TW498432B - Photoresist protect oxide material - Google Patents
Photoresist protect oxide material Download PDFInfo
- Publication number
- TW498432B TW498432B TW90119549A TW90119549A TW498432B TW 498432 B TW498432 B TW 498432B TW 90119549 A TW90119549 A TW 90119549A TW 90119549 A TW90119549 A TW 90119549A TW 498432 B TW498432 B TW 498432B
- Authority
- TW
- Taiwan
- Prior art keywords
- oxide layer
- gate
- pole
- protective oxide
- patent application
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
498432 五、發明說明(1) 發明領域: 本發明與一種積體電路元件的製程有關,特別是提供 一種光阻防護氧化層(photoresist protect oxide,RPO )的塗佈方法’以消除複晶石夕孔洞(v〇i d)缺陷的產生。 發明背景: 互補式金氧半導體(CMOS)元件的製造,已是相當成 熟的半導體習知技術。而隨著半導體元件的持續縮小化需 求,為了以更有競爭力的成本來得到更佳的元件性能,半 導體元件尺寸必須不斷地縮小,而且用以製造半導體元件 的不同半導體材料膜層之厚度也必須持續地降低。 在形成互補式金氧半導體元件於一基底之表面上時, 不同極性的元件如互補式金氧半導體元件以及N通道金氧 半導體(NM0S)元件,可被製造於一基底之表面上且當作 一連續製造流程的一部份。亦即這些不同元件中,有些可 以依照不同製造流程來處理,例如某些元件有進行互補式 金氧半導體元件的自對準金屬石夕化物(self-aligned silicide,salicide )之低電阻性接點製程;然而其他同 樣製造於相同基底表面上的元件,並沒有進行互補式金氧 半導體元件的自對準金屬矽化物之低電阻性接點製程。因 此,在製造互補式金氧半導體元件於一基底表面上時,由498432 V. Description of the invention (1) Field of the invention: The present invention relates to the manufacturing process of integrated circuit elements, and particularly provides a coating method of photoresist protect oxide (RPO) to eliminate polycrystalline stone Void defects are generated. BACKGROUND OF THE INVENTION: The manufacture of complementary metal-oxide-semiconductor (CMOS) devices is a well-established semiconductor technology. With the continuous shrinking demand of semiconductor elements, in order to obtain better element performance at a more competitive cost, the size of semiconductor elements must be continuously reduced, and the thickness of the different semiconductor material film layers used to manufacture semiconductor elements must also be reduced. Must be continuously lowered. When forming complementary metal-oxide-semiconductor elements on the surface of a substrate, elements of different polarities, such as complementary metal-oxide-semiconductor elements and N-channel metal-oxide-semiconductor (NM0S) elements, can be fabricated on the surface of a substrate and treated as Part of a continuous manufacturing process. That is, some of these different components can be processed according to different manufacturing processes. For example, some components have low-resistance contacts for self-aligned silicide (salicide) of complementary metal-oxide semiconductor devices. Manufacturing process; however, other components also manufactured on the same substrate surface have not undergone the self-aligned metal silicide low-resistance contact manufacturing process for complementary metal-oxide semiconductor devices. Therefore, when manufacturing a complementary metal-oxide-semiconductor device on a substrate surface,
第5頁 498432 五、發明說明(2) 於不同元件所須進行的製造流程有些不同,通常須於某些 元件上塗佈一光阻防護氧化層。 一基底表面上之互補式金氧半導體元件製程之差別性 的例子,可以舉互補式金氧半導體元件之源極/汲極區域 以及閘極電極上的自對準接點製造為例做說明。藉由覆蓋 一光阻防護氧化層於整個已完成閘極結構(包括閘極間隙 壁之製作)製作的互補式金氧半導體元件上(此互補式金氧 半導體元件係形成於一基底表面上),此互補式金氧半導 體元件可被分成:需要進行自對準金屬矽化物之電性接點 製程的元件以及不需要進行自對準金屬矽化物之電性接點 製程的元件。其中上述不需要進行自對準金屬矽化物之電 性接點製程的元件,可利用微影製程以覆蓋一光阻層於其 上,而需要進行自對準金屬石夕化物之電性接點製程的元 件,則利用上述光阻層為罩幕,而將其上之光阻防護氧化 層除去。如此一來,除去光阻防護氧化層後所裸露出來的 表面,即可單獨進行自對準金屬矽化物之電性接點製程。 隨著元件尺寸的持續縮小需求,光阻防護氧化層的厚 度也必須進一步地降低,且所沈積的光阻防護氧化層之品 質亦必須進一步地提升。光阻防護氧化層之品質通常係利 用場崩潰(Field-t〇-Breakdown)及電荷崩潰 (Charge-to-Breakdown)等參數來求得。在次微米元件 尺寸的世代中所遭遇的問題之一為:在用以製造閘極結構 498432 五、發明說明(3) 的複晶矽膜層以及光阻防護氧化層二者間的介面上常有孔 洞產生。因此為了防止上述孔洞的產生,本發明提供一種 可控制光阻防護氧化層品質的方法。 相關之習知技術,請參閱如下所述之美國發明專利: (1)光阻防護氧化層的相關說明,請參閱美國第 6,2 0 7,4 9 2號專利(T z e n g e t a 1 · ) 。 ( 2)富石夕氧化物 (silicon rich oxide) 之抗反射塗佈 (anti-reflective coating, ARC)層的相關說明,請參 閱美國第6,1 7 4,5 9 0號專利(I y e r e t a 1 .)以及第6,1 6 2, 7 2 2號專利(Hsu) 。 ( 3)其他相關技術,請參閱美國第 6, 194,258號專利(Wuu)以及第 6, 1 8 7,6 5 5號專利(Wang 發明目的及概述: 本發明之主要目的係在提供一種光阻防護氧化層之形 成方法,以避免形成孔洞於光阻防護氧化層與其下之閘極 結構的複晶矽層間。 本發明所提供的新材質的光阻防護氧化層係應用於半 導體元件上,特別是應用於具有次微米尺寸的半導體元件 上。本發明之光阻防護氧化層之材質包含富矽的化學氣相 498432 五、發明說明(4) 沈積氧化物,其具有的折射率大小約為1 . 5 7〜1. 6,可以避 免矽原子從複晶矽膜層處擴散至光阻防護氧化層内。 發明詳細說明: 請參閱圖一’其係一半導體晶片之截面圖,顯示出包 含下列元件之結構: 一半導體基底之表面1 0。二個閘極結構1 2及1 4,係製 造於半導體基底表面1 0上。一絕緣區域(例如場氧化層 (field oxide)區域或淺渠溝隔離(shallow trench isolation)區域)16,係製造於二個閘極結構12及14 間,用以使此二個閘極結構1 2及1 4彼此電性隔離。一閘極 氧化層1 8,係製造於半導體基底表面1 0上,其包含利用化 學氣相沈積法(CVD)、低壓化學氣相沈積法(LPCVD)、 電漿增強式化學氣相沈積法(PECVD)或者是將半導體基 底表面1 0曝露於一氧化環境中而形成,其中閘極氧化層1 8 之厚度約為3 0 0〜5 0 0埃,而較佳厚度約為4 0 0埃。二個閘極 結構1 2及1 4之閘極電極2 0,其材質包含複晶矽,係在閘極 氧化層1 8表面上沈積完閘極電極2 0之材料膜層後,一起連 同閘極氧化層1 8進行蝕刻製程而形成如圖一所示的閘極結 498432 五、發明說明(5) 閘極間隙壁2 2,係形成於閘極氧化層1 8及閘極電極2 0 之側壁上。輕掺雜汲極/源極2 1及2 3,係對半導體基底表 面1 0進行雜質離子佈植而形成,且其係自對準於閘極結構 1 2之閘極電極2 0。輕摻雜汲極/源極2 5及2 7,係對半導體 基底表面1 0進行雜質離子佈植而形成,且其係自對準於閘 極結構1 4之閘極電極2 0。源極/汲極3 1及3 3,係對半導體 基底表面1 0進行雜質離子佈植而形成,且其係自對準於閘 極結構1 2。源極/汲極3 5及3 7,係對半導體基底表面1 0進 行雜質離子佈植而形成,且其係自對準於閘極結構1 4。 請參閱圖二,其係一半導體晶片之截面圖,除了包含 圖一中所有元件外,尚增加了下列元件: 光阻防護氧化層2 4,係沈積於閘極結構1 2、1 4以及曝 露出來的半導體基底表面1 0上,用以在後續製程期間當作 其下膜層之防護。經圖案轉移及顯影後的光阻罩幕2 6,係 先形成光阻膜層於光阻防護氧化層2 4表面上,然後除去部 份光阻膜層而形成,其中部份光阻膜層之除去方法可先用 氧氣電漿然後利用硫酸、雙氧水以及氫氧化鈉之水溶液進 行濕性剝除而達成。 光阻防護氧化層2 4之形成方法包含化學氣相沈積法、 低壓化學氣相沈積法或電漿增強式化學氣相沈積法,若使 用電漿增強式化學氣相沈積法來形成光阻防護氧化層2 4Page 5 498432 V. Description of the invention (2) The manufacturing process required for different components is somewhat different. Usually, a photoresist protective oxide layer must be coated on some components. An example of the difference in the manufacturing process of a complementary metal-oxide-semiconductor device on the surface of a substrate can be described by taking the fabrication of self-aligned contacts on the source / drain region of the complementary metal-oxide-semiconductor device and the gate electrode as examples. A complementary metal-oxide-semiconductor device fabricated by covering a photoresist protective oxide layer on the completed gate structure (including fabrication of the gate spacer) (the complementary metal-oxide semiconductor device is formed on a substrate surface) The complementary metal-oxide-semiconductor device can be divided into: a device that needs to perform an electrical contact process of self-aligned metal silicide and a device that does not need to perform an electrical contact process of self-aligned metal silicide. Among the above-mentioned components that do not need to perform the self-aligned metal silicide electrical contact manufacturing process, a photolithography process can be used to cover a photoresist layer thereon, and the self-aligned metal lithosol electrical contact needs to be performed In the manufacturing process, the photoresist layer is used as a mask to remove the photoresist protective oxide layer thereon. In this way, the exposed surface after the photoresist protective oxide layer is removed, the electrical contact process of the self-aligned metal silicide can be performed separately. As the size of components continues to shrink, the thickness of the photoresist protective oxide layer must be further reduced, and the quality of the deposited photoresist protective oxide layer must be further improved. The quality of the photoresist protective oxide layer is usually obtained by using parameters such as Field-to-Breakdown and Charge-to-Breakdown. One of the problems encountered in the generation of sub-micron device sizes is: the interface between the polycrystalline silicon film layer and the photoresist protective oxide layer used to manufacture the gate structure 498432 V. Invention Description (3) There are holes. Therefore, in order to prevent the above-mentioned holes from being generated, the present invention provides a method for controlling the quality of the photoresist protective oxide layer. For related know-how, please refer to the following US invention patents: (1) For the related description of the photoresist protective oxide layer, please refer to US Patent No. 6,207,492 (Tz e n g e t a 1 ·). (2) For a description of the anti-reflective coating (ARC) layer of silicon rich oxide, please refer to US Patent No. 6,174,590 (I yereta 1 .) And Patent No. 6,16, 7 2 2 (Hsu). (3) For other related technologies, please refer to US Patent No. 6,194,258 (Wuu) and Patent No. 6, 1 8 7,6 5 5 (Wang Purpose and Summary of the Invention: The main purpose of the present invention is to provide a photoresist A method for forming a protective oxide layer to avoid forming a hole between the photoresistive protective oxide layer and the polycrystalline silicon layer of the gate structure thereunder. The photoresistive protective oxide layer of the new material provided by the present invention is applied to a semiconductor device, particularly It is applied to semiconductor elements with sub-micron size. The material of the photoresist protective oxide layer of the present invention contains a silicon-rich chemical vapor phase 498432 V. Description of the invention (4) The deposited oxide has a refractive index of about 1 5 7 ~ 1.6 can prevent silicon atoms from diffusing from the polycrystalline silicon film layer into the photoresist protective oxide layer. Detailed description of the invention: Please refer to FIG. 1 ', which is a cross-sectional view of a semiconductor wafer. Element structure: a semiconductor substrate surface 10. Two gate structures 12 and 14 are manufactured on the semiconductor substrate surface 10. An insulating region (such as a field oxide region or The trench trench isolation area 16 is manufactured between two gate structures 12 and 14 to electrically isolate the two gate structures 12 and 14 from each other. A gate oxide layer 1 8, manufactured on the surface of the semiconductor substrate 10, which includes the use of chemical vapor deposition (CVD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD) or semiconductor The substrate surface 10 is formed by being exposed to an oxidizing environment, wherein the gate oxide layer 18 has a thickness of about 300 to 500 angstroms, and preferably has a thickness of about 400 angstroms. Two gate structures 1 The gate electrodes 20 of 2 and 14 are made of polycrystalline silicon. After depositing the material film layer of gate electrode 20 on the surface of gate oxide layer 18, they are performed together with gate oxide layer 18. The gate junction 498432 shown in FIG. 1 is formed by the etching process. 5. Description of the Invention (5) The gate spacer 22 is formed on the sidewalls of the gate oxide layer 18 and the gate electrode 20. Lightly doped The drain / source electrodes 2 1 and 2 3 are formed by implanting impurity ions on the surface of the semiconductor substrate 10, and they are self-aligned. The gate electrode 20 at the gate structure 12. Lightly doped drain / source electrodes 25 and 27 are formed by implanting impurity ions on the surface of the semiconductor substrate 10 and are self-aligned to the gate. The gate electrode 20 of the electrode structure 14 is formed by implanting impurity ions on the surface of the semiconductor substrate 10, and it is self-aligned with the gate structure 12. The source / drain electrodes 35 and 37 are formed by implanting impurity ions on the surface of the semiconductor substrate 10, and are self-aligned to the gate structure 14. Please refer to FIG. 2, which is a cross-sectional view of a semiconductor wafer. In addition to including all the components in FIG. 1, the following components have been added: Photoresist protective oxide layer 2 4, which is deposited on the gate structure 1 2, 1 4 and exposed. The resulting semiconductor substrate surface 10 is used as a protection for the underlying film layer during subsequent processes. After the pattern transfer and development, the photoresist mask 26 is formed by forming a photoresist film layer on the surface of the photoresist protective oxide layer 24, and then removing a part of the photoresist film layer, and a part of the photoresist film layer The removal method can be achieved by wet stripping with an oxygen plasma and then using an aqueous solution of sulfuric acid, hydrogen peroxide and sodium hydroxide. The method for forming the photoresist protective oxide layer 24 includes chemical vapor deposition, low pressure chemical vapor deposition or plasma enhanced chemical vapor deposition. If plasma enhanced chemical vapor deposition is used to form photoresist protection Oxide layer 2 4
第9頁 498432 五、發明說明(6) (若希望製程溫度較低,則需要用電漿增強式化學氣相沈 積法),則其厚度約為3 0 0〜5 0 0埃,而較佳厚度約為4 0 0 埃。 在本發明中,光阻防護氧化層2 4之較佳材質係使用富 石夕的化學氣相沈積氧化物(silicon-rich CVD oxide), 其較佳折射率約為1 · 5 7〜1 · 6之間,而習知的傳統二氧化矽 膜層之折射率約為1. 4 6。 藉由圖二所示之經圖案轉移及顯影後的光阻罩幕2 6, 可以達成前述之不同閘極結構元件施以不同製程步驟之目 的。例如,蝕去沒有光阻罩幕2 6覆蓋的部份光阻防護氧化 層2 4,而曝露出閘極結構1 2,以對半導體基底表面1 0進行 自對準金屬矽化物製程。而前述之閘極結構1 2若進行雜質 離子佈植,而形成閘極結構1 2的輕摻雜區及沒極/源極 區,其中輕摻雜區係自對準於閘極結構1 2之閘極電極,而 汲極/源極區係自對準於閘極結構1 2。則由於閘極結構1 4 上的光阻防護氧化層2 4並沒有曝露在雜質離子佈植中,因 而閘極結構1 4上的光阻防護氧化層2 4並不會遭到損壞。 本發明中所使用的光阻防護氧化層2 4之材質包含富矽 的化學氣相沈積氧化物(silicon-rich CVD oxide)。依 據習知經驗可知,若使用富矽的化學氣相沈積氧化物來當 作光阻防護氧化層2 4之材質,則光阻防護氧化層2 4與其下Page 9 498432 V. Description of the invention (6) (If lower process temperature is required, plasma enhanced chemical vapor deposition method is needed), its thickness is about 3 0 ~ 5 0 0 angstroms, which is better. The thickness is about 4 0 Angstroms. In the present invention, the preferred material for the photoresist protective oxide layer 24 is silicon-rich CVD oxide, which has a preferred refractive index of about 1 · 5 7 ~ 1 · 6 , The refractive index of the conventional conventional silicon dioxide film layer is about 1. 4 6. With the pattern transfer and development of the photoresist mask 26 shown in FIG. 2, the foregoing goal of applying different process steps to different gate structure elements can be achieved. For example, a portion of the photoresist protective oxide layer 24 not covered by the photoresist mask 26 is etched away, and the gate structure 12 is exposed to perform a self-aligned metal silicide process on the surface 10 of the semiconductor substrate. If the gate structure 12 described above is implanted with impurity ions, a lightly doped region and a non-source / source region of the gate structure 12 are formed, where the lightly doped region is self-aligned to the gate structure 12 Gate electrode, and the drain / source region is self-aligned to the gate structure 12. Since the photoresist protective oxide layer 24 on the gate structure 14 is not exposed to the impurity ion implantation, the photoresist protective oxide layer 24 on the gate structure 14 will not be damaged. The material of the photoresist protective oxide layer 24 used in the present invention includes silicon-rich CVD oxide. According to conventional experience, if a silicon-rich chemical vapor deposition oxide is used as the material of the photoresist protective oxide layer 24, the photoresist protective oxide layer 2 4
第10頁 498432 五、發明說明(7) 方的閘極結構1 2及1 4之複晶矽膜層2 0二者間的介面上可避 免孔洞產生。造成此現象的原因為富矽的化學氣相沈積氧 化層的折射率大小,其大約為1 · 5 7〜1 · 6。如此之折射率可 避免石夕原子從複晶^夕膜層2 0處遷移至材質為富石夕的化學氣 相沈積氧化物之光阻防護氧化層2 4内,因此避免了複晶矽 膜層2 0内產生孔洞。實驗已證實使用富矽的化學氣相沈積 氧化物來當作光阻防護氧化層2 4之材質,可考慮元件尺寸 降低之需求,亦即厚度較薄的光阻防護氧化層2 4是必須 的。本發明應用於次微米CMOS元件的較佳實施例,具有的 通道長度範圍為0 . 1 8微米或0 . 1 8微米以下。 為了更進一步強調出本發明所提供的利處,請參閱圖 六與圖七,其顯示出一個閘極結構之截面圖。如圖六所 示,一材質為傳統氧化物的膜層2 4 ’,係沈積當作光阻防 護氧化層。由圖六中可發現用以當作閘極電極的複晶層2 0 中有分子遷移至膜層2 4 ’内的現象,因而在膜層2 4 ’與複晶 層2 0二者間的介面上產生了孔洞3 9。而先前圖二中所示之 閘極結構1 2已經過額外的處理,亦即膜層2 4 ’已由上述閘 極結構1 2之表面上移除。通常此一額外處理係用以進行自 對準金屬矽化物製程,例如沈積一鈷(Co)層於閘極結構 1 2之曝露表面上,當然包括閘極結構1 2之表面上的孔洞3 9 也被钻層所覆蓋。如此一來將使得閘極結構1 2之孔洞3 9内 形成了始的碎化物(C 〇 S i χ),其係造成閘極氧化層完整 性(Gate Oxide Integrity,GO I)之崩潰的主要原因。Page 10 498432 V. Description of the invention (7) The interface between the polycrystalline silicon film layer 2 0 of the square gate structure 12 and 14 can avoid the occurrence of holes. The cause of this phenomenon is the refractive index of the silicon-rich chemical vapor deposition oxide layer, which is approximately 1.57 to 1.6. Such a refractive index can prevent Shi Xi atoms from migrating from the polycrystalline ^ Xi film layer 20 into the photoresist protective oxide layer 24 of the chemical vapor deposition oxide made of rich Shixi, thus avoiding the polycrystalline silicon film Holes are created in layer 20. Experiments have confirmed that the use of silicon-rich chemical vapor deposition oxides as the material of the photoresist protective oxide layer 2 4 can consider the need to reduce the size of the component, that is, a thinner photoresist protective oxide layer 2 4 is necessary . The present invention is applied to a preferred embodiment of a sub-micron CMOS device, and has a channel length ranging from 0.18 μm or less. In order to further emphasize the advantages provided by the present invention, please refer to FIGS. 6 and 7, which show a cross-sectional view of a gate structure. As shown in Figure 6, a film layer 2 4 ′ made of a conventional oxide is deposited as a photoresistive protective oxide layer. It can be seen from FIG. 6 that there is a phenomenon that molecules in the multi-crystal layer 20 used as the gate electrode migrate into the film layer 2 4 ′. Therefore, there is a phenomenon between the film layer 2 4 ′ and the multi-crystal layer 20. Holes 3 9 were created on the interface. The gate structure 12 shown in FIG. 2 has been subjected to additional processing, that is, the film layer 2 4 ′ has been removed from the surface of the gate structure 12 described above. Generally, this additional treatment is used for self-aligned metal silicide processes, such as depositing a cobalt (Co) layer on the exposed surface of the gate structure 12, of course, including holes 3 9 on the surface of the gate structure 12. Also covered by drilling layers. In this way, the initial fragmentation (CoS i x) will be formed in the holes 39 of the gate structure 12, which is the main cause of the collapse of the gate oxide integrity (GO I). the reason.
第11頁 498432 五、發明說明(8) 如圖七所示,如果光阻防護氧化層之材質為富矽的化學氣 相沈積氧化物,那麼如圖六中所示之孔洞3 9將不會形成於 光阻防護氧化層與複晶層2 0二者間的介面上。 請參閱圖三,其顯示出依據光阻罩幕2 6而除去部份材 質為富矽的化學氣相沈積氧化物之光阻防護氧化層2 4後的 閘極結構1 2及1 4之截面圖。在此係以緩衝之氫氟酸濕蝕刻 製程來進行曝露出的光阻防護氧化層2 4之蝕刻,且其需與 上升溫度中的酸性溶液相接觸。例如濕蝕刻所使用的溶液 可以為磷酸、氮酸、醋酸等,而其溫度約可為攝氏3 0〜5 0 度。Page 11 498432 V. Description of the invention (8) As shown in Figure 7, if the material of the photoresist protective oxide layer is a silicon-rich chemical vapor deposition oxide, then the holes 3 9 shown in Figure 6 will not It is formed on the interface between the photoresist protective oxide layer and the polycrystalline layer 20. Please refer to FIG. 3, which shows the cross-sections of the gate structures 12 and 14 after removing a part of the photoresist protective oxide layer 24 made of silicon-rich chemical vapor deposition oxide according to the photoresist mask 2 6. Illustration. Here, the exposed photoresist protective oxide layer 24 is etched by a buffered hydrofluoric acid wet etching process, and it needs to be in contact with an acidic solution at an elevated temperature. For example, the solution used for wet etching may be phosphoric acid, nitric acid, acetic acid, etc., and its temperature may be about 30 to 50 degrees Celsius.
請參閱圖四,其顯示出對閘極結構1 2的接觸區域進行 鈷層沈積後的閘極結構1 2及1 4之截面圖。其中上述鈷層沈 積的區域包含有汲極/源極區域表面以及閘極結構1 2之表 面。圖四中沈積於閘極結構1 2之曝露表面上的鈷層4 4,接 著施以回火製程以使鈷層4 4與其下之矽表面反應而形成鈷 的矽化物。其中鈷層4 4的形成之一實施例,可以於攝氏約 2 5〜3 0 0度下,使用濺鍍法或者化學氣相沈積法二者其中之 一,形成約5 0〜1 5 0埃的厚度(較佳厚度約為8 0埃)。而圖 四中的I古層4 4經回火製程後將形成如圖五中所示之始的石夕 化物層4 6,其中鈷層4 4的回火製程之一實施例,可以於攝 氏約5 0 0〜8 5 0度之大氣環境或氮氣環境下(壓力均為一大 氣壓力),使用時間約為20〜60秒的快速熱回火製程(RTAPlease refer to FIG. 4, which shows cross-sectional views of the gate structures 12 and 14 after the cobalt layer is deposited on the contact area of the gate structure 12. The region where the cobalt layer is deposited includes the surface of the drain / source region and the surface of the gate structure 12. The cobalt layer 44 deposited on the exposed surface of the gate structure 12 in FIG. 4 is then subjected to a tempering process to cause the cobalt layer 44 to react with the silicon surface below it to form cobalt silicide. One embodiment of the formation of the cobalt layer 44 can be formed at a temperature of about 25 to 300 degrees Celsius by using either a sputtering method or a chemical vapor deposition method to form about 50 to 150 angstroms. Thickness (preferably about 80 angstroms). Whereas, the ancient layer 44 in FIG. 4 will be formed after the tempering process as shown in FIG. 5, and the lithoxide layer 46 will be formed as shown in FIG. A rapid thermal tempering process (RTA) with an operating time of about 20 to 60 seconds under an atmospheric or nitrogen environment at 500 to 850 degrees (the pressures are all at atmospheric pressure)
第12頁 498432 五、發明說明(9) )來形成。 請參閱圖五,其顯示出對鈷層44施以回火製程並除去 光阻罩幕2 6後的閘極結構1 2及1 4之截面圖。其中上述除去 光阻罩幕2 6的方法可利用習知的光阻除去方法,例如使用 硫酸以及混合硫酸與其他諸如雙氧水的氧化劑 (oxidizing agent)來進行光阻之剝除。光阻罩幕2 6剝 除後的晶圓可以浸沒在溫度約攝氏1 0 0〜1 5 0度的環境下約 5〜1 0分鐘,然後用去離子水(d e i ο n i z e d w a t e r)潔淨之 並利用氮氣來乾燥之。無機光阻之剝除,例如硫酸混合 物,高度地後烘烤(post bake)對光阻之殘餘移除是很有 效的。與有機光阻之剝除相較,上述方法係較有效的,且 較長的浸沒時間,可以獲得較乾淨且較無殘餘的晶圓表 面。 由上述製程程序可明顯看出,因為使用富矽的化學氣 相沈積氧化物當作光阻防護氧化層2 4之材質,故孔洞將不 會形成於閘極結構1 2之複晶矽層2 0的表面上,因而避免閘 極結構1 2之複晶矽層2 0表面上有鈷的矽化物沈積於孔洞的 現象,也就不會造成閘極氧化層完整性(G a t e 0 X i d e Integrity,GO I)之崩潰。 以上所述僅為本發明之較佳實施例而已,並非因此限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之Page 12 498432 V. Description of Invention (9)). Please refer to FIG. 5, which shows a cross-sectional view of the gate structures 12 and 14 after applying a tempering process to the cobalt layer 44 and removing the photoresist mask 26. The above-mentioned method for removing the photoresist mask 26 can use a conventional photoresist removal method, such as using sulfuric acid and mixing sulfuric acid with other oxidizing agents such as hydrogen peroxide to remove the photoresist. After the photoresist mask 2 6 is stripped, the wafer can be immersed in an environment at a temperature of about 100 to 150 degrees Celsius for about 5 to 10 minutes, and then cleaned with deionized water and used. Dry it with nitrogen. Stripping of inorganic photoresists, such as sulfuric acid mixtures, is highly effective for post removal of photoresist residues. Compared with organic photoresist stripping, the above method is more effective and has a longer immersion time to obtain a cleaner and less residual wafer surface. It can be clearly seen from the above process procedure that because silicon-rich chemical vapor deposition oxide is used as the material of the photoresist protective oxide layer 24, holes will not be formed in the polycrystalline silicon layer 2 of the gate structure 12 0 on the surface, thus avoiding the complex structure of the gate structure 1 2 of the polycrystalline silicon layer 2 0 on the surface of cobalt silicide deposited on the hole, which will not cause the gate oxide integrity (Gate 0 X ide Integrity , GO I). The above are only the preferred embodiments of the present invention, and do not limit the scope of patent application of the present invention;
第13頁 498432Page 13 498432
第14頁 498432 圖式簡單說明 圖一為半導體晶片之截面圖,顯示根據本發明之一實 施例’在半導體基底上形成二個彼此分隔的閘極結構之步 驟; 圖二為半導體晶片之截面圖,顯示根據本發明之一實 施例,先沈積一光阻防護氧化層於整個半導體基底上,然 後形成一光阻罩幕於一閘極結構上之步驟; 圖三為半導體晶片之截面圖,顯示根據本發明之一實 施例,除去沒有光阻罩幕覆蓋的部份光阻防護氧化層之步 驟; 圖四為半導體晶片之截面圖》顯不根據本發明之一實 施例對沒有光阻罩幕覆蓋的閘極結構之接觸區域進行鈷層 沈積的步驟; 圖五為半導體晶片之截面圖,顯示根據本發明之一實 施例,對所形成的鈷層施以回火製程並除去光阻罩幕之步 驟; 圖六為半導體晶片之截面圖,顯示根據傳統發明之一 實施例,利用材質為傳統氧化物的膜層來當作光阻防護氧 化層而造成了閘極結構之複晶矽膜層表面產生了孔洞; 圖七為半導體晶片之截面圖,顯示根據本發明之一實 施例,利用材質為富矽的化學氣相沈積氧化物來當作光阻 防護氧化層可避免於閘極結構之複晶矽膜層表面產生孔 洞。 圖號部分:Page 498 432 Brief Description of Drawings Figure 1 is a cross-sectional view of a semiconductor wafer, showing the steps of forming two gate structures separated from each other on a semiconductor substrate according to an embodiment of the present invention; Figure 2 is a cross-sectional view of a semiconductor wafer Shows a step of depositing a photoresist protective oxide layer on the entire semiconductor substrate and then forming a photoresist mask on a gate structure according to an embodiment of the present invention; FIG. 3 is a cross-sectional view of a semiconductor wafer, showing According to an embodiment of the present invention, the step of removing a portion of the photoresist protective oxide layer without the photoresist cover is covered; FIG. 4 is a cross-sectional view of a semiconductor wafer. Step of depositing a cobalt layer in the contact area of the covered gate structure; FIG. 5 is a cross-sectional view of a semiconductor wafer, showing that the formed cobalt layer is subjected to a tempering process and the photoresist mask is removed according to an embodiment of the present invention Steps; FIG. 6 is a cross-sectional view of a semiconductor wafer, showing that according to an embodiment of a conventional invention, a film layer made of a conventional oxide is used as a photoresist Holes were created on the surface of the polycrystalline silicon film layer of the gate structure due to the oxide protection layer; FIG. 7 is a cross-sectional view of a semiconductor wafer, showing that according to an embodiment of the present invention, a silicon-rich chemical vapor deposition oxide is used As a photoresist protective oxide layer, holes can be avoided on the surface of the polycrystalline silicon film layer of the gate structure. Drawing number part:
第15頁 498432 圖式簡單說明 面 ·, 4 .—- 8 之 、 ·, 11 ·, 2 6 ο 底 r—H r—Η 層 c^l 基構域化極 體結區氧電 導極緣極極 半閘絕閘閘 閘極間隙壁2 2 ; 輕摻雜汲極/源極2卜2 3、2 5、2 7 ; 源極 / 沒極 3 1、3 3、3 5、3 7 ; 材質為富碎的化學氣相沈積氧化物之光阻防護氧化層2 4 ; 材質為傳統氧化物之光阻防護氧化層2 4 ’ ; 光阻罩幕2 6 ; 孔洞3 9 ; 始層4 4 ; 钻的碎化物層4 6。Page 15 498432 Simple illustration of the surface ·, 4 .—- 8 of, ·, 11 ·, 2 6 ο bottom r—H r—Η layer c ^ l base structured polarized body junction region oxygen conductivity pole edge pole Half gate absolute gate gate gap wall 2 2; lightly doped drain / source 2 2 3, 2 5, 2 7; source / non-pole 3 1, 3 3, 3 5, 3 7; material is Photoresist protective oxide layer 2 4 of rich chemical vapor deposition oxide; Material is photoresist protective oxide layer 2 4 'of traditional oxide; photoresist mask 2 6; holes 3 9; starting layer 4 4; drill的 碎 物 层 4 6。 The fragmented layer 4 6.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90119549A TW498432B (en) | 2001-08-09 | 2001-08-09 | Photoresist protect oxide material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90119549A TW498432B (en) | 2001-08-09 | 2001-08-09 | Photoresist protect oxide material |
Publications (1)
Publication Number | Publication Date |
---|---|
TW498432B true TW498432B (en) | 2002-08-11 |
Family
ID=21679019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90119549A TW498432B (en) | 2001-08-09 | 2001-08-09 | Photoresist protect oxide material |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW498432B (en) |
-
2001
- 2001-08-09 TW TW90119549A patent/TW498432B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005122254A2 (en) | Gate stack and gate stack etch sequence for metal gate integration | |
KR20020002593A (en) | Method for manufacturing semiconductor device using damascene process | |
TWI226667B (en) | Transistor fabrication method | |
JP3539491B2 (en) | Method for manufacturing semiconductor device | |
US6110790A (en) | Method for making a MOSFET with self-aligned source and drain contacts including forming an oxide liner on the gate, forming nitride spacers on the liner, etching the liner, and forming contacts in the gaps | |
JP3746907B2 (en) | Manufacturing method of semiconductor device | |
US7268048B2 (en) | Methods for elimination of arsenic based defects in semiconductor devices with isolation regions | |
JP2001093888A (en) | Method for manufacturing semiconductor device | |
JPH08186260A (en) | Preparation of mos transistor | |
TWI236065B (en) | Method for providing an integrated active region on silicon-on-insulator devices | |
TW498432B (en) | Photoresist protect oxide material | |
JPH10233392A (en) | Manufacture of semiconductor device | |
US6569784B1 (en) | Material of photoresist protect oxide | |
JP4082280B2 (en) | Semiconductor device and manufacturing method thereof | |
US7179715B2 (en) | Method for controlling spacer oxide loss | |
US20070093031A1 (en) | Methods of removing photoresist and fabricating semiconductor devices | |
JP2736276B2 (en) | Method for reducing mobile ion contamination in semiconductor integrated circuits | |
TWI255016B (en) | Method of manufacturing flash memory devices | |
KR100361572B1 (en) | a manufacturing method of a contact structure of a semiconductor device | |
TW522470B (en) | Method of improving end-of-line shortening of a linear thin film | |
TW516104B (en) | Manufacture method of gate spacer | |
JP2008135765A (en) | Semiconductor device | |
KR100438768B1 (en) | Method for selectively forming silicide to form silicide only on gate electrode without using photolithography process | |
KR100557224B1 (en) | Method for fabricating semiconductor device | |
KR20010003046A (en) | method for forming self-align contact hole in semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |