A7 451503 B7_ 五、發明說明(I ) 發明之領域 本發明係提供一種AlGalnP發光裝置,尤指一種設有 一複合窗層之AlGalnP發光裝置。 背景說明 (A^Ga^) 四元素構成之化合物半導體是一 種與GaAs基材晶格結構相似之具有直接能帶差(direct bandgap)材料,且在波長爲560~650nm範圍內具有高發光 重組效率(radiation recombination efficiency) 1 是用來製作具有高亮度之紅色至黃綠光之發光二極體的最佳 選擇。由於製作較厚且具有較高導電性之AlGalnP層相當困 難,因此目前發展了許多技術以改善照明效率(luminous efficiency).藉由設計一種具高導電性且其能階差比發光 能量大的窗層(window layer)結構,可以增加電流分佈以 及透光度,以提高發光二極體之發光效率。例如:在AlGalnP 發光二極體中使用 GaAlAs、IT0、GaAsP > GaAlP ' GalnP 或GaP等材料作爲窗層,便可以解決電流聚集的問題。A7 451503 B7_ V. Description of the Invention (I) Field of the Invention The present invention provides an AlGalnP light-emitting device, especially an AlGalnP light-emitting device provided with a composite window layer. Background note (A ^ Ga ^) A four-element compound semiconductor is a material with a direct bandgap similar to the lattice structure of a GaAs substrate, and has a high luminous recombination efficiency in the wavelength range of 560 ~ 650nm. (Radiation recombination efficiency) 1 is the best choice for producing light-emitting diodes with high brightness from red to yellow-green light. Because it is quite difficult to make a thick and highly conductive AlGalnP layer, many technologies have been developed to improve luminous efficiency. By designing a window with high conductivity and a larger energy step than the luminous energy, The layer (window layer) structure can increase the current distribution and transmittance to improve the light emitting efficiency of the light emitting diode. For example, in the AlGalnP light-emitting diode, using GaAlAs, IT0, GaAsP > GaAlP 'GalnP or GaP as the window layer can solve the problem of current accumulation.
請參考圖一,圖一爲習知設有一 GaP窗層之AlGalnP 發光二極體的剖面示意圖。習知發光二極體包含有一 N型 GaAs基材1,一 N型AlGalnP下覆蓋層2覆蓋於基材1表 面上,一 AlGalnP作用層3覆蓋於下覆蓋層2表面上,一 P 4EPITAXY199901TW 1 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) I I 1 Ί I t 1 t I I t I I ^ - — — — (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作杜印製 A7 451503 B7__ 五、發明說明(» 型AlGalnP上覆蓋層4覆蓋於作用層3表面上,爲了提高 電流分佈,以一導電性與能階差均較作用層3大GaP窗層5 覆蓋於上覆蓋層4表面上,一電洞邊(p-side)金屬電極6 設於窗層5表面上,以及一電子邊(n-side)金屬電極7設 於基材1底面。但是,因爲窗層5與上覆蓋層4之間晶格錯 位以及成長過程中產生的介面問題,層間會產生差排 (dislocation)、缺陷(defects)以及雜質(trapped impurities)。這些差排、缺陷與雜質會導致後續接線(wire bonding)時產生破裂、發光二極體之發光強度衰退,發光二 極體之電壓飄移(voltage drift),以及表面型態型態 (surface morphology)等問題。 儘管如此,一些硏究仍提出一種雙層窗層結構,可減少 窗層5與上覆蓋層4之晶格錯位的問題。美國專利案 5, 359,209中揭露一種雙窗層結構,係將一薄的GaAs中介 層8插設於上覆蓋層4與窗層5之間。此習知之雙窗層結構 的剖面示意圖如圖二所示。由於GaAs與AlGalnP的晶格常 數相同,因此可以減低上述之差排、缺陷、雜質問題。不過, 上覆蓋層4之材質AlGalnP與中介層8的材質GaAs差異 相當大,在製作上很難成長出高品質的GaAS薄膜。而且會 因爲GaAs與AlGalnP的晶格錯位,而殘留許多差排或缺陷 在窗層5中。 4EPITAXY199901TW 2 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐) ---:----„---------------訂--------- <請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 451503 A7 B7 五、發明說明(3) 發明槪述 (請先閱讀背面之注意事項再填寫本頁) 因此,本發明係提供一種複合窗層,係由厚度爲50-5000 A之AlGalnP暫態層、厚度大於2 μπι之 .層以及厚度爲0.2-1.0μιη之導電接觸層所構成之三層結構。 在暫態層中,材料組成由上覆蓋層AlGalnP的成分變成下層 A1與In較少的組成,使得上覆蓋層與窗層間具有較佳的晶格 配位與長晶品質以利電子載子之之散佈,因而改善發光二極 體之發光強度的長期穩定性、順向電壓的穩定性、表面組織 型態以及發光強度。窗層可以加強摻雜物 的激發作用與交互作用,使電子載子適當且均勻地分佈於上 覆蓋層。導電接觸層是用來與金屬合金作導電接觸’廣泛地 被應用在GaP晶片製造上。這個結構可以製作成?型或N型導 電型式,而且在製作上只需使用少量的氫化物氣體進行一個 MOVPE成長製程,因此具有容易成長以及低製作成本等優點。 -線. 圖示之簡單說明 圖一爲習知設有一 GaP窗層之AlGalnP發光二極體的剖面 示意圖。 經濟部智慧財產局員工消費合作社印製 圖二爲習知設有一雙窗層結構之AlGalnP發光二極體的剖面 示意圖。 圖三A爲本發明第一實施例之AlGalnP發光二極體的剖面示 意圖。 圖三B爲本發明第二實施例之AlGalnP發光二極體的剖面示 意圖。 4EPITAXY199901TW 3 本紙張尺度適用中國國家標準(CNS)A4規格(210x 297公釐) 45 1 5 0 3 A7 經濟部智慧財產局員工消費合作社印製 B7 五、發明說明(4~) 圖三C爲本發明第三實施例之AiGainP發光二極體的剖面示 意圖。 圖四爲本發明第四實施例之發光二極體的剖面示意圖。 圖五A爲(inxGai_x)。5ρα 5窗層之組織型態示意圖。 圖五Β爲傳統GaP窗層之組織型態示意圖。 圖六爲本發明第五實施例之發光二極體的剖面示意圖。 圖示之符號說明 31 基材 32 下覆蓋層 331 作用層 332 多重量子井結構 34 上覆蓋層 35 複合窗層 351 暫態層 352 窗層 353 導電接觸層 36 分散式布拉格反射層 411 基材 412 緩衝層 42 下覆蓋層 43 多重量子井結構 431 下載子限制層 432 量子層 433 緩衝層 434 上載子限制層 44 上覆蓋層 45 複合窗層 451 暫態層 452 窗層 453 導電接觸層 511 基材 512 緩衝層 513 分散式布拉格反射層 52 下覆蓋層 53 多重量子井結構 531 下載子限制層 532 量子層 533 緩衝層 4EPITAXY199901TW 4 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) ^^1 ^^1 ^^1 ^^1 ^^1 t'''• ^^1-丨, ft—v It ti t J^171 9 4 1¾ (請先閱讀背面之注意事項再填寫本頁) 45 1 5 0 3 A7 B7 五、發明說明(5) 534 上載子限制層 54 上覆蓋層 55 複合窗層 551 暫態層 552 窗層 553 導電接觸層 發明之詳細說明 請參考圖三A,圖三A爲本發明第一實施例之AiGalnP 發光二極體的剖面不意圖。如圖三A所示,本發明第一實施 例之發光二極體包含有一具有一第一導電型式之GaAs基材 31(也可以一具有第一導電型式之Ge基材取代),一具有第 一導電型式之AlGalnP下覆蓋層32係成長於基材31表面 上,一AlGalnP作用層331係設於下覆蓋層32上,一具有 一第二導電型式之AlGalnP上覆蓋層34係設於作用層331 表面上,以及一複合窗層35設於上覆蓋層34表面上。作用 層331係由(AlxGai-x)Q.51InQ.49P所構成,其中x値爲 〇~〇.5,發射波長會因X値不同而產生變化。舉例來說,當 X値爲1S%時,發射光波長爲610nm。上覆蓋層34是用來限 制第一導電型式載子從下面射入,且其高電阻値可以改善電 載子的分佈。複合窗層35是一個三層結構,包含有一厚度 爲5 0〜5 00 0 A的暫態層351,一厚度大於2μιη的(Ir^Ga^ 窗層352,以及一厚度爲0·2〜Ι.Ομπι的導電接觸層 353。在暫態層中,材料組成由上覆蓋層AlGalnP的成分變成下層Μ 與工η較少的組成,使得上覆蓋層與窗層間具有較佳的晶格配位以及 成長品質,可以改善發光二極體之發光強度的長期穩定性、順 向電壓(forward voltage)的穩定性以及發出的光線品質。 4EPITAXY199901TW 5 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ,I I — ; ----------^_-- (請先閱讀背面之注意事項再填寫本頁) 言 Γ 經濟部智慧財產局員工消費合作社印?衣 經濟部智慧財產局員工消費合作社印製 45 1 5 0 3 A7 B7 五、發明說明(么) (InxGai_xV5Pu窗層352,可藉由維持平坦表面型態以加強摻雜物 的激發作用與交互作用,使電子載子適當且均勻地分佈於上覆蓋層34 上。導電接觸層是用來與金屬合金作導電接觸’被廣泛應用在GaP晶 片製造上。 請參考圖三B,圖三B爲本發明第二實施例之AlGalnP 發光二極體的剖面示意圖。本發明第二實施例之A1GaInP發 光二極體,係將作用層331替換成一多重量子井結構332, 其包含有複數個輪替堆疊之量子井層以及緩衝層’可以用來 作爲一發光層。多重量子井結構332係由(AlxGai_ 山.51InG.49P所構成,其中X値範圍爲0〜0·5 ’發射波長會 因X値不同而產生變化。舉例來說,當X値爲15%時,發射 光波長爲610nm。 請參考圖三C,圖三C爲本發明第三實施例之A1GaInP 發光二極體的剖面示意圖。爲了減少基材31的光吸收性,本 發明第三實施例之AlGalnP發光二極體另外設有一具有第一 導電型式之分散式布拉格反射層(distributed Bragg reflector) 36,係插設於於基材以及下覆盡層之間’ 可以使部分被基材31所吸收的光反射出來’進而改善 AlGalnP發光二極體的發光強度。 例一 圖三C所示,發光二極體結構包含有N型(l〇Q) GaAs基 4EPITAXY199901TW 6 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) i —— ΐ --1 I 《 n n 1^1 一 I It (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 4 5 15 0 3 A7 B7 五、發明說明(勹) 材31,N型GaAs緩衝層36長成於基材31上,N型 AlGalnP下覆蓋層32長成於緩衝層36上,AlGalnP作用 層3;31設於下覆蓋層32表面上,用來作爲發光層,厚度爲 0.5-1.0 μιη之P型AlGalnP上覆蓋層34設於作用層331 表面上,以及摻雜鎂(Mg)或鋅(Zn) P型複合窗層,係有比 發射光的能量更大的能階差(band gap)。複合窗層35是 一個三層結構,包含有一厚度爲50-5000 A的暫態層351, 一厚度大於2μιη的352,以及一厚度 爲◦ ·2〜1. Ομιη的導電接觸層353。在暫態層351中,材料組成 由上覆蓋層AlGalnP的成分變成下層Α1與In較少的組成,使得上覆 蓋層與窗層間具有較佳的晶格配位以及成長品質,可以改善發光 二極體之發光強度的長期穩定性、順向電壓(forward voltage)的穩定性以及發出的光線品質。(InxGahU^窗 層352,可藉由維持平坦表面型態以加強摻雜物的激發作用與交互作 用,使電子載子適當且均勻地分佈於上覆蓋層34上。導電接觸層是用 來與金屬合金作導電接觸,被廣泛應用在GaP晶片製造上。 例二Please refer to FIG. 1. FIG. 1 is a schematic cross-sectional view of a conventional AlGalnP light emitting diode provided with a GaP window layer. The conventional light emitting diode includes an N-type GaAs substrate 1, an N-type AlGalnP lower cover layer 2 covers the surface of the substrate 1, an AlGalnP active layer 3 covers the surface of the lower cover layer 2, a P 4EPITAXY199901TW 1 Paper size applies to China National Standard (CNS) A4 (210 X 297 mm) II 1 Ί I t 1 t II t II ^-— — — (Please read the notes on the back before filling this page) Intellectual Property of the Ministry of Economic Affairs Bureau ’s consumer cooperation with Du printed A7 451503 B7__ 5. Description of the invention (»Type AlGalnP top cover layer 4 covers the surface of active layer 3. In order to improve the current distribution, the conductivity and energy level difference are both larger than the active layer 3 GaP. The window layer 5 covers the surface of the upper cover layer 4, a p-side metal electrode 6 is provided on the surface of the window layer 5, and an n-side metal electrode 7 is provided on the bottom surface of the substrate 1. However, due to the lattice misalignment between the window layer 5 and the upper cover layer 4 and the interface problems generated during the growth process, dislocations, defects, and trapped impurities will occur between the layers. These differences, Defects and impurities can cause subsequent wiring (wir Problems such as cracking, luminous intensity degradation of the light-emitting diode, voltage drift of the light-emitting diode, and surface morphology occur during e-bonding. However, some researches still propose a kind of The double window layer structure can reduce the lattice misalignment between the window layer 5 and the upper cover layer 4. US Patent No. 5,359,209 discloses a double window layer structure in which a thin GaAs interposer layer 8 is interposed on Between the cover layer 4 and the window layer 5. The cross-sectional schematic diagram of the conventional double window layer structure is shown in Figure 2. Since the lattice constants of GaAs and AlGalnP are the same, the above-mentioned difference in row, defect, and impurity problems can be reduced. The difference between the material AlGalnP of the upper cladding layer 4 and the material GaAs of the interposer 8 is quite large, and it is difficult to grow a high-quality GaAS film in the production. Moreover, because of the dislocation of the lattice of GaAs and AlGalnP, many differences or defects remain. In window layer 5. 4EPITAXY199901TW 2 This paper size is applicable to China National Standard (CNS) A4 (210x297 mm) ---: ------------------- --------- < Please read the notes on the back first (Fill in this page again) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 451503 A7 B7 V. Description of the invention (3) Description of the invention (please read the notes on the back before filling this page) Therefore, the present invention provides a composite window The layer is a three-layer structure composed of an AlGalnP transient layer with a thickness of 50-5000 A, a layer with a thickness of more than 2 μm, and a conductive contact layer with a thickness of 0.2-1.0 μm. In the transient layer, the material composition changes from the composition of the upper cover layer AlGalnP to the composition of the lower layer A1 and In, which makes the upper cover layer and the window layer have better lattice coordination and crystal growth quality to facilitate the electron carrier. The dispersion of the light-emitting diodes improves the long-term stability of the luminous intensity of the light-emitting diode, the stability of the forward voltage, the surface structure type, and the luminous intensity. The window layer can enhance the excitation and interaction of the dopants, so that the electron carriers are appropriately and uniformly distributed on the upper cover layer. The conductive contact layer is used to make conductive contact with a metal alloy 'and is widely used in the manufacture of GaP wafers. Can this structure be made? Type or N-type conductivity type, and only a small amount of hydride gas is needed to perform a MOVPE growth process, so it has the advantages of easy growth and low production costs. -Line. Brief description of the diagram Figure 1 is a schematic cross-sectional view of a conventional AlGalnP light-emitting diode provided with a GaP window layer. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 2 is a schematic cross-sectional view of a conventional AlGalnP light-emitting diode with a double window structure. Fig. 3A is a schematic cross-sectional view of an AlGalnP light emitting diode according to the first embodiment of the present invention. Fig. 3B is a schematic cross-sectional view of an AlGalnP light emitting diode according to a second embodiment of the present invention. 4EPITAXY199901TW 3 This paper size is in accordance with Chinese National Standard (CNS) A4 (210x 297 mm) 45 1 5 0 3 A7 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs B7 5. Description of the invention (4 ~) A schematic cross-sectional view of an AiGainP light emitting diode according to a third embodiment of the invention. FIG. 4 is a schematic cross-sectional view of a light emitting diode according to a fourth embodiment of the present invention. Figure 5A is (inxGai_x). Schematic diagram of the structure of 5ρα 5 window layer. FIG. 5B is a schematic diagram of the organization type of a traditional GaP window layer. FIG. 6 is a schematic cross-sectional view of a light emitting diode according to a fifth embodiment of the present invention. Explanation of symbols in the figure 31 substrate 32 lower cover layer 331 active layer 332 multiple quantum well structure 34 upper cover layer 35 composite window layer 351 transient layer 352 window layer 353 conductive contact layer 36 dispersed Bragg reflection layer 411 substrate 412 buffer Layer 42 Lower cover layer 43 Multiple quantum well structure 431 Downloader restriction layer 432 Quantum layer 433 Buffer layer 434 Carrier restriction layer 44 Upper cover layer 45 Composite window layer 451 Transient layer 452 Window layer 453 Conductive contact layer 511 Base material 512 Buffer Layer 513 Dispersive Bragg reflection layer 52 Under cover layer 53 Multiple quantum well structure 531 Downloader restriction layer 532 Quantum layer 533 Buffer layer 4EPITAXY199901TW 4 This paper size applies the Chinese National Standard (CNS) A4 specification (210 x 297 mm) ^^ 1 ^^ 1 ^^ 1 ^^ 1 ^^ 1 t '' '• ^^ 1- 丨, ft—v It ti t J ^ 171 9 4 1¾ (Please read the precautions on the back before filling this page) 45 1 5 0 3 A7 B7 V. Description of the invention (5) 534 Carrier restriction layer 54 Overlay layer 55 Composite window layer 551 Transient layer 552 Window layer 553 Conductive contact layer For a detailed description of the invention of the conductive contact layer, please refer to FIG. 3A, FIG. 3A This invention AiGalnP sectional light emitting diode according to an embodiment of the not intended. As shown in FIG. 3A, the light emitting diode according to the first embodiment of the present invention includes a GaAs substrate 31 having a first conductivity type (or a Ge substrate having a first conductivity type may be substituted), A conductive type AlGalnP lower cover layer 32 is grown on the surface of the substrate 31, an AlGalnP active layer 331 is provided on the lower cover 32, and an AlGalnP upper cover layer 34 having a second conductive type is provided on the active layer. On the surface of 331, a composite window layer 35 is disposed on the surface of the upper cover layer 34. The active layer 331 is composed of (AlxGai-x) Q.51InQ.49P, where x 値 is from 0 to 0.5, and the emission wavelength varies with X 値. For example, when X 値 is 1S%, the wavelength of the emitted light is 610nm. The upper cover layer 34 is used to restrict the first conductive type carriers from entering from below, and its high resistance 値 can improve the distribution of the carriers. The composite window layer 35 is a three-layer structure, which includes a transient layer 351 with a thickness of 50 ~ 500 0 A, an (Ir ^ Ga ^ window layer 352 with a thickness greater than 2 μm, and a thickness of 0 · 2 ~ 1 Ομπι conductive contact layer 353. In the transient layer, the composition of the material changes from the composition of the upper cover layer AlGalnP to the composition of the lower layer M and less η, so that the upper cover layer and the window layer have better lattice coordination and The growth quality can improve the long-term stability of the luminous intensity of the light-emitting diode, the stability of the forward voltage, and the quality of the emitted light. 4EPITAXY199901TW 5 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm), II —; ---------- ^ _-- (Please read the notes on the back before filling out this page) Words Γ Printed by the Intellectual Property Bureau Employee Consumer Cooperatives of the Ministry of Economy? Printed by the Intellectual Property Bureau's Consumer Cooperatives 45 1 5 0 3 A7 B7 V. Description of the invention (?) (InxGai_xV5Pu window layer 352 can enhance the excitation and interaction of dopants by maintaining a flat surface shape to make the electrons Carriers are properly and evenly distributed On the upper cover layer 34. The conductive contact layer is used to make conductive contact with a metal alloy and is widely used in the manufacture of GaP wafers. Please refer to FIG. 3B, which is an AlGalnP light emitting diode according to a second embodiment of the present invention A cross-sectional schematic view of the A1GaInP light-emitting diode of the second embodiment of the present invention is that the active layer 331 is replaced with a multiple quantum well structure 332, which includes a plurality of quantum well layers and buffer layers stacked alternately, which can be used as A light-emitting layer. The multiple quantum well structure 332 is composed of (AlxGai_ mountain.51InG.49P, where the range of X 値 is 0 ~ 0.5 '. The emission wavelength will change due to different X 値. For example, when X 値At 15%, the wavelength of the emitted light is 610 nm. Please refer to FIG. 3C, which is a schematic cross-sectional view of the A1GaInP light-emitting diode according to the third embodiment of the present invention. In order to reduce the light absorption of the substrate 31, the first The AlGalnP light emitting diode of the third embodiment is additionally provided with a distributed Bragg reflector 36 having a first conductive type, which is interposed between the substrate and the underlayer. The light absorbed by the material 31 is reflected to further improve the luminous intensity of the AlGalnP light-emitting diode. Example 1 As shown in Figure 3C, the light-emitting diode structure includes N-type (10Q) GaAs-based 4EPITAXY199901TW 6 This paper is applicable to the standard China National Standard (CNS) A4 Specification (210 X 297 mm) i —— ΐ --1 I << nn 1 ^ 1 I I (Please read the notes on the back before filling this page) Employees of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the consumer cooperative 4 5 15 0 3 A7 B7 V. Description of the invention (i) Material 31, N-type GaAs buffer layer 36 is grown on the substrate 31, and N-type AlGalnP lower cover layer 32 is grown on the buffer layer 36. The AlGalnP active layer 3; 31 is provided on the surface of the lower cover layer 32 as a light-emitting layer. A P-type AlGalnP upper cover layer 34 having a thickness of 0.5-1.0 μm is provided on the surface of the active layer 331, and is doped with magnesium (Mg). Or a zinc (Zn) P-type composite window layer, which has a larger band gap than the energy of the emitted light. The composite window layer 35 is a three-layer structure including a transient layer 351 having a thickness of 50-5000 A, a 352 having a thickness greater than 2 μm, and a conductive contact layer 353 having a thickness of ◦ · 2 ~ 1. Ομιη. In the transient layer 351, the material composition changes from the composition of the upper cover layer AlGalnP to the composition of the lower layers A1 and In, so that the upper cover layer and the window layer have better lattice coordination and growth quality, which can improve the light emitting diode The long-term stability of the luminous intensity of the body, the stability of the forward voltage, and the quality of the emitted light. (InxGahU ^ window layer 352 can enhance the excitation and interaction of dopants by maintaining a flat surface configuration, so that the electron carriers are properly and uniformly distributed on the upper cover layer 34. The conductive contact layer is used to communicate with Metal alloys are used as conductive contacts and are widely used in the manufacture of GaP wafers.
請參考圖四,圖四爲本發明第四實施例之發光二極體的 剖面示意圖。本發明第四實施例之發光二極體包含有一 N型 (100)GaAs基材411,一 N型GaAs緩衝層412長成於基 材411上,一N型AlGalnP下覆蓋層42長成於緩衝層4丄2 上,一 AlGalnP多重量子井結構43設於下覆蓋層42表面 上,用來作爲發光層,一厚度爲〇·5-1·0 μΓΠ之P型AlGalnP 4EPITAXY199901TW 7 本紙張尺度適用中國國家標準(CNS>A4規格(210 X 297公釐)~ I I^i It n n I I I I I I ^ -*-r»J, n n I I ^ (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作杜印製 4515 0 3 A7 B7 五、發明說明(各) 上覆蓋層44設於多重量子井結構43上,以及一摻雜錶或 鋅之P型複合窗層45設於上覆蓋層44表茴上,係有比發射 光的能量更大的能階差(band gap) »AlGaInP多重量子井 結構43包含有一 AlGalnP下載子限制層431,複數個輪替 設置之(AlrGahU.qlnugP量子層432 r)Q.51I>^.4SP緩衝層433 ’以及一 AlGalnP上載子限制層 4 3 4 ° 複合窗層4 5是一個三層結構,包含有一厚度爲5 0 ~ 5 000 A的暫態層451,一厚度大於2μιη的(Ir^Ga^h.sP。,窗層 452,以及一厚度爲Q . 2〜1 . Ομπι的導電接觸層453 »在暫態 層4 51中,材料組成由上覆蓋層AlGalnP的成分變成下層Α1與In 較少的組成,使得上覆蓋層與窗層間具有較佳的晶格配位以及成長品 質,可以改善發光二極體之發光強度的長期穩定性、順向電 壓(forward voltage)的穩定性以及發出的光線品質。 UnxGai_xh.sP。』窗層452,可藉由維持平坦表面型態以加強摻雜物 的激發作用與交互作用,使電子載子適當且均勻地分佈於上覆蓋層44 上。請參考圖五A與圖五B,圖五A爲(Ir^Gah)。.;^。』窗 層4 δ2之組織型態(morphology)示意圖,圖五B爲傳統GaP 窗層之組織型態不意圖。由於GaP中存有In元素以形成 (Ιη/3ι_χ)。5?。.5,因此很容易在(inxGai_x)。.3。.5 窗層 4 52 中摻雜高濃度雜質,尤其容易長成平坦的表面。比較圖五A 與圖五B可知,(InxGai_x)Q.5PQ 5窗層452的組織型態較傳 統的GaP窗層的組織型態佳。導電接觸層453是用來與金屬合金 4EPITAXY199901TW 8 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) — — ιίιιϊιί — n I I I I I i ^ I I^eJ«II n f I I I I I «. (請先閱讀背面之注意事項再填寫本頁) A7 451503 B7_ 五、發明說明(^) 作導電接觸,被廣泛應用在GaP晶片製造上。 例三 請參考圖六,圖六爲本發明第五實施例之發光二極體的 剖面示意圖。本發明第五實施例之發光二極體包含有一 N型 (100)GaAs基材511,一 N型GaAs緩衝層512長成於基 材511上,一N型分散式布拉格反射層51 3覆蓋於緩衝層512 表面上,一N型AlGalnP下覆蓋層52長成於分佈布格反 射層513上,一 AlGalnP多重量子井結構53設於下覆蓋 層52表面上,用來作爲發光層,一厚度爲0.5-1.0 μπι之 Ρ型AlGalnP上覆蓋層54設於多重量子井結構53上,以 及一鎂或鋅摻雜P型複合窗層55設於上覆蓋層54上,係有 比發射光的能量更大的能階差(band gap) "AlGalnP多重 量子井結構53包含有一 AlGalnP下載子限制層531,複數 個輪替設置之量子層532與(AlrGa卜 緩衝層533,以及一 AlGalnP上載子限制層 534 = 複合窗層55是一個三層結構,包含有一厚度爲5Q〜5000 A的暫態層551,一厚度大於2μιη的(InxGai_x)。./。_5窗層 552,以及一厚度爲0.2〜1.0 μπι的導電接觸層553。在暫態 層551中,材料組成由上覆蓋層54 AlGalnP的成分變成下層Α1與 in較少的組成,使得上覆蓋層與窗層間具有較佳的晶格配位以及成長 品質,可以改善發光二極體之發光強度的長期穩定性、順向 4EPITAXY199901TW 9 本紙張尺度適用中國國家標準(CNS)A4規格(2〗0 X 297公釐) n fl^i .n ^^1 ^^1 ^^1 n I ^ « n H4 t n n i^i r-- ^ 1 ^^1 ^^1 I «. ί^口 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 A7 4515 0 3 B7____ 五、發明說明“〇) 電壓(forward voltage)的穩定性以及發出的光線品質。 (InxGai_山,八5窗層552,可藉由維持平坦表面組織型態以加強摻 雜物的激發作用與交互作用,使電子載子適當且均勻地分佈於上覆蓋層 54上。導電接觸層553是用來與金屬合金作導電接觸,被廣 泛應用在GaP晶片製造上。由於基材511與緩衝層512之 間插設有分散式布拉格反射層513,因此部分被基材511或 緩衝層512吸收的光線可以反射出來,使發光二極體的發光 強度獲得改善。 例四 本發明第六實施例之發光二極體結構(未顯示)包含有一 P型(lOO)GaAs基材,一 P型GaAs緩衝層長成於基材上, 一 P型AlGalnP下覆蓋層長成於緩衝層上,一AlGalnP多 重量子井結構設於下覆蓋層表面上,用來作爲發光層,一厚 度爲大於〇·5 μπι之N型AlGalnP上覆蓋層設於多重量子 井結構上,以及一摻雜碲或矽N型複合窗層設於上覆蓋層上, 係有比發射光的能量更大的能階差(band gap)。AlGalnP多 重量子井結構包含有一AlGalnP下載子限制層,複數個輪替 設置之(Al/aH) Q.51In。49P 量子層與(AlrGapr)。51in。49p 緩衝層,以及一 AlGalnP上載子限制層。 複合窗層是一個三層結構,包含有一厚度爲50〜5000 A 的η型AlGalnP暫態層,一厚度大於2μιη的(Ir^Gah)。5ρ。$ 窗層,以及一厚度爲〇.2〜1·〇μιη的導電接觸層。暫態層能 4EPITAXY199901TW 10 本紙張尺i適用中國國家標準(CNSM4規格(210 X 297公Ρ IIIIII — II1 — — - ^ - - - - - - - 一SJ I I I I I II— - < {請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作杜印製 經濟部智慧財產局員工消費合作社印製 V 451 5 0 3 A7 B7 五、發明說明(“) 減少晶格錯位與提高長晶品質,可以改善發光二極體之發光強度的 長期穩定性、順向電壓的穩定性以及發光品質。窗層材料(InxGal-,可藉由維持平坦表面組織型態(如圖五所示)以加強摻雜物 的激發作用與交互作用’使電子載子適當且均切也分佈於上覆蓋層上° 導電接觸層是用來與金屬合金作導電接觸’被廣泛應用在Gap 晶片製造上。 相較於習知發光二極體,本發明之發光二極體設有複合 窗層,係由厚度爲5〇-5〇〇〇 A之AlGalnP暫態層、厚度大 於 2 μπι 之(1:^31-;1)。.5?。.5窗層以及厚度爲 0.2-1.0μιη 之導電接觸層所構成之三層結構。在暫態層中,材料組成由上覆 蓋層AlGalnP的成分變成下層Α1與In較少的組成,使得上覆蓋層 與窗層間具有較佳的晶格配位。這個結構可以製作成P型或N型 導電型式,具有較佳的表面型態、光穩定性、順向電壓穩定 性且有比既有窗層結構更高之效率。而且在製作上只需使用 少量的氫化物氣體進行一個MOVPE成長製程,因此具有容易 成長以及低製作成本等優點。 以上所述僅爲本發明之較佳實施例,凡依本發明申請專 利範圍所做之均等變化與修飾,皆應屬本發明專利之涵蓋範 圍0 4EPITAXY199901TW 11 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先間讀背面之注意事項再填寫本頁) 装· !丨訂----— II--線·Please refer to FIG. 4, which is a schematic cross-sectional view of a light emitting diode according to a fourth embodiment of the present invention. The light-emitting diode of the fourth embodiment of the present invention includes an N-type (100) GaAs substrate 411, an N-type GaAs buffer layer 412 is grown on the substrate 411, and an N-type AlGalnP underlayer 42 is grown in the buffer On layer 4 丄 2, an AlGalnP multiple quantum well structure 43 is provided on the surface of the lower cover layer 42 as a light-emitting layer, and a P-type AlGalnP 4EPITAXY199901TW with a thickness of 0. 5-1.0 μΓΠ 7 This paper size is applicable to China National Standard (CNS > A4 Specification (210 X 297 mm) ~ II ^ i It nn IIIIII ^-*-r »J, nn II ^ (Please read the notes on the back before filling this page) Intellectual Property Bureau of the Ministry of Economic Affairs Consumption cooperation by employees 4515 0 3 A7 B7 V. Description of the invention (each) An upper cover layer 44 is provided on the multiple quantum well structure 43 and a P-type composite window layer 45 doped with surface or zinc is provided on the upper cover layer On the table 44, there is a larger band gap than the energy of the emitted light »AlGaInP multiple quantum well structure 43 includes an AlGalnP downloader restriction layer 431, which is arranged in multiple rotations (AlrGahU.qlnugP quantum layer 432 r) Q.51I> ^. 4SP buffer layer 433 'and an AlGalnP carrier restriction layer 4 3 4 ° composite window layer 45 is a three-layer structure, which includes a transient layer 451 with a thickness of 50 to 5 000 A, and a thickness greater than 2 μm (Ir ^ Ga ^ h.sP., Window layer 452, And a conductive contact layer 453 with a thickness of Q. 2 ~ 1. 0 μm. In the transient layer 4 51, the material composition changes from the composition of the upper cover layer AlGalnP to the composition of the lower layer A1 and In, so that the upper cover layer and window The layers have better lattice coordination and growth quality, which can improve the long-term stability of the luminous intensity of the light emitting diode, the stability of the forward voltage, and the quality of the emitted light. UnxGai_xh.sP. 452, by maintaining the flat surface shape to enhance the excitation and interaction of the dopants, the electronic carriers are appropriately and uniformly distributed on the upper cover layer 44. Please refer to FIG. 5A and FIG. 5B, FIG. A is (Ir ^ Gah) ..; ^. "The morphology of window layer 4 δ2 is shown. Figure 5B is the structure of the traditional GaP window layer. It is not intended. Due to the presence of In element in GaP to form (Ιη / 3ι_χ). 5 ?. 5, so it is easy to (inxGai_x) .. 3. 5 Window layer 4 52 is doped with high-concentration impurities, which is particularly easy to grow into a flat surface. Comparing Fig. 5A and Fig. 5B, it can be seen that the structure type of (InxGai_x) Q.5PQ 5 window layer 452 is more than that of traditional GaP window layer. good. The conductive contact layer 453 is used with the metal alloy 4EPITAXY199901TW 8 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) — — ιίι ϊιί — n IIIII i ^ II ^ eJ «II nf IIIII«. (Please (Please read the precautions on the back before filling in this page) A7 451503 B7_ 5. Description of the invention (^) For conductive contact, it is widely used in the manufacture of GaP wafers. Example 3 Please refer to FIG. 6, which is a schematic cross-sectional view of a light emitting diode according to a fifth embodiment of the present invention. The light emitting diode of the fifth embodiment of the present invention includes an N-type (100) GaAs substrate 511, an N-type GaAs buffer layer 512 is grown on the substrate 511, and an N-type dispersed Bragg reflection layer 51 3 is covered on On the surface of the buffer layer 512, an N-type AlGalnP lower cover layer 52 is grown on the distributed Bouguer reflection layer 513. An AlGalnP multiple quantum well structure 53 is provided on the surface of the lower cover layer 52 and is used as a light-emitting layer. A 0.5-1.0 μm P-type AlGalnP upper cover layer 54 is provided on the multiple quantum well structure 53 and a magnesium or zinc-doped P-type composite window layer 55 is provided on the upper cover layer 54. Large band gap " AlGalnP multiple quantum well structure 53 includes an AlGalnP download sub-limiting layer 531, a plurality of alternately arranged quantum layers 532 and (AlrGabu buffer layer 533, and an AlGalnP carrier limiting layer 534 = The composite window layer 55 is a three-layer structure, including a transient layer 551 with a thickness of 5Q ~ 5000 A, an (InxGai_x) with a thickness greater than 2 μm .. 5 window layer 552, and a thickness of 0.2 ~ 1.0 μm conductive contact layer 553. In the transient layer 551, The composition of the material changes from the composition of the upper cover layer 54 AlGalnP to the composition of the lower layer A1 and in, which makes the upper cover layer and the window layer have better lattice coordination and growth quality, which can improve the long-term luminous intensity of the light-emitting diode. Stability, forward direction 4EPITAXY199901TW 9 This paper size is applicable to China National Standard (CNS) A4 specification (2〗 0 X 297 mm) n fl ^ i .n ^^ 1 ^^ 1 ^^ 1 n I ^ «n H4 tnni ^ i r-- ^ 1 ^^ 1 ^^ 1 I «. ί ^ (Please read the notes on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 4515 0 3 B7____ V. Invention Explain the stability of “〇” voltage (forward voltage) and the quality of the emitted light. (InxGai_ 山, 8-5 window layer 552, can strengthen the excitation and interaction of dopants by maintaining the flat surface structure, The electronic carriers are appropriately and uniformly distributed on the upper cover layer 54. The conductive contact layer 553 is used to make conductive contact with a metal alloy and is widely used in the manufacture of GaP wafers. Because the substrate 511 and the buffer layer 512 are interposed With a distributed Bragg reflector 513, part of the substrate is The light absorbed by 511 or the buffer layer 512 can be reflected out, so that the light emitting intensity of the light emitting diode is improved. Example 4 The light emitting diode structure (not shown) of the sixth embodiment of the present invention includes a P-type (100) GaAs group. Material, a P-type GaAs buffer layer is grown on the substrate, a P-type AlGalnP lower cladding layer is grown on the buffer layer, an AlGalnP multiple quantum well structure is provided on the surface of the lower cladding layer and used as a light-emitting layer, a An N-type AlGalnP upper cladding layer having a thickness greater than 0.5 μm is provided on the multiple quantum well structure, and a doped tellurium or silicon N-type composite window layer is provided on the upper cladding layer, which has a greater energy than the emitted light. Band gap. The AlGalnP multi-weight sub-well structure includes an AlGalnP download sub-restriction layer, and a plurality of alternate settings (Al / aH) Q.51In. 49P quantum layer and (AlrGapr). 51in. 49p buffer layer, and an AlGalnP carrier confinement layer. The composite window layer is a three-layer structure, including a η-type AlGalnP transient layer with a thickness of 50 ~ 5000 A, and a thickness (Ir ^ Gah) greater than 2 μm. 5ρ. A window layer, and a conductive contact layer having a thickness of 0.2 to 1.0 μm. Transient Layer Energy 4EPITAXY199901TW 10 This paper ruler applies the Chinese national standard (CNSM4 specification (210 X 297 g III III — II1 — —-^--------SJ IIIII II —-< please read the back first) Please pay attention to this page, please fill in this page) Consumers ’cooperation with the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by the Consumers’ Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by V 451 5 0 3 A7 B7 V. Description of the invention Crystal quality, which can improve the long-term stability of the luminous intensity of light-emitting diodes, the stability of forward voltage, and the luminous quality. The material of the window layer (InxGal-) can maintain the flat surface structure (as shown in Figure 5) In order to strengthen the excitation and interaction of the dopants, the electron carriers are appropriately and evenly distributed on the upper cover layer. The conductive contact layer is used to make conductive contact with metal alloys. It is widely used in Gap wafer manufacturing. Compared with the conventional light-emitting diode, the light-emitting diode of the present invention is provided with a composite window layer, which is composed of an AlGalnP transient layer with a thickness of 50-500 A and a thickness of more than 2 μm (1: ^ 31-; 1) .. 5? .5 three-layer structure consisting of a window layer and a conductive contact layer with a thickness of 0.2-1.0 μm. In the transient layer, the material composition changes from the composition of the upper cover layer AlGalnP to the lower layer A1 and In, which makes the upper cover There is a better lattice coordination between the layer and the window layer. This structure can be made into P-type or N-type conductive type, which has better surface shape, light stability, forward voltage stability, and has better than the existing window layer The structure has higher efficiency. Moreover, only a small amount of hydride gas is needed for a MOVPE growth process in production, so it has the advantages of easy growth and low production cost. The above is only a preferred embodiment of the present invention. The equal changes and modifications made in the scope of the patent application of the present invention shall all fall within the scope of the patent of the invention. 0 4EPITAXY199901TW 11 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (please read the back first) (Please note this page before filling in this page.)