TW502461B - Group III nitrides luminescence element for semiconductor and process of preparing the same - Google Patents

Group III nitrides luminescence element for semiconductor and process of preparing the same Download PDF

Info

Publication number
TW502461B
TW502461B TW90113803A TW90113803A TW502461B TW 502461 B TW502461 B TW 502461B TW 90113803 A TW90113803 A TW 90113803A TW 90113803 A TW90113803 A TW 90113803A TW 502461 B TW502461 B TW 502461B
Authority
TW
Taiwan
Prior art keywords
layer
light
buffer layer
single crystal
emitting
Prior art date
Application number
TW90113803A
Other languages
Chinese (zh)
Inventor
Takashi Udagawa
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Application granted granted Critical
Publication of TW502461B publication Critical patent/TW502461B/en

Links

Abstract

To provide a luminescence element for semiconductor with high luminance which is made from group III nitrides by using a nitrided galium phosphide based luminescence structure being free of non- matched property between substrate crystalline and crystal cells as well as having excellent crystalline. The invention provides a luminescence structure which is formed by laminating nitrided galium phosphides through boron phosphides based on a substrate. The boron phosphides based buffer layer is preferably a non-crystalline grown under low temperature so as to cancel the non-matched property between substrate crystalline and crystal cells. After formation of non-crystalline buffer layer, the crystalline is slowly transformed so as to compose a luminescence element with matched property maintained between luminance portion and cells of nitrided galium phosphides.

Description

502461 五、發明說明(1 ) 【發明所屬技術領域】 本發明係關於一種瓜族氮化物半導體發光元件,其係具 備一含有透過在單結晶基板上之磷化硼(BP)系緩衝層所設 置的氮磷化鎵(GaN^Px,0<X<1)單結晶層之發光部構造。 【習用技術】 呈現藍色或綠色發光帶之ΠΙ族氮化物半導體發光元件, 其係由例如在藍寶石(a - A 1 20 3 )單結晶基板上,利有機金 屬熱分解氣相成長(MOCVD )法等成長手段,來堆積氮化鉀 結晶層之一構成要素所構成之積層構造體。 積層構造體中係具備有擔任發光機能之發光部構造。一 般,發光部構造是爲由氮化銦•鎵(GaYln^yN,0<YS 1 )所 成之發光層、與氮化鋁•鎵(AlGalnN)系結晶層所成之p 型或η型複合層所構成的pn接合異種(hete ro)構造。 第5圖所例示之橫斷面圖,係爲具備由AlGalnN系結晶 層所成之習用的pn接合型雙重異種(double hetero)接合 之發光部構造42之發光元件(LED)IOO所構成的積層構造 。在習用的積層構造中,發光部構造42係爲(例如)由η 型氮化鋁•鎵(A 1ZG a !. ΖΝ,0 S Ζ $ 1 )之結晶層所成的下方 接合層103、與氮化銦•鎵(Ga丫 InuN,0<YS 1 )所成之發 光層104、由p型氮化鋁•鎵(AlzGai_zN,OS Z‘ 1 )之結晶 層所成的上方接合層105所構成(參照特開6 - 260682號公 報)。又,構成發光部構造42之103〜105各機能層,其典 型的例子係透過在比該機能層之成膜溫度更低溫下所形成 502461 五、發明說明(2) 之緩衝層,即所謂的低溫緩衝層102而堆積(參照特開4-2 9 703號公報)。設置在藍寶石基板101上之瓜,族氮化物半 導體結晶層之積層構造,其低溫緩衝層一般也可以是由氮 化鋁•鎵(AlzGa^zN,0€ 1 )來構成(參照特開6 - 151962 號公報)。 設置低溫緩衝層1 02之主要目的,係使在藍寶石基板 1 0 1與A 1ZG a : _ ΖΝ結晶下方之接合層1 0 3間之晶格配度 性減低、轉位等結晶缺陷密度變小,而可得到良質之皿族 氮化物結晶層。特別是可以從由氮化鎵(GaN )所構成之低 溫緩衝層102、由在超過低溫緩衝層102成膜溫度之高溫 下所形成的GaN層所構成之下方接合層103、由氮化鎵· 銦之發光層之混晶層1 04所構成之習用的慣例中知道。 再者,在第5圖中所示之習用的發光元件,由於將在具 有絕緣性藍寶石之基板101下方接合層103的一部分以予 切除,因而不得不設計一 η型歐姆電極107。p型歐姆電 極1 06係設置有導電性之上方接合層。 【本發明所解決之課題】 然而,因爲藍寶石基板與在低溫緩衝層所成的GaN層之 不匹配度度大約是1 3 . 8% (參約「日本結晶成長學會會誌 」’第15期’弟3及4號’(1989年1月2月發f了),第 74〜82頁),以致現今難以穩定地得到連續性之低溫緩衝層 。由於膜欠缺連續性而使得在部分之低溫緩衝層中,存在 有不連續之部位;也就是說,在藍寶石基板之表面上之裸 502461 五、發明說明(3) 露部位,使得向六方GaN之c軸方向之成長變爲優熱。從 而,在GaN柱狀結晶複合體發生轉位之發生起,點,係經由 上層GaN而傳送到Gal nN發光層,致使產生發光層結晶品 質劣化等問題。意即,上述向來以GaN低溫緩衝層與其上 之Gal nN發光層透過GaN層而積層之積層構成,由於使低 溫緩衝層發生不連續性起因之轉位等缺陷之轉移,使得良 質之Gal nN系發光層不能成膜;從而,特別是在電射二極 體(LD )上,由具有優良動作信賴性或元件壽命之瓜族氮化 物單結晶層所構成之發光部構造,會有不能穩定地構成等 之問題。 本發明即是有鑑於上述習用技術之缺點,因而提供一種 不產生基板結晶之大的不匹配度性、且基板表面具有均勻 地被覆之連續性,並可抑制轉位之發生的緩衝層。此外, 亦可提供一種在上述緩衝層上完全堆積的轉位等結晶缺陷 密度小、且結晶性優良之m族氮化物單結晶層。 【解決課題之手段】 意即,本發明之m族氮化物半導體發光元件,係爲一種 且備一含有透過在單結晶基板上之磷化硼(bp )系緩衝層所 設置的氮磷化鎵(GaN^Px,0<X<1 )單結晶層之發光部構造 〇 藉由磷化硼系緩衝層之使用,來解消基板與氮磷化鎵系 發光部構造間結晶晶格之不匹配度,而可以形成一結晶性 優良之氮磷化鎵系發光部構造,並有利於得到高亮度之發 502461 五、發明說明(4) 光元件。 又,在本發明之瓜族氮化物半導體發光元件,中,上述磷 化硼系緩衝層係爲非晶質。 藉由在低溫使非晶質成長之BP系緩衝層,使得基板相 對的具有廣範圍的晶格常數之效果。 再者,於本發明之瓜族氮化物半導體發光元件中,上述 BP系緩衝層係由非晶質與結晶質之積層構造所成。 基板界面附近係爲非晶質之BP系緩衝層,其上之發光 部構造附近則設置結晶質之BP系緩衝層,因而有利於容 易得到結晶性良好之氮磷化鎵系發光部構造。 更且,在本發明之瓜族氮化物半導體發光元件中,係可 利用含有氮磷化鎵單結晶層之單一異種接合構造來做爲上 述之發光部構造。 因爲當發光部分之結晶性變爲良好時,則會有利於.得到 具簡單構造之發光部構造、亦且得到高亮度之發光元件。 再者,在本發明之II族氮化物半導體發光元件中,上述 之發光部構造,也可以是含有氮磷化鎵單結晶層之雙重異 種接合構造。 藉由雙重異種接合構造,將可有利於高亮度之發光元件 〇 , 又,在本發明之m族氮化物半導體發光元件中,上述磷 化硼系緩衝層和氮磷化鎵單結晶層之晶格不匹配度較宜是 在± 1%以下。 502461 五、 發明說明 ( 5: ) 尤 其 上 述 憐 化 硼 系 緩衝層和氮磷化鎵單結 晶 層 之 晶 格 不 匹 配 度 更 宜 是 在 土 0 · 4%以下。 磷 化 硼 系 緩 衝 層 與 氮 磷化鎵系發光層係可以 藉 由 控 制 磷 組 成 來使 其 相 互 之 晶 格 常數幾近於無限制,而 可 以 容 易 地 得 到 晶 格 不 匹 配 度 變 小 、同時結晶缺陷變少之 良 質 的 取 向 附 生結 晶 層 ? 並 因 而 賦 予高亮度化之發光元件 〇 另 外 在 本 發 明 之 m 族氮化物半導體發光元 件 中 5 磷 化 硼 系 緩 衝 層 係 由 磷 化 硼 (BP)所構成.,發光構造 之 氮 磷 化 鎵 單 結 晶 層 中 磷 (Ρ)之組成比係在1%以上而在5%以· 下 0 緩 衝 層 與 發 光 部 之 晶 格不匹配度變成在1%以 下 而 可以 得 到 筒 売 度 之 發 光 元 件 〇 再 者 本 發 明 係 爲 一 種使用上述之ΙΠ族氮化 物 半 導 體 發 光 元件 的 燈 〇 又 本 發 明 係 爲 一 種 使用上述之燈的光源。 使 用 本 發 明 之 ΠΙ 族 氮 化物半導體發光元件的 燈 或 使 用 本 發 明 之 燈 的 光 源 5 由 於使用了高亮度的發光 元 件 而 具 有 優 良 的 淸 晰 視 認 性 〇 此外 本 發 明 之 一 種 m族氮化物半導體發光 元 件 之 製 造 方 法 5 其 係 具 備 在 單 結 晶基板上形成磷化硼(BP )系 緩 衝 層 之 步 驟 , 以 及 .在 ί該磷化硼系緩衝層上設置含: 有 氮 磷 化 鎵 (GaN!. x :Ρχ > 0<Χ<1 ) 單 結 晶層之發光部構造之步驟 〇 藉 由 在 單 結 晶 基 板 上 形成磷化硼(BP )系緩衝 層 5 以 及在 該 磷 化 硼 系 緩 衝 層 上 設 置含有氮磷化鎵單結晶 -7- 層 之 發 光 部 502461 五、發明說明(6) 構造,使得基板與氮磷化鎵結晶層間之結晶晶格不匹配度 變得緩和,而可以形成由結晶性優良之氮磷化,鎵結晶所成 之發光部構造。 上述之磷化硼系緩衝層較宜是非晶質。以非晶質爲主體 所構成之緩衝層,係可有效地使基板與緩衝層上之氮磷化 鎵結晶層間之結晶晶格不匹配度變得緩和之效果。 或者,磷化硼系緩衝層較宜是由非晶質與結晶質之積層 構造所成。當基板界面附近係爲非晶質之BP系緩衝層’ 其上之發光部構造附近則設置結晶質之BP系緩衝層時’ 將有利於容易得到結晶性較良好之氮磷化鎵系發光部構造 〇 另外,在本發明之瓜族氮化物半導體發光元件之製造方 法中,磷化硼系緩衝層和氮磷化鎵單結晶層之晶格不匹配 度宜是在± 1%以下,更宜是在±0.4%以下。較宜是控制磷 化硼系緩衝層或氮磷化鎵系發光層之組成。所得到的結晶 ,係爲一種氮磷化鎵單結晶層所成之發光層,與構成緩衝 層之磷化硼系材料間之晶格不匹配度小的良質結晶層,此 結果將可製造出高亮度之半導體發光元件。 又,於本發明之m族氮化物半導體發光元件之製造方法 中,磷化硼系緩衝層係由磷化硼(bp)所構成,發光構造之 氮磷化鎵單結晶層中磷(P)之組成比較宜是在1%以上而在 5%以下。磷化硼係爲2元化合物,可藉由MOCVD法等氣相 成長手段而使之簡仗地成膜。此外,氮磷化鎵(GaN^Px, 502461 五、 發明說明 ( 7; ) 0<X<1 ) 單 結 晶 層 之 磷組成比(X)並沒有限制在1%以上 5%以 下 之範 圍 內 5 因 爲 構成緩衝層之磷化硼間晶格,不匹配 度係 控 制在 約 0 .4% 內, 使得因晶格不匹配度而引起的轉位 等結 晶 缺陷 密 度 變 小 而可得到具優良結晶性之GaN^xPx 單結 晶 層。 此 結 果 將 可得到結晶性優良之發光層,並製 造出 咼 亮度 之 半 導 體 裝 置發光元件。 [ 發明 之 實 施 例 ] 本發 明 瓜 族 氮 化 物半導體發光元件之發光部構造, 係形 成在由 單 結 晶 材料所成之基板的表面上。 基板 較 宜 是 具 有 η型或p型導電型中任一者之單結 晶材 料 。利 用 基 板 之 導 電性,而可以在基板的一表面上形 成正 極 或負 極 中 任 一 者 之歐姆電極,並由此而簡便地製作 LED 〇 例如 可 利 用 適 當的藍寶石等絕緣性單結晶材料、 抑或 矽 (Si )及 磷 化 鎵 (G aP)等之立方晶單結晶、碳化矽(SiC)或 鈣 欽礦 型 氧 化 物 單 結晶等來做爲基板。特別是呈現出 明確 解 理性 之 鑽 石 結 晶 構造的η型或p型矽單結晶,更適 合利 用 做爲 基 板 0 利 用 {100}-矽單結晶基板之解理,可有 效而 容 易地分 割 個 別 元 件。 在單 結 晶 基 板 表 面上所設置的緩衝層係由磷化硼(ΒΡ )系 , 材料來 構 成 〇 所 謂 的ΒΡ系材料,係爲至少含有硼(Β) 與磷 (P)等構成元素之物。在BP系材料中,係可以加入如 磷化 硼 (BP) > 氮 磷 化 硼 (BPhN Μ ’ 〇<Μ<1 )等。由該等 ΒΡ 系 材料 所 成之 緩 衝 層 , 係 可使用MOVCD法以外之如以三氯化 -9- 硼做 502461 五、發明說明(8) 爲硼(B )源之鹵素(h a 1 〇 g e η )氣相成長法來形成、或如以磷 化氫做爲磷(Ρ )源之氫化物(h y d r 1 d e )氣相成長法來形成。 依照本發明,係將具透過由BP系材料之緩衝層之氮化 鎵(GaN)和氮化磷(GaP)混晶予以積層成氮磷化鎵(GaNrXPx ’ 0<X<1 )單結晶層。藉由調整氮磷化鎵(GaNl χΡχ,〇<χ<1 ) 單結晶層之磷組成比(X ),以使達成緩衝層所成的磷化硼 系材料間晶格之匹配目的,尤其,並因此而得到結晶性優 良之單結晶層。於是,閃鋅礦結晶型之磷化鎵(GaP)的晶 格常數爲5.450埃(A)(參照末松安晴著之「光設備」,平 成9年5月15曰,電暈公司發行,初版第8刷,第28頁) 。一方面,立方晶氮化鎵(GaN)之晶格常數爲4.510( A )( 參照赤崎勇編著之「ΙΠ族氮化物半導體」,1 999年12月 8曰,培風館發行,初版,第丨69頁表9 . 1 )。從而,依照 費伽定律(參照永并冶勇等共著之「ΠΙ - V族半導體混晶」 ,昭和63年10月25日,電暈公司發行,初版第1刷, 第27〜31頁)所導出之(例如)磷組成比約爲3%(X = 〇.03)之 GaN^Pus的晶格常數變成4.538 A,與構成緩衝層之磷 化硼(晶格常數:4.5 38 A)之晶格相匹配。意即,bp緩衝 層上所積層的層,係與緩衝層間保持良好之晶 格匹配性,而使單結晶層具有良好結晶性之優點。 又且’例如,可在由氮組成比爲2%(M = 0 · 02)之氮磷化硼 (BP。·98Ν〇.〇2,晶格常數:4.520 A)所成之緩衝層上,積層 —良質的氣磷化鎵(GaN〇99P().{n,晶格常數:,晶格常數 -10- 502461 五、發明說明(9) :4 . 5 1 9 A )之單結晶層。 氮磷化鎵單結晶層係與BP系緩衝層情況相,同,可藉由 M0VCD法、鹵素、氫化物氣相成長法等來形成。此時,BP 系緩衝層與GaNi _XPX單結晶層間之導電形較宜是爲相同的 。結晶性優良之GaN^xPx層係都適合用來做爲使以單一異 種接合構造或雙重異種接合構造之發光部之發光強度提高 的構成之一構成層。例如,可以有效地利用pn接合型雙 重接合構造來做爲發光部之複合層。 做爲構成發光部之複合層之GaN^PdCKXcl)層時,磷組 成比之發光波長必須是依照大於遷移能之禁止帶寬而設定 。例如,波長450奈米之藍色發光所對應之遷移能爲約 2.7 5 eV。又,波長520奈米之綠色發光所對應之遷移能 爲約2.38 eV。從而,構成GaUHOdcl)之磷組成比(X) ,必須是造成藍色發光之發光層之禁止帶寬在約2.8 eV 以上者,或者必須是造成綠色發光之發光層之禁止帶寬在 約2.4 eV以上者。 因爲GaN^Pxi非線性禁止帶寬變化(參照應用物理學 報,第660卷,第20號,1 992年,第2540〜2542頁),使 得適當的複合層爲如造成藍色或綠色發光之發光層上之磷 組成比(X)係在約5%(X=0.05)以下之GaUx。特別是對 應於造成藍色、綠色發光之發光層之可利用來做爲複合層 者,係爲磷組成比(X)在約3%以下之GaN^xPx。 BP系緩衝層係以成長完成(a s - g r own )狀態之非晶質爲構 502461 五、發明說明(1〇) 成主體者最爲適當。以成長完成(as-grown)狀態之非晶質 爲構成主體之BP系緩衝層,係可達到使基板與緩衝層上 之(GaN^xPx,0<X<1 )單結晶層等間之晶格不匹配度緩和效 果之功效。BP系材料若依照後述之低溫成膜時,則可以使 不會受到基板之晶格常數影響地以非晶質成膜。 晶格不匹配度(△:單位% )係以下列關係式(1 )來顯現。 Δ (%)= { ( A-As ) /As } X 100...... · · ( 1 ) 關係式(1 )中記號As係爲,與該被堆積層(下底層)之晶 格常數,又,記號A爲在該下低層上堆積之層的晶格常數 〇 例如,做爲基板之矽單結晶(As : 5 . 43 1 A )與該做爲被 堆積層之成長結晶質BP ( A : 4 . 5 3 8 A )層間,以矽單結晶 爲基準之晶格不匹配度(△)係會達到-1 6.4%之大小。又, 在以GaP單結晶(As : 5 . 450 A)做爲基板之場合下,GaP 基板與BP緩衝層間之晶格不匹配度(△)係會變成· 1 6 · 7% 。然而’由非晶質之BP來構成緩衝層時,該不匹配度係 會有由約1 6%變大成約1 7%之情況,該不匹配度乃趨於緩 和I ’並且得到表面平坦性優良之堆積層。但是,堆積層之 層厚會是比較薄,例如是在0.2微米左右之薄膜,而可以 該堆積層連續地來成膜。依照本發明人之見解,在構成緩 衝層之BP系材料與基板間之晶格不匹配度大的場合下, 該BP系材料會是可以無間斷地被覆在基板表面上之優良 材料。從而’根據本發明,(尤其是)緩衝層較宜是由非晶 -12- 502461 五、發明說明(11) 質之BP系材料來構成。 由成長完成狀態之非晶質BP系材料所成之棒衝層,其 係藉由前述MOVCD法、鹵素或氫化物氣相成長法,於約 2 50 °C到5 50 °C低溫之成膜溫度中所得到的。尤其,從約 3 0 0 C到4 0 0 C之溫度係較爲適當。緩衝層不一定是由非晶 質體所構成’例如可以藉由通常之X射線繞射分析法或電 子射線繞射分析法等已知的手段。在以非晶質爲主體來構 成緩衝層之場合下,X射線繞射圖樣中始終未出現繞射之 尖峰。當曝露在超過成長完成狀態之非晶質層、緩衝層成 長溫度之局溫環境下時,例如於藉高溫而使其他層在該緩 衝層上成膜時,該單結晶板之接合界面附近的非晶質緩衝 層、基板之單結晶材料的晶格排列係會繼續地受到單結晶 化(參照特開平1 0 - 22224號公報)。此單結晶化層之晶格 常數,係會變成在構成基板之單結晶之附近。在靠近接合 界面之緩衝層內部範圍中經單結晶化層之做爲「種晶層」 的非晶質層,係變化成單結晶層。伴隨著層厚之增加,晶 格常數會慢慢地接近構成緩衝層之材料的原始結晶之晶格 常數。 在非晶質緩衝層上積層優良結晶性之單結晶層之必要條 件,係爲至少非晶質緩衝層之基板與接合面及其反面側之 緩衝層表面附近,較宜是變化成具有構成緩衝層之材料的 原始結晶之晶格常數的結晶層。然後,以高溫度下使之成 膜而可得到結晶性優良之單結晶層。 -13- 502461 五、發明說明(12 ) 在高溫環境下是否變換成都是良好均一的單結晶層’係 依非晶質緩衝層之層厚而定。非晶質緩衝層之,層厚係爲約 1〜2奈米以下之極薄膜時,當該緩衝層曝露在高溫環境下 之場合時,該緩衝層內部受到單結晶基板之影響而變換成 單結晶層。惟,該單結晶之晶格常數係在基板結晶之附近 者,這樣的基板結晶與同等晶格常數之緩衝層上進一步積 層膜之取向附生層,抑或基板間之晶格不匹配度終究不會 充分地緩和。最後,在基板上直接堆積者會招致同樣的結 果,則會變成具有受不匹配度之影響而不當轉位等之高結 晶缺陷密度之粗劣結晶層。 又,當非晶質緩衝層之層厚變爲超過約5 0奈米層厚時 ,完成成長狀態之非晶質層內的結晶組織會變得不均一, 從而對晶格不匹配度之緩和作用以非爲不均一較佳。又且 ,藉由已存在的完成成長狀態之多結晶體來防止緩衝層之 單結晶化時,顯露在緩衝層表面上之多結晶體卻是無法防 止成長成具有一致配向性的單結晶層。緩衝層之層厚,爲 使所混合之完成成長狀態之多結晶體變爲極少量,且形成 具有緩衝層構成材料之固有晶格常數之單結晶層,則以約 5奈米到50奈米左右較爲適當。 依照本發明,上述在低溫下成長之BP系非晶質上進一 步使之與由BP系材料所成之單結晶層重疊,較宜是由非 晶質與其上之單結晶層來構成緩衝層。以完成成長狀態之 非晶質爲主體所成之BP系低溫緩衝層,係在gap等基板 •14- 502461 五、發明說明(13) 結晶間具有緩和之晶格不匹配度,而可發揮形成結晶性優 良之取向附生層之效果。意即,由BP系材料,所成之非晶 質緩衝層係使得單結晶基板間晶格不匹配度變和緩,可得 到使不當轉位等結晶缺陷密度變小之具優良結晶性之BP 單結晶層,而適合於做爲積層之下底層。以具優良結晶性 之BP單結晶層做爲下底層時,在其上係可積層承繼下低 層之良好結晶性的優質氮磷化鎵之單結晶層。例如,積層 由磷化硼(BP )所成之非晶質緩衝層、與在其上由相同的磷 化硼所成之單結晶層,以構成具二重積層構造之緩衝層。 在該二重積層構造之緩衝層上堆積之磷化硼系單結晶層, 係藉由與非晶質相同地情況之以三乙基硼((C2H5) 3B ) /磷化 氫(PH3)/氫(H2)爲原料之MOVCD法等而成膜。在非晶質或 單結晶層之磷化硼成膜時,所摻雜的η型或p型之不純物 ,係可以形成具有η型或ρ型導電性之緩衝層。在以複數 層來構成緩衝層之場合下,可望由構成各層之導電性一致 之緩衝層。 依照本發明,係使如上述之具透過由ΒΡ系材料之緩衝 層而積層成氮磷化鎵(GaN^Px,〇<Χ<1)之單結晶層以做爲 下方之複合層,而可以構成使用單一異種(single_ he te 1:0s : SH)接合型之發光部構造。例如,由ρ型磷化 硼所成之緩衝層上所積層的GaN() 97Ρϋ ()3層所成之複合層, 以及由η型氮化銦•鎵(〇3γιηι·γΝ,〇<γ$ι)所成之發光層 來構成pn型單一異種構造之發光部構造。由於形成緩衝 -15- 502461 五、發明說明(14) 層之磷化硼(BP )係爲閃鋅礦型之立方晶結晶,而可以塑其 上成爲美麗的GaN^Pxi立方晶。以閃鋅礦犁之磷化硼 (BP)系結晶與六方晶型之GaN比較時,在鍵結構造上係較 容易得到p型結晶層(參照特開2 - 275682號公報)。從而 ’在以BP系材料來構成之緩衝層時,係可以容易地在其 上得到p型GaN^Px結晶層之成膜,而便利於得到pn接 合型之單一異種接合發光部構造。又且,舉例來說,例如 由BP系緩衝層上之GaN^xPx複合層與其相對側之由導電 型光層而變成單一異種接合之發光部構造。 此外,依照本發明,係使具透過由BP系材料之緩衝層 而積層成氮磷化鎵(GaN^Px,0<X<1 )之單結晶層以做爲下 方之複合層,而可以構成使用雙重異種(DH )接合型之發 光部構造。含有G a NX P x單結晶層之複合接合型發光部構 造,係可以由η型或p型GaN^Px層做爲下方之複合層、 以氮化銦•鎵(GaYIni.YN,0<YS 1 )做爲成之發光層、再與 以和其相對側之由導電型氮化鋁•鎵(MzGai_zN,0‘ Z‘ 1 ) 來構成上部複合層。在其例子中,具發光層下方複合層之 GaN】-XPx層晶格匹配良好的GaYIn「YN (0<YS 1 ),可有效的 利用來做爲造成高強度發光之異種接合發光部構造。例如 ’舉例來說’以GaNG.95PG.G5 (a = 4.5 57A)之下方複合層, 可得到含有與此層之晶格真正匹配的鎵組成比(=Y)爲 10%(Υ = 0·10)之立方晶GauGlne.^N所成之發光層之發光 部構造。又,舉例來說,可得到具備由GaN〇 wPo.w層與 -16- 502461 五、發明說明(15) Gao.c^In^HN層所成之異種接合之發光部構造。在所例示 的發光部構造之任何構成’亦且具有良好晶格匹配度之發 光層,係可變成結晶性優良之發光層,從而,變成高強度 發光之瓜族氮化物半導體發光元件。 SH接合條件之發光層所之GaUdOdcl)單結晶層, 係可得到與構成緩衝層之BP系材料間晶格不匹配度(△) 小的良質結晶層。其中,緩衝層與GaNhXPx單結晶層間係 無晶格不匹配,雙方係爲晶格匹配之關係,晶格不匹配度 係0 (零)(即△ =0 )。晶格不匹配度(△)是在約± 1 %以下, 更宜是±4%以下時,係可得到結晶性特別優良之Gaf^. χΡχ(0<Χ<1 )單結晶層。緩衝層與Ga^.xPx單結晶層間之晶 格不匹配度,係可以緩衝層之晶格常數爲基準而求得。在 此場合下,當緩衝層之晶格常數比GaN^xPx單結晶層大時 ,晶格不匹配度會變成正値。當晶格常數爲相反之大小關 係時,則晶格不匹配度會變爲負値。 立方晶氮化硼(BN)之晶格常數係爲3.615 A(參照末松 安晴著之「光設備」,第28頁),則ΒΡχΝ^χ單結晶之晶 格常數(a,)係以下式(2)來表示。 a1(A)z=3.6 1 5+ 0.923 · X ------(2) 一方面,立方晶氮磷化鎵(GatVxPx,0<X<1 )單結晶之晶 格常數(a2)係以下式(3)來表示。 A2( A)=4 . 510+ 〇 . 940 · X ......( 3 ) 例如,磷組成比(X)爲〇 . 99之之晶格常數(a:) -17- 502461 五、發明說明(16 ) 依式(2)係爲4·5 30 A。具有相對於晶格常數4.530 A之 ± 4%以內的晶格不匹配度(△),係爲具依式(1,)U2)係在 4. 512 A以上而在4. 548A以下之GaUx。由式(3) ’能 賦予該範圍之晶格常數(a2)者’係爲磷組成比(X)爲在 0.2%以上而在 4.0%以下之 GafVxPx。也就是說,在 之緩衝層上’積層磷組成比(X)爲在0.2%以上而 在4.0%以下之GaN^Px單結晶層時,將可構成由良質結晶 層所成之SH構造或DH構造之發光部構造。 比較上述之ΒΡχΝ^β元混晶,具有磷化硼之2元化合物 係可藉由M0VCD法等氣相成長手段而簡便地成膜。意即, 本發明之緩衝層係可比較容易地形成而具有便利性。依照 式(3 )時之GaN^xPx之晶格常數(a2),係爲當磷組成比(X) 爲1%(X = 0.01)以上而在5%(X = 0.05)以下之氮磷化鎵(GaiV xPx,0.01<X<0.05)時之晶格常數,即在 4.519 A(X = 0.01 時)以上而在4.5 57Α(Χ = 0·05時)以下之範圍內。磷組成比 (X )之範圍並沒有限制,由於構成緩衝層之ΒΡ間的晶格不 匹配度係控制在0.4%以內,致使可得到因晶格不匹配度而 引起轉位等結晶密度小、結晶性優良之GaN^xPx單結晶層 〇 【作用】 本發明之由磷化硼系材料所成之緩衝層,會使得單結晶 材料之基板與緩衝層上所設置之氮磷化鎵(GaN^Px, 〇<X< 1 )間之晶格不匹配度變爲緩和,而可發揮結晶密度小 -18- 502461 五、發明說明(17) 、結晶性優良之GaN^Px系下方複合層之作用。又’由於 在藉由透過由BP系材料所成之緩衝層而成膜,之結晶性優 良之G aN i _ XPX系下方複合層上,積層了該承繼良好之結晶 性之具有優良結晶性之發光層等’而致具有可使發光部構 造變成高強度發光之作用。 尤其,本發明之由非晶質所構成之ΒΡ系緩衝層,對於 單結晶基板材料間之晶格不匹配度’係具有使之緩和之特 別有效的作用。 又,當使用由非晶質與結晶質之積層體所構成之ΒΡ系 緩衝層時,會有使基板材料間之晶格不匹配度和緩、進而 因緩衝層與晶格匹配而使結晶缺陷密度小、而產生良質之 氮磷化鎵(GaiVxPx,0<Χ<1 )單結晶層。 本發明之m族氮化物半導體發光元件,係具有可反映出 具良好結晶性之發光部,並具有可發揮高強度之發光之單 一異種接合構造、或雙重異種接合構造中任一者之發光部 構造。 本發明之m族氮化物半導體發光元件,係具有BP系緩 衝層間之晶格不匹配度在± 1%以內之氮磷化鎵單結晶層, 而可對由結晶層所成之單一異種接合構造、或雙重異種接 合構造的發光部賦予良好之結晶性。 特別是藉由使BP系緩衝層間之晶格不匹配度在± 0 . 4% 以下,而可以得到更良好之結晶性,更可發揮更強之發光 強度。 -19- 502461 五、發明說明(18) 【實施例】 以下,茲以實施例爲基礎來詳細說明本發明,相關聯之瓜 族氮化物半導體發光元件。 (實施例1 ) 第1圖係爲氮化鎵(GaN)系藍色LED之平面模式圖,該 LED係具一裝備有氮磷化鎵結晶層之單一異種(SH)構造之 發光部構造。第2圖係爲了顯系第1圖中所示氮化鎵(GaN) 系藍色LED之積層構造之圖,其爲第1圖中沿著A_A •線之 斷面模式圖。 具有SH構造之單一異種接合之發光部構造1 2之取向附 生積層體,係在由添加硼(B)之面方位(1〇〇)之p型矽所成 之單結晶基板1的表面上,以下述之(1 )至(3 )項所記載之 各種氣相成長法來積層之層所構成。 (1) 首先,以三乙基硼((c2h5)3b) /磷化氫(ph3) / (h2) 之混合氣體來做爲原料氣體,堆積由Zn摻雜之p型磷化 硼(BP )所成之低溫緩衝層2。在常壓(簡稱爲大氣壓)下藉 由MOVCD法而成膜,以35(TC之溫度,將PH3 / (C2H5)3B 之供給比率(V / m比率)設定爲約300而成長。所得到的 由磷化硼所成之低溫緩衝層2,在成長完成狀態下係爲非 晶質’厚度爲約45奈米。 (2) 其次,在上述之p型低溫緩衝層2之上,以三甲基 鎵((CH3)3Ga) /氨(NH3) /磷化氫(PH3) /氫(H2)之混合 氣體來做爲原料氣體,以二甲基鋅((CH3)2Zn)做爲Zn摻雜502461 V. Description of the invention (1) [Technical field of the invention] The present invention relates to a cucurbit nitride semiconductor light-emitting device, which is provided with a buffer layer containing boron phosphide (BP) based on a single crystal substrate. The structure of the light-emitting part of the single crystal layer of gallium nitride phosphide (GaN ^ Px, 0 < X < 1). [Conventional Technology] Group III nitride semiconductor light-emitting device exhibiting a blue or green light-emitting band, which is formed, for example, on a sapphire (a-A 1 20 3) single crystal substrate, and facilitates organic metal thermal decomposition and vapor phase growth (MOCVD) A method of growth, such as a method, is used to deposit a multilayer structure composed of one of the constituent elements of the potassium nitride crystal layer. The multilayer structure includes a light-emitting part structure that functions as a light-emitting function. Generally, the structure of the light-emitting part is a p-type or η-type composite formed of a light-emitting layer made of indium nitride gallium (GaYln ^ yN, 0 < YS 1) and an aluminum nitride gallium (AlGalnN) -based crystal layer. A pn junction hete ro structure composed of layers. The cross-sectional view illustrated in FIG. 5 is a laminated structure composed of a light-emitting element (LED) 100 having a conventional pn-junction type double hetero junction light-emitting unit structure 42 composed of an AlGalnN-based crystal layer. structure. In a conventional multilayer structure, the light emitting portion structure 42 is, for example, a lower bonding layer 103 formed of a crystalline layer of n-type aluminum nitride • gallium (A 1ZG a!. ZO, 0 S NZ $ 1), and A light-emitting layer 104 made of indium nitride and gallium nitride (Ga InuN, 0 < YS 1), and an upper bonding layer 105 made of a crystal layer of p-type aluminum nitride gallium (AlzGai_zN, OS Z '1) (Refer to JP 6-260682). In addition, the functional layers 103 to 105 constituting the light-emitting portion structure 42 are typically formed by forming the functional layer at a lower temperature than the film forming temperature of the functional layer 502461. V. The buffer layer of the description of the invention (2), the so-called The low-temperature buffer layer 102 is deposited (see Japanese Patent Application Laid-Open No. 4-2 9 703). The laminated structure of the melons and crystalline layers of the group nitride semiconductors provided on the sapphire substrate 101, and the low-temperature buffer layer may generally be composed of aluminum nitride and gallium (AlzGa ^ zN, 0 € 1) (refer to JP 6- 151962). The main purpose of providing the low-temperature buffer layer 102 is to reduce the crystal lattice density between the bonding layer 10 and the bonding layer 10 below the sapphire substrate 101 and A 1ZG a: _ ZO, and reduce the density of crystal defects such as indexing. , And a good crystal nitride layer of the family can be obtained. In particular, a low-temperature buffer layer 102 composed of gallium nitride (GaN), a lower bonding layer 103 composed of a GaN layer formed at a high temperature exceeding the film-forming temperature of the low-temperature buffer layer 102, and a gallium nitride · It is known in the customary convention that the mixed crystal layer 104 of the indium light emitting layer is composed. Furthermore, the conventional light-emitting element shown in FIG. 5 has a part of the bonding layer 103 under the substrate 101 having insulating sapphire to be cut away, so an n-type ohmic electrode 107 has to be designed. The p-type ohmic electrode 106 is provided with a conductive upper bonding layer. [Problems to be Solved by the Invention] However, because the degree of mismatch between the sapphire substrate and the GaN layer formed in the low-temperature buffer layer is about 13.8% (refer to "Journal of the Japan Society for Crystal Growth" 'Issue 15 'Brother 3 and 4' (posted f in January, 1989), pages 74 ~ 82), making it difficult to obtain a continuous low-temperature buffer layer steadily today. Due to the lack of continuity of the film, there are discontinuous parts in some of the low-temperature buffer layers; that is, bare 502461 on the surface of the sapphire substrate. 5. Description of the invention (3) The exposed part makes the Growth in the c-axis direction becomes excellent. Therefore, when the GaN columnar crystal composite is transposed, the point is transferred to the Gal nN light-emitting layer through the upper layer of GaN, causing problems such as deterioration of the crystal quality of the light-emitting layer. In other words, the above-mentioned conventional structure is composed of a GaN low-temperature buffer layer and a Gal nN light-emitting layer thereon. The GaN layer is laminated through the GaN layer. Due to the transfer of defects such as displacement caused by discontinuities in the low-temperature buffer layer, a good quality Gal nN system The light-emitting layer cannot be formed into a film; therefore, the light-emitting part structure composed of a melon nitride single crystal layer having excellent operation reliability or element life may not be stable particularly on an electron-emitting diode (LD). Composition, etc. In view of the disadvantages of the conventional techniques, the present invention provides a buffer layer that does not generate a large mismatch of substrate crystals, and has a substrate surface with uniform continuity and can suppress the occurrence of indexing. In addition, it is also possible to provide a m-nitride single crystal layer having a small crystal defect density such as translocation which is completely deposited on the buffer layer and excellent crystallinity. [Means for solving the problem] In other words, the m-type nitride semiconductor light-emitting device of the present invention is a kind and provided with a gallium nitride phosphide provided with a boron phosphide (bp) -based buffer layer transmitted through a single crystal substrate. (GaN ^ Px, 0 < X < 1) Structure of light-emitting part of single crystal layer 0 The mismatch between crystal lattice between substrate and gallium nitride-phosphorus light-emitting part structure is eliminated by using boron phosphide buffer layer. It can form a gallium nitride phosphide-based light-emitting part structure with excellent crystallinity, and is conducive to obtaining high-brightness hair. 502461 V. Description of the invention (4) Optical element. Further, in the melon nitride semiconductor light emitting device of the present invention, the boron phosphide buffer layer is amorphous. The BP-based buffer layer that grows amorphous at a low temperature has a relatively wide range of lattice constant effects on the substrate. Furthermore, in the melon nitride semiconductor light-emitting device of the present invention, the BP-based buffer layer is formed of a multilayer structure of an amorphous and a crystalline layer. An amorphous BP-based buffer layer is located near the substrate interface, and a crystalline BP-based buffer layer is provided near the structure of the light-emitting portion thereon. Therefore, it is advantageous to easily obtain a gallium nitride phosphide-based light-emitting portion structure with good crystallinity. Furthermore, in the melons nitride semiconductor light-emitting device of the present invention, a single heterojunction structure containing a gallium nitride phosphide single crystal layer can be used as the light-emitting portion structure described above. This is because when the crystallinity of the light-emitting portion becomes good, it is advantageous to obtain a light-emitting portion structure with a simple structure and a light-emitting element with high brightness. Furthermore, in the group II nitride semiconductor light-emitting device of the present invention, the light-emitting portion structure described above may be a double heterojunction structure including a gallium nitride phosphide single crystal layer. With the double heterojunction structure, a high-brightness light-emitting element can be favored. Furthermore, in the m-type nitride semiconductor light-emitting element of the present invention, the crystals of the boron phosphide buffer layer and the gallium nitride phosphide single crystal layer described above The lattice mismatch is preferably below ± 1%. 502461 V. Description of the invention (5 :) In particular, the lattice mismatch of the boron-based buffer layer and the gallium nitride phosphide single-junction layer is more preferably in the range of 0. 4% or less. The boron phosphide buffer layer and the gallium nitride phosphide light-emitting layer system can control the composition of phosphorus to make the lattice constants of each other nearly unlimited, and can easily obtain a smaller lattice mismatch and crystallize at the same time. A good oriented epitaxial crystal layer with fewer defects? And thus, a high-brightness light-emitting element is provided. In addition, in the m-type nitride semiconductor light-emitting element of the present invention, the boron phosphide buffer layer is made of boron phosphide (BP). Composition: The composition ratio of phosphorus (P) in the gallium nitride phosphide single crystal layer of the light emitting structure is more than 1% and less than 5%. The lattice mismatch between the buffer layer and the light emitting part becomes 1%. In the following, a light emitting device having a tube thickness can be obtained. Furthermore, the present invention is a lamp using the above-mentioned Group III nitride semiconductor light emitting element. The present invention is also a light source using the above lamp. A lamp using a group III nitride semiconductor light-emitting element of the present invention or a light source 5 using a lamp of the present invention has excellent visibility due to the use of a high-brightness light-emitting element. Furthermore, an m-group nitride semiconductor light-emitting element of the present invention emits light. Element manufacturing method 5 is provided with a step of forming a boron phosphide (BP) -based buffer layer on a single crystal substrate, and. On the boron phosphide-based buffer layer, a nitrogen-containing gallium phosphide (GaN !. x: Ρχ > 0 < X < 1) Steps of constructing a light-emitting portion of a single-crystal layer. 0 By forming a boron phosphide (BP) -based buffer layer 5 on a single-crystal substrate and providing the boron-phosphate buffer layer The light-emitting part containing the gallium nitride phosphide single crystal -7-layer 502461 5. Description of the invention (6) The structure makes the degree of crystal lattice mismatch between the substrate and the gallium nitride phosphide crystal layer relaxed, and the crystallinity can be formed. Light emitting part structure made of excellent nitrogen phosphating and gallium crystal. The boron phosphide buffer layer described above is preferably amorphous. A buffer layer composed of an amorphous material is effective in reducing the degree of mismatch in crystal lattice between the substrate and the gallium nitrogen phosphide crystal layer on the buffer layer. Alternatively, the boron phosphide-based buffer layer is preferably formed of a laminated structure of amorphous and crystalline. An amorphous BP-based buffer layer is formed near the substrate interface. 'When a crystalline BP-based buffer layer is provided near the structure of the light-emitting portion thereon,' it will be easy to obtain a nitrided gallium phosphide-based light-emitting portion with good crystallinity. Structure 〇 In addition, in the method for manufacturing a melon nitride semiconductor light-emitting device of the present invention, the lattice mismatch between the boron phosphide buffer layer and the gallium nitride phosphide single crystal layer is preferably ± 1% or less, and more preferably It is below ± 0.4%. It is more preferable to control the composition of the boron phosphide buffer layer or the gallium nitride phosphide light emitting layer. The obtained crystal is a light-emitting layer made of a single crystal layer of gallium nitrogen phosphide, and a good crystal layer with a small lattice mismatch between the boron phosphide-based material constituting the buffer layer. This result can be manufactured. High-brightness semiconductor light-emitting element. In the method for manufacturing a m-type nitride semiconductor light-emitting device according to the present invention, the boron phosphide buffer layer is composed of boron phosphide (bp), and phosphorus (P) is contained in the gallium nitride phosphide single crystal layer having a light emitting structure. The composition is preferably more than 1% and less than 5%. Boron phosphide is a binary compound, which can be easily formed into a film by vapor phase growth means such as MOCVD. In addition, gallium nitride phosphide (GaN ^ Px, 502461 V. Description of the invention (7;) 0 < X < 1) The phosphorus composition ratio (X) of the single crystal layer is not limited to a range of 1% to 5% 5 Because the lattice of boron phosphide constituting the buffer layer, the degree of mismatch is controlled within about 0.4%, so that the density of crystal defects such as translocation caused by the degree of lattice mismatch becomes small, and excellent crystallinity can be obtained. GaN ^ xPx single crystal layer. As a result, a light-emitting layer having excellent crystallinity can be obtained, and a semiconductor device having a high luminance can be manufactured. [Exemplary embodiments of the invention] The light-emitting part structure of the melon nitride semiconductor light-emitting element of the present invention is formed on the surface of a substrate made of a single crystal material. The substrate is preferably a single-junction crystalline material having either an η-type or a p-type conductivity type. By using the conductivity of the substrate, an ohmic electrode of either the positive electrode or the negative electrode can be formed on one surface of the substrate, and an LED can be easily manufactured therefrom. For example, an appropriate insulating single crystal material such as sapphire, or silicon can be used. (Si), cubic single crystals such as gallium phosphide (G aP), silicon carbide (SiC), or perovskite type single crystals are used as the substrate. In particular, η-type or p-type silicon single crystals with a clear crystalline structure of diamonds are more suitable for use as substrates. 0 The use of {100} -silicon single crystal substrates for cleavage can effectively and easily separate individual components. The buffer layer provided on the surface of the single-crystal substrate is composed of boron phosphide (BP) -based material, which is a so-called BP-based material that is composed of at least boron (B) and phosphorus (P) and other constituent elements. In the BP-based material, for example, boron phosphide (BP) > nitrogen boron phosphide (BPhN M '0 < M < 1) and the like can be added. The buffer layer made of these PB-based materials can be used in addition to the MOVCD method, such as trichloride-9-boron for 502461. V. Description of the invention (8) Halogen (ha 1 〇ge) which is a source of boron (B) η) is formed by a vapor phase growth method, or, for example, a hydride (hydr 1 de) vapor phase growth method using phosphine as a source of phosphorus (P). According to the present invention, a single crystal layer of gallium nitride phosphide (GaNrXPx '0 < X < 1) is laminated with a gallium nitride (GaN) and phosphorus nitride (GaP) mixed crystal having a buffer layer made of a BP-based material. . By adjusting the phosphorus composition ratio (X) of a single crystal layer of gallium nitride phosphide (GaNl χχ, 0 < χ < 1), in order to achieve the purpose of matching the lattice between boron phosphide-based materials formed by the buffer layer, especially As a result, a single crystal layer having excellent crystallinity is obtained. As a result, the lattice constant of the sphalerite-type gallium phosphide (GaP) is 5.450 Angstroms (A) (refer to "Optical Equipment" by Matsue Anqing, May 15, 2009, issued by Corona Corporation, the first edition 8 brushes, page 28). On the one hand, the cubic constant of cubic gallium nitride (GaN) is 4.510 (A) (refer to "Group III nitride semiconductor" edited by Akasaki Yong, December 8, 1999, issued by Peifeng Pavilion, first edition, No. 丨 69 Page Table 9. 1). Therefore, in accordance with Ferga's law (refer to "II-V Group Semiconductor Mixed Crystal" co-authored by Yong Bingye Yong, etc., published on October 25, 1963, Corona Corporation, the first edition of the first brush, pages 27 ~ 31) The derived lattice constant of (for example) a GaN ^ Pus with a phosphorus composition ratio of about 3% (X = 0.03) becomes 4.538 A, and a crystal of boron phosphide (lattice constant: 4.5 38 A) constituting the buffer layer. The grid matches. In other words, the layers stacked on the bp buffer layer maintain good lattice matching with the buffer layer, so that the single crystal layer has the advantage of good crystallinity. Also, for example, on a buffer layer made of boron nitrogen phosphide (BP. · 98N. 002, lattice constant: 4.520 A) with a nitrogen composition ratio of 2% (M = 0 · 02), Multilayer—a single crystal layer of good quality gallium phosphide (GaN〇99P (). {N, lattice constant :, lattice constant -10- 502461) V. Description of the invention (9): 4.519 A). The gallium nitride phosphide single crystal layer system is the same as that of the BP buffer layer, and can be formed by MOCVD method, halogen, hydride vapor phase growth method, and the like. At this time, the conductivity between the BP buffer layer and the GaNi_XPX single crystal layer is preferably the same. The GaN ^ xPx layer system with excellent crystallinity is suitable as one of the constituent layers for increasing the light emission intensity of the light emitting portion having a single heterojunction structure or a double heterojunction structure. For example, a pn junction type double junction structure can be effectively used as a composite layer of a light emitting portion. In the case of the GaN ^ PdCKXcl) layer constituting the composite layer of the light-emitting portion, the emission wavelength of the phosphorus composition ratio must be set in accordance with the forbidden bandwidth greater than the migration energy. For example, the blue light emission with a wavelength of 450 nm corresponds to a migration energy of about 2.7 5 eV. The migration energy corresponding to green light emission with a wavelength of 520 nm is about 2.38 eV. Therefore, the phosphorous composition ratio (X) constituting GaUHOdcl) must be one that causes the prohibited bandwidth of the blue light-emitting layer to be above 2.8 eV, or must be one that causes the green-emitting layer to have a prohibited bandwidth of approximately 2.4 eV or more. . Because GaN ^ Pxi nonlinearity prohibits bandwidth changes (refer to Chinese Journal of Applied Physics, Vol. 660, No. 20, 1992, pages 2540 ~ 2542), the appropriate composite layer is a light-emitting layer such as blue or green light. The above phosphorus composition ratio (X) is GaUx below about 5% (X = 0.05). In particular, a light emitting layer corresponding to blue and green light can be used as a composite layer, which is GaN ^ xPx with a phosphorus composition ratio (X) of less than about 3%. The BP buffer layer is based on the amorphous structure in the growth completed (as-gr own) state. 502461 V. Description of the invention (1) The subject is most suitable. The BP-based buffer layer composed of amorphous in the as-grown state as the main body can achieve a crystal between the substrate and the buffer layer (GaN ^ xPx, 0 < X < 1) single crystal layer and the like. The effect of the lattice mismatch relief effect. When the BP-based material is formed in accordance with the low-temperature film described later, it is possible to form an amorphous film without being affected by the lattice constant of the substrate. The degree of lattice mismatch (Δ: unit%) is expressed by the following relational expression (1). Δ (%) = {(A-As) / As} X 100 ...... · · (1) The symbol As in the relational expression (1) is the lattice with the stacked layer (lower bottom layer) The constant A is the lattice constant of the layer deposited on the lower layer. For example, a silicon single crystal (As: 5.43 1 A) as a substrate and a growing crystalline substance as a deposited layer. Between BP (A: 4.5.38 A), the lattice mismatch (△) based on silicon single crystal will reach -1 6.4%. In the case where a GaP single crystal (As: 5.450 A) is used as the substrate, the lattice mismatch degree (△) between the GaP substrate and the BP buffer layer becomes · 16 · 7%. However, when the buffer layer is composed of amorphous BP, the degree of mismatch may increase from about 16.6% to about 17%. The degree of mismatch tends to ease I 'and the surface flatness is obtained. Excellent stacked layer. However, the thickness of the stacked layer may be relatively thin, for example, a thin film of about 0.2 m, and the stacked layer may be formed continuously. According to the inventor's opinion, in the case where there is a large lattice mismatch between the BP-based material constituting the buffer layer and the substrate, the BP-based material may be an excellent material that can be coated on the surface of the substrate without interruption. Therefore, according to the present invention, (especially) the buffer layer is preferably composed of an amorphous -12-502461. (11) BP-based material of the quality. The rod punching layer made of the amorphous BP-based material in the growth-completed state is formed at a low temperature of about 2 50 ° C to 5 50 ° C by the aforementioned MOVCD method, halogen or hydride vapor phase growth method. Obtained in temperature. In particular, a temperature from about 300 C to 400 C is more appropriate. The buffer layer is not necessarily composed of an amorphous body. For example, the buffer layer may be formed by a known method such as an ordinary X-ray diffraction analysis method or an electron diffraction analysis method. In the case where the buffer layer is mainly composed of amorphous material, diffraction peaks do not always appear in the X-ray diffraction pattern. When exposed to a local temperature environment that exceeds the growth temperature of the amorphous layer and the buffer layer, such as when other layers are formed on the buffer layer by high temperature, the vicinity of the bonding interface of the single crystal plate The lattice arrangement of the single crystal material of the amorphous buffer layer and the substrate continues to undergo single crystallization (see Japanese Patent Application Laid-Open No. 10-22224). The lattice constant of the single crystallized layer is changed in the vicinity of the single crystal constituting the substrate. The amorphous layer, which acts as a "seed layer" in the inner region of the buffer layer near the bonding interface, changes into a single crystal layer. As the layer thickness increases, the lattice constant gradually approaches the lattice constant of the original crystals of the material constituting the buffer layer. The necessary condition for stacking a single crystalline layer with excellent crystallinity on the amorphous buffer layer is at least near the substrate surface of the amorphous buffer layer, the bonding surface, and the vicinity of the buffer layer surface, which is preferably changed to have a constituent buffer. A layer of crystalline material with a lattice constant of the original crystal. Then, a film is formed at a high temperature to obtain a single crystal layer having excellent crystallinity. -13- 502461 V. Description of the invention (12) Whether Chengdu is a good uniform single crystal layer under high temperature environment is determined by the thickness of the amorphous buffer layer. For an amorphous buffer layer, when the layer thickness is an extremely thin film of about 1 to 2 nm, when the buffer layer is exposed to a high temperature environment, the inside of the buffer layer is affected by a single crystal substrate and converted into a single layer. Crystal layer. However, the lattice constant of the single crystal is in the vicinity of the substrate crystal. Such a substrate crystal is further laminated with an oriented epitaxial layer of the film on a buffer layer of the same lattice constant, or the degree of lattice mismatch between the substrates is not in the final analysis. Will fully ease. Finally, those who directly deposit on the substrate will cause the same result, and will become a coarse crystal layer with a high density of crystal defects, which is affected by the degree of mismatch and improper indexing. In addition, when the layer thickness of the amorphous buffer layer exceeds a thickness of about 50 nanometers, the crystalline structure in the amorphous layer in a completed growth state becomes non-uniform, thereby reducing the degree of lattice mismatch. Non-uniform effect is better. Moreover, when the single crystal of the buffer layer is prevented by the existing polycrystals in the completed growth state, the polycrystals exposed on the surface of the buffer layer cannot be prevented from growing into a single crystal layer with uniform alignment. The thickness of the buffer layer is about 5 nanometers to 50 nanometers in order to make the mixed polycrystalline body in a completed growth state into a small amount and form a single crystal layer with the inherent lattice constant of the material constituting the buffer layer. More appropriate. According to the present invention, the above-mentioned BP-based amorphous material grown at a low temperature is further overlapped with a single crystal layer made of a BP-based material, and it is more preferable that the buffer layer is composed of an amorphous material and a single crystal layer thereon. The BP-based low-temperature buffer layer, which is composed mainly of the amorphous in the completed growth state, is on a substrate such as gap. 14-502461 V. Description of the invention (13) The crystals have a moderate degree of lattice mismatch between the crystals, and can be formed. Effect of oriented epitaxial layer with excellent crystallinity. That is to say, the amorphous buffer layer formed from BP-based materials makes the degree of lattice mismatch between single-crystal substrates gentler, and can obtain BP single-crystals with excellent crystallinity that reduce the density of crystal defects such as improper indexing. The crystalline layer is suitable as the bottom layer under the laminate. When the BP single crystal layer with excellent crystallinity is used as the lower layer, a single crystal layer of high quality gallium nitride phosphide which can inherit the good crystallinity of the lower layer can be laminated on it. For example, an amorphous buffer layer made of boron phosphide (BP) and a single crystal layer made of the same boron phosphide thereon are laminated to form a buffer layer having a double layer structure. The boron phosphide-based single crystal layer deposited on the buffer layer of the double-layer structure is formed by triethylboron ((C2H5) 3B) / phosphine (PH3) / Hydrogen (H2) is formed into a film by the MOVCD method and the like. When the boron phosphide of the amorphous or single crystal layer is formed into a film, doped impurities of n-type or p-type can form a buffer layer having n-type or p-type conductivity. When the buffer layer is composed of a plurality of layers, it is expected that the buffer layers constituting the respective layers have the same conductivity. According to the present invention, a single crystalline layer of gallium nitride phosphide (GaN ^ Px, 0 < x < 1) is laminated as described above with a buffer layer made of a PB-based material as described above, and A light emitting unit structure using a single heterogeneous (single_he te 1: 0s: SH) junction type can be constructed. For example, a composite layer made of 3 layers of GaN () 97Pϋ () stacked on a buffer layer made of p-type boron phosphide and a n-type indium nitride gallium (〇3γιηι · γN, 〇 < γ The light emitting layer formed by the light emitting layer constitutes a light emitting part structure of a pn-type single heterogeneous structure. Buffer formation -15- 502461 V. Description of the invention (14) The boron phosphide (BP) layer is a sphalerite-type cubic crystal, which can be molded into a beautiful GaN ^ Pxi cubic crystal. Comparing boron phosphide (BP) crystals of sphalerite with hexagonal GaN, it is easier to obtain a p-type crystal layer based on the bond structure (see Japanese Patent Application Laid-Open No. 2-275682). Therefore, when a buffer layer made of a BP-based material is used, a film of a p-type GaN ^ Px crystal layer can be easily formed thereon, and it is convenient to obtain a single heterojunction light-emitting portion structure of a pn junction type. Furthermore, for example, a light-emitting part structure in which a GaN ^ xPx composite layer on a BP-based buffer layer and a conductive type optical layer on the opposite side are formed into a single heterogeneous junction, for example. In addition, according to the present invention, a single crystal layer having gallium nitride phosphide (GaN ^ Px, 0 < X < 1) layered through a buffer layer of a BP-based material can be used as a composite layer below, and can be composed Uses a double heterogeneous (DH) junction type light emitting part structure. The structure of a composite junction-type light-emitting part containing a G a NX P x single crystal layer can be composed of an η-type or p-type GaN ^ Px layer as a lower composite layer, and indium nitride • gallium (GaYIni.YN, 0 < YS 1) As a light emitting layer, the upper composite layer is composed of conductive aluminum nitride gallium (MzGai_zN, 0 'Z' 1) on the opposite side. In its example, a GaN] -XPx layer with a composite layer under the light-emitting layer with good lattice matching GaYIn "YN (0 < YS 1) can be effectively used as a heterojunction light-emitting structure that causes high-intensity light emission. For example, 'for example', with a composite layer below GaN.95PG.G5 (a = 4.5 57A), we can get a gallium composition ratio (= Y) containing 10% (与 此 = 0 · 10) The structure of the light-emitting part of the light-emitting layer made of cubic crystal GauGlne. ^ N. Also, for example, a GaNOwPo.w layer and -16-502461 can be obtained. 5. Description of the invention (15) Gao.c ^ In ^ HN layer heterogeneous light-emitting part structure. In any of the exemplified structures of the light-emitting part structure, a light-emitting layer with good lattice matching can be turned into a light-emitting layer with excellent crystallinity. It becomes a high-intensity light-emitting guar nitride semiconductor light-emitting device. The GaUdOdcl) single crystal layer of the light-emitting layer in the SH bonding condition can obtain a good quality with a small lattice mismatch (△) between the BP-based material constituting the buffer layer. Crystal layer. Among them, there is no lattice mismatch between the buffer layer and the GaNhXPx single crystal layer system. The two systems have a lattice matching relationship, and the lattice mismatch degree is 0 (zero) (that is, △ = 0). The lattice mismatch degree (△) is about ± 1% or less, and more preferably ± 4% or less. It can obtain Gaf ^. ΧΡχ (0 < χ < 1) single crystal layer with particularly excellent crystallinity. The lattice mismatch between the buffer layer and Ga ^ .xPx single crystal layer is the lattice constant of the buffer layer. Calculated based on the standard. In this case, when the lattice constant of the buffer layer is larger than that of the GaN ^ xPx single crystal layer, the degree of lattice mismatch will become positive. When the lattice constant is the opposite size relationship, the crystal The degree of lattice mismatch will become negative 値. The cubic constant of cubic boron nitride (BN) is 3.615 A (refer to "Optical Equipment" by Matsushita Matsushita, page 28), then the single crystal of ΒχΝ ^ χ The lattice constant (a,) is expressed by the following formula (2). a1 (A) z = 3.6 1 5+ 0.923 · X ------ (2) On the one hand, cubic crystal gallium nitride phosphide (GatVxPx, 0 < X < 1) single crystal lattice constant (a2) system It is represented by following formula (3). A2 (A) = 4. 510+ 〇.940 · X ...... (3) For example, the lattice constant (a :) of the phosphorus composition ratio (X) is 0.999 -17- 502461 Description of the invention (16) The formula (2) is 4.55 A. With a lattice mismatch (Δ) within ± 4% relative to the lattice constant of 4.530 A, it is GaUx with a formula (1,) U2) above 4. 512 A and below 4. 548A. The one that can give a lattice constant (a2) in this range from the formula (3) is GafVxPx having a phosphorus composition ratio (X) of 0.2% or more and 4.0% or less. That is, when a GaN ^ Px single crystal layer having a layered phosphorus composition ratio (X) of 0.2% or more and 4.0% or less is formed on the buffer layer, the SH structure or DH formed by a good crystal layer can be formed. Structure of the light emitting part. Comparing the above-mentioned ΒχΝ ^ β-element mixed crystals, the binary compound having boron phosphide can be easily formed into a film by a vapor phase growth method such as the MOVCD method. That is, the buffer layer of the present invention can be formed relatively easily and has convenience. The lattice constant (a2) of GaN ^ xPx according to formula (3) is the nitrogen phosphatization when the phosphorus composition ratio (X) is 1% (X = 0.01) or more and 5% (X = 0.05) or less. The lattice constant for gallium (GaiV xPx, 0.01 < X < 0.05) is within the range of 4.519 A (when X = 0.01) and 4.5 57 A (when X = 0.05). The range of the phosphorus composition ratio (X) is not limited. Since the degree of lattice mismatch between the BPs constituting the buffer layer is controlled within 0.4%, it is possible to obtain small crystal densities such as indexing caused by the degree of lattice mismatch. GaN ^ xPx single crystal layer with excellent crystallinity. [Action] The buffer layer made of the boron phosphide-based material of the present invention will enable the gallium nitride phosphide (GaN ^) provided on the substrate and buffer layer of the single crystal material. Px, 〇 < X < 1), the degree of lattice mismatch between them becomes milder, and the crystal density can be reduced -18- 502461 V. Description of the invention (17), GaN ^ Px with excellent crystallinity effect. Also, because a film formed by passing through a buffer layer made of a BP-based material and having excellent crystallinity on the G a Ni i _ XPX-based composite layer, the inheritance of the excellent crystallinity with excellent crystallinity is laminated. The light-emitting layer and the like have the effect of changing the structure of the light-emitting portion to high-intensity light emission. In particular, the BP-based buffer layer made of an amorphous material according to the present invention has a particularly effective effect of mitigating the degree of lattice mismatch between single crystal substrate materials'. In addition, when a BP-based buffer layer composed of an amorphous and crystalline laminated body is used, the degree of lattice mismatch between the substrate materials may be moderated, and further, the crystal defect density may be caused by the buffer layer and the lattice matching. Small and good quality GaiVxPx (0 < X < 1) single crystal layer. The m-nitride semiconductor light-emitting device of the present invention has a light-emitting portion structure having either a single heterojunction structure or a double heterojunction structure, which can reflect a light-emitting portion having good crystallinity, and can exhibit high-intensity light emission. . The m-type nitride semiconductor light-emitting device of the present invention has a gallium nitride phosphide single crystal layer having a lattice mismatch between BP-based buffer layers within ± 1%, and can be used for a single heterogeneous junction structure formed by a crystal layer. Or a light emitting part having a double heterojunction structure provides good crystallinity. In particular, by making the degree of lattice mismatch between the BP-based buffer layers below ± 0.4%, better crystallinity can be obtained, and stronger luminous intensity can be exhibited. -19- 502461 V. Description of the Invention (18) [Examples] Hereinafter, the present invention will be described in detail based on the examples, and the related melon nitride semiconductor light-emitting elements. (Embodiment 1) FIG. 1 is a plan view of a gallium nitride (GaN) -based blue LED having a light-emitting portion structure with a single heterogeneous (SH) structure equipped with a gallium nitride phosphide crystal layer. Fig. 2 is a view showing the laminated structure of a gallium nitride (GaN) -based blue LED shown in Fig. 1. It is a schematic cross-sectional view taken along line A_A in Fig. 1. The single heterogeneous bonded light emitting part structure 12 with the SH structure is an oriented epitaxial laminated body on the surface of a single crystal substrate 1 made of p-type silicon with a boron (B) plane orientation (100). It consists of layers laminated by various vapor growth methods described in the following items (1) to (3). (1) First, a mixture of triethylboron ((c2h5) 3b) / phosphine (ph3) / (h2) is used as the raw material gas, and p-type boron phosphide (BP) doped with Zn is deposited. The resulting low-temperature buffer layer 2. The film was formed by the MOVCD method under normal pressure (abbreviated to atmospheric pressure), and the supply ratio (V / m ratio) of PH3 / (C2H5) 3B was set to about 300 at a temperature of 35 (TC). The obtained The low-temperature buffer layer 2 made of boron phosphide is amorphous when the growth is completed, and the thickness is about 45 nanometers. (2) Secondly, on top of the p-type low-temperature buffer layer 2 described above, the top of A mixed gas of gallium ((CH3) 3Ga) / ammonia (NH3) / phosphine (PH3) / hydrogen (H2) as the raw material gas, and dimethyl zinc ((CH3) 2Zn) as the Zn doping

-20- 502461 五、發明說明(19) 之來源,藉由M0VCD法,使由磷組成係爲3%U = 〇.〇3)的閃 鉢礦結晶型之.、接H p型GaNQ 97P〇.〇3單結晶,層成爲下方 複合層3之成膜。成膜溫度爲950°C,膜厚度爲約2.0微 米,而載體濃度爲約2x1 018公分。 (3)最後,在上述之下方複合層 3上,以三甲基鎵 ((CH3)3Ga) / 環苯基銦(I)(C5H5In(I)) / 氨(NH3) / 氫 (H2)做爲原料氣體,在常壓下藉由MOVCD法,將由銦(In) 組成係爲 3% U = 0. 03)的 η型之氮化鎵·銦混晶 (GaQ.97 In。. ^Ν)層所成之發光層4而成膜。成膜溫度爲880 °C,膜厚度爲約0 . 5微米。 pn接合型之SH接合發光部構造12,即是由上述之p型 GaNmPu;單結晶層所成之下方複合層3、與η型 Ga().97InQ.(nN層所成之發光層4來構成。 在具成長完成狀態爲非晶質之低溫緩衝層2的單結晶基 板1之界面附近,於對上述(2 )及(3 )所記載之取向附生成 長層進行氣相成長過程時,會發展成具有近似矽單結晶的 晶格常數之單結晶層。離開單結晶之接合界面少許之處, 則會產生結晶粒。在低溫緩衝層2之單結晶基板1之接合 界面之相反側表面附近層,該晶種(成長核)之結晶粒所成 之非晶質層則變化成單結晶層。從而,低溫緩衝層2之單 結晶基板1之接合界面之相反側表面的晶格常數(a ),依 照其成長樣式則會成爲a = 4.538A。又,由GaNG.97P().()3單 結晶層所成之下方複合層3之晶格常數,依照前述之關係 -21 - 502461 五、發明說明(2〇) 式(3 )會變爲4 . 5 3 8 A。以此等晶格常數爲基準,各層間之 晶格不匹配度(△)則計算如次。 _ (a)以BP低溫緩衝層2與GaNQ.97pQ()3單結晶層所成之 下方複合層3之表面部分,以BP結晶做爲基準之晶格不 匹配度(△)係爲〇(零)(意即,晶格具有整合關係)。 (b )從而’對GaNQ 97PQ. 〇3單結晶(a = 4 . 5 3 8 A )所成之下方 複合層3、與al方晶Ga〇.97ln〇.〇3N(a = 4.524A)發光層4而 曰’以GaNo^Poos之晶格吊數爲基準,其晶格不匹配度( △)係爲- 0.3%。 一般來說,在藍寶石基板上透過氮化鎵(GaN)系低溫緩 衝層而設置之習用的由GaN系結晶層所成之複合層的專位 密度,係約莫爲5X108〜2X109公分·2左右(參照材料硏究協 會硏討會期刊,第395冊,材料硏究協會1 996,第 889〜895 頁 ° 〇 一方面,利用穿透式電子顯微鏡(ΤΕΜ),依照一般的剖 面ΤΕΜ觀察法,本實施例中所記載之形成下方複合層3的 Ρ型GaN。. 單結晶層之轉位密度,由於與ΒΡ低溫緩 衝層保持晶格整合之故,可辨認出其係爲約1〇5公分〜約 ^ 一‘·—.‘一-----------一"*^·〆 1 〇6公分·2。若依照晶格不匹配度來看,在矽單結晶基板1 與ΒΡ低溫緩衝層2間之晶格不匹配度係最大。如本實施 例之記載,若以在低溫成長之成長完成狀態的非晶質做爲 構成ΒΡ緩衝層之主體時,係藉由非晶質體之晶格不整合 緩和作用而使得晶格不匹配度縮小,而可以得到構成複合 -22- 502461 五、發明說明(21) 層等之發光部之適當的表面狀態。若在該緩衝層上形成複 合層時,則可得到轉位密度低而結晶性優異的,單結晶層。 在由此所得到的下方複合層3之上若形成發光層4時,發 光層之轉位密度也同樣地減低’故顯示依照本發明可得到 由結晶缺陷密度小而良質之結晶層而來的SH複合之發光 部構造1 2。 利用公知的光刻(照相蝕刻)技術,在SH複合之發光部 構造12之最表層的發光層4上,使形成由金(Au)所成之 直徑約130微米之圓形的η型歐姆電極6。再者,矽單結 晶基板1裡面之全面上,形成由鋁(Α1)所成之ρ型歐姆電 極7,以做爲Π族氮化物半導體發光元件20。然後,利用 矽單結晶基板1在[1 00 ]方向上之明確的劈開性,使形成η 型、Ρ型歐姆電極6、7之積層構造體,藉由一般的割劃手 段將之分割成個別元件(晶片)。晶片之平面形狀係爲每邊 爲約3 5 0微米之正方形。 使η型、ρ型歐姆電極6、7依順方向而流通動作電流, 可得到下述之發光特性。 (Α)發光波長=410奈米 (Β)發光亮度=〇· 4cd(順方向電流=20毫安培) (C) 順方向電壓=3 · 6伏特(順方向電流=20毫安培) (D) 逆方向電壓:z20伏特以上(逆方向電流=1〇微安培) 如根據本實施例,因可利用結晶性優異的;Μ磷化赛層卫n 接合型構成單一異種接合之發光構造,則可提供呈現特別 -23- 502461 五、發明說明(22) 高強度發光之πι族氮化物半導體發光元件。 (實施例2 ) 茲以本實施例來說明本發明具備氮磷化鎵單結晶層的雙 重異種(DH)構造之發光部構造的m族氮化物半導體發光元 件例子之內容。 第3圖係爲關於本發明以備有DH構造之發光部構造之 積層構造體爲基礎構成之氮化鎵(GaN)系藍色LED之剖面 模式圖。 在第3圖中與第2圖構成要素相同時則賦予同一番號, 其說明則省略。 在第1圖所使用的相同矽單結晶基板1上,積層BP低 溫緩衝層2、及其上之由G a N () 9 7 P Q Q 3單結晶層所成之下方 複合層3。在其上積層下面(1 )和(2 )項所記載之各結晶層 以構成積層構造體。 (1)以三甲基鎵((CH3)3Ga) / 環苯基銦(I)(C5H5Ih(I)) /氨(NH3) /氫(H2)做爲原料氣體,在常壓下藉由M0VCD 法’使形成由平均銦(In)組成爲6% (Y = 0. 06)的η型之氮 化鎵·銦混晶(Gao.^Ino.^N)層所成之發光層4。成膜溫 度爲880°C。該發光層4係爲In組成相異的複數相所成之 多相構造,膜厚度爲約1 0奈米。 所謂的多相構造之G a I η層係以由G a I η層所構成之主體 相’以及與該主體層銦濃度相異而附屬在主體相內之主要 由微結晶體之附屬相所構成之結晶層。 -24- 502461 五、發明說明(23) (2)以三甲基鎵((CH3)3Ga) / 氨(NH3) /氫(H2)做爲原 料氣體,藉由減壓M0VCD法,使Si摻雜η型氮化鎵(GaN) 層成長爲上方複合層5。成長溫度爲1 080°C,膜厚度爲約 0.1微米,而載體濃度爲約2xl017公分_3。 DH接合之發光部構造62之構成,係爲上述p型 GaN^P^u單結晶所做的下方複合層3、多相構造之 Ga0.94ln() Q6N層所成的發光層4、進而爲η型氮化鎵(GaN) 層所成的上方複合層5。 依照上述所構成的各構成層間之晶格不匹配度(△)係爲 如下所述。 (a )與實施例1同樣的情況,以bp低溫緩衝層2與 97pQ。3單結晶所做的下方複合層3間之BP結晶做爲 基準之晶格不匹配度(△)係爲〇(零)(意即,晶格具有整 合關係)。 (b) 對GaNQ.97PG.Q3單結晶(a = 4.538A)所成之下方複合層 3、與立方晶Gao.wIno.^N發光層4(a = 4.524A)而言,以 之晶格常數爲基準,其晶格不匹配度(△)係 爲〇(零)(意即,晶格具有整合關係)。 (c) 對Gao.wIno.wNUM.SSSA)發光層4、與立方晶 GaN單結晶所成之下方複合層5 (a = 4.51〇A)而言,以 GaNQ.97P().()3之晶格常數爲基準,其晶格不匹配度(△)係爲 -〇 . 6 % 〇 與實施例1同樣的,以BP低溫緩衝層2與GaN。.97P〇.03-20- 502461 V. The source of the description of the invention (19), by the MOVCD method, the crystal form of the ammonite ore formed by phosphorus composition is 3% U = 0.03), and then connected with H p-type GaNQ 97P. 〇3 single crystal, the layer becomes the film formation of the composite layer 3 below. The film formation temperature was 950 ° C, the film thickness was approximately 2.0 micrometers, and the carrier concentration was approximately 2x1 018 cm. (3) Finally, on the lower composite layer 3 mentioned above, use trimethylgallium ((CH3) 3Ga) / cyclophenyl indium (I) (C5H5In (I)) / ammonia (NH3) / hydrogen (H2) As a raw material gas, an n-type gallium nitride-indium mixed crystal (GaQ.97 In .. ^ N) composed of indium (In) with a system content of 3% U = 0.03 was used by the MOVCD method under normal pressure. The light-emitting layer 4 is formed into a film. The film formation temperature was 880 ° C, and the film thickness was about 0.5 microns. The pn junction type SH junction light emitting part structure 12 is the above-mentioned p-type GaNmPu; the lower composite layer 3 formed of a single crystal layer, and the n-type Ga (). 97InQ. (nN layer of the light-emitting layer 4) In the vicinity of the interface of the single-crystal substrate 1 having the low-temperature buffer layer 2 whose growth is completed in an amorphous state, during the vapor-phase growth process of the long-term orientation epitaxial layer described in (2) and (3) above, It will develop into a single crystal layer with a lattice constant similar to that of silicon single crystals. Crystal grains will be generated a little away from the bonding interface of the single crystal. On the opposite side of the bonding interface of the single crystal substrate 1 of the low temperature buffer layer 2 In the nearby layer, the amorphous layer formed by the crystal grains of the seed (growth nuclei) changes into a single crystal layer. Thus, the lattice constant of the surface on the opposite side of the bonding interface of the single crystal substrate 1 of the low temperature buffer layer 2 ( a), according to its growth pattern, it will become a = 4.538A. In addition, the lattice constant of the lower composite layer 3 formed by the single crystal layer of GaN.97P (). () 3, according to the aforementioned relationship -21-502461 V. Description of the invention (20) Formula (3) will become 4. 5 3 8 A. Such lattice The constant is used as the reference, and the lattice mismatch (△) between the layers is calculated as follows. _ (A) The surface portion of the lower composite layer 3 formed by the BP low-temperature buffer layer 2 and the GaNQ.97pQ () 3 single crystal layer. The lattice mismatch degree (△) based on the BP crystal is 0 (zero) (meaning that the lattice has an integrated relationship). (B) Thus' for GaNQ 97PQ. 〇3 single crystal (a = 4 5 3 8 A), the lower composite layer 3, and the Al cubic crystal Ga.97ln.0.03N (a = 4.524A) light-emitting layer 4, said 'based on the lattice hanging number of GaMo ^ Poos, Its lattice mismatch (△) is -0.3%. Generally, the conventional composite layer made of GaN-based crystal layers is provided on a sapphire substrate through a gallium nitride (GaN) -based low-temperature buffer layer. The specific density is about 5X108 ~ 2X109 cm · 2 (refer to the Journal of Materials Research Association Seminar, Vol. 395, Materials Research Association 1 996, Pages 889 ~ 895) ° On the one hand, the penetration type Electron microscope (TEM), in accordance with the general cross-section TEM observation method, the P-type GaN forming the lower composite layer 3 described in this example .. of a single crystal layer Bit density, because it maintains lattice integration with the BP low-temperature buffer layer, it can be identified that it is about 105 cm ~ about ^ a '· —.' One ----------- one " * ^ · 〆1 〇6 cm · 2. According to the degree of lattice mismatch, the degree of lattice mismatch between the silicon single crystal substrate 1 and the BP low-temperature buffer layer 2 is the largest. As described in this embodiment If the amorphous state of the growth completion state at a low-temperature growth is used as the main body of the BP buffer layer, the degree of lattice mismatch is reduced by the mitigation of the lattice non-conformity of the amorphous body, and it can be obtained Composition Compound-22- 502461 V. Description of the invention (21) Appropriate surface state of the light-emitting part of the layer (21). When a composite layer is formed on this buffer layer, a single crystal layer having a low index density and excellent crystallinity can be obtained. When the light-emitting layer 4 is formed on the lower composite layer 3 thus obtained, the translocation density of the light-emitting layer is similarly reduced. Therefore, it is shown that a good crystalline layer with a small crystal defect density can be obtained according to the present invention. Structure of light emitting part of SH compound 1 2. A well-known photolithography (photoetching) technique is used to form a circular n-type ohmic electrode made of gold (Au) with a diameter of about 130 micrometers on the light-emitting layer 4 on the outermost surface of the light-emitting portion structure 12 of the SH composite. 6. Furthermore, a p-type ohmic electrode 7 made of aluminum (Al) is formed on the entire surface of the silicon single crystal substrate 1 as a group III nitride semiconductor light-emitting element 20. Then, using the clear cleavability of the silicon single crystal substrate 1 in the [1 00] direction, a laminated structure of η-type and P-type ohmic electrodes 6, 7 is formed, and divided into individual pieces by ordinary dicing methods. Component (wafer). The planar shape of the wafer is a square of about 350 microns on each side. By operating the n-type and p-type ohmic electrodes 6 and 7 in a forward direction, an operating current is passed to obtain the following light-emitting characteristics. (Α) Luminous wavelength = 410 nm (B) Luminous brightness = 0.4 cd (forward current = 20 mA) (C) Forward voltage = 3 · 6 volts (forward current = 20 mA) (D) Reverse direction voltage: z20 volts or more (reverse direction current = 10 microamperes). According to this embodiment, a crystal structure with excellent crystallinity can be used. The M-type phosphating layer n-joint type constitutes a single heterojunction light-emitting structure. Provide special -23-502461 V. Description of the invention (22) π group nitride semiconductor light-emitting device with high intensity light emission. (Embodiment 2) In this embodiment, an example of a group m nitride semiconductor light-emitting element having a double-heterogeneous (DH) structure and a light-emitting portion structure having a gallium nitride phosphide single crystal layer according to the present invention will be described. Fig. 3 is a schematic cross-sectional view of a gallium nitride (GaN) -based blue LED according to the present invention, which is based on a multilayer structure having a light emitting portion structure having a DH structure. In FIG. 3, the same reference numerals are given when the constituent elements are the same as those in FIG. 2, and descriptions thereof are omitted. On the same silicon single crystal substrate 1 used in Fig. 1, a BP low-temperature buffer layer 2 and a lower composite layer 3 made of a Ga N () 9 7 P Q Q 3 single crystal layer are laminated thereon. Each of the crystal layers described in (1) and (2) below is laminated on the upper layer to form a laminated structure. (1) Using trimethylgallium ((CH3) 3Ga) / cyclophenyl indium (I) (C5H5Ih (I)) / ammonia (NH3) / hydrogen (H2) as the raw material gas, under normal pressure by M0VCD The method 'makes the light-emitting layer 4 formed of an n-type gallium nitride-indium mixed crystal (Gao. ^ Ino. ^ N) layer with an average indium (In) composition of 6% (Y = 0.06). Film formation temperature was 880 ° C. The light-emitting layer 4 has a multi-phase structure composed of a plurality of phases having different In compositions, and has a film thickness of about 10 nm. The so-called heterogeneous G a I η layer is composed of a main phase consisting of a Ga I η layer, and a main crystal phase that is different from the indium concentration of the main layer and is contained in the main phase. Of the crystalline layer. -24- 502461 V. Description of the invention (23) (2) Using trimethylgallium ((CH3) 3Ga) / ammonia (NH3) / hydrogen (H2) as raw material gas, doped Si by decompression MOVCD method A hetero-n-type gallium nitride (GaN) layer grows into the upper composite layer 5. The growth temperature is 1080 ° C, the film thickness is about 0.1 micron, and the carrier concentration is about 2 x 1017 cm_3. The structure of the DH-bonded light-emitting part structure 62 is a light-emitting layer 4 formed by the above-mentioned p-type GaN ^ P ^ u single crystal, the lower composite layer 3, and the multi-phase structure of the Ga0.94ln () Q6N layer. An upper composite layer 5 formed of an n-type gallium nitride (GaN) layer. The degree of lattice mismatch (Δ) between the constituent layers constructed as described above is as follows. (a) In the same manner as in Example 1, the low-temperature buffer layer 2 and 97 pQ were used. The single crystal BP crystals between the lower composite layers 3 made by 3 single crystals are used as the basis for the lattice mismatch degree (Δ) is 0 (zero) (meaning that the crystal lattices have an integrated relationship). (b) For the lower composite layer 3 made of GaNQ.97PG.Q3 single crystal (a = 4.538A) and the cubic Gao.wIno. ^ N light-emitting layer 4 (a = 4.524A), the lattice is The constant is the reference, and its lattice mismatch (Δ) is 0 (zero) (meaning that the lattice has an integration relationship). (c) For the Gao.wIno.wNUM.SSSA) light-emitting layer 4 and the lower composite layer 5 (a = 4.51〇A) formed with a cubic GaN single crystal, use GaNQ.97P (). () 3 The lattice constant was used as a reference, and the degree of lattice mismatch (Δ) was -0.6%. As in Example 1, the BP low-temperature buffer layer 2 and GaN were used. .97P〇.03

-25- 502461 五、發明說明(24) 單結晶所做的下方複合層3間之晶格不匹配度(△)係爲〇 (零)(意即,晶格具有整合關係)。加上,GaNQ.,97P().()3單結 晶所成之下方複合層3、與立方晶Ga^^Iru.^N發光層4 間之晶格不匹配度亦爲〇,因而形成因晶格不整合而起之 結晶缺陷少的發光層4。 利用穿透式電子顯微鏡依照一般的剖面TEM法觀察時, 本實施例中所記載之構成下方複合層3之p型GaNmPow 單結晶之轉位密度,由於與BP低溫緩衝層保持晶格整合 之故,可辨認出其係爲約105公分·2〜約1〇6公分·2。特別 是,發光層4那樣的G^.^Iru.^N層之轉位密度,係比實 施例1減低約1/2x1 05公分_2左右,因而依本實施例,將 可得到由結晶缺陷密度比較小的良質發光層之發光部構造 〇 和實施例1同樣地利用公知的光刻(照相蝕刻)技術,在 積層構造體最表層的上方複合層5上,使形成由金(All)所 成之直徑約1 30微米之圓形的η型歐姆電極6。再者,矽 單結晶基板1裡面之全面上,形成由鋁(Α1)所成之ρ型歐 姆電極7,以做爲皿族氮化物半導體發光元件30。然後, 利用矽單結晶基板1在[110]方向上之明確的劈開性,使 形成η型、ρ型歐姆電極6、7之積層構造體,藉由一般的 割劃手段將之分割成個別元件(晶片)。晶片之平面形狀係 爲每邊爲約350微米之正方形。 使η型、ρ型歐姆電極6、7依順方向而流通動作電流, -26- 502461 五、發明說明(25) 可得到下述之發光特性。 (A) 發光波長=430奈米 , (B) 發光亮度=0 . 8cd(順方向電流=20毫安培) (C )順方向電壓=3 . 8伏特(順方向電流=20毫安培) (D)逆方向電壓=20伏特以上(逆方向電流=10微安培) 如根據本實施例這樣的積層構成,因爲可利用由和BP 低溫緩衝層之良好的晶格整合性來做成結晶性優異的氮磷 化鎵層之複合層,而且可利用與該複合層晶格整合的優良 結晶性之氮化鎵•銦層做爲發光層,而得以構成pn接合 型DH接合之發光部構造。則,可提供呈現特別高強度發 光之ΠΙ族氮化物半導體發光元件。 (實施例3 ) 茲以本實施例來說明本發明所具備在由2重積層構造所 成之緩衝層上積層的氮磷化鎵單結晶層的DH接合發光部 構造的瓜族氮化物半導體發光元件例子之內容。 第4圖係爲關於本發明以備有DH構造之發光部構造之 積層構造體爲基礎構成之氮化鎵(GaN)系LED之剖面模式 圖。在第4圖中與第1圖構成要素相同時則賦予同一番號 ,其說明則省略。 在第1圖所使用的相同矽單結晶基板1上,積層BP低 溫衝層2、及其上之由GaNQ 97PQ ()3單結晶層所成之下方 複合層3。在其上積層下面(1 )和(2 )項所記載之各結晶層 以構成積層構造體。-25- 502461 V. Description of the invention (24) The lattice mismatch degree (△) between the lower composite layers 3 made by single crystal is 0 (zero) (meaning that the lattice has an integrated relationship). In addition, the lattice mismatch between the lower composite layer 3 formed by the GaNQ., 97P (). () 3 single crystal and the cubic Ga ^^ Iru. ^ N light emitting layer 4 is also 0. The light-emitting layer 4 with few crystal defects caused by lattice mismatch. When observed with a transmission electron microscope in accordance with a general cross-section TEM method, the translocation density of the p-type GaNmPow single crystal constituting the lower composite layer 3 described in this example is maintained because it maintains lattice integration with the BP low-temperature buffer layer. It can be identified that it is about 105 cm · 2 to about 106 cm · 2. In particular, the translocation density of the G ^. ^ Iru. ^ N layer like the light-emitting layer 4 is reduced by about 1 / 2x1 05 cm_2 compared to that in Example 1. Therefore, according to this embodiment, crystal defects can be obtained. The structure of the light-emitting portion of the good-quality light-emitting layer with a relatively small density, as in Example 1, was formed on the composite layer 5 above the outermost layer of the laminated structure by using a known photolithography (photographic etching) technique to form a layer made of gold. Form a circular n-type ohmic electrode 6 having a diameter of about 1 to 30 microns. Furthermore, a p-type ohmic electrode 7 made of aluminum (Al) is formed on the entire surface of the silicon single crystal substrate 1 as a dish-type nitride semiconductor light-emitting device 30. Then, using the clear cleavability of the silicon single crystal substrate 1 in the [110] direction, a laminated structure of η-type and ρ-type ohmic electrodes 6 and 7 is formed, and divided into individual elements by a general dicing method. (Wafer). The planar shape of the wafer is a square of about 350 microns on each side. The n-type and p-type ohmic electrodes 6 and 7 are caused to flow an operating current in a forward direction. -26- 502461 V. Description of the invention (25) The following light-emitting characteristics can be obtained. (A) Luminous wavelength = 430 nm, (B) Luminous brightness = 0. 8cd (forward current = 20mA) (C) Forward voltage = 3.8V (forward current = 20mA) (D ) Reverse voltage = 20 volts or more (reverse current = 10 microamperes) The laminated structure according to this embodiment can be made to have excellent crystallinity by using good lattice integration with the BP low-temperature buffer layer. A gallium nitride phosphide layer is a composite layer, and a gallium nitride indium layer with excellent crystallinity integrated with the crystal lattice of the composite layer can be used as a light emitting layer to form a pn junction type DH junction light emitting part structure. Then, a group III nitride semiconductor light emitting device exhibiting particularly high intensity light emission can be provided. (Embodiment 3) This embodiment is used to explain the cucurbit nitride semiconductor light-emitting structure of the DH-bonded light-emitting part structure of the present invention, which includes a gallium nitride phosphide single crystal layer laminated on a buffer layer formed of a double-layer structure. Contents of component examples. Fig. 4 is a schematic cross-sectional view of a gallium nitride (GaN) -based LED constructed based on a multilayer structure having a light emitting portion structure having a DH structure according to the present invention. In FIG. 4, when the constituent elements are the same as those in FIG. 1, the same reference numerals are assigned, and descriptions thereof are omitted. On the same silicon single crystal substrate 1 used in Fig. 1, a BP low-temperature punching layer 2 and a lower composite layer 3 made of a GaNQ 97PQ () 3 single crystal layer are laminated thereon. Each of the crystal layers described in (1) and (2) below is laminated on the upper layer to form a laminated structure.

-27- 502461 五、發明說明(26 ) 首先,在矽單結晶基板1上’以實施例1所記載之成長 條件,使由磷化硼(BP )所成之低溫緩衝層2成,膜。然後, 在低溫緩衝層2上,積層由鋅(?JL)摻雜之p型磷化硼(BP ) 結晶層所成之結晶質緩衝層8。由BP所成結晶質緩衝層8 係利用如實施例1所記載之Μ Ο V C D氣相成長手段在9 8 0 C 下成長。結晶質緩衝層8之載體濃度爲約1 0 18公分·3, 而膜厚度爲約0 J微米。本實施例之特徵係在於:其構成 係具有該低溫緩衝層2及由依照如上述之高溫成長的結晶 質緩衝層8之多重層構造所成的緩衝層9。在此多重層構 造之緩衝層9上,積層由如實施例2所記載的結晶質構成 所成之ρη接合型雙重異種接合之發光部構造32,而形成 ρη接合型DH構造之瓜族氮化物半導體發光元件40。 本實施例之積層構成係與實施例1及2不同,由ρ型 GaN^P^n單結晶所成的下方複合層3係堆積在具有和低 溫緩衝層2同一構成材料之BP所形成之結晶質緩衝層8 上。因此,由BP單結晶所成之結晶質緩衝層8與 GaNe.MP。.^單結晶所成的下方複合層3會具有一致的晶格 常數。從而,在多重層之緩衝層9構成之BP單結晶層所 成之結晶質緩衝層8上,將可形成不當轉位等結晶缺陷密 度特別小的良質GaNQ.97PQ.Q3單結晶層。 和實施例1同樣地利用公知的光刻(照相蝕刻)技術,在 積層構造體之表裡面上形成Au之η型歐姆電極6,再形成 由Α1所成之ρ型歐姆電極7,以做成瓜族氮化物半導體發 -28- 502461 五、發明說明(27) 光元件40。使η型、p型歐姆電極6、7依順方向而流通 動作電流,可得到下述之發光特性。 , (Α)發光波長=430奈米 (Β )發光売度=1 . 0 c d (順方向電流=2 0晕安培) (C) 順方向電壓=3 . 7伏特(順方向電流=20毫安培) (D) 逆方向電壓=20伏特以上(逆方向電流=10微安培) 使由BP所成之非晶質低溫緩衝層與由BP單結晶所成之 結晶質緩衝層重層,因爲由多重層來構成緩衝層之故,可 得到結晶性優異的氮磷化鎵層,由於利用此複合層來做爲 pn接合型DH接合之發光部構造之構成,結果可得到上述 那樣的高強度發光之瓜族氮化物半導體發光元件。 (實施例4) 茲以本實施例來說明本發明之具備在矽單結晶基板上透 過BP緩衝層而積層之氮磷化鎵單結晶層的DH接合之發光 部構造的ΙΠ族氮化物半導體發光元件例子之內容。積層構 造之構成係與實施例3之第4圖相同。 和實施例3同樣地,在矽單結晶基板1上設置由BP非 晶質之低溫緩衝層2、及BP結晶質緩衝層8所成之二重構 緩衝層 9,在其上積層由磷組成比爲5%(X = 0.05)之 ^單結晶層所成之下方複合層3。接著,在由 GaNQ.95PQ Q5單結晶層所成之下方複合層3上積層由平均銦 (In)組成比爲10% (Υ = 〇· 1〇)的合層3上積層由平均銦(In) 組成爲 10% (Y = 0. 10)的 η 型之 Si摻雜之 η 型 29- 502461 五、發明說明(28) Ga〇 .9()I nQ 1GN結晶層所成之發光層4。此Ga〇.9()I nG 1GN發光 層4之載體濃度爲約8x1 Ο17公分,而膜厚度爲約〇.!微 米。在發光層4上與實施例3同樣地積層由氮化鎵(GaN) 層所成之上方複合層5。此上方複合層5之載體濃度爲約 2x1017公分,而膜厚度爲約〇.丨微米。從而構成^型 GaNQ 95PQ ()5 層 / η 型 Gao.9oInQ.ioN 層 / ρ 型 GaN 層之 ρη 型接 合型DH接合之發光部構造42。 依晶格不匹配度之觀點來描述本實施例之積層系,詳如 下述。 (a ) ΒΡ低溫緩衝層2與ΒΡ結晶質緩衝層8之晶格不匹 配度(△)係爲〇(零)(意即,晶格具有整合關係)。 (b) 對BP結晶質緩衝層8與GaiV^Pus單結晶下方複 合層3而言,以BP結晶質緩衝層8之晶格常數爲基準, 其晶格不匹配度(△)係爲0 · 4%。 (c) 對所成之下方複合層3與 Gao.gQln。。!^ a = 4.557A)所成之發光層 4而言’以 心之晶格常數爲基準,其晶格不匹配度(Δ )係爲 〇(零)(意即,晶格具有整合關係)。 (d) 對 GaQ.9〇InQ.1()N(a = 4.5 57A)所成之發光層 4、與立 方晶 GaN所成之下方複合層 5 (a = 4.51〇A)而言’以 Ga0.9QInc).1()N之晶格常數爲基準,其晶格不匹配度(△)係 爲 1.0%。 在本實施例中,下方複合層3之GaNQ.95P〇.()5單結晶層、 -30- 502461 五、發明說明(29 ) 與發光層4之單結晶間之晶格不匹配度係爲 〇’因而形成因晶格不整合而起之結晶缺陷少,的發光層4 。是以,依照一般的剖面TEM法觀察時,係可辨認出 Ga09QIn() 1()n發光層4之轉位密度乃低於2xl05公分·2之程 度。 和I實施例2同樣地利用公知的光刻(照相蝕刻)技術,如 第4圖所示,在積層構造體表裡面上使形成All之η型歐 姆電極6、及Α1之ρ型歐姆電極7,以做爲綠色LED。使 η型、p型歐姆電極6、7依順方向而流通動作電流,可得 到下述之發光特性。 (Α)發光波長=512奈米 (Β)發光亮度=1 . 6cd(順方向電流=20毫安培) (C) 順方向電壓=3 · 7伏特(順方向電流=20毫安培) (D) 逆方向電壓=20伏特以上(逆方向電流=10微安培) 在BP之低溫緩衝層與BP之高成長結晶質緩衝層之重層 構造上,堆積結晶性優異的氮磷化鎵層下方複合層、及與 該下方複合層晶格整合之發光層,在其上堆晶格不匹配度 小的GaN所成之上方複合層,以構成pn接合型DH接合之 發光部構造,而可得到上述那樣的高強度發光之瓜族氮化 物半導體發光元件。 (實施例5 ) 茲以本實施例來說明本發明之具備在導電性GaP基板上 透過BP緩衝層而積層之氮磷化鎵單結晶層的Sh接合之發 502461 五、發明說明(3〇) 光部構造的藍色瓜族氮化物半導體發光元件例子之內容。 又,發光元件之積層構造順序係與第2圖所示之實施例1 情況相同。 在本實施例中與上述實施例1到4相異之處,係利用添 加硫黃(S )之η型磷化鎵(GaP )單結晶來做爲單結晶基板2 1 。在GaP單結晶基板21之(100)面方位上,依以下(1)到 (3)項之記述來積層各氣相成長層,而構成pn接合型SH 接合之發光部構造52。(參照第2圖)。 (1)首先,以三乙基硼((C2H5)3B) /磷化氫(PH3) /氫 (H2)來做爲原料氣體,藉由常壓MOVCD法來成長由Si摻 雜之磷化硼(BP)所成之低溫緩衝層22。成長溫度爲3 50°C 之溫度,將PH3 / (C2H5)3B之供給比率(V/瓜比率)設定 爲約3 0 0而成長。所得到的磷化硼層係以在成長完成狀態 之非晶質爲主體,層厚度爲約20奈米。 (2 )在上述之n型低溫緩衝層22之上,以三甲基鎵 ((CH3)3Ga) /氨(ΝΗ3) /磷化氫(ΡΗ3) /氫(Η2)做爲原料 氣體,以二矽烷(Si2H6)做爲Si摻雜之來源,藉由MOVCD 法,使形成由磷組成比爲3%(χ = 0· 03)的閃鋅礦結晶型之 Si摻雜η型GaN〇.97P〇.()3單結晶層成爲下方複合層23。成 長溫度爲910°C,膜厚度爲約1 .〇微米,而載體濃度爲約 lxl〇18 公分·3。 (3)接著,在上述之下方複合層23上,以三甲基鎵 ((CH3)3Ga) / 環苯基銦(I)(C5H5In(I)) / 氨(ΝΗ3) / 氫 -32- 502461 五、發明說明(31) (H2)做爲原料氣體,在常壓下藉由MOVCD法,將由銦(In) 組成比爲3% (Y = 0. 03)的Mg摻雜p型之氮化鎵•銦混晶之 (Ga^^Ina.cnN)層。成長溫度爲880°C,膜厚度爲約0.2微 米。 從而,pn接合型之SH接合發光部構造52,即是由上述 之η型GaN〇. 97P0.cn單結晶層所成之下方複合層23、與上 述P型Gao.97I1iG.G3N層所成之發光層24來構成。 做爲單結晶基板21之GaP21的晶格常數a係爲5.450 A (參照前述之「ΙΠ - V族化合物半導體」,培風館發行, 第1 48頁。)。以此爲基準來算出本實施例積層構造之晶 格不匹配度(△),詳如下述。 (a) 以BP低溫緩衝層22與GaNQ.97PQ.Q3單結晶層所成之 下方複合層23之晶格不匹配度(△),以BP低溫緩衝層 做爲基準係爲〇(零)(意即,晶格具有整合關係)。 (b) 對GaNG.97PG.G3單結晶(a=:4.538A)所成之下方複合層 23 、與立方晶 〇3。.97111。.。31^(& = 4.524人)而言,以 GaNmP。.^之晶格常數爲基準,其晶格不匹配度(△)係爲 -0.3%。 利用公知的光刻(照相蝕刻)技術,如第2圖所示與實施 例1上下相反側上,在積層構造體之表裡面上形成A 1之P 型歐姆電極7及Au之η型歐姆電極6,即p側昇型之藍色 LED。使η型、ρ型歐姆電極6、7依順方向而流通動作電 流’可得到下述之發光特性。 -33- 502461 五、發明說明(32) (A) 發光波長= 408奈米 (B) 發光亮度=0 · 4cd(順方向電流=20毫安培), (C )順方向電壓=3 . 7伏特(順方向電流=20毫安培) (D)逆方向電壓=20伏特以上(逆方向電流=10微安培) 透過BP低溫緩衝層所得到的結晶性優異的氮磷化鎵層 之下方複合層,又,因是由晶格不匹配度控制在土 〇 . 4%以 內之下方複合層之發光層所成之SH接合的發光部構造’ 以致可得到上述那樣的優良發光特性之瓜族氮化物半導體 發光元件。 (比較例) 製作如第5圖所示之構成所成之習用的藍色m族氮化物 半導體發光元件,與依照本發明之皿族氮化物半導體發光 元件相比較其發光特性。 本比較例與上述實施例1到5相異之處’係使用絕緣性 之( 0001 ) (c面)寶石(三氧化二鋁單結晶)來做爲基板101 。接著,依以下(1 )到(3 )項之記述來積層各氣相成長層’ 順序積層而構成pn接合型DH接合之發光部構造42。(參 照第5圖)。 (1)以三乙基硼((C2H5)3B) /磷化氫(PH3) /氫(1)來 做爲原料氣體,藉由減壓MOVCD法來成長由摻雜之氮化鎵 (GaN)所成之低溫緩衝層1〇2。成長溫度爲420°C之溫度’ 將PH3 / (C2H5)3B之供給比率(V/ΠΙ比率)設定爲約300 而成長。層厚度爲約17奈米。 -34- 502461 五、發明說明(33) (2) 在上述低溫緩衝層102之上,以二矽烷(Sl2H6)做爲 S i摻雜之來源,藉由MOVCD法,使形成纖鋅礦結晶型之六 方晶Si摻雜型GaN單結晶層成爲下方複合層103。成長溫 度爲1 050 °C,膜厚度爲約3.0微米,而載體濃度爲約 3xl018 公分·3。 (3) 在上述之下方複合層103上,以三甲基鎵((CH3)3Ga) /環苯基銦(I)(C5H5In(I)) /氨(NH3) /氫(H2)做爲原料 氣體,藉由常壓MOVCD法,將由銦(In)組成比爲3% (Υ = 0·03)的η型之氮化鎵•銦混晶之(Ga^JiimN)層。 成長溫度爲880°C,膜厚度爲約0.1微米。 (4) 接著,在上述之發光層104上,使纖鋅礦結晶型之 六方晶Mg摻雜p型之GaN單結晶層成長以做爲上方複合 層105。成長溫度爲102CTC,膜厚度爲約0.1微米,而載 體濃度爲約2xl017公分·3。 此ρη接合型之dH接合發光部構造42,即是由上述之η 型 GaN單結晶層所成之下方複合層103、與 η型 Gamin。.Q3N層之發光層104、又且ρ型GaN層之上方複 合層105來構成。 依照晶格不匹配度之觀點來描述本比較例所記載之積層 系,詳如下述。 (a) GaN低溫緩衝層102與GaN下方複合層103間之晶 格不匹配度(△)係爲〇(零)(意即,晶格具有整合關係)。 (b) 六方晶GaN單結晶下方複合層1〇3與由六方晶 -35- 502461 五、發明說明(34 ) Ga09〇In〇. i〇N( a軸之晶格吊數爲3.222A)之發先層1 〇 4間 之晶格不匹配度(△),以GaN之晶格常數爲基準係爲1 · 1% 〇 (c)由/、方晶Ga〇 9〇In〇 i()N(a軸之晶格吊數爲3.222A) 之發光層104與由六方晶GaN(a = 3.186A)所成之上方複合 層105間之晶格不匹配度(△),以GaN之晶格常數爲基準 係爲1 . 1 %。 習用的積層構成例子中,GaN低溫緩衝層102與下方複 合層1 03所成之GaN單結晶層間之晶格不匹配度係爲〇之 物件,依照剖面TEM法來觀察時,可辨認出GaN下方複合 蚣103內部之轉位密度係達到約2X1 09公分左右。於是 ,基板結晶間之晶格不匹配度係變得比例如在實施例1之 情況下還大,因而利用ΒΡ所成之緩衝層反而得到結晶缺 陷密度低的氮磷化鎵單結晶層。又,GaN下方複合層/ 103 內之轉位係多的,可明白會貫穿六方晶Gae.c^Iiu.uN之發 光層104與由六方晶GaN之上方複合層105,而到達上方 合層1 05之表面。 對備有上述pn接合型之發光構42之積層構造體,藉電 漿蝕刻手段施予爲設置歐姆電極之切削加工。然後,在p 型GaN上方複合層105上設置p型電極106。又,藉上述 之電漿蝕刻將露出之η型GaN下方複合層103之表面上設 置η型電極107,而構成習用型之LED。 使P型、η型歐姆電極106、107依順方向而流通動作電 垂36- 502461 五、發明說明(35) 流,可得到下述之發光特性。 (A) 發光波長=418奈米 , (B) 發光亮度=0 · 2 cd(順方向電流=20毫安培) (C) 順方向電壓=4 · 0伏特(順方向電流=20毫安培) (D) 逆方向電壓=20伏特以上(逆方向電流=1〇微安培) 與本發明之LED,特別是實施例1中所記載之pn接合型 SH接合構造之藍色ΙΠ族氮化物半導體發光元件20來比較 發光特性,其發光亮度係低1 / 2,而且順方向電壓會變高 。再者,在習用型之LED中,對應於上方複合層105內貫 通轉位密集之區域,其周圍係存在有較高強度之斑點狀發 光斑,發光區域之發光強度係分布不均勻。可推定該發光 斑係爲六方晶Ga^^InnoN之發光層104內銦(In)凝集在 高轉位密度之區域。 又,使用本發明之Μ族氮化物半導體發光元件來製作燈 可得到高亮度之燈。第6圖所示之圖,係爲使用本發明之 半導體發光元件所製作之燈之構成。在該圖中,燈80係 由半導體發光元件81與錨定螺紋82、內螺紋83所成,係 以全部透明之樹脂84模造所構成。 半導體發光元件81,例如上述實施例1、2、3、4、5中 所製作之半導體發光元件,係使巾本發明之III族氮化物半 導體發光元件。在該半導體發光元件81之基板裡面所形 成的電極8 1 a ’係藉由錨定螺紋8 2因氣接觸而固定在錨定 螺紋82上,又,半導體發光元件81之上表面之電極81b -37- 502461 五、發明說明(36) ,係藉線連結而結線在內螺紋83上。 此燈80由於係使用本發明之瓜族氮化物半,導體發光元 件,因此會比使用習用之m族氮化物半導體發光元件有更 高的亮度。 更且,此燈80係可做爲車輛用燈具、鐵道車輛用燈具 、交通信號燈、平交道信號燈、路肩顯示燈、視線導引燈 、或監視器用顯示器、操作盤用顯示器之光源,又可做爲 影印機或傳真機等事務機器或屋外使用之資訊板等之光源 ,在此等場合下,使用燈80做成之光源,係比使用習用 者之發光效率更高。 本發明之m族氮化物半導體發光元件,由於係使用與磷 化硼系緩衝層間保持良好之晶格整合性之結晶性優良的氮 磷化鎵(GaN^xPx)單結晶層,因此可得到發光強度高的m 族氮化物半導體發光元件。 特別是,若由磷化硼系緩衝層之非晶質體來構成時,由 於會使得單結晶基板間之晶格不匹配度會大幅地緩和,並 成長成具有良好結晶性之氮磷化鎵單結晶層,因此係爲具 優異發光強度之ΙΠ族氮化物半導體發光元件。 再者,若由磷化硼系緩衝層之非晶質與結晶質之重層積 層構造所構成時,在已高結晶性之磷化硼系單結晶層上, 由於可構成載置具有良質結晶性之氮磷化鎵單結晶層之發 光部,因而具有成爲具優異發光強度之ΙΠ族氮化物半導體 發光元件之效果。 -38- 502461 五、發明說明(37) 又,若發光構造係爲單一異種接合構造所構成時,係可 以簡單的構造而得到具高發光強度之瓜族氮化,物半導體發 光元件。 更且,若發光構造係爲雙重異種接合構造所構成時,係 可達到更高一層發光強度之瓜族氮化物半導體發光元件。 依照本發明,由BP系緩衝層與氮磷化鎵單結晶層所成 之複合層之晶格不匹配度係在±1%以下,透過此複合層之 SH或DH接合構造可做爲發光部構成,意即,由於發光部 之構成係利用了已降低因晶格不匹配度而引起的結晶缺陷 密度、且結晶性優良之氮磷化鎵單結晶層,使得可達到高 發光強度之m族氮化物半導體發光元件之效果。 在本發明之in族氮化物半導體發光元件中,係藉由BP 系緩衝層與下方複合層間之晶格不匹配度係在± 1 %以下, 特別是在± 0.4%以下,因此發光部之構成係利用了已降低 結晶缺陷密度、且結晶性優良之氮磷化鎵單結晶層,使得 可達到高發光強度之m族氮化物半導體發光元件之效果。 例如,BP系緩衝層係由磷化硼(BP)所構成,使透過BP 系緩衝層成長之氮磷化鎵單結晶層之磷(P )組成比在1 %以 上而在5%以下時,由於發光部係爲良好晶格整合性、且結 晶性優異之氮磷化鎵單結晶層所構成,而可以簡便地得到 高發光強度之m族氮化物半導體發光元件。 【圖式之簡單說明】 第1圖係爲實施例1所記載之]Π族氮化物半導體發光元 -39- 502461 五、發明說明(38) 件之平面模式圖。 第2圖係爲沿著第2圖A - A ’線之剖面模式圖,。 第3圖係爲實施例2所記載之DI族氮化物半導體發光元 件之剖面模式圖。 第4圖係爲實施例3所記載之m族氮化物半導體發光元 件之剖面模式圖。 第5圖係爲具有習用之Gal nN系雙重異種接合構造之發 光元件之剖面模式圖。 第6圖所示之圖,係爲使用本發明之瓜族氮化物半導體 發光元件之燈。 【符號說明】 1、21 單結晶基板 2、22 低溫緩衝層 3、23 下方複合層 4、24 發光層 5 上方複合層 6 η型歐姆電極 7 Ρ型歐姆電極 8 結晶質緩衝層 9 緩衝層 12、52 單一異種接合之發光部構造 20 、 30 、 40 m族氮化物半導體發光元件 32 、 42 、 62 雙重異種接合之發光部構造 -40- 502461 五、發明說明(39) 100 發光元件 101 基板 102 低溫緩衝層 103 下方複合層 104 發光層 105 上方複合層 106 p型歐姆電極 107 η型歐姆電極 80 燈 81 m族氮化物半導體發光元件 81a 形成在基板內面之電極 81b 上表面之電極 82 錨定螺紋 -41 --27- 502461 V. Description of the invention (26) First, on the silicon single crystal substrate 1 ', the low-temperature buffer layer made of boron phosphide (BP) was formed into a film and grown under the growth conditions described in Example 1. Then, on the low-temperature buffer layer 2, a crystalline buffer layer 8 formed of a p-type boron phosphide (BP) crystal layer doped with zinc (? JL) is laminated. The crystalline buffer layer 8 made of BP was grown at 980 ° C using the MV V C D vapor phase growth method described in Example 1. The carrier concentration of the crystalline buffer layer 8 is about 10 18 cm · 3, and the film thickness is about 0 μm. This embodiment is characterized by having a structure including the low-temperature buffer layer 2 and a buffer layer 9 formed of a multiple-layer structure of the crystalline buffer layer 8 grown at a high temperature as described above. On this buffer layer 9 having a multi-layer structure, a ρη-junction type double heterojunction light-emitting part structure 32 formed of a crystalline structure as described in Example 2 is laminated to form a ρη-junction type DH structure of a melon group nitride Semiconductor light-emitting element 40. The laminated structure of this embodiment is different from those of Examples 1 and 2. The lower composite layer 3 made of p-type GaN ^ P ^ n single crystal is a crystal formed by stacking BP having the same constituent material as the low-temperature buffer layer 2. Quality buffer layer 8. Therefore, the crystalline buffer layer 8 and GaNe.MP formed from the BP single crystal. The lower composite layer 3 formed by a single crystal will have a uniform lattice constant. Therefore, on the crystalline buffer layer 8 formed of the BP single crystal layer composed of the multi-layered buffer layer 9, a good GaNQ.97PQ.Q3 single crystal layer having a particularly small crystal defect density such as improper indexing can be formed. The n-type ohmic electrode 6 of Au is formed on the surface of the laminated structure by using a known photolithography (photographic etching) technique in the same manner as in Example 1. Then, a p-type ohmic electrode 7 made of A1 is formed. Melon nitride semiconductor emission-28- 502461 V. Description of the invention (27) Optical element 40. By operating the n-type and p-type ohmic electrodes 6, 7 in the forward direction, an operating current is passed to obtain the following light-emitting characteristics. , (Α) Luminous wavelength = 430 nm (B) Luminous intensity = 1.0 cd (forward current = 20 halo amperes) (C) Forward voltage = 3.7 volts (forward current = 20 milliamperes) ) (D) Reverse voltage = 20 volts or more (reverse current = 10 microamperes) The amorphous low temperature buffer layer made of BP and the crystalline buffer layer made of BP single crystal are heavy layers, because there are multiple layers As a buffer layer, a gallium nitride phosphide layer having excellent crystallinity can be obtained. Since this composite layer is used as the structure of the light-emitting part structure of the pn-junction DH junction, the above-mentioned high-intensity light-emitting melon is obtained Group nitride semiconductor light-emitting element. (Embodiment 4) This embodiment is used to explain the group III nitride semiconductor light-emitting structure of the present invention having a DH-bonded light-emitting part structure of a gallium nitride phosphide single crystal layer laminated on a silicon single crystal substrate through a BP buffer layer. Contents of component examples. The structure of the laminated structure is the same as that of the fourth embodiment. As in Example 3, a second reconstruction buffer layer 9 made of a BP amorphous low-temperature buffer layer 2 and a BP crystalline buffer layer 8 is provided on a silicon single crystal substrate 1, and a layer composed of phosphorus is laminated thereon. The lower composite layer 3 made of a ^ single crystal layer with a ratio of 5% (X = 0.05). Next, on the lower composite layer 3 made of a GaNQ.95PQ Q5 single crystal layer, a composite layer 3 composed of an average indium (In) composition ratio of 10% (Υ = 〇 · 10) was laminated on the composite layer 3 composed of average indium (In ) A Si-doped η-type 29-502461 with a composition of 10% (Y = 0.10) of the η-type. V. Description of the invention (28) A light-emitting layer 4 formed by a Ga.9 () I nQ 1GN crystal layer. The carrier concentration of this Ga.9 () InG 1GN light-emitting layer 4 was about 8 × 10 17 cm, and the film thickness was about 0.1 μm. An upper composite layer 5 made of a gallium nitride (GaN) layer is laminated on the light emitting layer 4 in the same manner as in Example 3. The carrier concentration of the upper composite layer 5 is about 2 × 1017 cm, and the film thickness is about 0.1 μm. Thus, a light-emitting portion structure 42 of a p-type junction type DH junction of a ^ -type GaNQ 95PQ () 5 layer / n-type Gao.9oInQ.ioN layer / p-type GaN layer is formed. The laminated system of this embodiment is described from the viewpoint of lattice mismatch, as follows. (a) The lattice mismatch degree (Δ) of the BP low-temperature buffer layer 2 and the BP crystalline buffer layer 8 is 0 (zero) (meaning that the lattice has an integrated relationship). (b) For the BP crystalline buffer layer 8 and the composite layer 3 under the GaiV ^ Pus single crystal, based on the lattice constant of the BP crystalline buffer layer 8, its degree of lattice mismatch (△) is 0 · 4%. (c) For the lower composite layer 3 and Gao.gQln formed. . ! ^ a = 4.557A) For the light-emitting layer 4 formed based on the lattice constant of the heart, its degree of lattice mismatch (Δ) is 0 (zero) (meaning that the lattice has an integrated relationship) . (d) For the light-emitting layer 4 made of GaQ.90InQ.1 () N (a = 4.5 57A), and the lower composite layer 5 made of cubic GaN (a = 4.51〇A) .9QInc) .1 () N is based on the lattice constant, and the lattice mismatch degree (△) is 1.0%. In this embodiment, the GaNQ.95P. () 5 single crystal layer of the lower composite layer 3, -30-502461 V. Description of the invention (29) The lattice mismatch between the single crystal of the light emitting layer 4 is 〇 'Therefore, a light emitting layer 4 with few crystal defects due to lattice mismatch is formed. Therefore, when observed in accordance with a general cross-section TEM method, it can be seen that the index density of the Ga09QIn () 1 () n light-emitting layer 4 is less than 2 × 10 5 cm · 2. In the same manner as in Example 2, a well-known photolithography (photoetching) technique is used. As shown in FIG. 4, an n-type ohmic electrode 6 of All and a p-type ohmic electrode 7 of A1 are formed on the surface of the multilayer structure. As a green LED. By operating the n-type and p-type ohmic electrodes 6, 7 in a forward direction, an operating current is passed, and the following light-emitting characteristics can be obtained. (Α) Luminous wavelength = 512 nm (B) Luminous brightness = 1.6 cd (forward current = 20 mA) (C) Forward voltage = 3 · 7 volts (forward current = 20 mA) (D) Reverse voltage = 20 volts or more (reverse current = 10 microamperes) On the heavy layer structure of BP's low-temperature buffer layer and BP's high-growth crystalline buffer layer, a composite layer with excellent crystallinity under the gallium nitride phosphide layer is deposited, And a light-emitting layer integrated with the lower composite layer lattice, and an upper composite layer made of GaN with a small lattice mismatch is stacked thereon to form a light-emitting portion structure of a pn-junction DH junction, and the above-mentioned can be obtained High-intensity light-emitting melon nitride semiconductor light-emitting device. (Embodiment 5) This embodiment is used to explain the sh-bonding process of the present invention, which includes a gallium nitride phosphide single crystal layer laminated on a conductive GaP substrate through a BP buffer layer. 502461 5. Description of the invention (30) This is an example of a blue melon nitride semiconductor light emitting device with a light structure. The order of the laminated structure of the light-emitting elements is the same as that in the case of the first embodiment shown in FIG. 2. The difference between this embodiment and the above-mentioned embodiments 1 to 4 is that the n-type gallium phosphide (GaP) single crystal to which sulfur (S) is added is used as the single crystal substrate 2 1. In the (100) plane orientation of the GaP single crystal substrate 21, the vapor-phase growth layers are laminated as described in the following items (1) to (3) to form a light-emitting portion structure 52 of a pn-junction type SH junction. (Refer to Figure 2). (1) First, using triethylboron ((C2H5) 3B) / phosphine (PH3) / hydrogen (H2) as the raw material gas, the Si-doped boron phosphide is grown by the atmospheric pressure MOVCD method. (BP) formed low-temperature buffer layer 22. The growth temperature was a temperature of 3 50 ° C, and the supply ratio (V / melon ratio) of PH3 / (C2H5) 3B was set to about 3 0 0 to grow. The obtained boron phosphide layer was mainly composed of amorphous material in a growth-completed state, and the layer thickness was about 20 nm. (2) On the n-type low-temperature buffer layer 22, trimethylgallium ((CH3) 3Ga) / ammonia (NΗ3) / phosphine (PΗ3) / hydrogen (Η2) is used as a raw material gas. Silane (Si2H6) was used as the source of Si doping, and the MOVCD method was used to form a Si-doped n-type GaN of the sphalerite crystal type with a phosphorus composition ratio of 3% (χ = 0.03). The () 3 single crystal layer becomes the lower composite layer 23. The growth temperature was 910 ° C, the film thickness was about 1.0 micron, and the carrier concentration was about 1 × 10 18 cm · 3. (3) Next, on the lower composite layer 23 described above, trimethylgallium ((CH3) 3Ga) / cyclophenyl indium (I) (C5H5In (I)) / ammonia (NΗ3) / hydrogen-32- 502461 V. Description of the invention (31) (H2) is used as a raw material gas. Under normal pressure, the Mg-doped p-type nitride is composed of indium (In) with a composition ratio of 3% (Y = 0.03) by the MOVCD method. (Ga ^^ Ina.cnN) layer of gallium-indium mixed crystal. The growth temperature was 880 ° C, and the film thickness was about 0.2 micrometers. Therefore, the pn junction type SH junction light emitting part structure 52 is the lower composite layer 23 composed of the above-mentioned n-type GaN 0.997P0.cn single crystal layer and the P-type Gao.97I1iG.G3N layer. The light emitting layer 24 is configured. The lattice constant a of GaP21, which is the single crystal substrate 21, is 5.450 A (refer to the aforementioned "Group III-V compound semiconductor", issued by Peifeng Pavilion, page 1 48). Based on this, the lattice mismatch degree (Δ) of the laminated structure of this embodiment is calculated as follows. (a) The lattice mismatch degree (△) of the lower composite layer 23 formed by the BP low-temperature buffer layer 22 and the GaNQ.97PQ.Q3 single crystal layer, and the BP low-temperature buffer layer as the reference system is 0 (zero) ( This means that the lattice has an integrated relationship). (b) The lower composite layer 23 made of a single crystal of GaN.97PG.G3 (a =: 4.538A) and cubic crystals. .97111. .. 31 ^ (& = 4.524 people) in terms of GaNmP. The lattice constant of. ^ Is used as a reference, and the lattice mismatch degree (△) is -0.3%. Using a known photolithography (photoetching) technique, as shown in FIG. 2, the P-type ohmic electrode 7 of A 1 and the n-type ohmic electrode of Au are formed on the front and back surfaces of the laminated structure as shown in FIG. 2. 6, which is a blue LED with p-side rise. By operating the n-type and p-type ohmic electrodes 6, 7 in a forward direction, an operating current is allowed to flow, and the following light-emitting characteristics can be obtained. -33- 502461 V. Description of the invention (32) (A) Luminous wavelength = 408 nm (B) Luminous brightness = 0.4cd (forward current = 20mA), (C) forward voltage = 3.7 volts (Forward current = 20 mA) (D) Reverse voltage = 20 volts or more (Reverse current = 10 microamperes) The composite layer below the gallium nitrogen phosphide layer with excellent crystallinity obtained through the BP low-temperature buffer layer, In addition, the structure of the SH-bonded light-emitting part formed by the light-emitting layer of the composite layer below the lattice mismatch controlled within 0.4% of the soil, so that the above-mentioned guar nitride semiconductor with excellent light-emitting characteristics can be obtained. Light emitting element. (Comparative example) A conventional blue m-nitride semiconductor light-emitting device having the structure shown in Fig. 5 was fabricated, and its light-emitting characteristics were compared with those of the m-nitride semiconductor light-emitting device according to the present invention. The difference between this comparative example and the above-mentioned embodiments 1 to 5 is that the insulating (0001) (c-plane) gem (aluminum trioxide single crystal) is used as the substrate 101. Next, the vapor-phase growth layers' are laminated in the order described in the following items (1) to (3) to form a pn-junction DH junction light-emitting unit structure 42. (See Figure 5). (1) Using triethylboron ((C2H5) 3B) / phosphine (PH3) / hydrogen (1) as the raw material gas, the doped gallium nitride (GaN) is grown by the reduced pressure MOVCD method. The resulting low-temperature buffer layer 102. The growth temperature is a temperature of 420 ° C. The growth rate is set by setting the supply ratio (V / ΠΙ ratio) of PH3 / (C2H5) 3B to about 300. The layer thickness is about 17 nm. -34- 502461 V. Description of the invention (33) (2) Above the low-temperature buffer layer 102, disilane (Sl2H6) is used as the source of Si doping, and the wurtzite crystal type is formed by the MOVCD method. The hexagonal Si-doped GaN single crystal layer becomes the lower composite layer 103. The growth temperature was 1 050 ° C, the film thickness was about 3.0 microns, and the carrier concentration was about 3xl018 cm · 3. (3) On the lower composite layer 103 mentioned above, trimethylgallium ((CH3) 3Ga) / cyclophenylindium (I) (C5H5In (I)) / ammonia (NH3) / hydrogen (H2) are used as raw materials The gas uses an atmospheric pressure MOVCD method to form a Ga (JiimN) layer of an n-type gallium nitride-indium mixed crystal with an indium (In) composition ratio of 3% (Υ = 0.03). The growth temperature was 880 ° C and the film thickness was about 0.1 micron. (4) Next, on the above-mentioned light emitting layer 104, a hexagonal Mg doped p-type GaN single crystal layer of wurtzite crystal type is grown as the upper composite layer 105. The growth temperature was 102 CTC, the film thickness was about 0.1 micrometer, and the carrier concentration was about 2 × 1017 cm · 3. This ρη junction type dH junction light emitting part structure 42 is the lower composite layer 103 formed by the above-mentioned η-type GaN single crystal layer and η-type Gamin. The Q3N layer is composed of a light emitting layer 104 and a composite layer 105 above a p-type GaN layer. The laminated system described in this comparative example is described from the viewpoint of the degree of lattice mismatch as follows. (a) The lattice mismatch degree (Δ) between the GaN low-temperature buffer layer 102 and the composite layer 103 below GaN is 0 (zero) (meaning that the lattice has an integrated relationship). (b) Hexagonal GaN single crystal below the composite layer 103 and the hexagonal crystal -35- 502461 V. Description of the invention (34) Ga09〇In〇.ION (a-axis lattice hanging number is 3.222A) The degree of lattice mismatch (△) between the first layers 〇4 is 1.1% based on the lattice constant of GaN. 〇 (c) is made of /, square crystal Ga〇〇〇〇〇 () N The lattice mismatch (△) between the light-emitting layer 104 (the lattice hanging number of the a-axis is 3.222A) and the upper composite layer 105 made of hexagonal GaN (a = 3.186A) is based on the GaN lattice. The constant is 1.1% for the reference system. In the example of a conventional multilayer structure, an object having a lattice mismatch degree between the GaN single crystal layer formed by the GaN low-temperature buffer layer 102 and the lower composite layer 103 is 0. When observed by a cross-section TEM method, the bottom of the GaN can be identified. The index density inside the composite cymbal 103 is about 2X1 09 cm. As a result, the degree of lattice mismatch between the crystals of the substrate becomes larger than that in the case of Example 1, for example, using the buffer layer formed by BP instead, a gallium nitride phosphide single crystal layer having a low crystal defect density is obtained. In addition, there are many translocations in the composite layer under GaN / 103, and it can be understood that the light emitting layer 104 that penetrates the hexagonal Gae.c ^ Iiu.uN and the composite layer 105 above the hexagonal GaN reach the upper composite layer 1 05 of the surface. The laminated structure provided with the above-mentioned pn junction type light-emitting structure 42 is subjected to a cutting process for providing an ohmic electrode by a plasma etching method. Then, a p-type electrode 106 is provided on the p-type GaN composite layer 105. In addition, by the above-mentioned plasma etching, an n-type electrode 107 is provided on the surface of the exposed n-type GaN composite layer 103 to constitute a conventional LED. The P-type and η-type ohmic electrodes 106 and 107 are caused to flow in the forward direction to flow. 36-502461 V. Description of the invention (35) The current emission characteristics can be obtained as follows. (A) Luminous wavelength = 418 nm, (B) Luminous brightness = 0 · 2 cd (forward current = 20 mA) (C) Forward voltage = 4 · 0 volts (forward current = 20 mA) ( D) Reverse voltage = 20 volts or more (reverse current = 10 microamperes) and the blue group III nitride semiconductor light-emitting element with the pn junction type SH junction structure described in Example 1 and the LED of the present invention, in particular 20 to compare the luminous characteristics, its luminous brightness is lower by 1/2, and the forward voltage will become higher. Furthermore, in conventional LEDs, corresponding to the densely transposed areas in the upper composite layer 105, there are spot-like light spots with higher intensity around the areas, and the light-emitting areas have uneven light-emission intensity distribution. It can be presumed that the light emitting spot is a hexagonal crystal Ga ^^ InnoN light emitting layer 104 in which the indium (In) is condensed in a region with a high index density. Furthermore, a lamp can be produced by using the group M nitride semiconductor light-emitting device of the present invention to obtain a high-intensity lamp. The diagram shown in Fig. 6 shows the structure of a lamp manufactured using the semiconductor light emitting device of the present invention. In the figure, the lamp 80 is formed of a semiconductor light-emitting element 81, an anchor screw 82, and an internal screw 83, and is formed by molding a transparent resin 84 entirely. The semiconductor light-emitting element 81 is, for example, the semiconductor light-emitting element prepared in the above-mentioned embodiments 1, 2, 3, 4, and 5, and is a group III nitride semiconductor light-emitting element according to the present invention. The electrode 8 1 a 'formed on the substrate of the semiconductor light emitting element 81 is fixed to the anchor thread 82 by the anchor thread 8 2 due to gas contact, and the electrode 81 b on the upper surface of the semiconductor light emitting element 81- 37- 502461 V. Description of the invention (36), which is connected by a wire and is connected to the internal thread 83. Since the lamp 80 uses the melons nitride semi-conductor light-emitting element of the present invention, it has higher brightness than the conventional m-nitride semiconductor light-emitting element. In addition, this lamp 80 can be used as a light source for vehicle lamps, railway vehicle lamps, traffic lights, level crossing lights, roadside display lights, line-of-sight guidance lights, or monitor monitors and operating panel monitors. It is a light source such as a photocopier or fax machine or an information board used outdoors. In these cases, the light source made of the lamp 80 is more luminous than the user. Since the m-type nitride semiconductor light-emitting device of the present invention uses a gallium nitride phosphide (GaN ^ xPx) single crystal layer with excellent crystallinity that maintains good lattice integration with the boron phosphide buffer layer, light can be obtained. High-intensity m-group nitride semiconductor light-emitting element. In particular, if it is composed of an amorphous body of a boron phosphide buffer layer, the degree of lattice mismatch between single crystal substrates will be greatly reduced, and it will grow into gallium nitride phosphide with good crystallinity. The single crystal layer is a group III nitride semiconductor light emitting device having excellent light emission intensity. In addition, if the structure is composed of a layered structure of amorphous and crystalline layers of boron phosphide buffer layer, it can be mounted on the boron phosphide single crystal layer with high crystallinity, and it has good crystallinity. The light-emitting portion of the gallium nitride phosphide single crystal layer has the effect of becoming a Group III nitride semiconductor light-emitting device having excellent light-emitting intensity. -38- 502461 V. Description of the invention (37) If the light-emitting structure is composed of a single heterojunction structure, a simple structure can be used to obtain a melon-based nitride and a semiconductor light-emitting device having a high light-emitting intensity. Furthermore, if the light emitting structure is composed of a double heterojunction structure, it is a melon nitride semiconductor light emitting device capable of achieving a higher light emitting intensity. According to the present invention, the lattice mismatch of the composite layer formed by the BP-based buffer layer and the gallium nitride phosphide single crystal layer is less than ± 1%. The SH or DH junction structure through this composite layer can be used as a light-emitting part. The structure means that the structure of the light-emitting part uses a gallium nitride phosphide single crystal layer which has reduced the density of crystal defects caused by lattice mismatch and has excellent crystallinity, so that the m group of high luminous intensity can be achieved. Effect of a nitride semiconductor light emitting device. In the in-group nitride semiconductor light-emitting device of the present invention, the degree of lattice mismatch between the BP-based buffer layer and the underlying composite layer is less than or equal to ± 1%, and particularly less than or equal to ± 0.4%. The use of a gallium nitride phosphide single crystal layer that has reduced the density of crystal defects and has excellent crystallinity makes it possible to achieve the effect of a group m nitride semiconductor light emitting device with high light emission intensity. For example, the BP buffer layer is composed of boron phosphide (BP), and when the phosphorus (P) composition ratio of the gallium nitride phosphide single crystal layer grown through the BP buffer layer is 1% or more and 5% or less, Since the light-emitting portion is composed of a gallium nitride phosphide single crystal layer with good lattice integration and excellent crystallinity, a m-nitride semiconductor light-emitting device with high light-emitting intensity can be easily obtained. [Brief description of the drawings] Figure 1 is the one described in Example 1] Group III nitride semiconductor light-emitting element -39- 502461 V. Schematic plan view of the invention (38). Fig. 2 is a schematic sectional view taken along line A-A 'in Fig. 2; FIG. 3 is a schematic cross-sectional view of the DI group nitride semiconductor light-emitting device described in Example 2. FIG. FIG. 4 is a schematic cross-sectional view of a group m nitride semiconductor light-emitting device described in Example 3. FIG. Fig. 5 is a schematic cross-sectional view of a light-emitting element having a conventional Gal nN double heterojunction structure. The diagram shown in Fig. 6 is a lamp using the guar nitride semiconductor light-emitting device of the present invention. [Symbol description] 1, 21 single crystal substrate 2, 22 low-temperature buffer layer 3, 23 lower composite layer 4, 24 light-emitting layer 5 upper composite layer 6 η-type ohmic electrode 7 P-type ohmic electrode 8 crystalline buffer layer 9 buffer layer 12 , 52 Single heterojunction light emitting structure 20, 30, 40 m group nitride semiconductor light emitting elements 32, 42, 62 Double heterojunction light emitting structure -40-502461 V. Description of the invention (39) 100 Light emitting element 101 Substrate 102 Low-temperature buffer layer 103 Lower composite layer 104 Light-emitting layer 105 Upper composite layer 106 p-type ohmic electrode 107 η-type ohmic electrode 80 Lamp 81 m-group nitride semiconductor light-emitting element 81a Electrode 82 formed on the upper surface of the electrode 81b on the inner surface of the substrate Anchor Thread-41-

Claims (1)

502461 Q! 秦fl 平請專利範圍 第9 0 1 1 3 803號「瓜族氮化物半導體發光元件及其製法」專 利案 (91年6月19日修正) 六、申請專利範圍: 1 . 一種II族氮化物半導體發光元件,其特徵在於:其係具 備一含有透過在單結晶基板上之磷化硼(BP)系緩衝層所 設置的氮磷化鎵(GaN^Px,0<X<1 )單結晶層之發光部構造 2 ·如申請專利範圍第1項之Π族氮化物半導體發光元件, 其中磷化硼系緩衝層係爲非晶質。 3 ·如申請專利範圍第1項之m族氮化物半導體發光元件, 其中磷化硼系緩衝層係由非晶質與結晶質之積層構造所 成。 4 .如申請專利範圍第1項之ΠΙ族氮化物半導體發光元件, 其中發光部構造係含有氮磷化鎵單結晶層之單一異種接 合構造。 5 .如申請專利範圍第1項之瓜族氮化物半導體發光元件, 其中發光部構造係含有氮磷化鎵單結晶層之雙異種接合 構造。 6 .如申請專利範圍第1項之瓜族氮化物半導體發光元件, 其中磷化硼系緩衝層和氮磷化鎵單結晶層之晶格不匹配 度係在± 1%以下。 7 ·如申請專利範圍第4或5或6項之ΙΠ族氣化物半導體發 光元件,其中磷化硼系緩衝層和氮磷化鎵單結晶層之晶 502461 六、 申請專利範圍 格 不 匹 配 度係在±0 . 4%以下。 8 . 如 串 請 專 利範圍第1項或第4到 6 項 中 任 一項 之m 族 氮 化 物 半 導 體發光元件,其中磷化 硼 系 緩 衝 層係 由鱗 化 硼 (BP)所 構 成,發光構造之氮磷化鎵單結晶層中磷(P )之 組 成比係在 1 %以上而在5%以下。 9 . 一 種 族 氮化物半導體發光元件 之 製 造 方 法, 其特 徵 在 於 ·· 其 係 具備在單結晶基板上形 成 磷 化 硼 (BP)系緩 衝 層 之 步 驟 以及在該磷化硼系緩衝 層 上 設 置 含有 氮磷 化 鎵 (G aN 1 - X Px ,0<X<1)單結晶層之發光部構造之步驟。 10 如 串 請 專 利範圍第9項之m族氮 化 物 半 導 體發 光元 件 之 製 造 方 法 ,其中磷化硼系緩衝層< 係: 爲· 非丨 晶: 質。 11 . ,如 串 請 專 利範圍第9項之瓜族氮 化 物 半 導 體發 光元件 之 製 造 方 法 ,其中磷化硼系緩衝層 係 由 非 晶 菅ffi 結晶 質 之 積 層 構 造 所成。 12 . ,如 串 請 專 利範圍第9項之ΙΠ族氮 化 物 半 導 體發 光元件 之 製 造 方 法 ,其中磷化硼系緩衝層 和 氮 磷 化 鎵單 結晶 層 之 晶 格 不 匹 配度係在土 1%以下。 13 , .如 串 請 專 利範圍第9項之瓜族氮 化 物 半 導 體發 光元 件 之 製 造 方 法 ,其中磷化硼系緩衝層 和 氮 磷 化 鎵單 結晶 層 之 晶 格不 匹 配度係在±0.4%以下。 14 .如 甲 請 專 利範圍第9項之]Π族氮 化 物 半 導 體發 光元件 之 製 造 方 法 ,其中磷化硼系緩衝層 係 由 磷 化 硼(BP)所 構 成 發 光 構 造之氮磷化鎵單結晶層 〖牛 |磷(P )之組 成比 係在 1%以 上 而在5%以下。 -2 -502461 Q! Qin fl. Patent application No. 9 0 1 1 3 803 "Melon nitride semiconductor light-emitting device and its manufacturing method" patent case (Amended on June 19, 91) Sixth, the scope of patent application: 1. One type II A group nitride semiconductor light-emitting device is characterized in that it comprises a gallium nitride phosphide (GaN ^ Px, 0 < X < 1) containing a boron phosphide (BP) buffer layer disposed on a single crystal substrate. Structure of light-emitting portion of single crystal layer 2 · As in the Group Π nitride semiconductor light-emitting device of the first scope of the patent application, the boron phosphide buffer layer is amorphous. 3. The m-type nitride semiconductor light-emitting device according to item 1 of the scope of the patent application, wherein the boron phosphide buffer layer is formed by a multilayer structure of an amorphous and a crystalline layer. 4. The group III nitride semiconductor light-emitting device according to item 1 of the patent application scope, wherein the light-emitting portion structure is a single heterojunction structure containing a gallium nitride phosphide single crystal layer. 5. The melon nitride semiconductor light-emitting device according to item 1 of the application, wherein the light-emitting part structure is a double heterojunction structure including a single crystal layer of gallium nitride phosphide. 6. The melon nitride semiconductor light-emitting device according to item 1 of the patent application scope, wherein the lattice mismatch between the boron phosphide buffer layer and the gallium nitride phosphide single crystal layer is less than ± 1%. 7 · If the patent application scope of the 4th, 5th or 6th Group III gas-emitting semiconductor light-emitting device, in which boron phosphide buffer layer and gallium nitride phosphide single crystal layer crystal 502461 6. Patent application range lattice mismatch degree Below ± 0.4%. 8. If the m-type nitride semiconductor light-emitting device according to item 1 or items 4 to 6 of the patent scope is requested, the boron phosphide buffer layer is made of boron scale (BP), and the light-emitting structure The composition ratio of phosphorus (P) in the gallium nitride phosphide single crystal layer is more than 1% and less than 5%. 9. A method for manufacturing a group nitride semiconductor light-emitting device, comprising: a step of forming a boron phosphide (BP) buffer layer on a single crystal substrate; Step of constructing a light emitting portion of a single crystal layer of gallium nitride phosphide (G aN 1-X Px, 0 < X < 1). 10 For the method of manufacturing the m-type nitride semiconductor light-emitting device of the ninth scope of the patent, please make a method for manufacturing a boron phosphide buffer layer < system: non-crystalline: quality. 11. For example, please refer to the method for manufacturing a melon family nitride semiconductor semiconductor light emitting device according to item 9 of the patent, in which the boron phosphide buffer layer is made of a layered structure of non-crystalline 菅 ffi crystalline. 12. For example, if a method for manufacturing a III-nitride semiconductor light-emitting device is claimed, the lattice mismatch between the boron phosphide buffer layer and the gallium nitride phosphide single crystal layer is less than 1% of the soil. . 13. For example, if a method for manufacturing a melons nitride semiconductor light-emitting device according to item 9 of the patent is requested, the lattice mismatch between the boron phosphide buffer layer and the gallium nitride phosphide single crystal layer is less than ± 0.4%. . 14. The method for manufacturing a group III nitride semiconductor light-emitting device as described in A), wherein the boron phosphide buffer layer is a monocrystalline layer of gallium nitride phosphide composed of boron phosphide (BP) as a light emitting structure. [The composition ratio of bovine | phosphorus (P) is more than 1% and less than 5%. -2 -
TW90113803A 2000-06-22 2001-06-07 Group III nitrides luminescence element for semiconductor and process of preparing the same TW502461B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000188214A JP3592616B2 (en) 2000-06-22 2000-06-22 Group III nitride semiconductor light emitting device

Publications (1)

Publication Number Publication Date
TW502461B true TW502461B (en) 2002-09-11

Family

ID=18688046

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90113803A TW502461B (en) 2000-06-22 2001-06-07 Group III nitrides luminescence element for semiconductor and process of preparing the same

Country Status (2)

Country Link
JP (1) JP3592616B2 (en)
TW (1) TW502461B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6831293B2 (en) * 2002-03-19 2004-12-14 Showa Denko Kabushiki Kaisha P-n junction-type compound semiconductor light-emitting device, production method thereof, lamp and light source
JP4559190B2 (en) * 2003-11-06 2010-10-06 昭和電工株式会社 Compound semiconductor device
JP6008661B2 (en) 2012-08-29 2016-10-19 日東光器株式会社 GaN crystal and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2002009340A (en) 2002-01-11
JP3592616B2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
US6787814B2 (en) Group-III nitride semiconductor light-emitting device and production method thereof
KR100903782B1 (en) Gallium nitridie-based semiconductor stacked structure, production method thereof, and compound semiconductor and light-emitting device each using the stacked structure
KR100906164B1 (en) Gallium nitride-based semiconductor stacked structure, method for fabrication thereof, gallium nitride-based semiconductor device and lamp using the device
JP3700609B2 (en) COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, LAMP AND LIGHT SOURCE
US6835962B2 (en) Stacked layer structure, light-emitting device, lamp, and light source unit
US6531716B2 (en) Group-III nitride semiconductor light-emitting device and manufacturing method for the same
JP2002232000A (en) Group-iii nitride semiconductor light-emitting diode
JP3779255B2 (en) Group III nitride semiconductor device, manufacturing method thereof, and light-emitting diode
JP2000349336A (en) Iii-family nitride semiconductor light-emitting device
US6831293B2 (en) P-n junction-type compound semiconductor light-emitting device, production method thereof, lamp and light source
TW502461B (en) Group III nitrides luminescence element for semiconductor and process of preparing the same
JP3372483B2 (en) Group III nitride semiconductor light emitting device
JP3603603B2 (en) III-nitride semiconductor light emitting device substrate
JP3659174B2 (en) Group III nitride semiconductor light emitting device and method for manufacturing the same
JP2001015803A (en) AlGaInP LIGHT EMITTING DIODE
JP2002270896A (en) Iii nitride semiconductor light-emitting element and its manufacturing method
KR20050092365A (en) Boron phosphide-based compound semiconductor device, production method thereof and light-emitting diode
JP4864435B2 (en) Compound semiconductor laminated structure, compound semiconductor device and lamp
JP4884699B2 (en) Compound semiconductor laminated structure and light emitting device using the same
JP3698081B2 (en) COMPOUND SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, LIGHT EMITTING DEVICE AND LAMP
JP2002305322A (en) Group iii nitride semiconductor light emitting device and its manufacturing method
JP2003229601A (en) Boron phosphide based semiconductor element, its manufacturing method and light emitting diode
JP2003273396A (en) Pn-junction compound semiconductor light emitting device, its manufacturing method, lamp, and light source
JP3659202B2 (en) LAMINATED STRUCTURE FOR LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, LIGHT EMITTING ELEMENT, LAMP, AND LIGHT SOURCE
JP2003282941A (en) Boron phosphide semiconductor led and its manufacturing method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees