TW439257B - Cell for use in multi-voltage design environment - Google Patents

Cell for use in multi-voltage design environment Download PDF

Info

Publication number
TW439257B
TW439257B TW87119131A TW87119131A TW439257B TW 439257 B TW439257 B TW 439257B TW 87119131 A TW87119131 A TW 87119131A TW 87119131 A TW87119131 A TW 87119131A TW 439257 B TW439257 B TW 439257B
Authority
TW
Taiwan
Prior art keywords
cell
power
scope
patent application
item
Prior art date
Application number
TW87119131A
Other languages
Chinese (zh)
Inventor
Jin-Shian Wang
Shang-Jr Shie
Original Assignee
Nat Science Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Science Council filed Critical Nat Science Council
Priority to TW87119131A priority Critical patent/TW439257B/en
Application granted granted Critical
Publication of TW439257B publication Critical patent/TW439257B/en

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

The application specified integrated circuit (ASIC) design that uses multiple supply voltages has been proved to effectively reduce power consumption. The present invention proposes a new type layout manner of cell used in ASIC design in order to effectively use multiple-voltage design. Each cell has multi power source lines, which are used to individually provide different supply voltage. In addition, the cells of different supply voltages can be placed arbitrarily and adjacently when the cells are placed, such that it is not necessary to consider the supply voltage and replace the cells. Therefore, the placement and routing of cell can be executed by using the nowadays computer aided design software so as to achieve the purposes of simplifying design flow, shortening design time and saving power.

Description

案號 87119131 補无 五、發明說明(1) 本發明提出了一個新的方法來處理使用 際階層(physical level)設計。這個新的方法採用了不同 的細胞元佈局β每一個細胞元具有多條電源線,分別提供 不同的供應電壓’但只有一條電源線連接至細胞元的内部 電路。此新型細胞元可以由現行的ρ&Κ工具加以處理。因 為不需要因考慮供應電壓而重新擺置細胞元,所以佈局可 以最有效率的完成。我們以I SC AS,8 5測試電路為例,每— 個細胞元提供兩種供應電壓,分別以雙層及三層金屬的製 私加以佈局繞線’結果顯示使用新型細胞元的伟局效率比 其它的佈局架構要好許多。 本發明所能應用的範圍包含: (一) 標準細胞元件庫(standard cell library)。 (二) 低功率ASIC設計。 隨著高複雜性之超大型積體電路(VLSI)的快速發展以 及由電池供應之可攜式電子產品之大量需求,低功率消耗 已成為IC設計之主要目標之一,並且與操作速度和晶片面 積具有等比重之設計考量【1】。在以細胞元為基礎(cel } based)的AS 1C設計中,標準細胞元的特性決定了晶片的效 能,包含功率消耗。 電壓使用於關鍵路徑(critical path)上的邏輯閘,如此Case No. 87119131 Complementary V. Description of the Invention (1) The present invention proposes a new method to deal with the physical level design. This new method uses a different cell layout. Each cell has multiple power lines, each providing a different supply voltage, but only one power line is connected to the cell's internal circuit. This new type of cell can be processed by current p & K tools. Since there is no need to reposition the cells due to consideration of the supply voltage, the layout can be completed most efficiently. We take the I SC AS, 85 test circuit as an example, each cell provides two kinds of supply voltages, and the layout is wound with a double-layer and three-layer metal system. The results show the great efficiency of the new cell Much better than other layout architectures. The scope of application of the present invention includes: (1) Standard cell library. (2) Low-power ASIC design. With the rapid development of highly complex very large-scale integrated circuits (VLSI) and the large demand for portable electronic products supplied by batteries, low power consumption has become one of the main goals of IC design, and is related to operation speed and chip Design considerations for areas with equal proportions [1]. In a cell-based (cel} based) AS 1C design, the characteristics of the standard cell determine the performance of the wafer, including power consumption. Voltage is used for logic gates on the critical path, so

第4頁 CMOS電路的功率消耗大部分為動態功率,而此動態功 率與供應電壓(VDD)的平方成正比,因此降低的值可以 節省最大的功率消耗。但是調降V d d的值會使得電路的操 作速度降低。如果只將較低的供應電壓使用於非關鍵路徑 (non-critical path)上的邏輯閘’而原來或較高的供應 _m-umm__g _ 五、發明說明(2) 一來,整體電路速度並不會受到影響,而且功率消耗可有 效降低。 應用上述的電壓供應方式,在行為階層(behavi 〇r level)設計已經採用於可變電壓調整(νΉαΐ e Voltage Scaling, VVS)【2】,在邏輯階層(1 og i c } e ve i )設計已 採用於叢集式電壓調整(Clustered Voltage Sealing, CVS)【3】與延伸叢集式電壓調整(Extended Clustered Voltage Scaling, EC VS)【4】,而且均為使用兩個供應 電壓的設計。此外,一個循列處理(row by row)的佈局架 構【5】被提出,以達成使用多重電麼的實際階層設計。/ ' 為了有效發揮多重供應電壓設計來達成低功率消耗, 行為、邏輯與實際階層設計必須要同時考量。若目前的電 腦輔助設計(CAD)工具不支援使用多重供應電壓設計的細 胞元擺置與繞線’使用此技巧的電路必須被分隔成多個不 同的叢集’並且個別擺置與繞線。使用兩個供應電壓之叢 集式電壓调整的可能佈局架構示於圖一,其中VDDH 12f 示較高之電壓準位,而VDDL 1 3則為較低之準位。彳艮顯^ 地,它的佈局效率不佳,因其晶片面積和繞線長度比原始 的佈局要1¾出許多。 循列處理的佈局架構如圖二所示。它分別將汕如和 VDDL供應電源的細胞元11置於不同的細胞元列『 21、22並且將它們擺置與ι線在同一個區塊。每—個Γ細0w π列的兩端必須擺置特殊的連接細胞元(v丨A ce u ),以 定該列的供應電壓為VDDH或VDDL。依照循列處理之程=;、 首先將電路中的細胞元擺置而不考慮電壓形式,也就是由 --ο 9 2 5 7 柰號87119131 年乃月彳孑日 修正 _ 五、發明說明(3) VDDH與VDDL供應的細胞元混合在同一個細胞元列當中。在 第二個步驟裡,再將VDDH與VDDL供應的細胞元重新安排至 不同的列,因此原來的佈局 較 ) 通 常 在 繞 線 完 成 後 佈 局 者 5 為 應 用 循 列 處 理 的 佈 局 的 工 具 軟 體 因 此 循 列 處 理 本 案 為 種 用 於 多 重 電 @ 的 在 於 採 用 了 — 種 細 胞 元 的 實 際 階 層 設 計 Ο 其 特 徵在 線 0 如 上 所 述 其 中 該 細 胞 — 個 供 應 電 壓 之 環 境 0 如 上 所 述 該 細 胞 元 係 中 該 二 條 電 源 線 係 由 第 一 層 如 上 所 述 J 該 細 胞 元 係 中 該 二 條 電 源 線 可 以 由 三 種 1. 係 由 第 一 層 金 屬 分 開 2. 係 由 第 — 層 金屬 與 第 3. 係 由 第 一 層 金 屬 與 第 如 上 所 述 其 中 該 細 胞 三 個 供 應 電 壓 之 環 境 〇 般 標 準 細 胞 元 的 佈 局 線 ί 而 本發 明 所 提新 型 的 細 線 〇 新 型 細 胞 元 之 電 路 結 構Page 4 Most of the power consumption of CMOS circuits is dynamic power, and this dynamic power is proportional to the square of the supply voltage (VDD), so a lower value can save the maximum power consumption. However, lowering the value of V d d will reduce the operating speed of the circuit. If the lower supply voltage is used only for logic gates on non-critical paths, and the original or higher supply is _m-umm__g _ V. Description of the invention (2) As a result, the overall circuit speed and It will not be affected, and the power consumption can be effectively reduced. Applying the above voltage supply method, the design at the behavior level (behavi 〇r level) has been adopted for variable voltage adjustment (νΉαΐ e Voltage Scaling, VVS) [2], and the design at the logic level (1 og ic} e ve i) It is used in Clustered Voltage Sealing (CVS) [3] and Extended Clustered Voltage Scaling (EC VS) [4], and both are designed using two supply voltages. In addition, a row by row layout architecture [5] was proposed to achieve a practical hierarchical design using multiple power modules. / 'In order to effectively utilize multiple supply voltage designs to achieve low power consumption, behavior, logic, and actual class design must be considered simultaneously. If current computer-aided design (CAD) tools do not support cell placement and routing using multiple supply voltage designs, the circuit using this technique must be separated into multiple different clusters and individually placed and wound. A possible layout architecture of a cluster voltage adjustment using two supply voltages is shown in Figure 1, where VDDH 12f shows a higher voltage level and VDDL 1 3 shows a lower level. Obviously, its layout efficiency is not good, because its chip area and winding length are much larger than the original layout. The layout architecture of sequential processing is shown in Figure 2. It places the cell 11 that Shanru and VDDL supply power into different cell columns 21 and 22, and places them in the same block as the ι line. A special connection cell (v 丨 A ce u) must be placed at each end of each Γ fine 0w π column to determine the supply voltage of the column as VDDH or VDDL. Follow the process of sequential processing =; First, place the cell elements in the circuit without considering the voltage form, that is, amended by --ο 9 2 5 7 871 No. 87119131, which is the day of the month _ V. Description of the invention ( 3) The cells supplied by VDDH and VDDL are mixed in the same cell row. In the second step, the cells supplied by VDDH and VDDL are rearranged to different columns, so the original layout is compared.) Usually after the winding is completed, Layout 5 is the tool software for applying the layout of the sequential processing. Column processing This case is a kind of multi-electricity @ which uses-the actual hierarchical design of a kind of cell element 0 its characteristics are on line 0 as described above where the cell-a voltage supply environment 0 as described above the two cells in the cell element line The power line is composed of the first layer as described above. The two power lines in the cell line can be divided into three types: 1. The line is separated by the first layer of metal 2. The line is separated by the first layer of metal and the third layer is formed by the first layer of metal It is the same as the layout line of the standard cell in which the three supply voltages of the cell are as described above, and the novel thin line proposed by the present invention is a new cell circuit. Construct

PD1557修正.ptc 會被更動。與未重新擺置比 面積和繞線長度會增加》再 架構’必須再開發細胞元擺置 的佈局效率仍然不夠完善。 壓設計環境之細胞元,其主要 佈局的方法,來處理多重電壓 於:該細胞元具複數條電源 元係含二條電源線,係應用於 經由兩層金屬的製程製造,其 金屬分開而平行排列所構成。 經由三層金屬的製程製造,其 方法構成: 而平行排列所構成。 二層金屬堆疊排列所構成。 二層金屬堆疊排列所構成。 元係含三條電源線,係應用於 僅具有一條電源線與—條地 胞元具有多條電源線與一條地 ^圖三所示。具有^電源線PD1557 fix .ptc will be changed. Compared with the non-reposition, the area and winding length will increase. "Re-architecture" must be re-developed. The layout efficiency of the cell arrangement is still insufficient. The main layout method of the cell in the design environment is to handle multiple voltages. The cell has a plurality of power elements, including two power lines, and is applied to the manufacturing process through two layers of metal. Made up. Manufactured through a three-layer metal manufacturing process, the method is composed of: and arranged in parallel. It consists of two layers of metal stacked. It consists of two layers of metal stacked. The element system contains three power cords, which are used when there is only one power cord and one ground. The cell has multiple power cords and one ground. With ^ power cord

Hi 第6頁 _案號 871J_g_131 __一 如年 3 月 日____ 五、發明說明(4) 之細胞元’其每一個布林函數需開發N個形別(type )的細 胞元。其中TYPE 1的細胞元經由VDDi電源線來提供電源, TYPE2的細胞元則經由VDD2電源線來提供。由此類推, T Y P E N的細胞元疋經由V D DN電源線來提供。除了電源線的 連接方式外,其内部電路完全相同。此外,為使得所有形 別的細胞元能夠毗鄰擺置’所有細胞元電路中的pjJOS基體 (substrate)端必須連接至電路中最高之供應電壓(在本例 中為VDR )。此新型細胞元是由一般的標準細胞元衍生而 獲得’僅需修改電源線的數目和寬度。因此,製作此新型 細胞元件庫所需的時間與技術成本相當少。 多條電源線之細胞元的佈局方式可依製程而有所變 化,舉例說明如下·· (1)使用具有雙層金屬的製程 圖四為使用雙層金屬製程的佈局輪廓示意圖,其中包 含複數條雙層金屬製程之電源線41,接腳42(M2 pin)及地 線GND。圖®(a)為一般細胞元’而圖翌(b)為使用雙層金 屬的新型細胞元。使用雙層金屬的新型細胞元,其所有電 源線與地線都使用第一層金屬(Μ1 ),並且平行排列。為考 慮繞線時之可行性’其輸入輸出信號接腳(p i π)則使用第 二層金屬(M2),使得M2在繞線時可以垂直跨越M1。 與單一電壓源的設計比較’多重電壓的設計其整體消 耗功率可降低。原本由單一電塵VDD供應的電流,在多重 電壓的設計下,整體電流由所有電源線分擔,因此,新型 細胞元之電源線與地線寬度均可縮減。因流經提供較低電 壓之電源線的電流量較小’其寬度可更進一步的減少。因 ΪΒΗΠ^Η PD1557修正.pic 第7頁 -- --案號87119131 彳P年3月;^日 條正 五、發明說明(5^ · 此’新型細胞元其電源線與地線之寬度可依電路之應用而 調整。再者’應用上以二或三個電壓之設計較為可行,所 以因電源線數目的增加而導致的細胞元面積之增加不致太 大。 一個使用兩個供應電壓(N = 2)之兩輸入NAND閘電路圖 與佈局例子示於圖五與圖六,兩個輸入電壓分別為VD])H與 VDDL ’兩個細胞元分別為η型和L型,所使用的技術為〇. 6 微来(um) CMOS單層多矽晶雙層金屬(SPDM)製程。以圖五 之佈局為例,原本的細胞元高度為3 〇 u m,電源線與地線各 為4um。在新型細胞元中,VDDH與GND的寬度被設計為 3um ’ VDDL的寬度則減為2· Oum。所以新型的細胞元高度便 為30.8um ’與原本的細胞元比較,其面積超量僅為2.7%。 這兩種形別的細胞元在P&R時可以被毗鄰擺置,VDDH與 VDDL可經由同一列的細胞元來導通。由於具有可任意毗鄰 的特性,在細胞元擺置後隨即可以進行繞線。因此現行的 CAD軟體可以有效地使P&R程序自動化。圖七呈現了 一個使 用兩個供應電壓之新型細胞元佈局架構。圖中灰色的元件 代表L型的細胞元,而白色的元件則代表Η型的細胞元。 (2)使用具有三層金屬的製程 若製程上允許使用三層金屬,新型細胞元除了可沿用 (1 )所述之單層平行電源線外,電源線之佈局尚可使用堆 疊方式以節省面積。圖八為使用三層金屬製程的佈局輪廓 示意圖’其中包含複數條電源線8 1及若干接腳8 2。圖八 (a)為一般細胞元,圖八(b)為電源線分別使用Ml或M2之新 型細胞元,而圖八(c )為電源線分別使用Μ1或Μ 3 (第三層金Hi Page 6 _Case No. 871J_g_131 __ One As of March ____ V. Cells of Invention Description (4) Each of its Bollinger functions needs to develop N types of cells. The cells of TYPE 1 are provided with power via the VDDi power line, and the cells of TYPE 2 are provided with VDD2 power lines. By analogy, the cells of T Y P N are provided via the V D DN power cord. Except for the connection of the power cord, its internal circuits are identical. In addition, in order for all cell types to be placed adjacent to each other, the pjJOS substrate end of the circuit of all cells must be connected to the highest supply voltage in the circuit (in this example, VDR). This new type of cell is derived from a standard cell, and only needs to modify the number and width of the power cords. As a result, the time and technical costs required to make this new library of cell components are quite small. The layout of the cell elements of multiple power lines can vary depending on the process. Examples are as follows: (1) Using a process with a double-layer metal Figure 4 is a schematic diagram of the layout of a process using a double-layer metal process, which contains multiple The power line 41, pin 42 (M2 pin) and ground line GND of the double-layer metal process. Figure ® (a) shows a general cell 'and Figure 翌 (b) shows a new type of cell using a double-layer metal. The new type of cell using double-layer metal uses the first layer of metal (M1) for all power and ground wires and is arranged in parallel. In order to consider the feasibility when winding, the input and output signal pins (p i π) use a second layer of metal (M2), so that M2 can cross M1 vertically when winding. Compared with the design of a single voltage source, the design of multiple voltages can reduce the overall power consumption. Under the design of multiple voltages, the current that was originally supplied by a single electric dust VDD is shared by all power lines. Therefore, the width of the power line and ground line of the new cell can be reduced. Since the amount of current flowing through the power line that provides a lower voltage is smaller, its width can be further reduced. PD1557 amended due to ΪΒΗΠ ^ .. pic page 7-case number 87119131 彳 P year March; ^ Japanese article five, description of the invention (5 ^ · The width of the power line and ground line of this' new type cell cell can be Adjust according to the application of the circuit. Furthermore, the design with two or three voltages is more feasible, so the increase of the cell area due to the increase in the number of power lines is not too large. One uses two supply voltages (N = 2) The two-input NAND gate circuit diagram and layout example are shown in Figure 5 and Figure 6, the two input voltages are VD]) H and VDDL 'The two cell elements are η-type and L-type, respectively. The technology used is 0.6 micro- (um) CMOS single-layer multi-silicon double-layer metal (SPDM) process. Taking the layout of Figure 5 as an example, the original cell height was 30 μm, and the power line and ground line were 4um each. In the new type of cell, the width of VDDH and GND is designed to be 3um ′, and the width of VDDL is reduced to 2 · Oum. Therefore, the height of the new type of cell is 30.8um ′. Compared with the original cell, the area excess is only 2.7%. These two types of cells can be placed next to each other during P & R, and VDDH and VDDL can be conducted through the cells in the same row. Due to its arbitrarily adjacent nature, winding can be performed immediately after the cell is placed. Therefore, the current CAD software can effectively automate the P & R program. Figure 7 shows a new cell layout architecture using two supply voltages. The gray elements in the figure represent L-type cells, while the white elements represent Η-type cells. (2) Using a process with three layers of metal. If three layers of metal are allowed in the process, the new cell can use the single-layer parallel power cord described in (1), and the power cord layout can also be stacked to save area. . FIG. 8 is a schematic diagram of a layout using a three-layer metal process, which includes a plurality of power lines 8 1 and a plurality of pins 82. Figure 8 (a) is a general cell, Figure 8 (b) is a new type of cell using M1 or M2 as the power line, and Figure 8 (c) is M1 or M3 (a third layer of gold) as the power line

PD1557修正.Ptc 第8頁 蹈43925 7 修正 案號 87119131 五、發明說明(6) 屬)之新型細胞元。使用三層金屬的細胞元,每—纽 線是由兩層金屬堆疊而成。以圖八(b)為例,每一組雷源 線由Ml與M2堆疊而成,M2堆疊在Ml上方,M3為主要繞電源 層°此外’電源線81與地線GND之寬度仍可如前述般縮線 減。如果圖五之佈局圖以三層金屬之方式製作,其X面 至可比一般具卓一電源線之細胞元更小。如果使用前述甚 6微米CMOS製程來設計,如圊九所示之細胞元,其面广 小可達6. 7?^ '、續* 在性能比較上’為了評估使用不同佈局架構的佈局效 率,原始電路以及經過處理後的具雙電壓源之低功率電 路’分別使用工業界所使用之的DLM(雙層金屬P&R工具)與 TLM(三層金屬P&R工具)軟體加以擺置與繞線。表一為使用 DLM的佈局面積與總繞線長度,表二則為使用tlM的數據" 在兩張表格中的新細胞元形式,都使用圖五所示之新型細 胞元。 表一PD1557 Amendment. Ptc Page 8 Wu 43925 7 Amendment No. 87119131 V. Description of the invention (6) Genus) a new type of cell. Cells using three layers of metal, each-button is a stack of two layers of metal. Take Figure 8 (b) as an example. Each group of thunder source lines are stacked by M1 and M2, M2 is stacked above M1, and M3 is the main power layer. In addition, the width of the power line 81 and the ground line GND can still be as large as The aforementioned shrinkage is reduced. If the layout of Figure 5 is made of three layers of metal, the X-plane can be smaller than that of a typical cell with a Zhuoyi power cord. If you design using the aforementioned very 6 micron CMOS process, the cell size shown in Figure 9 can be as small as 6.7? ^ 'Continued * in terms of performance comparison' In order to evaluate the layout efficiency using different layout architectures, The original circuit and the processed low-power circuit with dual voltage sources are respectively placed in DLM (double-layer metal P & R tool) and TLM (three-layer metal P & R tool) software used in the industry. Winding. Table 1 shows the layout area and total winding length using DLM, and Table 2 uses the data of tlM " The new cell forms in both tables use the new cells shown in Figure 5. Table I

PD1557修正.ptc 測試 面積 總繞線長度 電路 Α〇Γίϊ(μΓη2) Απ% Anew% L〇rS(mm) Lrr% Lnew% C17 48x78 -3.4% 0.7% 0.6 -6.5% 3.1% C432 224x281 74.1% 7.9% 18.5 119.9% 0.7% C499 359x425 61.0% 8.6% 47.1 94.9% 13.5% C880 314x395 98.7% 10.8% 40.4 133.0% 11.0% C1355 351x442 38.6% 9.0% 47.3 57.3% 6.4% Cl 908 343x422 98.1% 10.4% 46.6 123.6% 9.2% C2670 431x524 104.7% 9.4% 79.6 134.1% 7.0% C3540 375x399 125.9% 6.3% J30.9 192.4% 5.5% C5315 697x909 236.6% 5.8% 231.1 239.9% 1.2% C7552 790x1002 114.8% 6.8% 301.9 172.9% 2.4% 平均值 94.9% II- 1 7.6% 126.2% 6.0% A仃/ΐ)-(A|j- A〇「g)/ Aorg, Anew%- (Anew- A〇r|j)’ A〇rg ,PD1557 correction. PTC test area total winding length circuit Α〇Γίϊ (μΓη2) Απ% Anew% L〇rS (mm) Lrr% Lnew% C17 48x78 -3.4% 0.7% 0.6 -6.5% 3.1% C432 224x281 74.1% 7.9% 18.5 119.9% 0.7% C499 359x425 61.0% 8.6% 47.1 94.9% 13.5% C880 314x395 98.7% 10.8% 40.4 133.0% 11.0% C1355 351x442 38.6% 9.0% 47.3 57.3% 6.4% Cl 908 343x422 98.1% 10.4% 46.6 123.6% 9.2% C2670 431x524 104.7% 9.4% 79.6 134.1% 7.0% C3540 375x399 125.9% 6.3% J30.9 192.4% 5.5% C5315 697x909 236.6% 5.8% 231.1 239.9% 1.2% C7552 790x1002 114.8% 6.8% 301.9 172.9% 2.4% Mean 94.9% II- 1 7.6% 126.2% 6.0% A 仃 / ΐ)-(A | j- A〇 ″ g) / Aorg, Anew%-(Anew- A〇r | j) 'A〇rg,

Lrr%-(Lrr-Lor(1)/ Loni , Lnew%= (Lrnew-Lorfl)/ LorK , 第9頁 i43 9 Π 5 年孑月y曰 修正 __案號 87119131 五、發明說明(7) 表 二 測試 面積 總繞線長度 電路 Α0ΓΒ(μηι2) Arr% △new% L〇rS(mm) U% Lnew% C17 50x71 -8.0% -6.9% 0.5 -6.2% -3.6% C432 223x204 7.0% 4.9% 12.9 48.1% 16.1% C499 356x273 8.1% 3.4% 31.6 53.0% 0.7% C880 308x274 21.1% 8.4% 29.6 75.1% 9.9% C1355 353x270 13.5% 5.3% 33.1 48.2% 2.5% C1908 336x278 28.0% 10.8% 31.7 86.6% 13,1% C2670 452x312 46.4% 10.8% 59.4 106.1% 7.4% C3540 539x423 71.9% 16.3% 92.8 165.3% 11.3% C5315 699x513 111.1% 14.4% 163.8 218.0% 22.9% C7552 723x573 76.9% 17.7% 197.7 146.0% 8.5% 平均值 37.6% 8.5% 94,0% """8^9% 上述表格中的電路為ISCAS,85之測試電路(benchmark circuits) » 原始測試電路是由單電源線的細胞元所組成,其佈局 面積與總繞線長度分別以A〇rg與Lorg表示》而具雙電壓源 之低功率電路,其佈局面積與總繞線長度分別以Anew與 L n e w表示。此外,為了比較佈局效率,具雙電壓源之低功 率電路亦使用單電源線的細胞元,以循列處理的佈局架構 加以製作’而其佈局面積與總繞線長度分別以Arr與表 示0 與Aorg比較,Anew的平均面積超量,使用dlm為 7.6% ,使用TLM為8.5%。而Arf的平均面積超量,使用dlm 為94.9%,使用丁“為”.^。在另—方面,與L〇rg比較, Lnew的平均繞線長度超量,使用儿肘為“,使用丁^為 8_ 9/。。而Lrr的平均繞線長度超量,使用DLM為126, ,使 用TLM為94%。由此數據顯示,循列處理的佈局架構會使佈Lrr%-(Lrr-Lor (1) / Loni , Lnew% = (Lrnew-Lorfl) / LorK ”, page 9 i43 9 Π 5 years and months y amendments __ case number 87119131 V. Description of the invention (7) Table Second test area total winding length circuit Α0ΓΒ (μηι2) Arr% △ new% L〇rS (mm) U% Lnew% C17 50x71 -8.0% -6.9% 0.5 -6.2% -3.6% C432 223x204 7.0% 4.9% 12.9 48.1 % 16.1% C499 356x273 8.1% 3.4% 31.6 53.0% 0.7% C880 308x274 21.1% 8.4% 29.6 75.1% 9.9% C1355 353x270 13.5% 5.3% 33.1 48.2% 2.5% C1908 336x278 28.0% 10.8% 31.7 86.6% 13,1% C2670 452x312 46.4% 10.8% 59.4 106.1% 7.4% C3540 539x423 71.9% 16.3% 92.8 165.3% 11.3% C5315 699x513 111.1% 14.4% 163.8 218.0% 22.9% C7552 723x573 76.9% 17.7% 197.7 146.0% 8.5% Average 37.6% 8.5% 94 , 0% " " " 8 ^ 9% The circuits in the above table are ISCAS, 85 of the test circuits (benchmark circuits) »The original test circuit is composed of cells with a single power line, and its layout area and total winding The length of the line is expressed by Aorg and Lorg respectively. For low-power circuits with dual voltage sources, the layout area and the total winding length are respectively Represented by Anew and L new. In addition, in order to compare the layout efficiency, low-power circuits with dual voltage sources also use the cells of a single power line to produce a sequential layout structure, and the layout area and the total winding length are respectively Comparing Arr with 0 and Aorg, the average area of Anew is excessive, using dlm is 7.6%, using TLM is 8.5%. And the average area of Arf is excessive, using dlm is 94.9%, using Ding is "." On the other hand, compared with Lorg, the average winding length of Lnew is excessive, using the elbow is ", using Ding is 8_ 9 / ..., and the average winding length of Lrr is excessive, using DLM is 126, The use of TLM is 94%. This data shows that the layout structure of sequential processing will make the layout

PD1557修正.ptc 第10頁 '^—-ΜΆ 87119131 βρ 年 θ 月一日 修正 五、發明說明(8) 一 =面積與繞線長度顯著增加。如果所使用的細胞元佈局改 衣圖九之形式’則總佈局面積將更小,總繞線長度將更 短。PD1557 correction. Ptc page 10 '^ —- ΜΆ 87119131 βρ year θ month 1 correction V. Description of the invention (8) a = Area and winding length increase significantly. If the cell layout used is changed to the form of Figure 9 ', the total layout area will be smaller and the total winding length will be shorter.

Anew及Lnew的超量部分來自於所加入的電位轉換器 (^evel converter) ’此外細胞元本身以及VDDL的繞線也 是增加原因。而Arr與Lrr主要的超量來自於受到限制的細 胞元擺置。顯著增加的繞線長度不僅增加功率消耗,而且 也會使得操作速度受到影響。這個現象在更先進的製程中 會更形惡化’因為繞線面積和延遲將會主導晶片性能。 值得一提的是,如前所述,二表格中之新型細胞元設 計採用圖五方式,此時電路性能已有良好的表現,而佈局 面積及總繞線長度也損失極小。如果新型細胞元採用圖九 之設計方式,則佈局面積及總繞線長度損失將更小,或甚 至優於原設計,並且仍維持低功率消耗之優點。當VDDH與 VDDL分別設定為3· 3V與2. 2V時,表中之測試電路若使用雙 電源設計之平均功率比使用單電源設計之平均功率節省高 達31 - 4°/〇。 綜上所述,我們可得以下五點結論: (一) 可在既定的速度規格下,達成低功率之目的。 (二) 可有效發揮多重電壓源設計之低功率特性。 (三) 無須重新開發細胞元擺置之CAD工具程式。 (四) 無須增加設計步驟,可由現行CAD軟體直接進行 細胞元擺置與繞線,縮短晶片設計時間與產品上市時間。 (五)與其他多重電壓源局方式比較1可使晶片面積 與總繞線長度之超量達到最少。The excess of Anew and Lnew comes from the added potential converter (^ evel converter) ′ In addition, the cell itself and the winding of VDDL are also the reasons for the increase. The major excesses of Arr and Lrr come from restricted cell placement. The significantly increased winding length not only increases power consumption, but also affects operating speed. This phenomenon will worsen in more advanced processes' because the winding area and delay will dominate the chip performance. It is worth mentioning that, as mentioned earlier, the new cell design in the second table adopts the method of Figure 5. At this time, the circuit performance has shown good performance, and the layout area and total winding length are also very small. If the new cell type adopts the design method of Figure 9, the layout area and total winding length loss will be smaller, or even better than the original design, and still maintain the advantage of low power consumption. When VDDH and VDDL are set to 3 · 3V and 2.2V respectively, the average power saving of the test circuit in the table when using the dual power supply design is higher than that of the single power supply design by 31-4 ° / 〇. In summary, we can draw the following five conclusions: (1) The goal of low power can be achieved under the established speed specifications. (2) The low power characteristics of multiple voltage source designs can be effectively used. (3) There is no need to redevelop the CAD tool program for cell arrangement. (4) There is no need to add design steps, and the current CAD software can directly perform cell placement and winding, which shortens the chip design time and product time to market. (5) Compared with other multiple voltage source bureau methods1, the excess of the chip area and the total winding length can be minimized.

PD[557 修正.ptc 第11頁 _案號87119131 年乃月日__i±^___ 五、發明說明¢9) 由以上可知,本案之設計,使得吾人可以在不須增加 設計成本的情況下’很快的設計、並製造出速度快、功率 低的高效能晶片,在這競爭激烈的半導體市場,本案之發 明將可以成為一項極為有力的生產優勢。 本案得由熟悉本技藝之人士任施匠思而為諸般修飾, 然皆不脫如附申請專利範圍所欲保護者。 參考資料: 【1 】Abdellatif Bellaouar and Mohamed I. Elmasry, "Low-power digital VLSI design," Kluwer Academic Publishers, 1995. 【2】Salil Raje and Majid Sarrafzadeh, "Variable voltage scheduling," International Symposium on Low Power Design, pp.9-14, 1995.PD [557 Amendment.ptc Page 11_Case No. 87119131 is the date of the month__i ± ^ ___ V. Description of the invention ¢ 9) From the above, the design of this case allows us to increase the cost of the design without increasing the design cost. Quickly design and manufacture high-speed, low-power, high-performance chips. In this highly competitive semiconductor market, the invention in this case can become a very powerful production advantage. This case may be modified by any person skilled in the art, but none of them can be protected as attached to the scope of patent application. References: [1] Abdellatif Bellaouar and Mohamed I. Elmasry, " Low-power digital VLSI design, " Kluwer Academic Publishers, 1995. [2] Salil Raje and Majid Sarrafzadeh, " Variable voltage scheduling, " International Symposium on Low Power Design, pp. 9-14, 1995.

[3] Kimiyoshi Usami and Mark Horowitz, "Clustered voltage scaling technique for low-power design, " International Symposium on Low Power Design, pp. 3-8, 1 9 9 5.[3] Kimiyoshi Usami and Mark Horowitz, " Clustered voltage scaling technique for low-power design, " International Symposium on Low Power Design, pp. 3-8, 1 9 9 5.

[4] K. Usami et a 1. , M Automated low-power technique exploiting multiple supply voltages applied to a media processor," Proc. IEEE Custom Integrated Circuits Conf., pp. 1 3 1 - 1 34, 1 997.[4] K. Usami et a 1., M Automated low-power technique exploiting multiple supply voltages applied to a media processor, " Proc. IEEE Custom Integrated Circuits Conf., Pp. 1 3 1-1 34, 1 997.

[5] K. Usami et a 1., "Automated low-power technique exploiting multiple supply voltages[5] K. Usami et a 1., " Automated low-power technique exploiting multiple supply voltages

PDI557修正.ptc 第12頁 _案號87119131 年3月y彡日 修正_ 五、發明說明(10) applied to a media processor," IEEE J. Solid-State Circuits, Vol. 33, no. 3, pp. 4 63-472, Mar. 1 9 98.PDI557 Amendment.ptc Page 12 _ Case No. 87119131 March 13th Amendment _ V. Description of Invention (10) applied to a media processor, " IEEE J. Solid-State Circuits, Vol. 33, no. 3, pp. 4 63-472, Mar. 1 9 98.

PD1557修正.ptc 第13頁 把 439257 __棄號 87119131 圖式簡單說明 年今月PD1557 correction.ptc page 13 put 439257 __ discarded 87119131 simple illustration of the year and month

修JL 本案得藉由下列圖示及說明,俾得一更深入之了解 圈一:使用叢集式電壓調整(CVS)的佈局架構 圖二:使用循列處理的佈局架構 圖三:新型細胞元之電路結構 圖四r a):使用雙層金屬製程之一般單雷源_^^元佈 局輪蹲示意圖 圖四C b) : -AAJt層金屬製程之新型細胞亓.廓希 .思.圖 圖五(a):使用兩個供應電壓之Η型新型細腧範例 LMM ΆΜ1 ° 圖五(b) 個供應電壓之L型新塑細腧开.丨 1_雙層金屬製程) 圖六(a ) LAJL_兩個供應電壓之Η型新剷細胞元 圖六(b) :_^JL兩個供應電壓之L都新型細胞元雷 圖七:使用使用兩個供應電壓之新型細胞元的佈局架構 選八(a )」使用;g·層金屬製程之一般單電源線細胞元佈 !輪廓示意1 1八(b) 層金屬製程之為電源線分別使用Μ1或 之新型細AAj座局輪廓示意圖 J八(C). 層金屬製裎之為電源線分別使用Μ1毯 層新型細胞元佈局輪廓示意圖 個供應電壓之η型新型細胞元佈局範i (三層金1製程) 凰..么(b..) 個供應雷壓之L型新切細胞元佈局範Jj (三層金屬製程)The following diagrams and explanations can be used to repair the JL case. A more in-depth understanding of circle I: Layout architecture using cluster voltage adjustment (CVS) Figure 2: Layout architecture using sequential processing Figure 3: Layout of a new type of cell Circuit structure diagram 4) Ra: schematic diagram of a single single-source source using a double-layer metal process _ ^^ element layout wheel squat Figure 4C b): -AAJt-layer metal process of a new type of cell 亓. 希希. 思. a): An example of a new type of thin film using two supply voltages LMM ΆΜ1 ° Figure 5 (b) L-shaped new plastic thin film with a supply voltage opening. 1_Double-layer metal process) Figure 6 (a) LAJL_ Figure 6 (b) of two new-type shovel cells with two supply voltages: _ ^ JL Two new-type cells with two supply voltages a) "Use; g · General single power line cell cloth for layer metal process! Outline drawing 1 18 (b) For layer metal process, the power line uses M1 or the new fine AAj seat outline J 8 (C ). Schematic diagram of the layout of a new type of cell element using M1 blanket for power lines made of metal. Η-type new type cell layout layout i (three-layer gold 1 process) for supply voltage (b ..) L-type new-type cell layout layout jj (three-layer metal process) for supplying lightning pressure

PD丨557修正.ptc 第14頁 3 9? - ^PD 丨 557 correction.ptc page 14 3 9?-^

案號 87119131 年θ月;^曰 修正 式簡單說明 圖示中各代號代表的意義: 11 細胞元 14 :接地GND 12 供應電壓之高電壓準位VDDH 13 供應電壓之低電壓準位VDDL 15 VDDH叢集 16 : VDDL 叢集 21 VDDH 列 22 : VDDL 列 41 電源線 4 2 :接腳 81 電源線 8 2 :接腳 PD1557修正.ptc 第15頁Case No. 87119131 θ month; ^ said the corrections simply explain the meaning of each code in the illustration: 11 cell element 14: ground GND 12 high voltage level of supply voltage VDDH 13 low voltage level of supply voltage VDDL 15 VDDH cluster 16: VDDL cluster 21 VDDH column 22: VDDL column 41 Power line 4 2: Pin 81 Power line 8 2: Pin PD1557 correction. Ptc page 15

Claims (1)

_ 案號 87119131 六、申請專利範圍 年多月B 修正 1. 一種用於多重電壓設計環境之細胞元,其包含: 複數條電源線,以提供不同之複數個供應電壓.、 複數個細胞元,具有該複數條電源線;每一細胞_及 電源僅由該複數條電源線之其中一條電源線提供。1之 2 _如申請專利範圍第1項所述之用於多重電壓設計環境之 細胞元,其中該細胞元係採用二個供應電壓。 3 _如申請專利範圍第2項所述之用於多重電壓設計環境之 細胞元,其中該細胞元係以一第一電源線及一苐二電源線 分別提供一第一電壓位準及一第二電壓位準。 4.如申請專利範圍第3項所述之用於多重電壓設計環境支 細胞元,其中該細胞元具有二種型式。 5 ‘如申請專利範圍第4項所述之用於多重電壓設計環境之 細胞元,該第一個型式之細胞元之電源由該第一電源線提 供。 6.如申請專利範圍第4項所述之用於多重電壓設計環境之 細胞元,該第二個型式之細胞元之電源由該第二電源線提 供0 7.如申請專利範圍第5或6項所述之用於多重電壓設計環境 之細胞元,該細胞元之佈局的择一個型式均具有二條電源 線。 8 ‘如申請專利範圍第3項所述之辨於多重電壓設計環境之 細胞元,該第一個型式之細胞元佈局之電源由該第'條電 源線提供,其内置之該第二條電源線僅用於傳導該第二電 壓準位。_ Case No. 87119131 Sixth, the scope of the patent application for more than one month B Amendment 1. A cell used in a multiple voltage design environment, which includes: a plurality of power lines to provide different supply voltages, a plurality of cells, It has the plurality of power lines; each cell and power is provided only by one of the plurality of power lines. 1 of 2 _ The cell used in a multiple voltage design environment as described in item 1 of the scope of the patent application, wherein the cell uses two supply voltages. 3 _ The cell for a multiple voltage design environment as described in item 2 of the scope of the patent application, wherein the cell provides a first voltage level and a first power line with a first voltage level and a first power line, respectively. Two voltage levels. 4. The multi-voltage design environment branch cell as described in item 3 of the scope of patent application, wherein the cell has two types. 5 ‘The cell for a multi-voltage design environment as described in item 4 of the scope of the patent application, the power of the first type of cell is provided by the first power line. 6. The cell used in the multi-voltage design environment as described in item 4 of the scope of the patent application, the power of the second type of cell is provided by the second power line 0 7. As the scope of the patent application, 5 or 6 In the cell of the multi-voltage design environment described in the item, either of the cell layouts has two power lines. 8 'As described in item 3 of the scope of the patent application, the cells of the multi-voltage design environment, the power of the first type of cell layout is provided by the' power cord, and the second power source is built in The line is only used to conduct this second voltage level. PD1557修正.pRPD1557 correction.pR First _案號 8711 六、申請專利範圍 申請=範圍第3項所述之用於多重電壓設計環境之 :2 S:—個型式之細胞元佈局之電源由該第二電源 線k供,,、内置之該第—電源線僅用於傳導該第一電壓準 位。 1 0 ·如申喷專利範圍第8或9項所述之用於多重電壓設計環 境之細胞元’二種型式的細胞元之該第一電源線及該第二 電源線在佈局時因相鄰置放而自然連接。 11.如申請專利範圍第3項所述之用於多重電壓設計環境之 細胞元,當該細胞元之佈局使用具二層金屬的製裎時,則 該第一電源線及該第二電源線由第一層金屬分開而平行排 列所構成。 1 2·如申請專利範圍第3項所述之用於多重電壓設計環境之 細胞元,當該細胞元之佈局使用具三層金屬的製程時,則 該第一電源線及該第二電源線由第一層金屬分開而平行排 列所構成。 1 3.如申請專利範圍第3項所述之用於多重電壓設計環境之 細胞元,當該細胞元之佈扃使用具三層金屬的製程時,則 該第一電源線及該第二電源線由第一層金屬與第二層金屬 堆疊排列所構成。 1 4 ’如申請專利範圍第3項所述之用於多重電壓設計環境之 、細胞元,當該細胞元之佈肩使用具三層金屬的製程時,則 該第一電源線及該第二電源線由第一層金屬與第三層金屬 堆疊排列所構成。 15.如申請專利範圍第1項所述之用於多重電壓設計環境之_ Case No. 8711 VI. Application for Patent Scope Application = Scope 3 item for multi-voltage design environment: 2 S: —The type of cell cell layout power is provided by the second power line k ,, built-in The first power line is only used to conduct the first voltage level. 1 · The first power line and the second power line of the two types of cells, which are used in the multi-voltage design environment, as described in item 8 or 9 of the patent application scope, are adjacent to each other when they are laid out. Place and connect naturally. 11. The cell used in the multi-voltage design environment as described in item 3 of the scope of the patent application, when the layout of the cell uses a two-layer metal system, the first power line and the second power line It consists of the first layer of metal separated and arranged in parallel. 1 2 · As described in item 3 of the scope of the patent application, the cell used in the multiple voltage design environment, when the layout of the cell uses a three-layer metal process, the first power line and the second power line It consists of the first layer of metal separated and arranged in parallel. 1 3. The cell used in the multi-voltage design environment as described in item 3 of the scope of the patent application, when the fabric of the cell uses a three-layer metal process, the first power cord and the second power supply The line is composed of a first metal layer and a second metal layer. 1 4 'As described in item 3 of the scope of the patent application, the cell used in the multi-voltage design environment, when the shoulder of the cell uses a three-layer metal process, the first power cord and the second The power line is composed of a first metal layer and a third metal layer. 15. For multi-voltage design environment as described in item 1 of the scope of patent application ^43925 7 _案號87119131 年d月^々日 修正_ 六、申請專利範圍 細胞元,其中該細胞元係採用三個供應電壓。 1 6.如申請專利範圍第1 5項所述之用於多重電壓設計環境 之細胞元,其中該細胞元係以三條電源線分別提供三個不 同準位的供應電壓。 1 7.如申請專利範圍第1 5項所述之用於多重電壓設計環境 之細胞元,其中該細胞元具有三種型式。^ 43925 7 _ Case No. 87119131d ^ 々 Day Amendment _ Sixth, the scope of patent application Cells, in which the cell element uses three supply voltages. 16. The cell for a multiple voltage design environment as described in item 15 of the scope of the patent application, wherein the cell is provided with three power lines with three different levels of supply voltages. 1 7. The cell for a multiple voltage design environment as described in item 15 of the scope of the patent application, wherein the cell has three types. PD1557修正.ptc 苐18頁PD1557 correction.ptc 苐 page 18
TW87119131A 1998-11-18 1998-11-18 Cell for use in multi-voltage design environment TW439257B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW87119131A TW439257B (en) 1998-11-18 1998-11-18 Cell for use in multi-voltage design environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW87119131A TW439257B (en) 1998-11-18 1998-11-18 Cell for use in multi-voltage design environment

Publications (1)

Publication Number Publication Date
TW439257B true TW439257B (en) 2001-06-07

Family

ID=21632006

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87119131A TW439257B (en) 1998-11-18 1998-11-18 Cell for use in multi-voltage design environment

Country Status (1)

Country Link
TW (1) TW439257B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102591997A (en) * 2011-01-05 2012-07-18 上海华虹Nec电子有限公司 Layout and schematic diagram consistency comparison method for multi-voltage chip design

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102591997A (en) * 2011-01-05 2012-07-18 上海华虹Nec电子有限公司 Layout and schematic diagram consistency comparison method for multi-voltage chip design
CN102591997B (en) * 2011-01-05 2014-02-26 上海华虹宏力半导体制造有限公司 Layout and schematic diagram consistency comparison method for multi-voltage chip design

Similar Documents

Publication Publication Date Title
KR101532858B1 (en) Power routing in standard cell designs
US11983479B2 (en) Integrated circuit, system for and method of forming an integrated circuit
TWI570586B (en) Design tools for integrated circuit components including nanowires and 2d material strips
US7287237B2 (en) Aligned logic cell grid and interconnect routing architecture
US7492013B2 (en) Systems and arrangements to interconnect components of a semiconductor device
US8742464B2 (en) Power routing in standard cells
JP3144967B2 (en) Semiconductor integrated circuit and method of manufacturing the same
US7760578B2 (en) Enhanced power distribution in an integrated circuit
CN106934090B (en) Clock tree structure, integrated circuit and layout method thereof
US7800136B2 (en) Semiconductor integrated circuit and semiconductor integrated circuit design method
JP2509755B2 (en) Semiconductor integrated circuit manufacturing method
CN101320707B (en) Integrated circuit setting and production method especially for structuration
JPH0527981B2 (en)
JP2002334933A (en) Integrated circuit having tap cell and method of arranging tap cell in integrated circuit
JP2008060370A (en) Semiconductor integrated circuit
US11239227B2 (en) Semiconductor devices, methods of designing layouts of semiconductor devices and methods of fabricating semiconductor devices
TW439257B (en) Cell for use in multi-voltage design environment
US11392743B2 (en) Multiplexer
JP2011258712A (en) Semiconductor integrated circuit
JP3481935B2 (en) Semiconductor integrated circuit having macro cell and design method thereof
JP2004006514A (en) Basic cell of gate array semiconductor device, gate array semiconductor device, and layout method of gate array semiconductor device
US7123084B2 (en) Semiconductor integrated circuit and designing method for same
JP6836137B2 (en) Semiconductor device and its layout design method
US20060097339A1 (en) Integrated circuits including auxiliary resources
JP4441541B2 (en) Semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees