TW434707B - Method for manufacturing high voltage and low voltage metal oxide semiconductor transistor using self-aligned silicide process - Google Patents

Method for manufacturing high voltage and low voltage metal oxide semiconductor transistor using self-aligned silicide process Download PDF

Info

Publication number
TW434707B
TW434707B TW88118022A TW88118022A TW434707B TW 434707 B TW434707 B TW 434707B TW 88118022 A TW88118022 A TW 88118022A TW 88118022 A TW88118022 A TW 88118022A TW 434707 B TW434707 B TW 434707B
Authority
TW
Taiwan
Prior art keywords
layer
voltage
metal
oxide semiconductor
patent application
Prior art date
Application number
TW88118022A
Other languages
Chinese (zh)
Inventor
Ching-Jiun Huang
Wei-Tsung Chen
Jian-Guo Yang
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW88118022A priority Critical patent/TW434707B/en
Application granted granted Critical
Publication of TW434707B publication Critical patent/TW434707B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

A method for manufacturing high voltage and low voltage metal oxide semiconductor (MOS) transistor using self-aligned silicide process is disclosed. It is the object of the present invention that self-aligned silicide (salicide) can be formed on a high voltage MOS transistor by using N+ mask. At first, a semiconductor substrate is defined into a high voltage MOS transistor region and a low voltage MOS transistor region. A polysilicon layer and a first dielectric layer are deposited on the substrate where the high voltage MOS transistor and the low voltage MOS transistor are defined. A photoresist layer is formed on the first dielectric layer to define the locations of gates of the high and low voltage MOS transistor. Thereafter, a second photoresist layer is formed on the substrate where the low voltage MOS transistor is to be formed, and then using the second photoresist layer as a hard mask, a conducting ion is implanted inside the substrate of the high voltage MOS transistor, that is, a gradient doped region is formed inside the substrate of the high voltage MOS transistor. Spacers are formed on sidewalls of the gate structures, and then a second dielectric layer is formed over the substrate where the high and low voltage MOS transistors are formed. A third photoresist layer is formed on the high and low voltage MOS transistors. Subsequently, by using the third photoresist layer as a mask, portions of the first dielectric layer and the second dielectric layer are etched to expose upper surface of the polysilicon layer and the gradient doped region. Still using the third photoresist layer as a mask, a second conducting ion is implanted inside the gradient doped region of the high voltage MOS transistor and inside the substrate of the low voltage MOS transistor, then removes the third photoresist layer. Finally, a layer of salicide is formed on the polysilicon layer and the second conducting ion region.

Description

434707 五、發明說明(1) 5-1發明領域: 本發明係有關於一種具有自我對準金屬矽化製程的高 壓與低壓金屬氧化半導體電晶體的製造方法。本發明的主 要目的在於藉由N+罩幕,其可提供高壓金屬氧化半導體電 晶體上形成金屬矽化物(s a 1 i c i d e ) 5-2發明背景: 近來在半導體元件的需求因大量的使用電子零件而快 速的增加。特別是電腦快速的普及增加了半導體元件的需 求。由=需要數百或是數千電晶體組成很複雜的積體電路 製造在早一半導體晶片上,所以獲得高品質半導體元件是 处Λ °'甬了強化接合崩潰(junction breakd0的434707 V. Description of the invention (1) 5-1 Field of the invention: The present invention relates to a method for manufacturing a high voltage and low voltage metal oxide semiconductor transistor with a self-aligned metal silicidation process. The main purpose of the present invention is to provide a high-voltage metal oxide semiconductor transistor to form a metal silicide (Sa 1icide) through an N + mask. Background of the Invention: Recently, the demand for semiconductor elements is due to the large number of electronic components. Fast increase. In particular, the rapid spread of computers has increased the demand for semiconductor components. A complex integrated circuit consisting of = hundreds or thousands of transistors is manufactured on a previous semiconductor wafer, so obtaining high-quality semiconductor components is achieved by strengthening junction breakdown.

子區域到"型梯度摻雜區域,而植入N 的能量通常相當高(大於,因此傳 、冼閘極夕日日矽層中的自我對準 寻 N型梯度掺雜離子的以,晉蔣合夕J匕製fe(sallclde) ’植人 的间此量將會植入到閑極多晶矽層下的 434707 五、發明說明(2) ---- 通道,而造成高電壓元件起始電壓(Vt)漂移; N型梯度摻雜區域不能形成自我對準矽化製程,若形 成自我對準石夕化製程將會使電面㈣而降低接合崩 潰(junction breakdown)的能力 第一A圖與第一β圖係一傳統高壓金屬氧化半導體電晶 體,低壓金屬氧化半導體電晶體,其包含半導體基底1〇〇 、場氧化層1 2 0、多晶矽層1 4 0與梯形摻雜區1 6 〇。假如高 壓金氧電晶體形成自我對準矽化製程,電流將延表面流動 而降低接合崩潰(junction breakdown)的能力。 因此,亟待一種提供具有自我對準金屬矽化製程的高 壓與低壓金屬氧化半導體電晶體的製造方法。 5 - 3發明目的及概述: 鑒於上述之發明背景中,傳統的高壓元件與低壓元件 整合之差異性,而產生的諸多問題,在本發明的目的在於提 供一種方法,達到高壓元件與低壓元件整合的需求,以逐漸 朝向多晶片(multi-chip)整合功能的發展^ 本發明的另一目的在提供一種具有自我對準金屬梦化 製程的高壓與低壓金屬氧化半導體電晶體的製造方法。利Sub-regions to the " type gradient doped region, and the energy of implanting N is usually quite high (greater than, so the self-alignment of the N-type gradient doped ions in the silicon layer is passed through the gate electrode), Jin Jiang He Xi J dagger fe (sallclde) 'This amount will be implanted under the leisure polycrystalline silicon layer 434707 V. Description of the invention (2) ---- Channel, which will cause the high voltage element initial voltage ( Vt) drift; N-type gradient doped regions cannot form a self-aligned silicidation process. If a self-aligned petrified process is formed, the electrical plane will be reduced and the ability to junction breakdown will be reduced. The β picture is a traditional high-voltage metal-oxide semiconductor transistor and a low-voltage metal-oxide semiconductor transistor, which includes a semiconductor substrate 100, a field oxide layer 120, a polycrystalline silicon layer 140, and a trapezoidal doped region 160. If high voltage Metal oxide transistors form a self-aligned silicidation process, and the current will flow across the surface to reduce the ability of junction breakdown. Therefore, it is urgent to provide a high-voltage and low-voltage metal-oxide semiconductor with a self-aligned metal silicide process. Crystal manufacturing method 5-3 Purpose and summary of the invention: In view of the above-mentioned background of the invention, there are many problems caused by the differences between the integration of traditional high-voltage components and low-voltage components. The object of the present invention is to provide a method to achieve high voltage The need for the integration of components and low-voltage components is gradually moving towards the development of multi-chip integration functions. Another object of the present invention is to provide a high-voltage and low-voltage metal-oxide semiconductor transistor with a self-aligned metal dream process. Manufacturing method.

434707 五、發明說明(3) 用此發明,其可提供高壓金屬氧化半導體電晶體上形成金 屬矽化物(sal icide)。 本發明的再一目的在閘極上方提供氮化矽層,其氮化 矽層可防止N型梯度摻雜離子植入時的穿透(channei ing) 效應-'再者,本發明的又一目的在提供一種N+罩幕的設計, 以提供具有自我對準金屬矽化製程的高壓與低壓金屬氧化 半導體電晶體的製造方法。 根據以上所述的目的,本發明提供一種具有自我對 金屬矽化製程的高壓與低壓金屬氧化半導體電晶體的製 方法。其包含半導體基底,其半導體基底定義為高壓金 氧化半導體電晶體與低壓金屬氧化半導體電晶體區域 者,形成複數個場氧化層於半導體基底上方,其兩場 層用以隔離該金屬氧化半導體電晶體□接著,沉積多晶 層於該高壓低壓金屬氧化半導體電晶體之半導體基底^ 。::後’沉積第-介電質層於多晶矽層上方。❿成光 ?第二介電質層上方’且光阻層用以定義高壓與低壓 乳化半導體電晶體之閘極位置。接著,形成第二光阻屛 低壓金屬氧化半導體電晶體半導體基底上方,利用第丄^ 阻層為硬罩幕植入第一導電離子於高壓金屬氧化半導體 晶體半導體基底内部,即於高壓金屬氧化半導體電晶體之 434707 度摻雜 於閘極 氧化半 高壓與 案與第 接著, 二介電 再利用 氧化半 導體電 後,形 區^緊接 結構兩側 導體電晶 低壓金屬 二圖案於 利用第三 質層直至 第三光阻 導體電晶 晶體之半 成金屬石夕 著,移 ’且形 體之半 氧化半 兩壓金 光阻層 多晶矽 層為罩 體之梯 導體基 化物於 五、發明說明(4) 半導體基底 層。其後, 質層於高壓 方。形成第 上方,分別 化半導體電 刻部分第一 雜區之上表 二導電離子 内部與低壓 著移除第三 第二導電離 内部形成梯 形成間隙壁 與低壓金屬 三光阻層於 定義第一圖 晶體上方’ 電質層與第 面暴露出。 於高壓金屬 金屬氧化半 光阻層。最 子區域上方 除第二光阻 成第二介電 導體基底上 導體電晶體 低壓金屬氧 為罩幕,蝕 層與梯度摻 幕,植入第 度摻雜區域 底内部,接 多晶石夕層與 5-4圖式簡單說明: 第一A圖與第一B圖係一 體電晶體。 習知高壓與低壓金屬氧化半導 第二Α圖與第二Β圖係本發明 氧化半導體電晶體之各步驟的動 構與場氧化層之形成。 實施例中高壓與低壓金屬 作示意圖,其包含閘極結 第三A圖與第三B係本發明 化半導體電晶體之各步驟的動 壁與半導體基底上方二氧化碎 第四A圖與第四B係本發明 實施例中高壓與低壓金屬氧 作示意圖,其包含閘極間隙 之形成。 實施例中高壓與低壓金屬氧 434707 五、發明說明(5) 化半導體電晶體之各步驟的動作示意圖,其包含第三光阻 層之形成。 第五A圖與第五B係本發明實施例中高壓與低壓金屬氧 化半導體電晶體之各步驟的動作示意圖,其包含源/汲極 、金屬矽化物與接觸窗之形成。 主要部分之代表符號: 100半導體基底 1 2 0場氧化層 140多晶矽層 1 6 0 梯形摻雜區 180 源/汲極 2 0 0 氮化矽層 10半導體基底 1 2場氧化層 1 4多晶矽層 1 6 氮化石夕層 18B第二光阻層 20A第一導電離子 2 0 N型梯形摻雜區 2 2閘極之閒隙壁 2 4二氧化矽層 26A、26B第三光阻層 28 N+塱源/汲極區434707 V. Description of the invention (3) With this invention, it can provide a high-voltage metal oxide semiconductor crystal to form a metal silicide (salicide). It is still another object of the present invention to provide a silicon nitride layer over a gate, the silicon nitride layer can prevent a channei ing effect during N-type gradient doped ion implantation-'Further, another aspect of the present invention The purpose is to provide an N + mask design to provide a method for manufacturing high-voltage and low-voltage metal-oxide semiconductor transistors with a self-aligned metal silicidation process. According to the above-mentioned object, the present invention provides a method for manufacturing a high-voltage and low-voltage metal oxide semiconductor transistor having a self-silicon metallization process. It includes a semiconductor substrate. The semiconductor substrate is defined as a region of a high voltage gold oxide semiconductor transistor and a low voltage metal oxide semiconductor transistor region. A plurality of field oxide layers are formed on the semiconductor substrate, and two field layers are used to isolate the metal oxide semiconductor transistor. □ Next, a polycrystalline layer is deposited on the semiconductor substrate of the high-voltage and low-voltage metal-oxide semiconductor transistor ^. :: Post 'deposits a first dielectric layer over the polycrystalline silicon layer. The photoresist layer is “above the second dielectric layer” and the photoresist layer is used to define the gate positions of the high-voltage and low-voltage emulsified semiconductor transistors. Next, a second photoresistor is formed over the low-voltage metal oxide semiconductor transistor semiconductor substrate, and the first conductive layer is used as a hard mask to implant the first conductive ion into the high-voltage metal oxide semiconductor crystal semiconductor substrate, that is, the high-voltage metal oxide semiconductor. The transistor 434707 degrees is doped to the half-high voltage of the gate oxide. After the second dielectric reuses the oxidized semiconductor electricity, the shape region ^ is next to the conductor transistors on both sides of the structure and the low-voltage metal two pattern is used in the third layer. Until the half of the third photoresistor transistor crystal is semi-metallic, the shape of the semi-oxidized half-pressurized gold photoresist layer and the polycrystalline silicon layer is used as the ladder conductor of the cover. 5. Description of the invention (4) Semiconductor substrate Floor. After that, the stratum is on the high-pressure side. Form the upper part, separate the upper part of the semiconductor engraved part above the first impurity region. The second conductive ion inside and the low voltage are removed. The third second conductive ion is formed inside to form a ladder to form a barrier wall and a low voltage metal three photoresist layer. The top layer and the first surface are exposed. For high-voltage metal metal oxide semi-resistive layer. Above the most sub-region, the second photoresist is removed to form a conductive transistor on the second dielectric conductor substrate. The low-voltage metal oxygen is used as a mask. The etching layer and the gradient doped curtain are implanted inside the bottom of the first doped region and connected to the polycrystalline layer Brief description with Figure 5-4: Figure A and Figure B are integrated transistors. Conventional high-voltage and low-voltage metal oxide semiconductors The second A and second B diagrams are the kinematics of each step of oxidizing a semiconductor transistor of the present invention and the formation of a field oxide layer. Schematic diagrams of high voltage and low voltage metal in the embodiment, which include the gate junction, the third A picture and the third B series of each step of the semiconductor transistor of the present invention. B is a schematic diagram of high voltage and low voltage metal oxygen in the embodiment of the present invention, which includes the formation of a gate gap. High voltage and low voltage metal oxygen in the embodiment 434707 V. Description of the invention (5) A schematic diagram of the operation of each step of the semiconductor transistor, including the formation of a third photoresist layer. The fifth diagram A and the fifth diagram B are schematic diagrams of operations of each step of the high-voltage and low-voltage metal oxide semiconductor transistors in the embodiment of the present invention, which include the formation of a source / drain, a metal silicide, and a contact window. Representative symbols of main parts: 100 semiconductor substrate 1 2 0 field oxide layer 140 polycrystalline silicon layer 1 6 0 trapezoidal doped region 180 source / drain 2 0 0 silicon nitride layer 10 semiconductor substrate 1 2 field oxide layer 1 4 polycrystalline silicon layer 1 6 Nitride layer 18B Second photoresist layer 20A First conductive ion 2 0 N-type trapezoidal doped region 2 2 Gate gap 2 2 Silicon dioxide layer 26A, 26B Third photoresist layer 28 N + Er / Drain region

件 元 的 同 相 成體 形晶 ,電 中體 例導 施半 實化 一氧 的屬 明金 發壓 本低 明與 說體 是晶 圖電 體 顯不,晶片提供半 金屬氧化半導體電 6接著,形成複數 場氧化層用以隔離 片送入氧化爐管内 度約在1 0 0到2 5 0埃 氧化矽將作為半導 著以低壓化學氣相 閘氧化層上,以埶 鱗或神,摻入剛沉 。形成氮化砍層1 6 500埃。緊接著, 且第一光阻層用以 434707 五、發明說明(6) 3 0金屬矽化物 32A、32B内金屬介電層 3 4接觸窗 第二A圖與第二B圖 半導體基底定義為高壓 氧化半導體電晶體區域 半導體基底上方1〇,兩 體電晶體。然後,將晶 將表面上的矽氧化成厚 顯示於圖中),這層二 化層(gate oxide)。接 約3000埃的多晶矽14在 入的方式,將高濃度的 ,以降低閘極的電阻率 構上方,其該厚度約為 將晶片經過微影製程, 第10頁 導體基底10,其 晶體與低壓金屬 個場氧化層1 2於 該金屬氧化半導 ’以乾式氧化法 的二氧化矽(未 體電晶體的閘氧 沉積法沉積厚度 擴散法或離子植 積的多晶矽層裡 於多晶矽層1 4結 疋義閉極區域, 定義高壓與低壓 434707 五'發明說明α) Ϊ屬體電晶體之閘極位置β然後將晶片送入蝕刻 ^ ,,Ζ ,未有光阻保護的氮化矽層16、多晶矽層14與 閘氧層加以去除,以形成閘極結構。再著,形成 光 阻層18Β於低壓金屬氧化半導體電晶體區 利用第二光阻層為硬軍幕植入第一導 於南、金屬氧化半導體電晶體之半導體基底1 0内部,即形 成一梯度摻雜區域2 〇於高壓金屬氧化半導體電晶體之半導 體基底1 〇内4。其多晶石夕層1 4上方的氮化;ε夕層1 6用以防止 Ν型梯度摻雜的穿透效應。 第三Α圖與第三β圖顯示,移除該低壓金屬氧化半導體 電晶體其半導體基底上方之第二光阻層18B。接著,利用 低壓化學氣相沉積法(LPCVD)沉積一層二氧化矽(si丨ic〇n dioxide)在晶片上,其厚度約1〇〇〇到2〇〇〇埃。接著,利用 非等向性蝕刻方式將二氧化矽蝕刻,形成閘極〗4側壁上的 間隙壁22。再者,以熱氧化法形成一層二氧化矽層24於高 壓與低壓金屬氧化半導體電晶體之半導體基底上方。 >第四A圖與第四b圖顯示,形成第三光阻層26A與26B於 尚壓與低壓金屬氧化半導體電晶體上方,分別定義第一圖 案與第二圖案於高壓與低壓金屬氧化半導體電晶體上方。 接著,第五A圖與第五β圖顯示,利用該第三光阻層26A與 2 6 B為罩幕,蝕刻部分氮化矽層丨6與二氧化矽2 4層直至該 多晶石夕層16與N型梯度摻雜區域2〇的上表面暴露出。再者The in-phase crystals of the element are formed in the same phase, and the electricity is used to induce semi-realization of oxygen. The low-temperature and low-temperature are the same as the crystals. The wafer provides semi-metal oxide semiconductors. Then, a complex field is formed. The oxide layer is used to separate the separator into the oxidation furnace tube. The silicon oxide is about 100 to 250 angstroms. The silicon oxide will act as a semiconducting low-pressure chemical vapor barrier oxide layer, mixed with steel scales or gods. A nitride cut layer of 16 500 angstroms was formed. Then, the first photoresist layer is used for 434707 V. Description of the invention (6) 3 0 Metal silicide 32A, 32B Inner metal dielectric layer 3 4 Contact window Second A and second B semiconductor substrate is defined as high voltage Oxide the semiconductor transistor region 10 above the semiconductor substrate, two bulk transistors. Then, the silicon is oxidized on the surface to a thickness shown in the figure), which is a gate oxide layer. The polycrystalline silicon 14 with a thickness of about 3000 angstroms is placed in a high concentration to reduce the resistivity of the gate. The thickness is about the thickness of the wafer through the lithography process. Page 10 A metal field oxide layer 12 is deposited on the polycrystalline silicon layer 1 in the metal oxide semiconducting silicon dioxide (dry silicon oxide gate oxide deposition method using a thickness diffusion method or ion-implanted polycrystalline silicon layer). Definition of closed-electrode area, defining high voltage and low voltage 434707 V. Description of the invention α) Gate position β of the metal transistor and then sending the wafer to etching ^ ,, Z, silicon nitride layer without photoresist protection 16, The polycrystalline silicon layer 14 and the gate oxygen layer are removed to form a gate structure. Then, a photoresist layer 18B is formed in the low-voltage metal oxide semiconductor transistor region, and a second photoresist layer is used to implant a hard military curtain into the semiconductor substrate 10, which is first guided to the south and the metal oxide semiconductor transistor, to form a gradient. The doped region 20 is within the semiconductor substrate 10 of the high-voltage metal oxide semiconductor transistor 4. Nitriding over its polycrystalline layer 14 and ε layer 16 is used to prevent the penetration effect of N-type gradient doping. Figures A and B show that the second photoresist layer 18B above the semiconductor substrate of the low voltage metal oxide semiconductor transistor is removed. Next, a layer of silicon dioxide (SiO 2) dioxide is deposited on the wafer by a low pressure chemical vapor deposition (LPCVD) method to a thickness of about 1000 to 2000 angstroms. Next, the silicon dioxide is etched by anisotropic etching to form a spacer 22 on the sidewall of the gate electrode 4. Furthermore, a silicon dioxide layer 24 is formed by a thermal oxidation method over a semiconductor substrate of a high-voltage and low-voltage metal oxide semiconductor transistor. > Figures 4A and 4b show that the third photoresist layers 26A and 26B are formed above the high voltage and low voltage metal oxide semiconductor transistors, and the first pattern and the second pattern are defined on the high voltage and low voltage metal oxide semiconductors, respectively. Above the transistor. Next, the fifth A and fifth β images show that the third photoresist layers 26A and 26B are used as a mask to etch a part of the silicon nitride layer 6 and the silicon dioxide layer 24 to the polycrystalline silicon The upper surface of the layer 16 and the N-type gradient doped region 20 is exposed. Further

第11頁 434707 五、發明說明(8) ’利用該第三光阻層26 A與26B為罩幕,植入第二導電離子 於高壓金屬氧化半導體電晶體之N型梯度摻雜區域2〇内部 與低壓金屬乳化半導體電晶體之半導體基底内部,以形 成半導體電晶體之源/没極,其第二導電離子是以災^離 子表示之。著’移除該第三光阻層。然後, 以磁控直流濺度方式沉積, 其厚度約20ϋΙτί 〇〇〇埃,接著利用高溫,將部分沉積的鈦 膜與高壓與低壓金屬氧化半導體電晶體之半導體汲/源極 28上的石夕及閘極14上的多晶矽反應,形成鈦化矽,而未參 與反應或反應後所剩餘的鈦,以濕蝕刻方式加以去除,在 閘極與源/汲極28三極表面上留下金屬矽化物,即鈦化矽 二用以作為接觸金屬化製程。最後,利用電漿助長型化學 氣相沉積(CVD)沉積—層内金屬介電層32Α與32Β,接著以 微影與蝕刻的製程定義出高壓與低壓金屬氧化半導體電晶 體接觸窗30的位置。 …以上所述僅為本發明之較佳實施例而已,並非用以限 二=發明之申請專利範圍;凡其它未脫離本發明所揭示之 神下所完成之等效改變或修飾應包含在 專利範圍内。 . 甲明Page 11 434707 V. Description of the invention (8) 'Using the third photoresist layers 26 A and 26B as a mask, implanting a second conductive ion into the N-type gradient doped region 20 of the high voltage metal oxide semiconductor transistor The semiconductor substrate of the semiconductor transistor is emulsified with a low-voltage metal to form the source / inverter of the semiconductor transistor, and the second conductive ion is represented by the ion. To remove the third photoresist layer. Then, it is deposited in a magnetron DC sputtering method with a thickness of about 20τΙτί 00 Å. Then, using a high temperature, a part of the deposited titanium film and the high-voltage and low-voltage metal oxide semiconductor transistor semiconductor sink / source electrode Shi Xi are deposited. And the polycrystalline silicon on the gate 14 reacts to form silicon titanate, and the titanium that has not participated in the reaction or remaining after the reaction is removed by wet etching, leaving metal silicidation on the gate and source / drain 28 triode surfaces Material, namely silicon titanate II, is used as a contact metallization process. Finally, plasma-assisted chemical vapor deposition (CVD) deposition-in-layer metal dielectric layers 32A and 32B are used, and then the positions of the high-voltage and low-voltage metal oxide semiconductor electro-crystalline contact windows 30 are defined by lithography and etching processes. … The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the patent application for the invention; all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention should be included in the patent Within range. Jia Ming

第12頁Page 12

Claims (1)

4347〇7 六、申請專利範圍 1· 一種半導體元件之製造方法,至少包括: 提供一半導體基底,其該半導體基底係定義有一高壓 與一低壓金屬氧化半導體電晶體區域; 一 形成複數個場氧化層於該半導體基底上方,其該一場 ,化層係置於另一場氧化層之一側,用以隔離該金屬氧化 半導體電晶體; 沉積一多晶矽層於該高壓與低壓金屬氧化半導體電晶 體之半導體基底上方; 沉積一第一介電質層於該多晶矽層上方; ,成一,阻層於該第一介電質層上方,且該光阻層係 置以疋義一尚壓與一低壓金屬氧化半導體電晶體之閘極位 導體:ί一第二光阻層於低壓金屬氧化半導體電晶體之半 =基底亡方,利用該第二光阻層為硬罩幕植入 即形:氧化半導體電晶體之半導體基底内部’ 導體於該高壓金屬氧化半導體電晶體之半 之該金厲氧化半導趙電晶體其半導雜基底上* 形成二間隙壁於該閘極結構兩側; 電曰:成一第二介電質層於該高壓與低壓金屬氧化半導體 €曰日體之半導體基底上方; ^化牛導體 晶體:ί於阻層於高屋與低塵金屬氧化半導體電 體上方,其係该分別定義一第一圖案與一第二圖;= 1 第13頁 4347 0 7 六、申請專利範圍 壓與低壓金屬氧化半導體電晶體上方; 利用該第三光阻層為罩幕,蝕刻部分該第一介電質層 與第二介電質層直至該多晶矽層與該梯度摻雜區之上表面 暴露出; 利用該第三光阻層為罩幕,植入第二導電離子於該高 壓金屬氧化半導體電晶體之梯度摻雜區域内部與低壓金屬 氧化半導體電晶體之半導體基底内部; 移除該第三光阻層;及 形成一金屬矽化物於該多晶矽層與該第二導電離子區 域上方。 2. 如申請專利範圍第1項之方法,其中上述之第一介電質 層至少包含氣化破層。 3. 如申請專利範圍第1項之方法,其中上述之第二介電質 層至少包含二氧化梦層。 4. 如申請專利範圍第1項之方法,其中上述之第一導電離 子係為Ν型離子。 5. 如申請專利範圍第1項之方法,其中上述之第一導電離 子係形成梯形摻雜區域,且該梯形摻雜區域只形成於高壓 金屬氧化半導體電晶體之半導體基底内部。4347〇7. Patent application scope 1. A method for manufacturing a semiconductor device at least includes: providing a semiconductor substrate, the semiconductor substrate defining a high voltage and a low voltage metal oxide semiconductor transistor region; forming a plurality of field oxide layers Above the semiconductor substrate, the field layer is placed on one side of another field oxide layer to isolate the metal oxide semiconductor transistor; a polycrystalline silicon layer is deposited on the semiconductor substrate of the high voltage and low voltage metal oxide semiconductor transistor Over; depositing a first dielectric layer over the polycrystalline silicon layer; forming a resist layer over the first dielectric layer, and the photoresist layer is arranged with a high pressure and a low voltage metal oxide semiconductor The gate conductor of the crystal: a second photoresist layer on half of the low-voltage metal oxide semiconductor transistor = substrate die, using this second photoresist layer for hard mask implantation, namely: oxidizing the semiconductor of the semiconductor transistor Inside the substrate 'The conductor is half of the high voltage metal oxide semiconductor transistor On the bottom *, two gap walls are formed on both sides of the gate structure; electricity: a second dielectric layer is formed on the high-voltage and low-voltage metal-oxide semiconductor semiconductor substrate; The barrier layer is above the high-roof and low-dust metal-oxide semiconductor electric body, which should define a first pattern and a second picture respectively; = 1 page 13 4347 0 7 6. Application for patent scope High-voltage and low-voltage metal oxide semiconductor transistor Above; using the third photoresist layer as a mask, etching part of the first dielectric layer and the second dielectric layer until the upper surface of the polycrystalline silicon layer and the gradient doped region is exposed; using the third light The resist layer is a mask, and a second conductive ion is implanted inside the gradient doped region of the high-voltage metal-oxide semiconductor transistor and inside the semiconductor substrate of the low-voltage metal-oxide semiconductor transistor; removing the third photoresist layer; and forming a A metal silicide is above the polycrystalline silicon layer and the second conductive ion region. 2. The method according to item 1 of the patent application range, wherein the first dielectric layer includes at least a gasification failure layer. 3. The method according to item 1 of the patent application range, wherein the second dielectric layer includes at least a dream dioxide layer. 4. The method according to item 1 of the patent application range, wherein the first conductive ion system is an N-type ion. 5. The method according to item 1 of the patent application, wherein the first conductive ion system described above forms a trapezoidal doped region, and the trapezoidal doped region is formed only inside the semiconductor substrate of the high-voltage metal oxide semiconductor transistor. 第14頁 六、申請專利範圍 6.如申請專利範圍第1項之方法,其中上述之第二導電離 子係為Ν+型離子。 7. 如申請專利範圍第1項之方法,其中上述之第三光阻層 所形成之第一圖案係定義為高壓金屬氧化半導體電晶體自 我對準金屬石夕化物製程。 8. 如申請專利範圍第1項之方法,其中上述之第三光阻層 所形成之第二圖案係定義為低壓金屬氧化半導體電晶體自 我對準金屬矽化物製程。 9,如申請專利範圍第1項所述之方法,其中上述之金屬矽 化物,其由濺度方式沉積鈦膜,其鈦膜與上述之該半導體 基底反應,形成鈦化矽於高壓與低壓金屬氧化半導體電晶 體之多晶矽層與第二導電離子表面上方’並以濕蝕刻方式 除去未參予反應或反應所剩餘的软。 1 0,如申請專利範圍第1項之方法, 係盔6 Λ批准人® a & π制 其中上述之金屬石夕化物 係為自我對準金屬矽化物製程。 其中上述之閘極至少包 11.如申請專利範圍第1項之方法 含多晶石夕層。Page 14 6. Scope of Patent Application 6. The method according to item 1 of the scope of patent application, wherein the above-mentioned second conductive ion system is an N + ion. 7. The method according to item 1 of the scope of patent application, wherein the first pattern formed by the third photoresist layer is defined as a high-voltage metal oxide semiconductor transistor self-aligned metal lithotripsy process. 8. The method according to item 1 of the patent application, wherein the second pattern formed by the third photoresist layer is defined as a low-voltage metal oxide semiconductor transistor self-aligned metal silicide process. 9. The method according to item 1 of the scope of the patent application, wherein the aforementioned metal silicide deposits a titanium film by a sputtering method, and the titanium film reacts with the semiconductor substrate described above to form silicon titanate at a high voltage and a low voltage metal. The polycrystalline silicon layer of the semiconductor transistor is oxidized above the surface of the second conductive ion, and the remaining softness is removed by wet etching. 10, as in the method of applying for the first item in the scope of patent application, the helmet 6 6 Λ Approved by ® a & π wherein the above-mentioned metal lithophyte is a self-aligned metal silicide process. Among them, the above-mentioned gates include at least 11. The method according to item 1 of the scope of patent application contains a polycrystalline stone layer. 第15頁 434707., 六、申請專利範固 1 2.如申請專利範圍第1項之方法, 層其厚度約為5。。埃。 上这之第-介電質 13·如申請專利範圍第】項之方法,其中上述之第二 層係為熱氧化法所製得。 電質 14. 一種半導體元件之製造方法,至少包括: ,供二石夕底材,其該石夕底材係定義為—高壓與 金屬氧化半導體電晶體區域; -墨 形成複數個場氧化層於該矽底材上方,其該一 :係置於另-場氧化層之—側,肖以隔 = 體電晶體; 辑礼化+導 沉積一多晶矽層於該高壓與低壓金屬 體之半導體基底上方; 約礼化牛等體電曰日 沉積一氮化矽層於該多晶矽層上方; 定A = ί:f於该氮化矽層上方’且該光阻層係用以 疋義二兩壓一低壓金屬氧化半導體電晶體之閘極位置; 麻一ft光阻層於低壓金屬氧化半導體電晶體之矽 底材上方,利用該第二光阻層為硬罩幕植入第一導電離子 於該高壓金屬氧化半導體電晶體丰導 士、 M ^ ώ * 〒祖电日日罷之牛等體基底内部,即形 成一 N么梯度摻雜區於該高壓金屬惫 底材内部; /问歷隹屬軋化丰導體電晶體之矽 移除該低壓金屬衰^卜主a — 第二光阻層;屬聽+導體電晶體其⑪底材上方之該Page 15 434707., VI. Application for patent Fangu 1 2. According to the method in the first scope of patent application, the thickness of the layer is about 5. . Aye. The above-dielectric material 13. The method according to item [Scope of Patent Application], wherein the above-mentioned second layer is made by a thermal oxidation method. Electricity 14. A method for manufacturing a semiconductor element, comprising at least: a substrate for Ershixi, which is defined as a region of high voltage and metal oxide semiconductor transistors;-a plurality of field oxide layers are formed on the ink; Above the silicon substrate, the first one is placed on the side of the other-field oxide layer, and Xiao Yiqiu = bulk transistor; a polycrystalline silicon layer is deposited on the semiconductor substrate of the high-voltage and low-voltage metal body. ; Yue Lihua Niu et al. Deposited a silicon nitride layer on top of the polycrystalline silicon layer; set A = ί: f on the silicon nitride layer 'and the photoresist layer is used The gate position of the low-voltage metal-oxide semiconductor transistor; a hemp ft photoresist layer is over the silicon substrate of the low-voltage metal-oxide semiconductor transistor, and the second photoresist layer is used as a hard mask to implant a first conductive ion into the high voltage. Metal Oxide Semiconductor Transistor Feng Shi, M ^ * * 〒 电 牛 电 日 日 牛 etc. inside the body of the substrate, that is, an N doped gradient region is formed inside the high-pressure metal exhaust substrate; Remove the low Pressure metal decay ^ Master a — the second photoresist layer; it belongs to the top of the substrate of the hearing + conductor transistor 第16頁 4347 Q7 六、申請專利範圍 形成二 利用熱 屬氧化半導 形成於 晶體上方, 壓與低壓金 利用該 與第二介電 表面暴露出 利用該 屬氧化半導 氧化半導體 間隙壁於該閘極 氧化法,形成一 體電晶體之石夕底 第三光阻層於 其係該分別定義 屬氧化半導體電 第三光阻層為罩 質層直至該多晶 * 第三光阻層為罩 體電晶體之Ν型 電晶體之妙底材 結構兩側; 氮化矽層於該高壓與該低壓金 材上方; 南壓與低壓金屬氧化半導體電 —第一圖案與—第二圖案於高 晶體上方; 幕,蝕刻部分該第一介電質層 矽層與該Ν型梯度摻雜區之上 幕,植入Ν+型離子於該高壓金 梯度摻雜區域内部與低壓金屬 内部,用以形成源/汲極區域 移除該第三光阻層; 形成一金屬矽化物於該多晶矽層與該…型離子區域表 面上方,用以作為接觸金屬化製程;及 形成一内金屬介電層(inter-metal dielectrics), 形成於該石夕底材表面上方’其該閘極與源/汲極擴散區之 間飯刻出複數個接觸窗(c 0 n t a c t)。 1 5.如申請專利範圍第14項之方法,其中上述之閘極與源/ 汲極摻雜之離子濃度高於梯度摻雜之離子濃度。 434707 六、申請專利範圍 16. 如申請專利範圍第1 4項之方法,其中上述之内金屬介 電層至少包含氧化矽層。 17. 如申請專利範圍第1 6項之方法,其中上述之内金屬介 電層是採用化學氣相沉積法(CVD)形成。 18. 如申請專利範圍第1 4項所述之方法,其中上述之金屬 石夕化物至少包含鈥金屬。 19. 如申請專利範圍第1 4項所述之方法,其中上述之金屬 石夕化物至少包含姑金屬。 20. 如申請專利範圍第1 4項之^^^1,其中上述之第三光阻 層所形成之第一圖案係定義為高壓金屬氧化半導體電晶體 自我對準金屬矽化物製程。 21. 如申請專利範圍第1 4項之方法,其中上述之第三光阻 層所形成之第二圖案係定義為低壓金屬氧化半導體電晶體 自我對準金屬矽化物製程。 22. 如申請專利範圍第1 4項之方法,其中上述之第一介電 質層其厚度約為5 0 0埃。Page 16 4347 Q7 VI. Application for patent formation Form 2 The thermal metal oxide semiconductor is formed above the crystal, and the low voltage gold is exposed by the second dielectric surface using the metal oxide semiconductive oxide spacers on the gate Polar oxidation method, forming the third photoresist layer of the lithography at the bottom of the integrated transistor. In this system, the third photoresist layer is defined as an oxide semiconductor, and the third photoresist layer is a capping layer until the polycrystalline silicon. The third photoresist layer is a cover body. Both sides of the wonderful substrate structure of the N-type transistor of the crystal; the silicon nitride layer is above the high voltage and the low voltage gold material; the south pressure and the low voltage metal oxide semiconductor electrical-the first pattern and-the second pattern are above the high crystal; Curtain, etching part of the first dielectric layer silicon layer and the N-type gradient doped region, implanting N + type ions inside the high-voltage gold gradient doped region and low-voltage metal to form a source / Removing the third photoresist layer in the drain region; forming a metal silicide on the surface of the polycrystalline silicon layer and the ...- type ion region as a contact metallization process; and forming an inner metal dielectric layer inter-metal dielectrics), formed over the substrate surface stone Xi 'thereof between the gate and the source / drain diffusion regions of a plurality of contact windows engraved meal (c 0 n t a c t). 15. The method according to item 14 of the scope of patent application, wherein the ion concentration of the gate and source / drain doping is higher than that of gradient doping. 434707 6. Scope of applying for patent 16. The method according to item 14 of the scope of applying for patent, wherein the above-mentioned metal dielectric layer includes at least a silicon oxide layer. 17. The method according to item 16 of the patent application, wherein the inner metal dielectric layer is formed by a chemical vapor deposition (CVD) method. 18. The method according to item 14 of the scope of patent application, wherein the above-mentioned metal petrochemicals include at least " metal. 19. The method according to item 14 of the scope of patent application, wherein the above-mentioned metal petrified compound contains at least a parent metal. 20. For example, ^^^ 1 of item 14 of the scope of patent application, wherein the first pattern formed by the third photoresist layer is defined as a high-voltage metal oxide semiconductor transistor self-aligned metal silicide process. 21. The method according to item 14 of the scope of patent application, wherein the second pattern formed by the third photoresist layer is defined as a low-voltage metal oxide semiconductor transistor self-aligned metal silicide process. 22. The method of claim 14 in the scope of patent application, wherein the thickness of the first dielectric layer is about 500 angstroms. 第18頁Page 18
TW88118022A 1999-10-19 1999-10-19 Method for manufacturing high voltage and low voltage metal oxide semiconductor transistor using self-aligned silicide process TW434707B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88118022A TW434707B (en) 1999-10-19 1999-10-19 Method for manufacturing high voltage and low voltage metal oxide semiconductor transistor using self-aligned silicide process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88118022A TW434707B (en) 1999-10-19 1999-10-19 Method for manufacturing high voltage and low voltage metal oxide semiconductor transistor using self-aligned silicide process

Publications (1)

Publication Number Publication Date
TW434707B true TW434707B (en) 2001-05-16

Family

ID=21642678

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88118022A TW434707B (en) 1999-10-19 1999-10-19 Method for manufacturing high voltage and low voltage metal oxide semiconductor transistor using self-aligned silicide process

Country Status (1)

Country Link
TW (1) TW434707B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755729B (en) * 2020-05-08 2022-02-21 力晶積成電子製造股份有限公司 Integrated circuit and method of manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755729B (en) * 2020-05-08 2022-02-21 力晶積成電子製造股份有限公司 Integrated circuit and method of manufacturing same
US11417650B2 (en) 2020-05-08 2022-08-16 Powerchip Semiconductor Manufacturing Corporation Integrated circuit and method of manufacturing same

Similar Documents

Publication Publication Date Title
TWI242263B (en) Method for fabricating semiconductor devices having silicided electrodes
JPH045265B2 (en)
JPS6312168A (en) Ldd mis type field effect transistor
JP3466874B2 (en) Semiconductor device and manufacturing method thereof
JP2007251066A (en) Method of manufacturing semiconductor device
JPH0259623B2 (en)
JP3060976B2 (en) MOSFET and manufacturing method thereof
TWI245410B (en) Semiconductor device
US7872316B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2002539638A (en) Method of manufacturing MIS field-effect transistor
JP3255427B2 (en) Method of manufacturing semiconductor device and method of forming metal silicide layer in self-alignment
KR20050084030A (en) Drain/source extension structure of a field effect transistor including doped high-k sidewall spacers
TW434707B (en) Method for manufacturing high voltage and low voltage metal oxide semiconductor transistor using self-aligned silicide process
US6780700B2 (en) Method of fabricating deep sub-micron CMOS source/drain with MDD and selective CVD silicide
KR100499755B1 (en) Method of fabricating deep sub-micron cmos source/drain with mdd and selective cvd silicide
JPH0666327B2 (en) MOS semiconductor device and method of manufacturing the same
JPH1064898A (en) Manufacturing method of semiconductor device
JP3061027B2 (en) Method for manufacturing semiconductor device
TW200306649A (en) Method for manufacturing a semiconductor device having a layered gate electrode
JPH0653237A (en) Manufacture of semiconductor element
JPH0661482A (en) Mos-type transistor and its manufacture
KR100806136B1 (en) Method for fabricating semiconductor device having meta-gate electrode
KR0172263B1 (en) Method of manufacturing semiconductor device
TW439289B (en) Method of forming CMOS transistor with elevated source/drain region
TW449809B (en) Method of forming semiconductor device by two-step process of metal silicide

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent