TW502140B - Control system and control device - Google Patents
Control system and control device Download PDFInfo
- Publication number
- TW502140B TW502140B TW90123440A TW90123440A TW502140B TW 502140 B TW502140 B TW 502140B TW 90123440 A TW90123440 A TW 90123440A TW 90123440 A TW90123440 A TW 90123440A TW 502140 B TW502140 B TW 502140B
- Authority
- TW
- Taiwan
- Prior art keywords
- value
- control
- temperature
- detection
- target
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims description 178
- 238000004364 calculation method Methods 0.000 claims description 87
- 230000015654 memory Effects 0.000 claims description 49
- 230000008859 change Effects 0.000 claims description 28
- 230000000670 limiting effect Effects 0.000 claims description 10
- 238000012360 testing method Methods 0.000 claims description 9
- 230000005611 electricity Effects 0.000 claims description 8
- 201000004569 Blindness Diseases 0.000 claims 1
- 229910017052 cobalt Inorganic materials 0.000 claims 1
- 239000010941 cobalt Substances 0.000 claims 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 1
- 230000003993 interaction Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 13
- 239000004065 semiconductor Substances 0.000 abstract description 9
- 235000012431 wafers Nutrition 0.000 description 59
- 238000010586 diagram Methods 0.000 description 33
- 230000000694 effects Effects 0.000 description 31
- 238000000034 method Methods 0.000 description 23
- 238000005259 measurement Methods 0.000 description 22
- 238000009529 body temperature measurement Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 9
- 230000009471 action Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 240000000249 Morus alba Species 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 101000650775 Boana raniceps Raniseptin-1 Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241001481828 Glyptocephalus cynoglossus Species 0.000 description 1
- 235000005206 Hibiscus Nutrition 0.000 description 1
- 235000007185 Hibiscus lunariifolius Nutrition 0.000 description 1
- 244000284380 Hibiscus rosa sinensis Species 0.000 description 1
- 101000760663 Hololena curta Mu-agatoxin-Hc1a Proteins 0.000 description 1
- 241000406668 Loxodonta cyclotis Species 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B5/00—Anti-hunting arrangements
- G05B5/01—Anti-hunting arrangements electric
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Control Of Temperature (AREA)
- Control Of Resistance Heating (AREA)
Abstract
Description
140 l 五、發明說明(1) 發明所屬技術領域 々 本發明係有關於例如在半導體製程控制晶圓之溫度時 專利用之PID 控制(pr〇p〇rti〇nal Integral and140 l V. Description of the invention (1) Technical field to which the invention belongs 々 The present invention relates to, for example, the patented PID control (prOptioral Integral and
Derivative control)或IMC(Internal Model Control)控 制等之控制系統,係有關於可適合例如在使用複數加熱器 將5亥晶圓之溫度控制成在其整體均勻時等利用之控制系 統。 ’ 習知技術 圖1係表示以往之基本的p ID控制系統之構造之系統構 造圖。在圖1,224係設置於圖上未示之恒溫室内之晶圓, 2 2 5係檢測晶圓2 2 4之附近之溫度之熱電偶,2 2 6係和該熱 電偶2 2 5之檢測溫度一起輸入目標穩態溫度後輸出操作裝 置而使檢測溫度收歛至目標穩態溫度之p丨D運算裝置,2 2 7 係依照該操作量控制之控制裝置,228係設置於晶圓224之 附近之加熱器,229係電源,230係將加熱器228及電源22Θ 和控制裝置227連接之控制迴路。 其次說明動作。 在設定目標穩態溫度後,PID運算裝置226依照熱電偶 2 2 5之檢測溫度相對於目標穩態溫度之溫差輸出依照p丨β控 制之操作量,控制裝置227依照該操作量控制對加熱器228 之通電時間。 " 因此,在這種以往之基本的!^!)控制系統,可將熱電 偶2 2 5之配置位置及其附近之溫度控制成穩定於目標穩態 第4頁 2103 -4363-PF;ahddub.p t d 140A control system such as Derivative control (IMC) or IMC (Internal Model Control) control is related to a control system that can be suitably used, for example, when using a plurality of heaters to control the temperature of a 5H wafer to be uniform throughout its entirety. Conventional technology Fig. 1 is a system construction diagram showing the structure of a conventional basic p ID control system. In FIG. 1, 224 is a wafer set in a constant temperature room not shown in the figure, 2 2 5 is a thermocouple that detects the temperature near the wafer 2 2 4 and 2 2 6 is the detection of the thermocouple 2 2 5 After the temperature is input to the target steady-state temperature, the operating device is output to make the detection temperature converge to the target steady-state temperature. The P 2 D computing device is a control device controlled according to the operation amount. The 228 is located near the wafer 224. The heater 229 is a power source, and 230 is a control circuit that connects the heater 228 and the power source 22Θ to the control device 227. The operation will be described next. After setting the target steady-state temperature, the PID computing device 226 outputs an operation amount controlled according to the temperature difference between the detected temperature of the thermocouple 2 2 5 and the target steady-state temperature according to p 丨 β, and the control device 227 controls the heater according to the operation amount. 228 power on time. " Therefore, in this kind of conventional basic! ^!) control system, the temperature of the thermocouple 2 2 5 and its vicinity can be controlled to stabilize the target steady state. Page 4 2103 -4363-PF; ahddub .ptd 140
五、發明說明(2) 溫度。 y是,成為控制對象之該晶圓224之面積 …、、、將該晶圓224之溫度控制成其整體均勻等之問了 因此,在特開平7-96 1 68號公報公開了將 ^ ° 有關之允p卩八… 4,皿度控制 枯彳!f。^ 0刀°成各區後對該各區個別的進行1"1 D控制之 進行PID >在f該公報,在像這樣對於一個控制對象個別的 7控制之情況’使用同一目標穩態溫度控制也因實 區之環境或區彼此之位置關係之差異而到達目 _ Ρ;二 時序因各區而異’也公開控制在各自之區之 控制之開始時序及終了時序之技術。 圖2係表示在特開平7 —96丨68號公報公開之以往之別的 Pjl)控制系統之構造之系統構造圖。在圖2,231係依照既 ^ ^程式輪出設定溫度之製程控制器,232係輸出以該設 定溫度為最終溫度之斜坡信號產生電路,233係將該斜坡 波开^作為目標穩態溫度輸入、計算操作量後輸出之p ID控 制器’ 234係利用該PID控制器233控制溫度之爐,235係複 ,爐内溫度感測器,236係設定比較之基準溫度之起始設 定記憶體,2 3 7係量測各爐内溫度感測器2 3 5之檢測溫度和 比較之基準温度一致之時刻後輸出其時間差之時間差量測 電路’ 238係記憶依照該時間差控制斜坡信號產生電路232 之斜坡信號之產生時序之資料之時間差表記憶體。 其次說明動作。 在記憶體236設定了比較之基準溫度之狀態自製程控 制器2 3 1輸出設定溫度後,斜坡信號產生電路2 3 2將該斜坡5. Description of the invention (2) Temperature. y is the area of the wafer 224 to be controlled ..., and the temperature of the wafer 224 is controlled to be uniform as a whole. Therefore, Japanese Unexamined Patent Publication No. 7-96 1 68 discloses that ^ ° The relevant permission p 卩 eight ... 4, the degree of control of dryness! F. ^ 0 knives ° After each zone is individually 1 " 1 D control PID > In f the bulletin, in the case of 7 controls for an individual control object like this' use the same target steady-state temperature The control also reaches the goal because of the differences in the environment of the real area or the positional relationship between the areas. The second sequence varies from area to area. It also discloses the technology of controlling the start sequence and the end sequence of the control in the respective areas. FIG. 2 is a system configuration diagram showing the structure of a conventional Pjl) control system disclosed in Japanese Unexamined Patent Publication No. 7-96 丨 68. In Fig. 2, 231 is a process controller for setting the temperature according to the existing formula, 232 is a ramp signal generating circuit that outputs the set temperature as the final temperature, and 233 is the slope wave opening ^ as the target steady-state temperature input 、 The p ID controller '234 output after calculating the operation amount is 234, which uses the PID controller 233 to control the temperature of the furnace, 235 is a complex, the temperature sensor in the furnace, 236 is the initial setting memory for setting the reference temperature for comparison, 2 3 7 Series time difference measurement circuit that measures the temperature sensor in each furnace 2 3 5 and outputs the time difference after the time when the detected temperature and the reference temperature of the comparison match, 238 Series memory controls the ramp signal generation circuit 232 according to the time difference Time difference table memory for generating timing data of the ramp signal. The operation will be described next. In the state where the reference temperature for comparison is set in the memory 236, the self-made program controller 2 3 1 outputs the set temperature, and the ramp signal generating circuit 2 3 2 generates the ramp.
2103-4363-PF;ahddub.ptd 第5頁 140 五、發明說明(3) 波形作為目標穩態溫度輸入’計算操作量後輸出。社 爐234之溫度朝設定溫度變化。在該溫度變化之中'各 爐内溫度感測器235之檢測溫度和該比較之基準溫度一致 時’時間差量測電路237量測各自之一致之時刻後,向時 =表記憶體238輸出該時間差。時間差表記憶體㈣選擇 :消该時間差之表貪料後,向斜坡信號產生電路2以輸 其次,自製程控制器231輸出設定溫度後,斜坡信號 產生電路232將斜坡波形之輸出開始時序只調整利用時間 差表記憶體238所設定之時間。然後,依照該斜坡波形將 爐234之溫度控制至設定溫度為止。因此,可對於一個爐 234進行多種?11)控制而控制其溫度,而且理論上可使確實 達到目標穩態溫度之時序一致。 圖3係表不使用以往之控制裝置之控制系統之構造 0在圖3 2 6 1係包括了 p I d控制功能之控制裝置,2 μ係 恒溫槽’ 263係配置於恒溫槽之内部之晶圓,264係依照來 自控制裝置261之操作量控制恒溫槽262之内部之溫度之加 熱器,265係檢測晶圓263之附近之溫度之溫度感測器。 其次說明動作。 包括了PID控制功能之控制裝置261輸入溫度感測器 265@所檢測之溫度量測值後,進行使得該量測值和預設之 目,溫度設定值一致之利用ρ丨D控制功能之計算,計算操 作里。然後,向加熱器2 6 4輸出該操作量。加熱器2 6 4藉著 依據該操作量改變例如通電時間,控制恒溫槽262内部之 第6頁 2103-4363-PF;ahddub.p t d2103-4363-PF; ahddub.ptd Page 5 140 V. Description of the invention (3) The waveform is input as the target steady-state temperature, and the output is calculated. The temperature of the furnace 234 changes toward the set temperature. Among the temperature changes, 'When the detection temperature of the temperature sensor 235 in each furnace matches the reference temperature of the comparison', the time difference measurement circuit 237 measures the respective time points, and outputs the time to the table memory 238. Time difference. Time difference table memory ㈣ selection: after eliminating the time difference table, input to the ramp signal generation circuit 2 to output the second, after the self-made process controller 231 outputs the set temperature, the ramp signal generation circuit 232 adjusts the output timing of the ramp waveform only. The time set by the time difference table memory 238 is used. Then, the temperature of the furnace 234 is controlled to a set temperature in accordance with the ramp waveform. Therefore, multiple types can be performed for one furnace 234? 11) Control and control its temperature, and theoretically, it can make the timing of reaching the target steady-state temperature consistent. Fig. 3 shows the structure of the control system without using the conventional control device. Fig. 3 2 6 1 is a control device that includes the p I d control function. 2 μ is a thermostat. 263 is a crystal placed inside the thermostat. Circle, 264 is a heater that controls the temperature inside the thermostatic bath 262 according to the operation amount from the control device 261, and 265 is a temperature sensor that detects the temperature near the wafer 263. The operation will be described next. The control device 261 including the PID control function inputs the temperature measurement value detected by the temperature sensor 265 @, and performs calculations using the control function to make the measurement value consistent with the preset purpose and temperature setting value. In the calculation operation. Then, the operation amount is output to the heater 2 6 4. The heater 2 6 4 controls the inside of the thermostatic bath 262 by changing, for example, the energization time according to the operation amount. 2103-4363-PF; ahddub.p t d
2140 五、發明說明(4) /里度。照這樣做’控制成令晶圓2 6 3之溫度和預設之目標 溫度一致。 、 可是’在上述之係控制對象之晶圓263之面積大之情 7 ’難將其溫度控制成在晶圓263整體均勻。在此情況, 心^將係控制對象之晶圓2 6 3分割成複數區域後,對這些 各區f使用上述之包括了 PID控制功能之控制裝置261。因 為藉著對所分割之各區域設置溫度感測器265及加熱器264 後個別的進行P丨D控制,可令各區域之溫度和預設之目標 溫度一致。 可是’在這種控制方法,具有因在各區域間發生溫度 之干涉而無法進行適當之控制之問題。即,某區域之溫度 利用該區域之加熱器控制而進行P丨D控制時,該區域之溫 度受到別的區域之加熱器影響,無法進行適當之控制。 為解決此問題,一般使用圖4所示之控制系統。在圖 4 ’ 271係包括了 pID控制功能之控制裝置,272係恒溫槽, 273係配置於恒溫槽272之内部之晶圓,274-1係依照Chl操 作量控制恒溫槽272之内部之第一區域273- 1之溫度之加熱 器’ 274-2係依照Ch2操作量控制恒溫槽272之内部之第二 區域273-2之溫度之加熱器,275係檢測晶圓273之附近之 溫度之溫度感測器,281係設定晶圓273之目標溫度之目標 設定值設定裝置,282係自溫度感測器275所檢測之溫度量 測值和利用目標設定值設定裝置28 1所設定之設定值計算 偏差之加法器,283係自加法器282所計算之偏差進行PID 運算後輸出操作量之PID運算裝置,284係對操作量限制上2140 V. Description of the invention (4) / Lido. In this way, the control is performed so that the temperature of the wafer 263 is consistent with the preset target temperature. However, it is difficult to control the temperature of the wafer 263 to be uniform throughout the wafer 263 because the area of the wafer 263 to be controlled is large. In this case, after dividing the wafer to be controlled 263 into a plurality of regions, the above-mentioned control device 261 including the PID control function is used for each of these regions f. Because by setting the temperature sensor 265 and the heater 264 separately for each divided area, the P and D control can be performed to make the temperature in each area consistent with the preset target temperature. However, this control method has a problem in that proper control cannot be performed due to temperature interference between the regions. That is, when the temperature in a certain area is controlled by the heater control in that area, the temperature in that area is affected by the heaters in other areas, and proper control cannot be performed. To solve this problem, the control system shown in FIG. 4 is generally used. In FIG. 4 ′ 271 is a control device including PID control function, 272 is a constant temperature tank, 273 is a wafer arranged inside the constant temperature tank 272, and 274-1 is the first to control the inside of the constant temperature tank 272 according to the operation amount of Chl. The heater 274-2 of the temperature in the area 273-1 is a heater that controls the temperature of the second area 273-2 inside the thermostatic bath 272 in accordance with the operation amount of Ch2. The 275 is a temperature sensor that detects the temperature near the wafer 273. Detector, 281 is a target set value setting device for setting the target temperature of the wafer 273, and 282 is a temperature measurement value detected from the temperature sensor 275 and calculates a deviation using the set value set by the target set value setting device 28 1 The adder, 283 is a PID operation device that outputs the operation amount after performing PID calculation on the deviation calculated by the adder 282, and 284 is a limit on the operation amount.
2103 -4363-PF;ahddub.p t d 第7頁 ^)2140 ---------------— _ «' 五、發明說明⑸ ^ ~一 ------ 限及下限之操作量限制裝置,285—丨及285 —2係對操作旦 打比例計算之第一比例計算裝置及第二比例計算裝置里 286- 1〃及286-2係對操作量進行偏置運算之第一偏置計算 |置及第二偏置計算裝置,287係將自操作量限制裝置284 ^ m乍量分枝之分枝部,288係設定操作量限制裝置28! 寻之參數之例如鍵盤等利用手動操作之參數設定裝置。 其次說明動作。 控制裝置2 71輸入溫度感測器2 7 5所檢測之溫度量測值 後’依據利用目標設定值設定裝置281所設定之係目標溫 度之設定值,用加法器282計算偏差後,用piD運算裝不置皿 28 3進行pid運算,決定操作量。然後,用操作量限制 2 84限制操作量之上限及下限後,用分枝部28?分枝。、 所分枝之操作量經由第一比例計算裝置和第一 偏置計算裝置286- 1變成Chl操作量。一樣的,所分枝之操 作量經由第二比例計算裝置285 — 2和第二偏置計算裝置’、 286-2變成ch2操作量。 向加熱器274-1輸出該chl操作量,加熱器274 -1藉著 依據該chl操作量改變例如通電時間,控制在恒溫槽/?2之 内部之第一區域273-1之溫度。又,一樣的,向加熱器 274-2輸出該Ch2操作量,加熱器274 —2藉著依據該ch2操作 量改變例如通電時間,控制在恒溫槽272之内部之第二 域273-2之溫度。 ” 在此情況,利用圖上未示之按鍵輸入操作在參數設定 裝置2 8 8在預先调整時設定操作量限制裝置2 8 $、第一比例2103 -4363-PF; ahddub.ptd page 7 ^) 2140 ---------------— _ 'V. Description of the invention ⑸ ^ ~ 一 ------ Limit and Lower limit operation amount limiting device, 285— 丨 and 285-2 are the first ratio calculation device and the second ratio calculation device in the first ratio calculation device, 286-1- and 286-2 are used to offset the operation value. The first offset calculation device and the second offset calculation device, 287 will branch from the operation amount limiter 284 ^ m, and 288 set the operation amount limiter 28! For example, the parameters to find Keyboard and other parameter setting devices using manual operation. The operation will be described next. The control device 2 71 inputs the temperature measurement value detected by the temperature sensor 2 7 5 according to the set value of the target temperature set by the target set value setting device 281, calculates the deviation with the adder 282, and calculates it with piD. Place the dish 28 3 and perform the pid calculation to determine the operation amount. Then, after the upper limit and lower limit of the operation amount are restricted by the operation amount limit 2 84, branching is performed by the branch portion 28 ?. The branched operation amount is converted into a Chl operation amount by the first ratio calculation device and the first offset calculation device 286.1. Similarly, the branched operation amount becomes the ch2 operation amount through the second ratio calculation device 285-2 and the second offset calculation device ', 286-2. The chl operation amount is output to the heater 274-1, and the heater 274-1 controls the temperature of the first region 273-1 inside the thermostatic bath /? 2 by changing, for example, the energization time according to the chl operation amount. Also, the same Ch2 operation amount is output to the heater 274-2, and the heater 274-2 controls the temperature of the second domain 273-2 inside the thermostatic bath 272 by changing, for example, the power-on time according to the ch2 operation amount. . ”In this case, use a key input operation not shown in the figure to set the parameter in the parameter setting device 2 8 8 during the adjustment in advance. 2 8 $, the first ratio
)2140 五、發明說明(6) 計算裝置285-1、第二比例計算裝置285-2、第一偏置計算 裝置286- 1以及第二偏置計算裝置2 86 — 2之參數,使晶圓 2 7 3之溫度和目標溫度一致。 照這樣做,利用配置於第一區域273_1之加熱器274-1 及配置於第二區域2 73-2之加熱器274-2控制成令各自之區 域之溫度和預設之目標溫度一致。即,控制成令晶圓273 整體之溫度和預設之目標溫度一致。 因以在之別的P I D控制系統如上述所示構成,理論上 了使確貫達到目標穩態溫度之時序一致,但是因只是變更 各pID控制之開始時序(終了時序),如圖4所示,若未另外 追加令目標穩態溫度本身連續的變化至最終之目標稃 w 度為止之斜坡產生電路,難使該時序一致,而且即;:: p ID控制之係數設成不會發生過越或下越,也具有在到達 該目標穩態溫度之溫度後發生過越或下越等之課題。而, 在發生了那種過越或下越之情況’能能在目標之穩態溫 無法令檢測溫度穩定。 即,在該以往之別的PID控制系統,將在對於全部 PID控制設定了相同之目標穩態溫度時之升溫期間到達任 意之比較之基準溫度之時序之時間差作為 該時序變更成抵消該時間i。而且,這係以各piD 按將 照相同之升溫曲線變化至目標穩態溫度為 使用該斜坡信號產生電路)。可是,g有在各 =(因而 熱器之熱變換效率之差異、在各區之環境 ^口 差異,,實際上-般該各PID控制之升溫兄曲不:各之) 2140 V. Description of the invention (6) Parameters of the calculation device 285-1, the second ratio calculation device 285-2, the first offset calculation device 286-1, and the second offset calculation device 2 86-2, so that the wafer The temperature of 2 7 3 is consistent with the target temperature. In this way, the heater 274-1 disposed in the first region 273_1 and the heater 274-2 disposed in the second region 2 73-2 are controlled so that the temperature of the respective regions is consistent with the preset target temperature. That is, it is controlled so that the temperature of the entire wafer 273 is consistent with a preset target temperature. Because the other PID control systems are structured as shown above, theoretically, the timings for consistently reaching the target steady-state temperature are consistent, but only the start timing (end timing) of each PID control is changed, as shown in Figure 4. If there is no additional ramp generating circuit that continuously changes the target steady-state temperature itself to the final target 度 w degree, it is difficult to make the timing consistent, and that :: The coefficient of p ID control is set so as not to overshoot. The problem of overshoot or undershoot also occurs after reaching the target steady-state temperature. However, in the case of overshooting or undershooting, it is possible to stabilize the detection temperature at the target steady state temperature. That is, in this conventional PID control system, the time difference between the timings of reaching any comparative reference temperature during the heating period when the same target steady-state temperature is set for all PID controls is changed as the timing to offset the time i. . Moreover, this is to use this ramp signal generating circuit with each piD according to the same temperature rise curve to the target steady state temperature). However, there are differences in g = (thus the difference in heat conversion efficiency of the heater and the environment in each area). In fact, generally, the heating temperature of each PID control is different:
^02140 五、發明說明(7) (即,一般各PID控制之時間常數相異),在向各p丨D控制直 接輸入最終之目標穩態溫度之情況,控制成令到達該比較 之基準溫度之時序一致,也因在升溫期間之溫度變化之方 法因各區而異,在各區間發生由溫度梯度所引起之熱之交 換,因而各區變成所要之設定溫度之時序變成不同,在到 達設定溫度後發生過越或下越。 此外,在以上之說明,以PID控制系統為例說明了上 述之課題,但是除此以外,在丨Mc控制系統等也發生相同 之課粤。 ^因以往之控制裝置如上述之圖3、圖4所示構成,可說 係控制對象之面積大之情況也可控制成在控制對象整體 勻之溫度。 可疋’在將控制對象變更為別的控制對象之情況或^ 制對象之大小變化之情況,或者在加熱器發生老化之情^ 或控制對象之周邊溫度變化之情況,具有無法控制^松 制對象整體均勻之溫度之問題。 i ^ 例如,在圖4之控制系統,在將係控制對象之晶圓27 變^為別的控制對象之情況,因溫度感測器275配置於第 一區域273-1,適當的控制在第一區域2734之溫度,但η 因晶圓273之導熱係數不同等,無法適當的控制在一疋 域273-2之溫度。 —趣 也 假如將溫度感測器275配置於恒溫槽272之中央部 域 不僅第二區域2 7 3-2,而且無法適當的控制在第一區 2 7 3 -1之溫度。 °^ 02140 V. Description of the invention (7) (that is, the time constants of the PID controls are generally different). In the case where the final target steady-state temperature is directly input to each p 丨 D control, it is controlled so that the reference temperature for the comparison is reached. The timing is the same, and because the method of temperature change during the heating period varies from zone to zone, the heat exchange caused by the temperature gradient occurs in each zone. Therefore, the time sequence of each zone becoming the desired set temperature becomes different, and it reaches the set time. Over temperature or down temperature occurs after temperature. In addition, in the above description, a PID control system is taken as an example to explain the above-mentioned problems, but in addition, the same lesson also occurs in Mc control systems and the like. ^ Because the conventional control device is configured as shown in Fig. 3 and Fig. 4 above, it can be said that even when the area of the control target is large, the temperature can be controlled to be uniform throughout the control target. You can change the control object to another control object or the size of the control object, or if the heater is aging or the surrounding temperature of the control object is uncontrollable. The problem of uniform temperature of the object. i ^ For example, in the control system of FIG. 4, when the wafer 27 that is a control target is changed to another control target, the temperature sensor 275 is disposed in the first region 273-1, and the appropriate control is in the first The temperature of a region 2734, but η cannot be properly controlled due to the different thermal conductivity of the wafer 273. —Fun Also, if the temperature sensor 275 is arranged in the central region of the thermostatic bath 272, not only the second region 2 7 3-2, but also the temperature in the first region 2 7 3 -1 cannot be controlled appropriately. °
第10頁 严140 五、發明說明(8) 圖5係在圖4所示之以往之控制裝置之恒溫槽2 7 2内部 之溫度特性圖。在圖5,( 1 )係某種晶圓之溫度特性圖, (2 )係別種晶圓之溫度特性圖。2 91及2 9 4係利用目標設定 值叹疋裝置2 8 1所設定之目標溫度設定值,2 9 2及2 9 5係在 第一區域2 7 3 -1之溫度感測器2 7 5 -1所檢測之溫度量測值, 293及296係在第二區域273-2之溫度感測器275-2所檢測之 溫度量測值。 若依據(1 )之溫度特性,在預先調整時,因將操作量 限制裝置284、第一比例計算裝置2 85-1、第二比例計算裝 置285-2、第一偏置計算裝置286-1以及第二偏置計算裝置 286-2之參數設成溫度量測值292及293和目標設定溫度一 致’溫度量測值292及293和目標設定溫度一致,進行適當 之控制。 若依據(2 )之溫度特性,因依據對於變更為別種晶圓 之Θ之晶圓預先調整之參數控制,在第二區域2 7 3 - 2之溫 度檢測值2 96發生固定之偏差,不會變成在整體均勻之溫 度。 在此情況,為了對於變更後之晶圓控制成在整體均勻 之溫度,需要重新設定第二比例計算裝置2 8 5 - 2和第二偏 置计鼻裝置286-2之參數。這樣的話,每次 '更控制對象 就需要重新設定參數,不勝其煩。一樣的,每制對象之 周邊溫度變化之情況,也具有需要將參數再設為適當值之 課題。 本發明為解決上述之課題,其目的在於得到一種控制Page 10 Yan 140 V. Description of the invention (8) FIG. 5 is a temperature characteristic diagram inside the thermostatic bath 2 7 2 of the conventional control device shown in FIG. 4. In FIG. 5, (1) is a temperature characteristic diagram of a certain kind of wafer, and (2) is a temperature characteristic diagram of another kind of wafer. 2 91 and 2 9 4 use the target set value to sigh the target temperature set value set by the device 2 8 1; 2 9 2 and 2 9 5 are temperature sensors in the first zone 2 7 3 -1 2 7 5 The temperature measurement value detected by -1, 293 and 296 are the temperature measurement values detected by the temperature sensor 275-2 in the second area 273-2. If based on the temperature characteristics of (1), when adjusting in advance, the operating amount limitation device 284, the first ratio calculation device 2 85-1, the second ratio calculation device 285-2, and the first offset calculation device 286-1 And the parameters of the second offset calculation device 286-2 are set such that the temperature measurement values 292 and 293 are consistent with the target set temperature. The temperature measurement values 292 and 293 are consistent with the target set temperature, and appropriate control is performed. If the temperature characteristics based on (2) and the parameter control based on the pre-adjustment of wafers changed to Θ of other types of wafers, the temperature detection value 2 96 in the second region 2 7 3-2 will have a fixed deviation and will not The temperature becomes uniform throughout. In this case, in order to control the changed wafer to a uniform temperature overall, it is necessary to reset the parameters of the second ratio calculation device 2 8 5-2 and the second offset nose device 286-2. In this case, every time you control the object more, you need to reset the parameters. Similarly, there is a problem that the parameter needs to be set to an appropriate value when the ambient temperature of each object is changed. In order to solve the above problems, the present invention aims to obtain a control
2103-4363-PF;ahddub.pt d2103-4363-PF; ahddub.pt d
第11頁 502140Page 11 502140
系統’在將控制對象分成複數區後對各 仰賴斜坡信號產生電路等而利用i 徑制下也不必 恶溫之時刻一致,而且可有效的幻 』便幻達目私稔 儿J ’蚁的抑制在到達 西 過越或下越發生,例如在掣抨ΓΓη e f 逆又疋μ度後之 制γ . 畏表kCCD感測器等半導體开株之 裝程可適當的控制晶圓之溫度。 又,本發明之目的在於提供_ ^ j# i- ^ rn r a, 徒供種控制裝置,控制對象 A %<去兄條件4變了,也不必變雯杯^会 控制對象整體令1狀能^、目,f 參可繼續進行在 =: 測值和預設之目標設定值-致 發明之概述 本發明之控制系統,控制成所檢測之控制對象之狀態 之檢測值收歛至目標穩態值,包括··主運算裝置,輸入二 目標穩態值及檢測值後,產生變化成該檢測值收歛至該目 標穩態值之操作量,控制該控制對象;主檢測裝置,向該 主運算裝置輸出該檢測值;從運算裝置,輸入該主檢測裝 置之檢測值及別的檢測值後,產生變化成該別的檢測值收 欽至該檢測值之操作量,控制該控制對象;以及從檢測裝 置’向該從運算裝置輸出該別的檢測值。 因而,主運算裝置及各從運算裝置即使在各自擔任之 區有放熱特性變動等也可將溫度控制成很小之定值以下之 溫差。因此,只在主運算裝置設定目標穩態溫度,可令各 區之溫度按照例如一樣之升溫曲線上升至目標穩態溫度為 止,而且因不必進行任何設定處理,可令以各區未發生溫The system 'after dividing the control object into a plurality of areas, it does not need to be consistent with the time of the bad temperature under the i-path system, which depends on the slope signal generating circuit, etc., and it can effectively imitate it. It occurs when it reaches the west and goes down, for example, after making ΓΓη ef reverse and 疋 μ degrees, the manufacturing process of semiconductors such as kCCD sensors can appropriately control the temperature of the wafer. In addition, the purpose of the present invention is to provide _ ^ j # i- ^ rn ra, a control device for seed feeding, the control target A% < brother removal condition 4 has changed, and it is not necessary to change the Wen Cup ^ will control the entire object to make it 1 ^, Head, f parameters can continue to be carried out =: Measured value and preset target set value-Summary of the invention The control system of the present invention controls the detection value of the state of the detected control object to converge to the target steady state value Including ... The main computing device, after inputting two target steady-state values and detection values, generates an operation amount that changes to the detected value converging to the target steady-state value, and controls the control object; the main detection device sends to the main computing device Outputting the detection value; from the computing device, inputting the detection value of the main detection device and other detection values, generating an operation amount that changes to the other detection value and receiving the detection value, and controls the control object; and from the detection The device 'outputs the other detection value to the slave computing device. Therefore, the master computing device and each slave computing device can control the temperature to a small temperature difference below a fixed value even if there is a change in the exothermic characteristics or the like in their respective areas. Therefore, setting the target steady-state temperature only in the main computing device can make the temperature in each zone rise to the target steady-state temperature according to the same heating curve, for example, and because no setting process is necessary, the temperature in each zone can be maintained.
2103-4363-PF;ahddub.ptd 第12頁 5021402103-4363-PF; ahddub.ptd Page 12 502140
差之狀態穩定於目標穩態溫度,可有效的如&丄 巧欢的抑制在到達目標 穩態溫度後之過越或下越之發生。結果,目士上 ^ 五、發明說明(ίο) CCD感測器等半導體元件之製程可適當的批生,丨曰门』 表& 田w徑制晶圓之溫度 之效果。 本發明之控制系統,其中’設置了第一選擇器, 目標穩態值及主檢測裝置之檢測值,選擇其中之—/ 從運算裝置輸〃 —方後向The poor state is stable at the target steady-state temperature, which can effectively suppress, for example, & Qiaohuan ’s overshooting or downfall after reaching the target steady-state temperature. As a result, on the subject, the fifth, the invention description (ίο) CCD sensor and other semiconductor device manufacturing process can be properly approved, the gate temperature table and the effect of wafer temperature. According to the control system of the present invention, a first selector, a target steady state value, and a detection value of the main detection device are provided, and one of them is selected— / from the computing device input — and backward.
因而,一樣的控制或個別的控制各區都可,藉著組合 後利用,具有不另外設置新的控制裝置等就可將^體控& 成均勻之溫度或獨立的控制只有一部分之溫度之效果。 面 < 本發明之控制系統,其中,從運算裝置對所輸入之目 標穩態值或所輸入之主檢測裝置之檢測值加上既定之偏置 值後,據此控制控制對象之狀態。 因而,藉著將各區之溫差設為該偏置值而在保持定值 之^差之狀態控制全部之區,或藉著將從控制系之響應延 遲等設為該偏置值而將實際發生之延遲相抵消,具有可有 效的抑制從控制系之振盪之效果。 本發明之控制系統,其中,設置了目標穩態值記憶 體’輸出對主運算裝置及從運算裝置記憶之目標穩態值。Therefore, the same control or individual control of each area is possible. By using them in combination, it is possible to control the body temperature to a uniform temperature or to control only a part of the temperature without separately setting a new control device. effect. Surface < The control system of the present invention, wherein the slave object controls the state of the control object based on the input target steady state value or the input main detection device detection value plus a predetermined offset value. Therefore, by setting the temperature difference of each zone to the offset value and controlling all the zones while maintaining the difference of a fixed value, or by setting the response delay from the control system to the offset value, the actual The occurrence of the delay cancels out, which has the effect of effectively suppressing the oscillation from the control system. In the control system of the present invention, a target steady state value memory 'is provided to output the target steady state values stored in the master computing device and the slave computing device.
因而’具有可用單一之目標穩態值記憶體控制各區之 效果0 本發明之控制系統,其中,設置個數和主運算裝置與 從運算装置之總數相同之輸出目標穩態值之目標穩態值記 憶體’而且設置了在這些複數目標穩態值記憶體之間切換Therefore, 'the effect of having a single target steady-state value memory to control each zone is achieved. In the control system of the present invention, the number of sets and the total number of master computing devices and the number of slave computing devices are the same to output the target steady-state value. Value memory 'and is set to switch between these plural target steady-state value memories
502140 五、發明說明(11) 該主運算裝置或该各伙運鼻裝置之輸入元之第二選擇器。 因而,可用單一之目標穩態值記憶體控制各區,而且 可和主運算裝置分開的控制各從運算裝置,具有可變成富 於便利性之系統之效果。 本發明之控制系統,控制成所檢測之控制對象之狀態 之檢測值收歛至目標穩態值,包括··運算裝置,輸入該目 標穩態值及檢測值後’輸出變化成該檢測值收歛至該目標 穩態值之第一操作量;及乘法裝置,輸入該第一操作量, 對第一操作量乘以預設之既定之比例係數值後輸出第二操 作量;依照第二操作量控制控制對象。 因而,在依照第二操作量控制之各自擔任之區有放熱 特性變動等也可在用比例係數值抑制了該變動之狀態控制 溫度。 因此’只在運算裝置設定目標穩態溫度,可令各區之 溫度按照例如一樣之升溫曲線上升至目標穩態溫度為止, @I □ τ令以各區未發生溫差之狀態穩定於目標穩態溫 $ ’可有效的抑制在到達目標穩態溫度後之過越或下越之 發生。結果,具有在例如製造CCD感測器等半導體元件之 製私可f當的控制晶圓之溫度之效果。 置 本發明之控制系統,其中,設置了比例係數輸入裝 對各乘法裝置設定比例係數值。 因2,只要預設即可。 置 本發明之控制系統,其中,設置了比例係數設定裝 依照和該複數乘法裝置對應設置之控制對象之檢測502140 V. Description of the invention (11) The second selector of the input element of the main computing device or the gang nose device. Therefore, a single target steady-state value memory can be used to control each area, and each slave computing device can be controlled separately from the master computing device, which has the effect of becoming a convenient system. The control system of the present invention controls the detection value of the detected state of the control object to converge to the target steady state value, and includes an arithmetic device. After inputting the target steady state value and the detection value, the output changes to the detection value and converges to A first operation amount of the target steady state value; and a multiplying device, inputting the first operation amount, multiplying the first operation amount by a preset value of a predetermined proportional coefficient, and outputting a second operation amount; control in accordance with the second operation amount controlled object. Therefore, if there is a change in the exothermic characteristics in the respective areas controlled by the second operation amount, the temperature can be controlled in a state where the change is suppressed by the proportional coefficient value. Therefore, 'setting the target steady-state temperature only in the computing device can make the temperature of each zone rise to the target steady-state temperature according to the same heating curve, for example, @I □ τ makes the state stable at the target steady-state without the temperature difference in each zone. The temperature $ 'can effectively inhibit the overshoot or downfall from occurring after reaching the target steady state temperature. As a result, it is effective to control the temperature of the wafer in the manufacture of semiconductor devices such as CCD sensors. In the control system of the present invention, a proportional coefficient input device is provided to set a proportional coefficient value for each multiplication device. Because of 2, just preset. The control system of the present invention, wherein a proportional coefficient setting device is set, and the detection of the control object is set according to the corresponding setting of the complex multiplication device.
第14頁 作量令 新的控 制只有 制系統 其中之 控制控 為了重 之值修 可量測 時或設 置計算抑制該控制對象 差之比例係數值後各自 設定作業者在使用環境 進行最佳之設定之效果 制系統,其中,設置個 且設置了在這些複數運 元之第一選擇器。 一個運算裝置之第一操 各區動作都可, 制電路等就可將 五、發明說明(12) 值’就各乘法裝 目標穩態值之誤 因而,具有 就可在該環境下 本發明之控 之運算裝置,而 乘法裝置之輸入 因而,依照 算裝置之第一操 具有不另外設置 溫度或獨立的控 本發明之控 二操作量後選擇 二選擇器之輸出 因而,例如 將設於乘法裝置 在意乘法裝置就 具有在起始設定 統之效果。 本發明之控 狀恶之複數操作 以及向該複數操 制對象之狀態之 中,該檢測裝置 一部分之溫度之 ’其中,設置輸 一方輸出之第二 制對象。 新設定比例係數 正為1就可量測£ 新的比例係數, 定變更時也可變 之檢測值相對於該 設定。 下只進行量測處理 〇 數和乘法裝置相同 算裝置之間切換各 作量或依照複數運 藉著組合後利用, 整體控制成均勻之 效果。 入第一操作量及第 選擇器,依照該第 值’不必將—的 *結果’不必一 一 而且可保留前值, 成富於便利性之系 制系統,包括彼此獨立的改變控制對象之 裝置、檢測該控制對象之狀態之檢測裝置 作裝置輸出操作量而使得該檢測裝置對押 檢測值收歛至目標穩態值之控制襄置, 檢測全部之操作裝置之附近之狀^ ;該^The new control is only the control system in the control system. When the measurement control is modified for measurement, or the proportional coefficient value that suppresses the difference of the control object is calculated, the operator can set the best setting for the operator in the use environment. The effect control system, in which one is set and the first selector among these plural transport elements is set. The first operation of a computing device can be performed in each zone, and the circuit can be used to make the error of the invention description (12). The value of the steady state value for each multiplication can be set. Therefore, the invention can be used in this environment. Therefore, according to the first operation of the computing device, there is no additional temperature setting or independent control of the second control operation amount of the present invention, and then the output of the second selector is selected. For example, it will be set in the multiplication device. Attention to the multiplication device has the effect of setting the system at the beginning. Among the plural operations of controlling the evil and the state of the plural operating objects of the present invention, among the temperature of a part of the detection device, a second object that outputs one side is set. The newly set proportionality factor can be measured if it is 1. The new proportionality factor can be measured when the setting is changed. The detection value is relative to this setting. Only the measurement processing will be performed below. The number and the multiplication device are the same. Switch the workload between the calculation devices or run according to the complex numbers. Use them in combination to control the overall effect to a uniform effect. Into the first operation amount and the first selector, according to the first value 'not necessary to-the * result' does not have to be one by one and can retain the previous value, into a convenient system, including devices to change the control object independently, The detection device that detects the state of the control object is a device that outputs an operation amount so that the detection device controls the detection value to converge to the target steady-state value, and detects the state near all the operation devices ^; the ^
502140 五、發明說明(13) 制裝置使用對於某—個 ▲ 值之檢測值偏差補償 =该刼作裝置之附近之檢測 /而,可消除各= : = ^各自之操作量。 測值按照大致相同之、w 、 偏差。因此,複數檢 度變化特性有變動等,也可八乂: £之差異而在原來之溫 最終之目標穩態值。又,也;全部之區域大致同時的到達 越或下越發生。 "抑制在到達設定溫度後之過 因而,其效果為在將控制 下,也不必仰賴斜坡信號產生電區後對各區控制 到達目標穩態溫之時刻一致, 利用本來之控制使 定溫度後之過越或7*越發生,’ & f可有效的抑制在到達設 導體元件之製程可適ί:;制感測器等半 本發明之控制系統,其中,二二 記憶體,記憶目標穩態值;及運“ ^置j目標穩態值 自對應的設置,使用各自之檢 b 2,和各知作裝置各 制偏差計算對於各自之操作裝 2對於個別目標值之控 標穩態值作為個別目標值供二和3作量後輸出;將該目 檢測值之操作裝置對應之運算電成為基準之 為個別目標值供給別的運算電^ ㈣基準之檢測值作 因而,比只是對全部之控制電❹ 值之情況可更抑制檢測值誤差之發生,可使檢 絕對值更小,可使狀態之檢測值均勻化。 、偏差之 本發明之控制系統,其中’各運算電路按照各自之檢 2103-4363-PF;ahddub.ptd 第16頁 502140 五、發明說明(14) 測值相對於個別目標值批 制.% B 之检制偏差進行PID控制或IMC控 而且,替代邊基準之檢測值 上檢測值偏差之值或對哼A進夕认、,,土千心柷判值加 減波德夕枯夕知以λ ° 土皁之松測值加上該檢測值偏差 4及後之值之和輸入別的運算電路。 本發明之控制系統,直中,脸+咖 給同一彳目別目#彳自 味八 、在對全部之運算電路供 丨J個別目才示值之情況溫度變化啬槔+、審从+…上 基準之檢測值對應之運算電路; 又、^异電路k為和 了使用在該別的運算控制電路之^的運算電路輸入加上 擇之運算電路之微分:制係數和州^ 後之值。 千均值將檢測值偏差濾波 因而,在依照該狀態變化最慢 進行在全部之運算電路之控制下 ^電路之控制特性 變化最慢之運算電路佳之別的運算電J性比該狀態 情況,可控制成消除該檢測值偏差上生檢測值偏差之 之變動。 可有效的抑制檢測值 本發明之控制裝置,計算操作 區域構成之控制對象之狀態之量f而使得令表示由複數 致,向這些各區域輸出操作量,進:預設之設定值一 计算裝置,依照該控制對象之第一上制,包括··操作量 設定值,計算第一操作量和第二操^ Ϊ之量測值和預設之 量作為第一區域操作量向該第一區里後,將該第一操作 置,依照該控制對象之別的區域二二輪出,·偏差控制裝 或該第一區域之量測值,計算第三f剩值和預設之設定值 依照利用該操作量計算裝置所 ;、作里,以及加法器, t ^ 一操作量和剎爾諸502140 V. Description of the invention (13) The use of a device to compensate for the detection value of a ▲ value = detection of the vicinity of the operating device / instead, each operation can be eliminated by = = = ^. The measured values are approximately the same, w, and deviation. Therefore, there may be changes in the characteristics of the complex detection, and the difference between the eighth: £ may be the final steady state value at the original temperature. Also, also; the arrival of all the regions at the same time occurs more or less. " Suppress the passage after reaching the set temperature. Therefore, the effect is that under the control, it is not necessary to rely on the ramp signal to generate electrical zones. The control of each zone reaches the target steady-state temperature. The original control is used to make the temperature constant. The transition or 7 * occurs more and more, '& f can effectively suppress the process of reaching the conductive element. The control system of the present invention, such as a sensor, is composed of two or two memories and memory targets. Steady-state value; and set the target steady-state value to the corresponding setting, using the respective test b 2 and the deviations of each known operating device to calculate the steady-state control of the target value for each operation device 2 The value is used as the individual target value for the output of two and three. The calculation value corresponding to the operating device of the target value is used as the reference. The other target value is provided for the individual target value. ㈣ The detection value of the reference is made. The situation of all control voltage values can further suppress the occurrence of detection value errors, can make the detection absolute value smaller, and can make the detection values of the state uniform. The control system of the present invention of deviation, where According to their respective inspections 2103-4363-PF; ahddub.ptd page 16 502140 V. Description of the invention (14) The measured value is batched with respect to the individual target value.% B inspection deviation is controlled by PID or IMC. The value of the deviation of the detection value on the reference detection value or the recognition of the humming A, the addition and subtraction of the judgment value of the earthen heart, and the detection value of the soil, and the deviation of the detection value of λ ° soil soap plus 4 The sum of the following values is input to another calculation circuit. The control system of the present invention is straight, face + coffee to the same 彳 目 别 目 # 彳 自 味 八, the value is displayed only for all the calculation circuits for individual items. Circumstance temperature change 啬 槔 +, the calculation circuit corresponding to the reference detection value from + ...; and ^ exclusive circuit k is the input of the operation circuit plus the operation circuit of ^ used in the other operation control circuit. Differential: the coefficient and the value after the state. Thousands mean value will filter the detection value deviation. Therefore, the slowest change in the control characteristics of the circuit will be performed under the control of all the arithmetic circuits in accordance with the slowest change in the state. The operating electricity is more controllable than this state and can be controlled The control device of the present invention can effectively suppress the detected value deviation from the variation of the detected value deviation. The control device of the present invention calculates the quantity f of the state of the control object constituted by the operating area so that the representation is made plural. Area output operation value, advance: a calculation device with a preset set value, according to the first system of the control object, including the operation value setting value, calculate the measurement value of the first operation amount and the second operation ^ 和After the preset amount is entered into the first region as the first region operation amount, the first operation is set, and the second operation is performed according to the other regions of the control object. The deviation control device or the measurement of the first region Value, the third f remaining value and the preset set value are calculated according to the calculation device using the operation amount; operation, and the adder, t ^ an operation amount and a set value
2103-4363-PF;ahddub.ptd 第17頁 502140 五、發明說明(15) 偏差控制裝置所計算之第三操作 的區域操作量向別的區域輸出。 β异之知作量作為別 口而,具有利用該偏差控制抑 制對象變更為別種控制對象‘ ;二:可消除因控 之情況、或者加熱器發生老化==象之大小變化 度變化之情況、其環境變化之情周邊溫 之溫度量測值之偏差之效果。 丨χ之在別的區域 因此,具有係發生了那種變彳 何參數,可繼婷…复化之障况,也不必變更任 預設之目標設定值一致之控制之效果,“之篁測值和 本考χ月之控制裝置之操作量計算裝置包括·箆to Ah 量限制裝i,對依照第一區 J置:括·第-刼作 對該所分枯L: 置所輪出之操作量分枝後, 對β所刀枝之刼作量乘以預設之 偏置計算裝置,對自爷m =值,u及第一、第一 操作i p 第一、第二比例計算裝置所輸出之 偏差㈣預設之設定值,’算第-U喿作量; 之量二值2箱=括第=操作量限制裝置,對依照別的區域 後,汁算=Ρ之没定值所計算之操作量限制上限及下限 俊祚异弟三操作量。 :而目:"桑作量限制上限及下限,進行比例計算及偏 =斗π,具有可更適當的進行在控制對象之效 果。 刈 2140 五、發明說明(16) 圖式簡單說明 造圖 圖1係表示以往之基本的PID控制系統之構造之系統構 圖 圖 圖2係表示以往之別的PID控制系統之構造之系統構造 圖3係表示使用以往之控制裝置之控制系統之構造 圖4係表示使用以往之控制裝置之別的控制系統之構 造圖。 、圖5 (1 )、( 2 )係表示使用以往之控制裝置之控制系 之溫度特性圖。 、 1圖6係表示本發明之實施例1 ipiD控制系統之系統構 圖7(a)、(b)、(c)係在本發明之實施例】用以說 控制迴路之選擇方法之說明圖。 造圖 說明圖2103-4363-PF; ahddub.ptd Page 17 502140 V. Description of the invention (15) The area operation value of the third operation calculated by the deviation control device is output to other areas. The amount of β-knowledge is different, and it has the use of the deviation control to suppress the change of the object to another type of control object; Second, it can eliminate the situation of control, or the aging of the heater == the change of the size of the elephant, The effect of its environmental change on the deviation of the temperature measurement of the ambient temperature.丨 χ is in other areas. Therefore, it has the kind of parameters that have changed, which can continue to restore the obstacles. It is also not necessary to change the effect of the control of any preset target setting consistency. The value and the operation amount calculation device of the control device of this test include: 箆 to Ah volume limiter i, according to the first zone J settings: including-the first operation to the division of the operation L: the operation of the rotation After measuring the branch, multiply the amount of the knife branch by β by the preset offset calculation device. For the master m = value, u and the first and first operation ip output from the first and second ratio calculation device. The deviation is the preset value, which is calculated as the -U operation amount; the value is 2 boxes = 2 = = the operation amount limiter, and calculated according to other areas, the calculated value = P The upper limit and lower limit of the operation amount are different. The upper limit and lower limit of the mulberry amount limit, and the ratio calculation and deviation = bucket π have the effect of being more appropriate in the control object.刈 2140 V. Description of the invention (16) Simple illustration of drawing Figure 1 shows the basic PID control system in the past Structure of the system. Figure 2 shows the structure of a conventional PID control system. Figure 3 shows the structure of a control system using a conventional control device. Figure 4 shows the structure of a control system using a conventional control device. Structure diagrams., (5) (1), (2) are temperature characteristic diagrams showing a control system using a conventional control device. (1), (6) are system diagrams (i) of the ipiD control system according to Embodiment 1 of the present invention. , (B), (c) are in the embodiment of the present invention] an explanation diagram for selecting a control loop method.
圖8係表示本發明之實施例2之PID控制系統之系統構 =9 ( a )、( b )係表示本發明之實施例2之溫度控制例之 M (b)、係表示本發明之實施例2之溫度_ 制之別例之說明圖。 4〜μ度徑 造圖圖η係表示本發明之實施例3之piD控制系統之系統構 圖12(a)、(b)係表示本發明之實施例^之溫度控制例Fig. 8 shows the system configuration of the PID control system according to the second embodiment of the present invention = 9 (a), (b) is M (b) showing the temperature control example of the second embodiment of the present invention, and shows the implementation of the present invention An illustration of another example of the temperature_ system of Example 2. 4 ~ μ degree diameter Drawing η shows the system configuration of the piD control system according to the third embodiment of the present invention. Figures 12 (a) and (b) are temperature control examples showing the embodiment ^ of the present invention.
502140 五、發明說明(17) 之說明圖。 圖13係表示本發明之實施例4之piD控制單元之構造 方塊圖。 造圖 圖1 4係表示本發明之實施例5之? J D控制系統之系統構 圖1 5係表示本發明之實施例5之至比例係數之設定 止之處理步驟之流程圖。 ' 圖1 6係表示本發明之實施例6之p丨D控制系統之系統構 圖1 7係表示本發明之實施例7之p I d控制單元之構造 造圖 方塊圖 之 造圖 造圖 圖18係表示本發明之實施例8之piD控制系統之系統構 〇 圖19係表示本發明之實施例9之piD控制系統之系統構 «120(a)、(b)係表示在圖19所示之PID控制系統在將 輸入ΐ二^法器之加法值及輸入第二減法器之加法值都設 為目標穩態溫度之情況之溫度特性之說明圖。 圖21(a)、(b)、(c)係表示本發明之實施例9之?^ 制系統之溫度控制效果之說明圖。 玉 =22係表示本發明之實施例1〇 iPID控制系統之 構造圖。 圖23係表示使用本發明之實施例丨丨之控 系統之構造圖。 彳衣置之控制502140 V. Illustrative drawing of invention description (17). Fig. 13 is a block diagram showing the structure of a piD control unit according to the fourth embodiment of the present invention. Mapping Figure 14 shows the fifth embodiment of the present invention? System Structure of JD Control System Fig. 15 is a flowchart showing the processing steps up to the setting of the proportionality coefficient in the fifth embodiment of the present invention. '' FIG. 16 is a system configuration diagram showing a p 丨 D control system according to a sixth embodiment of the present invention. FIG. 17 is a block diagram diagram illustrating the structure of a p I d control unit according to the seventh embodiment of the present invention. FIG. 18 Fig. 19 shows the system structure of the piD control system according to the eighth embodiment of the present invention. Fig. 19 shows the system structure of the piD control system of the ninth embodiment of the present invention. «120 (a), (b) are shown in Fig. 19 The PID control system is an explanatory diagram of the temperature characteristics when the input value of the second subtractor and the input value of the second subtractor are set to the target steady-state temperature. Figures 21 (a), (b), and (c) show the ninth embodiment of the present invention? ^ An illustration of the temperature control effect of the control system. Jade = 22 is a structural diagram showing the iPID control system of the embodiment 10 of the present invention. Fig. 23 is a structural diagram showing a control system using an embodiment of the present invention. Control of clothing
第20頁 州 2140Page 20 State 2140
^圖24係表示使用本發明之實施例12之控制裴置之控 系統之構造圖。 工 置之控制 / 圖2 5係表示使用本發明之實施例1 2之控制裝 系統之溫度特性圖。 又 符號說明 2〜晶圓; 4〜PID控制單元; ;U〜 主減法器; 13〜 主控制電路; 1 5〜 從PID運算電路 ;1 8〜 基準值選擇器; 20〜 加法器; 23〜 基準值選擇器; 42〜 晶圓; 44〜 p ID控制單元; ;5卜 減法器; 53〜 乘法裝置; 55〜 數值輪入電路; 58〜 量測電路; 101 〜控制裝置; 1〜恒溫室; 3〜熱電偶; 5〜加熱器; 1 〇〜目標穩態溫度記憶體 12〜主PID運算電路; 1 4〜從減法器; 1 6〜從控制電路; 1 7〜目標穩態溫度記憶體 1 9〜偏置溫度記憶體; 2卜偏置選擇器; 4 1〜恒溫室; 4 3〜熱電偶; 4 5〜加熱器; 目彳示穩恶溫度記憶體 52〜PID運算電路; 54〜控制電路; 56〜數值輸入電路; 8卜控制對象; 502140 五、發明說明(19) I 0 2〜恒溫槽; 103-1〜第一區域; 103-2〜第二區域; 106〜目標設定值設定裝置;1〇8〜操作量運算裝置; II 0〜加法器; 11 1〜PI D運算裝置; 11 2〜操作量限制裝置; 11 4〜參數設定裝置; 11 5 - 1〜第一比例計算裝置; 115- 2〜第二比例計算裝置; 116- 1〜第一偏置計算裝置; 116-2〜第二偏置計算裝置mPiD運算裝置;^ FIG. 24 is a diagram showing the configuration of a control system for controlling a PEI device using Embodiment 12 of the present invention. Control of the plant / Fig. 25 is a graph showing the temperature characteristics of the control system using the embodiment 12 of the present invention. Symbols also 2 ~ wafer; 4 ~ PID control unit; U ~ main subtractor; 13 ~ main control circuit; 15 ~ slave PID operation circuit; 18 ~ reference value selector; 20 ~ adder; 23 ~ Reference value selector; 42 ~ wafer; 44 ~ p ID control unit; 5 subtractor; 53 ~ multiplication device; 55 ~ numerical turn-in circuit; 58 ~ measuring circuit; 101 ~ control device; 1 ~ constant temperature room ; 3 ~ thermocouple; 5 ~ heater; 1〇 ~ target steady state temperature memory 12 ~ master PID arithmetic circuit; 1 4 ~ slave subtractor; 16 ~ slave control circuit; 1 7 ~ target steady state temperature memory 19 ~ bias temperature memory; 2 bias selector; 4 1 ~ constant temperature chamber; 4 3 ~ thermocouple; 4 5 ~ heater; visually shows the stable temperature memory 52 ~ PID operation circuit; 54 ~ Control circuit; 56 ~ value input circuit; 8 control object; 502140 V. Description of the invention (19) I 0 2 ~ constant temperature bath; 103-1 ~ first area; 103-2 ~ second area; 106 ~ target set value Setting device; 108 ~ manipulation device; II 0 ~ adder; 11 1 ~ PI D computing device; 11 2 ~ operation amount limit device; 11 4 ~ parameter setting device; 11 5-1 ~ first ratio calculation device; 115-2 ~ second ratio calculation device; 116-1 ~ first bias Set computing device; 116-2 ~ mPiD computing device of second offset computing device;
11 8〜操作量限制裝置。 發明之最佳實施例 以下為了更詳細說明本發明,按照附加之圖面說明本 發明之最佳實施例。 實施例1 圖β係表示本發明之實施例1之PI D控制系統之系統構 造圖。在圖1,1係恒溫室,2係設置於該恒溫室1内之CCD 感測器用之晶圓,3係各自設於晶圓2之附近並檢測溫度之11 8 ~ Operation limiter. BEST MODE FOR CARRYING OUT THE INVENTION In order to explain the present invention in more detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings. Embodiment 1 FIG. Β is a diagram showing a system configuration of a PID control system according to Embodiment 1 of the present invention. In FIG. 1, 1 is a constant temperature chamber, 2 is a wafer for a CCD sensor installed in the constant temperature chamber 1, and 3 is a wafer respectively located near the wafer 2 and detecting the temperature.
熱電偶,4係使用該複數熱電偶3、…、3之檢測溫度進衫 既定之控制之PID控制單元,5係各自在晶圓2之附近和名 熱電偶3 —對一對應的設置之加熱器,6係各自設於各加 =5之電源,7係各自將加熱器5、電源6與 =控制迴路’8係各自在恒溫则設之通Μ 口,9;4 通風口 8所設置之風扇。 τ巾Thermocouples, 4 are PID control units that use the multiple thermocouples 3, ..., 3 to detect the temperature into the predetermined control of the shirt, 5 are each near the wafer 2 and the thermocouple 3 — heating to a corresponding setting 6 are respectively set at the power supply of each plus = 5, 7 are each set the heater 5, the power supply 6 and the control circuit '8 are each set at the constant temperature through the M port, 9; 4 the vent 8 is set fan. τ towel
2103-4363-PF;ahddub.ptd 第22頁 502140 五、發明說明(20) 在PI D控制單元4,1 η後— 、、西产記憶體,1 i W 10係狄疋目標穩態溫度之目標穩態 二裝置))之檢測溫;ίί::3(以下稱為主熱電偶3(主 溫度之主減法器(主標,9態溫度後輸出主偏差 運算之主操作量而使係輸出依照PID控制 (主pjd運算裝置),u係收歛至0之PID運算電路 旦% — 4& ’、輪入该主刼作量後按照該主操作 ;=;以:3:/之控制迴路7(以下稱 k路U之通電控制之主控制電路(主運 又,1 4係各自自剩下之—±為+ , ^ 偶(從檢測裝置⑻之=度 度後輸出從偏差溫度之從減法;、f :3之檢測》皿 各自輸出依照p I D控制運算之從择作θ异裝置)’ 1 5係 度收歛為。之_運算運電异路 明動通作電控制之從控制㈣^ 在全部之熱電偶3.....3之檢測译加,丄 定之狀態,將所要之目標穩態溫度設;:俨 a:之穩 穩態溫度後輸出主偏差溫;電度減去該目標 控制運算之主操作量而使得該1 主輸出依照 控制電和按照該主操作量進行主控制差迴=收歛為〇,主 制。此外,該主控制電路13只要在例,通電控 度為負)進行主操作量之值愈大使通電升^時(主偏差溫 心电崎間愈長之通電控 第23頁 2103-4363-PF;ahddub.ptd 502140 五、發明說明(21) 制,而在降溫時(主偏差溫度為正 使通電時間愈短之通電控制即可。丁主刼作量之值愈大 利用這種主控制迴路7之控制,主埶 時,自各從減法器14輸出之從 …電偶3之溫度上升 大。反之,主熱電偶3之溫度降低自之各=成在負侧變 出之從偏差溫度之值變成在正側減法器“輪 電路15輸出依照PID控制曾 而,各從PID運算 溫度收歛為。,各從控:從偏差 度係負之情況進行從偏差溫度 = =溫 =控制,而在從偏差溫度係正之情 值愈大使通電時間愈短之通電控制即可。 μ度之 升時因^主熱電偶3所檢測之主控制迴路7之檢測溫度上 :時^縱之,全部之從熱電偶3、…、3之檢測溫度也上 低時,W纟熱!偶3所檢測之主控制迴路7之檢測溫度降 低,在伴牲ί,王部之從熱電偶3.....3之檢測溫度也降 ' ’、寺疋值以下之溫差之狀態將恒溫室1内之溫度控 度至目標穩態溫度為止’控制成其整體收歛至目標穩態: 結果,只是將目標穩態溫度設於和主piD運算電路12 之目標穩態溫度記憶體10,可令恒溫室1整體按照例 箱卷樣之升,孤曲線上升至目標穩態溫度為止’而且因不必 目# $ t任何设疋處理,可令以未發生溫差之狀態穩定於 不穩溫度’可有效的抑制在到達目標穩態溫度後之過 第24頁 2103-4363-PF;ahddub.r 1" ιιιιιιιιιιιιιιιιι _ 五、發明說明(22) 越或下越之發生。而且,在製 之製程可適當的控制晶圓2之溫度。4測器等半導體元件 其次,說明哪一個加熱器5之 主控制迴路之選擇方法。圖7係在^ = ^路7、…、7選為 明主控制迴路之選擇方法之明 *月之實施例1用以說 制溫度之波形,(b)係對全;。在圖J ’ (a)係目標控 :該=制溫度之情況之各;之電: 波形。自①至④係各熱電偶3之檢 3之檢測二度 廷樣各控制迴路7之檢測、、θ 皿又波形。而,在像 之情況,將、、w痒 、狐又、吏化、曼成如圖(b)所示之結果 控制迴“進選ί主控制迴路。圖(c)係依照這種主 3、...、擇進仃該溫度控制之情況之全部之熱電偶 3、...、之松測溫度波形。而且,在將全部之熱電偶 之核測溫度抑制為定值以下之溫差下,可令稃定 二目:穩態溫度。料,在這些各波形圖,橫軸係經。 軸係檢&之度縱轴係目標控制溫度值,圖⑴、MO之縱 實施例2 造圖8係表示本發明之實施例2之PID控制系統之系統構 =j °在圖8 ’ 1 7係各自設定對於各從減法器1 4之目標穩 L 1度之目標穩態溫度記憶體,1 8各自係選擇主熱電偶3 $檢/則溫度和該目標穩態溫度記憶體1 7之目標穩態溫度之 之方後向各從減法器14之減法值輸入之基準值選擇器 I麵 第25頁 2103-4363-PF;ahddub.ptd 502140 五、發明說明(23) (第一選擇器)。除此以外之構造和實施例丨一樣,省略說 明。 其次說明動作。 w、、各基準值選擇器1 8選擇主熱電偶3之檢測溫度後,各 攸減法器1 4由從熱電偶3之檢測溫度減去該檢測溫度後, 將其作為從偏差溫度輸出。又,各基準值選擇器18選擇各 :標穩態溫度記憶體17之目標穩態溫度後,各從減法器14 由從熱電偶3之檢測溫度減去目標穩態溫 :足偏差溫度輸出。除此以外之動作和實施例i 一樣 說明。 於是,因像這樣依照各自之目標穩態溫度令各 =作’依照主熱電偶3之檢測溫度一樣的控 可依Λ目標穩態溫度記憶體17之目標穩態溫工 度個別的控制,藉著組合後利用,具有 制】路等就可將整體控制成均句之溫度或獨立 一部分之溫度之效果。 制/、有 結果,例如可得到如下所示之效果。 圖9係表示本發明之實施例2之溫度控制例 ^ u) flJ,(b) m度波形。而,藉著像這樣在溫度控制週期之檢貝J 準值選擇器1 8之選擇自主熱電偶3之檢測严 ’、夺各基 穩態溫度記憶體17之目標穩態溫度,'皿又奐為目標 配設各從熱電偶3之各區之溫度之效果、有了々任忍的變更2103-4363-PF; ahddub.ptd Page 22 502140 V. Description of the invention (20) After the PID control unit 4, 1 η-, Western memory, 1 i W 10 is the target steady-state temperature Target steady state two device)) detection temperature; ί :: 3 (hereinafter referred to as the main thermocouple 3 (the main subtractor of the main temperature (the main standard, the main operation amount of the main deviation operation is output after the 9-state temperature) to make the system output According to the PID control (main pjd computing device), u is a PID computing circuit that converges to 0% — 4 & ', after the main operation amount is turned in accordance with the main operation; =; to: 3 :: / control circuit 7 (Hereinafter referred to as the main control circuit for the energization control of the K-channel U (the main operation and 14 are respectively left by themselves-± is +, ^ even (from the detection device ⑻ = = degree), the output deviation temperature is subtracted from the subtraction ;, F: 3's detection> The respective outputs of the plates are selected according to the p ID control operation as the θ-differential device) '1 5 series of convergence to. _ Calculate the operation of the power transmission circuit and control the electrical control for the electrical control ㈣ ^ Set the desired target steady-state temperature for all the thermocouples 3 ..... 3 when they are detected and set;: 俨 a: Output the main deviation temperature after the steady-state temperature; Electricity minus the main operation amount of the target control operation to make the 1 main output according to the control power and the main control amount according to the main control difference = convergence to 0, the main system. In addition, the main control circuit 13 only needs to be an example. When the value of the main control is negative, the value of the main operation amount is increased. When the ambassador is energized, the main operation amount is increased (the main deviation is the longer the power control between the heart and the heart), 2103-4363-PF; ahddub.ptd 502140 V. Description of the invention (21 ) Control, and when the temperature is lowered (the main deviation temperature is the power-on control that is making the power-on time shorter. The larger the value of the main operation amount, the control of this main control circuit 7 is used. The output of the generator 14 has a large temperature rise. The temperature of the main thermocouple 3 decreases. On the contrary, the temperature of the main thermocouple 3 decreases. The value of the deviation from the temperature on the negative side becomes the subtractor on the positive side. According to the PID control, each time the PID calculation temperature converges to, each slave: from the case where the deviation degree is negative, the deviation temperature == temperature = control, and the more the deviation value is positive, the more the ambassador turns on the time A short power-on control is sufficient. Because the detection temperature of the main control circuit 7 detected by the main thermocouple 3 is: Hour ^ Anyway, when the detection temperature of all the slave thermocouples 3, ..., 3 is also low, W 纟 is hot! The detection temperature of the main control circuit 7 decreases. In the companion, the detection temperature of the slave thermocouples 3 ..... 3 of the king also decreases, and the temperature difference below the temple value will reduce the temperature in the constant temperature chamber 1. Control until the target steady-state temperature is controlled so that its overall convergence reaches the target steady-state: As a result, only the target steady-state temperature is set to the target steady-state temperature memory 10 of the main piD arithmetic circuit 12, which can make the thermostat 1 as a whole. According to the rise of the sample case, the solitary curve rises to the target steady state temperature, and because no setting treatment is necessary, it can stabilize the unstable temperature at a state where no temperature difference occurs. After the target steady-state temperature passes, page 24 2103-4363-PF; ahddub.r 1 " ιιιιιιιιι ιιιιιιιιι _ 5. The description of the invention (22) The more or the more it happens. Moreover, the temperature of the wafer 2 can be appropriately controlled during the manufacturing process. Semiconductor devices such as 4 testers Next, the method for selecting the main control circuit of the heater 5 will be described. Fig. 7 shows the method of selecting the main control loop at ^ = ^ roads 7, ..., 7 * The first embodiment of the month is used to describe the temperature waveform, (b) is right; In the figure J ′ (a) is the target control: the = control temperature of each case; the electricity: waveform. From ① to ④, the detection of each thermocouple 3 is the second degree of detection, and the control circuit 7 of the sample is the same. However, in the case of the image, the results shown in (b) are controlled by ",", "witch", "fox", "manualization", and "mancheng" and returned to the "selection main control loop. Figure (c) is based on this main 3 , ..., select all the thermocouples 3, ..., which have entered the temperature control, loose the measured temperature waveforms. Also, under the condition that the test temperature of all the thermocouples is suppressed to a temperature difference below a fixed value You can set the second item: steady-state temperature. It is expected that in these waveform charts, the horizontal axis is warped. The degree of axis control & the vertical axis is the target control temperature value. FIG. 8 shows the system configuration of the PID control system according to the second embodiment of the present invention = j °. In FIG. 8 ′ 17, the target steady-state temperature memory for each target stability L 1 degree from the subtractor 14 is set, 1 8 each selects the main thermocouple 3 $ check / then the temperature and the target steady-state temperature memory 1 7 the target steady-state temperature and then the reference value selector I input to the subtraction value from the subtractor 14 Page 25 2103-4363-PF; ahddub.ptd 502140 V. Description of the invention (23) (first selector). The structure other than that is the same as the embodiment. The operation is described next. W. After each reference value selector 18 selects the detection temperature of the main thermocouple 3, each subtractor 14 subtracts the detection temperature from the detection temperature of the thermocouple 3, and then subtracts the detection temperature. As the output from the deviation temperature. In addition, each reference value selector 18 selects each: the target steady-state temperature of the standard steady-state temperature memory 17, and each subtracts the target steady-state temperature from the detected temperature of the thermocouple 3 from the subtractor 14 : Foot deviation temperature output. Other operations are explained as in Example i. Therefore, according to the respective target steady-state temperature, each setting is set as' controlling according to the detection temperature of the main thermocouple 3 can be based on the target The individual control of the target steady-state temperature of the steady-state temperature memory 17 can be used to control the overall temperature into a uniform sentence or an independent part of the temperature by using it after combination. As a result, for example, the following effects can be obtained. Fig. 9 shows a temperature control example of the second embodiment of the present invention ^ u) flJ, (b) m-degree waveform. Furthermore, by checking the temperature during the temperature control cycle like this J quasi-selector 1 8 The detection of autonomous thermocouple 3 is strict, and the target steady-state temperature of each base steady-state temperature memory 17 is obtained. The effect of setting the temperature of each zone of thermocouple 3 for the target has been improved. Change
502140 五、發明說明(24) 明R圖?係表示本發明之實施例2之溫度控制之別例之說 明圖。在圖10,⑷係目標控制温度之波:射 對於全部之熱電偶3.....3之檢洌、、w声、古f ^ C)糸 各熱請之檢測溫度波形。如圖形在至④係 ,之檢測溫度為基準令控制各從控制迴路主J G熱::3電之偶7'溫度到達目標穩態溫度後㈣^ =達3目標穩態溫度後502140 V. Explanation of the invention (24) R diagram? It is an explanatory diagram showing another example of temperature control in the second embodiment of the present invention. In Fig. 10, it is the wave of the target control temperature: the test temperature, the sound of the sound, the sound of the ancient thermocouples 3,.. As shown in the figure above, the detection temperature is used as a reference to control the master control loop of each slave control circuit. Heat: 3: After the 7 'temperature of the electric couple reaches the target steady-state temperature, ^ = after the target steady-state temperature reaches 3
J : 之檢測溫度切換為目標穩態溫度記憶體17之S ϋ it可令配設各從熱電偶3之各區之溫度穩定於 1穩ϋ度,具有可防止響應延遲等所引起之振盡之效 能-ί動ϋ丄最初令各從控制迴路7依照各自之目標穩 了二又動作而令迅速到達該目標穩態溫度,而且變 =度附近之溫度後藉著將各從控制迴路7切換為主埶不 電之檢測溫度基準,具有可令迅速穩定於 = 溫度之效果。 #修也 實施例3 、圖11係表示本發明之實施例3之PID控制系統之系統構 造圖。在圖11,1 9係各自定偏置值之偏置溫度記憶體,2〇 係各自將該偏置值和基準值選擇器18之輸出值相加之加法 器,:各自選擇該加法器2°之加法值和基準值選擇器18 mm 第27頁 502140 五、發明說明(25) 之輸出值之中之一方後作為減法值向從減法器j 4輸出之偏 置選擇器。除此以外之構造和實施例2 一樣,省略說明。 其次說明動作。 p =法器20將設於偏置溫度記憶體19之偏置值和基準值 遥擇器1 8之輸出值相加。偏置選擇器2丨選擇該加法哭2 〇之 加法值和基準值選擇器18之輸出值之中之一方後作^減法 值向從減法器1 4輸出,從減法器i 4輸出自從熱電偶3之檢 測溫度減去該減法值之從偏差溫度。因此,可選擇主埶 偶3之檢測溫度、對主熱電偶3之檢測溫度加上既定之^ ,溫度、目標穩態溫度、對目標穩態溫度 ”樣之 路7動作,依U 象主、熱樣電U f f值之狀態令各從控制迴 迴路7 ’在依,昭偏置、、σ产庀:貝1溫度一樣的控制各從控制 …偏置,皿度δ己憶體1 9之偏置值俘拄仝括 差之狀態控制各從控制迴路7 寺疋值之溫 響應延遲等設為該偏置冑,將實者進而將攸控制系之 可有效的抑制從控制系之振盪。不、x之延遲相抵消,也 圖1 2係表示本發明之實施 圖。在圖12,(a)係目標控 ,:度拴制例之說明 電偶3、…、3之檢測溫度波ir自之①皮至开 =b)係全部之熱 檢測溫度波形。而,藉著如圖熱電偶3之 途將偏置選擇器21之選擇自基準值;控制週期之中 為加法器20之加法值, ,込擇^8之輸出值 制為保持定值之溫差之狀態 2103-4363-PF;ahddub.p t d _ 第28頁 502140 五、發明說明(26) 實施例4 圖13係表示本發明之實施例4之pid控制單元4之構、皮 之方塊圖。在圖13,22係各自輸入來自熱電偶3等之檢= 溫度之輸入端子,23係基準值選擇器(第二選擇器),八 部之目標穩態溫度記憶體1 〇、1 7、…、1 7及全部之於 王 子22、…、22連接,按照程式等之設定在各主減法器, 減法輸入元及各加法器20之輪入元之間任意的切換]= 以外之動作和實施例3 —樣,省略說明。 *此 其次說明動作。 基準值選擇器23按照控制程式等之設定自 穩態溫度記憶體10、17、…、17及全部之輸入端子目軚 22、、:·:、以之中各選擇一個,作為減法值向各減法器 11(減法器14)輸出。❿,各加法器2〇將各自對應 度記憶體19之值和該輸出相加,各減法器ιι( 對應之=入端子22所輸入之熱電偶3之檢測溫度等減由去^自 減法值後向各自之p ID控制電敗仏山 實施例3 —樣,省略說明。 乍牙 ! ? λη n ^ 一旻歎目軚穩態溫度記憶體1 〇、 17.....Η及稷數之輸入端子22 ..... 22之中摘告沾、西 輸入從減法器1 4之減法值後,^ 田的k擇 ^ ^ ^ m ^ 依照該選擇值可令久t ρ τ ηJ: The detection temperature is switched to S of the target steady-state temperature memory 17 ϋ it can stabilize the temperature of each zone equipped with each of the thermocouples 3 to 1 degree, and it can prevent the exhaustion caused by response delay, etc. Effectiveness-Firstly, each slave control loop 7 is stabilized in accordance with its respective target, and then moves to quickly reach the target steady-state temperature, and after changing the temperature near the degree, each slave control loop 7 is switched The main reference temperature for non-electricity detection has the effect of quickly stabilizing at = temperature. # 修 也 Embodiment 3 and FIG. 11 are diagrams showing a system configuration of a PID control system according to Embodiment 3 of the present invention. In FIG. 11, 19 is an offset temperature memory with a predetermined offset value, 20 is an adder that adds the offset value and the output value of the reference value selector 18, respectively: the adder 2 is selected individually ° Adder and reference value selector 18 mm Page 27 502140 5. One of the output values of the invention description (25) is used as a subtractor to output the bias selector from the subtractor j 4. The structure other than that is the same as that of the second embodiment, and the description is omitted. The operation will be described next. p = method 20 adds the offset value set in the offset temperature memory 19 and the output value of the reference value remote selector 18. The bias selector 2 丨 selects one of the addition value of the adder 2 and the output value of the reference value selector 18, and then performs a ^ subtraction value to output from the subtractor 14 and an output from the subtractor i 4 from the thermocouple The detection temperature of 3 is subtracted from the deviation temperature from the subtraction value. Therefore, you can choose the detection temperature of the main coupling 3, plus the predetermined temperature of the detection temperature of the main thermocouple 3, the temperature, the target steady-state temperature, and the target steady-state temperature. The state of the U ff value of the thermal sample makes each slave control loop 7 'in dependence, bias, and σ production: the control of the same temperature as the shell 1 biases ... The bias value captures the difference between the state control of each slave control circuit, and the temperature response delay of the control value is set to the bias value, so that the actual control system can effectively suppress the oscillation of the slave control system. No, the delay of x cancels, and Fig. 12 is a diagram showing the implementation of the present invention. In Fig. 12, (a) is the target control, the explanation of the example of the degree of tethering, and the detection temperature wave ir of the couples 3, ..., 3 From ① skin to open = b) are all the thermal detection temperature waveforms. However, the bias selector 21 is selected from the reference value by the way of thermocouple 3; the addition of the adder 20 in the control cycle Value,, select the output value system of ^ 8 to maintain a constant temperature difference state 2103-4363-PF; ahddub.ptd _ page 28 502140 five Explanation of the invention (26) Embodiment 4 FIG. 13 is a block diagram showing a structure and a skin of a pid control unit 4 according to Embodiment 4 of the present invention. In FIGS. Terminals, 23 series reference value selector (second selector), eight target steady-state temperature memories 10, 17, 7, ..., and all of them are connected to Prince 22, ..., 22, according to the program, etc. Arbitrarily switch between each main subtractor, subtraction input element, and round element of each adder 20] = Other operations are the same as those in the third embodiment, and the description is omitted. * This operation will be described next. Reference value selector 23 According to the setting of the control program, etc., from the steady-state temperature memory 10, 17, ..., 17 and all the input terminals 22, ... ::, one of them is selected as a subtraction value to each subtractor 11 (subtraction 14). Then, each adder 20 adds the value of the corresponding degree memory 19 to the output, and each subtractor (corresponding to the detection temperature of the thermocouple 3 input to the input terminal 22, etc.) is reduced by After the ^ self-subtraction value is controlled to the respective p ID, the power is lost. The description is omitted. First teeth!? Λη n ^ A sigh. The steady-state temperature memory 1 〇, 17 ..... and the input terminals 22 of the number… .. After inputting the subtraction value from the subtractor 14, the selection of k in the field ^ ^ ^ m ^ can be made according to the selected value for a long time t ρ τ η
運算電路1 2動作,可彼此相關 主ΡID H 4 ^ 關的控制各自之主PID運算電 路1 2、1 5 ’或可各自個別的批 异电 ^ W CT I制’藉著適當的組合後令動 作,不必另外追加新的構造, 傻7勳 就具有可變成富於便利性之 國 2103-4363-PF;ahddub.ptd 第29頁 502140The arithmetic circuit 12 operates and can control the main PID H 4 ^ related to each other. The respective main PID arithmetic circuits 1 2 and 1 5 ′ or each individual batch electric power ^ W CT I system ′ can be ordered by appropriate combination. Action, no need to add a new structure, silly 7 Honor can become a country of convenience 2103-4363-PF; ahddub.ptd page 29 502140
,、先之效果。例如,在從P丨D運算電路丨5之目標穩態溫度 舻1選擇和該從PID運算電路15對應之目標穩態溫度記 7之设定溫度或可任意指定之別的pID控制電路之檢First effect. For example, at the target steady-state temperature 舻 1 of the slave P 丨 D operation circuit 选择 1, select the set temperature of the target steady-state temperature corresponding to the slave PID operation circuit 15 to record the set temperature of 7 or other PID control circuits that can be arbitrarily specified.
…果,例如將目標穩態溫度設於目標穩態溫度記憶體 u後j最初依照目標穩態溫度控制主控制迴路7,而且依 :^忒主控制迴路7對應之主熱電偶3之檢測溫度控制別的 卫制迴路Y,變成穩態後,藉著令依照目標穩態溫度記 思體1 0之目標穩態溫度控制全部之控制迴路7、…、7,和 實%例2 —樣可有效的防止由擾亂或響應延遲等所引起之 通道(channel)間干涉所引起之振盪,而且在上階層動作 之控制程式不必在意複數目標穩態溫度記憶體就可進行這 些處理。結果,具有可使控制程式比實施例2的 且 了解之效果。... for example, after setting the target steady-state temperature in the target steady-state temperature memory u, the main control loop 7 is initially controlled according to the target steady-state temperature, and the detection temperature of the main thermocouple 3 corresponding to the main control loop 7 is: After controlling other sanitary circuit Y, it becomes a steady state, and by controlling the target steady-state temperature of the body 10 according to the target steady-state temperature, all the control loops 7, ..., 7 and the actual example 2 can be used. Effectively prevent the oscillation caused by interference between channels caused by disturbance or response delay, and the control program of the upper-level operation can perform these processes without paying attention to the multiple target steady-state temperature memory. As a result, there is an effect that the control program can be better understood than that of the second embodiment.
此外,在以上之說明,以包括PID運算電路12、15之 PID控制系統為例說明本發明之實施例,但是例如只是該 PID運算電路12、15置換為IMC控制電路,可變成IMC控制 系統。而,係該IMC控制系統,當然也可控制成使檢測溫 度收歛至目標穩態溫度。又,在以上之說明,以在製造 CCD感測器等半導體元件之製程適當的控制晶圓之溫度為 例說明,但是當然本發明只要係控制成檢測控制對象之狀 態之檢測值收歛至目標穩態值的都可應用。 實施例5In addition, in the above description, the PID control system including the PID operation circuits 12 and 15 is taken as an example to describe the embodiment of the present invention. However, for example, only the PID operation circuits 12 and 15 are replaced with the IMC control circuit, and the IMC control system can be changed. The IMC control system can of course be controlled so that the detection temperature converges to the target steady-state temperature. Also, in the above description, the temperature of the control wafer is appropriately controlled in the process of manufacturing a semiconductor device such as a CCD sensor as an example, but of course the present invention only needs to control the detection value of the state of the control target to converge to the target stability State values can be applied. Example 5
^02140 五、發明說明(28) 、圖14係表示本發明之實施例5之PID控制系統之系統構 造圖。在。圖14,41係恒溫室,42係設置於該恒溫室41内之 CCD感測器用之晶圓,43係配設於恒溫室“之中心部並檢 測溫度之熱電偶,44係使用該熱電偶43之檢測溫度進行既 疋之控,之PID控制單元,45係各自配設於晶圓42之附近 之加熱器(控制裝置)’46係各自設於各加埶器45電源 (控制裝置),47係各自將加熱器45、電源“與叩控制單 兀44串聯之控制迴路(控制裝置),48係各自在恒溫室41開 設之通風口,49係在通風口48之内側所設置之風扇。 _ fPID控制單7044 ’ 50係言免定目標穩態溫度之目標穩 j度f己憶體,51係自該熱電偶43之檢測溫度減去該目標 穩悲溫度後輸出偏差溫度之減法器(運算裝置),52係輸出 ==制運算,第一操作量而使該偏差溫度收歛至〇之 异電路(運算裝置),53係各自對該第一操作量乘以 之比例係數值後輸出第二操作量之乘法裝置, 5 4係各自輸入該第二操作量後按照該第二操作量進行各控 制==7之通電控制之控制電路(控制裝置)⑴係數值輸 係數輪入裝置),包括數字鍵,將自該數字鍵 2入之數值對於該複數乘法裝置53、…、53設為比例係 數值。 其次,說明動作。 圖1 5係表不本發明j^會絲也丨e 止之處理步驟之流二5牛例係數…為 之起始值「i」設於二之在乘圖二,二㈣1係將比例係數 丨t氷凌裝置53 ..... 53之起始設^ 02140 V. Description of the invention (28), FIG. 14 is a system configuration diagram showing a PID control system according to the fifth embodiment of the present invention. in. Fig. 14, 41 is a constant temperature chamber, 42 is a wafer for a CCD sensor installed in the constant temperature chamber 41, 43 is a thermocouple arranged in the center of the constant temperature chamber and detecting the temperature, and 44 is a thermocouple The detection temperature of 43 is controlled, and the PID control unit 45 is a heater (control device) respectively disposed near the wafer 42. The 46 is a power supply (control device) 45 each is installed in each amplifier. 47 is a control circuit (control device) in which a heater 45 and a power supply are connected in series with the control unit 44, 48 is a vent provided in the constant temperature chamber 41, and 49 is a fan provided inside the vent 48. _ fPID control sheet 7044 '50 is a target that stabilizes the target steady-state temperature. It is a degree of self-definition, 51 is a subtractor that outputs the deviation temperature after subtracting the target steady-state temperature from the detection temperature of the thermocouple 43 ( (Calculation device), 52 series output == system operation, different circuit (calculation device) for the first operation amount to make the deviation temperature converge to 0, 53 series each output the first operation amount by the proportional coefficient value The multiplication device of the two operating quantities, 5 4 is the control circuit (control device) (the coefficient inputting coefficient round-in device) of the control circuit (control device) for the energization control according to the second operating quantity after each input of the second operating quantity, It includes a numeric keypad, and sets the numerical value entered from the numeric keypad 2 to the complex multiplying means 53,..., 53 as a proportional coefficient value. Next, the operation will be described. Figure 1 5 shows the flow of the processing steps up to 5 in the present invention. The coefficients are shown in Figure 5. The initial value "i" is set in the figure of the multiplication. Figure 2 is the scale factor.丨 tIcing device 53 ..... 53
502140 五、發明說明(29) 定步驟,步驟ST2係將所要之目標穩態溫度(例如1 00度)設 於目標穩態溫度記憶體5 0之目標穩態溫度設定步驟,步驟 ST3係在這些設定下開始控制溫度之開始控制步驟,步驟 ST4係量測熱電偶43之檢測溫度之取樣步驟,步驟ST5係依 照該檢測溫度和目標穩態溫度之差判斷熱電偶43之檢測溫 度是否穩定於目標穩態溫度之穩定度判斷步驟,步驟ST6 係在檢測溫度穩定於目標穩態溫度之狀態量測各加熱器45 之附近(例如在圖1 4以「*」表示之位置之溫度)之區溫度 量測步驟,步驟ST7係按照各區之溫度相對於該目標穩態 溫度之偏差計算比例係數之比例係數計算步驟,步驟ST8 係將各比例係數設於各乘法裝置5 3之比例係數設定步驟, 步驟ST9係判斷在該新的比例係數之組合之設定下控制溫 度時各加熱器45之附近溫度之偏差是否是容許偏差以下之 設定確認判斷步驟。 在這種比例係數之設定處理,例如在設目標穩態溫度 為1 0 0度、某區之量測溫度為1 2 0度、此時之第一操作量係 其滿刻度之31 %之情況,依照下式1及式2可求得比例係數 為「0 · 8」。502140 V. Description of the invention (29) The setting steps, step ST2 is the step of setting the target steady-state temperature (for example, 100 degrees) to the target steady-state temperature of the target steady-state temperature memory 50. Step ST3 is based on these Set the start control step of starting the control temperature. Step ST4 is a sampling step for measuring the detection temperature of the thermocouple 43. Step ST5 is to judge whether the detection temperature of the thermocouple 43 is stable at the target according to the difference between the detection temperature and the target steady-state temperature. Step for determining the stability of the steady-state temperature. Step ST6 measures the temperature near each heater 45 (for example, the temperature at the position indicated by "*") in the state where the detected temperature is stable at the target steady-state temperature. Measurement step, step ST7 is a proportional coefficient calculation step of calculating a proportional coefficient according to the deviation of the temperature of each zone from the target steady-state temperature, and step ST8 is a proportional coefficient setting step of setting each proportional coefficient to each multiplication device 53. Step ST9 is to judge whether the deviation of the temperature near each heater 45 when the temperature is controlled under the setting of the new combination of proportionality coefficients is below the allowable deviation. Set the confirmation judgment procedure. In the process of setting the proportionality coefficient, for example, when the target steady-state temperature is 100 degrees, the measurement temperature in a certain area is 120 degrees, and the first operation amount at this time is 31% of its full scale. According to the following formulas 1 and 2, the proportionality coefficient can be obtained as "0 · 8".
{120(度)-100(度)}/{100(度)X 100(〇/〇)/25(〇/〇)}=20/400 = 5 (%)式 1 RATIO={25(°/。)-5(°/。)}/25(%) = 0· 8 式2 自數值輸入電路5 5將利用以上之處理所計算之比例係 數設於乘法裝置5 3後’實際上將既定之晶圓4 2設於恒溫室' 41 ’在此狀態在P I D控制單元4 4之上階令溫度控制程式動{120 (degree) -100 (degree)} / {100 (degree) X 100 (〇 / 〇) / 25 (〇 / 〇)} = 20/400 = 5 (%) Formula 1 RATIO = {25 (° / .) -5 (° /.)}/ 25 (%) = 0 · 8 Equation 2 Since the numerical input circuit 5 5 sets the proportionality factor calculated by the above processing to the multiplication device 5 3, it will actually be set. The wafer 4 2 is set in the constant temperature chamber '41'. In this state, the temperature control program is activated on the PID control unit 4 4.
2103-4363-PF;ahddub.ptd 第32頁 5021402103-4363-PF; ahddub.ptd p. 32 502140
2 ’將該程式之溫度設定值作為目標穩態溫度設於目標穩 態溫度記憶體50,按照需要變更該溫度,在意理控制晶圓 42之溫度。具體而言,將目標穩態溫度設於目標穩態溫度 °己隱體5 0後’減法器5 1自熱電偶4 3之現在之檢測溫度減去 该目標穩態溫度,PID運算電路52輸出依照PID控制運算之 第一操作量,使得該偏差溫度收歛為〇,各乘法裝置5 3對 ,第一操作量乘以各自設定之比例係數後輸出第二操作 里,各控制電路54按照該第二操作量進行各控制迴路47之 通電控制。該通電控制只要例如在升溫時控制成第〜2 'Set the temperature setting value of the program as the target steady-state temperature in the target steady-state temperature memory 50, change the temperature as needed, and control the temperature of the wafer 42 in a rational manner. Specifically, the target steady-state temperature is set to the target steady-state temperature ° own hidden body 50 after the 'subtractor 5 1 subtracts the target steady-state temperature from the current detection temperature of the thermocouple 4 3, and the PID arithmetic circuit 52 outputs According to the first operation amount of the PID control operation, the deviation temperature converges to 0, and each of the multiplication devices is 53 pairs. The first operation amount is multiplied by the respective set proportional coefficient and output in the second operation. Each control circuit 54 performs the operation according to the first operation amount. The two operation amounts perform energization control of each control loop 47. This energization control may be controlled to the
量之大小愈大每單位時間之導通時間(duty) = : = 降日守控制成苐二操作量之大小愈大每單位時間之導通時 間(duty)愈減少即可。 而,像 加熱器4 5、 熱器4 5之通 異等也可在 因此, 5 0,就可令 標穩恶溫度 穩定於目標 後之過越或 亂,也具有 程可適當的 這樣依照單一PID運算電路52之輸出控制複數 …、45之通電時間,也因按照比例係數令各力 電時間不同,各自之加熱器45之放熱特性有』 各區間未發生溫差之狀態令升溫、降溫。The larger the amount, the greater the on-time per unit time (duty) =: = The larger the value of the sundown control, the smaller the on-time per unit time. In addition, the difference between the heater 4 5 and the heater 4 5 can also be passed. Therefore, 50 can make the temperature of the target stable and overpass or chaos after the temperature is stable at the target. The output control times of the PID arithmetic circuit 52 ..., 45, and the power-on time are also different according to the proportionality coefficient, and the heat release characteristics of the respective heater 45 are provided. The state where no temperature difference occurs in each section causes the temperature to rise and fall.
只是將目標穩態溫度設於目標穩態溫度記憶漫 各區之溫度例如按照一樣之升溫曲線上升至丨 為止,而且因可在各區間未發生溫差之狀態^ 穩態溫度,可有效的抑制在到達目標穩態溫z 下越之發生。而且,有風扇49等所引起之擾 在製造CCD感測器等半導體元件之晶圓42之製 控制晶圓4 2之溫度之效果。Just set the target steady-state temperature to the target steady-state temperature and keep the temperature in each zone. For example, the temperature rises to 丨 according to the same temperature rise curve, and because the temperature difference does not occur in each section. ^ The steady-state temperature can be effectively suppressed at Reaching the target steady-state temperature z will occur. In addition, there is an effect of disturbance caused by a fan 49 or the like. The effect of controlling the temperature of the wafer 42 by manufacturing the wafer 42 for manufacturing a semiconductor element such as a CCD sensor.
^02140^ 02140
實施例6 造圖圖=1發明之實施例6之PID控制系統之系統相 ΰ ,圖16,56係按照輸入將比例係數值設於各乘Embodiment 6 Mapping = 1 The system phase of the PID control system according to Embodiment 6 of the invention ,, Figures 16, 56 are set according to the input to the multiplication factor value
於各:=入電路(比例係數設定裝置),57係各自㈣ J ,…态45之附近之熱電偶(檢測溫度輸入裝置),58名 =測電路(比例係數設定裝置),輸入該複數熱電偶M I二二15千7之檢測溫度等,使用各熱電偶57之檢測溫度$ 异汉於各乘法裝置53之比例係數後,使用數值輸入 5In each: = input circuit (proportional factor setting device), 57 are thermocouples (detection temperature input device) near the respective J, ... state 45, 58 = test circuit (proportional factor setting device), enter the complex thermoelectric Use the detection temperature of each thermocouple 57, such as the detection temperature of the MI 2215, 7 and so on. Use a numeric value after entering the scale factor of each multiplication device 53. 5
將比例係數設於各乘法裝置53。㉟此以夕卜之構造和實 〕一樣,省略說明。 其次說明動作。 匕、1測電路58執行圖1 5所示之流程圖,計算設於全部之 乘法裝置53 ..... 53之比例係數,使用數值輸入電路56將 比例係數設於各乘法裝置53。除此以外之動作和實施例5 一樣,省略說明。 、 而’藉著像這樣在PID控制單元44内設置量測電路58 並,自量測至設定為止之處理自動化,和實施例1相比, 设定作業者在使用環境下只進行量測處理,就可在該環境 下進行最佳之設定,具有可變成富於便利性的等效果。 實施例7 圖係表示本發明之實施例7之pId控制單元44之構造 之方塊圖。本PID控制單元44包括個數(在圖17為各4個)和 控制電路54 —樣之目標穩態溫度記憶體50、減法器51以及The proportionality coefficient is set in each multiplication device 53. The structure and structure of Xi Bu are the same], and the description is omitted. The operation will be described next. The measurement circuit 58 executes the flowchart shown in FIG. 15 to calculate the proportionality coefficients set in all the multiplication devices 53... 53. The numerical input circuit 56 is used to set the proportionality coefficients in each multiplication device 53. The other operations are the same as those in the fifth embodiment, and the description is omitted. And 'by setting the measurement circuit 58 in the PID control unit 44 like this, and the processing from measurement to setting is automated, compared with the first embodiment, the setting operator only performs measurement processing in the use environment , The best setting can be made in this environment, and it has the effect of becoming convenient. Embodiment 7 FIG. 7 is a block diagram showing the structure of a pId control unit 44 according to Embodiment 7 of the present invention. The PID control unit 44 includes the number (four each in FIG. 17) and a control circuit 54 such as a target steady-state temperature memory 50, a subtractor 51, and
DUZ14U 五、發明說明(32) PID運算電路52。在圖I? rq 體50.....5〇之門任立59係在複數目標穩態溫度記憶 第-切換電換各減法器51之減法輸入元之 輸入端子,6 1係在複數^勒入來自熱電偶等之檢測溫度之 換各減法器=…6°、…、6。之間任意的切 PID運算電路52.....1兀之第一切換電路,62係在複數 輸入元之第三切換電各///置Μ之DUZ14U V. Description of the invention (32) PID operation circuit 52. In the figure I? Rq body 50 ..... 50, the gate of Renli 59 is the input terminal of the subtraction input element of the subtraction switch 51 in the complex target steady state temperature memory, and 6 1 is in the complex number ^ Switching in the subtractors from the detected temperature from the thermocouple etc. = ... 6 °, ..., 6. Arbitrary switching between the PID operation circuit 52 ..... 1 The first switching circuit, 62 is the third switching circuit of the complex input element //// M
之第四切換電路(第忍的切換各控制電路54之輸入元 對全部之乘法裝置53 ) ’ 64係使用*值輸入電糊 照溫度控制程^等進彳-」、53設定所計算之比例係數或按 切換設定之控丁 :4個切換電路59、6〇、61、62之 省略說明。 體。除此以外之構造和實施例2—樣, 而, 各減法器 目標穩態 目標穩態 換電路61 部之減法 減法器5 1 度,或令又, 各乘法裝 置53、… 稭者利 5 1輸入 溫度, 溫度記 ,可對 器51、 ,可令 自不同 藉著利 置53輸 、53輪 不同之 或對全 憶體5 0 各滅法 ···、51 自共同 之檢測 用控制 入不同 八共同 本體64 目標穩 部之減 之目標 器5 1輸 輸入共 之檢測 溫度減 本體64 之第一 之第一 切換第 態溫度 法器5 1 穩態溫 入不同 同之檢 溫度減 去不同 切換第 操作量 操作量 一切換電路59 記憶體50、··· ··、5 1輸入 度。藉著切換 之檢測溫度, 測溫度。因此 去共同之目標 之目標穩態溫 三切換電路62 或對全部之 。因此,在各 、50之 共同之 弟二切 或對全 ’在各 穩態溫 度。 ,可對 乘法裝 乘法裝 _The fourth switching circuit (the input element of each control circuit 54 is switched to all the multiplication devices 53) '64 is the use of * value input electric paste temperature control process ^ and so on-", 53 set the calculated ratio Coefficient or control set by switching: 4 switching circuits 59, 60, 61, 62 are omitted. body. The structure other than that is the same as that of Embodiment 2. In addition, each of the subtractor target steady-state target steady-state switching circuits 61 subtraction subtractors 51 1 degrees, or each multiplication device 53, ... Input temperature, temperature record, can be used for device 51,, which can be used to set 53 losses, different 53 rounds, or for the total memory 5 0 each destruction method ... 51, the common detection control into different eight The common body 64 is the target of the target stabilization part 5 1 input, and the common detection temperature is subtracted from the body 64. The first first switching state temperature controller 5 1 is the same as the steady state temperature. Manipulation amount Manipulation amount-switching circuit 59 Memory 50,..., 5 1 input degree. Measure the temperature by switching the detection temperature. So go to the common goal of the target steady state temperature three switching circuit 62 or to all of them. Therefore, the two brothers in common at each and 50, or all at ’at each steady state temperature. , Can be used for multiplication equipment multiplication equipment _
5U214U5U214U
置53可令對共同之第一操作量 作量’或令對不同之第一操作 出第二操作量。 、 乘以比例係數後輸出第二操 量乘以各自之比例係數後輸 饼夂:2 ^著利用控制本體64切換第四切換電路63,可 ϊίί fΪ入乘法裝置53之輸出(第三操作量)或可 ,第二刀換電路62之輸出(第二操作量)。因此,在各控 制電路54可令進行共同之控制或不同之控制。 而口以上之切換控制可任意且獨立,和實施例6 一 樣可々依照基於一個檢測溫度之一個p I d運算電路5 2之 1 出乂全部之控制電路54、…、54動作,或令依照不同之 運舁電路52之輸出令各之控制電路54動作,藉著組合 4利用不必另外设置新的控制電路5 4就可將整體控制成 均勻之溫度或獨立的控制只有一部分之溫度,具有可變成 富於便利性之系統之效果。 尤其,在穩恶藉著依照一個目標穩態溫度記憶體5 〇之 目標穩態值令控制全部之控制迴路47,在上階動作之控制 程式可不在意複數目標穩態溫度記憶體5〇、···、5〇的控 制。結果,具有可使控制程式變成簡單且易了解之效果。 又,因使得在PID運算電路52(第三切換電路62)和乘 法裝置53之間切換各控制電路54之輸入元,例如為了重新 設定比例係數值,不必將--的將設於乘法裝置53之值修 正為1就可量測。結果,不必--在意乘法裝置5 3就可量 測新的比例係數,而且可保留前值,具有在起始設定時\ 設定變更時也可變成富於便利性之系統之效果。v ^The setting 53 can make the amount of a common first operation amount 'or make a second operation amount of a different first operation. 2. Multiply by the proportionality factor and output the second operand. Multiply by the respective proportionality factor and output the cake. 2: Using the control body 64 to switch the fourth switching circuit 63, you can enter the output of the multiplication device 53 (the third operating amount). ) Or yes, the output of the second tool changing circuit 62 (second operation amount). Therefore, common control or different control can be performed in each control circuit 54. The switching control above the port can be arbitrarily and independently, as in the embodiment 6, can be performed in accordance with a p I d arithmetic circuit 5 2 1 based on a detected temperature, all the control circuits 54, ..., 54 act, or The output of different operation circuits 52 causes each control circuit 54 to operate. By using combination 4, it is possible to control the whole to a uniform temperature or to control only a part of the temperature independently without setting a new control circuit 54 separately. The effect of becoming a convenient system. In particular, by controlling the entire control loop 47 in accordance with a target steady-state value of a target steady-state temperature memory 50 in stability and evil, the control program in the higher-order operation may not care about a plurality of target steady-state temperature memories 50, ·· ··, 50 control. As a result, there is an effect that the control program can be made simple and easy to understand. In addition, since the input element of each control circuit 54 is switched between the PID arithmetic circuit 52 (the third switching circuit 62) and the multiplication device 53, for example, in order to reset the proportional coefficient value, it is not necessary to set the-to the multiplication device 53 The value can be measured by modifying it to 1. As a result, it is possible to measure the new scale factor without having to worry about the multiplication device 5 3, and the previous value can be retained, which has the effect of becoming a convenient system when the initial setting is changed. v ^
五、發明說明(34) 此外’因也可令複數PID運算電路52 ..... 52之鈐Ψ f自複數乘法裝置53、…、53,也可將恒溫二輸:分 稷區後’對由該複數區構成之各組控制溫度。 實施例8 造圖圖1在發明之實施例8之PID控制系統之系統構 ^,在圖18,65係各自對自乘法裝置53輸出之第-择作 篁加上偏置值後作兔筮_ s k , W I弟一操作 係各自於入叙ί Γ為第二刼作置輸出之偏置加法裝置,66 之_ W ^ ^ ί式設定信號等後按照該動作模式向各自 U =路54輸出該第三操作量等之動 内之偏置值徭蔣立ί ί輸 〇〇%〜2〇〇%之範圍 w μ ^ :八叹於该複數偏置加法裝置65 ..... 65之 : = 置,68係進行手動模式及自動模式之中么 擇輸入後,將松昭、▲战飞及連轉杈式之中之某一方之選 之一藉動你捃ΐ "、、廷 合所選擇之4種動作模式之中 模式選擇裝置,6 9係設定在模2 2 2號,出之動作 動作模式切換裝置....... 式時利用之刼作量後向 置,係設定在手動模式量設定裝 換裝置66、...、66輸出之手j BC後向動作模式切 而,動作掇4切拖肚手動時刼作量設定裝置。 了「手動槿4 、式換攻置66在動作模式設定信號上輪入 了手動杈式:< 準備模式」之悴、^ "心丨°現上輸入 式設定信號上輪入了「手動模式:運量=動兄 輸出自手動時操作量設定裝=’向各自,控制電路54 式設定信號上輪入τ r车氣w ,、用入之操作1,在動作模 向 2103-4363-PF;ahddub.ptd 第37頁 502140 五、發明說明(35) _ 各自之控制電路54輸出自手動時操 _ ^ 操作量;在動作模式設定信號m裝置7〇輸入之 模式」之情況,向各自之控制電路準備 設定裝置69輸入之操作量;在動作時操作量 出第三操作量。除此以外 二制電路54輸 明。 耳^例5 一樣,省略說 其次說明動作。 在起動了 PI D控制系統之狀離接 、 68時,將按照手動模式和自動模^選擇裝置 之組合所選擇之關於動作模式之資訊作f ^式t運轉模式 號輸入全部之動作模式切換裝置66。各動作=式設定信 66按照該動作模式之動^模式切換裝置 定裝置70之操作量以及準備匕=;定;=,量設 之中選擇-個後向各自之控制電路54輸出Γ #作® 「手列如進行「手動模式x準備模式」之設定或 定裝置70設定操作量後,全部之 H動時操作量設 量進行溫度控制;設定「自動模式χ 依作 備時操作量設定裳置69設定操作量後,=二而=準 可依昭紡J是从曰 「至1欠 王邵之控制電路5 4 式」時,'各押:5 :二度控制,設定「自動模式X運轉模 _ ^各&制電路54可依照各自之第三操作量進行溫度 又’在設定了「自動模式以轉模式」之狀態,自第V. Description of the invention (34) In addition, 'the complex PID operation circuit 52 can also be used to make the complex number multiplying devices 53, ..., 53 of the complex PID operation circuit 52, and the constant temperature can also be lost: after the dividing area' The temperature is controlled for each group consisting of the plural regions. Embodiment 8 Drawing Figure 1 shows the system configuration of the PID control system of the eighth embodiment of the invention. In Figures 18 and 65, the third-selection output of the multiplying device 53 and the offset value are added to make the rabbit. _ sk, WI, the first operation is a bias addition device that sets the output for the second frame, 66_ _ W ^ ^ type setting signal, etc., and outputs to each U = road 54 according to the operation mode. The offset value in the movement of the third operation amount, etc. Jiang Li ί loses the range w 00% ~ 200% w μ ^: Eight sighs in the complex offset addition device 65 .... of 65 : = Set, after the 68 is in the manual mode and the automatic mode, select one of Song Zhao, ▲ Zhan Fei, and Lian Zhuo, and use it. According to the mode selection device among the 4 selected operation modes, 6 9 is set to the mode 2 2 2 and the operation mode switching device is provided ....... The amount of operation used in the mode is set backward. It is set in the manual mode volume setting and changing device 66, ..., 66 output hand j BC back to the action mode, and the action 切 4 cuts the belly when manual operation, the volume setting device. The “Manual Hibiscus 4 and Type 66 Attacks have entered the manual mode on the action mode setting signal: < Preparation Mode '', ^ " Heart 丨 ° Now the input type setting signal has entered the“ Manual ” Mode: capacity = moving brother output from manual when the manual setting is set = 'to each, control circuit 54 type setting signal turns on τ r car gas w, using operation 1, in the action mode 2103-4363- PF; ahddub.ptd Page 37 502140 V. Description of the invention (35) _ The respective control circuits 54 output from manual operation _ ^ The amount of operation; in the mode of operation mode setting signal m device 70 input mode, to the respective cases The control circuit is prepared to set the operation amount input by the device 69; the operation amount is the third operation amount during the operation. Otherwise, the second circuit 54 is output. Ear ^ Example 5 will be omitted, and the operation will be described next. When the PID control system is activated and disconnected, at 68, the information on the operation mode selected according to the combination of the manual mode and the automatic mode ^ selection device is f ^ mode t operation mode number input all operation mode switching devices 66. Each action = type setting letter 66 moves in accordance with the action mode. ^ The mode switching device sets the operation amount and preparation of the device 70. Setting; =, choose among the setting settings-and output Γ # to the respective control circuit 54. ® "Manual mode such as" Manual mode x preparation mode "setting or setting device 70 set the operation amount, all H operation time operation amount setting amount for temperature control; set" automatic mode χ according to the operation amount setting when preparing After setting 69 to set the amount of operation, = 2 and = quasi can be determined when Zhaofang J is from "to 1 owing to Wang Shao's control circuit 5 4 formula", "Each bet: 5: second degree control, set" automatic mode X Running mode_ ^ Each & control circuit 54 can perform the temperature according to the respective third operation amount. In the state where the "automatic mode is turned mode" is set, since the first
第38頁 502140 五、發明說明(36) ΐΓίί生部67輸入偏置值後,將該偏置值設於各自之偏 第:押二ί65 ’設定了該偏置值之偏置加法裝置65輸出對 岳丨备;ίΐ,在以上之說明,以包括PID運算電路52之PID控 P D糸軍t為例說明了本發明之實施例,但是例如只是將該 運异電路52置換為IMC控制電路’可變成服控制系 收於^ ’係該1MC控制系統,當然也可控制成使檢測溫度 =至目標穩態溫度。χ,在以上之說明,以在製造㈣ Π?ί導體元件之製程適當的控制晶圓之溫度為例說 t、、ι彳^ =二然本發明只要係控制成檢測控制對象之狀態之 核測值收歛至目標穩態值的都可應用。 實施例9 造θ圖Ht示本發明之實施例9之p 1D控制系統之系統構 = : ’81係恒溫室等控制對象,82係各自配設於 ί 1加熱器(操作裝置),8 3各自係加熱器電 ί:對上 各自配設於各加熱器82之附近並檢測 二子象81之溫度狀態之熱電偶(檢測裝置),85係使用該 控固ff單電元偶84之檢測溫度控制該2個加熱器82之通電之ΡΐιΓ f Vc r J ^ ^ ^ 1182 ^ ^ ^ ^ <探作電路(刼作裝置),87係各自將加埶5! 82、加熱器電源83以及操作電路86連接成 ^通 控制迴路“桑作裝置),88係記憶目標穩態溫度之 麵 第39頁 2103-4363-PF;ahddub.p t d 502140 發明說明(37) 溫度記憶電路(控制裝置)。在以下 ^ ,電偶84至加熱器82為止 ::圖19上方記載之自 87、82)稱為第一控制迴路,、89、90、86、 84至加熱器82為止之控制路徑、I方記載之自熱電偶 稱為第二控制迴路,在個別指示各、95、86、87、82) 情況加上「第一」或「第二」之修^绚,路之構成元件之 89係自第一檢測溫度減去目標穩;::::… 制偏差輸出之第一減法器(控制裝置7 了二,後作為第一控 制偏差進行PID控制運算後將其^算結果係依照該。第一控 向第-操作電路86輸出之第 g 為第一操作量 又,係自第一檢測溫度減去第二運二電二(J ^ 度偏差輸出之檢測溫度減法器(控制裝置溫 it/據波處理後輸出已濾波之』測= 波裔電路(控制裝置),93係對第一 差之濾 之檢測溫度偏差之第二目西声 田二又σ上该已濾波 番、,cm尨占够一皿度產生用加法器(控制裝 抱蓋私山、一檢測溫度減去該加法值後作為第二控制 爲^輸出之第二減法器(控制裝置),95係依照該第二工控 偏差進打PID控制運算後將其計算結果作為第二操作旦工 第二操作電路8 6輸出之第二piD運算電路(控制穿 里α 其次說明動作。 、 在2支熱電偶84、84之檢測溫度穩定之狀態,對目標 穩癌溫度記憶電路8 8設定所要之控制對象之目標穩態溫度 後,第一減法器89自該穩定之第一檢測溫度減去目標穩態 溫度後,第一PID運算電路90依照該第一控制偏差進ϋςP.38 502140 V. Description of the invention (36) After inputting the offset value by 部 Γίί67, set the offset value to their respective offset: 65. Output of the offset addition device 65 with the offset value set To Yue Yue; ΐ 在, in the above description, the embodiment of the present invention is described by taking the PID control PD 糸 arm t including the PID operation circuit 52 as an example, but for example, the operation different circuit 52 is only replaced by an IMC control circuit The control system can be turned into the control system of the 1MC. Of course, it can also be controlled so that the detection temperature = to the target steady state temperature. χ, in the above description, taking the temperature of the control wafer appropriately in the manufacturing process of the ㈣ Π? ί conductor element as an example, t ,, ι 彳 ^ = Erran, as long as the present invention is controlled to detect the state of the control target Any measurement that converges to the target steady state value can be applied. Example 9 The θ diagram Ht shows the system structure of the p 1D control system of Example 9 of the present invention =: '81 series thermostats and other control objects, 82 series are each equipped with 1 heater (operating device), 8 3 Each of the heaters is a pair of thermocouples (detection devices) that are respectively arranged near each of the heaters 82 and detect the temperature state of the two sub-images 81. The 85 series uses the control temperature of the ff single electric element 84 to detect temperature Controls the power of the two heaters 82. F Vc r J ^ ^ ^ 1182 ^ ^ ^ ^ < Probe circuit (operating device), 87 series will each add 5! 82, heater power 83 and operation The circuit 86 is connected to the control circuit "mulberry plant", and the 88 series memorizes the target steady-state temperature. Page 39 2103-4363-PF; ahddub.ptd 502140 Description of the invention (37) Temperature memory circuit (control device). In In the following ^, the galvanic couple 84 to the heater 82: (from 87, 82) shown in the upper part of FIG. 19 is called the first control circuit, and the control path from 89, 90, 86, 84 to the heater 82, and I are recorded. The self-thermocouple is called the second control circuit, and it is added in the case of individual instructions (95, 86, 87, 82). The "first" or "second" repairs are beautiful. 89 of the component elements of the road subtract the target stability from the first detection temperature; The PID control operation is performed as the first control deviation, and the calculation result is based on this. The g-th output from the first control to the -th operation circuit 86 is the first operation amount, and the second detection value is subtracted from the first detection temperature. Yun Er Dian Er (J ^ degree deviation output detection temperature subtractor (control device temperature it / filtered output after wave processing) "test = wave circuit (control device), 93 is the detection of the first difference filter The second temperature difference of the second head of the west sound field is σ. The filter has been filtered, and cm 尨 occupies one pan degree to generate an adder (controlling the mounting and covering of the private mountain, a detection temperature and subtracting the addition value as the second The second subtractor (control device) controlled by ^ output, 95 is a PID operation that is performed according to the second industrial control deviation, and the calculation result is used as the second operation. The second piD operation is output by the second operation circuit 86. The circuit (controlling the alpha α, the operation will be described next.) In 2 thermocouples 8 4. When the detection temperature is stable at 84, the target stable cancer temperature memory circuit 8 8 After setting the target steady state temperature of the desired control object, the first subtractor 89 subtracts the target steady state temperature from the stable first detection temperature. After that, the first PID operation circuit 90 performs the calculation according to the first control deviation.
第40頁 五 、發明說明(38) 控制運算,第一握 控制迴路87之通電押制路86 :照第-操作量進行第-通電 之檢測溫度穩定心態:因::面減=熱電·、“ 制偏差係「Oi ,扃筮 U目弟一減法器94輸出之第二控 而,利用笛一t 控制迴路不進行通電控制。 度上升時,第路之通電控制熱電偶84之檢測溫 制。*在Ϊ ί =糊第一控制偏差進行通電控 在控制對㈣内;發^ η;:加熱器82通電’ 去第-檢、;、、:ΐί,ϊ測溫度減法器91自第-檢測溫度減 遽波2 ;ίί^;皮!=2對該檢測溫度偏差進行 =去該加法值,第二PID運算電二1^ 藉著連續的進行這種控制,因最後在第一檢 目標穩態溫度一致之時刻結束第一控制迴路之雷概又和 在弟仏測溫度和弟二檢測溫度一致之時刻纟士击贫一 迴路之通電,結果,在第一檢測溫度及第二二^二控制 成目標穩態溫度之時刻通電控制結束。^酿度都變 其次,說明將目標穩態溫度輸入第—控制迴 控制迴路之哪一個迴路之決定方法。 郭弟二 圖20係表示在圖19所示之PID控制系統在將輸人第—5. Explanation of the invention on page 40 (38) Control operation, the first holding control circuit 87 is energized and controlled by the circuit 86: the detection temperature of the-energization according to the-operation amount is stable. "The control deviation is" Oi, the second control output of the subtractor 94, and the control circuit is not used to control the energization. When the degree rises, the energization control of the first path controls the thermocouple 84 temperature detection. . * 在 Ϊ ί = paste the first control deviation to carry out the control within the control pair; send ^ η ;: the heater 82 is powered on; go to the -check,; ,,: ΐ, the measured temperature subtractor 91 from the- Detection temperature reduction wave 2; ί ^; skin! = 2 Perform the detection temperature deviation = remove the addition value, the second PID operation is 2 1 ^ By continuously performing this control, because at the end of the first detection target The moment when the steady-state temperature is consistent, the lightning control that ends the first control loop is the same as the time when the measured temperature of the second and the detected temperature of the second are the same. The result is that at the first detected temperature and the second two ^ At the moment when the control reaches the target steady-state temperature, the power-on control ends. ^ The degree of fermentation has changed second, said Steady state temperature of the target input - a control loop which determines the method of the loop back control younger Guo two lines in FIG. 20 shows the PID control system shown in FIG. 19 the input of the first -
2103-4363-PF;ahddub.ptd 5021402103-4363-PF; ahddub.ptd 502140
之加法值都設為目 轴係時間,縱軸二 之二圖。圖_之橫 路共同的設定之目標穩態溫度:溫Γ曲;路二第:控制迴 溫度:温度曲、線’98係第二檢測溫度之溫度曲:第-檢測 ,如圖19(a)所示,在時刻t〇將同—俨 最慢(曲線之平= 之第-控制迴路)輪入目標穩第態 為第:㈣迴路也可追縱在第一控制迴右路 一]、久說明濾波器電路92之濾波處理。下 示該濾波器電路92之濾波處理之計算式。在該> \ 滤波器電路92之輸出,s係拉氏變換運 (s)係 =第-PID運算電路9。之微分係數,D2係第二:參運數算電 分係數…卜’該參數等用圖示外之輸入裝置等 G(s) = l/(1+T · s)式3 T= a(Dl+D2)/2 式4 而, 之時間常 致一致, 微分係數 已知在PID控制之微分係數和圖2〇(b)之溫度曲線 數(檢測值上升至設定值之約6〇%為止之時間)大 在本實施例Θ之PID控制也將時間常數用 502140The added values are all set as the target axis time, and the vertical axis is two or two. Figure_The set steady-state target temperature of the horizontal road: temperature Γ curve; the second road: the control return temperature: the temperature curve, the temperature curve of the second detection temperature of line '98 series: the-detection, as shown in Figure 19 (a ) As shown, at the time t0, the slowest (the flatness of the curve = the -th control loop) turns into the target steady state is the first: the loop can also follow the first control back to the right one], The filtering process of the filter circuit 92 will be described for a long time. The calculation formula of the filtering process of the filter circuit 92 is shown below. At the output of this filter circuit 92, s is a Laplace transform (s) = -PID operation circuit 9. Differential coefficient, D2 is the second: the calculation of the electrical coefficient by the number of shipments ... This parameter and other input devices, etc. are not shown in the figure. G (s) = l / (1 + T · s) Equation 3 T = a ( Dl + D2) / 2 Equation 4 However, the time is always consistent. The differential coefficient is known in the differential coefficient of PID control and the number of temperature curves in Figure 20 (b) (the detection value rises to about 60% of the set value). Time) is greater than the PID control of Θ in this embodiment using the time constant 502140
人藉著像這樣將代人了第二檢測溫度對於第—檢測溫度 之檢測值偏差之該式3之值和第二控制迴路之個別目標值 (第一檢測溫度)相加,發生第_檢測、、w序 示一私别/皿度對於第一檢測溫 度之溫度變化延遲,也使用能以原來之時間常數D2 i) 控制之第二控制迴路之餘力消除之。尤其,在本實施例 9 ’如該式3所示’因若愈是延遲量累積之狀況該式3之值 愈大’可確實消除該溫度變化延遲。 八在^如該式A所示’因使用在第—PID運算電路90之微 刀係數D1和在第二PID運算電路95之微分係數D2之平均 值、,和例如只是設為「τ= α M」之情況相比,一方面有效 的消除該溫度變化延遲,也無如只是設為「T= A Μ」之情 况般過度的消除該溫度變化延遲,控制迴路之溫度變化曲 線不會位於比第一控制迴路之溫度變化曲線上側,具有可 適當的消除該溫度變化延遲之效果。 圖21係表示本發明之實施例9 iPID控制系統之溫度控 」效果之,明圖。圖21 (a)表示在將目標穩態溫度作為減 / f輸入第二減法器94之情況之第一檢測溫度之溫度曲線 t第一檢測溫度之溫度曲線,圖2 1 ( b )表示在將第一檢測 溫f作為減法值輸入第二減法器94之情況之第一檢測溫度 之/凰度曲線和第二檢測溫度之溫度曲線,圖21 (c )表示如 ^實施例9在將第二目標溫度產生用加法器93之輸出作為 ;、法f輪入第二減法器94之情況之第一檢測溫度之溫度曲 t和第一檢測溫度之溫度曲線。在圖21,9 9係該第二目標 /風度產生用加法器9 3之輸出之溫度曲線。By adding the value of the formula 3 which substitutes the detection value of the second detection temperature to the detection value of the first detection temperature and the individual target value of the second control loop (the first detection temperature) like this, the _ detection occurs The sequence of “,” and “w” shows the delay of the temperature change of the first detection temperature to the first detection temperature. It is also eliminated by the remaining power of the second control circuit that can be controlled by the original time constant D2 i). In particular, in this embodiment 9 'as shown in the formula 3', the more the value of the formula 3 becomes larger as the delay amount accumulates, this temperature change delay can be reliably eliminated. As shown in the formula A, the average value of the micro knife coefficient D1 used in the first PID operation circuit 90 and the differential coefficient D2 of the second PID operation circuit 95 is used, and, for example, "τ = α Compared with the case of "M", on the one hand, the temperature change delay is effectively eliminated, and the temperature change delay is not eliminated as much as the case of "T = A Μ". The upper side of the temperature change curve of the first control loop has the effect of appropriately eliminating the delay of the temperature change. FIG. 21 is a diagram showing the effect of temperature control of the iPID control system according to the ninth embodiment of the present invention. Fig. 21 (a) shows the temperature curve of the first detection temperature when the target steady-state temperature is input as the subtraction / f to the second subtractor 94. Fig. 21 (b) shows the temperature curve of the first detection temperature. When the first detection temperature f is input as the subtraction value to the second subtractor 94, the temperature curve of the first detection temperature and the temperature of the second detection temperature are shown in FIG. 21 (c). The target temperature is generated by using the output of the adder 93 as the temperature curve of the first detection temperature and the temperature curve of the first detection temperature in the case where the method f turns into the second subtractor 94. In Fig. 21, 9 9 is a temperature curve of the output of the second target / demand generating adder 93.
五 發明說明(41) 路都:丄产控制迴路及第二控制迴 兄,由各自之加熱器之加埶效率等的 差直接以溫度曲線之差出現,若U:5丨起之時間常 态等之特性—致而人_ 先下工夫使加熱 度;:溫度上升或下降。而,在利用第二ί: ;::: 度差抑制為相:ϋ Ϊ ί之情況可在將溫度曲線間之溫 或下降疋之延遲時間之溫度差下令溫度上升 將控制對象變化之控制等之情況可在 降。此外::i 溫度下令溫度上升或下 π,莊丄^本實鈀例9所示,在發生了該溫度差之情 加埶按照該溫度差使用第二控制迴路餘力稍微額外的 产工升=消除相當於固定之延遲時間之溫度差下令溫 :之-Π係溫度急速變化之控㈣,也可使實際上發 生之脈差更小,可在令大致一致下令溫度上升或下 :氣ΐΓί這樣消除在溫度變化之間之溫$,因可令控制 對象整體大致同時的到達目標溫度’而且也不會產 第-加熱器8 2和第二加熱器8 2之間發生之溫度梯度所引起 之對流,可使得在到達該目標溫度後幾乎不會產生過越或 下越、纟σ果可令控制對象81整體迅速的穩定於目標穩態溫 度0 如上述所示,若依據本實施例9,在包括由加執器82 及操作電路86構成並令控制對象81之溫度狀態彼此獨立的 變化之2組操作裝置、檢測該控制對象8丨之溫度狀態之熱Fifth invention description (41) Ludu: the production control loop and the second control loop, the difference between the heating efficiency of the respective heaters and the difference between the temperature curve appear directly, if the time normal from U: 5, etc. Characteristics-To the people_ First work to make the heating degree :: temperature rise or fall. However, in the case of using the second ί:; ::: to suppress the degree difference to the phase: ϋ Ϊ ί, the temperature difference between the temperature curve or the delay time of the temperature drop 疋 can be used to increase the temperature and control the change of the control object The situation can be reduced. In addition: the temperature i increases or decreases by π, as shown in Example 9 of palladium palladium. When the temperature difference occurs, use the second control circuit to spare a little extra production power according to the temperature difference = Eliminating the temperature difference equivalent to a fixed delay time and ordering the temperature:--Π is a control of rapid temperature changes, and it can also make the actual pulse difference smaller, and you can order the temperature to rise or lower when it is about the same: Elimination of the temperature $ between temperature changes, because the entire control target can reach the target temperature at the same time, and it will not cause the temperature gradient between the first heater 82 and the second heater 82. Convection can make the overshoot or undershoot hardly occur after reaching the target temperature. The 纟 σ result can make the control object 81 as a whole quickly stabilize at the target steady-state temperature. As shown above, according to the ninth embodiment, Includes two sets of operating devices composed of the actuator 82 and the operating circuit 86 and making the temperature state of the control object 81 independent of each other, and detects the heat of the temperature state of the control object 8 丨
2103-4363-PF;ahddub.ptd 第44頁 五、發明說明(42) 電偶84以及向該2組操作電 偶84對於控制對象81之檢輪出操作量而使得該熱電 PID運算電路9 0、9 5之控敏又收歛至目標穩態溫度之 熱器82之附近之狀離德工,#、統,因該熱電偶84檢測2個加 溫度之檢測值偏i =該二用運第 輸出之各自之操作量各操作電路Μ 度之檢測值偏差。因此,2個除/,一檢測溫度和第二檢測溫 度曲線變化至目標穩態溫度檢/溫度按照大致相同之溫 區之差異而在原來之溫度;=熱器82或擔當 之區域大致同時的到達最終之專又也::全部 在到達設定溫度後之過越或下:f又’也可抑制 因而,其效果為在將和r也丨m 1 下,也不必仰賴斜坡信號;生電;而】J :各:f制 到達目標穩態溫之時刻一致利用本來之控制使 宗、、w许尨>、Α勒★、 而且可有效的抑制在到達設 導俨二之^ 5下越發生’例如在製造CCD感測器等半 導體70件之製程可適當的控制晶圓之溫度。 ^據本實施例9,包括記憶目標穩態 f溫度記憶電糊、及和各㈣電細各 ^穩 使用對於個別目標溫度之各自之檢測溫度之控制:差又= 對於各自之操作電糊之操作量後輸出之2j@piD運^路 90 : 95 ’因以個別之目標值供給第一piD運算電路9〇該目 標穩態溫度、以個別之目標值供給第二piD運算電路⑽該 基準之檢測值,和只是對全部之plD運算電路9〇、Μ個別 的設定目標穩態值之情況相比,可抑制檢測值誤差之發2103-4363-PF; ahddub.ptd Page 44 V. Description of the invention (42) The electric couple 84 and the operation amount of the two sets of operating couples 84 to the control object 81 check wheel make the thermoelectric PID arithmetic circuit 9 0 The control sensitivity of 9 and 5 converged to the vicinity of the target steady-state temperature of the heater 82, which is far away from the German workers, #, Tong, because the thermocouple 84 detects the two heating temperature detection values i = the second use The deviations of the detection values of the respective operating quantities of the output operating circuits and M degrees. Therefore, 2 divisions, the first detection temperature and the second detection temperature curve change to the target steady-state temperature detection / temperature according to the difference of approximately the same temperature zone and the original temperature; = Heater 82 or the area in charge is approximately simultaneously Reaching the final level: all over or down after reaching the set temperature: f can also be suppressed. Therefore, the effect is that it will not depend on the ramp signal under the conditions of r and r m; also generating electricity; And] J: each: the time when the f system reaches the target steady-state temperature, the original control is used to make Zong,, w Xu, &A; ★, and it can effectively suppress the occurrence of the problem when reaching 5 'For example, in the process of manufacturing 70 semiconductors such as a CCD sensor, the temperature of the wafer can be appropriately controlled. ^ According to the present embodiment 9, including the memory of the target steady state f temperature memory electric paste, and each of the electric charge ^ stable use of the control of the respective detection temperature for the individual target temperature: difference = = for the respective operation of the electric paste 2j @ piD 运 ^ 路 90: 95 output after the manipulated quantity 'Because the individual piD operation circuit is supplied with an individual target value 90, the target steady-state temperature is provided, and the second piD operation circuit is provided with an individual target value. Compared with the case where only the target steady-state values are set individually for all the plD arithmetic circuits 90 and 24, the detection value can suppress the occurrence of detection value errors.
502140502140
生,因而可使檢測值偏差之絕對值更小 值均勻化。 可使狀態之檢測Therefore, the absolute value of the deviation of the detection value can be made smaller. Enables status detection
ς依據本實施例9,因和基準之檢測值對應UiD j异電路90被選為將在對於全部之piD運算電路9〇、95供 …同一值之個別目標值之情況狀態變化最慢之piD 電 =,而且對別的運算電路95輸入加上使用在該別的運算 ,^95之微分控制係數D2和在該所選擇之運算電路9〇之微 ^控制係數D1之平均值將檢測值偏差遽波後之值,在依照 该狀態變化最慢之PID運算電路9〇之控制特性進行在全部 算電路9〇、95之控制下’也在控制特性比該狀態 % *慢之P1 D運算電路9 0佳之別的運算電路9 5發生檢測 值偏差之情況,可控制成消除該檢測值偏差,According to the present embodiment 9, the UiD j different circuit 90 corresponding to the reference detection value is selected as the piD whose state changes the slowest when the individual target values of the same value are provided for all the piD arithmetic circuits 90 and 95. Electricity =, and to the input of other arithmetic circuit 95 plus the average value of the differential control coefficient D2 of ^ 95 and the differential control coefficient D1 of 90 in the selected arithmetic circuit will be detected value deviation The value after the wave is performed according to the control characteristics of the PID arithmetic circuit 90 which changes slowly in this state. Under the control of all arithmetic circuits 90 and 95, the P1 D arithmetic circuit whose control characteristics are slower than the state% * In the case where a deviation of the detection value occurs when the calculation circuit of the best 90 is different, it can be controlled to eliminate the deviation of the detection value.
制檢測值之變動。 π < I 實施例1 0 圖22係表示本發明之實施例1〇iPID控制系統之系統 f造圖。在圖22,1〇〇係濾光器電路(控制裝置),和檢測 溫度偏差一起輪入第一控制偏差後,依照下式5進行濾波 處理輸出已濾波之檢測溫度偏差。但,〇 f f s e t係已滤波 之檢測溫,度偏差,SP1係目標穩態溫度,ρνι係第一檢測溫 度’ PV2係第二檢測溫度,f s係濾波電路之輸入取樣頻 率,f 11 ter()係一階濾波器函數。 of fset = 〇 SP1〜PV1」為〇· 5%f s以内且「PVl」安定時)Changes in the detection value. π < I Embodiment 10 FIG. 22 is a diagram showing a system f of a iPID control system according to Embodiment 10 of the present invention. In FIG. 22, the 100-series filter circuit (control device) is rotated into the first control deviation together with the detected temperature deviation, and then filtered according to Equation 5 to output the filtered detected temperature deviation. However, 0ffset is the filtered detection temperature and degree deviation, SP1 is the target steady-state temperature, ρν is the first detection temperature, PV2 is the second detection temperature, fs is the input sampling frequency of the filter circuit, and f 11 ter () is First-order filter function. of fset = 〇 SP1 ~ PV1 "is within 0.5% f s and" PVl "is stable)
川 2140Chuan 2140
五、發明說明(44) offset = fi 1 ter((PVl -PV2)(SP1 -PV1)) (「SPl ~PV1」比〇.5%fs大或者「PV1」未安定時)式5 除此以外之構造和實施例9 一樣,省略說明。 其次纟兄明動作。 在 狀態’ 照上述 度產生 路將溫 在 穩憑溫 恶溫度 態溫度 度0 控制對象8 1之溫度穩定於例如室溫之特定之溫度之 「SP1—PV1」變為〇.5%fs以内且「PV1」安定,依 式2濾波電路1〇〇之輸出變成「〇」,自第二目標溫 用加法器93輸出第一檢測溫度。因此,第二控$制1 迴 度控制成第二檢測溫度變成第一檢測溫度。V. Description of the invention (44) offset = fi 1 ter ((PVl -PV2) (SP1 -PV1)) ("SPl ~ PV1" is larger than 0.5% fs or "PV1" is not settled) Equation 5 In addition The structure is the same as in the ninth embodiment, and the description is omitted. Secondly, Xiong Ming made a move. In the state, according to the above-mentioned degree generation method, the temperature "SP1-PV1", which is stable at a specific temperature such as room temperature, is controlled to be within 0.5% fs. "PV1" is stable, the output of the filter circuit 100 according to the formula 2 becomes "0", and the first detection temperature is output from the second target temperature adder 93. Therefore, the second control system is controlled so that the second detection temperature becomes the first detection temperature.
這種狀態在目標穩態溫度記憶電路88記憶新的目標 度後,第一減法器89自第一檢測溫度減去該目標穩 ,因而第一控制迴路控制至第一檢測溫度和目標穩 之差變成0為止,即第一檢測溫度變成目標穩態溫 而,自第二目標溫度產生用加法器93輸出變化之第一 檢測溫度,第二控制迴路開始進行第二檢測溫度變成第一 f測溫度之控制。又,在rSP1 —ρνι」比〇.5%fs大或者 「PV1」未安定時,濾波電路1〇〇使用第二檢測溫度相對於 第一檢測溫度之溫差輸出依照上述式3之已濾波之檢測溫 度偏差。該已濾波之檢測溫度偏差係Γρνι —pv2」愈大時 $,且「SP1—PV1)」愈大時愈大,因具有所設定之目標 穩態溫度相對於現在溫度之溫差愈大時愈大之性質,和σ ^「m-PV2」$變數之情況相&,具有在寬的溫度梯; 軏圍可進行最佳之補償之效果。又,因使用一階濾波器,In this state, after the target steady-state temperature memory circuit 88 memorizes the new target degree, the first subtracter 89 subtracts the target stability from the first detection temperature, so the first control loop controls the difference between the first detection temperature and the target stability. Until it becomes 0, that is, the first detection temperature becomes the target steady-state temperature, and since the output of the second target temperature generating adder 93 changes the first detection temperature, the second control loop starts the second detection temperature and becomes the first f-measurement temperature. Of control. In addition, when rSP1 —ρνι ”is larger than 0.5% fs or“ PV1 ”is not stable, the filter circuit 100 uses the temperature difference between the second detection temperature and the first detection temperature to output a filtered detection according to the above Equation 3. Temperature deviation. The filtered detected temperature deviation is greater when Γρνι — pv2 ”is larger, and larger when“ SP1—PV1) ”is larger, because the larger the temperature difference between the set target steady state temperature and the current temperature is, the larger it becomes. The nature is the same as the case of the σ ^ "m-PV2" variable & has the effect of the best compensation in a wide temperature ladder; Also, because a first-order filter is used,
2103-4363 -PF;ahddub.p t d 第47頁 502140 五、發明說明(45) 係切換「offset = 0」之控制和「〇ffset = filter((pvl_ PV2) (SP1 — PV1))之控制」時’該offset值也連續的變 化0 又,第一檢測溫度及第二檢測溫度變成目標穩態溫度 附近之溫度’ 「SP1—PV1」為0.5%fs以内且「PV1」安定 時’自第二目標溫度產生用加法器9 3再輸出第一檢測溫 度。除此以外之動作和實施例1 一樣,省略說明。2103-4363 -PF; ahddub.ptd Page 47 502140 5. Explanation of the invention (45) is when switching between "offset = 0" control and "〇ffset = filter ((pvl_ PV2) (SP1 — PV1)) control" 'The offset value also changes continuously 0, and the first detection temperature and the second detection temperature become the temperature near the target steady-state temperature' "SP1-PV1" is within 0.5% fs and "PV1" is settled down 'from the second target The temperature generating adder 93 outputs the first detection temperature again. The other operations are the same as those in the first embodiment, and the description is omitted.
在以上之實施例說明了將PID運算電路90、95用作控 制裝置之例子,但是使用IMC運算電路也可得到一樣之效 果。又,在本發明,將第一檢測溫度和第二檢測溫度之檢 測值偏差濾波後將該濾波器輸出和成為基準之第一檢測溫 度相加’但是將第一檢測溫度和第二檢測溫度之差與第一 檢測溫度直接相加也可得到大致一樣之效果。 實施例11 圖2 3係表示使用本發明之控制裝置在係控制對象之晶 圓整體控制成均勻之溫度之控制系統之構造圖。在圖23,In the above embodiment, an example has been described in which the PID arithmetic circuits 90 and 95 are used as the control device, but the same effect can be obtained by using the IMC arithmetic circuit. Furthermore, in the present invention, after filtering the deviation between the detection values of the first detection temperature and the second detection temperature, the filter output is added to the first detection temperature serving as a reference, but the difference between the first detection temperature and the second detection temperature is added. Adding the difference directly to the first detection temperature can also obtain approximately the same effect. Embodiment 11 Fig. 23 is a structural diagram showing a control system using the control device of the present invention to control the entire crystal circle of a control object to a uniform temperature. In Figure 23,
I 0 1係包括PID控制功能之控制裝置,1 〇 2係恒溫槽,1 〇 3係 配置於恒溫槽1 〇 2之内部之晶圓,1 〇 4 - 1、1 〇 4 - 2係依照來 自控制裝置1 0 1之操作量控制恒溫槽丨〇 2之内部之溫度之加 熱器,105-1、1〇5-2係檢測晶圓1〇3之第一、第二區域 103-1、103-2附近之溫度之溫度感測器,1〇7 —丨、1〇7一2係 加法器,108係操作量計算裝置,ι〇9係偏差控制裝置, II 0係加法器。I 0 1 is a control device that includes a PID control function, 1 0 2 is a thermostatic bath, 1 0 3 is a wafer arranged inside the thermostatic bath 1 0 2, 1 0 4-1 and 1 0 4-2 are in accordance with The operating amount of the control device 101 is a heater that controls the internal temperature of the thermostatic bath 丨 〇2, 105-1, 105-2 are the first and second regions 103-1, 103 of the detection wafer 103 Temperature sensor near the temperature of -2, 107- 丨, 107- 2 adder, 108-series operation amount calculation device, ι09-series deviation control device, II 0-series adder.
五、發明說明(46) ,其次說明動作。控制裝置101用第一加法器107-1計算 係在係控制對象之晶圓1 0 3之第一區域1 0 3 - 1之溫度感測器 j5-1檢測之溫度量測值ichl量測值和來自目標設定值設 疋裝置106之設定值之偏差,而且用第二加法器1〇7 — 2計算 係在第一區域1 〇 3 - 2之溫度感測器1 〇 5 — 2檢測之溫度量測值 之ch2量測值和來自目標設定值設定裝置1〇6之設定值之偏 差,操作量計算裝置108依照自第一加法器1〇7 —1輸出之偏 差進=例=ΡΠ)控制,計算操作量。在此,控制裝置1〇1將 所汁算之操作量設為Ch 1操作量(第一區域操作量)後,向 配置於第一區域1〇3一i之加熱器^‘^輸出。 、而,偏差控制裝置1〇9依照自第二加法器1〇7_2輸出之 偏差進行例如PID控制,計算操作量。又,加法器11〇將利 用操作量計算裝置1 08所計算之操作量和利用偏差控制裝 置1曰0 9所计算之操作量相加後設為c h 2操作量(別的區域操 作里),向配置於第二區域1〇3-2之加熱器1〇4-2輸出。 如以上所示,若依據實施例1 1,在係控制對象之晶 103之種類或控制對象之環境等變了之情況,因向第一區 域10 3-1輸出之chi操作量係依照目標設定溫度和係在第一 區域= 3-1之溫度量測值之chl量測值之偏差利用piD控制 等計异之值,適當的進行在第一區域1〇3 —i之控制。而, 若向第二區域103-2輸出之ch2操作量係利用操作量計算 置108所計算之操作量,在第二區域1〇3 — 2之溫 ^ 發生固定之偏差。 m ^ 因此,為了消除該偏差,設置偏差控制裝置1〇9。Fifth, the description of the invention (46), followed by the action. The control device 101 uses the first adder 107-1 to calculate the temperature measurement value ichl measured by the temperature sensor j5-1 in the first region 1 0 3-1 of the wafer 1 being controlled. The deviation from the set value from the target set value setting device 106, and the second adder 1 07-2 is used to calculate the temperature detected by the temperature sensor 1 0-5-2 in the first area 1 03--2. The deviation between the measured value of ch2 and the set value from the target set value setting device 106, the operation amount calculation device 108 is controlled according to the deviation output from the first adder 10-7-1 = Example = PΠ) , Calculate the amount of operation. Here, the control device 101 sets the calculated operation amount to the Ch 1 operation amount (the first region operation amount), and then outputs it to the heater ^ '^ disposed in the first region 103-i. In addition, the deviation control device 109 performs, for example, PID control in accordance with the deviation output from the second adder 107_2, and calculates an operation amount. In addition, the adder 11 adds the operation amount calculated by the operation amount calculation device 1 08 and the operation amount calculated by the deviation control device 1 09 to ch 2 operation amount (in other area operations). Output to the heater 104-2 arranged in the second area 103-3. As shown above, if the type of the crystal 103 to be controlled or the environment of the controlled object is changed according to Embodiment 11, the operation amount of chi output to the first region 10 3-1 is set according to the target. The difference between the temperature and the chl measurement value of the temperature measurement value in the first region = 3-1 is calculated by using a different value such as piD control, and the control in the first region 103-i is appropriately performed. However, if the ch2 operation amount output to the second region 103-2 is the operation amount calculated using the operation amount calculation device 108, a fixed deviation occurs in the temperature ^ 2 of the second region 103-2. m ^ Therefore, in order to eliminate the deviation, a deviation control device 10 is provided.
2103-4363-PF;ahddub.ptd 第49頁 5021402103-4363-PF; ahddub.ptd p. 49 502140
m 9控命制裝置109依照目標設定溫度和係在第二區域 瞀後產量^值之c h 2量測值之偏差利用P1D控制等計 二所Άλ。而’加法裝置110將利用偏差控制裝置 ^所计异之操作量和利用操作量計算裝置1〇8所計算之 加後,輸出ch2操作量。即’利用偏差控制裝置_ =计异之操作量可消除在第二區域1〇3_2發生之溫 值之固定之偏差。 S列 於是,若依據實施例11,藉著設置偏差控制裝置1〇9 及加法裝置11 0可消除以往在晶圓丨03之種類或控制對象之The m 9 control device 109 uses the P1D control and other calculations to calculate the deviation between the target set temperature and the measured value of c h 2 which is the output value in the second region. And the 'addition device 110 adds the operation amount calculated by the deviation control device ^ and the operation amount calculated by the operation amount calculation device 108 to output the operation amount ch2. That is, 'the use of the deviation control device _ = different operation amount can eliminate the fixed deviation of the temperature value occurring in the second area 103_2. S column Therefore, according to the eleventh embodiment, by setting the deviation control device 109 and the addition device 110, it is possible to eliminate the type or control object of the wafer 03 in the past.
環境等變了之情況發生之在第二區域103—2之溫度量 之固定之偏差。 ' 實施例1 2 其次說明實施例1 2。Changes in the environment, etc., occur due to a fixed deviation in the amount of temperature in the second region 102-3. Example 12 Next, Example 12 will be described.
圖24係表示使用本發明之控制裝置之控制系統之構造 圖。在圖24,1〇1係包括ΡΠ)控制功能之控制裝置,ι〇2係 恒溫槽’ 1 0 3係配置於恒溫槽1 〇 2之内部之晶圓,1 〇 4 — 1係 依照ch 1操作量控制恒溫槽1 〇2之内部之上部溫度(和第一 區域103-1對應)之加熱器,104-2係依照ch2操作量控制恒 溫槽102之内部之下部溫度(和第二區域1〇3 —2對應)之加熱 器,1 0 5 -1係檢測配置晶圓1 〇 3之附近之恒溫槽1 〇 2之内部 之上部溫度之溫度感測器,1 〇 5 - 2係檢測配置晶圓1 〇 3之附 近之恒溫槽1 〇 2之内部之下部溫度之溫度感測器。 又’ 106係設定晶圓103之目標溫度之目標設定值設定Fig. 24 is a diagram showing a configuration of a control system using the control device of the present invention. In FIG. 24, 101 is a control device including a control function of Π), ι2 is a thermostatic bath '1 0 3 is a wafer disposed inside the thermostatic bath 1 〇2, and 104 — 1 is in accordance with ch 1 The heater controls the upper temperature inside the thermostatic bath 1 〇2 (corresponding to the first zone 103-1). 104-2 is the lower temperature inside the thermostatic bath 102 (and the second zone 1). 〇3 —2) heaters, 105--1 series are temperature sensors that detect the temperature in the upper part of the constant temperature bath 1 〇2 near the thermostat 1 〇3, 105--2 series test configuration Temperature sensor for the temperature of the lower part of the interior of the constant temperature bath 1 〇2 near the wafer 〇3. Also, '106 is a target set value setting for setting a target temperature of the wafer 103
2103-4363-PF;ahddub.p t d 第50頁2103-4363-PF; ahddub.p t d p.50
ΐ U7田1係自溫度感測器105-1所檢測之溫度之…量 偏差::標設定值設定裝置106所設定之設定值計算 f之弟一加法器’ 111係自第一加法器107-1所計算之偏 = PID運算後輸出操作量之piD運算裝置(* 一piD運薦 二:I2係對操作*限制上限及1"限之操作*限制裝置 (比第^呆作量限制裝置)、115-2係對操作量b進行 例叶异之第一比例計算裝置及第二比例計算裝置,ΐ U7 Tian 1 is the amount of temperature deviation from the temperature detected by the temperature sensor 105-1: the standard set value set by the set value setting device 106, an adder for calculating f '111, the first adder 107 -1 Calculated deviation = piD computing device that outputs the operation amount after PID operation (* one piD operation recommendation two: I2 is the operation limit limit and 1 " limit operation * limit device (compared to the first ^ operation limit device) ), 115-2 are the first ratio calculation device and the second ratio calculation device that perform different operations on the operation amount b.
U!_2係對操作量ce進行偏置運算之第-偏置計 ^置及第二偏置計算裝置,113係將來自操作量限制裝 2,操作量b分枝之分枝部,114係設定操作量限制裴 置112等之參數之例如鍵盤等利用手動操作之參數設定裝 置’ 110係自偏置計算裝置116_2所計算之操作量『和後述 之操作量限制裝置118所限制之操作量h計算ch2操作量之 加法器。 10 7-2係自溫度感測器1〇5_2所檢測之溫度之以2量測 值和利用目標設定值設定裝置1〇6所設定之設定值計算偏 差之第二加法器,117係自第二加法器1〇7-2所計算之偏差 進行PID運算後輸出操作量g之PID運算裝置(第二piD運算 裝置),11 8係對操作量g限制上限及下限之操作量限制裝 置(第二操作量限制裝置)。 & 其次說明動作。 控制裝置1 01輸入係配置於第一區域丨〇 3_ 1之溫度感測 器1 05-1檢測之溫度之ch 1量測值及係係配置於第二區域 1 03-2之溫度感测器1 05-2檢測之溫度之ch2量測值。然U! _2 is the first offset meter and the second offset calculating device for performing offset calculation on the operation amount ce, 113 is a branching unit from the operation amount limiter 2, and the operation amount b is branched, 114 Parameter setting device for setting the operation amount limit 112, such as a keyboard and other manual parameter setting devices, such as a keyboard 110. The operation amount calculated by the self-bias calculation device 116_2 "and the operation amount h restricted by the operation amount limitation device 118 described later Adder for calculating ch2 operand. 10 7-2 is the second adder that calculates the deviation from the temperature measured by the temperature sensor 105 and the measured value 2 and the set value set by the target setting value setting device 106, and 117 is the second adder The PID calculation device (second piD calculation device) that outputs the operation amount g after PID calculation of the deviation calculated by the two adders 10-7-2. 11 8 is an operation amount limitation device that limits the upper limit and lower limit of the operation amount g (No. Two operating amount limiting device). & Next, the operation will be described. The control device 1 01 input is the temperature sensor ch 1 measured at the temperature sensor 1 05-1 and the temperature sensor 1 05-2 at the first area. 1 05-2 ch2 measurement of the detected temperature. Of course
)似14〇 五 發明說明(49) 後,產生chl操作量及ch2操作量,向配置於第一。、 1〇3 -1之加熱器1〇4—1輸出chi操作量,向配置於區一域。、 之加熱器104 — 2輸出ch2操作量。 、一區域 =熱器104-1依據該chi操作量例如藉著改變通電時 工制在位溫槽102之内部之第一區域1〇3-1之溫度。一樣 的’加熱器1 〇 4- 2依據該ch2操作量控制在恒溫槽丨〇 2之内 4之第二區域1Q3 — 2之溫度。 其次說明控制裝置101之内部之處理。 定值。參數設定裝置114利用圖未 按鍵輸入 定操:量限制裝置112、第一【例=置115]、第 ,計算裝置11 6-1、第二比例計算裝置u 5 — 2、第二 算裝置1 1 6 —2以及操作量限制裝置1 1 8之參數。 欠_ ^操作量限制裝置Π2及操作量限制裝置118之參_數 呌質拉罢H c 弟一比例計算裝置115一1 管裝置 计异裝置11 5-2之參數各自係比例值。第〆偏置汁二 116-1及第二偏置計算裝置116_2之袁數各自係偏置值 外,J數之意義將在各裝置之說明中說明。 6 弟一加法器107-1計算係利用目標設定值設定裝^ 目標設定值設定裝置1 〇 6利用圖上未示之按鍵輸入操 作δ又疋對於晶圓1 〇 3係所要之目標溫度之設定值。向第一_ 加法器107-1及第二加法器1〇7 — 2輸出所設定之目欏。溫^;又 定值。參數語金肱要1 1 d立,1 tn m . , _ _…从絵入擁# 口又 〆偏 偏置計 係90 C之情況,偏差係9〇 —1〇〇= — 1〇,第〆加法莽 Ϊ ^ 5,度之設定值和C h 1量測值之偏差二量測值 運异裝置111輸出。例#,在設定值係1〇(rc、chl〜則) Like 140.5 After the description of the invention (49), the chl operation amount and ch2 operation amount are generated, and they are arranged first. The heater 104-1 of 10-3 -1 outputs the operation amount of chi, and is arranged in a region of the zone. The heater 104 — 2 outputs ch2 operation amount. A region = The temperature of the heater 104-1 according to the operation amount of chi, for example, by changing the temperature of the first region 103-1 inside the bit temperature tank 102 when the power is turned on. The same 'heater 1 〇 4-2 controls the temperature of the second zone 1Q3-2 of the constant temperature bath 4 2 according to the operation amount of ch2. Next, the processing inside the control device 101 will be described. Value. The parameter setting device 114 uses the button to input the setting operation: the amount limiting device 112, the first [example = Set 115], the first, the computing device 11 6-1, the second proportional computing device u 5 — 2, and the second computing device 1 1 6 —2 and operating quantity limiting device 1 1 8 parameters. Owing to the number of parameters of the operation amount limiting device Π2 and the operation amount limiting device 118 呌 quality pull H c brother ratio calculation device 115-1 tube control device 11 5-2 parameters are proportional values. The Yuan numbers of the first offset juice II 116-1 and the second offset calculation device 116_2 are offset values. The meaning of the J number will be explained in the description of each device. 6 Diyi adder 107-1 calculation uses target setting value setting device ^ target setting value setting device 1 〇6 uses the key input operation not shown in the figure δ to set the desired target temperature for wafer 1 〇3 series value. The set target is output to the first_adder 107-1 and the second adder 107-7-2.温 ^; set value. The parameters of the golden brace must be 1 1 d, 1 tn m., _ _… From the case of # 入 拥 # mouth and the bias offset meter is 90 C, the deviation is 90—100— = 10, the first Addition ^ 5, the deviation between the set value of the degree and the measured value of C h 1 and the measured value of the difference output device 111 are output. Example #, the setting value is 10 (rc, chl ~ then
五、發明說明(50) 1 〇 7 -1輸出該值 η:;!::1 第上未示之按鍵輪入操作設定 m控制之計i用以:;1'1所計算之偏差後,進行 出該操作量a。#作旦/、#里a,向操作量限制裝置11 2輪 F刼作里a 一般取0%〜100%之值。 才呆作量限制裝置112對利 徂 操作量a進行利用參數設定 虞置111所計算之 值之限制,向分枝部斤設定之上限值及下限 用上限值限制為8〇%,操:。操作量a係_時利 20%。操作量限制裝置⑴:,時利用下限值限制為 後者時浐屮i : 在别者時輸出操作量b = 80%,在 ί = Γ量b = 2°%。因操作量“系50%時不受上限Ϊ 及下之限制,直接輸出操作量b = 50%。 值 刀枝口p 11 3令利用操作量限 b直接向產生chl操作量 f 裝置;12所限制之操作量 枝。第-比例計算f ^產生Ch2操作量之路徑分 ^*b^a,(J^' w'/,J113^^^^^ 一偏置計算裝置丨Hi輸^所5又疋之比例值後,向第 0 8之h 5 θ輸出才呆作量c。例*,在設定比例值 為5〇%時計算5〇Χ 0.8 =權。第一比例 计异裝置115-1輸出操作量c = 4〇%。 匕例 許出ί作^置叶异裝置U 6-1對第一比例計算裝置11卜1所 ‘,將择土利用參數設定裝置114所設定之值置值 如,,^〜=设為Chl操作量,向加熱器104-1輸出。例 50 + lil = fi二/疋★置值110之情況,操作量。為50%時,計算 °第一偏置計算裝置116-1輸出操作量d = 60%。 2103-4363-PF;ahddub.ptd 第53頁 五、發明說明(51) --- " 第二比例計算裝置11 5 — 2對利用分枝部11 3所分枝之操 作量b乘以利用參數設定裝置114所設定之比例值後,向第 一偏置計算裝置116-2輸出操作量e。第二偏置計算裝置 對第二比例計算裝置115-2所輸出操=///利置用 ^數設定裝置ι14所設定之值置值後,向加法器11()輸出操 作量f。V. Description of the invention (50) 1 〇7 -1 outputs the value η:;! :: 1 The key-in operation of the button not shown above is used to set the control scheme of m for i: After the deviation calculated by 1'1, This operation amount a is performed. # 作 旦 /, # 里 a, to the operation amount limiting device 11 2 rounds F operation in a generally take a value of 0% ~ 100%. The work-in-amount limitation device 112 limits the value calculated by using the parameter setting Yu setting 111 to the profit operation amount a, and sets the upper limit and the lower limit to 80% for the branch. :. The operation amount a is 20%. Operating amount limiting device ⑴: When the lower limit value is used to limit the latter 浐 屮 i: Output the operating amount b = 80% in other cases, and ί = Γ amount b = 2 °%. Because the operating amount is not limited by the upper limit 时 and 50 when it is 50%, the direct output of the operating amount b = 50%. The value of knife blade opening p 11 3 allows the use of the operating amount limit b to directly generate the chl operating amount f device; 12 Limitation of the amount of operation. The first-ratio calculation f ^ produces the path of the operation amount Ch2 ^ * b ^ a, (J ^ 'w' /, J113 ^^^^^ After the proportional value is further reduced, the amount of output c is output to h 5 θ of the 8th. For example *, when the proportional value is set to 50%, 50 × 0.8 = weight is calculated. The first proportional metering device 115- 1 The output operation amount c = 40%. The operation example is to set up a different device U 6-1 for the first proportion calculation device 11 and 1 ', and set the value set by the soil selection utilization parameter setting device 114. The value is, for example, ^ ~ = is set to the operating value of Chl and is output to the heater 104-1. Example 50 + lil = fi 2 / 疋 ★ When the value is set to 110, the operating amount. When it is 50%, calculate the first deviation of ° Set the calculation device 116-1 to output the operation amount d = 60%. 2103-4363-PF; ahddub.ptd Page 53 5. Description of the Invention (51) --- " The second ratio calculation device 11 5-2 pairs of utilization points Multiply the operation amount b of the branch 11 3 by the parameter setting After the proportional value set by the device 114, the operation amount e is output to the first offset calculation device 116-2. The second offset calculation device operates on the output of the second ratio calculation device 115-2 = /// 利用 ^ After the value set by the number setting device ι14 is set, the operation amount f is output to the adder 11 ().
而’第二加法器107-2計算係利用目標設定值設定裝 06所設定之目標溫度之設定值和ch2量測值之偏差後, 向PID運算裝置117㈣。PID運算裝置117利用圖上未示之 ,鍵輸入操作設定PID值。輸入利用第二加法器1〇?_2所計 ^之偏差後,進行PID控制之計算,計算操作量g,向操作 里限制裝置118輸出該操作量g。操作量g 一般取〇%~1〇〇%之 值0 。操作量限制裝置118對利用PID運算裝置117所計算之 操作量g進行利用參數設定裝置所設定之上限值及下限值 之限制,向加法器11 〇輸出操作量h。 加法器110對利用第二偏置計算裝置116_2所計算之操 作1 f加上利用操作量限制裝置丨丨8所限制之操作量h後,The second adder 107-2 calculates the deviation between the set value of the target temperature set by the target set value setting device 06 and the measured value of ch2, and sends it to the PID calculation device 117㈣. The PID calculation device 117 sets a PID value by using a key input operation not shown in the figure. After inputting the deviation calculated by the second adder 10-20, PID calculation is performed to calculate the operation amount g, and the operation amount g is output to the operation limiter 118. The operation amount g is generally 0% to 100%. The operation amount limitation device 118 limits the operation amount g calculated by the PID calculation device 117 with the upper limit value and the lower limit value set by the parameter setting device, and outputs the operation amount h to the adder 110. After the adder 110 adds the operation 1 f calculated by the second offset calculation device 116_2 to the operation amount h limited by the operation amount limitation device 丨 丨 8,
向加熱器104-2輸出ch2操作量。例如,在操作量f_%、 =之情況,計算50+5=55%。加法器"〇輸出ch2 操作篁d = 5 5%。 其次,使用圖25說明使用在圖24之實施例12之控制裝 置之控制系統之溫度特性圖。圖25表示將控制對象變更為 別種晶圓後之溫度特性圖。在圖25,131係利用目標設定The ch2 operation amount is output to the heater 104-2. For example, in the case of the operating amounts f_%, =, calculate 50 + 5 = 55%. Adder " 〇 Output ch2 operation 篁 d = 5 5%. Next, a temperature characteristic diagram of a control system using the control device of the twelfth embodiment of Fig. 24 will be described using Fig. 25. FIG. 25 is a temperature characteristic diagram after the control target is changed to another wafer. In Figures 25 and 131, the target setting is used.
502140 五、發明說明(52) 值設定裝置1 0 6所設定之目標溫度設定值,1 3 2係在第一區 域103-1之溫度感測器105-1所檢測之溫度量測值,133係 在第二區域1 0 3 - 2之溫度感測器1 〇 5 - 2所檢測之溫度量測 值。 在變更為別種晶圓之前之溫度控制,在預先調整時, 因將操作量限制裝置11 2、操作量限制裝置11 8、第一比例 計算裝置115-1、第二比例計算裝置丨丨5 — 2、第一偏置計算 裝置116-1以及第二偏置計算裝置in?之參數設成溫度量 測值132及133和目標設定溫度一致,如圖5(丨)之溫度特性 圖所示’溫度量測值1 3 2及1 3 3和目標設定溫度一致,進行 適當之控制。在變更為別種晶圓之情況,也如圖25所示, 溫度量測值1 3 2及1 3 3和目標設定溫度一致,進行適當之控 制。 二 如以上所示,若依據實施例1 2,在係控制對象之晶| 1 03之種類或控制對象之環境等變了之情況,因向第一區 域1 03- 1輸出之ch 1操作量係依照目標設定溫度和係在第· 區域103-1之溫度量測值之chl量測值之偏差利用piD控制 等計算之,,適當的進行在第一區域— 控制。 而,若向第二區域1〇3 —2輸出之ch2操作量係係依昭 chl量測值利用PID運算裝置lu等所計算之操作量f,^ 二區域103-2、之溫度量測值就發生固定之偏差。 μ因此’為了消除該偏差,設置第二加法器1 07-2、PI 運算裝置117、操作量限制裝置118以及加法 具有ρπ)運算裝置117、第二加法器1〇7_2之偏差控制』502140 V. Description of the invention (52) The target temperature set value set by the value setting device 10 6 is 1 3 2 is the temperature measurement value detected by the temperature sensor 105-1 in the first area 103-1, 133 It is the temperature measurement value detected by the temperature sensor 1 105-2 in the second area 10 3-2. Before changing the temperature control to another type of wafer, during the pre-adjustment, the operating amount limitation device 11 2, the operating amount limitation device 11 8, the first ratio calculation device 115-1, and the second ratio calculation device 5- 2. The parameters of the first offset calculation device 116-1 and the second offset calculation device in? Are set such that the temperature measurement values 132 and 133 are consistent with the target set temperature, as shown in the temperature characteristic diagram of Fig. 5 (丨). The temperature measurement values 1 3 2 and 1 3 3 are consistent with the target set temperature, and appropriate control is performed. When changing to another type of wafer, as shown in Fig. 25, the temperature measurement values 1 2 3 and 1 3 3 are consistent with the target set temperature, and appropriate control is performed. As shown above, if the type of the crystal of the controlled object or the environment of the controlled object is changed according to Embodiment 12, the ch 1 operation amount output to the first region 1 03-1 The deviation between the target set temperature and the chl measurement value of the temperature measurement value in the 10th area 103-1 is calculated using piD control, etc., and appropriately performed in the first area-control. In addition, if the ch2 operation amount outputted to the second region 10-3-2 is the operation amount f calculated by using the PID calculation device lu and the like according to the measured value of chl, the temperature measurement value of the second region 103-2, A fixed deviation occurs. μTherefore, in order to eliminate the deviation, a second adder 1 07-2, a PI arithmetic device 117, an operation amount limitation device 118, and an addition control device 117, and a second adder 1 07_2 deviation control are provided.
2103-4363-PF;ahddub.ptd 第55頁 502140 五、發明說明(53) 109依照利用第二加法器107_2自目標溫度設定值和 二區域^103-2之溫度量測值之ch2量測值所計算之偏差進第 PID運算後’產生操作量乜。 丁 然後,加法器110對依照chl量測值所計算之操作 加上依照ch2量測值所計算之操作量乜後,設為ch2操作 量,向加熱器104-2輸出。即,可利用依照ch2量測值所 异之操作量h消除在第二區域丨〇3_2發生之固定之偏差。 於是,若依據實施例1 2,藉著設置第二加法器 10 7-2、PID運算裝置117、操作量限制裝置丨18以及加法器2103-4363-PF; ahddub.ptd Page 55 502140 V. Description of the invention (53) 109 According to the ch2 measurement value using the second adder 107_2 from the target temperature setting value and the temperature measurement value of the two area ^ 103-2 After the calculated deviation enters the PID operation, 'the operation amount 乜 is generated. D Then, the adder 110 adds the operation amount calculated according to the ch2 measurement value to the operation calculated according to the ch2 measurement value, sets it as the ch2 operation amount, and outputs it to the heater 104-2. That is, it is possible to eliminate the fixed deviation occurring in the second region 〇 03_2 by using the operation amount h different according to the measured value of ch2. Therefore, if the second adder 10 7-2, the PID operation device 117, the operation amount limiting device 18, and the adder are provided according to Embodiment 12
11 0,可消除在以往晶圓之種類或控制對象之環境等變了 之情況發生之在第二區域1 03-2之溫度量測值之固定之偏 差, 又,在上述之實施例12,藉著將利用目標設定值設定 裝置1 06所設定之設定值輸入第二加法器丨〇7 —2,控制成在 晶圓1 0 3整體均勻之溫度,但是也可輸入c匕1量測值,替代 设疋值。藉著採用將c h 1量測值輸入第二加法器1 〇 7 — 2之構 造’可令晶圓103在第二區域1〇3-2之溫度特性追蹤在第一 區域1 0 3 -1之溫度特性。即,在令晶圓之溫度按照固定之 梯度上升之情況或下降之情況有效。 此外,在上述之各實施例,以PID控制為例說明,但 是也可應用於IMC(Internal Model Control)控制等。 產業上之可應用性 如以上所示,本發明之控制系統及控制裝置適合使用110, which can eliminate the fixed deviation of the temperature measurement value in the second region 1 03-2 that occurred when the type of the wafer or the environment of the control target has changed in the past, and in the above-mentioned embodiment 12, By inputting the setting value set by the target setting value setting device 106 into the second adder 丨 〇7-2, the temperature is controlled to be uniform throughout the wafer 103, but the measured value of c1 can also be input. , Instead of setting value. By adopting the structure of inputting the measured value of ch 1 into the second adder 1 〇 07-2, the temperature characteristic of the wafer 103 in the second area 10 3-2 can be tracked in the first area 1 0 3 -1. Temperature characteristics. That is, it is effective when the temperature of the wafer is increased or decreased according to a fixed gradient. In the above embodiments, PID control is used as an example, but it can also be applied to IMC (Internal Model Control) control. Industrial Applicability As shown above, the control system and control device of the present invention are suitable for use
2103-4363-PF; ahddub. ptd 第 56 頁 502140 五、發明說明(54) 複數加熱器在半導體製程等將晶圓之溫度控制成整體上均 勻。 ϋΒ 2103-4363-PF;ahddub.ptd 第57頁2103-4363-PF; ahddub. Ptd page 56 502140 V. Description of the invention (54) Multiple heaters control the temperature of the wafer uniformly in the semiconductor process. ϋΒ 2103-4363-PF; ahddub.ptd Page 57
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001017480A JP3833479B2 (en) | 2001-01-25 | 2001-01-25 | Control device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW502140B true TW502140B (en) | 2002-09-11 |
Family
ID=18883684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90123440A TW502140B (en) | 2001-01-25 | 2001-09-24 | Control system and control device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP3833479B2 (en) |
CN (1) | CN1246745C (en) |
TW (1) | TW502140B (en) |
WO (1) | WO2002059700A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4256236B2 (en) * | 2003-09-04 | 2009-04-22 | 株式会社山武 | Control apparatus and control method |
JP4634197B2 (en) * | 2005-03-25 | 2011-02-16 | 株式会社日立国際電気 | Substrate processing apparatus and semiconductor device manufacturing method |
JP4989455B2 (en) * | 2007-12-28 | 2012-08-01 | アズビル株式会社 | Control apparatus and control method |
CN105190193B (en) * | 2013-03-29 | 2018-06-29 | 三菱电机株式会社 | Air conditioning control device, air-conditioner control system and air conditioning control method |
JP6415332B2 (en) * | 2015-01-16 | 2018-10-31 | キヤノン株式会社 | Temperature control apparatus, lithographic apparatus, and article manufacturing method |
JP6531605B2 (en) * | 2015-10-07 | 2019-06-19 | オムロン株式会社 | Temperature control device and auto tuning method |
CN106444899B (en) * | 2016-11-16 | 2018-07-24 | 中南大学 | A kind of 3D printer temperature control system |
PL3777577T3 (en) | 2018-03-26 | 2024-09-09 | Japan Tobacco Inc. | Aerosol generation device, control method, and program |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233278B2 (en) * | 1971-11-08 | 1977-08-26 | ||
JPS6215603A (en) * | 1985-07-12 | 1987-01-24 | Omron Tateisi Electronics Co | Pid controller |
JPH0525502U (en) * | 1991-09-13 | 1993-04-02 | 理化工業株式会社 | Multi-point controller |
JPH0665901U (en) * | 1993-02-04 | 1994-09-16 | 理化工業株式会社 | Multi-point controller |
JPH07200076A (en) * | 1993-12-28 | 1995-08-04 | Komatsu Electron Metals Co Ltd | Heat treatment device |
JPH07200078A (en) * | 1993-12-28 | 1995-08-04 | Komatsu Electron Metals Co Ltd | Temperature controller |
JPH09311727A (en) * | 1996-05-22 | 1997-12-02 | Mitsubishi Heavy Ind Ltd | Method and unit for heating and controlling pressurized tank |
JP3433685B2 (en) * | 1998-11-19 | 2003-08-04 | 理化工業株式会社 | Control device |
JP2001318702A (en) * | 2000-05-08 | 2001-11-16 | Yamatake Corp | Control system |
JP3776297B2 (en) * | 2000-07-12 | 2006-05-17 | 株式会社山武 | Control system |
-
2001
- 2001-01-25 JP JP2001017480A patent/JP3833479B2/en not_active Expired - Lifetime
- 2001-09-21 WO PCT/JP2001/008240 patent/WO2002059700A1/en active Application Filing
- 2001-09-21 CN CN 01822061 patent/CN1246745C/en not_active Expired - Lifetime
- 2001-09-24 TW TW90123440A patent/TW502140B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP3833479B2 (en) | 2006-10-11 |
WO2002059700A1 (en) | 2002-08-01 |
CN1246745C (en) | 2006-03-22 |
JP2002222001A (en) | 2002-08-09 |
CN1486452A (en) | 2004-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210116481A1 (en) | System and method for controlling power to a heater | |
JP6324739B2 (en) | Semiconductor wafer temperature control device and semiconductor wafer temperature control method | |
TW502140B (en) | Control system and control device | |
JP4639821B2 (en) | Target value processing device, temperature controller and control process execution system | |
KR910000850B1 (en) | System to control and regulate heat applied during the heating phase of a steym pressure cooker | |
WO2016115892A1 (en) | Temperature control system and control method thereof, and electronic cigarette containing said temperature control system | |
KR102547953B1 (en) | System and method for controlling electric power supplied to a heater | |
CN103792971B (en) | A kind of temperature control equivalent method for semiconductor heat treatment equipment | |
WO2000036877A1 (en) | Method and apparatus for temperature control of heater | |
JP6345801B2 (en) | Temperature control method and temperature control device | |
CN107816793A (en) | A kind of intellectual water closet instantaneous heating system, device and control method | |
TWI743739B (en) | Thermal system with a temperature limiting device | |
US20060196653A1 (en) | Apparatus and method for controlling temperature in a chuck system | |
JP3776297B2 (en) | Control system | |
CN111621739A (en) | Semiconductor process equipment and temperature control method thereof | |
JP2006085907A (en) | Power supply device and semiconductor manufacturing apparatus | |
JP2001318702A (en) | Control system | |
JP3837103B2 (en) | Electric furnace temperature control method and electric furnace | |
JP2007239201A (en) | Temperature control device for instantaneous hot water supply type shower toilet | |
CN116121734A (en) | Control method of graphite heater for CVD equipment | |
CN109765948B (en) | Non-overshoot temperature control algorithm for CT detector | |
JP7147124B2 (en) | Temperature controller and temperature control method | |
JP2599815B2 (en) | Reformer temperature controller for fuel cell power generation system | |
JP2001273002A (en) | Control system | |
Smrke et al. | Infrared Sensor–Based Temperature Control for EGO Induction Cooktop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |