圖。 圖32顯示該Π0Π資料單元之字線電位Vwl與表體電位VB 的關係圖。 圖33爲顯示矽層之雜質濃度與Π0Π,” 1"資料之臨限値差 的關係圖。 -9- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐)V. Description of the Invention (1) Background of the Invention Field of the Invention The present invention relates to a dynamic semiconductor memory device (DRAM). Related prior art description The previous DRAM uses MOS transistors and capacitors to form memory cells. The miniaturization of DRAM has been greatly improved by using a trench capacitor structure and a stacked capacitor structure. The current unit memory unit size (unit size). If the minimum processing size is F, the area is reduced to 2F X 4F = 8F2. That is, the minimum processing size F is reduced with time, and when the unit size is generally aF2, the coefficient a is also reduced with time. At present, F = 0 · 1 8 μπι, and oc = 8 has been reached in the future. With the development trend of changing cell size or wafer size, it is required to achieve a < 8 when FC 0.18 μηι, and a < 6 when F < 0.1 3 μπι, how to reduce the cell size with microfabrication Area has become a major issue. Therefore, various schemes for making the memory unit of one transistor per one capacitor to 6F2 and 4F2 have been proposed. However, there are technical difficulties that the transistor must be upright, large electrical interference between adjacent memory cells, and manufacturing technical difficulties such as processing and film formation, which are not easy to put into practical use. In addition, many DRAM solutions that do not use capacitors and use a transistor as a memory cell are also listed, as follows: (1) JOHN E. LEISS et al5 1 dRAM Design Using the Taper-Isolated Dynamic CellM (IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-29, NO. 4, APRIL 1982, __ This paper size applies to China National Standard (CNS) A4 specifications (210x 297 mm) 5 (11273 A7 B7 V. Description of the invention (2) pp707-714 ) (2) JP 3-171768 (3) Marnix R. Tack et al, "The Multistable Charge-Controlled Memory Effect in SOI MOS Transistors at Low Temperatures" (IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 37, MAY, 1990, ppl373-1382) (4) Hsing-jen Wann et al, " A Capacitorless DRAM Cell on SOI Substrate1 丨 (IEDM93, pp635-638) (1) The memory cell system is a MOS transistor with a buried channel structure Structure. The parasitic transistor formed at the corner of the cone of the element separation insulating film is used to charge and discharge the surface inversion layer to perform dual memory. (2) The memory cell uses MOS transistors that are separated from each other. The threshold value determined by the well potential of the MOS transistor is used as the dual data. (3) The memory cell is composed of the MOS transistor on the SOI substrate. The negative voltage increased from the outside of the SOI substrate is oxidized by the silicon layer. The hole storage of the film and the interface portion performs the double memory by releasing and injecting the holes. (4) The memory cell is composed of a MOS transistor on an SOI substrate. A MOS transistor is a structure. A structural system is superimposed on the surface of the non-polar diffusion layer, and a reverse conductivity type layer is formed, which essentially combines the pMOS transistor for writing and the NMOS for reading. The substrate area of the NMOS transistor is used as a floating The node stores the double-matrix data by its potential. However, the structure of item (1) is complicated, and the controllability of characteristics is difficult due to the use of parasitic transistors. Although the structure of item (2) is simple, the drain of the transistor Both the source and the source need to be connected to the signal line to control the potential. In addition, due to the production of wells-. -5 The paper size is suitable for financial purposes ^^^ (CNS) A4 specification (21 () > < 297 public ^ " ~ ":-511273 A7 B7 V. Description of Invention (3) Therefore large cell size, and can not be rewritten by bit. Item (3) needs to control the potential from the SOI substrate side, so it cannot be rewritten bit by bit, and it is difficult to control. Item (4) requires a special transistor structure, and word lines, write bit lines, read bit lines, and clear lines are needed on the memory cell, so the number of signal lines is large. SUMMARY OF THE INVENTION One of the objects of the present invention is Provided are a semiconductor memory device and a method for manufacturing the same. A simple transistor can be used to form a memory unit, and dynamic memory of dual data can be performed with fewer signal lines. The one-bit memory early element of the semiconductor memory device according to an embodiment of the present invention is composed of one transistor. 5 The transistor includes: a semiconductor layer, which is a first conductivity type, which is electrically separated from other memory cells and floats. State; the drain diffusion layer, which is of the second conductivity type, is formed on the semiconductor layer of the first conductivity type, and is connected to the bit line; the source diffusion layer, which is of the second conductivity type, is formed on the first conductivity type Type semiconductor layer is isolated from the drain diffusion layer and connected to the source line; and a gate electrode is formed on the semiconductor layer between the drain diffusion layer and the source diffusion layer via a gate insulating film, and is connected In a word line; wherein the transistor has: a first data state having a first threshold voltage of a number of carriers that have an excess on the semiconductor layer; and a second data state having an excess of the semiconductor layer on the semiconductor layer. Many carriers are released _-6 ^ ___ This paper size applies to Chinese National Standard (CNS) A4 specifications (210X 297 mm) 511273 A7 B7 V. Description of the invention (4) Second threshold voltage . In addition, a method for manufacturing a semiconductor memory device according to an embodiment of the present invention includes forming an insulating film on a semiconductor substrate, forming a semiconductor layer of a first conductivity type on the insulating film, and forming a gate formation region on the semiconductor layer. For an open mask, a sidewall insulating film is formed on the opening sidewall of the mask, and impurities are added to the semiconductor layer through the opening of the mask to form an impurity-added layer of a first conductivity type having an impurity concentration higher than that of the semiconductor layer. After the sidewall insulating film is removed, a gate insulating film and a gate are buried in the openings above the mask to form a plurality of openings. After removing the mask, an impurity is added to the semiconductor layer to form a second conductivity type drain. Diffusion layer and source diffusion layer. Brief Description of the Drawings Fig. 1 is a sectional view showing a memory cell structure of a DRAM according to a first embodiment of the present invention. FIG. 2 is an equivalent circuit of a memory cell of the DRAM. FIG. 3 is a layout of a memory cell array of the DRAM. Fig. 4A is a sectional view taken along the line A-Af in Fig. 3. FIG. 4B is a B-B ^ j plan view of FIG. 3. FIG. FIG. 5 shows the relationship between the zigzag potential and the surface potential of the DRAM cell. FIG. 6 is an explanatory diagram of a read mode of the DRAM cell. FIG. 7 is an explanatory diagram of another readout method of the DRAM cell. This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) 511273 A7 B7 V. Description of the invention (5) Figure 8 is a waveform diagram showing the "1 " data reading / renewing operation of this DRAM. Figure 9 is a waveform diagram showing the “0” data reading / renewing operation of the DRAM. FIG. 10 is a waveform diagram showing the “1” data reading / 0 ”data writing of the DRAM. FIG. 11 is a diagram showing the operation Waveform diagram of "0" data read / "1" data write of DRAM. Figure 12 is a waveform diagram of "1 " data read / renew operation of other DRAM readout methods. Fig. 13 is a waveform diagram showing "0" data read / renew operation of other read methods of the DRAM. ·, Figure 14 shows the "1" data readout of the DRAM's other readout methods, and "0 " data write operation waveforms. Figure 15 shows the" 0 "data readout of the DRAM's other readout methods. ΠΓ · Data writing operation waveform diagram. FIG. 16 is a characteristic diagram showing the gate capacitance Cgb-voltage Vgb of the DRAM cell. FIG. 17 is an equivalent circuit diagram of the constant current readout method of the DRAM cell. FIG. 18 shows the DRAM FIG. 19 is an equivalent circuit for explaining a π0 ”writing speed of the DRAM cell. FIG. 20 is a graph showing a potential change of the p-type layer of FIG. 19. Fig. 21 is a graph showing the gate capacitance Cgb-voltage Vgb of the π0 "data cell of the DRAM cell (when poly-type polycrystalline dream gate). -8- This paper size is applicable to China National Standard (CNS) A4 specifications ( 210X 297 mm) 511273 A7 B7 V. Description of the invention (6) Figure 22 also shows the relationship between the word line potential Vwl of the Π0Π data unit and the table potential VB. Figure 23 shows the word "1" of the DRAM cell. The relationship between the line potential Vwl and the surface potential VB. Figure 24 is a graph showing the gate capacitance Cgb-voltage Vgb of the "1" data cell of the DRAM cell (in the case of a p-type polycrystalline stone gate). Fig. 25 is a graph showing the gate capacitance Cgb-voltage Vgb of the "1" data unit of the DRAM cell (when p-type polycrystalline broken gate). Fig. 26 shows the word line potential Vwl of the ffln data unit and the table body. The relationship between the potential VB (in the case of the n-type polycrystalline silicon gate). FIG. 27 is a graph showing the gate capacitance Cgb-voltage Vgb of the "0" data cell of the DRAM cell (in the case of the p-type polycrystalline silicon gate). . Fig. 28 shows the relationship between the zigzag potential Vwl of the "0ff data unit" and the surface potential VB (in the case of an n-type polycrystalline silicon gate). Fig. 29 shows the gate of the ff 1π data unit when a thin silicon layer is used. Capacitance Cgb-voltage Vgb curve (in the case of ρ-type polycrystalline silicon gate). Figure 30 shows the relationship between the word line potential Vwl of the "Γ 'data unit and the body potential VB. FIG. 31 is a graph showing the gate capacitance Cgb-voltage Vgb of the Π0Π data unit when a thin silicon layer is used (when a ρ-type polycrystalline dream gate is used). FIG. 32 shows the relationship between the word line potential Vwl and the surface potential VB of the Π0Π data unit. Figure 33 is a graph showing the relationship between the impurity concentration of the silicon layer and the threshold threshold of the "1" data. -9- This paper size is in accordance with the Chinese National Standard (CNS) A4 specification (210X297 mm)

裝 訂 511273 A7 B7 五、發明説明(7 ) 圖34同樣爲顯示矽層之雜質濃度與” 1 ”資料單元之單元 電流的關係圖。 圖35同樣爲顯示矽層之雜質濃度與讀出時之位元線電位 變化之時間的關係圖。 圖36顯示”1Π資料單元之資料保持時之表體電位與臨限 値的關係(Ρ型多結晶矽閘極時)圖。 圖37顯示Π1Π資料單元之資料保持時之表體電位與臨限 値的關係(η型多結晶矽閘極時)圖。 圖38爲顯示字線電位變化與臨限値偏差的關係圖。 圖39爲顯示本發明第一種實施形態之感測放大器布局範 例圖。 圖40爲使第二種實施形態之DRAM單元構造對應於圖1 的剖面圖。 圖4 1爲顯示MOS電晶體之表體電位與臨限値電壓的關係 圖。 圖42A爲檢討圖40之單元構造效果用於預備檢討之基本 pn接合構造圖。 圖42B爲顯示圖42A所示之pn接合構造部分的電場分布 圖。 圖43爲檢討圖40之單元構造效果顯示之汲極端之pn接合 構造與其電場分布圖。 圖44爲顯示圖43之低濃度ρ型層寬度與耗盡層延伸的關 係圖。 圖45同樣爲低濃度ρ型層寬度與最大電場強度的關係圖。 -10- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)Binding 511273 A7 B7 V. Description of the invention (7) Fig. 34 is also a graph showing the relationship between the impurity concentration of the silicon layer and the unit current of the "1" data unit. Fig. 35 is also a graph showing the relationship between the impurity concentration of the silicon layer and the time of change of the bit line potential during readout. Figure 36 shows the relationship between the body potential and the threshold when the data of the 1Π data unit is held (in the case of a P-type polycrystalline silicon gate). Figure 37 shows the body potential and the threshold when the data of the 1Π data unit is held The relationship between (in the case of η-type polycrystalline silicon gate). Fig. 38 is a diagram showing the relationship between the potential change of the word line and the threshold deviation. Fig. 39 is an exemplary layout of a sense amplifier showing the first embodiment of the present invention. Fig. 40 is a cross-sectional view of a DRAM cell structure corresponding to the second embodiment corresponding to Fig. 1. Fig. 41 is a diagram showing the relationship between the surface potential of the MOS transistor and the threshold voltage. Fig. 42A is a review of Fig. 40. The basic pn junction structure diagram of the unit structure effect used for preliminary review. Figure 42B is a diagram showing the electric field distribution of the pn junction structure part shown in FIG. 42A. Figure 43 is the pn junction structure of the drain terminal shown in the review of the unit structure effect of FIG. 40. Fig. 44 shows the relationship between the width of the low-concentration p-type layer and the extension of the depletion layer in Fig. 43. Fig. 45 is also the relationship between the width of the low-concentration p-type layer and the maximum electric field strength. -10- This paper Applicable scale National Standards (CNS) A4 size (210X297 mm)

裝 訂 511273 A7 B7 五、發明説明(8 ) 圖46爲顯示再度降低η型擴散層濃度時,對應於圖44之低 濃度Ρ型層寬度與耗盡層延伸的關係圖。 圖47同樣爲低濃度ρ型層寬度與最大電場強度的關係圖。 圖48爲顯示圖40之單元構造在最佳化條件下的耗盡層延 伸狀態圖。 圖49爲顯示改良圖40之單元.構造之實施形態的單元構造 剖面圖。 圖50爲檢討圖49之單元構造效果顯示之汲極端之ρη接合 構造與其電場分布圖。 圖51爲顯示圖50之低濃度ρ型層寬度與耗盡層延伸的關 係圖。 圖52同樣爲低濃度ρ型層寬度與最大電場強度的關係圖。 圖53爲顯示圖49之單元構造在最佳化條件下的耗盡層延 伸狀態圖。 圖54爲圖49之單元的製造步驟説明圖。 圖55爲圖49之單元的製造步驟説明圖。 圖56爲圖49之單元的製造步驟説明圖。 圖57爲圖49之單元的製造步驟説明圖。 圖58Α爲第三種實施形態之單元構造的平面圖。 圖58Β爲圖58Α之Α-Α’剖面圖。 圖59Α爲第四種實施形態之單元構造的斜視圖。 圖59Β爲沿圖59 Α之位元線方向的剖面圖。 圖60A爲第五種實施形態之DRAM單元陣列的布局,。 圖60B爲圖60A之Ι-Γ剖面圖。 -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)Binding 511273 A7 B7 V. Description of the invention (8) FIG. 46 is a graph showing the relationship between the width of the low-concentration P-type layer and the extension of the depletion layer when the concentration of the n-type diffusion layer is reduced again. FIG. 47 is a graph showing the relationship between the width of the low-concentration p-type layer and the maximum electric field strength. Fig. 48 is a diagram showing the elongation state of the depletion layer of the cell structure of Fig. 40 under optimized conditions. Fig. 49 is a cross-sectional view of a unit structure showing a modified embodiment of the unit. Structure of Fig. 40; Fig. 50 is a diagram of the ρη junction structure of the drain terminal and its electric field distribution shown in the review of the cell structure effect of Fig. 49; Fig. 51 is a graph showing the relationship between the width of the low-concentration p-type layer and the extension of the depletion layer in Fig. 50; FIG. 52 is also a graph showing the relationship between the width of the low-concentration p-type layer and the maximum electric field strength. Fig. 53 is a diagram showing the elongation state of the depletion layer of the cell structure of Fig. 49 under optimized conditions. FIG. 54 is an explanatory diagram of manufacturing steps of the unit of FIG. 49. FIG. FIG. 55 is an explanatory diagram of manufacturing steps of the unit of FIG. 49. FIG. FIG. 56 is an explanatory diagram of manufacturing steps of the unit of FIG. 49. FIG. FIG. 57 is an explanatory diagram of manufacturing steps of the unit of FIG. 49. FIG. FIG. 58A is a plan view of a unit structure of the third embodiment. Fig. 58B is a sectional view taken along the line A-A 'of Fig. 58A. Fig. 59A is a perspective view of a unit structure according to a fourth embodiment. FIG. 59B is a cross-sectional view taken along the bit line direction of FIG. 59A. FIG. 60A is a layout of a DRAM cell array according to the fifth embodiment. FIG. 60B is a cross-sectional view taken along the line I-Γ of FIG. 60A. -11-This paper size applies to China National Standard (CNS) A4 (210X297 mm)

裝 511273 A7 B7Loading 511273 A7 B7

圖60C爲圖60A之ΙΙ-ΙΓ剖面圖。 圖61Α爲顯不該貫施形悲之元件分離步驟的平面圖。 圖61Β爲圖61Α之Ι-Γ剖面圖。 圖61C爲圖61Α之ΙΙ-ΙΓ剖面圖。 圖62Α爲顯示該實施形態之電晶體形成步驟的平面圖。 圖62B爲圖62A之Ι-Γ剖面圖。 圖6之C爲圖62A之ΙΙ-ΙΓ剖面圖。 圖63 A爲顯示該實施形態之源極配線層形成步驟的平面 圖。 圖63B爲圖63A之Ι-Γ剖面圖。 圖64A爲顯示該實施形態之位元線埋入接觸孔步驟的平 面圖。 圖64B爲圖64A之Ι-Γ剖面圖。 圖65爲顯示其他位元線埋入接觸孔步驟的平面圖。 圖66爲顯示第六種實施形態之元件形成後之層間絕緣膜 形成步驟的剖面圖。 圖67爲顯示該實施形態之埋入接觸孔步驟的剖面圖。 圖6 8爲顯示該貫施形悲之源極配線層形成步驟的平面圖 〇 圖69爲顯示該實施形態之層間絕緣膜形成步驟的剖面圖 〇 圖7 0爲顯示該實施形態之位元線形成步驟的剖面圖。 圖71爲使第七種實施形態之元件分離構造對應於圖61A 的平面圖。 _ -12· 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 511273 10 五、發明説明( 輕佳之具體竇施例詳述 以下,參照圖式説明本發明的實施形態。 圖1顯示本發明第一種實施形態之DRAM的記憶體單元 的剖面構造’圖2顯示其等效電路。記憶體單元MC由S0I 構U的N通道MOS電晶體構成。亦即,使用有在石夕基板1〇 上形成有作爲絕緣膜的矽氧化膜丨丨,該矽氧化膜丨丨上形成 有P型矽層12的SOI基板。在該基板的矽層12上經由閘極氧 化膜16,形成有閘極13,閘極13上形成有自我整合的n型源 極、汲極擴散層14,1 5。 源極、汲極擴散層14,1 5形成有達底部之矽氧化膜丨j的 深度,因此,由p型矽層12構成之表體區域以氧化膜進行通 返寬度万向(與圖之紙面垂直的方向)的分離時,形成底面 及通道寬度方向的側面與其他絕緣分離,通道長度方向被 pn接合分離的漂浮狀態。 將該記憶體單元MC排列成矩陣時,閘極13連接於字線 WL’源極擴散層15連接於固定電位線(接地電位線肌,汲 極擴教層14連接於位元線b l。 圖3顯示記憶體單元陣列的布局,圖4⑷,⑻分別顯示圖 3之A-A,,B-B·剖面。p型矽層12矽氧化膜以的埋入,形成 有栅狀圖案。亦即,共用汲極的兩個電晶體區域在字線wl 方向排列成元件被石夕氧化膜21分離。或是,亦可藉由蚀刻 矽層12,取代矽氧化膜2 1的埋入,凌%、# , 水進仃橫向的元件分離 。閘極1 3在一個方向上連續性形成,μ Κ此構成字線WL。源極 擴散層15沿字線WL方向連續性形成 y叹’此構成固足電位線 -13- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 511273 A7 B7 五、發明説明(11 ) (共用源極線)SL。電晶體上以層間絕緣膜23覆蓋,其上形 成有位元線B L。位元線B L接觸兩個電晶體所共用的没極擴 散層14,並設置成與字線WL交叉。 藉此,各電晶體之表體區域之矽層12的底面及通遒寬度 方向的側面被氧化膜分離,在通道長度方向上被pn接合分 離,保持漂浮狀態。 而該記憶體單元陣列的構造,係以最小加工尺寸F之間距 形成字線WL及位元線BL,單位單元面積如圖3上的虛線所 示,爲 2F X 2F = 4F2。 由該NMOS電晶體構成之DRAM單元的操作原理,係利用 MOS電晶體之表體區域(與其他絕緣分離之p型矽層12)儲 存許多載體的空穴。亦即,藉由在五極管區域使MOS電晶 體操作,自没極擴散層14流出大電流,在没極擴散層14的 附近引起撞擊離子化。使該撞擊離子化所生成之過剩之許 多載體的空穴保持在P型矽層12上,設定該空穴儲存狀態( 電位高於熱平衡狀態的狀態)爲資料"1”。將汲極擴散層14 與p型s夕層12之間的pn接合予以正向偏置,設定將p型碎層 12之過剩空穴釋放汲極端的狀態爲資料"0”。 < 資料"0”,” 1”爲表體區域的電位差,被記憶成MOS電晶 體之臨限値的電壓差。亦即,藉由空穴儲存,表體區域電 位高之資料Π1Π狀態的臨限値電壓Vthl低於資料”0"狀態的 臨限値電壓VthO。爲了保持在表體區域儲存許多載體之空 穴的π 1Π資料狀態,字線上需要外加負的偏壓。該資料保持 狀態,只要不執行資料寫入的相反操作(刪除),縱使執行 _-14-____ 本紙張尺度適用中國國家標準(CNS) Α4規格(210X 297公釐) 裝 訂FIG. 60C is a cross-sectional view taken along the line II-II ′ of FIG. 60A. FIG. 61A is a plan view showing a separation step of components that should not be implemented. Fig. 61B is a sectional view taken along the line I-Γ of Fig. 61A. FIG. 61C is a cross-sectional view taken along the line III-III of FIG. 61A. FIG. 62A is a plan view showing a transistor formation step in this embodiment. Fig. 62B is a sectional view taken along the line I-Γ of Fig. 62A. FIG. 6C is a cross-sectional view taken along the line II-IΓ of FIG. 62A. Fig. 63A is a plan view showing a step of forming a source wiring layer in this embodiment. Fig. 63B is a sectional view taken along the line I-Γ of Fig. 63A. Fig. 64A is a plan view showing a step of embedding a bit line into a contact hole in this embodiment. Fig. 64B is a sectional view taken along the line I-Γ of Fig. 64A. FIG. 65 is a plan view showing a step of embedding another bit line into a contact hole. Fig. 66 is a sectional view showing a step of forming an interlayer insulating film after the element is formed in the sixth embodiment. Fig. 67 is a sectional view showing a step of burying a contact hole in this embodiment. FIG. 68 is a plan view showing the step of forming the source wiring layer in the conventional embodiment. FIG. 69 is a cross-sectional view showing the step of forming an interlayer insulating film in this embodiment. FIG. 70 is a diagram showing the formation of bit lines in this embodiment. Sectional view of steps. FIG. 71 is a plan view corresponding to FIG. 61A with the element separation structure of the seventh embodiment. _ -12. This paper size is in accordance with Chinese National Standard (CNS) A4 (210X 297 mm) 511273 10 V. Description of the invention (The specific embodiment of the light and detailed sinus is described in detail below. The embodiment of the present invention will be described with reference to the drawings. Figure 1 shows a cross-sectional structure of a memory cell of a DRAM according to a first embodiment of the present invention. 'FIG. 2 shows an equivalent circuit thereof. The memory cell MC is composed of an N-channel MOS transistor of a SOI structure U. That is, a semiconductor chip is used. A silicon oxide film as an insulating film is formed on the substrate 10, and an SOI substrate having a P-type silicon layer 12 is formed on the silicon oxide film. The silicon oxide layer 12 on the substrate passes through the gate oxide film 16, A gate 13 is formed, and a self-integrated n-type source and drain diffusion layers 14 and 15 are formed on the gate 13. The source and drain diffusion layers 14 and 15 are formed with a silicon oxide film at the bottom 丨 j Therefore, when the surface area formed by the p-type silicon layer 12 is separated by the oxide film in the width direction (direction perpendicular to the paper surface of the figure), the bottom surface and the side surface in the channel width direction are separated from other insulation. , The floating state in which the channel length is separated by pn junctions. When the memory cells MC are arranged in a matrix, the gate electrode 13 is connected to the word line WL ', the source diffusion layer 15 is connected to a fixed potential line (ground potential line muscle, and the drain diffusion layer 14 is connected to the bit line b1.) 3 shows the layout of the memory cell array, and Figs. 4 (a) and 4 (b) respectively show the AA, and BB · sections of Fig. 3. The p-type silicon layer 12 is embedded with a silicon oxide film to form a grid pattern. That is, the common drain is shared. The two transistor regions are arranged in the direction of the word line wl so that the elements are separated by the stone oxide film 21. Alternatively, the silicon layer 12 can be etched instead of the silicon oxide film 21 to be buried. The lateral element is separated. The gate electrode 13 is formed continuously in one direction, and μk constitutes the word line WL. The source diffusion layer 15 is formed continuously along the word line WL to form a sigh. This constitutes a fixed potential line- 13- This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) 511273 A7 B7 V. Description of the invention (11) (common source line) SL. The transistor is covered with an interlayer insulating film 23 and formed on it There is a bit line BL. The bit line BL contacts the electrode diffusion layer 14 common to the two transistors. It is arranged to intersect the word line WL. Thereby, the bottom surface of the silicon layer 12 and the lateral side in the width direction of the body region of each transistor are separated by an oxide film, and separated by pn junctions in the length direction of the channel to maintain a floating state. The structure of the memory cell array is formed with word lines WL and bit lines BL with a minimum processing size F. The unit cell area is shown as a dashed line on FIG. 3, which is 2F X 2F = 4F2. By the NMOS The operating principle of a DRAM cell composed of a transistor is to use the surface area of the MOS transistor (a p-type silicon layer 12 separated from other insulation) to store the holes of many carriers. That is, by operating the MOS transistor in the pentode region, a large current flows from the anode diffusion layer 14 to cause impact ionization in the vicinity of the anode diffusion layer 14. The holes of the excess carriers generated by the impact ionization are held on the P-type silicon layer 12, and the storage state of the holes (the state where the potential is higher than the thermal equilibrium state) is set to the data "1". The drain is diffused The pn junction between the layer 14 and the p-type layer 12 is forward biased, and the state where the excess holes of the p-type chip layer 12 are released is set to the data "0". < Data " 0 "," 1 "is the potential difference in the surface area of the body, which is memorized as the voltage difference of the threshold of the MOS transistor. That is, the state of the data in the surface area of the body is high by the hole storage Π1Π state The threshold voltage Vthl is lower than the threshold voltage VthO of the state "0 ". In order to maintain the π 1Π data state of the cavity where many carriers are stored in the surface area, a negative bias voltage needs to be applied to the word line. The data remains in the state, as long as the reverse operation (deletion) of data writing is not performed, even if _-14 -____ is performed, this paper size applies the Chinese National Standard (CNS) Α4 specification (210X 297 mm) binding

511273 12 五、發明説明( 讀出操作也不改變。亦即’與利用載體之電荷儲存之】個雨 晶體/1個電容器的DRAM不同,可執行非破壞性讀出。私 有許多種資料讀出的方式。字線電位Vwl與表:電位VB =關係,其與資料,,〇&quot;,,] ”的關係如圖5所示。因此,資料 讀出的第一種方法,係利用在字線貿]:上賦予資料,,〇,,,'】” ^臨限値電壓VthG,vthl中間的讀出電位,電流不流入τ :料:記憶體單元内,而流入&quot;i&quot;資料的記憶體單元内。具 /而口例如,將位元線BL預充電成指定的電位vbL·,之 後驅動子線WL。藉此,如圖6所示,&quot;〇&quot;資料時,位元線預 充,電位慨不改變,T資料時,預充電電位慨降低: 第二種讀出方式係利用升高字線w L後,供應電流至位元 線I’一因應”〇”,”1”的導通度’位元線電位的上昇速度不 間吕〈’係將位元線BL預充電成〇v,如圖7所示的升 南字線WL’供應位元線電流。此時,藉由利用虛擬單元檢 測=70線的電位上昇差異,可做資料判別。 、,二種項出万式係讀取將位元線BL钮位成指定電位時 二1”不同的位元線電流差異。讀出電流差時,需要 壓轉換電路,不過最後將電位差予以差動放大,輸 出感測結果。 ,本發明之第一種實施形態,爲求選擇性的寫入&quot;〇&quot;資料, π即’爲求/口'從記憶體單元陣列中選出之字線机與藉由位 :線:L足電位選出之記憶體單元的表體區域釋放過剩空 ^子線表體區域間的電容結合很重要。其詳細檢討 k、貝料1在表體區域内儲存有空穴的狀態,須使 511273 A7 B7511273 12 V. Description of the invention (reading operation is not changed. That is, 'different from DRAM using a charge stored on a carrier] DRAM / 1 capacitor, non-destructive reading can be performed. Many kinds of private data reading The word line potential Vwl and the table: potential VB = relationship, and its relationship with the data, 〇 &quot;,]] "is shown in Figure 5. Therefore, the first method of reading data is to use the word Line trade]: given the data, 〇 ,,, '] "^ Threshold threshold voltage VthG, vthl readout potential in the middle, the current does not flow into τ: material: memory unit, but into the" quoti "data In the memory unit. For example, the bit line BL is precharged to a specified potential vbL ·, and then the sub-line WL is driven. As shown in FIG. 6, when the data is &quot; 〇 &quot; Line precharge, the potential does not change, when T data, the precharge potential decreases: The second readout method is to increase the word line w L and then supply current to the bit line I ′ in response to "〇", " 1 ”continuity 'the rising speed of the bit line potential is constant <' pre-charging the bit line BL It becomes 0v, and the bit line current is supplied by the Shengnan word line WL 'as shown in Fig. 7. At this time, by using the virtual cell to detect the difference of the potential rise of the 70 line, the data can be discriminated. The Wanshi system reads the bit line current difference of 1 ”different bit line when the bit line BL button is set to the specified potential. When the current difference is read, a voltage conversion circuit is needed, but the potential difference is differentially amplified and output sensed As a result, in the first embodiment of the present invention, in order to selectively write &quot; 〇 &quot; data, π is the word line machine selected from the memory cell array and the bit is: Line: The surface area of the memory cell selected by the L foot potential releases excess space ^ The capacitance combination between the surface area of the subline is very important. It examines in detail the state of the holes stored in the surface area of k and shell material 1, Must make 511273 A7 B7

五、發明説明(13 字線徹底向負方向偏置,記憶體單元之閘極·基極間容量 保持在成爲閘極氧化膜容量的狀態(亦即,表面未形== 層的狀態)。 m 此外,寫入操作,”〇”,”丨,,均宜採脈衝寫入以減少耗電 。於”〇”寫入時,空穴電流雖自選擇電晶體的表體區域流2 没極,電子電流自^亟流入表體區域,不過表體區域^ 未注入空穴。 、以下更具體的説明操作波形。圖8〜圖11爲使用藉由選擇 位兀之位元線有無放電進行資料判別之第一種讀出方式時 之讀出/再新及讀出/寫入的操作波形。 $ 、 圖1及圖9分別爲”1&quot;資料及,,〇,,資料的讀出/再新操作。時 間ti前,爲資料保持狀態(非選擇狀態),字線WL1被賦予 負私位時間11時,升南字線WL至正的指定電位。此時, :線電位設定在”〇,,,”r資料的臨限値Vth〇, vtM之間。 藉此’於1貝料時,預充電之位元線BLI1放電而成低電位 。於資料時,位元線電位VBL被保持。藉此來判別”if, ,ποπ資料。 繼續,於時間t2時’再度升高字線WL的電位,同時讀 資料爲兄下,賦予位元線BL正電位(圖8)讀出資 爲時’賦予位元線扯負電位(圖9)。藉此,選擇記憶 单兀爲”1”資料時,以五極管操作流入大的通道電流引起 #離子化,過剩的空穴注入保持在表體區域内,&quot;1 ”資料 度被寫人0貝料的情況下,没極接合成正向偏置,過 殳穴未保持在表體區域内,”〇”資料再度被寫入。V. Description of the invention (The 13 word line is completely biased in the negative direction, and the capacity between the gate and the base of the memory cell is maintained in a state that becomes the capacity of the gate oxide film (that is, the state of the surface is not shaped == layer state). m In addition, the writing operation, "〇", "丨", should be pulsed to reduce power consumption. When "〇" is written, although the hole current flows from the body region of the selected transistor, there is no polarity. The electron current flows into the surface of the surface of the surface of the surface, but the surface of the surface of the surface is not injected with holes. The operation waveforms are described in more detail below. Figures 8 to 11 show the data by using the bit line to select whether there is discharge. Read / renew and read / write operation waveforms in the first read mode. $, Figures 1 and 9 are "1" and ",", "0", and "read / rewrite" of data, respectively. New operation. Before the time ti, the data is held (non-selected). When the word line WL1 is given a negative privacy time of 11, the south word line WL is raised to a positive specified potential. At this time, the: line potential is set at "〇 The threshold of the data is between Vth0 and vtM. This is used to precharge the battery at 1 pm The bit line BLI1 is discharged to a low potential. At the time of data, the bit line potential VBL is maintained. This is used to discriminate the "if,, ποπ data. Continue, at time t2, the potential of the word line WL is increased again, At the same time, the data is read, and the positive potential of the bit line BL is given (Figure 8). The negative potential is given to the bit line (Figure 9). Therefore, when the memory unit is selected as "1", the The large channel current flowing in the pentode operation causes #ionization, and the excess hole injection is kept in the surface area. In the case where the “1” data is written as 0, the non-pole is connected to the forward bias. However, the acupoints were not kept in the surface body area, and “〇” data was written again.

裝 訂Binding

繼項,於時間t3時,將字線W]L向負方向偏置,結束讀出 /再新铋作。與執行,,1,,資料讀出的記憶體單元同樣的,連 接於位元線BL之其他非選擇記憶體單元上,字線WL爲負電 位’因此表體區域保持在負電位,不引起撞擊離子化。與As a successor, at time t3, the word line W] L is biased in the negative direction, and the read / renew bismuth operation ends. Same as the memory cell that executes 1, 1, and data reading. It is connected to other non-selected memory cells of bit line BL. The word line WL is negative. Therefore, the surface area remains at negative potential, which does not cause Impact ionization. versus

執仃H〇’’資料讀出的記憶體單元同樣的,連接於位元線BL 、/'他非遠擇冗憶體單元上,字線WL也保持在負電位,不 引起空穴釋放。 固1 〇及圖11分別爲採用相同讀出方式之” 1 ”資料及” 〇,,資 料的躓出/寫入操作。圖1〇及圖丨丨於時間〖丨時之讀出操作分The memory cell that reads out the data is similarly connected to the bit line BL and / 'other non-remote memory cells, and the word line WL is also maintained at a negative potential without causing hole release. Figure 10 and Figure 11 are the “1” data and “〇”, the data readout / write operations using the same reading method. Figure 10 and Figure 丨 read operations at time 〖丨

別與圖8及圖9相同。讀出後,於時間t2時,再度使字線WL 爲问%位’在相同的選擇單元内寫入,,〇 &quot;資料的同時,賦予 位π線BL負電位(圖10),在寫入”丨,,資料時,賦予位元線bl 正電位(圖11)。藉此,未被賦予” 〇,,資料的單元,汲極接合 成正向偏置,表體區域的空穴被釋放。被賦予,,丨&quot;資料的單 疋,於汲極附近引起撞擊離子化,過剩空穴被注入保持在 表體區域。 * 圖12〜圖15爲使用將位元線BL預充電成〇v,於字線選擇 後供應電流至位元線BL,藉由位元線bl之電位上昇速度進 行資料判別之第二種讀出方式時之讀出/再新及讀出/寫入 的操作波形.。 圖12及圖13分別爲”1”資料及”〇”資料的讀出/再新操作。 在時間11時,將保持在負電位的字線WL升高至正電位。此 時’字線電位如圖7所示,設定在均高於&quot;〇 ”” 1 ”資料之臨 限值VthO,Vth 1的値。或是,與第一種讀出方式同樣, 15 五、發明説明( 亦:將ΐ線電位設定在T,T資料的臨限値v_,vthl 足間。繼%,在時間t2時 次 、 伢L私机至位兀線。猎此,於 争、己憶體單元深啓動,位元線虹的電位上昇小 圖:二於二資料時’記憶體單元的電流小(或是無電流) 上^、’’7私仏急速上昇。藉此來判別丨,1 ”,丨,〇丨丨資料。 繼績,於時間t3時,讀出資料爲”的情況下,賦予位元 線BL正電位(圖12)讀出資料爲T時,賦予位元線BL負電位 :圖」2此’選擇記憶體單元爲’τ資料時,汲極電流流 ,,f里#離子化,過剩的空穴注入保持在表體區域内, T資料再度被寫入。,,。別的情況下,汲極接合成正向 偏置,過剩空穴未保持在表體區域内,”0&quot;資料再度被寫入They are the same as those in FIGS. 8 and 9. After the reading, at time t2, the word line WL is again written in the same selection unit as the "% bit". At the same time as the data, the bit π line BL is given a negative potential (Figure 10). When the data is entered, the bit line bl is given a positive potential (Figure 11). As a result, the data element, the drain, is connected to the forward bias, and the holes in the body region are freed. It is given that, "Single unit of data" causes impact ionization near the drain, and excess holes are injected and maintained in the surface area. * Figures 12 ~ 15 are the second method of pre-charging the bit line BL to 0V, supplying current to the bit line BL after the word line selection, and judging the data by the potential rising speed of the bit line bl Read / Renew and Read / Write Operation Waveforms in Out Mode ... FIG. 12 and FIG. 13 are read / renew operations of “1” data and “〇” data, respectively. At time 11, the word line WL held at the negative potential is raised to a positive potential. At this time, the word line potential is set as shown in FIG. 7 and is higher than the thresholds VthO, Vth 1 of the data of "0" "1". Or, the same as the first reading method, 15 5 、 Explanation of the invention (also: Set the ΐline potential at the threshold of T, T data thv_, vthl foot. Following%, at time t2, 伢 L private machine is in place. Hunt this, Yu Zheng, The memory unit is deep-started, and the potential rise of the bit line rainbow is small: when the data is two or two, the current of the memory unit is low (or no current), ^, and `` 7 '' is rising rapidly. Use this to determine丨, 1 ”, 丨, 〇 丨 丨 data. Following the results, when the data is read at time t3, the bit line BL is given a positive potential (Figure 12). When the data is read as T, the bit is given. Line BL negative potential: Figure "2" When this 'select memory cell is' τ data, the drain current flows, # ionization in f, excess hole injection is maintained in the body area, and T data is written again In other cases, the drain is connected to forward bias, and the excess holes are not kept in the surface area. "0 &quot; data is written again

Q 作 於時間14時’將字線w L向負方向偏置,結束讀出/再新操 圖14及圖15分別爲採用相同讀出方式之”1”資料及&quot;〇”資 料的讀出/寫入操作。圖14及圖15於時間tl&amp;t2時之讀出操 作分別與圖12及圖13相同。讀出後,在相同的選擇單元内 寫入”0”資料時,賦予位元線BL負電位(圖14),在寫入 資料時,賦予位元線BL正電位(圖15)。藉此,未被賦予&quot;〇,, 資料的單元·,汲極接合成正向偏置,表體區域的空穴被釋 放。被賦予&quot;1”資料的單元,大的汲極電流流入,於汲極附 近引起撞擊離子化,過剩空穴被注入保持在表體區域。 如上所述’本發明第一種實施形態之DRAM單元係由具 有與其他電性分離之漂浮表體區域的單純M〇s電晶體構成 1-18- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 511273 A7 B7 五、發明説明(16 ) ,可實現4F2的單元尺寸。此外,漂浮表體區域的電位控制 ,係利用自閘極的電容結合,並非利用如自SOI基板背面的 背後閘極控制。源極擴散層亦爲固定電位。亦即,讀出/寫 入的控制簡單,僅由字線WL與位元線BL執行。再者,由於 記憶體單元基本上爲非破壞性讀出,因此,不需要在每條 位元線上設置感測放大器,因而感測放大器的布局容易。 再者,’由於採電流讀出方式,因此,抗噪音強,縱使採開 放位元線方式亦可讀出。此外,記憶體單元的製造程序簡 單。 此外,SOI構造在考慮今後邏輯LSI的性能提昇時,屬於 重要技術。本發明第一種實施形態之DRAM也極可能與此 種SOI構造的邏輯LSI共設。此因,與使用電容器之先前的 DRAM不同,不需要採用與邏輯LSI不同的處理,因而製造 步驟簡單。 再者,本發明第一種實施形態之SOI構造的DRAM,與先 .前之將1個電晶體/1個電容器型之DRAM作爲SOI構造時比 較,其優點爲具有優異的記憶保持特性。亦即,先前之將1 個電晶體/1個電容器型之DRAM作爲SOI構造時,漂浮之半 導體表體上儲存有空穴,電晶體的臨限値低,造成電晶體 的子定限電流增加。如此,造成記憶保持特性惡化。反之 ,本發明第一種實施形態之僅有1個電晶體的記憶體單元, 並無使記憶電荷減少的電晶體路徑,資料保持特性純粹僅 由ρη接合的洩漏決定,沒有子定限電流洩漏的問題。 實際上,可從以下所列舉的判斷基準來判斷本發明之第 -19- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 裝 訂Q at 14:00 'Offset the word line w L to the negative direction and finish reading / re-reading. Figures 14 and 15 show the reading of "1" and "quota" data using the same reading method, respectively. Read / write operation. The read operation of Figure 14 and Figure 15 at time tl &amp; t2 is the same as that of Figure 12 and Figure 13. After reading, when "0" data is written in the same selection unit, a bit is assigned. The negative potential of the element line BL (Figure 14) is given to the positive potential of the bit line BL (Figure 15) when the data is written. As a result, the "+" of the data unit is not assigned, and the drain is connected to the positive direction. Bias, the holes in the body area are released. In the unit given with "1" data, a large drain current flows in, causing impact ionization near the drain, and excess holes are injected and held in the body area. As described above, 'the DRAM cell of the first embodiment of the present invention is composed of a simple MOS transistor with a floating surface area that is electrically separated from other 1-18- This paper size applies to Chinese National Standard (CNS) A4 Specifications (210X297 mm) 511273 A7 B7 5. Description of the invention (16), can achieve 4F2 unit size. In addition, the potential control of the floating surface area is based on the self-gate capacitance combination, instead of using the back gate control from the back of the SOI substrate. The source diffusion layer is also a fixed potential. That is, the read / write control is simple and is performed only by the word line WL and the bit line BL. Furthermore, since the memory cell is basically non-destructive read, there is no need to provide a sense amplifier on each bit line, so the layout of the sense amplifier is easy. In addition, because of the current reading method, it is highly resistant to noise and can be read even when the open bit line method is used. In addition, the manufacturing process of the memory unit is simple. In addition, the SOI structure is an important technology when considering the performance improvement of logic LSI in the future. The DRAM of the first embodiment of the present invention is also likely to be co-located with a logic LSI of this SOI structure. This is because, unlike the previous DRAM using a capacitor, a process different from that of a logic LSI is not required, and the manufacturing steps are simple. Furthermore, the DRAM of the SOI structure according to the first embodiment of the present invention has an advantage of superior memory retention characteristics as compared with the former case in which the DRAM of one transistor / capacitor type was used as the SOI structure. That is, when a transistor / capacitor-type DRAM was used as an SOI structure, holes were stored on the floating semiconductor surface, and the threshold of the transistor was low, which caused the sub-limit current of the transistor to increase. . As a result, memory retention characteristics are deteriorated. In contrast, the memory cell with only one transistor in the first embodiment of the present invention does not have a transistor path that reduces the memory charge. The data retention characteristic is determined solely by the leakage of the ρη junction, and there is no sub-limited current leakage. The problem. In fact, the following -19- The paper size of the present invention can be judged from the judging criteria listed below. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm).

A7A7

(b)此否達到足夠之&quot; 、 合 二 k度(寫入速度能否達到1 〇 ,入時能否獲得約20 nA以上的表體電流)。 料⑷二寫人0㈣擇性是否足夠(能否獲得”G”資料與,,1”資 料足表體電位差AVB:= ! v)。 貝 ⑷閘極與表體區域間之電容能否遠大於 外’能否取較大之”1”資料的臨限値。 μ 以下’驗證這些判斷基準。 [圮憶體單元之容量、保持時間.、漏電流方面] 若具有1G個記憶體單元iDRAMi記憶體單元的記憶保 持時間平均値爲RT= 10 sec。以(Μ μπι爲原則,記憶體單 兀的閘極氧化膜厚爲tox= 2·5 nm時,由於閘極氧化膜的容 里爲14 fF/cm2,因此,閘極面積爲〇 〇1 ,閘極氧化膜 谷Cox爲Cox = 〇· 14 fF。包含以後説明之pn接合電容cj zz 0.08 fF時,整個電容爲 ctotal = 0.22 fF。 在該閘極電容内儲存電荷時,於記憶保持時間RT = 1 〇 sec中,使AV =0· 1 V之電位改變之每個單元的漏電流I leak/node,如以下公式一所示。 (公式1) I leak/node= Ctotal · AV/RT = 2.2 x 10'18 A/node SOI基板上之矽層的厚度爲100 nm時,由於pn接合面積爲 -20 -本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 511273 A7 B7(b) Whether this has reached a sufficient level, combined with k degrees (whether the writing speed can reach 10, and whether the body current of about 20 nA or more can be obtained at the time of entry). It is expected that whether the selectivity of 0 is sufficient (the availability of “G” data and, 1 ”data is sufficient for the body surface potential difference AVB: =! V). Can the capacitance between the gate and the surface area be far greater than "Can you take the threshold of the larger" 1 "data? Μ below" to verify these criteria. [Remember the capacity, retention time, and leakage current of the body unit] If you have 1G memory unit iDRAMi memory The average memory retention time of the body unit is RT = 10 sec. Based on the principle of (μ μm), the gate oxide film thickness of the memory unit is tox = 2.5 nm, because the gate oxide film capacity is 14 fF / cm2, therefore, the gate area is 〇1, and the gate oxide film valley Cox is Cox = 0.14 fF. When the pn junction capacitance cj zz 0.08 fF described later is included, the total capacitance is ctotal = 0.22 fF. When the charge is stored in the gate capacitor, the leakage current I leak / node of each cell that changes the potential of AV = 0.1 V during the memory retention time RT = 10 sec is shown in the following formula 1. (Equation 1) I leak / node = Ctotal AV / RT = 2.2 x 10'18 A / node The thickness of the silicon layer on the SOI substrate is 100 At nm, because the pn junction area is -20-This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 511273 A7 B7

0·1 μιηχθ.1 μπΐχ2=:〇·02 μπι2,因此欲求每單位面積之漏 電流I leak/area時,如以下公式2所示。 (公式2) I leak/area = 2.2 x 10*1δ/0.02 = 1.1 χ 1〇-16 Α/μτη2 SOI基板上ρη接合約2 ν之反偏置時的漏電流在其以下時 ,可確保平均單元之記憶保持時間尺丁=1〇 sec,可獲得與^固 電晶體/1個電容器之DRAM同等的記憶保持特性。此外,過 去顯π有SOI基板上之叩接合之漏電流値爲}〜3 χ i〇_n a小❿ (字線方向每1 μηι)(1995 Symp.VSLI Tech·,ρ· 141)。今後1 可元全貫現上述的記憶保持特性。 … Γ Γ’寫入時間與表體電流] 寫入時間由單元節點(問極)的電容與表體電流isub來決 定。如上所述,閘極電容爲ctotal=0.22fF。寫入時間的規 格twr=10 nsec,該時間内在表體區域内寫入V電壓 所需的表體電流如以下公式3所示。 私 (公式3)0 · 1 μηηθθ.1 μπΐχ2 =: 〇02 μπι2, so when the leakage current I leak / area per unit area is required, it is shown in the following formula 2. (Equation 2) I leak / area = 2.2 x 10 * 1δ / 0.02 = 1.1 χ 1〇-16 Α / μτη2 When the reverse bias of ρη junction on SOI substrate is about 2 ν, the average leakage current is less than The unit's memory retention time scale is 10 sec, which can obtain the same memory retention characteristics as the DRAM of a solid-state transistor / 1 capacitor. In addition, the leakage current 叩 of the junction on the SOI substrate has previously been shown to be ˜3 x i0_n a small (1 μm per word line direction) (1995 Symp. VSLI Tech., P. 141). In the future, the above-mentioned memory retention characteristics can be fully realized. … Γ Γ ’Write time and body current] The write time is determined by the capacitance of the cell node (interrogator) and the body current isub. As mentioned above, the gate capacitance is ctotal = 0.22fF. The specification of the writing time is twr = 10 nsec. The current required for writing the V voltage in the body area within this time is shown in Equation 3 below. Private (Formula 3)

Isub = Ctotal · AV/twrIsub = CtotalAV / twr

=0.22 X ΙΟ'15 X 1/10 X 1〇*9 =22 nA 入單元電晶體之通道的;;及極電* 馬10 時,上述 表隨卷流Isub約爲2/1000。欲贼予、方技 、 J &lt;蚀、源接間雷廖約= 0.22 X ΙΟ'15 X 1/10 X 1〇 * 9 = 22 nA into the channel of the unit transistor; and pole voltage * When the power is 10, the above table is about 2/1000 with the current Isub. Desperate, Fang Ji, J &lt; Eclipse

Vds=2v,引起撞擊離子化時’可流入所需的表體電流。Vds = 2v, when the impact ionizes, it can flow into the required surface current.

裝 訂Binding

511273 A7 B7 五、發明説明(19 ) [”0”寫入的選擇性與信號量] 記憶體單元之C-V曲線(閘極、表體間之電壓Vgb與電容 Cgb的關係)如圖16所示。表體區域之受體濃度爲 NA=1018/cm3 時,平帶電壓爲 VFB = -1.2 V。以 Vwl = 1 V的 字線電壓執行Π1Π寫入(表體電位VB=0.6 V),寫入後降低 字線電位時,起初因被通道反轉層遮蔽,電容Cgb爲零。此 夕卜,假設Π1Π單元之臨限値爲Vth 1=0 V時,縱使字線電位降 低至0 V表體電位VB仍不改變,電容Cgb的明朗化係因字線 電位爲臨限値電壓Vth 1,亦即Vw 1 = 0 V。此時,閘極、表 體間電壓爲Vgb= -0.6 V。 此外,pn接合之每單位面積的電容爲NA = 1018/cm3,汲 極電壓爲Vd二0 V時,爲4 fF/μπι2。接合面積爲0· 1 μπι X 0· 1 μηι χ2 = 0.02 μπι2 時,pn 接合電容爲 Cj=0.08 fF。圖 16 中, Vgb = -0.6 V之 Cgb/Cox爲 0.8,Cox=0.14 fF 時,對閘極電壓 之表體區域的電容結合比λ如以下公式4所示。 (公式4) λ = Cgb/(Cgb + Cox) =0.14 x 0.8/(0.14 x 0.8 + 0.08) = 0.58 因此,字線電位降低,閘極與表體間之電容Cgb開始出現 時之表體區域電位變化對字線電位變化比約爲60%。再者 ,降低字線電位時,雖表體電位也下降,不過,Vgb在負 端大於-0.6 V。隨之,電容Cgb變大,因電容結合,可降低 _-22-___ 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 511273511273 A7 B7 V. Description of the invention (19) [Selectivity and semaphore of "0" write] The CV curve of the memory cell (the relationship between the voltage Vgb between the gate and the body and the capacitance Cgb) is shown in Figure 16 . When the receptor concentration in the surface area is NA = 1018 / cm3, the flat band voltage is VFB = -1.2 V. The Π1Π writing is performed at a word line voltage of Vwl = 1 V (body potential VB = 0.6 V). When the word line potential is lowered after writing, the capacitance Cgb is initially zero due to being blocked by the channel inversion layer. Furthermore, assuming that the threshold value of the Π1Π cell is Vth 1 = 0 V, even if the word line potential is reduced to 0 V, the body potential VB does not change. The capacitor Cgb is made clear because the word line potential is a threshold voltage. Vth 1, which means Vw 1 = 0 V. At this time, the voltage between the gate and the body is Vgb = -0.6 V. In addition, the capacitance per unit area of the pn junction is NA = 1018 / cm3, and the drain voltage is 4 fF / μm2 when the drain voltage is Vd-20V. When the junction area is 0 · 1 μπι X 0 · 1 μηι χ2 = 0.02 μπ2, the pn junction capacitance is Cj = 0.08 fF. In Fig. 16, when Cgb / Cox of Vgb = -0.6 V is 0.8, and Cox = 0.14 fF, the capacitance combination ratio λ to the body region of the gate voltage is shown in Equation 4 below. (Equation 4) λ = Cgb / (Cgb + Cox) = 0.14 x 0.8 / (0.14 x 0.8 + 0.08) = 0.58 Therefore, the word line potential decreases, and the capacitance between the gate and the surface of the surface Cgb begins to appear in the surface area The ratio of the potential change to the potential change of the word line is about 60%. Moreover, when the word line potential is lowered, although the surface potential also decreases, Vgb is greater than -0.6 V at the negative terminal. As a result, the capacitance Cgb becomes larger, which can be reduced due to the combination of capacitance. _-22 -___ This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 511273

表體電位。最後,如圖16所示,字線電位下降至vwl = -1.3 v,平均電容結合比;I爲〇·6時,因表體區域最初爲0.6 v, 因此,僅下降AVB = 1.3 Vx 0·6 = 0·78 V,而成-0.18 V。此 時,Vgb = -1.12 V。 亦即,因過剩空穴注入表體電位爲VB= 〇·6 V時執行,,:r 資料寫入後,以Vwl = -1 ·3 V之字線電位保持資料時,表體 電位因電容結合保持_〇· 1 8 V。此狀態下,某個單元降低位 元線電位至負電位,執行”〇”寫入,降低表體電位時,在表 體電位低於-0·18 V的條件下,字線電位爲-1·3 V的非選擇 單元,其表體的空穴也流向汲極,資料被破壞。因此,避 免引起資料破壞之&quot;0,,資料寫入時之表體電位的最小値爲 -0.18 V。由於”1”資料寫入電壓的最大値爲内建電壓〇.6 ν ,因此信號量的最大値爲0.6 V- (-0.18 V) = 0·78 V。因此, 上述之ΔνΒ爲”〇,,資料與” 1&quot;資料的信號量差(表體電位差)。 [非破壞讀出性的確認] 如前所述,本發明地一種實施形態之記憶體單元在原理 上可執行非破壞讀出。實際上,爲求保證非破壞讀出,需 確認 (1) 縱使反覆執行讀出”〇·,資料至單元,表體區域内無空穴 注入, (2) 縱使反覆執行讀出”1”資料至單元,表體區域内無空穴 注入。 由於此時重複次數的最大値Nmax相當於在某個再新與 下一個再新之間(如128 msec),同一個單元連續執行讀出操Surface body potential. Finally, as shown in Figure 16, the potential of the word line drops to vwl = -1.3 v, the average capacitance-to-capacitance ratio; when I is 0.6, the surface area of the surface is initially 0.6 v, so only AVB = 1.3 Vx 0 · 6 = 0 · 78 V, which is -0.18 V. At this time, Vgb = -1.12 V. That is, when the potential of the body is injected due to excess hole injection at VB = 0 · 6 V, the: r data is written at the word line potential of Vwl = -1 · 3 V after the data is written. The combination holds _〇 · 18 V. In this state, a certain cell lowers the bit line potential to a negative potential and executes "0" writing. When the surface potential is lowered, the word line potential is -1 when the surface potential is lower than -0.58 V. · For 3 V non-selected cells, the holes in the surface of the cell also flow to the drain, and the data is destroyed. Therefore, to avoid data destruction, the minimum value of the body potential at the time of data writing is -0.18 V. Since the maximum value of the "1" data writing voltage is the built-in voltage 0.6 ν, the maximum signal amount is 0.6 V- (-0.18 V) = 0 · 78 V. Therefore, the above-mentioned ΔνΒ is "0", and the signal amount difference (surface potential difference) between the data and the "1" data. [Non-destructive readout confirmation] As described above, the memory cell according to an embodiment of the present invention can perform non-destructive readout in principle. In fact, in order to ensure non-destructive reading, it is necessary to confirm (1) that even if reading is performed repeatedly "0 ·, data to the cell, there is no hole injection in the body area, (2) even if reading is repeatedly performed" 1 "data To the cell, there is no hole injection in the body area. Because the maximum number of repetitions at this time maxNmax is equivalent to between a certain renewal and the next renewal (such as 128 msec), the same cell continuously performs read operations.

裝 訂Binding

-23- 511273 A7 B7 五、發明説明(21 ) 作(100 nsec),因此約爲Nmax= 128 msec/100 nsec = 1.28X 1016次。(1)項之保持表體之空穴儲存狀態之”0”資料的非破 壞性應屬關鍵。因此,縱使於讀出時流入電流,仍須以約 Vds= 0.5 V的低電流,在線形區域内執行讀出。或是,如 前述第一種讀出方式,採用在π〇π資料的單元内不流入電流 的方式,較能保證非破壞性。 以上,係驗證顯示本發明第一種實施形態之DRAM之基 本可行性的判斷基準。其次,依序進一步具體説明分析本 發明第一種實施形態之DRAM性能的結果。 [讀出時之位元線電位變化] 以上係驗證圖12及圖13中説明之第二種讀出方式,亦即 在位元線上供應一定電流執行讀出時之位元線的電位變化 。圖1 7爲該驗證上使用的等效電路。爲求簡便,假設位元 線B L的電位預充電成0 V ’字線1W L的電位V w 1在t〉0時,如 以下公式5所示,設定在記憶體單元MC之臨限値Vth (VthO ,Vth 1)以上。 (公式5)-23- 511273 A7 B7 5. Explanation of the invention (21) operation (100 nsec), so it is about Nmax = 128 msec / 100 nsec = 1.28X 1016 times. (1) The non-destructiveness of the "0" data that maintains the hole storage state of the watch body should be the key. Therefore, even if a current flows during reading, it is necessary to perform reading in a linear region at a low current of about Vds = 0.5 V. Or, as in the aforementioned first reading method, a method in which no current flows in the unit of π〇π data is adopted, which is more non-destructive. The above is the criterion for judging the basic feasibility of the DRAM according to the first embodiment of the present invention. Next, the results of analyzing the performance of the DRAM according to the first embodiment of the present invention will be further described in order. [Bit line potential change during readout] The above is to verify the second readout method described in FIG. 12 and FIG. 13, that is, the bit line potential change when a certain current is supplied to the bit line to perform readout. Figure 17 shows the equivalent circuit used in this verification. For simplicity, it is assumed that the potential of the bit line BL is precharged to 0 V 'and the potential V w 1 of the word line 1 W L is at t> 0, as shown in the following formula 5, and is set at the threshold 値 Vth of the memory cell MC (VthO, Vth 1) or more. (Equation 5)

Vwl&gt; Vth 位元線B L上,於t〉0時,供應有爲I c的一定電流,該電 流如以下公式6所示,爲小於單元電晶體之V g s = V w 1時之 飽和電流I d s a t者。 (公式6)Vwl &gt; On the Vth bit line BL, when t> 0, a certain current of I c is supplied, as shown in the following formula 6, which is less than the saturation current I of the unit transistor when V gs = V w 1 dsat (Equation 6)

Ic&lt; Idsat= (k/2)(Vwl-Vth)2 -24- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 511273 A7 B7 五、發明説明(22 ) 而 k= (W/L)(sox/tox) peff 此時,位元線BL之電位Vbl的變化,於單元電晶體之没 極電流爲Ids時,由以下公式7來表示。 (公式7) dVbl/dt=(l/Cbl)(Ic-Ids) 由於單元電晶體在線形區域操作,因此Vbl &lt; Vwl-Vth成 立,此時單元電晶體之没極電流Ids由以下公式8表示。 (公式8)Ic &lt; Idsat = (k / 2) (Vwl-Vth) 2 -24- This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) 511273 A7 B7 V. Description of invention (22) and k = ( W / L) (sox / tox) peff At this time, the change in the potential Vbl of the bit line BL is represented by the following formula 7 when the terminal current of the cell transistor is Ids. (Equation 7) dVbl / dt = (l / Cbl) (Ic-Ids) Because the unit transistor operates in the linear region, Vbl &lt; Vwl-Vth is established. At this time, the non-polar current Ids of the unit transistor is given by Equation 8 Means. (Equation 8)

Ids=k[Vwl-Vth-(l/2) VblJVbl 將公式8帶入公式7内積分時,得到以下的公式9。 (公式9)Ids = k [Vwl-Vth- (l / 2) VblJVbl When formula 8 is integrated into formula 7, the following formula 9 is obtained. (Formula 9)

Vbl = α· β [ 1 - exp(t/tO)]/[P-a*exp(t/tO)] 因 cc= Vwl-Vth+ [(Vwl-Vth)2-2Ic/k]1/2 Vwl-Vth-[(Vwl-Vth)2-2Ic/k]1/2 to= 2Cbl/[k(a-p)] 依公式5及公式6的假定,滿足a&gt; β&gt; 0。因此,公式9對 時間t爲凸的增加函數,爲Vbl(0)=0,Vbl(〇〇)=P。 圖18顯示公式9的計算結果。假設Π0Π資料之單元的臨限 値爲Vth0 = 0.3 V,Π1Π資料之單元的臨限値爲Vthl=-0.3 V, 虛擬單元的臨限値爲Vthd = 0·05 V,位元線電容Cbl = 100 fF ,單元電流的增益係數爲k = 2.0 x 1(T5 (A/V2),並使用 -25- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Vbl = α · β [1-exp (t / tO)] / [Pa * exp (t / tO)] because cc = Vwl-Vth + [(Vwl-Vth) 2-2Ic / k] 1/2 Vwl-Vth -[(Vwl-Vth) 2-2Ic / k] 1/2 to = 2Cbl / [k (ap)] According to the assumptions of Equation 5 and Equation 6, a &gt; β &gt; 0 is satisfied. Therefore, Equation 9 is a convex increasing function for time t, which is Vbl (0) = 0 and Vbl (〇〇) = P. FIG. 18 shows the calculation result of Equation 9. Suppose the threshold of the unit of Π0Π data is Vth0 = 0.3 V, the threshold of the unit of Π1Π data is Vthl = -0.3 V, the threshold of the virtual unit is Vthd = 0 · 05 V, and the bit line capacitance Cbl = 100 fF, the gain factor of the unit current is k = 2.0 x 1 (T5 (A / V2), and use -25- This paper size applies to China National Standard (CNS) A4 specifications (210 X 297 mm)

裝 訂Binding

511273 A7 -------—___ B7 五、發明説明(23^ ^~ --511273 A7 --------___ B7 V. Description of the invention (23 ^ ^ ~-

Ie - 0’9 Idsat= 13 μΑ,Vwl = 15 V,同時顯示 ”〇”資料時之 位凡線電壓VblO,””資料時之位元線電壓Vbll分別爲信 號私壓¥31§0 ’ Vsigl及參考位元線的電壓Vbld。結果可知 ,因升鬲字線,因此於丨〇 nsec後,可獲得100 mV的信號。 虛擬單το爲與記憶體單元相同構造的M〇S電晶體,宜採 可適切设足表體電位的型式者。此因,自我整合性的依據 fa單元之臨限値的處理變動及溫度變動。此時,藉由 選擇虛擬單70的表體電位,可最適切設定,,0,,,” 1,,資料的 信號量。 Γ〇π寫入速度] 本發明第一種實施形態之&quot;0”寫入,如上所述,係藉由正 向偏置記憶體電晶體之Ρ型表體區域與η型汲極的ρη接合, 抽樣表體區域的空穴。該”〇,,寫入的速度,使用圖19的等效 電路檢討如下。 t = 〇時,ρη接合在ρ層、11層上均爲2·2 ν,處於平衡狀態 。1&gt;〇時,使端爲〇ν時,計算具有電容之表體(ρ型層)電位 的變化狀態。若時間tip型層的電位爲V時,則以下公式ι〇 成立。Ie-0'9 Idsat = 13 μΑ, Vwl = 15 V, meanwhile displaying the line voltage VblO at the time of "〇" data, and the bit line voltage Vbll at the time of "" data are the signal private pressure ¥ 31§0 'Vsigl And the voltage Vbld of the reference bit line. As a result, it can be known that a signal of 100 mV can be obtained after n nsec due to the rise of the word line. The virtual single το is a MOS transistor with the same structure as the memory unit, and it should be a type that can appropriately set the surface potential. For this reason, the self-integration is based on the processing limit and temperature change of the threshold of the fa unit. At this time, by selecting the body potential of the virtual list 70, the most appropriate setting can be set, 0 ,,, "1," the signal amount of the data. Γ〇π writing speed] &quot; The 0 ”write, as described above, samples the holes in the body region by joining the P-type body region of the forward-biased memory transistor with the ρη of the n-type drain. This "〇," the writing speed is reviewed using the equivalent circuit of Fig. 19 as follows. When t = 〇, ρη is bonded to the ρ layer and 11 layers, both 2 · 2 ν, and is in a balanced state. 1 &gt; 〇, When the terminal is 0 ν, the potential change state of the surface body (ρ-type layer) with capacitance is calculated. If the potential of the time tip-type layer is V, the following formula ι0 holds.

(公式10) t=-Ci〇dV/I 此時,I爲ρη接合的電流,並以下列公式11表示。 (公式11) ί = Is[exp(V/r|.Vt;M] 顧τ關冢標準(CNS) A4規格(21G.^公爱) ^-— 511273 A7 ____ —_B7 五、發明説明(24 ) 公式11中,IS爲飽和電流,η爲i〜2間的係數,Vt爲熱電 壓(Thermal Voltage),Vt = kT/q。將公式11帶入公式1〇内積 分時,得到以下的公式12。 (公式12) V= ri.Vt.ln[l/{l-[l_exp(-VO/ri.Vt)]exp(t/t〇)}] 此時,to爲以tO= C.r^vt/Is所賦予的常數。使用下數公 式13之數値計算公式12的結果如圖2〇。 (公式13)(Equation 10) t = -CiodV / I At this time, I is the current of the ρη junction, and is expressed by the following Equation 11. (Formula 11) ί = Is [exp (V / r | .Vt; M) Gu τ Setsuka Standard (CNS) A4 Specification (21G. ^ Public Love) ^ -— 511273 A7 ____ —_B7 V. Description of the Invention (24 ) In Equation 11, IS is the saturation current, η is the coefficient between i ~ 2, Vt is the Thermal Voltage, and Vt = kT / q. When integrating Equation 11 into Equation 10, the following formula is obtained: 12. (Formula 12) V = ri.Vt.ln [l / {l- [l_exp (-VO / ri.Vt)] exp (t / t〇)}] At this time, to is tO = Cr ^ vt / Is given constant. Using the number in the following formula 13 to calculate the result of formula 12 is shown in Figure 2 (Equation 13)

Is=Js· AjIs = Js · Aj

Js = 6.36 X l(T5A/m2 Aj = 0.01 μπι2 T=8.5〇C Vt = 0.0309 η = 1Js = 6.36 X l (T5A / m2 Aj = 0.01 μπι2 T = 8.5〇C Vt = 0.0309 η = 1

t0 = 10.7 sec VO = 2.2 V 從圖20的數値計算結果可知,”〇”寫入時,約i nsee之表 體(P型層)的電位固定在0·7 V以下。 [表體區域的電位變化] 以上,有關”0”寫入的選擇性,係參照圖16,説明字線電 位與表體電位的關係’以下進一步詳細檢討表體電位變化 。亦即,詳細説明以正的字線電位Vwl執行寫入後,降低 _ - 27 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 511273 A7 -----— —_— B7 五、發明 :線電位至負i,保持資料,再度將字線升高至正電位讀 乂笔位Vr執仃讀出時,表體區域上顯示何種電位變化 0 單位電晶體足閘極與S0I基板之表體(p型層)間之每單位 面積的電容Cgb,使用閘極與表體間的電位差Vgb,以下列 公式14表示。 (公式14)t0 = 10.7 sec VO = 2.2 V From the calculation results in Fig. 20, it can be seen that when "〇" is written, the potential of the surface (P-type layer) of about insee is fixed below 0 · 7 V. [Potential change in the body region] As mentioned above, regarding the selectivity of "0" writing, the relationship between the word line potential and the body potential will be described with reference to FIG. 16. That is, it is explained in detail that after writing is performed with a positive word line potential Vwl, the reduction is _-27-This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) 511273 A7 -----— —_ — B7 V. Invention: Line potential to negative i, hold data, raise word line to positive potential again, read pen position Vr, and read out, what kind of potential change is displayed on the surface of body area 0 unit transistor foot brake The capacitance Cgb per unit area between the electrode and the surface (p-type layer) of the SOI substrate is represented by the following formula 14 using the potential difference Vgb between the gate and the surface. (Formula 14)

Cgb/Cox=i/[i+2*ID2(Vgb-5)/Vt]I/2 閘極氧化膜之每單位面積的電容c〇x,使用界電常數 與氧化膜厚tox,以Cox= εοχ/tox表示。ID爲以γ = (ssi/sox) tox ’知德拜長(Debye Length) LD予以規格化的無維數,並 依以下公式1 5求出。 (公式15) ID = (sox/esi)LD/tox =(sox/ssi)[kT*ssi/(q2NA)]l/2/tox 此時’由以下條件決定參數δ。亦即’公式14自以下列公 式1 6表tf之在表體上擴散之耗盡層的厚度w ρ (此爲仍以丫將 實際之耗盡層的厚度wp予以規格化的無維化者)求出。 (公式16) wp= -1 + [1 + ID2(Vgb-6)/Vt]I/2 此時,Vgb = VFB(平帶電壓),在wp = 1 D的條件下,顯 -28-Cgb / Cox = i / [i + 2 * ID2 (Vgb-5) / Vt] I / 2 The capacitance per unit area of the gate oxide film, c0x, uses the boundary electric constant and the oxide film thickness tox, and Cox = εοχ / tox means. The ID is a dimensionless dimension normalized by γ = (ssi / sox) tox ′ Debye Length LD, and is obtained according to the following formula 15. (Formula 15) ID = (sox / esi) LD / tox = (sox / ssi) [kT * ssi / (q2NA)] l / 2 / tox At this time, the parameter δ is determined by the following conditions. That is, 'Formula 14 is the thickness w ρ of the depletion layer diffused on the surface of the surface according to the following formula 16 (see Table 6). This is an undimensionalized person who still normalizes the actual thickness of the depletion layer wp ) Find it out. (Equation 16) wp = -1 + [1 + ID2 (Vgb-6) / Vt] I / 2 At this time, Vgb = VFB (flat band voltage). Under the condition of wp = 1 D, it shows -28-

本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 511273 A7 B7This paper size applies to China National Standard (CNS) A4 (210X297 mm) 511273 A7 B7

五、發明説明(26 ) 示以下的公式1 7。 (公式17) ID = -1 + [1 + ID2(Vgb-5)/Vt]1/2 欲解該公式17,參數δ爲以下公式18。 (公式18) δ = VFB-(1 + 2/ID)Vt 從公式14與公式18中雖可求出Cgb與Vgb的關係,但是並 未涵蓋廣泛的Vgb區域。因而,閘極、源極間電壓Vgs在超 過電晶體之臨限値Vth的情沉下,Ggb = 0,同時 於1的情況下,將其替換成1,計算對廣泛之Vgb値的Cgb値 其計算結果顯示於圖21。此爲字線爲p型多結晶矽閘極時 ,求出”0Π資料之單元之字線與表體間電壓Vgb與電容Cgb 之關係的結果。條件爲tox = 2.5 nm,ΝΑ = 5 X 1018/crn3,溫 度 85°C,VFB= 0·1 V,VthO= 1·5 V,VB= ·〇·7 V,Cox = 0·14 fF,Cj = 0.08 fF 〇 另外,對閘極電壓之變化AVg之表體電位變化AVb,以下 列公式1 9表示。 (公式19) △ Vb 二[Cgb/(Cgb+ Cj)] AVg 此時,Cj爲串聯輸入表體的電容(上述說明之pn接合電容) -29- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇 X 297公釐) 511273 A7 B7 五、發明説明(27 ) ,固定該値,改變公式19時,得公式20。 (公式20) AVg= (1 + Cgb/Cj)AVgb 積分公式20時,得下列公式2 1。 (公式21)V. Description of the invention (26) The following formula 17 is shown. (Equation 17) ID = -1 + [1 + ID2 (Vgb-5) / Vt] 1/2 To solve this equation 17, the parameter δ is the following equation 18. (Equation 18) δ = VFB- (1 + 2 / ID) Vt Although the relationship between Cgb and Vgb can be obtained from Equation 14 and Equation 18, it does not cover a wide Vgb region. Therefore, when the voltage between the gate and the source Vgs exceeds the threshold 电 Vth of the transistor, Ggb = 0, and at the same time, it is replaced with 1 to calculate Cgb 値 for a wide range of Vgb 値The calculation results are shown in FIG. 21. When the word line is a p-type polycrystalline silicon gate, the relationship between the voltage Vgb and the capacitance Cgb between the word line of the unit of 0Π data and the surface of the cell is obtained. The conditions are tox = 2.5 nm, ΝΑ = 5 X 1018 / crn3, temperature 85 ° C, VFB = 0 · 1 V, VthO = 1 · 5 V, VB = · 〇 · 7 V, Cox = 0 · 14 fF, Cj = 0.08 fF 〇 In addition, changes to the gate voltage The change in the body potential of AVg AVb is expressed by the following formula 19. (Equation 19) △ Vb two [Cgb / (Cgb + Cj)] AVg At this time, Cj is the capacitance of the input body of the series (the pn junction capacitance described above) -29- This paper size applies the Chinese National Standard (CNS) A4 specification (21 × X 297 mm) 511273 A7 B7 V. Description of the invention (27) When the formula is fixed and formula 19 is changed, formula 20 is obtained. (Formula 20 ) AVg = (1 + Cgb / Cj) AVgb When formula 20 is integrated, the following formula 2 1 is obtained. (Equation 21)

Vg-VgO= igL[l+Cgb/Cj]dVgb 改寫公式21時,得公式22。 (公式22)Vg-VgO = igL [l + Cgb / Cj] dVgb When formula 21 is rewritten, formula 22 is obtained. (Formula 22)

Vgb-VgbO = (Vg-VgO)- igL(Cgb/Cj)dVgb 計算該公式22時,可自閘極電壓Vwl(字線)之電壓變化 AV g求得表體電壓VB的變化AVb。”0”資料的單元,在與上 述圖2 1計算時相同之參數條件下的計算結果,如圖22所示 。自該結果可知,如字線爲2.0 V,執行”0”寫入,使表體降 至-0.7 V,字線降至-2 V保持資料時,此時之表體電位保持 在-2.1 V。再使字線升高至1.0 V,執行讀出時,表體僅升 高至約-0.9 V。亦即,Π0Π資料的單元,讀出時表體電位低 於寫入時,因此,讀出界限擴大0.2 V。 對” 1 ”資料單元執行相同的計算結果顯示於圖23。此外, 此時之電容Cgb與電壓Vgb的關係顯示於圖24。圖21及圖22 使用之參數相同。” 1Π資料時,可知於寫入之後,表體爲 0.6 V,字線保持在-2.0 V的狀態下,表體爲-1.0 V。Π0Π資 -30- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 五、發明説明(28 ) 料的寫入,原則上表體電位可達_10 ν,但是,於&quot;〇”寫入 2由於將下降至-1·5 位元線回復成〇ν時之pn接合的 屯备耦合(耦合比爲18%),表體上昇〇.3 v,而成_〇 7 v。因 此,圖22之”0”資料時,於寫入之後的電位成_〇7 v。 ” 寫入時也是同樣的,雖有位元線的電容耦合,不過與 π〇”寫入不同的是流入表體電流Isub,於寫入,,丨,,資料中,自 内建電壓0·6 V上昇至下列公式23所示的電位v。 (公式23)Vgb-VgbO = (Vg-VgO)-igL (Cgb / Cj) dVgb When calculating the formula 22, the change AVb of the body voltage VB can be obtained from the voltage change AV g of the gate voltage Vwl (word line). The unit of "0" data is calculated under the same parameter conditions as in the calculation of Figure 21 above, as shown in Figure 22. From this result, if the word line is 2.0 V, perform a "0" write to reduce the surface of the table to -0.7 V and the word line decreases to -2 V. When holding the data, the surface potential at this time remains at -2.1 V . The word line is then raised to 1.0 V, and when reading is performed, the surface of the body is only raised to approximately -0.9 V. That is, the cell potential of the Π0Π data is lower than that at the time of writing. Therefore, the reading limit is extended by 0.2 V. The results of performing the same calculation on the "1" data element are shown in Figure 23. The relationship between the capacitance Cgb and the voltage Vgb at this time is shown in FIG. 24. Figure 21 and Figure 22 use the same parameters. ”For 1Π data, it can be seen that after writing, the surface of the table is 0.6 V, the word line is maintained at -2.0 V, and the surface of the table is -1.0 V. Π0Π 资 -30- This paper size applies Chinese National Standards (CNS) Α4 specification (210X297 mm) V. Description of the invention (28) In principle, the body potential of the surface can reach _10 ν. However, the "2" written in "&quot; 〇" will drop to -1.5 bits When the line is restored to pn junction coupling (coupling ratio is 18%), the surface of the surface rises by 0.3 v, which becomes _〇7 v. Therefore, in the case of "0" data in FIG. 22, the potential after writing becomes _07v. It is the same when writing. Although there is capacitive coupling of the bit line, it is different from π〇 ”writing. It is the current flowing into the body Isub. In the writing, 丨, the data, the built-in voltage 0 · 6 V rises to the potential v shown in Equation 23 below. (Formula 23)

Isub^ Is[exp{V/(n.Vt)-l}] η 帶入 Isub= 14 nA、Is=6.36xl0, A、v t==() 〇3ι v &quot; =1.2時,得到ν=0·96 v。因此,表體電位於”卜資料寫入 之後接近! V’位元線自uv下降至〇v,縱使因耦合而下 降0 3 V’仍有〇: ¥以上,藉由之後二極體的正向電流而成 亦即’實際上1 ”資料寫入之後的表體電位應爲 U. ο V 〇 以上的計算,爲將平帶電壓設定在VFB = 〇1㈣。這是 對應於在S0I基板之p型矽層i形成p型多結晶矽之閘極( 字線)時。其次,在相同的S0I基板上,由㈣ 用閉極時,執行相同計算的結果。此時,+帶 =-1·1 V 〇 圖25爲對”1&quot;資料單元求電容Cgb-電壓Vgb的結果。圖26 同樣的爲們”資料單元求字、缘電壓Vwi與表體電壓…之 關係的結果。平帶電壓以外的參數與上述圖21及圖22相同 -31 - 五、發明説明(29 。臨限値均爲Vthl=::() V。 ☆:據上述結果,可確保,,0”資科之 爲字線於寫入時爲1 士 σ匕th〇 = I ν者 .,_ ^ 馬^ ·5 V,謂出時爲0 5 V。资μ作 者, ,在黾壓若爲-2·5 V,則丨,j丨,資- 貝科保待時之字 此,與使用ρ型多結晶發門/的表體下降至,Vi 個字線振幅,僅〇·2 ;不^之VFB=(M V時相比,對同- 谷Cgb-電壓Vgb特性盥字轉泰 争〈電 I #阳a ”子、,泉私壓Vwl-表體電壓VB特性的钻 果。臨限値VthO= ;! v。χ、&amp; 苻『生的結 -0.8V,當位元飧自 .....,足&lt; 的表體電位雖爲 兀、,泉回復接近預充電電位^寺 因ρη接合的耦合而僅上 、、 丨垔上幵U.3 V,而成-〇·5 V。此時,寫入 時之字線雖也爲1 ·5 V,_ η為+ Ri ^ η &lt; ΛΓ ^ *、 1一因項出時馬〇 · 5 V,因此表體電位 僅回復0·15 V,而成_〇·65 ν。 知以上之ρ型多結晶矽閘極時與η型多結晶矽閘極時之操 作條件分別整理成以下的表1及表2。 [表1]Isub ^ Is [exp {V / (n.Vt) -l}] η brings Isub = 14 nA, Is = 6.36xl0, A, vt == () 〇3ι v &quot; = 1.2, get ν = 0 96 v. Therefore, the body's electricity is close after the data is written! The V 'bit line drops from uv to 0V, even though it drops 0 3 V' due to the coupling, there is still more than 0: ¥. The body potential after the data is written into the current, that is, "actually 1", should be calculated by U. ο V 〇 or more, in order to set the flat band voltage at VFB = 〇1㈣. This corresponds to when a gate (word line) of p-type polycrystalline silicon is formed on the p-type silicon layer i of the SOI substrate. Secondly, on the same SOI substrate, when the closed pole is used by 极, the result of the same calculation is performed. At this time, + band = -1 · 1 V. Figure 25 is the result of calculating the capacitance Cgb-voltage Vgb for the "1" data unit. Figure 26 is the same for the data unit. Find the word, edge voltage Vwi, and body voltage ... The result of the relationship. The parameters other than the flat band voltage are the same as those in Figure 21 and Figure 22 above. V. Explanation of the invention (29. The thresholds are all Vthl =: :() V. ☆: According to the above results, it can be ensured that 0 " Kezhi is the word line at the time of writing is 1 person σ σth0 = I ν., _ ^ Ma ^ · 5 V, it is 0 5 V when it is stated. The author,, if the pressure is -2 · 5 V, then 丨, j 丨, Zi-Beke's word for waiting, compared with the use of ρ-type polycrystalline gate / table body, Vi word line amplitude, only 0.2; not ^ VFB = (Compared to the time of MV, the results of the same-valley Cgb-voltage Vgb characteristics transfer to Thai competition <electricity I # 阳 a "sub, the spring pressure Vwl-surface body voltage VB characteristics of the fruit. Threshold VthO =;! V. Χ, &amp; 苻 "raw junction-0.8V, when the bit is 飧 ....., although the surface potential of the foot &lt; The coupling of the ρη junction is only U, 3 V above, and 丨 而成, resulting in -0 · 5 V. At this time, although the word line at the time of writing is also 1 · 5 V, _ η is + Ri ^ η &lt; ΛΓ ^ *, 1 due to the fact that when the term is 0. 5 V, the surface potential only returns 0. 15 V and becomes _0 · 65 ν. Knowing the above ρ type When crystalline silicon gate and η-type polycrystalline silicon gate electrode when the operating conditions are organized into the following Table 1 and Table 2. [Table 1]

g.型多結晶矽閘極睡 Vwl (read) = 1 V Vwl (hold) = -2 V Vwl (write) = 2 Vg. Type Polycrystalline Silicon Gates Vwl (read) = 1 V Vwl (hold) = -2 V Vwl (write) = 2 V

Vbl (丨丨0nwrite) = -1.6 V Vbl (n lnwrite) = 1 ·6 V VthO = 1·5 V Vthl = 0.5 V -32- 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 511273 A7Vbl (丨 丨 0nwrite) = -1.6 V Vbl (n lnwrite) = 1.6 V VthO = 1.5 V Vthl = 0.5 V -32- This paper size applies to China National Standard (CNS) A4 (210 x 297 mm) (Centimeter) 511273 A7

1 ’’貧料單元?買出時之表體電位VB == 〇. ό v 〇資料單元碩出時之表體電位= _ 1 V1 ’’ lean material unit? Table body potential at the time of purchase VB == 〇. Ό v 〇 Table body potential at the time of data unit purchase = _ 1 V

[表2] η型多結晶碎閘極時 Vwl (read) = 0.5 V Vwl (hold) = -2.5 V Vwl (write) = 1.5 V Vbl (丨丨0nwrite)= -1·4 v[Table 2] In the case of η-type polycrystalline broken gate Vwl (read) = 0.5 V Vwl (hold) = -2.5 V Vwl (write) = 1.5 V Vbl (丨 丨 0nwrite) = -1 · 4 v

Vbl (丨丨 1 丨’write) = 1 ·4 vVbl (丨 丨 1 丨 ’write) = 1 · 4 v

VthO = 1.0 V Vthl= 0 VVthO = 1.0 V Vthl = 0 V

”1”資料單元讀出時之表體電位VB= 〇.6 v n〇&quot;資料單元讀出時之表體電位VB= V 另外,以上表1,2中,π 1,,宜XnTable body potential VB when reading "1" data unit = 0.6 v n0 &quot; Table body potential VB = V when reading data unit In addition, in Tables 1 and 2 above, π 1, preferably Xn

T i冩入時的位元線電位V (&quot;l,We)’應以基板電流(空穴電流)與寫入時間來決定 屬於不定値’係、顯示假設的設定値。從以上可了解使用 型多結晶㈣極的優點。不論何時,字線振幅均爲4 V。、 其更加低電壓化時,須採取以下對策。 (A)須減少臨限値Vth的偏差 (B) 須確保記憶體單元電流 (C) 減少Cj/Cox的比率 有關(A)項及(B)項,過去係假設△vth: Vth〇Vthi=丨〇 v 不過可以嚴格控制在約〇·8 V〜〇·6 v。若能達到△ vth = -33- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)The bit line potential V (&quot; l, We) 'at the time T i is entered should be determined by the substrate current (hole current) and the write time. It belongs to an indeterminate system, which is a display setting assumption. From the above, the advantages of using a polycrystalline dysprosium can be understood. The word line amplitude is 4 V at all times. When the voltage is lowered, the following measures must be taken. (A) The threshold 値 Vth deviation must be reduced. (B) The memory cell current must be reduced. (C) The Cj / Cox reduction ratio is related to (A) and (B). In the past, it was assumed that △ vth: Vth〇Vthi =丨 〇v However, it can be strictly controlled at about 0.8V ~ 0.6V. If it can reach △ vth = -33- This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm)

裝 訂Binding

M1273M1273

0.6 V,則可縮小冬線振幅並抑制在2 χ 1.2 v = 2 · 4 v。 以下,詳細檢討(c)項。此並非減少Δνί}ι的邊界,而是可 以實現字線振幅低電壓化的方法。 (C)員要求使SOI基板的珍層厚度Tsi比過去假設之1 〇〇 nm 更薄,與其同時或是單獨的可藉由降低n型源極、汲極擴散 層的雜質濃度來因應。前者藉由卯接合面積的縮小,相對 的減少pn接合電容Cj。後者因賦予耗盡層延伸至11型擴散層 的條件,因此也縮小源極、汲極擴散層與表體區域的接合 電容Cj。 圖29及圖30顯示將接合電容減半成Cj=〇 〇4 fF,以取代 過去驗證上使用的接合電容q = 0 08汀時Cgb_Vgb曲線與 Vwl-VB曲線。Cj以外的條件,圖23及圖24均相同,閘極爲 P型多結晶矽。Cj = 0.04 fF相當於矽層厚度爲5〇 nm。 因而,對’’ 1”資料單元寫入有〇·6 v的表體電位後,使字線 降低至-2·0 V時,表體電位則下降至_ 1 ·3 v。因此可知降低 表體電位至-1 V所需之字線電位,亦即資料保持上所需之 字線電位 Vwl (hold)= _1.6V。 同樣的,對,’〇”資料單元使用Cj = (h04 fF時的cgb-Vgb* 線與Vwl-VB曲線分別顯示於圖3 1及圖32。Cj以外的條件與 上述圖21及圖22相同。 如上所述,將使用薄矽層(Tsi = 50 nm)之S0I基板縮小〇 時之DRAM單元的操作條件對應於表1時,如以下表3所示 -34- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 5112730.6 V, the amplitude of the winter line can be reduced and suppressed at 2 χ 1.2 v = 2 · 4 v. The following is a detailed review of item (c). This is not to reduce the boundary of Δνίι, but to reduce the voltage of the word line. The member (C) requested that the thickness of the rare earth layer Tsi of the SOI substrate be thinner than 100 nm assumed in the past, and at the same time or alone, it can be responded by reducing the impurity concentration of the n-type source and drain diffusion layers. The former reduces the pn junction capacitance Cj relatively by reducing the 卯 junction area. In the latter case, since the condition that the depletion layer extends to the 11-type diffusion layer is provided, the junction capacitance Cj between the source and drain diffusion layers and the surface body region is also reduced. Figures 29 and 30 show that the junction capacitance is halved to Cj = 0 〇4 fF, instead of the junction capacitance q = 0 used in the past verification. Cgb_Vgb curve and Vwl-VB curve. Conditions other than Cj are the same in FIGS. 23 and 24, and the gate is P-type polycrystalline silicon. Cj = 0.04 fF corresponds to a silicon layer thickness of 50 nm. Therefore, after writing a table potential of 0 · 6 v to the "1" data cell, when the word line is lowered to -2 · 0 V, the table potential drops to -1 · 3 v. Therefore, it can be seen that the table is lowered. The zigzag potential required for body potential to -1 V, that is, the zigzag potential required for data retention Vwl (hold) = _1.6V. Similarly, when the data unit of '〇' uses Cj = (h04 fF The cgb-Vgb * line and Vwl-VB curve are shown in Figure 31 and Figure 32, respectively. The conditions other than Cj are the same as those in Figure 21 and Figure 22. As mentioned above, a thin silicon layer (Tsi = 50 nm) will be used. The operating conditions of the DRAM cell when the S0I substrate is shrunk correspond to Table 1, as shown in Table 3 below. -34- This paper size applies to China National Standard (CNS) A4 specification (210X297 mm) 511273

[表3][table 3]

Vwl (read) = 0.8 V Vwl (hold) = -1.6 v Vwl (write) = 1.6 y Vbl (n0丨丨write) =: 4 6 v Vbl (”l”write)=:」6 v VthO = 1.3 V Vthl = 0.3 V 1貝料單元項出時之表體電位Vb = ο ” v ”〇”資料單元讀出時之表體電位VB=] v 仗以上=果可知,將矽層厚度Tsi從100 nm減半至50 nm 、’侣]私谷以時’可將字線振幅從4 v降低至3·2 v。需要 注意的是,資料,,〇&quot;,Τ的臨限値差Wh仍可保w V。 S〇j基板之矽層若能再薄至30 nm時,更可實現低電壓化 仁疋,矽層過薄時,矽層將完全耗盡化,有可能喪失記 f思敝本身的功。因此,矽層的厚度宜約爲5〇麵。 圖33顯示表體電位VB爲]乂與〇6 v時之臨限値差△雜 :與石夕層雜f濃度NA的關係。此時,閘極氧化膜厚爲Tox / 2.5 nm,溫度爲T = 85°c。據此瞭解,欲確保^ v, 須NA= :L〇xl〇i9/cm3。此因,雜質濃度較濃,而設定在, NA=8x10iW,繼=〇 8 v。此時,將表3的操作條件 稍加耵正成如下的表4。Vwl (read) = 0.8 V Vwl (hold) = -1.6 v Vwl (write) = 1.6 y Vbl (n0 丨 丨 write) =: 4 6 v Vbl (”l” write) =: "6 v VthO = 1.3 V Vthl = 0.3 V 1 Table body potential at the time of unit cell output Vb = ο ”v” 〇 ”Table body potential when the data unit is read out VB =] Halving to 50 nm and 'linger] Private Valley Yi Shi' can reduce the word line amplitude from 4 v to 3.2 v. It should be noted that the threshold difference W of the data, 〇 &quot;, T can still be If the silicon layer on the V.S.sub.substrate can be thinned to 30 nm, low voltage can be realized. When the silicon layer is too thin, the silicon layer will be completely depleted, which may cause loss of memory. The work itself. Therefore, the thickness of the silicon layer should be about 50 planes. Figure 33 shows that the surface potential VB is [乂] and the threshold difference between 0 and 6 v △ impurity: the relationship with the concentration of NA in the stone layer. At this time, the gate oxide film thickness is Tox / 2.5 nm, and the temperature is T = 85 ° c. It is understood that to ensure ^ v, NA =: L〇xl0i9 / cm3. Because of this, the impurity concentration is relatively Thick, and set at NA = 8x10iW, followed by 〇8 v. At this time, the operation bar of Table 3 Ding slightly positive as follows in Table 4.

511273 A7 ____ B7 五、發明説明(~) *-- [表4]511273 A7 ____ B7 V. Description of the invention (~) *-[Table 4]

Vwl (read) = 0.7 V Vwl (hold) = -1.6 V Vwl (write) = 1.4 VVwl (read) = 0.7 V Vwl (hold) = -1.6 V Vwl (write) = 1.4 V

Vbl (n0’’write)= -1.6 V Vbl (丨丨 l’’write)= 1.4 vVbl (n0’’write) = -1.6 V Vbl (丨 丨 l’ ’write) = 1.4 v

VthO = 1.1 V Vthl = 0.3 VVthO = 1.1 V Vthl = 0.3 V

”ln資料單元讀出時之表體電位VB = 0.6 V π〇π資料單元讀出時之表體電位VB = -1 V 表4中,因”1”寫入時的位元線電位Vbl (”丨”術如),以基 板電流(空穴電流)與寫入時間來決定,因此,1·4 v爲假設 的叹走値。單元電晶體採一般構造而非丄構造時,可介 由增加基板電流lsub,因可達到此種程度的低電壓化。 上述操作條件下,單元電晶體的最大電壓爲30 V。閘極 氧化膜厚爲Τοχ = 2 · 5 nm,因此,於” 1&quot;寫入的瞬間,閘極 氧化膜上產生約12 MV/cm的電場,而影響可靠性。但是, 欲確保可靠性而增加閘極氧化膜厚時,因會造成用於控制 表體電位之電容結合比惡化,因此宜避免。因此,閘極絕 緣膜宜使用介電常數高之Ai2〇3等其他絕緣膜來取代矽氧 化膜。 爲求更加低電壓化,宜使S〇i基板之矽層厚度Tsi薄至約 3 0 nm ’改善單元電晶體的臨限値控制性,同時取較大的移 動性。考慮上述措施,應可達到約2·〇 v〜2.5 V的低電壓化。 ____ -36- 本紙張尺歧财目-- 511273 A7 B7 五、發明説明(34 ) 可確保圖33所示之臨限値差AVth時之” 1”寫入單元電晶 體之單元電流Idsl,與對應其之資料讀出時間△ t,分別如 圖34及圖35所示。單元電流由Idsl = (k/2)〇Vth/2)2求出。 此外,讀出時間At,係由將讀出時之字線電位設定於Vth 1 與VthO中間,僅使&quot;1&quot;資料的單元開啓,求出將電容Cbl = 100 fF之位元線自預充電電位放電200 mV爲止的時間。 結果在NA = 6 X 1018 /cm3中,可得Idsl二 1·4 μΑ,At= 15 nsec ° 圖36爲調查”1&quot;資料單元保持時之表體電位VB,因與臨 限値Vthl的關係下降程度的結果。條件爲,閘極氧化膜厚 tox=2.5 nm,雜質濃度NA=5 X 1018/cm3,平帶電壓VFB = 0.1 V ,ΠΓ資料之表體電位VB1=0.6 V,閘極氧化膜電容Cox = 0.14 fF,接合電容Cj = 0.04 fF。此外,字線的保持電位爲 Vwl = Vthl-2 V。 結果,於Vthl = 0·5 V以上時,保持時之表體電位與Vthl 同時上昇。Vthl &lt; 0.5 V時,表體電位飽和在-0.93 V。這表 示字線下降至Vthl&lt;0.5 V時,電容Cgb飽和在閘極氧化膜 電容Cox。 因此,平帶電壓VFB = 0.1 V時,亦即閘極爲p型多結晶矽 膜時,應設定成Vthl &lt; 0.5 V。由於知道可確保△ Vth = VthO-Vthl = 0.8 V,因此 VthO &lt; 1.3 V。因此可説,VthO = 1.1 V、Vthl = 0.3 V爲良好選擇。 彙整以上操作要領如以下表5所示,另外,彙整裝置參數 如以下表6所示。 -37- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Table potential VB when the data unit is read out = 0.6 V π〇π Table potential when the data unit is read out VB = -1 V In Table 4, the bit line potential Vbl when writing "1" due to "1" ( "丨", such as), is determined by the substrate current (hole current) and the write time. Therefore, 1 · 4 v is a hypothetical sigh. When the unit transistor adopts a general structure instead of a 丄 structure, it can be determined by Increasing the substrate current lsub can achieve this level of low voltage. Under the above operating conditions, the maximum voltage of the unit transistor is 30 V. The gate oxide film thickness is τχ = 2 · 5 nm, so "1 &quot; At the moment of writing, an electric field of about 12 MV / cm is generated on the gate oxide film, which affects reliability. However, if the gate oxide thickness is increased to ensure reliability, it should be avoided because the capacitance combination ratio used to control the body potential will deteriorate. Therefore, other insulating films such as Ai203, which have a high dielectric constant, should be used for the gate insulation film instead of the silicon oxide film. In order to achieve a lower voltage, it is desirable to make the thickness of the silicon layer Tsi of the S0i substrate as thin as about 30 nm, to improve the threshold controllability of the cell transistor, and at the same time to take a large mobility. Taking the above measures into consideration, a voltage reduction of about 2.0 V to 2.5 V should be achieved. ____ -36- The paper rule of this paper-511273 A7 B7 V. Description of the invention (34) It can ensure that the “1” cell current Idsl written into the unit transistor when the threshold difference AVth shown in FIG. 33 is equal to The corresponding data reading time Δt is shown in Figs. 34 and 35, respectively. The cell current is obtained from Idsl = (k / 2) oVth / 2) 2. In addition, the readout time At is set by setting the potential of the word line between Vth 1 and VthO at the time of readout, and only turning on the "1" data unit to obtain the self-predicted bit line of the capacitance Cbl = 100 fF. The time until the charge potential is discharged to 200 mV. Results At NA = 6 X 1018 / cm3, Idsl = 1.4 μA, At = 15 nsec ° Fig. 36 is the surface voltage VB of the investigation "1" when the data unit is held, due to the relationship with the threshold Vthl The result of the degree of decline. The conditions are: gate oxide film thickness tox = 2.5 nm, impurity concentration NA = 5 X 1018 / cm3, flat band voltage VFB = 0.1 V, surface potential VB1 = 0.6 V, gate oxidation Film capacitance Cox = 0.14 fF, junction capacitance Cj = 0.04 fF. In addition, the holding potential of the word line is Vwl = Vthl-2 V. As a result, when Vthl = 0.5 V or more, the surface potential at the same time as Vthl is maintained Rise. When Vthl &lt; 0.5 V, the body potential saturates at -0.93 V. This means that when the word line drops to Vthl &lt; 0.5 V, the capacitance Cgb saturates at the gate oxide film capacitance Cox. Therefore, the flat band voltage VFB = 0.1 V , That is, when the gate is a p-type polycrystalline silicon film, it should be set to Vthl &lt; 0.5 V. Since it is known that △ Vth = VthO-Vthl = 0.8 V, VthO &lt; 1.3 V. Therefore, VthO = 1.1 V and Vthl = 0.3 V are good choices. The operation method of the above integration is shown in Table 5 below. In addition, the parameters of the integration device are as follows: Table 6. -37- This paper scales applicable Chinese National Standard (CNS) A4 size (210 X 297 mm)

裝 訂 511273 A7 B7 五、發明説明(35 ) [表5]Binding 511273 A7 B7 V. Description of Invention (35) [Table 5]

VthO = 1.1 V,Vthl = 0.3 V Vwl (read) = 0.7 V Vwl (hold) = -1.7 V Vwl (write) = 1.5 V Vbl (&quot;O1 丨write) = -1.5 V Vbl (丨Twrite) = 1·5 V VB (Hlf,read) = 0.6 V VB (n0f,read) = -1.0 V VB (f,l,fwrite) = 0.6 V VB (,f0,fwrite) = -0.9 V VB (’Thold) = -1.0 V VB (ff0,fhold) = -2.4 VVthO = 1.1 V, Vthl = 0.3 V Vwl (read) = 0.7 V Vwl (hold) = -1.7 V Vwl (write) = 1.5 V Vbl (&quot; O1 丨 write) = -1.5 V Vbl (丨 Twrite) = 1 5 V VB (Hlf, read) = 0.6 V VB (n0f, read) = -1.0 V VB (f, l, fwrite) = 0.6 V VB (, f0, fwrite) = -0.9 V VB ('Thold) = -1.0 V VB (ff0, fhold) = -2.4 V

Vmax = 3·2 V(非選擇WL與ΠΓ·寫入BL之間的Vds) [表6] p型多結晶石夕閘極 NA= 5 X 1018/cm3 tox = 2.5 nm 通道長L=0.1 μηι,通道寬W二0·1 μηι Tsi = 50 nm k= (W/L)(sox/tox) μοΐΐ= 2.0 x 10'5 A/V2 此時,DRAM單元之讀出特性爲,於位元線電容Cbl二100 f F時,迄至附加2 0 0 m V之電位差的時間爲A t = 1 5 n s e c。 -38- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 五、發明説明(36 )Vmax = 3 · 2 V (Vds between non-selected WL and ΠΓ · write BL) [Table 6] p-type polycrystalline stone gate NA = 5 X 1018 / cm3 tox = 2.5 nm Channel length L = 0.1 μηι , Channel width W · 0.1 μηι Tsi = 50 nm k = (W / L) (sox / tox) μοΐΐ = 2.0 x 10'5 A / V2 At this time, the readout characteristic of the DRAM cell is at the bit line When the capacitance Cbl is 100 f F, the time until the potential difference of 200 m V is added is A t = 15 nsec. -38- This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm). 5. Description of the invention (36)

對應於表5及表6, 如以下表7及表8所活 爲η型多結晶石夕閘極時), 體電位VB,因與臨限 。其他條件與圖3 6相同,此 此時之操作要領及裝置參數, [表 7],Corresponding to Tables 5 and 6, as shown in Tables 7 and 8 below when the n-type polycrystalline stone gate is activated), the body potential VB, due to the threshold. Other conditions are the same as those in Figure 36. At this time, the operating procedures and device parameters are as follows, [Table 7],

VthO= 0.1 V、Vthl := -〇·7 ν Vwl (read) = 0.3 V Vwl (hold) = -2.7 V Vwl (write) = 0·5 V Vbl (,,0,,write) = -1.5 γ Vbl (丨丨 lnwrite)= 0.5 V VB (丨丨 1 丨,read) = 0·6 V VB (n0f,read)= -1.0 y VB (f,lffwrite)= 0.6 V VB (&quot;O’丨write)= -0.9 vVthO = 0.1 V, Vthl: = -〇 · 7 ν Vwl (read) = 0.3 V Vwl (hold) = -2.7 V Vwl (write) = 0 · 5 V Vbl (,, 0,, write) = -1.5 γ Vbl (丨 丨 lnwrite) = 0.5 V VB (丨 丨 1 丨, read) = 0.6 V VB (n0f, read) = -1.0 y VB (f, lffwrite) = 0.6 V VB (&quot; O '丨 write ) = -0.9 v

VB (丨T,hold)= -1.0 V VB (M0f,hold)= -2.4 VVB (丨 T, hold) = -1.0 V VB (M0f, hold) = -2.4 V

Vmax= 3.2 V(非選擇WL·與”1”寫入BL之間的Vds) [表8] n型多結晶矽閘極 NA= 5 X 1018/cm3 tox = 2.5 nm 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 511273 A7 ___________ B7 五、發明説明(37 ) 通道長L= 0.1 μπι,通遒寬w = 〇」μιη Tsi = 50 nm k= (W/L)(8〇x/tox) μ^ΐΐ= 2.0 x 10'5 A/V2 此時,DRAM單元之讀出特性爲,於位元線電容cbl= 100 時,迄至附加200 mV之電位差的時間爲△〖=15 nsec。但 是,Vbl (&quot;l’,write)是否以0.5 v流入足夠的基板電流Isub不 無問題,強制使其在〇 · 5 V以上時,這個部分的最大電壓 Vmax上昇。這一點,將p型多結晶矽使用在閘極上較爲有 利,亦即,對於由讀出特性及” 1,,寫入特性來決定的臨限値 VthO ’寫入時之字線電位vwi (write)雖然決定,但是,與 其分離之由” 1 ”寫入特性來決定的位元線電位Vbl (,,1 write) 高於該字線電位 Vwl 時,Vmax 由 Vbl (,,1,,write) -Vwl (hold) 來決定。若 Vwl (Write) g Vbl (,,l,fwrite),則 Vmax = Vwl (write) -Vwl (hold),可將操工作電壓予以最小化。 以上的計算僅係有關標準的DRAM單元。實際上,因製 造步驟會引起批量間、晶圓間、晶圓内、晶片内之單元電 晶體之臨限値的變動及k的變動,此外,也有位元線電容的 變動及設計上字線電位的變動等。此外,也需要考慮位元 線間的挺合噪音。 此外,還有因溫度造成臨限値Vth的變動。使用接近記憶 體單元的基準單元時,可將上述臨限値變動的部分因素予 以補償,避免造成影響。 換言之,採用此種讀出方式,基本上,可將上述臨限値 變動因素限制在僅屬晶片内的差異。因溫度變化造成的臨 -40- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 511273 A7 B7 五、發明説明(38 ) 限値變動,在系統上可完全消除。 如上所述,本發明第一種實施形態的記憶體單元,原則 上爲非破壞性讀出,且爲電流讀出。圖39顯示一種利用此 種記憶體單元之單元特性之感測放大器的布局。成對的位 元線BL,bBL配置在感測放大器S A的兩側,採開放位元線 方式。以位元線對BL,bBL的其中一條使字線WL啓動時, 另一條則使選擇虛擬單元DC的虛擬字線DWL啓動。虛擬單 元DC由與記憶體單元MC同樣之MOS電晶體構成,在其表 體區域賦予資料π〇”,” 1π的中間表體電位。 圖例中,兩個位元線對BL,bBL被選擇閘極SG選擇,連 接於一個感測放大器S A。連接於一個感測放大器S A之位元 線與連接於相鄰之感測放大器S A的位元線交互配置。此時 ,對被一條字線WL同時選擇的4個記憶體單元MC,爲兩個 感測放大器S A。亦即,同時被選擇之4個記憶體單元MC的 資料中,實際上被感測放大器SA檢測者爲兩個,其餘的記 憶體單元資料未被送至用於讀出的感測放大器。本發明之 第一種實施形態,不致因一般的DRAM造成破壞性讀出, 因此可採此種感測放大器方式。 雖然,本發明第一種實施形態之DRAM單元係針對0.1 μπι 原則的DRAM型式,不過需達到以下兩個條件。 •條件1 :須充分利用基板偏置效果, •條件2 :須減少pn接合的漏電流 這些條件1,2與表體區域之雜質濃度的要求相反。 條件1藉由大的基板偏置效果以增加π〇π,π 1π資料的臨限 -41 - 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 511273 A7 B7 五、發明説明(39 ) 値電壓差,因而圖1之P型矽層12(表體區域)的雜質濃度(受 體濃度)NA須爲NA二5 X 1018/cm3以上。參照圖41説明此種 情況。圖41顯示表體電位VB與NMOS電晶體之臨限値Vth 的關係因受體濃度ΝΑ不同的情況。 受體濃度爲ΝΑ1時,”0”,”1”資料之臨限値電壓差爲 △ Vthl,低於其之受體濃度ΝΑ2時之臨限値電壓差爲Δνα】 時,AVthl〉AVth2。亦即,爲求增加”0”,”1”資料的臨限 値電壓差,受體濃度需要提高到某種程度以上。 另夕卜,NA = 5 X 1018/cm3以上的受體濃度亦須使通道長= 0.1 μηι之微細MOS電晶體確實執行操作。 另外,條件2係爲了保證資料的保持特性,此時表體區域 之雜質濃度當然宜較低。0.1 μηι原則的DRAM型式,爲了在 表體區域保持1 〇秒鐘的資料,源極、汲極之pn接合洩漏須 抑制在3 X 10“7 A/cm2以下。此外,爲求降低漏電流主要成 分的通遒電流,形成在pn接合部之耗盡層内的電場須抑制 在2.5X105 V/cm以下。此爲可使表體區域之受體濃度達到 NA = 1.0 X 1017/cm3以下的値。在條件1所要求之上數受體濃 度下,耗盡層内之電場爲1.7 X 1〇ό V/cm (2 V的反向偏置時) ,無法滿足條件2的要求。 圖40對應於圖1顯示具有可滿足如上相反之條件1,2之第 二種實施形態的DRAM單元MC的構造。與圖1之單元構造 不同之處,在於表體區域由p型矽層12構成。亦即,本實施 形態由連接於汲極、源極擴散層14,15之硼濃度(受體濃度) 較低之P型擴散層12a,與配置於自汲極、源極擴散層14, -42- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 511273 A7 B7 五、發明説明(4〇 ) 15遠離之通道長度方向中央部之硼濃度(受體濃度)高的p + 型擴散層12b構成表體區域。p+型擴散層12b形成有達底部 之矽氧化膜11的深度。 該單元構造採取以臨限値電壓低之兩個NMOS電晶體夾 住等效性,臨限値電壓高之NMOS電晶體的形式。此時, 整個臨限値電壓由中央部之p+型擴散層12b來支配。另外, 汲極、源極擴散層14,15因在與低濃度之p型擴散層12a之 間構成pn接合,因此與由p +型擴散層形成整個表體區域相 比,漏電流較小。以上的結果,可滿足上述之相反的兩個 條件1,2。 具體就採圖40之單元構造能否獲得效果?或需要設定何 種濃度及位置等?説明檢討結果如下。首先,如圖42A、 圖42B所示,求在η型擴散層(施體濃度ND)與p型擴散層(受 體濃度ΝΑ)之pn接合上賦予電壓V的反向偏置時,耗盡層的 範圍及内部電場E的強度分布,作爲預備性檢討。假設pn 接合爲驟然接合(abrupt junction)。如圖42及圖42B所示, 在橫跨pn接合的方向設定X軸。 此時,η型擴散層及p型擴散層内的電位分別爲(j&gt;D,φ A, 耗盡層之η型擴散層内的前端位置爲-xn、p型擴散層内之前 端位置爲xp,泊松方程式及η型擴散層與p型擴散層内的電 場ED,ΕΑ以公式24表示。ε爲矽的介電常數。 (公式24) d2(j)D/dx2 = -(q/2s)ND (-xn &lt; x &lt; 0) ά2φΑ/άχ2 = -(q/2s)NA (0 &lt; x &lt; xp) -43- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇x 297公釐)Vmax = 3.2 V (Vds between non-selected WL and "1" written to BL) [Table 8] n-type polycrystalline silicon gate NA = 5 X 1018 / cm3 tox = 2.5 nm (CNS) A4 specification (210 x 297 mm) 511273 A7 ___________ B7 V. Description of the invention (37) Channel length L = 0.1 μπι, wide width w = 〇 ″ μιη Tsi = 50 nm k = (W / L) ( 8〇x / tox) μ ^ ΐΐ = 2.0 x 10'5 A / V2 At this time, the readout characteristic of the DRAM cell is that when the bit line capacitance cbl = 100, the time until the potential difference of 200 mV is added is △ 〖= 15 nsec. However, it is not a problem whether Vbl (&quot; l ', write) flows enough substrate current Isub at 0.5 v, and when it is forced to be above 0.5 V, the maximum voltage Vmax in this part rises. In this regard, it is advantageous to use p-type polycrystalline silicon on the gate, that is, for the threshold 値 VthO 'at the threshold of the word line vwi ( Although write) is determined, the bit line potential Vbl (,, 1 write) determined by the "1" write characteristic separate from it is higher than the word line potential Vwl, and Vmax is determined by Vbl (,, 1 ,, write ) -Vwl (hold) to determine. If Vwl (Write) g Vbl (,, l, fwrite), then Vmax = Vwl (write) -Vwl (hold), the operating voltage can be minimized. The above calculation is only This is a related standard DRAM cell. Actually, the manufacturing process will cause the threshold variation and k variation of unit transistors between batches, wafers, wafers, and wafers. In addition, there are also bit line capacitors. And design word line potential changes. In addition, it is also necessary to consider the fit noise between the bit lines. In addition, there is also a change in threshold 値 Vth due to temperature. When using a reference cell close to a memory cell, Can compensate some of the above-mentioned threshold changes In other words, with this readout method, basically, the above-mentioned threshold changes can be limited to the differences within the chip only. The temperature of the paper caused by temperature changes is -40. This paper standard applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 511273 A7 B7 V. Description of the invention (38) Limitation changes can be completely eliminated on the system. As mentioned above, the memory unit of the first embodiment of the present invention is in principle non- Destructive readout and current readout. Figure 39 shows the layout of a sense amplifier that uses the cell characteristics of this memory cell. Paired bit lines BL, bBL are arranged on both sides of the sense amplifier SA, The open bit line method is adopted. When one of the bit line pairs BL and bBL enables the word line WL, the other enables the virtual word line DWL that selects the virtual cell DC. The virtual cell DC is the same as the memory cell MC The MOS transistor structure is used to give the intermediate body potential of the data π ″, ”1π to its surface area. In the figure, the two bit line pairs BL and bBL are selected by the selection gate SG and connected to a sense amplifier. SA. Connect The bit lines of one sense amplifier SA are alternately arranged with the bit lines connected to the adjacent sense amplifier SA. At this time, for the four memory cells MC selected by one word line WL at the same time, two sense cells Sense amplifier SA. That is, among the data of the four memory cells MC selected at the same time, actually two are detected by the sense amplifier SA, and the remaining memory unit data is not sent to the sense for reading. Sense amplifier. The first embodiment of the present invention does not cause destructive readout caused by general DRAM, so this sense amplifier method can be adopted. Although the DRAM cell according to the first embodiment of the present invention is a DRAM type based on the 0.1 μm principle, the following two conditions need to be met. • Condition 1: The substrate bias effect must be fully utilized. • Condition 2: The leakage current of the pn junction must be reduced. These conditions 1, 2 are contrary to the requirements for the impurity concentration in the surface area. Condition 1 Increases the threshold of π〇π, π 1π data by a large substrate bias effect -41-This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 511273 A7 B7 V. Invention Explanation (39) 値 The voltage difference, therefore, the impurity concentration (receptor concentration) NA of the P-type silicon layer 12 (surface area) in FIG. 1 must be NA 2 5 X 1018 / cm3 or more. This case will be described with reference to Fig. 41. FIG. 41 shows the relationship between the body potential VB and the threshold Vth of the NMOS transistor depending on the receptor concentration NA. When the receptor concentration is NA1, the threshold voltage difference of "0" and "1" data is ΔVthl, and when the receptor concentration is NA2, the threshold voltage difference is Δνα], AVthl> AVth2. That is, in order to increase the threshold of the "0", "1" data and the voltage difference, the receptor concentration needs to be increased above a certain level. In addition, the acceptor concentration above NA = 5 X 1018 / cm3 must also make the fine MOS transistor with a channel length = 0.1 μm actually perform the operation. In addition, Condition 2 is to ensure the data retention characteristics. At this time, the impurity concentration in the surface area should be lower. The 0.1 μηι principle DRAM type, in order to maintain 10 seconds of data in the body area, the pn junction leakage of the source and drain must be suppressed below 3 X 10 "7 A / cm2. In addition, in order to reduce leakage current The permeation current of the components must be suppressed to 2.5X105 V / cm or less in the electric field formed in the depletion layer of the pn junction. This is to make the receptor concentration in the surface area reach NA = 1.0 X 1017 / cm3 or less. The electric field in the depletion layer is 1.7 X 10 V / cm (with a reverse bias of 2 V) at the concentration of the upper acceptor required under Condition 1. It cannot meet the requirements of Condition 2. Figure 40 corresponds FIG. 1 shows the structure of a DRAM cell MC having a second embodiment that can satisfy the opposite conditions 1, 2 above. The difference from the cell structure of FIG. 1 is that the surface area is composed of a p-type silicon layer 12. That is, in this embodiment, the P-type diffusion layer 12 a having a lower boron concentration (acceptor concentration) connected to the drain and source diffusion layers 14 and 15 and the self-drain and source diffusion layers 14 and 42 are arranged. -This paper size applies to China National Standard (CNS) A4 (210X 297 mm) 511273 A7 B7 V. Description of the invention 40) The p + -type diffusion layer 12b having a high boron concentration (acceptor concentration) in the central portion of the 15-way away channel constitutes the surface body region. The p + -type diffusion layer 12b is formed to the depth of the silicon oxide film 11 at the bottom. The cell structure takes the form of sandwiching the equivalence between two NMOS transistors with a low threshold voltage and an NMOS transistor with a high threshold voltage. At this time, the entire threshold voltage is controlled by the p + -type diffusion layer 12b at the center. In addition, since the drain and source diffusion layers 14 and 15 form a pn junction with the low-concentration p-type diffusion layer 12a, the leakage current is smaller than that of the entire surface area formed by the p + -type diffusion layer. Smaller. The above results can meet the two opposite conditions 1, 2 above. Specifically, can we use the unit structure shown in Figure 40 to obtain the effect? Or what concentration and position need to be set? The review results are as follows. First, As shown in FIGS. 42A and 42B, when a reverse bias is applied to the voltage V on the pn junction between the n-type diffusion layer (donor concentration ND) and the p-type diffusion layer (acceptor concentration NA), the Range and intensity distribution of internal electric field E as a preliminary review It is assumed that the pn junction is an abrupt junction. As shown in FIG. 42 and FIG. 42B, the X-axis is set in the direction across the pn junction. At this time, the potentials in the n-type diffusion layer and the p-type diffusion layer are (j & gt) D, φ A, the front end position in the η-type diffusion layer of the depletion layer is -xn, the front end position in the p-type diffusion layer is xp, Poisson's equation and the electric field ED in the η-type diffusion layer and the p-type diffusion layer , ΕΑ is expressed by the formula 24. ε is the dielectric constant of silicon. (Formula 24) d2 (j) D / dx2 =-(q / 2s) ND (-xn &lt; x &lt; 0) ά2φΑ / άχ2 =-( q / 2s) NA (0 &lt; x &lt; xp) -43- This paper size applies to China National Standard (CNS) A4 (21〇x 297 mm)

裝 親 511273 A7 B7 五、發明説明(41 ) ED = -άφϋ/άχ (-χη &lt; χ &lt; 0) ΕΑ = -άφA/dx (0 &lt; χ &lt; χρ) 内建電位爲())bi時,邊界條件由以下公式25來表示。 (公式25) ED(-xn) = 0 (|)D(-xn)= φΜ+ V ED(0)= ΕΑ(0) φϋ(0) = φΑ(0) EA(xp) = 0 φΑ(χρ) = 0 使用這些邊界條件求解公式24時,得以下公式26。 (公式26) ED = (q/e)ND-x + A (-xn &lt; x &lt; 0) -(q/2e)ND*x2-A-x+ B (-xn &lt; x &lt; 0) ΕΑ = -(q/e)NA-x+ C (0 &lt; x &lt; xp) φΑ = (q/2s)NA*x2-C*x + D (0 &lt; x &lt; xp) 公式26中,A〜D爲由公式25之邊界條件來決定的常數。 將公式26的答案帶入公式2 5之邊界條件的公式中,得以下 的公式27。 (公式27) -(q/s)ND.xn+ A= 0 -44- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 511273 A7 B7 五、發明説明(42 )装 亲 511273 A7 B7 V. Description of the invention (41) ED = -άφϋ / άχ (-χη &lt; χ &lt; 0) ΕΑ = -άφA / dx (0 &lt; χ &lt; χρ) Built-in potential is ()) For bi, the boundary condition is expressed by the following formula 25. (Formula 25) ED (-xn) = 0 (|) D (-xn) = φΜ + V ED (0) = ΕΑ (0) φϋ (0) = φΑ (0) EA (xp) = 0 φΑ (χρ ) = 0 When using these boundary conditions to solve Equation 24, the following Equation 26 is obtained. (Formula 26) ED = (q / e) ND-x + A (-xn &lt; x &lt; 0)-(q / 2e) ND * x2-A-x + B (-xn &lt; x &lt; 0) ΕΑ =-(q / e) NA-x + C (0 &lt; x &lt; xp) φΑ = (q / 2s) NA * x2-C * x + D (0 &lt; x &lt; xp) In Equation 26, A to D are constants determined by the boundary conditions of Equation 25. When the answer of Equation 26 is brought into the equation of the boundary condition of Equation 25, the following Equation 27 is obtained. (Formula 27)-(q / s) ND.xn + A = 0 -44- This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 511273 A7 B7 V. Description of invention (42)

_(q/2s)ND-xn2+ Α·χη + B= (|)bi+ V A= C B = D -(q/e)NA-xp + C = 0 (q/2s)NA*xp2-C*xp + D= 0 公式27爲決定6個未知數之xn,xp,A,B,C及的方 程式。藉由求解該方程式,得以下公式28。 (公式28) χη= {2εΝΑ(φΗ+ V)/qND(NA+ ND)}1’2 χρ= {2εΝΑ(φΜ+ V)/qNA(NA+ ND)}1/2 此外,最大電場強度Em ax爲x = 0時的電場,由以下公式 29來表示。 (公式29)_ (q / 2s) ND-xn2 + Αχη + B = (|) bi + VA = CB = D-(q / e) NA-xp + C = 0 (q / 2s) NA * xp2-C * xp + D = 0 Equation 27 is the equation that determines the six unknowns xn, xp, A, B, C and. By solving this equation, the following formula 28 is obtained. (Equation 28) χη = {2εΝΑ (φΗ + V) / qND (NA + ND)} 1'2 χρ = {2εΝΑ (φΜ + V) / qNA (NA + ND)} 1/2 In addition, the maximum electric field intensity Em ax is The electric field at x = 0 is expressed by the following formula 29. (Formula 29)

Emax= A= (q/e)ND*xn ={2qNA.ND((()bi+ ν)/ε(ΝΑ+ ND)}1/2 整個耗盡層的寬度W = xn + xp由以下公式3 0來表示。 (公式30) W= {2ε(ΝΑ+ ND)((|)bi+ V)/qNA.ND}1/2 電場強度分布如圖42(b)所tf ο 依據以上預備檢討結果,如圖43(a)(b)所示,檢討p型擴 散層分成高受體濃度NA與低受體濃度na的部分時。此相當 -45- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 511273 A7 B7 五、發明説明(43 於圖40之實施形態之單元構造之汲極接合端的構造。此時 ,接合亦爲驟然接合者。爲求與先前之預備檢討結果比較 ,使用大字母X表示距離軸,來取代小字母X。在p型擴散 層上擴散之耗盡層的前端位置Xp超過低受體濃度na的區域 ,因而爲Xp &gt; L。 此時,泊松公式及電場公式藉由將ρ型擴散層分成高受體 濃度ΝΑ區域與低受體濃度na區域,而成以下的公式31。對 南受體濃度N A區域的電位φ A、電場E A ’分別以φ a,E a表 示低受體濃度na區域的電位、電場。 (公式31) 裝Emax = A = (q / e) ND * xn = (2qNA.ND ((() bi + ν) / ε (ΝΑ + ND)) 1/2 The width of the entire depletion layer W = xn + xp is given by the following formula 3 0. (Formula 30) W = {2ε (ΝΑ + ND) ((|) bi + V) /qNA.ND} 1/2 The electric field intensity distribution is shown in Figure 42 (b). Tf ο According to the preliminary review results above, As shown in Figure 43 (a) (b), when reviewing the p-type diffusion layer divided into high acceptor concentration NA and low acceptor concentration na. This is equivalent to -45- This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) 511273 A7 B7 V. Description of the invention (43 The structure of the drain junction of the unit structure of the embodiment shown in Figure 40. At this time, the junction is also a sudden joint. For comparison with the results of the previous preliminary review , Use the large letter X to represent the distance axis, instead of the small letter X. The front end position Xp of the depletion layer diffused on the p-type diffusion layer exceeds the region of the low acceptor concentration na, thus Xp &gt; L. At this time, the poise The loose formula and the electric field formula divide the p-type diffusion layer into a high acceptor concentration NA region and a low acceptor concentration na region to form the following formula 31. The potential φ A and the electric field EA ′ for the southern acceptor concentration NA region A potential φ a, E a represents a lower region of the receptor concentration na electric field. (Equation 31) is mounted

(12φϋ/άΧ2 = -(q/2s)ND d2^/dX2 = -(q/2s)na ά2φΑ/άΧ2 = -(q/2s)NA ED = -d(j)D/dX (-Xn&lt; X&lt; 0) (0 &lt; X&lt; L) (L &lt; X&lt; Xp) (-Xn&lt; X&lt; 0)(12φϋ / άΧ2 =-(q / 2s) ND d2 ^ / dX2 =-(q / 2s) na ά2φΑ / άΧ2 =-(q / 2s) NA ED = -d (j) D / dX (-Xn &lt; X &lt; 0) (0 &lt; X &lt; L) (L &lt; X &lt; Xp) (-Xn &lt; X &lt; 0)

Ea= -d&lt;t&gt;a/dX (0 &lt; X&lt; L)Ea = -d &lt; t &gt; a / dX (0 &lt; X &lt; L)

EA= -άφΑ/dX (L&lt; X&lt; Xp) 訂EA = -άφΑ / dX (L &lt; X &lt; Xp) Order

邊界條件以下列公式32來表示。 (公式32) ED(-Xn)= 0 (t&gt;D(-)Cn) = φΜ + V ED(0) = Ea(0) φϋ(0)= φΕ(0) Ea(L) = EA(L) -46 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 511273 A7 B7 五、發明説明(44 ) φα(ί)= φΑ(ί) Ε Α(Χρ) = 〇 φΑ(Χρ) = 〇 求解公式3 1時,得以下的公式3 3。 (公式33) (-Xn&lt; X&lt; 〇) (-Xn&lt; X&lt; 0) (0&lt; X&lt; L) (0&lt; X&lt; L) (L&lt; X&lt; Xp) (L&lt; X&lt; Xp)The boundary conditions are expressed by the following formula 32. (Formula 32) ED (-Xn) = 0 (t &D; D (-) Cn) = φM + V ED (0) = Ea (0) φϋ (0) = φΕ (0) Ea (L) = EA (L ) -46-This paper size applies Chinese National Standard (CNS) A4 specification (210X 297mm) 511273 A7 B7 V. Description of the invention (44) φα (ί) = φΑ (ί) Ε Α (Χρ) = 〇φΑ ( Χρ) = 〇 When formula 3 1 is solved, the following formula 3 3 is obtained. (Formula 33) (-Xn &lt; X &lt; 〇) (-Xn &lt; X &lt; 0) (0 &lt; X &lt; L) (0 &lt; X &lt; L) (L &lt; X &lt; Xp) (L &lt; X &lt; Xp)

ED= (q/B)ND-X+ a Φ〇= -(q/2s)ND-X2.AX+ Β Ea= -(q/s)na-X+ CED = (q / B) ND-X + a Φ〇 =-(q / 2s) ND-X2.AX + Β Ea =-(q / s) na-X + C

(q/2s)na.X2-C.X+ D EA= -(q/s)NA.X+ E φΑ= (q/2s)NA.X2 細 Ε·Χ+ F 的常數。 ,得以下 公式33中,A〜F為由公式32之邊界條件來決定 將公式33的答案帶入公式32之邊界條件的公式中 的公式34。(q / 2s) na.X2-C.X + D EA =-(q / s) NA.X + E φΑ = (q / 2s) NA.X2 Fine constant of E · X + F. In the following formula 33, A to F are determined by the boundary conditions of formula 32. The answer of formula 33 is brought into the formula 34 in the formula of the boundary conditions of formula 32.

(公式34) -(q/s)ND-Xn+ Α= Ο -(q/2s)ND.Xn2+ Α·Χη+ B= (j&gt;bi+ V Α= C Β= D -(q/s)na-L+ C= -(q/s)NA*L+ E (q/2e)na-L2-C-L+ D= (q/2s)NA*L2-E-L + F -(q/B)NA*Xp+ E= 0 -47- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇x 297公釐) 511273 A7 B7 五、發明説明(45 ) (ς/2ε)ΝΑ·Χρ2-Ε·Χρ + F = 0 公式34爲決定8個未知數之Xn,Xp,A,Β,C,D,Ε及 WF的方程式。藉由求解該方程式,得以下公式35。 (公式35)(Formula 34)-(q / s) ND-Xn + Α = Ο-(q / 2s) ND.Xn2 + Αχη + B = (j &gt; bi + V Α = C Β = D-(q / s) na- L + C =-(q / s) NA * L + E (q / 2e) na-L2-C-L + D = (q / 2s) NA * L2-EL + F-(q / B) NA * Xp + E = 0 -47- This paper size is in accordance with China National Standard (CNS) A4 (21〇x 297 mm) 511273 A7 B7 V. Description of the invention (45) (ς / 2ε) ΝΑ × χ2-Ε · χρ + F = 0 Equation 34 is an equation that determines the eight unknowns Xn, Xp, A, B, C, D, E, and WF. By solving this equation, the following equation 35 is obtained. (Equation 35)

Xn= -L-(NA-na)/(NA+ ND) +L-{(NA/ND)(NA-na)(ND+na)/(NA+ND)2 + (xn/L)2}1/2 Xp= (l/NA)*[ND*Xn+ (NA-na)-L] 此處,公式35中之xn顯示先前之圖42的pn接合求出之耗 盡層對η型擴散層的延伸,爲以公式2 8表示者。此外,最大 電場強度Emax爲X = 0時的電場,由以下公式36來表示。 (公式36)Xn = -L- (NA-na) / (NA + ND) + L-((NA / ND) (NA-na) (ND + na) / (NA + ND) 2 + (xn / L) 2) 1 / 2 Xp = (l / NA) * [ND * Xn + (NA-na) -L] Here, xn in Equation 35 shows the depletion layer vs. n-type diffusion layer obtained from the pn junction of Figure 42 previously. Extending, it is expressed by formula 2 8. The electric field when the maximum electric field intensity Emax is X = 0 is expressed by the following formula 36. (Formula 36)

Emax = A= (q/e)ND*Xn 此時之電場強度分布如圖43(b)所示。公式35中,L極接 近〇,或受體濃度na極接近NA時,可確認Xn = xn。 根據以上的檢討結果,繼續具體檢討圖40之單元構造的 最佳化條件。首先,圖44爲p型擴散層之高受體濃度爲NA = 5xl018/cm3,低受體濃度爲na = lxl017/cm3,η型擴散層 之施體濃度爲ND = 1 X 102G/cm3,外加電壓爲V=2.0V,周 圍溫度爲85°C時,求出低受體濃度區域寬度L及耗盡層延伸 Xn,Xp之關係的結果。 圖40的單元中,通道長爲0·1 μηι,耗盡層自源極、汲極 的延伸爲對稱時,爲避免產生穿通,宜爲Xp &lt; 5 X 1 (Γ6 cm -48- 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 511273Emax = A = (q / e) ND * Xn The electric field intensity distribution at this time is shown in Figure 43 (b). In Equation 35, when the L pole is close to 0 or the acceptor concentration na is very close to NA, it can be confirmed that Xn = xn. Based on the results of the above review, we will continue to specifically review the optimization conditions for the cell structure in Figure 40. First, Figure 44 shows that the high acceptor concentration of the p-type diffusion layer is NA = 5xl018 / cm3, the low acceptor concentration is na = lxl017 / cm3, and the donor concentration of the n-type diffusion layer is ND = 1 X 102G / cm3, plus When the voltage was V = 2.0V and the ambient temperature was 85 ° C, the relationship between the width L of the low acceptor concentration region and the extensions of the depletion layers Xn and Xp were obtained. In the unit of FIG. 40, when the channel length is 0.1 μm, and the extension of the depletion layer from the source and the drain is symmetrical, in order to avoid punch-through, Xp &lt; 5 X 1 (Γ6 cm -48- Dimensions are applicable to China National Standard (CNS) A4 (210 x 297 mm) 511273

。爲求滿足該條件,圖44起宜爲L&lt;4〇xl〇-6 em=〇 〇4 μηι 。爲保留一定程度的餘裕時,以L=〇〇2 _較爲適切。此 時可知,耗盡層對p型擴散層的延伸χρ,深入高受體濃度 ΝΑ區域 〇·〇 1 μηι。. In order to satisfy this condition, L &lt; 40 × 10-6 em = 〇 〇4 μηι should be used as shown in FIG. 44. In order to retain a certain degree of margin, L = 〇〇 2 _ is more appropriate. At this time, it can be seen that the extension χρ of the depletion layer to the p-type diffusion layer penetrates into the NA region of the high acceptor concentration 〇1 μm.

與圖44相同的條件下,顯示最大電場強度與距離L 的關係時,如圖45所示。上述求出之適切距離[=〇〇2 μπι 時,最大電場強度爲Emax=9.0xi〇5 V/cm。此與僅在高受 骨豆/辰度NA = 5 X l〇18/cm3的區域構成整個㈣區域時比較 ,雖然較小,但是最大電場僅減弱約1/2。最好是減少至該 電場的1/3。 因此,繼績檢討圖43中降低n型擴散層之施體濃度1^1)的 效果。此因,耗盡層也藉型擴散層端的延伸,而希望減 弱最大電場強度。 圖爲對圖44,將n型擴散層之施體濃度1^]〇降低成ND = lxl〇i7/Cm3時,求出低受體濃度區域之寬度^與耗盡層之延 伸Χη,Χρ之關係的結果。此外,圖47爲與圖^對應顯示此 時最大電場強度Emax與距離L的關係。 結果降低源極、汲極擴散層的濃度時,如爲L=〇 〇25 pm 、Χρ= 0·03 μιη時,可得最大電場強度Emax= 3 〇χ ι〇5 v/⑽ 。該最佳化條件時之圖40之單元構造的尺寸與耗盡層的延 伸狀態如圖48所示。 降低源極、汲極之11型擴散層濃度時,會產生對其接觸電 阻的問題。而一般之DRAM之位元線接觸方面的執行,= 在接觸孔内進行在擴散。或是,採用於源極、汲極擴散層 -49- 本纸張尺度適用中國國家標準(CNS) A4規格(21〇χ297公釐) 511273 A7 B7 五、發明説明(47 ) 表面形成金屬矽化膜的矽化構造也有效。 但是,源極、汲極之η型擴散層濃度低至ND = 1 X 1017/cm3 時,如圖48所示,寬度大至Xn = 0· 1 μπι的耗盡層也延伸至 源極、汲極擴散層内。爲求抑制此種源極、汲極大的耗盡 化,宜採用所謂的LDD構造。 對應於圖40之單元構造,採用LDD構造之單元構造的實 施形態如圖4 9所示。没極擴教層14由連接於通道區域之低 施體濃度之η型擴散層14a及高施體濃度之η+型擴散層14b 構成。源極擴散層1 5同樣的也由連接於通道區域之低施體 濃度之η型擴散層15a及高施體濃度之n +型擴散層15b構成 。源極、汲極擴散層及閘極上,以矽化步驟形成有金屬矽 化膜1 8。 不過,該L D D構造,在没極、源極中,亦可僅在連接於 位元線的没極端進行。 其次,具體檢討採用此種LDD構造之單元構造時的耗盡 層延伸及電場強度分布。圖50(a)(b)分別對應於圖43(a)(b) 顯示該單元構造之如針對没極端接合之模型式的pn接合構 造與電場分布。η型擴散層由低施體濃度nd區域與高施體濃 度ND區域構成,p型擴散層由低受體濃度na區域與高受體 濃度NA區域構成。低施體濃度nd區域的寬度爲Ln,低受體 濃度na區域的寬度爲Lp。高施體濃度ND區域與高受體濃度 NA區域分別具有由位元線接觸及源極線接觸之電阻與電 晶體特性上所需限制所決定的濃度。 耗盡層之延伸假設構成如Xp〉Lp,Xn〉Ln的反向偏置條 -50- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 裝 訂When the relationship between the maximum electric field strength and the distance L is displayed under the same conditions as in FIG. 44, it is shown in FIG. 45. When the above-mentioned appropriate cut distance [= 〇〇2 μm, the maximum electric field strength is Emax = 9.0xi05 V / cm. This is compared with the case where the region with high osteoblasts / Chendu NA = 5 X l018 / cm3 constitutes the entire condyle region. Although the region is small, the maximum electric field is only weakened by about 1/2. It is best to reduce it to 1/3 of this electric field. Therefore, the effect of reducing the donor concentration 1 ^ 1) of the n-type diffusion layer in FIG. 43 was reviewed. For this reason, the depletion layer is also expected to reduce the maximum electric field strength by extending the end of the diffusion layer. The figure is for Figure 44. When the donor concentration of the n-type diffusion layer 1 ^] 〇 is reduced to ND = lxl0i7 / Cm3, the width of the low acceptor concentration region ^ and the extension of the depletion layer χη, χρ are calculated. The result of the relationship. In addition, FIG. 47 shows the relationship between the maximum electric field strength Emax and the distance L at this time corresponding to FIG. As a result, when the concentration of the source and drain diffusion layers is reduced, when L = 〇 〇25 pm and χρ = 0.03 μιη, the maximum electric field strength Emax = 3 〇χ ι〇5 v / ⑽ can be obtained. The dimensions of the cell structure of Fig. 40 and the extended state of the depletion layer in this optimized condition are shown in Fig. 48. When the concentration of the 11-type diffusion layer at the source and the drain is reduced, a problem arises with respect to the contact resistance thereof. The general implementation of bit line contact of DRAM is to perform diffusion in the contact hole. Or, it is applied to the source and drain diffusion layers -49- This paper size is applicable to the Chinese National Standard (CNS) A4 specification (21 × 297 mm) 511273 A7 B7 V. Description of the invention (47) A metal silicide film is formed on the surface The silicified structure is also effective. However, when the concentration of the n-type diffusion layer of the source and the drain is as low as ND = 1 X 1017 / cm3, as shown in FIG. 48, the depletion layer having a width as large as Xn = 0 · 1 μm also extends to the source and the drain. Inside the polar diffusion layer. In order to suppress such depletion of the source and drain, a so-called LDD structure should be adopted. Corresponding to the unit structure of Fig. 40, the implementation form of the unit structure using the LDD structure is shown in Figs. The stepless diffusion layer 14 is composed of a low donor concentration n-type diffusion layer 14a and a high donor concentration n + type diffusion layer 14b connected to the channel region. The source diffusion layer 15 is also composed of an n-type diffusion layer 15a having a low donor concentration and an n + -type diffusion layer 15b having a high donor concentration connected to the channel region. A metal silicide film 18 is formed on the source electrode, the drain diffusion layer and the gate electrode in a silicide step. However, the L D D structure may be performed only on the terminal of the bit line in the terminal and the source. Secondly, the extension of the depletion layer and the electric field intensity distribution when the cell structure using this LDD structure is specifically reviewed. Figures 50 (a) (b) correspond to Figure 43 (a) (b), respectively, showing the unit structure as a model-type pn junction structure and electric field distribution without extreme junctions. The n-type diffusion layer is composed of a low donor concentration nd region and a high donor concentration ND region, and the p-type diffusion layer is composed of a low acceptor concentration na region and a high acceptor concentration NA region. The width of the low donor concentration nd region is Ln, and the width of the low acceptor concentration na region is Lp. The high donor concentration ND region and the high acceptor concentration NA region have concentrations determined respectively by the resistance required by the bit line contact and the source line contact and the required characteristics of the transistor. The extension of the depletion layer is assumed to constitute a reverse bias bar such as Xp> Lp, Xn> Ln. -50- This paper size applies to China National Standard (CNS) A4 (210X 297 mm).

511273 A7 B7 五、發明説明(48 ) 件。此時,泊松方程式對公式32,表示成如下的公式37。 對應於高受體濃度N A區域之電位φ A、電場E A,低受體濃 度n a區域之電位、電場分別爲φ a ’ E a ’對應於南施體濃度 N D區域的電位(|) D、電場E D ^低施體濃度n d區域的電位及 電場分別爲&lt;|)d,Ed。 (公式37) ά2φϋ/άΧ2= -(q/2e)ND (-Xn&lt; X&lt; -Ln) ά2φά/άχ2 = -(q/2s)nd (-Ln&lt; X&lt; 0) ά2φΕ/άχ2= (q/2s)na (0&lt; X&lt; Lp) ά2φΑ/άχ2 = (q/2s)NA (Lp&lt; X&lt; Xp) ED = -άφϋ/άΧ (-Xn&lt; X&lt; -Ln) Ed= -άφά/άΧ (-Ln&lt; X&lt; 0) Ea= -d(j&gt;a/dX (0&lt; X&lt; Lp) EA= -άφΑ/dX (Lp&lt; X&lt; Xp) 邊界條件以下列公式3 8來表示。 (公式38) ED(-Xn) = 0 φϋ(-Χη)= φΒί+ V ED(-Ln)= Ed(-Ln) &lt;t)D(_Ln) = (j)d(-Ln)511273 A7 B7 V. Description of the invention (48) pieces. At this time, the Poisson equation is expressed as the following Equation 37 for Equation 32. Corresponds to the potential φ A and electric field EA in the NA region of high acceptor concentration, and φ a 'E a' to the potential (|) D and electric field in the ND region of low donor concentration na region, respectively. The potential and electric field of ED ^ low donor concentration nd region are &lt; |) d, Ed, respectively. (Formula 37) ά2φϋ / άΧ2 =-(q / 2e) ND (-Xn &lt; X &lt; -Ln) ά2φά / άχ2 =-(q / 2s) nd (-Ln &lt; X &lt; 0) ά2φΕ / άχ2 = (q / 2s) na (0 &lt; X &lt; Lp) ά2φΑ / άχ2 = (q / 2s) NA (Lp &lt; X &lt; Xp) ED = -άφϋ / άχ (-Xn &lt; X &lt; -Ln) Ed = -άφά / άAX (- Ln &lt; X &lt; 0) Ea = -d (j &gt; a / dX (0 &lt; X &lt; Lp) EA = -άφΑ / dX (Lp &lt; X &lt; Xp) The boundary condition is expressed by the following formula 38 (Equation 38) ED (-Xn) = 0 φϋ (-Χη) = φΒί + V ED (-Ln) = Ed (-Ln) &lt; t) D (_Ln) = (j) d (-Ln)

Ed(0)= Ea(0) φά(0)= φα(0)Ed (0) = Ea (0) φά (0) = φα (0)

Ea(Lp) = EA(Lp) -51 -本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 511273 A7 B7 五、發明説明(49 ) (J&gt;a(Lp) = cj)A(Lp) EA(Xp)= 〇 φΑ(Χρ) = 〇 求解公式37時,得以下的么式39 (公式39) ED= (q/e)ND-X+ A φϋ= -(q/2s)ND*X2-A*X+ Β Ed = (q/s)nd*X + C (-Xn&lt; X&lt; -Ln) (-Xn&lt; X&lt; -Ln) (-Ln&lt; X&lt; 0) φά = -(q/2e)nd-X2-C*X + D (•Ln&lt; X&lt; 0) Ea = -(q/s)na*X + E (0&lt; X&lt; Lp) (q/2s)na-X2-E*X+ F (0&lt; X&lt; Lp) EA= -(ς/ε)ΝΑ·Χ+ G (Lp&lt; X&lt; Xp) φΑ= (q/28)NA-X2-G*X+ H (Lp&lt; X&lt; Xp) 公式39中,Α〜Η爲由公式38之邊界條件來決定的常數。 將公式39的答案帶入公式38之邊界條件的公式中,得以下 的公式4 0。 (公式40) -(q/e)ND-Xn+ A= 0Ea (Lp) = EA (Lp) -51-This paper size applies to Chinese National Standard (CNS) A4 (210 x 297 mm) 511273 A7 B7 V. Description of the invention (49) (J &gt; a (Lp) = cj ) A (Lp) EA (Xp) = 〇φΑ (χρ) = 〇 When solving Equation 37, we get the following formula 39 (Equation 39) ED = (q / e) ND-X + A φϋ =-(q / 2s ) ND * X2-A * X + Β Ed = (q / s) nd * X + C (-Xn &lt; X &lt; -Ln) (-Xn &lt; X &lt; -Ln) (-Ln &lt; X &lt; 0) φά =- (q / 2e) nd-X2-C * X + D (• Ln &lt; X &lt; 0) Ea =-(q / s) na * X + E (0 &lt; X &lt; Lp) (q / 2s) na-X2 -E * X + F (0 &lt; X &lt; Lp) EA =-(ς / ε) ΝΑ ×× + G (Lp &lt; X &lt; Xp) φΑ = (q / 28) NA-X2-G * X + H (Lp &lt; X &lt; Xp) In Equation 39, A to Η are constants determined by the boundary conditions of Equation 38. Bringing the answer of Equation 39 into the equation of the boundary condition of Equation 38 gives the following Equation 40. (Formula 40)-(q / e) ND-Xn + A = 0

_(q/2s)ND-Xn2+ Α·Χη + B= (()bi+ V_ (q / 2s) ND-Xn2 + Αχχ + B = (() bi + V

-(q/s)nd-Ln+ C= -(q/s)ND-Ln+ A -(q/28)nd*Ln2 + C*Ln+ D ==-(q/s)ND *Ln2 + A*Ln+ B -52- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 511273 A7 B7 五、發明説明(50 )-(q / s) nd-Ln + C =-(q / s) ND-Ln + A-(q / 28) nd * Ln2 + C * Ln + D ==-(q / s) ND * Ln2 + A * Ln + B -52- The paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) 511273 A7 B7 V. Description of invention (50)

C = E D = FC = E D = F

-(q/e)na*Lp+ E= -(q/s)NA-Lp+ G (q/2e)na-Lp2-E*Lp + F =(q/2s)NA*Lp2-G*Lp + H -(q/s)NA*Xp+ G = 0 (q/2s)NA.Xp2-G.Xp+ H = 0 求解公式40的10個方程式時,可求出i〇個變數χη,Xp, A〜Η。耗盡層之寬度Ln,Lp由以下公式41來表示。 (公式41)-(q / e) na * Lp + E =-(q / s) NA-Lp + G (q / 2e) na-Lp2-E * Lp + F = (q / 2s) NA * Lp2-G * Lp + H -(q / s) NA * Xp + G = 0 (q / 2s) NA.Xp2-G.Xp + H = 0 When solving the 10 equations of Equation 40, i0 variables χη, Xp, A ~ Η . The width Ln, Lp of the depletion layer is expressed by the following formula 41. (Formula 41)

Xn = [(ND-nd)Ln-(NA-na)Lp]/(NA + ND)+ [l/(NA+ND)](NA/ND)1/2.[(NA-na)(ND+na)Lp2.(ND-nd)(NA+nd)Ln2+ 2(NA-na)(ND-nd)LpLn+(NA+ND)(2s/q)((|)bi· V)]1/2 Xp = [(NA-na)Lp-(ND-nd)Ln]/(NA + ND)+ [l/(NA+ND)](ND/NA)1/2-[(ND-nd)(NA+nd)Ln2+(NA-na)(ND*na)Lp2+ 2(ND-nd)(NA-na)LpLn+(NA + ND)(2s/q)((|)bi + V)1/2 電場強度分布如圖50(b)所示,最大電場Emax爲在X=0 時的値,公式39中的第三項公式,由以下公式42提供。 (公式42)Xn = [(ND-nd) Ln- (NA-na) Lp] / (NA + ND) + [l / (NA + ND)] (NA / ND) 1/2. ((NA-na) (ND + na) Lp2. (ND-nd) (NA + nd) Ln2 + 2 (NA-na) (ND-nd) LpLn + (NA + ND) (2s / q) ((|) bi · V)] 1/2 Xp = [(NA-na) Lp- (ND-nd) Ln] / (NA + ND) + [l / (NA + ND)] (ND / NA) 1/2-[(ND-nd) (NA + nd) Ln2 + (NA-na) (ND * na) Lp2 + 2 (ND-nd) (NA-na) LpLn + (NA + ND) (2s / q) ((|) bi + V) 1/2 Electric field strength The distribution is shown in Figure 50 (b). The maximum electric field Emax is 値 at X = 0. The third term in Equation 39 is provided by Equation 42 below. (Formula 42)

Emax= C~ (q/ε){NA*Xp-(NA-na)/Lp} 以下説明帶入具體數値求出以上計算之Xp,Xn及Emax 的結果。 _ -53- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 511273 A7 B7Emax = C ~ (q / ε) {NA * Xp- (NA-na) / Lp} The following description takes the specific number to obtain the results of Xp, Xn, and Emax calculated above. _ -53- This paper size applies to China National Standard (CNS) A4 (210X 297 mm) 511273 A7 B7

五、發明説明 圖51爲p型擴散層之高受體濃度爲NA= 5 X 1〇i8/cm3、低 受體濃度爲na = 1 X 1017/cm3、n型擴散層之高施體濃度爲 ND = lxl019/cm3、低施體濃度爲 nd=2xi〇17/cm3、外加電 壓爲V=2.0 V、周圍溫度爲85°C,將低施體濃度區域寬度 固定在Ln = 0.03 μηι時,求出低受體濃度區域寬度Lp與耗盡 層之延伸V Xn,Xp之關係的結果。 圖52爲在相同條件下求出最大電場強度Emax的結果。 根據上述結果’若設定Lp=〇.〇25 μιη,則Xp=〇.〇3 ,最大電場強度爲Emax = 5.0 x 1〇5 V/cm。 圖53顯示没極區域上,上述最大電場強度時之圖之單 元構造的耗盡層擴散方式與各部尺寸。 上述最大電場強度如圖43所做的分析,與汲極擴散層上 操低;辰度層時比較’爲1 / 3以下。因此,如圖4 9所示,以高 ;辰度層與低濃度層形成表體區域的同時,藉由將没極與源 極採LDD構造,可抑制最大電場強度,減少漏電流,並可 使基板偏置效果充分發揮。亦即,可滿足與先前相反的條 件1,2,獲得優異的DRAM特性。 其次’參照圖54至圖57説明形成圖49所示之記憶體單元 MC構造的具體製造方法。圖49之記憶體單元]^(:實際上配 置成與圖3及圖4中説明之相同的單元陣列。亦即,p型矽層 12之與紙面垂直方向的側面以連接於元件分離絕緣膜的狀 悲形成有作爲線條狀元件區域的圖案,不過省略其元件分 離步驟的說明。 如圖54所示,首先在p型矽層ι2(構成低濃度型層12a)的 -54 公釐) 五、發明説明(52 ) 表面形成在元件區域内具有開口的掩膜31,繼續於該掩膜 31的開口侧壁形成側壁絕緣膜32。具體而言,掩膜31係堆 積石夕氧化膜,並藉由RIE予以圖案化。繼續,堆積石夕氮化膜 ,進行回蝕,保留側壁絕緣膜32。在此狀態下,注入硼離 子,於P型矽層12上形成高濃度的p+型層12b。 其次,如圖55所tf,選擇性蝕刻除去側壁絕緣膜32後, 在露出之p型矽層12的表面形成閘極絕緣膜16。繼續,堆積 多結晶矽膜,進行平坦化處理,埋入閘極13。 其次,如圖56所示,蝕刻除去掩膜3丨。繼續,將閘極13 作爲掩膜,注入坤離子,形成低濃度的汲極、源極擴散層 14a,15a。繼續,如圖57所示,在閘極13的側壁形成側壁 絕緣膜33。繼續,再度注人#離子,形成高濃度的没極、 源極擴散層14b,15b。之後,如圖49所示,藉由矽化步驟 ,在汲極、源極擴散層14b,i5b及閘極13上形成金屬矽化 膜18。另外,汲極擴散層14與源極擴散層丨5不採構造 時,不需要圖57所示的步驟。亦即,在圖56的狀態下,可 獲得圖40所示的記憶體單元mc。 如上所述,藉由在閘極的形成上應用金屬鑲嵌法,可在 電晶體之表體區域中之通道長度方向的中央部,以自我對 準的狀態形成P+型層12b。 、將單凡電晶體之表體區域中央部形成高濃度層的構造, 並不限定於單元電晶體爲平面的構造。圖58A及圖58β顯示 使用枉狀半導體層,形成丨個電晶體/丨個單元構造之第三種 實施形態之一個記憶體單元Mc部的平面圖及其a_a,剖面 ———____ 55 崎 本紙張尺歧财_ ϋ_) A视格(210X 297公釐) A7V. Description of the invention Fig. 51 shows that the high acceptor concentration of the p-type diffusion layer is NA = 5 X 10 8 / cm3, the low acceptor concentration is na = 1 X 1017 / cm3, and the high donor concentration of the n-type diffusion layer is ND = lxl019 / cm3, low donor concentration is nd = 2xi〇17 / cm3, applied voltage is V = 2.0 V, ambient temperature is 85 ° C, and the width of the low donor concentration region is fixed at Ln = 0.03 μηι. The result of the relationship between the width Lp of the low acceptor concentration region and the extension V Xn, Xp of the depletion layer. FIG. 52 is a result of obtaining the maximum electric field strength Emax under the same conditions. According to the above result ', if Lp = 0.025 μm is set, Xp = 0.03, and the maximum electric field strength is Emax = 5.0 x 105 V / cm. Fig. 53 shows the depletion layer diffusion pattern of the cell structure and the size of each part of the graph at the maximum electric field intensity in the electrodeless region. The above analysis of the maximum electric field strength is as shown in Fig. 43, which is lower than that on the drain diffusion layer; when compared with the case layer, it is 1/3 or less. Therefore, as shown in Fig. 4-9, while the surface layer is formed by the high-degree layer and the low-concentration layer, by using the LDD structure of the pole and the source, the maximum electric field strength can be suppressed, the leakage current can be reduced, Make full use of the substrate offset effect. That is, the conditions 1, 2 opposite to the previous ones can be satisfied, and excellent DRAM characteristics can be obtained. Next, a specific manufacturing method for forming the memory cell MC structure shown in Fig. 49 will be described with reference to Figs. 54 to 57. The memory cell of FIG. 49] ^ (: is actually configured as the same cell array as described in FIGS. 3 and 4. That is, the side of the p-type silicon layer 12 perpendicular to the paper surface is connected to the element separation insulating film A pattern is formed as a line-shaped element region, but the description of the element separation step is omitted. As shown in FIG. 54, firstly, the p-type silicon layer ι2 (-54 mm constituting the low-concentration type layer 12a) is used. DESCRIPTION OF THE INVENTION (52) A mask 31 having an opening in an element region is formed on the surface, and a sidewall insulating film 32 is formed on the side wall of the opening of the mask 31. Specifically, the mask 31 is a stacked oxide film and is patterned by RIE. Continue to deposit the silicon nitride film and etch back, leaving the side wall insulating film 32. In this state, boron ions are implanted to form a high-concentration p + -type layer 12b on the P-type silicon layer 12. Next, as shown in tf in FIG. 55, after the sidewall insulating film 32 is selectively removed by etching, a gate insulating film 16 is formed on the surface of the exposed p-type silicon layer 12. Then, a polycrystalline silicon film is deposited, planarized, and the gate electrode 13 is buried. Next, as shown in FIG. 56, the mask 3 丨 is removed by etching. Continuing, the gate electrode 13 is used as a mask to implant ion ions to form low-concentration drain and source diffusion layers 14a and 15a. Continuing, as shown in Fig. 57, a sidewall insulating film 33 is formed on the sidewall of the gate electrode 13. Continuing, human #ions are injected again to form high-concentration electrode and source diffusion layers 14b and 15b. Thereafter, as shown in FIG. 49, a metal silicide film 18 is formed on the drain, source diffusion layers 14b, i5b, and gate 13 through a silicide step. When the drain diffusion layer 14 and the source diffusion layer 5 are not formed, the steps shown in FIG. 57 are not required. That is, in the state of Fig. 56, the memory cell mc shown in Fig. 40 can be obtained. As described above, by applying the damascene method to the formation of the gate electrode, the P + -type layer 12b can be formed in a self-aligned state at the center portion of the channel length direction in the surface area of the transistor. The structure of forming a high-concentration layer in the central part of the surface area of the single crystal transistor is not limited to a structure in which the unit transistor is a plane. FIG. 58A and FIG. 58β show a plan view of a memory cell Mc portion of a third embodiment in which a transistor-shaped semiconductor layer is used to form a 枉 -shaped semiconductor layer and its a_a, and a cross-section ____ 55 Sakimoto Paper Chi Qi Cai _ ϋ_) A view frame (210X 297 mm) A7

圖 &quot;在^ 上形成有柱Μ層49,利㈣㈣々層49的 貝圍構成所謂的周圍閘電晶體(SGT ; Sur_ding GateFigure &quot; A pillar M layer 49 is formed on ^, and the shell of the sharp layer 49 constitutes a so-called surrounding gate transistor (SGT; Sur_ding Gate

TransmoO。在柱狀珍層49的底部形成有n +型源極擴散声 3,在而度万向,被P型層45夹住的狀態形成P+型層46。在 柱狀矽層49的表面形成有n+型汲極擴散層44。 在柱狀珍層41的侧方外圍形成有閘極絕緣膜41,並將並 包,形成有閘極42。閘極42在一個方向上連續性形成,構 成罕線WL。如此所形成的SGT被層間絕緣膜”覆言,並上 形成有位元線(BL) 48。位元線48連接於n+型擴散層^ 此種SGT構造之記憶體單元的表體區域亦爲漂浮,採用 先前實施形態所説明的相同寫入方式,藉由在表體區域保 持過剩的許多載體,或是將其釋放的操作,可執行動態資 料記憶。繼續,藉由將配置於表體區域中央部之高濃度〆 型層46與低濃度p型層45的雜質濃度及尺寸予以最佳化二可 獲得增加雙 &lt;直資料之臨限値電壓差的足夠&amp;板偏置效果, 亦可獲得減少漏電流的優異資料保持特性。 圖59A及圖59B顯示第四種實施形態之丨個電晶體/丨個單 tl的DRAM單兀構造。圖59A爲以虛線顯示位元線58 ,便於觀察其下構造的斜視圖,圖59B顯示沿著位元線方向 的剖面圖。 本貫施开^怨中,被碎氧化膜5 1分離之p型碎層$ 2 (此構成 低;辰度層5 2a)以路出上面及兩側面的狀態,在秒基板$ 〇上 形成島狀。繼續,在該矽層52的上面及兩側面,經由閉極 -56- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公爱) 511273 五、發明説明(S4 ) 絕緣膜53形成閘極54,來構成單元電晶體。閘極54在一個 方向上連續性被圖案化,構成字線WL。 在矽層52的電晶體區域内,於通遒長度方向的中央部形 成有南濃度的P+型層52。汲極、源極擴散層55,56爲由低 痕度11型擴散層55&amp;,5 63與高濃度11+型擴散層5513,561〇構成 的LDD構造。電晶體區域被層間絕緣膜57覆蓋,其上形成 有與波極擴散層接觸的位元線58。 本實施形悲之記憶體單元的表體區域亦爲漂浮,採用先 前實㈣態所説明的相同寫入方式,|#由在表體區域保持 過剩的4多載體,或是將其釋放的操作,可執行動態資料 記憶。繼續,藉由將配置於表體區域中央部之高濃度p+型 層52b與低濃度p型層52&amp;的雜質濃度及尺寸予以最佳化,可 獲得增加雙値資料之臨限値電壓差的足夠基板偏置效果, 亦可獲得減少漏電流的優異資料保持特性。 =上係參照圖3及圖4簡單説明具有仆2之單位單元面積 的單元2列構造’其次説明更具體之單元陣列構造及製造 方法的實施形態。圖60A爲單元陣列的布局,圖㈣爲其r 剖面圖’圖60C爲其Π_ΙΓ剖面圖。使用在石夕基板ι〇ι上形成 有石夕氧化膜等絕緣膜102,在其上形成有ρ型硬層1〇3的咖 基板。珍層103以如法埋入有元件分離絕緣膜1〇9,沿位元 線BL方向成細長線條狀的元件形成區域,在字線的方 上以一定的間距被劃分。 ^ 因而,電晶體在元件被分離的矽層1〇3上排列成矩 即’石夕層103上形成有閘極1〇5經由閘極絕緣膜⑽連續構成 57 裝· •訂…· 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公爱) 511273 A7 ___ _ B7 五、發明説明(55 ) 字線WL的圖案。閘極1 〇 5之上面及側面以石夕氮化膜1 〇6覆蓋 ’其係作爲可得較大之與爾後形成之層間絕緣膜丨丨〇,1 i 5 之蝕刻選擇比的保護膜。閘極105上形成有自我整合性的源 極及没極擴散層1 〇 7,1 〇 8。源極、没極擴散層1 〇 7,1 〇 8形 成有達矽層1 03底部之絕緣膜1 02的深度。 形成有電晶體的一面以矽氧化膜等層間絕緣膜丨丨〇覆蓋 ,加以平坦化。該層間絕緣膜Π 〇上,以在字線WL方向連 續之線條狀,開設對源極擴散層107的接觸孔111,其中埋 入有多結晶珍膜或W s i等構成的源極配線層112。 埋入有源極配線層1 12之層間絕緣膜1 1〇上,再形成有石夕 氧化膜等層間絕緣膜1 1 5,加以平坦化。該層間絕緣膜η 5 上開設對没極擴散層1 〇 8的接觸孔1 1 6,其中埋入有多結晶 矽膜等接腳1 1 7。繼續,在層間絕緣膜11 5上,形成有與字 線WL交叉的位元線(BL) 118,共同連接接腳117。 其次,説明具體的製造步驟。圖16Α、圖61Β及圖61C分 別顯示在SOI基板之ρ型矽層1〇3上形成元件分離絕緣膜1〇9 階段的平面圖及其M’及ΙΙ-ΙΓ剖面圖。此可藉由以RIE蝕刻 矽層103,形成元件分離溝,在該元件分離溝内埋入元件分 離絕緣膜1 09來獲得。藉此,矽層1 〇3上被劃分成於位元線 方向連續之數條線條狀的元件形成區域。 圖62A、圖62B及圖62分別爲在矽層103上排列形成電晶 體階段的平面圖及其I-Γ與II-1Γ的剖面圖。亦即,經由閘極 絕緣膜104形成連續閘極105構成字線WL的圖案。閘極1〇5 之上面及側面形成被矽氮化膜1 〇6覆蓋的狀態。具體而言, -58· f紙張尺度適财目S家鮮(CNS) A4規格(210 X 297公爱) 一~~ 511273 A7 B7 五、發明説明(56 ) 該閘極保護構造可藉由將多結晶矽膜與矽氮化膜之疊層膜 予以圖案化,再於其側壁形成矽氮化膜來獲得。繼續,將 閘極105作爲掩膜,注入離子,形成源極、汲極擴散層ι〇7 ,108 ° 圖63A及圖63B爲以層間絕緣膜11〇覆蓋元件被形成基板 ,在該層間絕緣膜11 〇内埋入源極配線層n 2之形成階段的 平面圖’與其ι-γ剖面圖。亦即,將矽氧化膜等層間絕緣膜11〇 平坦形成後,以RIE在源極擴散層1〇7上開設與字線WL平行 ’成線條狀連續的接觸孔111。繼續,堆積多結晶矽膜,進 行回蝕,在接觸孔111内埋入源極配線層112來形成。 圖64A及圖64B爲在形成有源極配線層112之層間絕緣膜 11 0上再形成層間絕緣膜11 5,在該層間絕緣膜1丨5上埋入對 及極擴教層1 08之接聊1 1 7階段的平面圖與其I·I,的剖面圖 。亦即,將矽氧化膜等層間絕緣膜i丨5平坦形成後,以RIE 在没極擴散層1 0 8上開設接觸孔11 6。繼續,堆積多結晶碎 膜,進行回蝕,在接觸孔11 6内埋入接腳1 1 7來形成。之後 ,如圖60B所示,在層間絕緣膜ι15上形成位元線118,來共 同連接接腳1 1 7。 如上所述,以最小加工尺寸F的間距形成字線WL及位元 線BL,如圖60 A上的單點斷線所示,可獲得具有4F2單元面 積的DRAM單元陣列。採用圖6 1 A所示之元件分離構造時, 源極擴教層1 07雖在字線WL的方向上分散形成,不過本實 施形態可藉由形成源極配線層1 1 2以共同連接該源極擴散 層107,獲得低電阻的共用源極線。 _ -59- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)TransmoO. An n + -type source diffused sound 3 is formed at the bottom of the columnar rare layer 49, and a P + -type layer 46 is formed in a state of being sandwiched by the P-type layer 45. An n + type drain diffusion layer 44 is formed on the surface of the columnar silicon layer 49. A gate insulating film 41 is formed on the lateral periphery of the pillar-shaped layer 41, and a gate electrode 42 is formed by enclosing the gate insulating film 41. The gate electrode 42 is formed continuously in one direction and forms a rare line WL. The SGT thus formed is covered by the interlayer insulating film, and a bit line (BL) 48 is formed thereon. The bit line 48 is connected to the n + type diffusion layer ^ The surface area of the memory cell of this SGT structure is also Floating, using the same writing method described in the previous embodiment, dynamic data memory can be performed by keeping excess carriers in the body area or releasing them. Continue, by placing in the body area The impurity concentration and size of the high-concentration 〆-type layer 46 and the low-concentration p-type layer 45 in the central part are optimized. Second, the sufficient & plate bias effect to increase the threshold of the double-threshold voltage difference is also Excellent data retention characteristics to reduce leakage current can be obtained. Figs. 59A and 59B show the fourth embodiment of a transistor / a single DRAM unit structure. Fig. 59A shows the bit line 58 in a dotted line for convenience. Observing the oblique view of the underlying structure, FIG. 59B shows a cross-sectional view along the bit line direction. In the present implementation, the p-type fragmentation layer separated by the fragmented oxide film 51 is $ 2 (this structure is low; Layer 5 2a) In the state of exiting above and on both sides, in seconds An island shape is formed on the plate 〇. Continue, on the top and both sides of the silicon layer 52, through the closed pole -56- This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 public love) 511273 5. Description of the invention (S4) The insulating film 53 forms a gate 54 to constitute a unit transistor. The gate 54 is continuously patterned in one direction to form a word line WL. In the transistor region of the silicon layer 52, in the length direction of the passivation A P + -type layer 52 having a south concentration is formed in the central portion of the electrode. The drain and source diffusion layers 55 and 56 are composed of low-trace 11-type diffusion layers 55 &amp;, 5 63 and high-concentration 11 + -type diffusion layers 5513,561. LDD structure. The transistor region is covered by an interlayer insulating film 57 on which bit lines 58 are formed. The bit lines 58 are in contact with the wave pole diffusion layer. The surface area of the memory cell in this embodiment is also floating. The same writing method described in the state, | # can be performed by keeping excess 4 carriers in the body area, or releasing it, to perform dynamic data memory. Continue, by arranging in the central part of the body area The impurity concentration of the high-concentration p + -type layer 52b and the low-concentration p-type layer 52 &amp; The degree and size are optimized to obtain a sufficient substrate bias effect to increase the threshold voltage difference of the dual voltage data, and also to obtain excellent data retention characteristics to reduce leakage current. = Brief description with reference to Figure 3 and Figure 4 Unit 2 Column Structure with Unit Unit Area of Servo 2 'Next, a more specific embodiment of the cell array structure and manufacturing method will be described. FIG. 60A is the layout of the cell array, and FIG. 6 is its r cross-sectional view. Fig. A coffee substrate in which an insulating film 102 such as a stone evening oxide film is formed on a stone evening substrate ιo, and a p-type hard layer 103 is formed thereon. The element layer 103 is embedded with the element isolation insulating film 109 in the same manner, and the element formation region is formed into elongated linear shapes along the bit line BL direction, and is divided at a certain pitch on the word line side. ^ Therefore, the transistor is arranged in a moment on the separated silicon layer 10 of the element, that is, the gate electrode 105 is formed on the stone layer 103 and the gate insulating film ⑽ is continuously formed. 57 The scale applies to the Chinese National Standard (CNS) A4 specification (210X297 public love) 511273 A7 ___ _ B7 V. Description of the invention (55) The pattern of the word line WL. The gate electrode 105 is covered with a silicon nitride film 1006 on the upper side and the side surface ′, which is a protective film which can obtain a larger interlayer insulating film which is formed later and the etching selection ratio of 1 i 5. A self-integrated source and non-electrode diffusion layer 107, 108 is formed on the gate 105. The source and non-electrode diffusion layers 107, 108 are formed with an insulating film 102 to the bottom of the silicon layer 103. The side where the transistor is formed is covered with an interlayer insulating film such as a silicon oxide film, and is planarized. On the interlayer insulating film Π 〇, a contact hole 111 for the source diffusion layer 107 is opened in a line shape continuous in the word line WL direction, and a source wiring layer 112 composed of a polycrystalline precious film or W si is buried therein. . The interlayer insulating film 1 10 is buried in the source wiring layer 112, and an interlayer insulating film 1 15 such as a stone oxide film is further formed and flattened. A contact hole 1 16 is formed in the interlayer insulating film η 5 for the electrode diffusion layer 108, and a pin 1 17 such as a polycrystalline silicon film is embedded therein. Continuing, a bit line (BL) 118 crossing the word line WL is formed on the interlayer insulating film 115, and the pin 117 is connected in common. Next, specific manufacturing steps will be described. FIGS. 16A, 61B, and 61C respectively show a plan view at the stage of forming a device isolation insulating film 109 on the p-type silicon layer 10 of the SOI substrate, and M 'and 11-IΓ cross-sectional views thereof. This can be obtained by etching the silicon layer 103 with RIE to form an element isolation trench, and embedding the element isolation insulating film 109 in the element isolation trench. Thereby, the silicon layer 103 is divided into a plurality of line-shaped element formation regions continuous in the direction of the bit line. Figs. 62A, 62B, and 62 are a plan view and a sectional view of I-? And II-1? At the stage of forming an electric crystal on the silicon layer 103, respectively. In other words, a continuous gate 105 forms a pattern of the word line WL through the gate insulating film 104. The top and side surfaces of the gate electrode 105 are covered with a silicon nitride film 106. Specifically, -58 · f paper size is suitable for domestic use (CNS) A4 size (210 X 297 public love) 1 ~~ 511273 A7 B7 5. Invention description (56) The gate protection structure can be adjusted by A laminated film of a polycrystalline silicon film and a silicon nitride film is patterned, and then a silicon nitride film is formed on a sidewall thereof. Continuing, the gate 105 is used as a mask to implant ions to form a source and drain diffusion layer 107, 108 °. Figs. 63A and 63B are substrates formed by covering an element with an interlayer insulating film 110. In this interlayer insulating film A plan view of the formation stage of the embedded source wiring layer n 2 and its γ-γ cross-sectional view. That is, after the interlayer insulating film 11 such as a silicon oxide film is formed flat, a contact hole 111 is formed in the source diffusion layer 107 by RIE in a line-shaped continuous manner parallel to the word line WL. Further, a polycrystalline silicon film is deposited and etched back, and a source wiring layer 112 is buried in the contact hole 111 to form the source wiring layer 112. 64A and 64B show an interlayer insulating film 115 formed on the interlayer insulating film 110 that forms the source wiring layer 112, and the connection of the anti-electrode expansion layer 1 08 is buried on the interlayer insulating film 1 丨 5. The floor plan of Liao 1 1 7 and its I · I, sectional view. That is, after the interlayer insulating film i5, such as a silicon oxide film, is formed flat, a contact hole 116 is opened in the electrode diffusion layer 108 by RIE. Further, a polycrystalline shredded film is deposited, etched back, and pins 1 1 7 are embedded in the contact holes 116 to form. Thereafter, as shown in FIG. 60B, a bit line 118 is formed on the interlayer insulating film ι15 to connect the pins 1 1 7 in common. As described above, the word line WL and the bit line BL are formed at a pitch of the minimum processing size F. As shown by a single-dot broken line on FIG. 60A, a DRAM cell array having a 4F2 cell area can be obtained. When the element separation structure shown in FIG. 6A is used, although the source extension layer 107 is dispersedly formed in the direction of the word line WL, in this embodiment, the source wiring layer 1 1 2 can be formed to connect the same The source diffusion layer 107 obtains a low-resistance common source line. _ -59- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 訂Binding

源極配線層112之接觸孔111及位元線接腳117用的接觸 孔116,均在被矽氮化膜106所保護的閘極1〇5上自我整合 形成。因此,在接觸孔加工的RIE步騾中,藉由使掩膜開口 大於F的狀態,可不受掩膜未對準的影響,來形成接觸孔。 如圖64A所示,上述實施形態之位元線的接觸孔U6僅形 成在沒極擴散層108上。另外,如圖65所示,亦可與源極 之接觸孔1 1 1同樣的’以在字線W L方向連續的線條狀形成 位元線的接觸孔116b。此時,位元線之接腳117雖也以線 條狀被埋入,不過,最後須僅在位元線B L下殘留。此時, 亦可於形成位元線BL圖案後,將位元線BL作為掩膜蝕刻 接接腳1 1 7。 · 上述實施形態中,與閘極1 05同樣的以保護膜覆蓋源極 配線層1 12之上面及侧面時,須使位元線接觸對準的餘裕 更大。以下說明此種實施形態。 圖62B之元件形成步騾之前的步驟與先前的實施形態相 同’僅參照圖62B之剖面對應的剖面說明其以後的步騾。 首先,如圖66所示,在元件被形成的基板上堆積矽氧化膜 等層間絕緣膜20 1,加以蝕刻使其平坦化。此時,將覆蓋 閘極105之矽氮化膜106作為阻止膜進行蝕刻,在閘極間隙 埋入層間絕緣膜201。 之後,如圖67所示,在層間絕緣膜201上開設對源極及 汲極擴散層1 07,1 08的接觸孔,藉由多結晶矽的堆積與回 蝕,分別埋入接腳202,203。以RIE開設接觸孔時,若使用 具有在位元線BL之方向連續之線條狀開口的掩膜,在閘極 -60- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)The contact holes 111 of the source wiring layer 112 and the contact holes 116 for the bit line pins 117 are self-integrated on the gate 105 protected by the silicon nitride film 106. Therefore, in the RIE step of contact hole processing, by making the mask opening larger than F, the contact hole can be formed without being affected by the misalignment of the mask. As shown in FIG. 64A, the contact hole U6 of the bit line of the above embodiment is formed only on the electrode diffusion layer 108. In addition, as shown in FIG. 65, the contact holes 116b of bit lines may be formed in a line shape continuous in the word line W L direction in the same manner as the contact holes 1 1 1 of the source electrode. At this time, although the pin 117 of the bit line is also embedded in a line shape, it must be left only under the bit line B L in the end. At this time, after forming the bit line BL pattern, the bit line BL can be used as a mask to etch the pins 1 1 7. · In the above embodiment, when the top and side surfaces of the source wiring layer 112 are covered with a protective film in the same manner as the gate 105, the margin of the bit line contact alignment must be greater. This embodiment will be described below. The steps before the element formation step of FIG. 62B are the same as those of the previous embodiment. 'Only the sections corresponding to the section of FIG. 62B will be used to describe the subsequent steps. First, as shown in FIG. 66, an interlayer insulating film 201 such as a silicon oxide film is deposited on a substrate on which an element is to be formed, and then planarized by etching. At this time, the silicon nitride film 106 covering the gate electrode 105 is etched as a stopper film, and an interlayer insulating film 201 is buried in the gate gap. After that, as shown in FIG. 67, contact holes for the source and drain diffusion layers 107, 108 are opened in the interlayer insulating film 201, and the pins 202 are buried by polycrystalline silicon deposition and etchback, respectively. 203. When opening a contact hole with RIE, if a mask with continuous line-shaped openings in the direction of the bit line BL is used, the gate electrode -60- This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm)

裝 ______— —_ B7 五、發明説明(58 ) 105的間隙形成有自我整合的接觸孔。但是,源極擴散層107 上的接腳202與先前之實施形態同樣的,亦可爲與字線wL 平行連續者。 之後’如圖68所示,形成在字線WL方向共同連接源極擴 散層1 07上之接腳202的源極配線層204圖案。源極配線層 204之上面及側面以保護膜之矽氮化膜2〇5覆蓋。具體而言 ’孩保護構造只要形成多結晶矽膜與氮化矽膜的的疊層膜 圖案’形成源極配線層204,再於其側面形成矽氮化膜即可 獲得。 其次’如圖69所示,再度堆積矽氧化膜等層間絕緣膜2〇6 ’並加以平坦化。繼續,以雙遒金屬鑲嵌法(Dual Damascene) 法在層間絕緣膜206上形成位元線之配線埋入溝及接觸孔 ,如圖70所示的埋入位元線207。 本實施形態由於藉由矽氮化膜205保護源極配線層204的 周圍,因此,可使位元線接觸之位元線方向的寬度足夠加 大。藉此’可不受位置對準偏差的影響,採取低電阻的位 元線接觸。 如圖61A所示,上述兩種實施形態係劃分線條狀連續的 元件形成區域。因此,各元件形成區域在字線方向不連續 。此外,如圖71所示,線條狀的元件形成區域亦可在形成 有源極擴散層的位置上劃分元件形成區域,使在字線方向 連接。此種情況下’源極擴散層本身在字線方向上被連續 形成,形成自身共同源極線,此時亦可如上述的實施形態 形成源極配線層112,也有助於共用源極線的低電阻化。 -61 - 本紙張尺度適用中國國家標準(CNS) A4規格(21〇 X 297公釐) 511273 A7 B7 五、發明説明(59 ) 本發明並不限定於上述的實施形態。實施形態中係使用 形成在P型矽層上的N通道MOS電晶體,不過將形成在η型 矽層上之Ρ通遒MOS電晶體做爲記憶體單元,以同樣的原理 亦可執行動態記憶。此時,許多載體爲電子,利用電子之 表體區域上的儲存與釋放。 此外,實施形態中係使用SOI基板,不過藉由使用以ρη 接合分離而漂浮之半導體層的MOS電晶體,亦可構成同樣 原理的記憶體單元。 如上所述,本發明之各種實施形態可提供一種半導體記 憶裝置,可以單純的電晶體構造形成記憶體單元,以·較少 的信號線執行雙値資料的動態記憶。 -62- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)Equipment ______ — —_ B7 V. Description of the Invention (58) The gap of 105 is formed with a self-integrated contact hole. However, the pins 202 on the source diffusion layer 107 are the same as those in the previous embodiment, and may be parallel to the word line wL. After that, as shown in FIG. 68, a pattern of a source wiring layer 204 which is commonly connected to the pins 202 on the source diffusion layer 107 in the word line WL direction is formed. The upper and side surfaces of the source wiring layer 204 are covered with a silicon nitride film 205 of a protective film. Specifically, the 'child protection structure' can be obtained by forming a multilayer film pattern of a polycrystalline silicon film and a silicon nitride film ', forming the source wiring layer 204, and forming a silicon nitride film on the side surface thereof. Next, as shown in FIG. 69, an interlayer insulating film 206 such as a silicon oxide film is deposited again and planarized. Continuing, a bit buried wiring trench and a contact hole are formed on the interlayer insulating film 206 by the dual damascene method, as shown in FIG. 70, the buried bit line 207 is embedded. In this embodiment, since the periphery of the source wiring layer 204 is protected by the silicon nitride film 205, the width in the direction of the bit line in which the bit line contacts can be made sufficiently large. Thereby, a low-resistance bit line contact can be adopted without being affected by the misalignment. As shown in FIG. 61A, the two embodiments described above are divided into linear continuous element formation regions. Therefore, each element formation region is discontinuous in the word line direction. In addition, as shown in FIG. 71, the linear element formation region may be divided into element formation regions at positions where the source diffusion layers are formed so as to be connected in the word line direction. In this case, the 'source diffusion layer itself is continuously formed in the word line direction to form its own common source line. At this time, the source wiring layer 112 can also be formed as in the above embodiment, which also helps to share the source line. Reduced resistance. -61-This paper size applies the Chinese National Standard (CNS) A4 specification (21 × 297 mm) 511273 A7 B7 V. Description of the invention (59) The present invention is not limited to the above embodiment. In the embodiment, an N-channel MOS transistor formed on a P-type silicon layer is used. However, a P-channel MOS transistor formed on an n-type silicon layer is used as a memory unit. Dynamic memory can also be performed by the same principle. . At this time, many carriers are electrons, using storage and release on the surface area of the electrons. In addition, in the embodiment, an SOI substrate is used. However, a MOS transistor using a floating semiconductor layer separated by ρη bonding can also form a memory cell with the same principle. As described above, various embodiments of the present invention can provide a semiconductor memory device that can form a memory cell with a simple transistor structure and perform dynamic memory of dual data with fewer signal lines. -62- This paper size applies to China National Standard (CNS) A4 (210X 297mm)

Claims (1)

申請專利範圍 一種半導體記憶裝置: 具有構成記憶體單元的電晶體 半導體層,其係第一導電型二 分離,呈漂浮狀態; 汲極擴散層,其係第二導電型 型的半導體層上,連接於位元線 ,該電晶體具備,n 與其他記憶體單元電性 ’形成在上述第一導電 源極擴散層,其係第二導電 型的半導體層上與上述汲極: ;及 ' 型,形成在上述第一導電 散層隔離,連接於源極線 閘極’其係經由閘極絕緣膜形成在上述汲極擴散層與 上述源極擴散層間之上述半導體層上,連接於字心 其中 上述電晶體具有:第_資料狀態,其具有在上述半導 體層上保持有過剩之許多載體的第-臨限値電壓;及第 -貝料狀毖’其具有上述半導體層上過剩之許 釋放的第二臨限値電壓。 2·如申請_範圍第i項之半導體記憶裝置,其中 上述第-資料狀態藉由使上述電晶體操作,在汲極接 合附近引起撞擊離子化,將藉由該撞擊離子化所生成之 過剩的許多載體保持在上述半導體層上, 上述第二資料狀態在上述半導體層與上述汲極擴散層 之間賦予正向偏置,將上述半導體層内之過剩的許多載 體排出汲極擴散層。 3.如申請專利範圍第丨項之半導體記憶裝置,其中 -63-Patent application scope A semiconductor memory device: a transistor semiconductor layer constituting a memory unit, which is a first conductivity type separated from a floating state; a drain diffusion layer, which is a semiconductor layer of a second conductivity type, connected As for the bit line, the transistor includes: n and other memory cells are electrically formed on the first conductive power source diffusion layer, which is a semiconductor layer of the second conductivity type and the drain electrode; and It is formed on the first conductive dispersion layer and connected to the source line gate. It is formed on the semiconductor layer between the drain diffusion layer and the source diffusion layer via a gate insulating film, and is connected to the word center. The transistor has: the first data state, which has a first-threshold threshold voltage of a number of carriers that have an excess on the semiconductor layer; and the third phase, which has a first threshold of excess release on the semiconductor layer. Two threshold voltages. 2. If the semiconductor memory device of scope i of the application _ item, wherein the above-mentioned data state causes the impact ionization in the vicinity of the drain junction by operating the transistor described above, excess ion generated by the impact ionization will be generated. Many carriers are held on the semiconductor layer, the second data state imparts a forward bias between the semiconductor layer and the drain diffusion layer, and the excess carriers in the semiconductor layer are discharged from the drain diffusion layer. 3. For a semiconductor memory device according to item 丨 of the application, wherein -63- 511273 六、申請專利範圍 上逑半導體層爲經由絕緣膜形成在矽基板上的矽層。 4·如申請專利範圍第3項之半導體記憶裝置,其中 上逑矽層爲p型,上述電晶體爲N通遒M〇s電晶體。 5.如申請專利範圍第丨項之半導體記憶裝置,其中’ 上述源極線的電位固定。 6·如申請專利範圍第5項之半導體記憶裝置,其中 ^ 於資料寫入時, ^ 將上述源極線做爲基準電位, 在所選擇之電晶體的字線上賦予高於上述基準電位的 第一電位, · 在非選擇之電晶體的t線上賦予低於上述基準電位的 第二電位, Λ 於寫入上述第一資料狀態的情況下,在位元線上賦予 高於上述基準電位的第三電位,於寫入上述第二資料狀 怨的情況下,賦予低於上述基準電位的第四電位。 7·如申請專利範圍第1項之半導體記憶裝置,其中 於資料讀出時, 將上述源極線做爲基準電位, 在所選擇之電晶體的字線上賦予,在上述第一臨限値 電壓與上述第二臨限値電壓之間,且高於上述基準電位 的第五電位,檢測所選擇之電晶體的導通/非導通。 8·如申請專利範圍第7項之半導體記憶裝置,其中 上述半導體層包含·· 第一雜質添加區域,其係連接於上述没極擴散層與上 ί紙張尺度適財關家標準(CNS)A4規格⑽χ 297公爱)- '- ,ί -----------^--------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 511273 申請專利範圍 述源極擴散層;及 第二雜質添加區域,其係與上述汲極擴散層盥上述源 極擴散層分離配置,連接於上述第—雜質添加區域,且 具有高於上述第一雜質添加區域的雜質濃度。 9·如申請專利範圍第丨項之半導體記憶裝置,其中 於資料讀出時, 將上述源極線做爲基準電位, 在所選擇之電晶體的字線上賦予,高於上述第一及第 二臨限値電壓,且高於上述基準電位的第五電位,檢測 所選擇之電晶體的導通度。 10.如申請專利範圍第9項之半導體記憶裝置,其中 上述半導體層包含: 第一雜質添加區域,其係連接於上述汲極擴散層與上 述源極擴教層;及 、 線 第二雜質添加區域,其係與上述汲極擴散層與上述源 極擴散層分離,連接於上述第_雜質添加區域,且 具有高於上述第一雜質添加區域的雜質濃度。 11·如申請專利範圍第i項之半導體記憶裝置,其中 上述半導體層包含·· 第一雜質添加區域,其係連接於上述汲極擴散層與上 述源極擴散層;及 第二雜質添加區域,其係與上述及極擴散層與卜述源 極擴散層分離配置,連接於上述第—雜質添加區域,且 具有鬲於上述第一雜質添加區域的雜質濃度。 -65- 本紙張尺度適用中國國家標準(CNS)A4規格⑽x 297公爱 A8 B8 C8 D8 申請專利範圍 12·如申請專利範圍第11項之半導體記憶裝置,其中 (請先閱讀背面之注意事項再填寫本頁) 上述汲極擴散層與上述源極擴散層中之至少汲極擴散 層包含: 第三雜質添加區域,其係連接於上述第一雜質添加區 域,構成pn接合;及 第四雜質添加區域,其係與上述第一雜質添加區域分 離形成,且具有高於上述第三雜質添加區域的雜質濃度 〇 13. 如申請專利範圍第1項之半導體記憶裝置,其中 於資料讀出時,升高字線至高於上述第二臨限値電壓 後,在位元線上泥入一定電流,檢測位元線上產生的電 位差。 私 14. 如申請專利範圍第!項之半導體記憶裝置,其中 於資料讀出時,升高字線至高於上述第二臨限値電壓 丨線' 後,使位元線保持一定電壓,流入鉗位上所需的電流, 檢測其電流差。 15·如申請專利範圍第丨3項之半導體記憶裝置,其中 上述半導體層包含·· 經濟部智慧財產局員工消費合作社印製 第一雜質添加區域,其係連接於上述汲極擴散層與上 述源極擴散層;及 第二雜質添加區域,其係與上述汲極擴散層與上述源 極擴散層分離配置,連接於上述第一雜質添加區域,且 具有高於上述第一雜質添加區域的雜質濃度。 16·如申請專利範圍第丨4項之半導體記憶裝置,其中 -66 衣紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐 六、申請專利範圍 其係連接於上述汲極擴散層與上 上述半導體層包含 第一雜質添加區域 述源極擴散層;及 罘-雜質添加區域,其係與上述汲極擴散層與上述源 極擴:層分離配置,連接於上述第一雜質添加區域,且 具有问於上述第_雜質添加區域的雜質濃度。 17·如申請專利範園第1項之半導體記憶裝置,其中 數條位元線上各設有丨個感測放大器,從這些位元線中 選出的1條位元線連接於上述感測放大器。 18. —種半導體記憶裝置,其包含: SOI基板,其係經由絕緣膜,在矽基板上形成有矽層; 數個電晶體,其係形成在上述矽層上,共用汲極擴散 層之各兩個電晶體在通道寬度方向元件被分離,成矩陣 排列; 數條罕線,其係共同連接於在第一方向並列之電晶體 的閘極上; 數條位元線,其係配置在與上述第一方向交叉的第二 方向上’連接於上述電晶體的汲極擴散層;及 共用源極線,其係藉由在上述第一方向上並列之電晶 體的源極擴散層連續性配置來形成; 其中 上述電晶體具有:第一資料狀態,其具有在上述矽層 上保持有過剩之許多載體的第一臨限値電壓;及第二資 料狀態,其具有上述矽層上過剩之許多載體被釋放的第 -67- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 511273 A8 B8 C8 D8 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 ‘申請專利範圍 二臨限値電壓。 19·如申請專利範圍第18項之半導體記憶裝置,其中 最小加工尺寸爲F時,一個電晶體以邛χ 2f的單元尺寸 排列成矩陣。 20.如申請專利範圍第18項之半導體記憶裝置,其中 上述汲極擴散層及上述源極擴散層形成在達上述矽層 下方之上述絕緣膜的深度。 ㈢ 21·如申請專利範圍第18項之半導體記憶裝置,其中 上述第一資料狀態藉由使上述電晶體操作,在汲極接 合附近引起撞擊離子化,將藉由該撞擊離子化所生成之 過剩的許多載體保持在上述矽層上, &amp; 上述第二資料狀態在上述矽層與上述汲極擴散層之間 賦予正向偏置,將上述矽層内之過剩的許多載體排出汲 極擴散層。 22·如申請專利範圍第21項之半導體記憶裝置,其中 上述矽層爲p型,上述電晶體爲1^通道1^〇8電晶體。 23·如申請專利範圍第18項之半導體記憶裝置,其中把 上述共用源極線的電位被固定。 24·如申請專利範圍第23項之半導體記憶裝置,其中 於資料寫入時, 將上述共用源極線做爲基準電位, 在所選擇之電晶體的字線上賦予高於上述基準電位的 弟一電位, 、、 在非選擇之電晶體的字線上賦予低於上述基準電p的 -68 - 本紙張尺度適用中國國家標準(CNS)A4規格⑽χ 297公髮) (請先閱讀背面之注意事項再填寫本頁) 擊· ---------------線 — -n n H n H ϋ n . 511273 is8 —_§ 六、申請專利範圍 弟一電位, 一於寫入上述第一資料狀態的情沉下,在位元線上賦予 j於上述基準電位的第三電位,於寫入上述第二資料狀 態的情況下,賦予低於上述基準電位的第四電位。 25.如申請專利範圍第18項之半導體記憶裝置,其中 於資料讀出時, 將上述共用源極線做爲基準電位, 在所選擇之電晶體的字線上賦予,在上述第一臨限値 電壓與上述第二臨限値電壓之間,且高於上述基準電位 的第五電位,檢測所選擇之電晶體的導通/非導通。 26·如申請專利範圍第18項之半導體記憶裝置,其中 於資料讀出時, 將上述共用源極線做爲基準電位, 在所選擇之電晶體的字線上賦予,高於上述第一及第 二臨限値電壓,且高於上述基準電位的第五電位,檢測 所選擇之電晶體的導通度。 27·如申請專利範圍第25項之半導體記憶裝置,其中 上述石夕層包含: 經濟部智慧財產局員工消費合作社印制衣 第一雜質添加區域,其係連接於上述汲極擴散層與上 述源極擴散層;及 第二雜質添加區域,其係與上述汲極擴散層與上述源 極擴散層分離配置,連接於上述第一雜質添加區域,且 具有鬲於上述第一雜質添加區域的雜質濃度。 28·如申請專利範圍第26項之半導體記憶裝置,其 -69- 六、申請專利範圍 上述矽層包含: 第一雜質添加區域,其係連接於上述汲極擴散層與上 述源極擴散層;及 第二雜質添加區域,其係與上述汲極擴散層與上述源 極擴散層分離配置,連接於上述第一雜質添加區域,且 具有咼於上述第一雜質添加區域的雜質濃度。 29·如申請專利範圍第丨8項之半導體記憶裝置,其中 於資料讀出時,升高選出之電晶體之字線至高於上述 第一臨限値電壓後,在位元線上流入一定電流,檢測選 出之電晶體之位元線上產生的電位差。 3〇·如申請專利範圍第18項之半導體記憶裝置,其中 於會料碩出時,升兩選出之電晶體之字線至高於上述 第二臨限値電壓後,使選出之電晶體之位元線保待一定 電壓,流入鉗位上所需的電流,檢測其電流差。, 31·如申請專利範圍第29項之半導體記憶裝置,其中 上述碎層包含: 第一雜質添加區域,其係連接於上述汲極擴散層與上 述源極擴散層;及 第二雜質添加區域,其係與上述没極擴散層與上 極擴散層分離配置,連接於上述第—雜f添加區域 具有高於上述第一雜質添加區域的雜質濃度。 32·如申請專利範圍第30項之半導體記憶裝置,其 上述碎層包含·· 第一雜質添加區域 其係連接於上述汲極擴 散層與上 -70- 511273 A8 B8 C8 D8 、申請專利範圍 述源極擴散層;及 第二雜質添加區域,其係與上歧極 極㈣層分㈣置,連料上述第—雜質添加區域= 具有冋於上述第一雜質添加區域的雜質濃度。 33·如申請專利範圍第則之半導體記憶裝置,其中 於資料讀出時,升高選出之雷曰赋 於- ?士不『 〈子線至高於上述 罘一 限値龟壓後,在選出 、、、 w &lt;私日曰骨豆足位兀線上流入一 定電流,檢測位元線上產生的電位差。 34·如申請專利範圍第24項之半導體記㈣置,並中 斤於資料讀出時,升高選出之電晶體之字線;高於上述 弟一臨限値電壓後’使選出之電晶體之位元線保持一定 電壓,流入钳位上所需的電流,檢測其電流差。 35·如申請專利範圍第33項之半導體記憶裝置,:中 上述碎層包含: 第一雜質添加區域,其係丄牵技 〃係連接於上述汲極擴散眉與上 述源極擴散層;及 第二雜質添加區域,其係盥卜 ,、货…、上述及極擴散層與上述 極擴散層分離配置,連接於上述第一 經濟部智慧財產局員工消費合作社印製 ^ 难貝添加區域,且 具有高於上述第一雜質添加區域的雜質濃度。 36.如申請專利範圍第34項之半導體記憶裝置:其中 上述;?夕層包含: 第一雜質添加區域,其係連接 妖於上述汲極擴散層與上 述源極擴散層;及 第二雜質添加區域,其係血F 4-P '77 ^ Μ上迷及極擴散層與上述源 71 - 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公t ) 511273 A8 B8 C8 _______ D8六、申請專利範圍 經濟部智慧財產局員工消費合作社印製 極擴散層分離配置,連接於上述第_雜質添加區域,且 具有高於上述第一雜質添加區域的雜質濃度。 37·如申請專利範圍第18項之半導體記憶裝置,其中 數條位7G線上各設有丨個感測放大器,從這些位元線中 選出的1條位元線連接於上述感測放大器。 38· —種半導體記憶裝置,其包含: SOI基板,其係經由絕緣膜,在矽基板上形成有矽層; 數個電晶體,其具有在上述矽層上排列成矩陣狀,在 上面及側面被保護膜覆蓋的狀態下,形成在—個方向連 續之字線圖案的閘極;及與該閘極自我整合性形成之 極汲極及擴散層; Μ 第一層間絕緣膜,其係覆蓋上述數個電晶體; 源極配線層,其係在上述各電晶體之源極擴散層上, 埋入上述第一層間絕緣膜内之與上述字線平行連接成線 條狀的第一接觸孔内; 第二層間絕緣膜,其係形成在上述第一層間絕緣膜上 位7L線接腳,其係在上述各電晶體的汲極擴散層上, 埋入在上述第二層間絕緣膜上開設的第二接觸孔内;及 位元線’其係與上述字線交叉配置於上述第二層間絕 緣膜上’經由上述位元線接腳,連接於上述電晶體的汲 極擴散層,其中 上述電晶體具有:第一資料狀態,其具有在上述表體 _ - 72 - ^紙張尺度適用中國國家標準(CNS)A4規格(210 x_i97公爱)---- (請先閱讀背面之注意事項再填寫本頁) 擊. 訂 !線! -n I n n ϋ n n n _ 511273 _〜§ 六、申請專利範圍 區域上保持有過剩之許多载體的第 二資料狀態,其具有上述表# /匕私壓;及罘 釋放至汲極擴散層的第二臨限値電壓。彳夕載-被 39. 如申請專利範圍第38項之半導體記憶裝置 上述SOI基板的矽層藉由 丁刀雊粑緣fe,以一定的間 距在上述字線的方向上書彳分 -J刀於上述位兀線之方向連嬙 線條狀的元件形成區域。 八 40. 如申請:利範圍第38項之半導體記憶裝置,其中 上述罘-貧料狀態藉由使上述電晶體操作,在汲極接 合附近引起撞擊離子化,將藉由該撞擊離子化所生成之 過剩的許多載體保持在上述硬層上, 上述第二資料狀態在上述矽層與上述汲極擴散層之間 賦予橫向偏置,將上述矽層内之過剩的許多載體排出汲 極擴散層。 41·如申請專利範圍第38項之半導體記憶裝置,其中 上述矽層爲p型,上述電晶體爲N通道M0S電晶體。 42·如申請專利範圍第38項之半導體記憶裝置,其中 上述源極配線層的電位固定。 43·如申請專利範圍第3 8項之半導體記憶裝置,其中 於資料讀出時, 知上述源極配線層做爲基準電位, 在所選擇之電晶體的字線上賦予,在上述第一臨限値 電壓與上述第二臨限値電壓之間,且高於上述基準電位 的黾位,檢測所選擇之電晶體的導通/非導通。 _______ -73- 本紙張尺度適用τ關家標準(CNS)A4規格⑵Q χ四 (請先閱讀背面之注意事項再填寫本頁) 訂---------線丨 « 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 六、申請專利範圍 8888 ABCD 經 濟 部 智 慧 財 產 局 消 費 合 作 社 印 製 44·如申請專利範圍第38項之半導體記憶裝置,其中 於資料讀出時, 將上述源極配線層做爲基準電位, 在所選擇之電晶體的字線上賦予,高於上述第一及第 二臨限値電壓,且高於上述基準電位的電位,檢測所選 擇之電晶體的導通度。 、 45.如申請專利範圍第3 8項之半導體記憶裝置,其中 於資料讀出時,升高字線至高於上述第二臨限値電壓 後,在位元線上流入一定電流,檢測位元線上產生 位差。 私 46·如申請專利範圍第38項之半導體記憶裝置,其中 /於資料讀㈣,升高字、線至高於上述第二臨限値電壓 後’使位元線保持一定電壓,流入鉗位上所需的電流, 檢測其電流差。 47·如申請專利範圍第3 8項之半導體記憶裝置,其中’ 數條位元線上各設有丨個感測放大器,從這些位元線中 選出的1條位元線連接於上述感測放大器。 48· 一種半導體記憶裝置,其包含: SOI基板,其係經由絕緣膜,在矽基板上形成有矽層; 數個私θ曰體,其具有在上述矽層上排列成矩陣狀,在 上面及側面被第一保護膜覆蓋的狀態下,形成在一個方 向連續之字線圖案的閘極;及與該閘極自我整合性形成 之源極汲極及擴散層; 第一層間絕緣膜,其係覆蓋上述數個電晶體; I紙張尺度剌巾關'讀_φ((:Ν3)Α4規格⑵ -74- 297公釐) ·!'-------II--------I -訂---------線丨- (請先閲讀背面之注意事項再填寫本頁) I n n ·1· 511273511273 6. Scope of patent application The upper semiconductor layer is a silicon layer formed on a silicon substrate through an insulating film. 4. The semiconductor memory device according to item 3 of the patent application, wherein the upper silicon layer is a p-type, and the transistor is an N-pass MOS transistor. 5. The semiconductor memory device according to item 丨 of the application, wherein the potential of the source line is fixed. 6. The semiconductor memory device according to item 5 of the scope of patent application, where ^ when data is written, ^ use the source line as a reference potential, and assign a word line above the reference potential to the word line of the selected transistor. A potential, a second potential lower than the reference potential is provided on the t-line of the non-selected transistor, and a third potential higher than the reference potential is provided on the bit line when the first data state is written The potential is given a fourth potential lower than the reference potential when the second data-like complaint is written. 7. The semiconductor memory device according to item 1 of the scope of patent application, wherein the source line is used as a reference potential when data is read out, and the word line of the selected transistor is given, and the voltage is set at the first threshold voltage. And a fifth potential higher than the second threshold voltage and higher than the reference potential to detect the conduction / non-conduction of the selected transistor. 8. The semiconductor memory device according to item 7 of the patent application scope, wherein the semiconductor layer includes a first impurity-added region, which is connected to the non-polar diffusion layer and the upper paper standard (CNS) A4 Specifications ⑽χ 297 公 爱)-'-, ί ----------- ^ --------- (Please read the notes on the back before filling out this page) Intellectual Property Bureau, Ministry of Economic Affairs Printed by Employee Consumer Cooperative Co., Ltd. 511273, the source diffusion layer is described in the scope of the patent application; and the second impurity addition region is configured separately from the drain diffusion layer and the source diffusion layer, and is connected to the first impurity addition region, and has The impurity concentration is higher than the above-mentioned first impurity addition region. 9. If the semiconductor memory device according to item 丨 of the patent application, wherein the source line is used as a reference potential when data is read out, it is given on the word line of the selected transistor, which is higher than the above first and second lines. The threshold voltage is a fifth potential higher than the reference potential, and the continuity of the selected transistor is detected. 10. The semiconductor memory device according to item 9 of the patent application scope, wherein the semiconductor layer includes: a first impurity added region, which is connected to the drain diffusion layer and the source diffusion layer; and, a second impurity added line The region is separated from the drain diffusion layer and the source diffusion layer, is connected to the first impurity-added region, and has a higher impurity concentration than the first impurity-added region. 11. The semiconductor memory device according to item i of the application, wherein the semiconductor layer includes a first impurity-added region that is connected to the drain diffusion layer and the source diffusion layer; and a second impurity-added region, It is arranged separately from the above-mentioned and the source diffusion layer and the source diffusion layer, and is connected to the first impurity-added region, and has an impurity concentration that is lower than the first impurity-added region. -65- This paper size applies to China National Standard (CNS) A4 specifications x 297 Gongai A8 B8 C8 D8 Patent Application Scope 12 · If you apply for a semiconductor memory device with the scope of patent application item 11, among them (Please read the precautions on the back before (Fill in this page) At least the drain diffusion layer of the drain diffusion layer and the source diffusion layer includes: a third impurity added region, which is connected to the first impurity added region to form a pn junction; and a fourth impurity added The region is formed separately from the above-mentioned first impurity-added region and has an impurity concentration higher than the above-mentioned third impurity-added region. 13. As in the case of a semiconductor memory device under the scope of patent application No. 1, in reading data, the After the high word line is higher than the second threshold threshold voltage, a certain current is poured into the bit line to detect the potential difference generated on the bit line. Private 14. If the scope of patent application is the first! In the semiconductor memory device, when the data is read, the word line is raised above the second threshold voltage, and the bit line is maintained at a certain voltage and the current required to flow into the clamp is detected. Current difference. 15 · Semiconductor memory device according to the scope of application patent No. 丨 3, wherein the semiconductor layer includes the first impurity-added region printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, which is connected to the drain diffusion layer and the source An electrode diffusion layer; and a second impurity added region, which are separately disposed from the drain diffusion layer and the source diffusion layer, are connected to the first impurity added region, and have a higher impurity concentration than the first impurity added region . 16. If you apply for a semiconductor memory device with the scope of patent application No. 丨 4, in which -66 paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 6. The scope of the patent application is connected to the drain diffusion layer And the above semiconductor layer includes a source diffusion layer including a first impurity added region; and a plutonium-impurity added region, which is separated from the drain diffusion layer and the source diffusion layer, and is connected to the first impurity added region; And has the impurity concentration in the above-mentioned _ impurity added region. 17. For example, the semiconductor memory device of the first patent application park, wherein a plurality of sensing amplifiers are provided on several bit lines, and from these bit lines, One of the selected bit lines is connected to the above-mentioned sense amplifier. 18. A semiconductor memory device comprising: an SOI substrate, which is formed with a silicon layer on a silicon substrate through an insulating film; and several transistors, which The two transistors are formed on the silicon layer, and the two transistors sharing the drain diffusion layer are separated in the channel width direction and arranged in a matrix. Several rare wires are connected in common. On the gates of the transistors juxtaposed in the first direction; a number of bit lines arranged in a second direction crossing the first direction to be connected to the drain diffusion layer of the transistor; and a common source Line, which is formed by the continuous arrangement of the source diffusion layers of the transistors juxtaposed in the first direction; wherein the transistor has: a first data state, which has a large amount of excess remaining on the silicon layer; The first threshold voltage of the carrier; and the second data state, which has a number of -67- above which are released from the excess of the carrier on the silicon layer. This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm). ) 511273 A8 B8 C8 D8 Printed by the Consumers 'Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs' Applicable patent scope two threshold voltages. 19. If a semiconductor memory device with the scope of patent application No. 18, where the minimum processing size is F, an electrical The crystals are arranged in a matrix with a unit size of 邛 χ 2f. 20. The semiconductor memory device according to item 18 of the scope of patent application, wherein the above-mentioned drain diffusion layer and the above-mentioned The source diffusion layer is formed to a depth of the above-mentioned insulating film under the above-mentioned silicon layer. ㈢ 21. The semiconductor memory device according to item 18 of the patent application range, wherein the first data state is operated by operating the transistor above the drain electrode. Impact ionization is caused in the vicinity of the junction, and an excessive number of carriers generated by the impact ionization are held on the silicon layer, and the second data state imparts a forward direction between the silicon layer and the drain diffusion layer. Bias, the excess carrier in the above-mentioned silicon layer is drained out of the drain diffusion layer. 22. For example, the semiconductor memory device of the scope of application for patent No. 21, wherein the above-mentioned silicon layer is p-type, and the above-mentioned transistor is 1 ^ channel 1 ^ 〇8 transistor. 23. The semiconductor memory device according to claim 18, wherein the potential of the common source line is fixed. 24. The semiconductor memory device according to item 23 of the patent application, wherein the data is written with the common source line as a reference potential, and a word higher than the reference potential is given to the word line of the selected transistor. Potential, ,, is given on the non-selected transistor's word line to -68 below the above-mentioned reference voltage p-This paper size applies to Chinese National Standard (CNS) A4 specifications ⑽χ 297 issued) (Please read the precautions on the back before (Fill in this page) Click on the --------------- line — -nn H n H ϋ n. 511273 is8 —_§ 6. The scope of patent application is one potential, one is written in the above In the case of the first data state, a third potential at the reference potential is given to the bit line, and a fourth potential lower than the reference potential is given when the second data state is written. 25. The semiconductor memory device according to item 18 of the scope of patent application, wherein when data is read out, the common source line is used as a reference potential, and the word line is selected on the selected transistor, and the first threshold is Between the voltage and the second threshold voltage, and a fifth potential higher than the reference potential, the conduction / non-conduction of the selected transistor is detected. 26. The semiconductor memory device according to item 18 of the scope of patent application, wherein when data is read out, the above-mentioned common source line is used as a reference potential and is given on the word line of the selected transistor, which is higher than the above-mentioned first and first The second threshold voltage is a fifth potential higher than the reference potential, and the continuity of the selected transistor is detected. 27. The semiconductor memory device according to item 25 of the patent application scope, wherein the above-mentioned Shi Xi layer includes: the first impurity adding region of printed clothing of the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, which is connected to the drain diffusion layer and the source An electrode diffusion layer; and a second impurity added region, which are separately disposed from the drain diffusion layer and the source diffusion layer, are connected to the first impurity added region, and have an impurity concentration that is trapped in the first impurity added region . 28. The semiconductor memory device according to item 26 of the patent application, wherein the above-mentioned silicon layer of the patent application includes: a first impurity addition region, which is connected to the drain diffusion layer and the source diffusion layer; The second impurity added region is disposed separately from the drain diffusion layer and the source diffusion layer, is connected to the first impurity added region, and has an impurity concentration that is lower than the first impurity added region. 29. For the semiconductor memory device with the scope of patent application No. 丨 8, when the data is read, the word line of the selected transistor is raised to a voltage higher than the first threshold voltage, and a certain current flows into the bit line. The potential difference generated on the bit line of the selected transistor is detected. 30. If the semiconductor memory device according to item 18 of the scope of patent application is applied, when the selected transistor is raised, the word line of the two selected transistors is raised to a voltage higher than the above-mentioned second threshold voltage, and then the selected transistor is positioned. The element wire waits for a certain voltage, flows the required current into the clamp, and detects its current difference. 31. The semiconductor memory device according to item 29 of the application, wherein the fragmented layer includes: a first impurity-added region, which is connected to the drain diffusion layer and the source diffusion layer; and a second impurity-added region, It is arranged separately from the non-electrode diffusion layer and the upper electrode diffusion layer, and is connected to the first-doped f added region having an impurity concentration higher than that of the first impurity added region. 32. If the semiconductor memory device according to item 30 of the scope of patent application, the fragmentary layer contains the first impurity addition region which is connected to the drain diffusion layer and the upper -70- 511273 A8 B8 C8 D8. A source diffusion layer; and a second impurity-added region, which is separated from the upper-diffusion electrode layer, and the first-impurity-added region is connected to the impurity concentration of the first impurity-added region. 33. If the semiconductor memory device under the scope of patent application is applied, when the data is read out, the selected thunder is given to-? Shibuo <〈After the sub-line is higher than the above-mentioned first limit of the turtle pressure, a certain current is flown into the selected line, and the detection is made on the bit line. 34. If the semiconductor device in the 24th scope of the patent application is applied, and the data is read, the word line of the selected transistor is raised; after the voltage is higher than the above threshold, the selected transistor will be used. The bit line maintains a certain voltage, and the required current flows into the clamp, and the current difference is detected. 35. The semiconductor memory device according to item 33 of the application, wherein the fragmentation layer includes: a first impurity-added region, which is connected to the drain diffusion eyebrow and the source diffusion layer; and Two impurity-adding areas, which are separated from the polar diffusion layer, are connected to the above-mentioned polar diffusion layer, and are connected to the above-mentioned printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. The impurity concentration is higher than the above-mentioned first impurity addition region. 36. The semiconductor memory device according to claim 34 in the scope of patent application: wherein the above-mentioned layer includes: a first impurity adding region which is connected to the drain diffusion layer and the source diffusion layer; and a second impurity addition Area, its line of blood F 4-P '77 ^ MH and polar diffusion layer with the above source 71-This paper size applies Chinese National Standard (CNS) A4 specifications (21〇X 297 g t) 511273 A8 B8 C8 _______ D8 6. Scope of Patent Application: The Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs prints a polarized layer separation configuration, which is connected to the above-mentioned impurity-added region and has an impurity concentration higher than that of the above-mentioned first impurity-added region. 37. The semiconductor memory device according to item 18 of the patent application, wherein several 7G lines are each provided with a sense amplifier, and a bit line selected from the bit lines is connected to the above-mentioned sense amplifier. 38 · A semiconductor memory device comprising: an SOI substrate formed with a silicon layer on a silicon substrate via an insulating film; and a plurality of transistors having an array arranged on the silicon layer in a matrix form on the top and sides In the state covered by the protective film, a gate electrode formed in a continuous zigzag pattern in one direction; and a pole drain and a diffusion layer formed by self-integration with the gate electrode; The first interlayer insulating film, which is covered The above-mentioned transistors; a source wiring layer, which is buried on the source diffusion layers of the above-mentioned transistors, and is embedded in the first interlayer insulating film and connected to the word line in a line-like first contact hole; Inside; a second interlayer insulating film, which is formed on the upper 7L wire pin of the first interlayer insulating film, is formed on the drain diffusion layer of each transistor, and is buried in the second interlayer insulating film and opened A second contact hole; and a bit line 'which is arranged on the second interlayer insulating film crossing the word line' is connected to the drain diffusion layer of the transistor via the bit line pin, wherein the above The transistor has: Information status, which has the above table body _-72-^ Paper size applies Chinese National Standard (CNS) A4 specifications (210 x_i97 public love) ---- (Please read the precautions on the back before filling this page). Click. Order! line! -n I nn ϋ nnn _ 511273 _ ~ § 6. The second data state of the many carriers remaining in the area covered by the patent application has the above-mentioned table # / 匕 私 压; and 罘 released to the drain diffusion layer The second threshold is the threshold voltage. Xi Xizai-39. If the silicon layer of the above-mentioned SOI substrate of the semiconductor memory device of the 38th area of the application for a patent is divided by a knife edge fe, the book is divided in a certain pitch in the direction of the word line-knife J A line-shaped element formation region is connected in the direction of the above-mentioned lines. 8. 40. If you apply: The semiconductor memory device according to Item 38, in which the 罘 -lean material state causes the ionization of impact near the junction of the drain electrode by operating the transistor, and will be generated by the impact ionization. Many of the excess carriers are maintained on the hard layer, and the second data state imparts a lateral offset between the silicon layer and the drain diffusion layer, and the excess carriers in the silicon layer are discharged from the drain diffusion layer. 41. The semiconductor memory device according to item 38 of the application, wherein the silicon layer is p-type, and the transistor is an N-channel MOS transistor. 42. The semiconductor memory device according to claim 38, wherein the potential of the source wiring layer is fixed. 43. If the semiconductor memory device according to item 38 of the scope of patent application, when the data is read out, the source wiring layer is known as the reference potential, and is given on the word line of the selected transistor, within the first threshold. Between the chirp voltage and the second threshold chirp voltage, which is higher than the reference potential, the conduction / non-conduction of the selected transistor is detected. _______ -73- This paper size is applicable to τguan standard (CNS) A4 specifications ⑵Q χ4 (Please read the precautions on the back before filling this page) Order --------- line 丨 «Intellectual Property of the Ministry of Economic Affairs Printed by the Consumer Cooperative of the Bureau of the People's Republic of China 6. Application for patent coverage 8888 ABCD Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 44. For example, the semiconductor memory device with the scope of patent application No. 38, where the above-mentioned source wiring layer is made when data is read out It is a reference potential, which is given on the word line of the selected transistor, a potential higher than the first and second threshold threshold voltages, and higher than the reference potential, and the continuity of the selected transistor is detected. 45. The semiconductor memory device according to item 38 of the scope of patent application, wherein when data is read, the word line is raised to a voltage higher than the second threshold voltage, a certain current flows into the bit line, and the bit line is detected. Generate a disparity. Private 46. If the semiconductor memory device of the 38th scope of the application for the patent, where / in the data reading, raise the word, line to a voltage higher than the above-mentioned second threshold, 'to keep the bit line a certain voltage, and flow into the clamp The required current, and the difference in current is detected. 47. The semiconductor memory device according to item 38 of the scope of patent application, wherein a plurality of sensing amplifiers are provided on each of the plurality of bit lines, and one bit line selected from these bit lines is connected to the above-mentioned sense amplifier. . 48 · A semiconductor memory device comprising: an SOI substrate, which is formed with a silicon layer on a silicon substrate via an insulating film; a plurality of private θ-shaped bodies, which are arranged in a matrix on the silicon layer, above and In a state where the side surface is covered by the first protective film, a gate electrode having a zigzag pattern continuous in one direction is formed; and a source drain electrode and a diffusion layer formed by self-integration with the gate electrode; a first interlayer insulating film, which It covers the above-mentioned several transistors; I paper-scale paper towels 'read_φ ((: Ν3) Α4 size⑵ -74- 297 mm) ·!' ------- II ------ --I -Order --------- Line 丨-(Please read the notes on the back before filling this page) I nn · 1 · 511273 .源極接腳,其係埋入形成在上述層間絕緣膜之上述各 電晶體之源極擴散層上的接觸孔内; 沒極接腳,其係埋入形成在上述層間絕緣膜之上述各 電晶體之汲極擴散層上的接觸孔内; 源極配線層,其係共同連接在上述字線方向排列之上 述源極接腳,同時上面及側面被第二保護膜覆蓋; 第二層間絕緣膜,其係覆蓋該源極配線層;及 位兀線,其係與上述字線交叉配置於上述第二層間絕 緣膜上,經由上述汲極接腳,連接於上述電晶體的汲極 擴散層, 其中 上述電晶體具有:第一資料狀態,其具有在上述表體 區域上保持有過剩之許多載體的第一臨限值電壓;及第 二資料狀態,其具有上述表體區域之過剩之許多載體被 釋放至汲極擴散層的第二臨限值電壓。 49·如申請專利範圍第48項之半導體記憶裝置,其中 上逑SOI基板的矽層藉由元件分離絕緣膜,以一定的 間距在上述字線的方向上劃分於上述位元線之方向連 續成線條狀的元件形成區域。 50.如申凊專利範圍第4 8項之半導體記憶裝置,其中 上逑第一資料狀態藉由使上述電晶體操作,在汲極接 合附近引起撞擊離子化,將藉由該撞擊離子化所生成之 過剩的許多載體保持在上述碎層上, 上述第二資料狀態在上述矽層與上述汲極擴散層之間 -75 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)The source pin is embedded in the contact hole formed on the source diffusion layer of the transistors of the interlayer insulating film; the non-terminal pin is embedded in the each of the interlayer insulating films. In the contact hole on the drain diffusion layer of the transistor; the source wiring layer is connected to the source pins arranged in the word line direction, and the upper and side surfaces are covered by a second protective film; the second interlayer insulation A film that covers the source wiring layer; and a bit line that is arranged on the second interlayer insulating film crossing the word line and connected to the drain diffusion layer of the transistor through the drain pin Wherein, the transistor has: a first data state having a first threshold voltage of a plurality of carriers remaining in excess on the surface of the watch body region; and a second data state having a plurality of excess data in the above body region The carrier is released to a second threshold voltage of the drain diffusion layer. 49. The semiconductor memory device according to item 48 of the patent application, wherein the silicon layer on the SOI substrate is separated by an element insulation film, and is divided in a direction of the word line in a direction of the word line at a certain interval. The linear element forms a region. 50. The semiconductor memory device according to claim 48 of the patent scope, wherein the first data state is loaded by operating the transistor to cause impact ionization in the vicinity of the drain junction, and will be generated by the impact ionization. Many excess carriers remain on the fragmented layer, and the second data state is between the silicon layer and the drain diffusion layer -75-This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ) Hold 經濟部智慧財產局員工消費合作社印製 3112/3 六、申請專利範圍 賦予正向偏置,將上述矽層内之過剩的許多載體排 極擴散層。 》及 51·如申請專利範圍第48項之半導體記憶裝置,其中 上述碎層爲p型,上述電晶體爲N通道MOS電晶體。 52·如申請專利範圍第48項之半導體記憶裝置,其中 上述源極配線層的電位固定。 53·如申請專利範圍第48項之半導體記憶裝置,其中 於資料讀出時, 將上述源極配線層做爲基準電位, 在所選擇之電晶體的字線上賦予,在上述第一臨限佶 電壓與上述第二臨限値電壓之間,且高於上述基準電^ 的電位,檢測所選擇之電晶體的導通/非導通。 54. 如申請專利範圍第48項之半導體記憶裝置,其中 於資料讀出時, 將上述源極配線層做爲基準電位, 在所選擇之電晶體的字線上賦予,高於上述第一及第 二臨限値電壓,且鬲於上述基準電位的電位,檢測所選 擇之電晶體的導通度。 55. 如申請專利範圍第48項之半導體記憶裝置,其中 於資料讀出時,升高字線至高於上述第二臨限値電壓 後,在位元線上流入一定電流,檢測位元線上產生的電 位差。 56·如申請專利範圍第48項之半導體記憶裝置,其中 於資料謂出時,升南字線至高於上述第二臨限値電壓 -76- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) m ---·---.--------馨--------訂---------線 * {請先閱讀背面之注音?事項再填寫本頁) Α8 Β8 C8 D8Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 3112/3 6. Scope of patent application The forward bias is given, and many of the carriers in the above silicon layer are excluded from the diffusion layer. "And 51. The semiconductor memory device according to item 48 of the patent application, wherein the fragmented layer is p-type, and the transistor is an N-channel MOS transistor. 52. The semiconductor memory device according to claim 48, wherein the potential of the source wiring layer is fixed. 53. The semiconductor memory device according to item 48 of the scope of patent application, wherein the source wiring layer is used as a reference potential when data is read, and is given on the word line of the selected transistor, within the first threshold. Between the voltage and the second threshold voltage, and a potential higher than the reference voltage, the conduction / non-conduction of the selected transistor is detected. 54. For example, the semiconductor memory device under the scope of application for patent No. 48, in which the above-mentioned source wiring layer is used as a reference potential when data is read out, and is given on the word line of the selected transistor, which is higher than the first and the above-mentioned word lines. Two threshold voltages, and a potential lower than the reference potential, detect the continuity of the selected transistor. 55. For example, the semiconductor memory device under the scope of patent application No. 48, in which the word line is raised above the second threshold voltage when the data is read, a certain current flows into the bit line and Potential difference. 56. If the semiconductor memory device under the scope of patent application No. 48, when the data is stated, the south word line is higher than the above-mentioned second threshold threshold voltage -76- 210 X 297 mm) m --- · ---.-------- xin -------- order --------- line * {Please read the back Zhuyin? Please fill in this page for matters) Α8 Β8 C8 D8 、申請專利範圍 經 濟 部 智 慧 財 產 局 員 工 消 費 合 社 印 製 後,使位元線保持一定電壓,流入鉗位上所需的電流, 檢測其電流差。 57·如申清專利範圍第48項之半導體記憶裝置,其中 數條位元線上各設有1個感測放大器,從這些位元線中 選出的1條位元線連接於上述感測放大器。 58· 一種半導體記憶裝置的製造方法,其係: 在半導體基板上形成絕緣膜, 在上述絕緣膜上形成第一導電型的半導體層, 在上述半導體層上形成閘極形成區域上有開口的掩膜 5 在上述掩膜的開口側壁形成側壁絕緣膜, 通過上述掩膜的上述開口,在上述半導體層上添加雜質,形成雜質濃度高於上述半導體層之第一導電型的雜 貝添加層, ” 除去上述側壁絕緣膜之後,在上述掩膜之上數開口埋 入閘極絕緣膜與閘極來形成, 除去上述掩膜之後,在上述半導體層上添加雜質,形 成第二導電型的汲極擴散層及源極擴散層。 59. —種半導體記憶裝置的製造方法,其係: 在半導體基板上形成絕緣膜, 在上述絕緣膜上形成第一導電型的半導體層, 在上述半導體層上形成閘極形成區域上有開口的掩膜 在上述掩膜的開口側壁形成第一側壁絕緣膜, ______ _77_ 本紙張尺i適用中國國家標準(CNS)A4規格(210 X 297公爱 (請先閱讀背面之注意事項再填寫本頁) 釋 訂 11---線丨 « 511273 A8 B8 C8 D8 六、申請專利範圍 斥通過上述掩膜的上述開口,在上述半導體層上添加雜 貝,形成雜質濃度高於上述半導體層之第一導電型的第 一雜質添加層, 除去上述第一側壁絕緣膜之後,在上述掩膜之上數開 口埋入閘極絕緣膜與閘極來形成, 除去上述掩膜後,在上述半導體層上添加雜質,在汲 極區域及源極區域上形成第二導電型的第二雜質添加層 在上述没極的側壁形成第二側壁絕緣膜, 在上述半導體層上添加雜質,在上述汲極區域及上述 源極區域上形成雜質濃度高於上述第二雜質添加層之第 一導電型的第三雜質添加層。 (請先閱讀背面之注意事項再填寫本頁) 訂----1----線丨 經濟部智慧財產局員工消費合作社印製 -78- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)Scope of patent application After printing by the Intellectual Property Office of the Ministry of Economic Affairs, the Consumer Electronics Co., Ltd. keeps the bit line at a certain voltage and flows into the current required by the clamp to detect its current difference. 57. The semiconductor memory device according to item 48 of the claim, wherein each of the bit lines is provided with a sense amplifier, and a bit line selected from the bit lines is connected to the above-mentioned sense amplifier. 58 · A method for manufacturing a semiconductor memory device, comprising: forming an insulating film on a semiconductor substrate; forming a semiconductor layer of a first conductivity type on the insulating film; and forming a mask with an opening in a gate formation region on the semiconductor layer Film 5 forms a side wall insulating film on the opening side wall of the mask, and through the opening of the mask, an impurity is added to the semiconductor layer to form a first conductivity type impurity layer with an impurity concentration higher than that of the semiconductor layer. " After the sidewall insulating film is removed, a gate insulating film and a gate are buried in the openings above the mask to form a plurality of openings. After removing the mask, impurities are added to the semiconductor layer to form a second conductivity type drain diffusion. Layer and source diffusion layer 59. A method for manufacturing a semiconductor memory device, comprising: forming an insulating film on a semiconductor substrate; forming a semiconductor layer of a first conductivity type on the insulating film; and forming a gate on the semiconductor layer A mask with an opening in the electrode formation area forms a first sidewall insulation film on the opening sidewall of the above mask, ______ _77_ This paper Ruler applies to China National Standard (CNS) A4 specifications (210 X 297 public love (please read the precautions on the back before filling out this page) Release 11 --- line 丨 «511273 A8 B8 C8 D8 Through the opening of the mask, impurities are added to the semiconductor layer to form a first impurity-added layer of a first conductivity type having an impurity concentration higher than that of the semiconductor layer. After removing the first sidewall insulating film, A gate insulating film and a gate are buried in the upper openings. After removing the mask, an impurity is added to the semiconductor layer, and a second conductivity-type second impurity-added layer is formed on the drain region and the source region. A second sidewall insulating film is formed on the non-electrode side wall, impurities are added to the semiconductor layer, and first-conductivity-type first-concentration-type first-conductivity-type-concentrations are formed on the drain region and the source region. Three impurity added layers. (Please read the precautions on the back before filling this page) Order ---- 1 ---- Line 丨 Printed by the Staff Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs-78- This Zhang scale applicable Chinese National Standard (CNS) A4 size (210 X 297 mm)
TW090119919A 2000-08-17 2001-08-14 Semiconductor memory device and its manufacturing method TW511273B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000247735 2000-08-17
JP2000389106 2000-12-21

Publications (1)

Publication Number Publication Date
TW511273B true TW511273B (en) 2002-11-21

Family

ID=26598051

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090119919A TW511273B (en) 2000-08-17 2001-08-14 Semiconductor memory device and its manufacturing method

Country Status (3)

Country Link
KR (1) KR100502374B1 (en)
CN (1) CN1223002C (en)
TW (1) TW511273B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI584415B (en) * 2015-07-23 2017-05-21 物聯記憶體科技股份有限公司 P-type non-volatile memory

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606066B2 (en) * 2005-09-07 2009-10-20 Innovative Silicon Isi Sa Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
JP2007133987A (en) * 2005-11-11 2007-05-31 Toshiba Corp Semiconductor memory device and method for driving the same
KR20090116088A (en) 2008-05-06 2009-11-11 삼성전자주식회사 A capacitor-less one transistor semiconductor memory device having improved data retention abilities and operation characteristics
US7969808B2 (en) 2007-07-20 2011-06-28 Samsung Electronics Co., Ltd. Memory cell structures, memory arrays, memory devices, memory controllers, and memory systems, and methods of manufacturing and operating the same
KR101308048B1 (en) * 2007-10-10 2013-09-12 삼성전자주식회사 Semiconductor memory device
KR20090075063A (en) 2008-01-03 2009-07-08 삼성전자주식회사 Semiconductor memory device comprising memory cell array having dynamic memory cells using floating body transistor and method of operating the same
KR20100070158A (en) 2008-12-17 2010-06-25 삼성전자주식회사 Semiconductor memory device comprising capacitor-less dynamic memory cells, and method of operating the same
KR101442177B1 (en) 2008-12-18 2014-09-18 삼성전자주식회사 Methods of fabricating a semiconductor device having a capacitor-less one transistor memory cell
JP5736224B2 (en) * 2011-04-12 2015-06-17 ルネサスエレクトロニクス株式会社 Semiconductor memory device
CN109003980A (en) * 2018-08-17 2018-12-14 刘文剑 A kind of DRAM cell of the electric leakage process automatic control with soi structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI584415B (en) * 2015-07-23 2017-05-21 物聯記憶體科技股份有限公司 P-type non-volatile memory

Also Published As

Publication number Publication date
KR100502374B1 (en) 2005-07-20
CN1223002C (en) 2005-10-12
CN1354523A (en) 2002-06-19
KR20020014757A (en) 2002-02-25

Similar Documents

Publication Publication Date Title
US11769832B2 (en) Memory device comprising an electrically floating body transistor and methods of using
JP4713783B2 (en) Semiconductor memory device
JP4053738B2 (en) Semiconductor memory device
KR100440188B1 (en) Semiconductor memory device
JP4064607B2 (en) Semiconductor memory device
TW525292B (en) Semiconductor memory device and method of manufacturing the same
TW544911B (en) Semiconductor device
US6621725B2 (en) Semiconductor memory device with floating storage bulk region and method of manufacturing the same
JP4383718B2 (en) Semiconductor memory device and manufacturing method thereof
JP2002246571A (en) Semiconductor memory device
TW200845367A (en) Memory cells, memory devices and integrated circuits incorporating the same
TW511273B (en) Semiconductor memory device and its manufacturing method
TW200845300A (en) Semiconductor memory devices and methods for fabricating the same
US6593613B1 (en) Memory cell for plateline sensing
JP2007141958A (en) Semiconductor device
JP4104836B2 (en) Semiconductor memory device and manufacturing method thereof
JP2007201498A (en) Semiconductor memory device
US7015526B2 (en) Dynamic memory cell and method of manufacturing same
JP2005158869A (en) Semiconductor device and its manufacturing method
JP2006012991A (en) Semiconductor storage device
JPS63136559A (en) Semiconductor memory and manufacture thereof
JP2007273664A (en) Semiconductor memory and its manufacturing method
JPH118357A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0254575A (en) Semiconductor memory

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees