TW444471B - Multi-phase DPSK communication receiver providing speed of 1/T symbol per second - Google Patents

Multi-phase DPSK communication receiver providing speed of 1/T symbol per second Download PDF

Info

Publication number
TW444471B
TW444471B TW87116859A TW87116859A TW444471B TW 444471 B TW444471 B TW 444471B TW 87116859 A TW87116859 A TW 87116859A TW 87116859 A TW87116859 A TW 87116859A TW 444471 B TW444471 B TW 444471B
Authority
TW
Taiwan
Prior art keywords
signal
phase
rotation
frequency
pair
Prior art date
Application number
TW87116859A
Other languages
Chinese (zh)
Inventor
Hwa-Sheng Ryi
Ruey-Gang Lai
Ching-Piao Hung
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW87116859A priority Critical patent/TW444471B/en
Application granted granted Critical
Publication of TW444471B publication Critical patent/TW444471B/en

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

The invention relates to a DPSK demodulation system, which has fewer composition unit than conventional technology. First of all the mid frequency receiving signal of DPSK will pass a analog/digital converter and then pass Hilbert conversion pair to generate signal with same phase and rotation 90 degrees. Subsequently these signals pass the unit time delay line respectively. The carrier phase rotation is removed by going through the digital carrier rotation remover. The signals of the output terminal of rotation remover and output terminal of the Hilbert conversion pair are processed with complex number multiplication to obtain the I and Q data after demodulation.

Description

4444 71 五、發明說明(1) 本發明是有關於一種對多相位差分調相(DpsK)訊號的 解調方法,以及一種對多相位DPSK訊號的解調器。 習用技術說明: 差分調相技術被廣泛的運用於二進位數位通訊上β 一 般而言’ DPSK是一種非同調型式的調相技術’能夠免除接 收器對同調參考訊號的需要。通常對非同調解調器來說, 其性能大約比同調解調器差1到3 d Β ’但是其接收器結構比 較簡單也比較便宜。 DPSK的解调處理存在有許多不同型式的读測技術。基 本上’差分調相的訊號解調技術是估計兩接收訊號的相位 變化。一種DPSK解調器的習用方塊圖實例顯示於圖一 β首 先’接收端的訊號被轉換成中頻訊號,再經過帶通濾波器 201做帶通濾波處理。帶通濾波器2〇1的輸出經過單位時間 延遲線202,用此訊號以及經過9〇度旋轉器205的訊號分別 與未延遲訊號利用混波器(203,204)混波處理,所得的訊 號即為I通道與Q通道上的相位變化。 …為了去除高階諧波成份,低通濾波器是必需的。而 A/D轉換器是將I通道舆Q通道的類比訊號轉換成數位訊 號。選用適當的取樣頻率,再由決定裝置判別,以還原傳 輸訊號的訊息* 發明的目的與摘要: 對於上述的習用技術來說,蟪是需要兩個低通濾波 I— — C:\專利\870275.ptd 第 4 頁 -44447】 五、發明說明(2) 器’用來移除高階諧波。本發明的主要目的在於進一步簡 化非同調DPSK解調器的線路與信號流程,同時利用數位信 號處理技術’移去兩個低通濾波器並改善接收器的性能。 新穎的實現實例顯示於闽二。在囷二中,可以看出本 發明不再使用兩個低通濾波器,而是使用一些處理方塊, 包括Hi lbert轉換對,一對單位時間延遲線,一個數位載 波旋轉去除器以及一個複數乘法器。 依據本發明’首先,DPSK調變訊號被轉換成中頻訊 號’並在帶通濾波器101内進行帶通濾波處理。A/D轉換器 102用來接收中頻訊號,並以取樣頻率提供數位信號。 Hilbert轉換對20提供同相訊號以及90度相位旋轉訊號。 一對延遲單元105與106接收Hi lbert轉換對20的輸出端訊 號,產生具一個單位時間延遲的同相訊號以及90度相位旋 轉訊號。接著,數位載波旋轉去除器30去除掉載波相位旋 轉。複數乘法器50對經延遲一個單位時間的去除旋轉訊號 以及未經延遲的訊號做複數乘積處理。 對於使用兩個低通濾波器來移除高階諧波的習用技術 來說’不太容易同時使用較少陏的濾波器又不會加入更多 的雜訊,因此,電路的複雜性不可能降低,但是對於本發 明來說,因為複數乘法解調之後的輸出為脈衝形式的基頻 訊號,沒有碼間串擾的問題》因此,利用適當的時序恢復 電路以及取樣點,其功能將會是最佳化的* 本發明的特點將從以下實施例以及相關圖式的說明, 而變得更明顯。4444 71 V. Description of the invention (1) The present invention relates to a demodulation method for multi-phase differential phase modulation (DpsK) signals, and a demodulator for multi-phase DPSK signals. Conventional technical description: Differential phase modulation technology is widely used in binary digit communication. In general, 'DPSK is a non-homogeneous type of phase modulation technology', which can eliminate the need for the receiver to use coherent reference signals. Generally, the performance of a non-coherent demodulator is about 1 to 3 d B ′ worse than that of a coherent demodulator, but its receiver structure is simpler and cheaper. There are many different types of reading and testing techniques for DPSK demodulation processing. The basic 'differential phase modulation' signal demodulation technique is to estimate the phase change of the two received signals. An example of a conventional block diagram of a DPSK demodulator is shown in Figure 1. The signal at the β ’s first ’receiver is converted to an IF signal and then processed by a band-pass filter 201 for band-pass filtering. The output of the band-pass filter 201 passes through the unit time delay line 202, and this signal and the signal passing through the 90-degree rotator 205 are respectively mixed with the undelayed signal by the mixer (203, 204), and the resulting signal is processed. This is the phase change on the I and Q channels. … In order to remove high-order harmonic components, a low-pass filter is required. The A / D converter converts the analog signal of the I channel and the Q channel into a digital signal. The appropriate sampling frequency is selected, and then determined by the decision device to restore the information of the transmission signal. * The purpose and summary of the invention: For the above-mentioned conventional technology, two low-pass filters are required. I— C: \ Patent \ 870275 .ptd page 4-44447] 5. Description of the invention (2) The device is used to remove high-order harmonics. The main purpose of the present invention is to further simplify the line and signal flow of the non-homogeneous DPSK demodulator, while using digital signal processing technology 'to remove two low-pass filters and improve the performance of the receiver. A novel implementation example is shown in Miner. In item 22, it can be seen that the present invention no longer uses two low-pass filters, but uses some processing blocks, including Hi lbert transform pairs, a pair of unit time delay lines, a digital carrier rotation remover, and a complex multiplication. Device. According to the present invention 'First, the DPSK modulation signal is converted into an intermediate frequency signal' and a band-pass filtering process is performed in the band-pass filter 101. The A / D converter 102 is used to receive an intermediate frequency signal and provide a digital signal at a sampling frequency. The Hilbert conversion pair provides in-phase signals as well as 90-degree phase rotation signals. A pair of delay units 105 and 106 receives the output signal of the Hibert conversion pair 20, and generates an in-phase signal with a unit time delay and a 90-degree phase rotation signal. Next, the digital carrier rotation remover 30 removes the carrier phase rotation. The complex multiplier 50 performs complex product processing on the rotation-removed signal and the undelayed signal delayed by one unit time. For the conventional technique of using two low-pass filters to remove high-order harmonics, it is' not easy to use fewer chirp filters at the same time without adding more noise, so the complexity of the circuit cannot be reduced. However, for the present invention, since the output after complex multiplication demodulation is a pulse-shaped fundamental frequency signal, there is no problem of inter-symbol crosstalk. Therefore, using appropriate timing recovery circuits and sampling points, its function will be the best The characteristics of the present invention will become more apparent from the description of the following embodiments and related drawings.

C:\ 專利\870275.ptd 第5頁 444471 五、發明說明(3) 圖式的簡單說明: 圖一顯示習用技術中典型非同調DPSK解調器的方塊圈。 圖二顯示依據本發明非同調DPSK解調器的主要方塊圖以 及訊號流程®。 圖三是數位載波旋轉去除器的實施例。 囷四是複數乘法器的實施例。 圖五顯示依據本發明非同調DPSK解調器的進一步詳細方 塊圖》 圖式中的參考數號 20 Hilbert轉換對 30 數位載波旋轉去除器 40 頻率補償器 50 複數乘法器 60 頻率偏移估算器 70 時序恢復裝置 101 帶通濾波器 102 A/D轉換器 1 03 90度旋轉器 104 時間延遲線 105 單位時間延遲線 106 單位時間延遲線 107 決定裝置C: \ Patent \ 870275.ptd Page 5 444471 V. Description of the invention (3) Brief description of the diagram: Figure 1 shows a block circle of a typical non-homogeneous DPSK demodulator in conventional technology. Figure 2 shows the main block diagram of the non-homogeneous DPSK demodulator and the signal flow® according to the present invention. Figure 3 is an embodiment of a digital carrier rotation remover. 24 is an embodiment of a complex multiplier. Figure 5 shows a further detailed block diagram of a non-homogeneous DPSK demodulator according to the present invention. Reference number 20 in the figure Hilbert transform pair 30 digital carrier rotation remover 40 frequency compensator 50 complex multiplier 60 frequency offset estimator 70 Timing recovery device 101 Band-pass filter 102 A / D converter 1 03 90-degree rotator 104 Time delay line 105 Unit time delay line 106 Unit time delay line 107 Decision device

C:\專利\870275.ptd 苐6頁 444471 五'發明說明(4) 108 決定裝置 109 平方器 110 窄頻帶通濾波器 201 帶通濾波器 202 單位時間延遲線 203 混波器 204 混波器 205 9 0度相位分裂 206 低通滅波器 207 低通濾波器 208 A/D轉換器 209 A/D轉換器 210 決定裝置 211 決定裝置 較佳實施例的詳細說明: 本發明的解調裝置所接收處理的訊號為一種非同調差 分調相(DPSK)訊號。參閱圈二,圈二將展示本發明的主要 方塊圖以及訊號流程圖•其主要的理論基礎與實施將以以 下的信號分析詳細解釋β首先,解調裝置接收端所接收的 DPSK訊號經由帶通濾波器1〇1而濾波為一中頻訊號R(t), 此一類比訊號可以用以下的通式來表示 R(t) = Mcos( 〇)ct + ^(t) + φ), 其中M是一個常數’ 是徑度頻率,0(t)為此DPSfC信C: \ Patents \ 870275.ptd 苐 Page 6 444471 Five'Invention (4) 108 Determining Device 109 Squarer 110 Narrow Band Pass Filter 201 Band Pass Filter 202 Unit Time Delay Line 203 Mixer 204 Mixer 205 9 0 degree phase splitting 206 low-pass canceller 207 low-pass filter 208 A / D converter 209 A / D converter 210 determination device 211 detailed description of a preferred embodiment of the determination device: The processed signal is a non-homogeneous differential phase modulation (DPSK) signal. Refer to circle two, circle two will show the main block diagram and signal flow chart of the present invention. Its main theoretical basis and implementation will be explained in detail with the following signal analysis. Β First, the DPSK signal received by the receiver of the demodulation device passes through The filter 10 is filtered to an intermediate frequency signal R (t). This analog signal can be expressed by the following general formula R (t) = Mcos (〇) ct + ^ (t) + φ), where M Is a constant 'is the diameter frequency, 0 (t) is the DPSfC signal

C:\專利\870275.ptd 第7頁 444471 五、發明說明(5) 號的訊息相位,P 為一常數相位。在適當的展開與變 換下,R(t)可以改寫成 R(t) = Acos ( 〇)ct+ 0 (t) ) + Bs in( wct+ 0 ( t)),...( 1 ) 其中 A = Mcos , B = -Msi η ψ 。 舉例來說,如果資料傳輸的速率是每秒1/T符元(Symb〇i> 的話,對於時間差間隔為T的二相位DPSK的兩個訊號而 言,其相位差額將為0或π個徑度量。對於時間差間隔為τ 的四相位DPSK的兩個訊號而言,其相位差額將為〇,π/4, 7Γ /2, 3^/4, π , 5 λγ /4, 3ττ/2 或 77Γ/4 個經度量。換言 之,對於DPSK訊號的解調而言,主要的工作在於量測相鄰 訊號間的相位差•本發明的解調方法將可運用於一般多相 位DPSK系統上。 類比訊號R(t)緊接著通過一個A/D轉換器102,依數位 化時間t = nT取樣後,數位調變波Rn可以寫成C: \ Patents \ 870275.ptd Page 7 444471 5. The phase of the message of invention description (5), P is a constant phase. With appropriate expansion and transformation, R (t) can be rewritten as R (t) = Acos (〇) ct + 0 (t)) + Bs in (wct + 0 (t)), ... (1) where A = Mcos, B = -Msi η ψ. For example, if the data transmission rate is 1 / T symbols per second (Symboi>), for two signals of two-phase DPSK with a time interval T, the phase difference will be 0 or π paths. Measure. For two signals of four-phase DPSK with a time difference interval of τ, the phase difference will be 0, π / 4, 7Γ / 2, 3 ^ / 4, π, 5 λγ / 4, 3ττ / 2 or 77Γ / 4 measured. In other words, for the demodulation of DPSK signals, the main work is to measure the phase difference between adjacent signals. The demodulation method of the present invention will be applicable to general multi-phase DPSK systems. Analog signals R (t) is then passed through an A / D converter 102. After sampling at the digitizing time t = nT, the digital modulation wave Rn can be written as

Rn = Acos(n 〇)eT+ 0(nT)) + Bsin(n <ucT+ 0(ηΤ))。. . .(2) 依據本發明的裝置,數列Rn會先經過Hilbert轉換對 20,以便取得舆數位調變波Rn的同相訊號以及90度相位旋 轉訊號。於是在Hi lbert轉換對20的輸出端上,可以分別 得到 xn = Acos(n <ycT+ 0(nT)) + Bsin(n Ct>cT+ 0(ηΤ))以及· . (3) yn = -Asin(n 6>CT+ 0 (nT)) + Bcos(n <wcT+ 0 (ηΤ)) * 依據本發明的裝置,Hilbert轉換對20輸出的同相訊號Xn 以及90度相位旋轉訊號yn將分別通過單位時間廷遲線1 05 與106。在單位時間廷遲線105舆106的輸出端上分別得到Rn = Acos (n 〇) eT + 0 (nT)) + Bsin (n < ucT + 0 (ηΤ)). ... (2) According to the device of the present invention, the sequence Rn will first pass through the Hilbert transform pair 20 in order to obtain the in-phase signal of the digital modulation wave Rn and the 90-degree phase rotation signal. So on the output of Hi lbert transform pair 20, we can get xn = Acos (n < ycT + 0 (nT)) + Bsin (n Ct > cT + 0 (ηΤ)) and ·. (3) yn = -Asin (n 6 > CT + 0 (nT)) + Bcos (n < wcT + 0 (ηΤ)) * According to the device of the present invention, Hilbert transforms the in-phase signal Xn and 90-phase phase rotation signal yn output from 20 through unit time Ting Chi Lines 1 05 and 106. Obtained at the output of the unit 105

0Λ專利\870275.ptd 第8頁 ^444 7t 五、發明說明C6) xn-] = Acos( (n-1 ) ωεΤ+ 0 ( (n-1 )T) ) + Bsin( (n-1 ) ωεΤ+ θ ((n-l)T))以及0ΛPatent \ 870275.ptd Page 8 ^ 444 7t V. Description of the Invention C6) xn-] = Acos ((n-1) ωεΤ + 0 ((n-1) T)) + Bsin ((n-1) ωεΤ + θ ((nl) T)) and

Yn.^-AsinCCn-l ) wcT+ C (n-1 )T) ) + Bcos( (n-1 ) wcT+ Q ((n-l)T)) 。 ...(4) 依據本發明的裝置,延遲的同相訊號xn_!以及90度相 位旋轉訊號ynl將通過數位載波旋轉去除器30 »參考圖 三,該數位載波旋轉去除器30其實只是一個複數乘法器, 藉著對訊號xn_!以及yn_!實施複數乘法,乘以(cos (-0^1·) + iPsin(-o>cT)),去除掉xn_丨以及的單位時間載波相位旋 轉。數位載波旋轉去除器30的輸出端訊號分別為 xn-i,d = Acos (η ω0Ί+ θ ( Cn-1 )Τ))+Bs in(η <ycT+ 0((η-1)Τ)) 以及 yn-i,d~~Asi η(n ct)cT+ 0 ( (n-1 )T) ) + Bcos (n <ycT+ 0((n-l)T))。…(5) 依據本發明的裝置,未延遲的同相訊號xn舆90度相位 旋轉訊Kyn以及延遲並去除單位時間載波相位旋轉的同相 訊號xnH.d與90度相位旋轉訊號yn_ld將輸入一個複數乘法器 50。圖四提供該複數乘法器50的較詳細示意圈。簡化後, 複數乘法器50的輸出可以表示為 W-Ld + yny …=U2 + B2)cos(0(nT)-0((n-l)T))以 及...(6) -(A2 + B2)sin(0(nT)-0((n-l)T))。 依據本發明的裝置,複數乘法器50的輸出訊號χβη-υ + ynyn-丨,d以及ynxn-hd - xnyn-丨.d將分別加到決定裝置1〇7與1〇8Yn. ^-AsinCCn-l) wcT + C (n-1) T)) + Bcos ((n-1) wcT + Q ((n-1) T)). ... (4) According to the device of the present invention, the delayed in-phase signal xn_! And the 90-degree phase rotation signal ynl will pass through the digital carrier rotation remover 30 »Referring to FIG. 3, the digital carrier rotation remover 30 is actually only a complex multiplication The device performs complex multiplication on the signals xn_! And yn_! And multiplies them by (cos (-0 ^ 1 ·) + iPsin (-o > cT)) to remove xn_ 丨 and carrier phase rotation per unit time. The output signals of the digital carrier rotation remover 30 are xn-i, d = Acos (η ω0Ί + θ (Cn-1) Τ)) + Bs in (η < ycT + 0 ((η-1) Τ)) And yn-i, d ~~ Asi η (n ct) cT + 0 ((n-1) T)) + Bcos (n < ycT + 0 ((nl) T)). … (5) According to the device of the present invention, the undelayed in-phase signal xn and the 90-degree phase rotation signal Kyn and the in-phase signal xnH.d and the 90-degree phase rotation signal yn_ld which delay and remove the carrier phase rotation per unit time will be inputted into a complex multiplication器 50。 50. Figure 4 provides a more detailed schematic circle of the complex multiplier 50. After simplification, the output of the complex multiplier 50 can be expressed as W-Ld + yny… = U2 + B2) cos (0 (nT) -0 ((nl) T)) and ... (6)-(A2 + B2 ) sin (0 (nT) -0 ((nl) T)). According to the device of the present invention, the output signals χβη-υ + ynyn- 丨, d and ynxn-hd-xnyn- 丨 .d of the complex multiplier 50 will be added to the decision devices 107 and 108 respectively.

C:\專利\870275.ptd 第9頁 444471 五、發明說明(7) 上。根據DPSK的傳輪約定,決定裝置1〇7與便可將傳輪 位元解調出來。 參閱圖五’圖五是本發明的另一個更佳實施例β本較 佳實施例中’除了包含圖二的一帶通濾波器,一 A/d轉 換器102,一Hilbert轉換對20,一對單位時間延遲線1Q5 與106 ’ 一數位載波旋轉去除器30,一複數乘法器5〇,以 及一個決疋裝置107與108外,還進一步包含—頻率偏移估 算器60 ’用來偵測頻率偏移;一介於數位載波旋轉去除器 30與複數乘法器50之間的頻率補償器4〇,用來降低因頻率 偏移所引起的相位誤差;以及一時序恢復裝置7〇。 進一步的說明如下:讓r是由傳輸雜訊、干擾等引起 介於傳送器與接收器之間的載波相位偏移。參閲圓二,如 果考慮載波相位偏移r,方程式(2),(3),(4),(5)舆 (6) 將被修正為 Rn=Acos(n 〇)eT+ ^ (nT)- r ) + Bsin(n ωεΤ+ 0 (nT)- r ),. (7) ’·_· xn = Acos(n 〇)cT+ 0 (ηΤ)- r )+Bsin(n wcT+ 0 (ηΤ)- r ), yn = -Asin(n 6>CT+ 0 (nT)- r ) + Bcos(n &JCT+ 0 (nT)- 7 ), xn.! = Acos( (n-1) ω0Τ+ θ((η-1)Τ)- r) + Bsin((n-l) ω〇τ+ θ ((n-1)T)- γ ), yn., = -As in((n-l) 6>CT+ 0((η-1)Τ)~ γ ) + Bcos((n-l) + θ((η-1)Τ)- r ), xn.ld = Acos (η ωςΤ+ 0((n-l)T)-2 r) + Bsin(n ω0Τ+ Θ ((n-l)T)-2 r),C: \ Patents \ 870275.ptd Page 9 444471 V. Description of Invention (7). According to the transfer agreement of DPSK, the decision device 107 can demodulate the transfer bit. Refer to FIG. 5. FIG. 5 is another preferred embodiment of the present invention. Β In the preferred embodiment, in addition to FIG. 2, a band-pass filter, an A / d converter 102, a Hilbert conversion pair 20, and a pair are included. Unit time delay lines 1Q5 and 106 'A digital carrier rotation remover 30, a complex multiplier 50, and a determining device 107 and 108, further including a frequency offset estimator 60' for detecting a frequency offset A frequency compensator 40 between the digital carrier rotation remover 30 and the complex multiplier 50 to reduce the phase error caused by the frequency offset; and a timing recovery device 70. Further explanation is as follows: Let r be the carrier phase offset between the transmitter and the receiver caused by transmission noise, interference, etc. Referring to circle two, if the carrier phase offset r is considered, equations (2), (3), (4), (5) and (6) will be modified as Rn = Acos (n 〇) eT + ^ (nT)- r) + Bsin (n ωεΤ + 0 (nT)-r),. (7) '· _ · xn = Acos (n 〇) cT + 0 (ηΤ)-r) + Bsin (n wcT + 0 (ηΤ)-r ), Yn = -Asin (n 6 > CT + 0 (nT)-r) + Bcos (n & JCT + 0 (nT)-7), xn.! = Acos ((n-1) ω0Τ + θ ((η -1) T)-r) + Bsin ((nl) ω〇τ + θ ((n-1) T)-γ), yn., = -As in ((nl) 6 > CT + 0 ((η- 1) T) ~ γ) + Bcos ((nl) + θ ((η-1) Τ)-r), xn.ld = Acos (η ωςΤ + 0 ((nl) T) -2 r) + Bsin ( n ω0Τ + Θ ((nl) T) -2 r),

CA 專利 \870275. ptd 第10頁 4444 7ι 五、發明說明(8) V , rt = -Asin(n ωεΤ+ ^((η-1)Τ)-2 γ ) + Bcos(n ωεΤ+ Θ j π-11 〇((η-1)Τ)-2 τ ), XnXn-Kd+ynyn-Kd^A^B^cosC θ{ηΊ)- 0 ( ( η -1 ) Τ ) + 7 )-nVud-XnyH.^-UHBysiiKeCnTHGn-mH r) ° 由上式我們注意到,由於載波相位偏移效應,原來數 位載波旋轉去除器30將會以複數乘法,乘以((:〇5(-&)<;1'-7〇 + jsin(-0cT- r))來去除延遲訊號Xn-1與yn-i的單位時間 載波相位旋轉而得到同相訊號Xm,d與90度相位旋轉訊號 。為了克服載波相位偏移效應,我們需要一個補償 量,將複數乘法因子(cos(- 6>CT- r )+isin(- 〇jcT- 丫))校 正至(cos(-ojcT) + jsin(-Ct>cT))。 進一步說明,參閱圈五,為了去除載波相位偏移效應 所帶來的誤差,我們利用實施頻率偏移估算器6〇及頻率補 償器40來實現。首先,頻率偏移估算器60將以複數乘法器 的形式’產生同相訊號cos (γ)以及90度相位旋轉訊號 sin(r)來提供頻率補償器40使用。頻率補償器4〇安裝在 數位載波旋轉去除器30與複數乘法器50之間,以複數乘法 器的形式,對延遲並去除單位時間載波相位旋轉的同相訊 號xn-丨,《i舆其90度相位旋轉訊Sfey" d乘以 (cos( 7〇 + jsin( γ)),以降低因載波相位偏移所引起的誤 差。 參閱圖五,依據本發明的裝置,我們將進行一非線性 時序恢復處理。時序恢復裝置7〇包含一平方器與一窄 頻帶通濾波器11〇,用來產生一組依符元頻率(syjnb〇i ΙΗΠΗΓ C:\專利\870275.ptd ^ π 頁 " ^444 7f 五、發明說明(9) frequency)選取的時序訊號使得整個解 比訊號能夠以正確的速率被取樣、#測及解調匕端的類 以上所述者,僅為本發明之較佳實施例而已,並 來限定本發明實施之範圍。即凡依本發明申請專利範圍= 作的均等變化及修飾,皆為本發明之專利範圍所涵蓋。CA patent \ 870275. Ptd page 104444 7ι 5. Description of the invention (8) V, rt = -Asin (n ωεΤ + ^ ((η-1) Τ) -2 γ) + Bcos (n ωεΤ + Θ j π -11 〇 ((η-1) Τ) -2 τ), XnXn-Kd + ynyn-Kd ^ A ^ B ^ cosC θ (ηΊ)-0 ((η -1)) + 7) -nVud-XnyH . ^-UHBysiiKeCnTHGn-mH r) ° From the above formula we notice that due to the carrier phase offset effect, the original digital carrier rotation remover 30 will be multiplied by a complex number and multiplied by ((: 〇5 (-&) <; 1'-7〇 + jsin (-0cT- r)) to remove the delay signal Xn-1 and yn-i per unit time carrier phase rotation to obtain the in-phase signal Xm, d and 90 degree phase rotation signal. To overcome the carrier phase Offset effect, we need a compensation amount to correct the complex multiplication factor (cos (-6 > CT- r) + isin (-〇jcT- γ)) to (cos (-ojcT) + jsin (-Ct > cT) ). Further explanation, referring to circle 5, in order to remove the error caused by the carrier phase offset effect, we use the implementation of the frequency offset estimator 60 and the frequency compensator 40. First, the frequency offset estimator 60 will be The form of a complex multiplier 'produces an in-phase signal cos (γ) to And 90 degree phase rotation signal sin (r) to provide the frequency compensator 40. The frequency compensator 40 is installed between the digital carrier rotation remover 30 and the complex multiplier 50, and delays and removes it in the form of a complex multiplier. The in-phase signal xn- 丨 of carrier phase rotation per unit time, "i multiplies its 90-degree phase rotation signal Sfey " d by (cos (7〇 + jsin (γ)) to reduce the error caused by the carrier phase shift. Referring to FIG. 5, according to the device of the present invention, we will perform a non-linear timing recovery process. The timing recovery device 70 includes a squarer and a narrow-band pass filter 11 to generate a set of symbol-dependent frequency (syjnb 〇i ΙΗΠΗΓ C: \ Patents \ 870275.ptd ^ π Page " ^ 444 7f V. Description of the invention (9) frequency) The timing signal selected enables the entire decompression signal to be sampled, measured and demodulated at the correct rate. The class of the dagger end described above is only the preferred embodiment of the present invention and defines the scope of the implementation of the present invention. That is, all equal changes and modifications made according to the scope of patent application of the present invention = are the patents of the present invention What the scope implies cover.

CA 專利\870275.ptd 第12 !CA Patent \ 870275.ptd 12th!

Claims (1)

4444 7 81116 3 59 六、申請專利範圍 1· 一種供具有每秒1/T符元(symbol)速率的多相位非同調 差分調相(DPS K)的通信接收器,係包含有: 一帶通濾波器’將解調裝置接收端所接收的DPSK訊號濾 波為一中頻訊號R(t); 一 A/D轉換器,輛合到該帶通濾波器,以取樣速率接收 中頻訊號R(t),並提供數位取樣訊號Rn ; 一Hilbert轉換對,耦合到該A/D轉換器,以提供與取樣 訊號Rn的同相訊號xn以及90度相位旋轉訊號yn ; 一對單位時間延遲單元,耦合到該Hi lbert轉換對,以 提供延遲的同相訊號xnq以及延遲的90度相位旋轉訊 號丫㈠; 一數位載波旋轉去除器,粞合到該對單位時間延遲單 元,以提供延遲並去除單位時間載波相位旋轉的同相 訊號xn_1>d以及延遲並去除單位時間載波相位旋轉的90 度相位旋轉訊號ynH,d ;以及 一複數乘法器,係包含有四個乘法器以及二個加法器, 該複數乘法器的第一與第二輸入端連接到該Hilbert 轉換對的輸出端,第三與第四輸入端則連接到該數位 載波旋轉去除器的輸出端’以提_個取樣訊號 w-u + ynyn'd 以及ynxn-i,<i—xnyn-丨# 一對決定裝置,輛合到該複數乘法^以判別及還原傳 輸訊號的訊息:^ {Μ 2.如申請專利範圍第一項所述之供具有每秒1/τ符元 (symbol)速率的多相位扑同調差分調相(DPSK)的通信 第13頁 CA 專利 \870275. ptd 444471 六、申請專利範圍 ~ ~一~ 接收器,進一步包含有: 一頻率偏移估算器’該頻率偏移估算器的輪入端連接到 該對決定裝置的輸入端舆輸出端’以便估算出該頻率 偏移誤差;以及 一頻率補償器’該頻率補償器的輸入端連接到該數位載 波旋轉去除器的輸出端,而該頻率補償器的輸出端連 接到該複數乘法器的輸入端,以提供該頻率偏移的校 正值。 3.如申請專利範圍第二項所述之供具有每秒1/τ符元 (symbol)速率的多相位非同調差分調相(DPSK)的通信接 收器’進一步包含有: 一時序恢復裝置,係包含有一平方器與一窄頻帶通濾波 器’以提供一組依符元頻率(symbol frequency)選取 的時序訊號,使得整個解調器輸入端的類比訊號能夠 以正確的速率被取樣、偵測及解調出來。4444 7 81116 3 59 6. Scope of patent application 1. A communication receiver for multi-phase non-homogeneous differential phase modulation (DPS K) with 1 / T symbol rate per second, including: a bandpass filter The converter 'filters the DPSK signal received by the receiving end of the demodulation device into an intermediate frequency signal R (t); an A / D converter is connected to the band-pass filter and receives the intermediate frequency signal R (t) at the sampling rate ) And provide a digital sampling signal Rn; a Hilbert conversion pair coupled to the A / D converter to provide an in-phase signal xn and a 90-degree phase rotation signal yn with the sampling signal Rn; a pair of unit time delay units coupled to The Hi lbert conversion pair to provide a delayed in-phase signal xnq and a delayed 90-degree phase rotation signal; a digital carrier rotation remover coupled to the pair of unit time delay units to provide delay and remove unit time carrier phase The rotated in-phase signal xn_1 > d and the 90-degree phase rotation signal ynH, d which delays and removes carrier phase rotation per unit time; and a complex multiplier, which includes four multipliers and two adders, the The first and second input terminals of the digital multiplier are connected to the output terminal of the Hilbert conversion pair, and the third and fourth input terminals are connected to the output terminal of the digital carrier rotation remover to provide _ sampling signals wu + ynyn 'd and ynxn-i, < i-xnyn- 丨 # A pair of determining devices, which are combined to the complex multiplication ^ to identify and restore the information of the transmission signal: ^ {Μ 2. As described in the first item of the scope of patent application It is designed for multi-phase flutter coherent differential phase modulation (DPSK) communication with a 1 / τ symbol rate per second. CA patent \ 870275. Ptd 444471 6. Application scope ~ ~~~ Receiver, further It includes: a frequency offset estimator 'the round-in end of the frequency offset estimator is connected to the input end and the output end of the pair of determining devices' in order to estimate the frequency offset error; and a frequency compensator' the frequency The input of the compensator is connected to the output of the digital carrier rotation remover, and the output of the frequency compensator is connected to the input of the complex multiplier to provide a correction value for the frequency offset. 3. The communication receiver for multi-phase non-homogeneous differential phase modulation (DPSK) with a 1 / τ symbol rate per second as described in the second item of the patent application scope further includes: a timing recovery device, It includes a squarer and a narrow-band pass filter to provide a set of timing signals selected according to the symbol frequency, so that the analog signal at the input of the entire demodulator can be sampled, detected and detected at the correct rate. Demodulate it. C:\專利\870275. ptd 第 14 頁C: \ patent \ 870275. Ptd page 14
TW87116859A 1998-10-12 1998-10-12 Multi-phase DPSK communication receiver providing speed of 1/T symbol per second TW444471B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW87116859A TW444471B (en) 1998-10-12 1998-10-12 Multi-phase DPSK communication receiver providing speed of 1/T symbol per second

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW87116859A TW444471B (en) 1998-10-12 1998-10-12 Multi-phase DPSK communication receiver providing speed of 1/T symbol per second

Publications (1)

Publication Number Publication Date
TW444471B true TW444471B (en) 2001-07-01

Family

ID=21631617

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87116859A TW444471B (en) 1998-10-12 1998-10-12 Multi-phase DPSK communication receiver providing speed of 1/T symbol per second

Country Status (1)

Country Link
TW (1) TW444471B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440519B2 (en) 2002-10-24 2008-10-21 Interdigital Technology Corporation Algorithm for multiple-symbol differential detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440519B2 (en) 2002-10-24 2008-10-21 Interdigital Technology Corporation Algorithm for multiple-symbol differential detection
US7706482B2 (en) 2002-10-24 2010-04-27 Interdigital Technology Corporation Algorithm for multiple-symbol differential detection

Similar Documents

Publication Publication Date Title
US6549588B2 (en) Communications system and corresponding receiver unit
US20060245514A1 (en) Modulation device, demodulation device, modulation method and demodulation method
RU2007126507A (en) METHOD FOR TRANSFER OF INFORMATION USING NOISE-LIKE SIGNALS AND DEVICE FOR ITS IMPLEMENTATION
TW444471B (en) Multi-phase DPSK communication receiver providing speed of 1/T symbol per second
US20060193402A1 (en) Frequency shift keying receiver for minimum shift keying, and a method for setting reference PN sequence for frequency shift keying thereof
US4224575A (en) Phase/frequency controlled phase shift keyed signal carrier reconstruction circuit
JP3166494B2 (en) Delay detection method and apparatus
CN110138699B (en) Baseband 2FSK signal incoherent demodulation method based on complex field filter
JP2001045081A (en) Signal processing method
RU2460215C1 (en) Radio modem
CN100534078C (en) Digital remodulation and digital remodulating method for binary frequency shift keying signal
WO2001026316A1 (en) Demodulator for processing digital signal
KR100959229B1 (en) Data receiving device
US6831578B2 (en) Method and circuit arrangement for demodulation of a quadrature amplitude- or phase-modulated signal
JP2540931B2 (en) PSK signal demodulation method
JP3643109B2 (en) Data receiving device
US20040179628A1 (en) Method and apparatus for digital data transmission and reception using synthetically generated frequency
JP2943803B1 (en) Receiver
WO2007139119A1 (en) Multi-path characteristic estimation method and device, reception method, reception signal correction method, and device
JPH10209904A (en) Receiver
JP2000174591A (en) Filtering device and signal processing method
RU2287217C1 (en) Amplitude-modulated and frequency-telegraphy signal demodulator
JP3729369B2 (en) Direct conversion FSK receiver
JP3148319B2 (en) Modulation phase detection device and demodulation device
KR0171031B1 (en) Single sideband bpsk modulating/demodulating method by phase deduction

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent