TW432636B - Metal gate fermi-threshold field effect transistor - Google Patents

Metal gate fermi-threshold field effect transistor Download PDF

Info

Publication number
TW432636B
TW432636B TW87114493A TW87114493A TW432636B TW 432636 B TW432636 B TW 432636B TW 87114493 A TW87114493 A TW 87114493A TW 87114493 A TW87114493 A TW 87114493A TW 432636 B TW432636 B TW 432636B
Authority
TW
Taiwan
Prior art keywords
fermi
effect transistor
field
gate
region
Prior art date
Application number
TW87114493A
Other languages
Chinese (zh)
Inventor
Michael W Dennen
William R Richards Jr
Original Assignee
Thunderbird Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thunderbird Tech Inc filed Critical Thunderbird Tech Inc
Application granted granted Critical
Publication of TW432636B publication Critical patent/TW432636B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A fermi-threshold field effect transistor includes a metal gate rather than a contra-doped polysilicon gate. The metal gate can lower the threshold voltage of the fermi-FET without degrading other desirable characteristics of the fermi-FET. The metal gate may be a pure metal gate or a metal alloy gate such as a metal silicide gate. The metal gate preferably includes metal having a work function between that of P-type polysilicon and N-type polysilicon.

Description

fe4 326 J 6 五、發明說明(1) 發明範圍 本發明係關於場效電晶體裝置且更特別是關於積體電路 場效電晶體。 發明背景 場效電晶體(FET)已經變成用於大型積體電路(VLSI)及 超大型積體電路(ULSI)的應用如邏輯裝置、記憶體裝置及 微處理器之優越主動性裝置,因為該積體電路場效電晶體 具有高阻抗、高密度及低功率等特性之裝置。許多研究及 發展工作已經集中在改良FET之速度及積體密度,並由此 集中在將功率損耗變低。 該高速度、高效能場效電晶體已經在美國專利案號為 4,984’043及4,990,974之專利案中說明,此二專利皆由fe4 326 J 6 V. Description of the invention (1) Scope of the invention The present invention relates to field-effect transistor devices and more particularly to integrated circuit field-effect transistors. BACKGROUND OF THE INVENTION Field-effect transistors (FETs) have become superior active devices for large integrated circuit (VLSI) and very large integrated circuit (ULSI) applications such as logic devices, memory devices, and microprocessors, because Integrated circuit field effect transistor has high impedance, high density and low power. Much research and development work has focused on improving the speed and bulk density of FETs, and consequently on reducing power loss. The high-speed, high-efficiency field-effect transistor has been described in U.S. Patent Nos. 4,984’043 and 4,990,974. Both patents are issued by

Albert W. Vinal所申請’皆取名為費米臨界場效電晶 體,並被私疋為本發明之讓受人。這些專利說明該金屬氧 化半導體場效電晶體(MOSFET),其藉由設定該裝置之臨界 電壓為該半導體材料之費米電位的兩倍,而在不需要反相 的增強模式中作用。對那些已經熟知相關技藝之人士而 言’費米電位被定義為在半導體材料令之能量狀態具有由 該電子所佔據一半之電位的機率。如在上述所得到之 V! na 1專利中所說明,當該臨界電壓被設定為費米電位的 兩倍時’該臨界電壓與氧化物厚度、通道長度、汲極電壓 以及基板摻雜質之相關性被消除。甚至於,當該臨界電壓 被設疋為費米電位的兩倍時,介於該氧化物與通道之間的 基板面之垂直電子場效被最小化,且實質上為〇 ^在通道All Albert W. Vinal's applications ’are named Fermi critical field-effect electric crystals and have been privately assigned to the assignee of the present invention. These patents describe the metal-oxide-semiconductor field-effect transistor (MOSFET), which functions in an enhancement mode that does not require an inversion by setting the threshold voltage of the device to twice the Fermi potential of the semiconductor material. For those who are already familiar with the related art, the 'Fermi potential is defined as the probability that the energy state of a semiconductor material will have half the potential occupied by the electron. As explained in the V! Na 1 patent obtained above, when the threshold voltage is set to twice the Fermi potential, the threshold voltage is related to the oxide thickness, channel length, drain voltage, and substrate dopant. The correlation is eliminated. Even when the threshold voltage is set to twice the Fermi potential, the vertical electronic field effect of the substrate surface between the oxide and the channel is minimized, and is substantially 0 ^ at the channel

C:\My Docuntents\54708. ptd 第4頁 f ^4326^b 五、發明說明(2) '一-— 内之載波行動性因此被最大化,引導為具有大為減低熱電 子效應之高速裝置。裝置效能實質上與該裝置大小無關。 雖然該費米臨界場效電晶體與已知場效電晶體比較有很 大的改良,仍然有需要將該費米場效電晶體裝置之電容變 低。於是’美國專利案號為5, 1 94, 923及5, 3 6 9, 29 5之專利 案t說明該費米臨界場效電晶體,此二專利皆由Aibert W. Vinal所申睛,皆取名為具有減低閘與擴散電容之費米 臨界場效電晶體;被說明之該費米場效電晶體允許傳導載 子在該閘以下之基板預定深度中的通道内流通,不需要為 了支樓載子傳導而在半導體之表面產生inversi〇n層。於 是’該通道充電之平均深度需要包含該基板之電容率而作 為該閘電容之部分。閘電容因此實質上被減低。 如之前專利,2 9 5及’ 923所說明,低電容費米場效電晶體 較佳地方式為使用費米—槽區域製作,具有預定的深度與 基板相反的傳導性類別,以及與汲極和源極相同的傳導性 類別。該費米-槽由基板表面以預定的深度向下延伸,而 該波極和源極擴散在槽邊界内的費米-槽中形成。該費米、 槽形成單接面電晶體’其中該源極、沒極、通道及費米〜 槽皆摻雜相同的傳導性類別,但是有不同的摻雜濃度。該 低電容之費米-FET因此而被提供。該包含費米-槽之低電 容之費米-FET此處將被視為”低電容費米-FETn或是"檣 -FET11。 雖然該費米場效電晶體及低電容費米-場效電晶體與已 知場效電晶體裝置比較有很大啲改良,仍然繼續需要將由C: \ My Docuntents \ 54708. Ptd Page 4 f ^ 4326 ^ b V. Description of the invention (2) '1-The carrier mobility within it is maximized, leading to a high-speed device with greatly reduced thermionic effect . Device performance is essentially independent of the size of the device. Although the Fermi critical field effect transistor has been greatly improved compared with the known field effect transistor, there is still a need to reduce the capacitance of the Fermi field effect transistor device. So 'U.S. Patent Nos. 5, 1 94, 923 and 5, 3 6 9, 29 5 illustrate the Fermi Critical Field Effect Transistor, both of which are patented by Aibert W. Vinal, both It is named a Fermi critical field effect transistor with reduced gate and diffusion capacitance; the illustrated Fermi field effect transistor allows conductive carriers to circulate in the channel at a predetermined depth of the substrate below the gate. The floor carrier conducts and generates an inversion layer on the surface of the semiconductor. So 'the average depth of the channel charge needs to include the permittivity of the substrate as part of the gate capacitance. The gate capacitance is therefore substantially reduced. As explained in the previous patents, 295 and '923, the low-capacitance Fermi field-effect transistor is preferably fabricated using a Fermi-slot region, with a predetermined depth of conductivity type opposite to that of the substrate, and a drain electrode The same conductivity category as the source. The Fermi-groove extends downward from the surface of the substrate at a predetermined depth, and the wave and source electrodes are diffused in the Fermi-groove within the groove boundary. The Fermi and the groove form a single junction transistor, wherein the source, non-electrode, channel, and Fermi ~ slot are all doped with the same conductivity type, but with different doping concentrations. This low-capacitance Fermi-FET is provided. The low-capacitance Fermi-FET containing a Fermi-slot will be considered here as a "low-capacitance Fermi-FETn" or "樯 -FET11. Although the Fermi field-effect transistor and low-capacitance Fermi-field Compared with the known field-effect transistor device, the effect-effect transistor has been greatly improved.

τ 讎4326 Q- 五、發明說明(3) 該費来場效電晶體產生的每單位通道之電流增加。對那些 已經熟知相關技藝之人士而言,較高電流之費米場效電晶 體裝置將允許較大的積體密度,即/或還輯裝置、記憶體 f置及微處理器或是其他積體電路裝置之更高速度。於 疋’由Albert W. Vinal及本發明共同發明人Michaei w, D^ennen所申請之美國專利案號為第5, 374, 836號,取名為 尚電流費米臨界場效電晶體之專利案中說明該費米場效電 曰a體包=具有與費米—槽區域及源極區域相同傳導性類別 的注入器區域,鄰接該源極區域及面對汲極區域。該注入 器區域較佳地方式為以介於費米_槽很低摻雜濃度與源極 很南摻雜濃度之間的摻雜位準來摻雜。該注人器區域控制 以下的預定深度注人至該通道内之載子的深度並加 強在通迢内之載子的注入、如美國專利案號為第 5^π4, 836號之電晶體此處將被視為,,高電流費米場效電晶 較佳 源極注 閘側壁 電晶體 效電晶 性類別 雖然 高電流 大的改 地^式是,人器區域為圍繞該源極區域的 ^益槽區域。該汲極注入器區域亦可以被提供。該 隔板由郤接該源極注入器區域延伸至鄰接費米場效 2電極’亦可以被提供以將夾止電壓變低並將該場 ”電極之飽和電流增加。具有與該基板相同傳導 之底。卩漏控制區域亦可以被提供。 :費米場效電晶體、低電容費米_場效電晶體以及 費米一場效電晶體與已知場效電晶體裝置比較有很 良,仍然繼'續需要將該_米場效電晶體在低電τ 雠 4326 Q- V. Description of the invention (3) The current per unit channel generated by the field effect transistor increases. For those who are already familiar with the relevant technology, the higher current Fermi field effect transistor device will allow a larger integrated density, that is, / or the device, memory and microprocessor or other integrated devices Higher speed of the body circuit device. Yu ''s US Patent No. 5, 374, 836 filed by Albert W. Vinal and the co-inventor Michaei w, D ^ ennen, named the patent for the current-limiting Fermi critical field effect transistor It is explained in the case that the Fermi field-effect device is a body package = an injector region having the same conductivity type as the Fermi-slot region and the source region, adjacent to the source region and facing the drain region. The implanter region is preferably doped at a doping level between a very low doping concentration of the Fermi channel and a very south doping concentration of the source. The injection device area controls the depth of the following predetermined depth injection to the carrier in the channel and enhances the injection of carriers in the channel, such as the transistor of US Patent No. 5 ^ π4, 836. It will be considered that, high current Fermi field effect transistor is better source gate side effect transistor crystal type. Although the type of high current is large, the man-made region is the region surrounding the source region. ^ Benefit trough area. The drain-injector region can also be provided. The separator extends from the area of the source injector to the adjacent Fermi field effect 2 electrode 'can also be provided to lower the pinch voltage and increase the saturation current of the field "electrode. It has the same conduction as the substrate The bottom. The leakage control area can also be provided .: Fermi field effect transistor, low capacitance Fermi _ field effect transistor and Fermi field effect transistor are very good compared with known field effect transistor devices, still Following the 'continuing' need to

C:\My Documents\54708. ptd 第6頁 r 143263 6 五、發明說明(4) "------ 之操作改良。對那些已經熟知相關技藝之人士而言, 有更多的注意力集中在低功率可攜帶及/或電池—功率裝 Ϊ,該裝置通常在電源供應電壓為5伏特、3伏特、i ^ 或是更少。 ' 對於既定通道長度而言,操作電壓之變低造成橫向電氣 場效線性地降低。在非常低的操作電壓下’該橫向電場如 此低以致於在通道内之載子被防止達到飽和速度。此情形 造成在可使用之汲極電流的急遽降低。該汲極電流之降低 有效地限制對已知通道長度獲得可使用電路速度之操作電 壓的減低。 ' 為了改良該槽-FET在低電壓之操作,指定給本發明共同 發明人之美國專利案號為第5,543,654號,取名為"等高 槽費米界場效電晶體及形成相同電晶體之方法"之專利 案中說明包含等高費米槽區域之費米電晶體具有不一致的 深度。特別是,該費米槽在源極區域及/或汲極區域之下 較通道區域之下為深《因此,該槽基板接面在源極區域及 /或汲極區域之下較通道區域之下為深。擴散電容與具有 一致槽深度的費米槽比較就減低了,所以在低電壓下產生 兩飽和電流。 特別是,該如專利案號為’ 6 54號之專利案中的等高槽費 米S*界電晶體包含第·一導電類別的半導體基板及在半導體 基板之第二導電類別之具空間隔開的源極及汲極區域。該 第二導電類別之通道區域亦在半導體基板内介於該具空間 隔開的源極及汲極區域之間的I板表面形成。該第二導電C: \ My Documents \ 54708. Ptd Page 6 r 143263 6 V. Description of the invention (4) Improved operation. For those who are already familiar with the relevant art, more attention is focused on low-power portable and / or battery-power devices. The device usually operates at a power supply voltage of 5 volts, 3 volts, i ^ or less. 'For a given channel length, a decrease in operating voltage causes a linear decrease in lateral electrical field efficiency. At a very low operating voltage 'the lateral electric field is so low that the carriers in the channel are prevented from reaching saturation speed. This situation causes a sharp decrease in the available sink current. This reduction in sink current effectively limits the reduction in operating voltage for a known channel length to obtain a usable circuit speed. '' In order to improve the operation of this trench-FET at low voltage, the US Patent No. 5,543,654 assigned to the co-inventor of the present invention is named " equivalent trench Fermi boundary field effect transistor and the same transistor is formed The "method" patent case states that the Fermi transistor including the area of the Fermi trough of the same height has an inconsistent depth. In particular, the Fermi trench is deeper below the source region and / or drain region than below the channel region. Therefore, the interface of the trench substrate is deeper than the channel region below the source region and / or drain region. The bottom is deep. The diffusion capacitance is reduced compared to a Fermi cell with a uniform cell depth, so two saturation currents are generated at low voltage. In particular, the equal height slot Fermi S * boundary transistor in the patent case No. '6 54 includes a semiconductor substrate of the first conductivity type and a space between the semiconductor substrate and the second conductivity type of the semiconductor substrate. Open source and drain regions. The channel region of the second conductivity type is also formed on the surface of the I-plate in the semiconductor substrate between the spaced-apart source and drain regions. The second conductive

C:\My Documents\54708. ptd 第7頁 _4 32 6 3 6 五、發明說明(5) 類別之槽區域亦包含在半導體基板内之基扳表面。該槽區 域由該基板表面至少延伸至具空間隔開的源極及汲極區域 的其令之一區域以下該第—預定深度,且由該基板表面延 伸至通道區域以下該第二預定深度。該第二預定深度小於 該第一預定深度。該閘極絕緣層及源極、汲極及閘極觸點 亦可以被包含。該基板觸點亦可以被包含β 較佳地是,該第二預定深度即鄰接該通道之等高-槽之 深度’被選擇以滿足如在之前所提到之該美國專利案號為 第5’194, 923及5,369, 295號中所定義的費米-FET原則。特 別是,該苐二預定深度被選擇以產生垂直於在通道底部具 在接地電位閘極基板表面之〇靜態電場β該第二預定深度 亦被選擇以產生兩倍於半導體基板之費米電位之該場效電 晶體臨界電壓。該第一預定深度即鄰接該源極及/或汲極 區域之等高-槽之深度,其較佳地被選擇在該源極及/或汲 極區域以下應用〇偏壓至源極及/或汲極觸點時耗盡該槽區 域。 如已經進行之最新微電子製造技藝,製造線寬已經減低 到實質上為小於1微来。這些減低的線寬已經提升為„短通 道"FET,其中該通道長度為實質上小微米,且在現今 處理技術上為小於半微求。 美國專利案號為第5, 1 94, 923及第5, 36 9, 29 5號之低電容 費米,效電晶體、美國專利案號為5, 374, 836號之高電流 費米場效電晶體以及美國專利案號為第5, 543, 654號之等 高槽費米場效電晶體可以被使月於提供在低電壓具有高效C: \ My Documents \ 54708. Ptd Page 7 _4 32 6 3 6 V. Description of the invention (5) The groove area of the category (5) is also included in the base surface of the semiconductor substrate. The trench region extends from the substrate surface to at least the first predetermined depth below one of the regions with spaced apart source and drain regions, and from the substrate surface to the second predetermined depth below the channel region. The second predetermined depth is smaller than the first predetermined depth. The gate insulation layer and source, drain and gate contacts can also be included. The substrate contact may also contain β. Preferably, the second predetermined depth, ie the depth of the height-slot adjacent to the channel, is selected to satisfy the US patent case No. 5 as previously mentioned. Fermi-FET principles as defined in '194, 923 and 5,369, 295. In particular, the second predetermined depth is selected to generate a static electric field β perpendicular to the surface of the ground potential gate substrate at the bottom of the channel. The second predetermined depth is also selected to generate a Fermi potential twice that of the semiconductor substrate. The threshold voltage of the field effect transistor. The first predetermined depth is the depth of the height-slot adjacent to the source and / or drain region, and it is preferably selected to apply a bias to the source and / or below the source and / or drain region. The drain area is depleted by the drain contact. If the latest microelectronics manufacturing technology has been carried out, the manufacturing line width has been reduced to substantially less than 1 micron. These reduced line widths have been promoted to "short channels", where the channel length is substantially small micrometers and is less than half a micrometer in today's processing technology. U.S. Patent Nos. 5, 1 94, 923 and No. 5, 36 9, 29 No. 5 low-capacitance Fermi, effect transistor, high-current Fermi field-effect transistor of US Patent No. 5, 374, 836, and US patent No. 5, 543, The high slot Fermi field effect transistor No. 654 can be used to provide high efficiency at low voltage.

C:\My Documents\54708. ptd -4326 3 6 五、發明說明(6) 能之短通道場效電晶體。然而,如那些熟知相關技藝之人 士所知當線寬減低時,處理之限制將限制在製造場效電晶 體時可獲得的大小及傳導性。於是,對於減低的線寬而 言’處理情況可能需要該費米場效電晶體之電晶體之再最 佳化以容納這些處理限制。 該費求場效電晶體之電晶體之再最佳化以容納處理限制 被提供在屬於本發明共同發明人Michael W. Dennen之申 請案序號為第08/505,085號,取名為"短通道費米臨界場 效電晶體(Short Channel Fermi-Threshold Field Effect Transistors)"之專利案中,該專利案被指定為本 發明之讓受人所有,並在此處納入為參考文獻。申請案序 號為第08/505, 085號之短通道費米臨界場效電晶體在此處 參考為"短通道費米場效電_晶體",包含具有空間隔開的源 極及汲極區域由在深度方向廷伸至該費米-槽以上,並亦 在橫向方向延伸至該費米-槽以上。由於該源極及汲極區 域延伸至該費岽-槽以上,與基板之觸點被形成,其可以 引導充電共享狀況。為了補償此狀況,該基板之摻雜質被 增加。介於該源極及汲極區域之間的非常小之分離引導減 低該槽深度之需要性。此造成當該閘極在臨界電位時垂直 於在氧化物:基板介面之基板的靜電場之改變。在一般之 長通道費采場效電晶體之電晶體,該靜電場本質上為0。 在短通道費米裝置中,該靜電場大大地低於該M0SFET之電 晶體,但是較該長通道費米场效電晶體稍局。 特別是,該短通道費米場效電晶體包含第一導電類別之C: \ My Documents \ 54708. Ptd -4326 3 6 V. Description of the invention (6) Short-acting field-effect transistor. However, as those skilled in the art know, when the line width is reduced, processing restrictions will limit the size and conductivity that can be obtained when manufacturing field effect crystals. Therefore, for a reduced line width, a 'processing situation' may require the optimization of the transistor of the Fermi field effect transistor to accommodate these processing limitations. The fee for the re-optimization of the field-effect transistor transistor to accommodate processing restrictions is provided in application number 08 / 505,085 belonging to the co-inventor of the present invention Michael W. Dennen, named " short channel In the patent case of "Short Channel Fermi-Threshold Field Effect Transistors", the patent case is designated as the assignee of the present invention and is incorporated herein by reference. The short-channel Fermi critical field-effect transistor with application serial number 08/505, 085 is referenced herein as "short-channel Fermi field-effect transistor_crystal", which includes a source and a drain with space separation. The polar region extends above the Fermi-groove in the depth direction and also extends above the Fermi-groove in the lateral direction. Since the source and drain regions extend above the fee-groove, contacts with the substrate are formed, which can guide the charging sharing situation. To compensate for this, the doping of the substrate is increased. A very small separation guide between the source and drain regions reduces the need for the trench depth. This causes a change in the electrostatic field of the substrate perpendicular to the oxide: substrate interface when the gate is at a critical potential. In ordinary long-channel transistors, the electrostatic field is essentially zero. In a short-channel Fermi device, the electrostatic field is much lower than the transistor of the MOSFET, but slightly more local than the long-channel Fermi field-effect transistor. In particular, the short-channel Fermi field-effect transistor includes a first conductive type

C:\My Docuinents\547〇8. ptd 第 9 頁 ^326 3^ 五、發明說明(7) 半導體基板及基板内該表面上第二導電類別之槽區域’由 基板表面延伸一第一深度。該短通道費米場效電晶體亦包 含在該槽區域内之第二導電類別且具有空間隔開的源極及 汲極區域。該具有空間隔開的源極及汲極區域由該基板表 面延伸至超過該第一深度,且亦可以由另一表面橫向延伸 至超過該槽區域。 第二導電類別之通道區域被包含在槽區域内,介於該具 有空間隔開的源極及汲極區域之間並由基板表面延伸第二 深度,如此該第二深度小於第一深度《至少其中一個第二 深度或第一深度被選擇當該閘極在臨界電壓時,將由該基 板表面至第二深度垂直於基板表面之靜電場最小化。例 如,為104 V/cm之靜電場可以播產生於短通道費米場效電 晶體内’比較於該傳統MOSFET之靜電場為超過1〇5 v/cm。 反之’在美國專利案號為第5, 1 94, 923及5, 369, 295號之槽 -FET可以產生小於1 〇1 v/cm(且經常大大地小於)之靜電 場’其當與傳統MOSFET比要時本質上為〇。該第—深度及 第二深度亦可以被選擇以產生場效電晶體之臨界電壓,其 為半導體基板之費米電位的兩倍,亦可以被選擇以允許第 一¥電類別之載子在第二深度之通道内,當應用該臨界電 壓至該閘極時由該源極流通至該汲極,且當應用該臨界電 壓至該閘極而超越該場效電晶體的臨界電壓時由該第二深 表面延伸,+用在該通道内建立反相層。該電C: \ My Docuinents \ 547〇8. Ptd page 9 ^ 326 3 ^ V. Description of the invention (7) The semiconductor substrate and the groove region of the second conductive type on the surface within the substrate 'extend from the substrate surface to a first depth. The short-channel Fermi field-effect transistor also includes a second conductive type in the trench region and has a spaced-apart source and drain region. The spaced-apart source and drain regions extend from the substrate surface beyond the first depth, and may also extend laterally from the other surface beyond the trench region. The channel region of the second conductivity type is contained in the trench region, between the spaced source and drain regions and extending a second depth from the substrate surface, so that the second depth is less than the first depth "at least One of the second depth or the first depth is selected to minimize the electrostatic field perpendicular to the substrate surface from the substrate surface to the second depth when the gate is at a critical voltage. For example, an electrostatic field of 104 V / cm can be propagated in a short-channel Fermi field-effect transistor. The electrostatic field of the conventional MOSFET is more than 105 v / cm. Conversely, 'Slot-FETs in U.S. Patent Nos. 5, 1 94, 923 and 5, 369, 295 can generate an electrostatic field of less than 101 v / cm (and often much less than)', which is in line with tradition The MOSFET ratio is essentially zero. The first depth and the second depth can also be selected to generate the critical voltage of the field effect transistor, which is twice the Fermi potential of the semiconductor substrate, or they can be selected to allow the first ¥ electricity class In a two-depth channel, when the threshold voltage is applied to the gate, the source flows to the drain, and when the threshold voltage is applied to the gate, the threshold voltage of the field effect transistor is exceeded by the first Two deep surface extensions are used to create an inversion layer in this channel.该 电 The electricity

C:\My Docuinents\54708. ptd 第10頁 1 2: 一問極絕緣層以及源極、及極與問極觸點。該 基板觸點亦可以被包含。 · ^3263 q 五、發明說明(8) 繮續之積體電路的小剞仆 ,θ , 度至!微米以下。此電/二,上體已經減低通道長 A ^ Μ ^ ^ ^ ^ -甜體之繼續小型化已經經常需要高 丞板摻雜質位準。高摻雜晳 較小裝置所需尊,而τϊ質準減低之操作電壓可能為 者相關^,择拓命 可庇造成與費米-FET及傳統MOSFET兩 者相關之源極與祕區域的電容大大地增加。 私別是’當該費米-FET尺寸被縮小至!微米以下時,由 於在該源極所增加的沒極感應屏障低限制(d肌),其通常 是需要使該槽深度實質上較淺。不幸地是,縱使具有如之 前說明之短通道費来-FET的改變,該短通道費米_?^可能 達到一大小其中深度及摻雜質位準為所需之控制D〖bl及電 晶體,而變成難以製造。甚至於,該通道内之摻雜質高位 準I能減低載子之行動性,其亦可能減低該費米_FET技術 之高電流的優點。該較高的基板摻雜質位準與減低之汲極 電壓亦可以造成街頭電容之增加。 可以克服這些電位問題的短通道費米-FET於申請案序號 為第0 8/5 97, 7 1 1被指定為屬於本發明共同發明人Michaei W. Dennen,取名為"包含汲極感應屏障低限之短通道場效 電晶體與製造相同電晶體之方法(Short Channel Fermi-Threshold Field Effect Transistors Including Drain Field Termination Region and Methods of Fabricating Same)",指定為本發明讓受人之專利案中提 供,該專利案在此處被納入為參考文獻。該費米-FET包含 介於該源極與汲極之間的汲極場終止機構以減低並較佳地 防止載子由該源極區域注入至該通道而形成沒極偏壓。該C: \ My Docuinents \ 54708. Ptd Page 10 1 2: One-pole insulation layer and source, and pole-to-question contacts. The substrate contacts may also be included. · ^ 3263 q V. Description of the invention (8) The continuum of the integrated circuit, θ, is less than! Micron. In this case, the upper body has reduced the channel length A ^ Μ ^ ^ ^ ^-Continued miniaturization of sweet bodies has often required a high level of doping. Highly doped and smaller devices are required, and the operating voltage with reduced τϊ quality may be relevant ^. Choosing topologies can cause source and secret region capacitances related to both Fermi-FETs and traditional MOSFETs Greatly increased. What's more, when the Fermi-FET size is reduced to! Below micron, due to the low limit (d muscle) of the non-polar sensing barrier added at the source, it is usually necessary to make the groove depth substantially shallower. Unfortunately, even with the short channel charge to FET changes as explained previously, the short channel Fermi _? ^ May reach a size where the depth and dopant level are the required control Db and the transistor And it becomes difficult to manufacture. Moreover, the high doping level I in the channel can reduce the mobility of the carriers, which may also reduce the advantages of the high current of the Fermi_FET technology. This higher substrate doping level and reduced drain voltage can also cause an increase in street capacitance. The short-channel Fermi-FET that can overcome these potential problems was designated as the co-inventor Michaei W. Dennen in the application No. 0 8/5 97, 7 1 1 and named " Contains Drain Induction Short Channel Fermi-Threshold Field Effect Transistors Including Drain Field Termination Region and Methods of Fabricating Same "at the lower limit of the barrier, designated as the patent of the assignee of the present invention Provided, the patent case is hereby incorporated by reference. The Fermi-FET includes a drain field termination mechanism interposed between the source and the drain to reduce and better prevent carriers from being injected into the channel from the source region to form an endless bias. The

C:\My Documents\54708. ptd 第11頁 五 '發明說明(9) --- 短通道費米-FET包含没極場終止機構,此處被參 Unal-FET"以紀念該費米-FET之已故發明人,以防…止 過的DiBL,而仍然允許通道内之低垂直場,類似費 ° -FET。另外,該Vina卜FET提供更高的載子行動性並同 引導在該源極與汲極接面電容大為減低。 該汲極場終止機構較佳地以介於該源極與汲極區域之間 的掩埋抗-摻雜層來具體實施’並由該源極區域向該汲極 區域延伸至基板表面以下。特別是,該VinaPFET包含第 —導電類別之半導體基板及第二導電類別之槽區域在基板 内之表面上。苐二導電類別之具有空間隔開的源極與汲極 區域被包含在基板表面上的槽區域内。第一導電類別之掩 埋汲極場終止機構亦被包含在槽區域内。該掩埋汲極場終 止機構在基板表面下由該溏極區域延伸至汲極區域。該閘 緣層及源極、>及極和閘極亦被包含^於是,該 V 1 na卜FET可以被視為具有抗_摻雜之掩埋汲極場終止機 構,其防止汲極偏壓造成載子由該源極區域注入至槽區 域。 ^因為積體電路電晶體的通道長度與積體密度持續增加, 邊電晶體的操作電壓亦已經持續減低。此減低情形更藉由 積體電路在可攜帶電子裝置如膝上型電腦、細胞式電話、 =人數位助理器及其他類似裝置之增加而提升。因為場效 電晶體操作電壓之減低,亦希望將該臨界電壓變低。 於疋’為了提供用於低電壓操作之短通道費米—FET,希 望減低該臨界電壓,例如減低吃大約—半或是更少。然 ^---C: \ My Documents \ 54708. Ptd P.11 5'Invention Note (9) --- Short-path Fermi-FET contains a non-polar field termination mechanism, here is referred to Unal-FET " The late inventor, in order to prevent the ... DiBL, while still allowing a low vertical field in the channel, similar to a fee-FET. In addition, the Vina FET provides higher carrier mobility and greatly reduces the capacitance at the junction between the source and the drain. The drain field termination mechanism is preferably implemented with a buried anti-doping layer interposed between the source and drain regions, and extends from the source region to the drain region below the substrate surface. In particular, the VinaPFET includes a semiconductor substrate of the first conductive type and a groove region of the second conductive type on a surface inside the substrate. The spaced-apart source and drain regions of the second conductive type are contained in a trench region on the substrate surface. A buried drain field termination mechanism of the first conductivity type is also included in the trench area. The buried drain field termination mechanism extends below the substrate surface from the pseudo region to the drain region. The gate edge layer and source, and the gate and gate are also included. Therefore, the V 1 na FET can be regarded as a buried drain field termination mechanism with anti-doping, which prevents the drain bias As a result, carriers are injected from the source region into the trench region. ^ Because the channel length and integrated density of integrated circuit transistors continue to increase, the operating voltage of edge transistors has also continued to decrease. This reduction is further enhanced by the increase in integrated circuits in portable electronic devices such as laptops, cell phones, digital assistants, and other similar devices. Because the operating voltage of the field effect transistor is reduced, it is also desirable to lower the threshold voltage. In order to provide a short-channel Fermi-FET for low-voltage operation, it is desirable to reduce this threshold voltage, for example, by about -half or less. Then ^ ---

第12頁 :\My Documents\54708.ptd __143263 6_ 五、發明說明(10) 而 < 臨界電壓之減低不能使費米場效電晶體其他領域產生 政此之降低。例如臨界電壓之減低不能使費米場效電晶體 的漏電流過份地增加’或是使該費米場效電晶體飽和電流 過份地減低。 發明摘要 所U本發明的目的為提供改良的費米臨界場效電晶體 (費米-場效電晶體)。 本發明的另一目的為提供改良的適合於短通道長度的費 米-場效電晶體。 ' 仍然是本發明的另一目的為提供可使用低操作電壓之短 通道費米-場效電晶體。 仍然是本發明的另一目的為提供可具有低臨界電壓的費 米-場效電晶體》 .仍然是本發明的另一目的為提供可維持高飽和電流及低 漏電流之短通道、低電壓、低臨界電壓的費米—場效電晶 t本發明之這些及其他目的藉由包含金屬閘之費米—臨 界場效電晶體而被提供。該contra_摻雜多晶矽閘不是直 接使用在該閘絕缘層上。該金屬閘可以將費米場效電晶 體的臨界電壓變低而不降低該費米_場效電晶體的其他所 欲特徵。 特別是,如本發明之費米—臨界場效電晶體(費米-場效 電晶體)包含在積體電路基板内具有空間隔開的源極與汲 極,以及;I於該具有空間隔開响源極與汲極之間的積體電Page 12: \ My Documents \ 54708.ptd __143263 6_ V. Description of the invention (10) And < The reduction of the threshold voltage can not cause the other fields of Fermi field effect transistor to reduce. For example, the reduction of the threshold voltage cannot excessively increase the leakage current of the Fermi field-effect transistor or reduce the saturation current of the Fermi field-effect transistor excessively. SUMMARY OF THE INVENTION The object of the present invention is to provide an improved Fermi critical field effect transistor (Fermi-field effect transistor). Another object of the present invention is to provide an improved Fermi-field-effect transistor suitable for a short channel length. It is still another object of the present invention to provide a short-channel Fermi-field-effect transistor that can use a low operating voltage. It is still another object of the present invention to provide a Fermi-field-effect transistor that can have a low threshold voltage. It is still another object of the present invention to provide a short-channel, low voltage that can maintain high saturation current and low leakage current. Fermi-Field-Effect Transistors with Low Threshold Voltages These and other objects of the present invention are provided by Fermi-Critical-Field-Effect Transistors including metal gates. The intra-doped polysilicon gate is not used directly on the gate insulating layer. The metal gate can lower the threshold voltage of the Fermi field effect transistor without reducing other desired characteristics of the fermi field effect transistor. In particular, the Fermi-Critical Field Effect Transistor (Fermi-Field Effect Transistor) of the present invention includes a source and a drain having a space in the integrated circuit substrate, and Turn on the integrated electricity between the source and the drain

C:\My DoCLmients\54708. ptd 第13頁 »432636 五、發明說明ui) 路基板内之費米-場效電晶體通道。該閘絕緣層被包含在 具有空間隔開的源極與汲極之間的積體電路基板上。該金 屬閘被直接包含在該絕緣層上。不同的陳述的,該費米-場效電晶體包含直接在絕緣層上的不含摻雜多晶矽閘。 該金屬閘費米-場效電晶體可以被具體實施成原始費米-場效電晶體、槽-FET、高電流費米-場效電晶體、等高-槽 費罘-場效電晶體、短通道費米-場效電晶體、Vinal -場效 電晶體火是其他費米-場效電晶體的具體實施例。該金屬 閘可以是純金屬閘或是金屬合金閘如石夕化金屬閘。該石夕化 金屬閘可以藉由反應矽而形成,包含摻雜或是不摻雜金屬 或合金的多晶石夕。 該金屬 層上包括 雜的多晶 直接在該 的觸點電 較佳地 型多晶矽 金屬具有 與N-型多 如本發 高飽和電 於低電壓 閘可以包含多層,只要該閘層包含直接在閘絕緣 金屬(包含純金屬或是金屬合金如矽化金屬)。複 5夕可以被包含在該閘内,只要攙雜的多晶矽不是 閘絕緣層上。因此,介於該閘絕緣層與該閘之間 位不是由多晶矽之攙雜來決定。 是,該金屬閘包括金屬具有介於P—型多晶矽與恥 之間的工作函數。更為較佳地是,該金屬閘包括 大約4. 85伏特的工作函數,亦即介於p—型多晶 晶石夕工作函數之間的之中間。 明之金屬閘費米-場效電晶體當保持低漏電淹與 流時可以產生低臨界電壓。因此,可以特別滷田 操作。 崎用 圖禾簡述C: \ My DoCLmients \ 54708. Ptd page 13 »432636 V. Description of the invention ui) Fermi-field effect transistor channel in the circuit board. The gate insulating layer is contained on a integrated circuit substrate having a spaced-apart source and a drain. The metal brake is contained directly on the insulation. Differently stated, the Fermi-field-effect transistor contains an undoped polycrystalline silicon gate directly on the insulating layer. The metal gate Fermi-field-effect transistor can be embodied as an original Fermi-field-effect transistor, a slot-FET, a high-current Fermi-field-effect transistor, a high-slot ferrite-field-effect transistor, Short-channel Fermi-FETs and Vinal-FETs are specific examples of other Fermi-FETs. The metal gate may be a pure metal gate or a metal alloy gate such as a Shixihua metal gate. The petrified metal gate can be formed by reacting with silicon, and it includes polycrystalline or non-doped metal or alloy. The metal layer includes a heteropoly crystal directly at the contact point, preferably a polycrystalline silicon metal having an N-type polysilicon. The high-saturation low-voltage gate can include multiple layers, as long as the gate layer includes a direct on-gate gate. Insulating metals (including pure metals or metal alloys such as silicided metals). It can be included in the gate, as long as the doped polycrystalline silicon is not on the gate insulation. Therefore, the position between the gate insulating layer and the gate is not determined by the doping of polycrystalline silicon. Yes, the metal gate includes a metal having a work function between P-type polycrystalline silicon and stigma. More preferably, the metal gate includes a work function of approximately 4.85 volts, which is intermediate between the work function of the p-type polycrystalline stone. Mingzhi metal gate Fermi-field-effect transistor can generate low threshold voltage while maintaining low leakage and current. Therefore, it can be operated in special brine fields. Brief description of Qi Yong

4 326 3 6 五'發明說明(12) 圖1解釋如美國專利案號為第5, 374, 836號之N-通道高電 流費米-場效電晶體的橫截面圖《 圖2A解釋如美國專利案號為第5,374, 836號之短通道低 漏電流費来-場效電晶體的第一具體實施例之橫截面圖。 圖2B解釋如美國專利案號為第5, 374, 83 6號之短通道低 漏電流費来-場效電晶體的第二具體實施例之橫截面圖。 圖3解釋如美國專利案號為第5, 543, 654號之N-通道等高 -槽費米-場效電晶體的橫截面圖。 圊4解釋如美國專利案號為第5, 543, 654號之Ν-通道短通 道費米-場效電晶體的橫截面圖。 圖5解釋如申請案號為第08/505, 085號之Ν-通道短通道 費米-場效電晶體之第二具體實施例的橫截面圖。4 326 3 6 Five 'invention description (12) Figure 1 illustrates a cross-sectional view of an N-channel high-current Fermi-field-effect transistor such as US Patent No. 5, 374, 836. "Figure 2A explains such as the United States The cross-sectional view of the first embodiment of the short-channel low-leakage-current-effect transistor with patent number 5,374, 836 is a field-effect transistor. Figure 2B illustrates a cross-sectional view of a second embodiment of a short-channel low-leakage current-effect transistor such as U.S. Patent No. 5,374,83 6; Figure 3 illustrates a cross-sectional view of an N-channel contour-groove Fermi-field-effect transistor such as US Patent No. 5,543,654. Figure 4 explains a cross-sectional view of an N-channel short-pass Fermi-field-effect transistor such as U.S. Patent No. 5,543,654. FIG. 5 illustrates a cross-sectional view of a second specific embodiment of the N-channel short-channel Fermi-field-effect transistor as in application number 08/505, 085.

圖6解釋如申請案號為第〇8/597, 711號之Vina卜場效電 晶體之第一具體實施例的橫截面圖D 圖7解釋如申請案號為第08/5 97, 71 1號之Vi nal -場效電 晶體之第二具體實施例的橫截面圖。 圖8解釋費米-場效電晶體之臨界電壓貢獻。 圖9以圖解釋具有可變費米-槽深度之費米—場效電晶體 的汲極電流為應用閘偏壓的函數。 圖1 〇以圖解釋具有不同費米-槽摻雜質位準的汲極電流 為應用閘偏壓的函數。 圖11解釋如本發明之金屬閘費米_場效電晶體的具體本 施例的橫戴面圖。 圖1 2以圖解釋不同材料的工叫乍函數。FIG. 6 illustrates a cross-sectional view of a first embodiment of a Vina field effect transistor as application number 08/597, 711. FIG. 7 illustrates a case as application number 08/5 97, 71 1 No. Vinal-a cross-sectional view of a second embodiment of a field effect transistor. Figure 8 explains the critical voltage contribution of a Fermi-FET. Figure 9 graphically explains the drain current of a Fermi-field-effect transistor with a variable Fermi-slot depth as a function of the applied gate bias. Figure 10 graphically explains the drain current with different Fermi-slot dopant levels as a function of the applied gate bias. Fig. 11 illustrates a cross-sectional view of a specific embodiment of a metal gate Fermi-field effect transistor according to the present invention. Figure 12 illustrates the job function of different materials.

C:\My Documents\54708. ptd r’,4 326 3 6 五 '發明制(13) " ' ' · 圖1 3以圖解釋包含不同閘材料之費米-場效電晶體的没 極電流為應用閘偏壓的函數。 圖14以圖解釋包含不同費米〜場效電晶體的汲極電流為 應用閘偏壓的函數,以對數刻度表示。 圖1 5以圖解釋包含不同費米_場效電晶體的汲極電流為 應用閘偏壓的函數,以線性刻度表示β 圖16為反向器之設計電路圖。 圖17以圖解釋包含不同技術之場效電晶體的之反向器 出電壓為時間的函數。 圖示詳細說明 本發明現在將由此參考附圖完整地說明,其中本發明之 具,實施例將被顯示。然而,本發明可以用不同形式具體 1把而不應限制為由此陳述之具體實施例;而是這些具體 實施=被提供以使此揭示更為徹底與完整,且將傳導本發 明之範圍給那些熟知相關技藝之人士。在該附圖中,各層 >•、區域之厚度一明瞭性而被過份擴大。相似之數字在整份 文件中參考相似之元件。將要瞭解的是當元件如層、區域 或基板被視為是"在11另一元件上時,可以是直接在另一元 件上或是介入元件亦可以存在。反之,當元件被視為是 直接在"另一元件上時,沒有介入元件存在。 在說明本發明之金屬閛費岽—臨界場效電晶體之前,如 美國專利案號為第5, 194, 923號及第5,369,295號之具有減 低閘與擴散電谷之費米—臨界場效電晶體(亦被視為"低電 谷費米場效電晶體”或是η槽-場效電晶體"亦將被說明,而C: \ My Documents \ 54708. Ptd r ', 4 326 3 6 Five' invention system (13) " '' Figure 1 3 illustrates the poleless current of Fermi-field-effect transistor with different gate materials As a function of applied gate bias. Figure 14 graphically explains that the drain current of different Fermi ~ FETs is a function of the applied gate bias and is expressed on a logarithmic scale. Figure 15 is a diagram explaining the drain current of different Fermi FETs as a function of the applied bias voltage, expressed in linear scale β. Figure 16 is a circuit diagram of the inverter design. Figure 17 illustrates graphically the inverter output voltage of field effect transistors with different technologies as a function of time. DETAILED DESCRIPTION OF THE DRAWINGS The present invention will now be fully described by reference to the accompanying drawings, in which embodiments of the invention will be shown. However, the present invention may be embodied in different forms and should not be limited to the specific embodiments set forth herein; rather, these embodiments are provided to make this disclosure more thorough and complete, and to convey the scope of the present invention to Those who are familiar with the relevant art. In this drawing, the thickness of each layer > •, the area is clearly enlarged, and is excessively enlarged. Similar numbers refer to similar components throughout the document. It will be understood that when an element such as a layer, region or substrate is considered to be " on 11 another element, it may be directly on another element or an intervening element may also be present. Conversely, when an element is considered to be "directly on" another element, no intervening element is present. Prior to explaining the metal "ferrite" -critical field-effect transistor of the present invention, for example, Fermi-critical field with reduced gate and diffusion valleys in US Patent Nos. 5,194,923 and 5,369,295 Effect transistor (also referred to as " low power valley Fermi field effect transistor " or n-slot-field effect transistor " will also be explained, and

C:\My Documents\54708. ptd 第16頁 143263 6 五,發明說明(14) 如美國專利案號為第5, 374, 836號之高電流費米-臨界場效 電晶體亦將被說明,如美國專利案號為第5, 543, 654號之 等高-槽費米-場效電晶體亦將被說明,如申請案序號為第 08/505, 085號之短通道之費米-場效電晶體亦將被說明, 如申請案序號為第08/597,711號之Vinal -場效電晶體亦將 被說明’更完整的說明可以在這些專利案與應用中找到, 及揭示在此處被納入為參考文獻。本發明之金屬閘費米— 場效電晶體之後將說明。 具有減低閘與擴散電容之費米-場效電晶體 下文將包含該費米-槽之低電容費米-場效電晶體加以摘 要說明。其餘的細節可以在美國專利案號為第5, 1 94, 923 號及第5,369,295號中找到。 傳統的MOSFET裝置需要反相層在半導體表面上建立以支 撐載子之傳導。該反相層之深度通常為1〇〇埃或是更少。 在這些環境下*閘電容為閘絕緣體之電容率除以其厚度。 換句話說’該通道電荷是如此地接近表面以致 介電性質在閑電容之決定不明顯。 m之 假使傳導載子被限制在該閘以下之通道區域時’閘電容 可以被變低,其中該通道電荷之平均深度需要包含該基板 之電容率以計算間電容。一般而言,該低電容費米—場效 電晶體之電容可以用以下的等式說明。C: \ My Documents \ 54708. Ptd Page 16 143263 6 V. Description of the invention (14) For example, the high-current Fermi-critical field-effect transistor of US Patent No. 5, 374, 836 will also be explained, For example, the U.S. Patent No. 5, 543, 654 contour-groove Fermi-field-effect transistor will also be explained. If the application serial number is 08/505, 085 short-pass Fermi-field The effect transistor will also be explained, such as Vinal-field effect transistor with application serial number 08 / 597,711. The more complete description can be found in these patents and applications, and disclosed here Office is incorporated as a reference. The metal gate fermi-field-effect transistor of the present invention will be described later. Fermi-Field-Effect Transistor with Reduced Gate and Diffusion Capacitors The low-capacitance Fermi-field-effect transistor including the Fermi-slot will be described below. The remaining details can be found in US Patent Nos. 5, 1 94, 923 and 5,369, 295. Traditional MOSFET devices require an inversion layer to be built on the semiconductor surface to support carrier conduction. The depth of the inversion layer is usually 100 angstroms or less. In these environments, the gate capacitance is the permittivity of the gate insulator divided by its thickness. In other words, the channel charge is so close to the surface that the dielectric properties are not obvious in the determination of the free capacitance. If the conductive carriers are limited to the channel area below the gate, the gate capacitance can be lowered, where the average depth of the channel charge needs to include the permittivity of the substrate to calculate the intercapacitance. In general, the capacitance of the low-capacitance Fermi-field-effect transistor can be described by the following equation.

纜4326 3 6 五、發明說明(15) 其中Yf稱為費米通道之傳導通道的深度,£s為該基板之電 容率’而万為決定在該基板以下之費米通道内流動之電荷 的平均深度之因數。办與由該源極注入至通道之載子的深 度相關pro f i 1 e有關。對該低電容費米-場效電晶體而言, 办9為閘氧化層之厚度而&為其電容率。 該低電容費米-場效電晶體包含具預定深度之費米-槽, 具有與基板相反而與該汲極與源極相同之導電類別。該費 米-槽由該基板往下延伸預定深度,且該汲極與源極擴散 在該費米-槽界限中的費米-槽區域内形成。該較佳的費米 -槽深度為費来通道之深度Yf與耗盡深度Yq的和,具有預定 /朱度Yf與丸度Z之費米通道區域在該源極與沒極之間延 伸。該費米通道之導電率由應用至閘極之電壓控制。 該開電容主要由費米通道之深度與在費米通道内載子分 佈決定’且與該閘氧化層的厚度無關,該擴散電容與介於 [費米、-槽之深度與基板内耗盡深度γ0的和]與擴散深度Xd之 間的差的倒數有關。較佳地是該擴散深度^小於費米-槽 之冰度。較佳地是該費米-槽之摻雜物濃度被選擇以允許 該費求通道之深度為大於M0SFET内之反相層深度的3倍°。 於疋,該低電容費米-場效電晶體包含第一導 半導體基板1具有一第一表面、在該帛 * 你成弟—表面上之費米一 :區域内之具有空間隔開的第二導電類別之源極與汲極區 域以及在該第一表面上之費米—槽區域内之介於源極旬及 極區域之間的第二導電類別之通道。該通道由咳〃 延伸該第-預定深度α)而該槽由該通道 ^Cable 4326 3 6 V. Description of the invention (15) where Yf is the depth of the conductive channel of the Fermi channel, £ s is the permittivity of the substrate, and 10,000 is the value that determines the charge flowing in the Fermi channel below the substrate Factor of average depth. It is related to the depth-dependent pro f i 1 e of the carriers injected into the channel by the source. For this low-capacitance Fermi-FET, the thickness of the gate oxide layer is & its permittivity. The low-capacitance Fermi-field-effect transistor includes a Fermi-groove with a predetermined depth, and has the same conductivity type as the drain and source opposite to the substrate. The Fermi-groove extends downward from the substrate by a predetermined depth, and the drain and source are diffused in a Fermi-groove area within the Fermi-groove boundary. The preferred Fermi-groove depth is the sum of the depth Yf of the Ferei channel and the depletion depth Yq, and a Fermi channel region having a predetermined / Zhu degree Yf and Maru degree Z extends between the source and the pole. The conductivity of the Fermi channel is controlled by the voltage applied to the gate. The open capacitance is mainly determined by the depth of the Fermi channel and the carrier distribution in the Fermi channel, and has nothing to do with the thickness of the gate oxide layer. The sum of the depths γ0] is related to the inverse of the difference between the diffusion depths Xd. Preferably, the diffusion depth ^ is smaller than the ice degree of the Fermi-groove. Preferably, the dopant concentration of the Fermi-groove is selected to allow the depth of the Fermi channel to be greater than 3 times the depth of the inversion layer in the MOSFET. Yu Li, the low-capacitance Fermi-field-effect transistor includes a first-conducting semiconductor substrate 1 having a first surface, and on the surface, you become a brother—Fermi on the surface: The source and drain regions of the second conductivity type and the channels of the second conductivity type between the source region and the electrode region in the Fermi-slot region on the first surface. The channel extends by the first predetermined depth α from the cough and the groove is extended by the channel ^

C:\My Docunients\54708. ptd 第18頁 龜43263 6 五、發明說明(16) ^ 深度(YD )。該閘絕緣層在該基板之第一表面上,介於源極 與汲極區域之間。源極、汲極與閘極被提供以與源區域和 >及區域以及閘絕緣層互相有電接觸。 至少該第一及第二預定深度被選擇以在應用該場效電晶 體的臨界電壓至閘極時產生垂直於在第一深度之第一表面 靜電場。該第一及第二預定深度亦被選擇以允許第二 導電類別之載子在應用在閘極之電壓超過場效電晶體之臨 界電壓時在通道内由源流通至汲,由該第一預定深度往第 —表面延伸。該載子在第一表面下由源區域流通至汲區 域,而不在該費米-槽區域内建立反相層。該第一及第二 預定深度亦被選擇以產生在基板表面上'鄰接該閘絕緣層 的電壓,該電壓等於並相反於介於基板觸點與基板之間的 電壓以及介於多晶矽閘極與閘極之間電壓的和β ,當該基板被以摻雜質密度Ns摻雜時,在溫度為τ〇κ及電容 率£3時具有内在載子濃度h,且該場效電晶體包含基板觸 點以j該基板有電接觸,以及該通道由基板之表面延伸第 預疋深度Υο ’而該費米-槽區域由該通道延伸第二預定 深度,該費米-槽區域以摻雜質密度為因素α 摻雜;該C: \ My Docunients \ 54708. Ptd page 18 turtle 43263 6 V. Description of the invention (16) ^ Depth (YD). The gate insulating layer is on the first surface of the substrate and is interposed between the source and drain regions. The source, drain, and gate are provided in electrical contact with the source region and the > region and the gate insulation layer. At least the first and second predetermined depths are selected to generate an electrostatic field perpendicular to the first surface at the first depth when the threshold voltage of the field effect transistor is applied to the gate. The first and second predetermined depths are also selected to allow carriers of the second conductive type to flow from source to sink in the channel when the voltage applied to the gate exceeds the threshold voltage of the field effect transistor. The depth extends to the first surface. The carrier flows from the source region to the drain region under the first surface without establishing an inversion layer in the Fermi-slot region. The first and second predetermined depths are also selected to generate a voltage on the surface of the substrate that abuts the gate insulating layer, the voltage being equal to and opposite to the voltage between the substrate contacts and the substrate and between the polysilicon gate and The sum of the voltage between the gates β, when the substrate is doped with a doping mass density Ns, has an intrinsic carrier concentration h at a temperature of τ0κ and a permittivity of £ 3, and the field effect transistor includes the substrate The contacts have electrical contact with the substrate, and the channel extends from the surface of the substrate to a predetermined depth 疋 ο ′, and the Fermi-slot area extends from the channel to a second predetermined depth, and the Fermi-slot area is doped Density as factor α doping; the

閘極包含第一導電類別之多晶矽層,以摻雜質密度化摻 雜;第一預定深度(Yf)等於: PThe gate includes a polycrystalline silicon layer of a first conductivity type, and is doped with a dopant density; the first predetermined depth (Yf) is equal to: P

C:\My Docmnents\54708. ptd 第19頁 *432636 五 '發明說明(π) 其中q為1. 6xl0-ig庫侖而Κ為1. 38χ1(Γ23焦耳/Κ。該第二預 定深度(YQ)等於: y = I ^L·. (3) 。·\^α(α + 1) 其中么等於2ii>f + kT/qLn( α ) ’而户f為半導體基板之費米電 位。 高電流費米-場效電晶體結構 現在參考圖1,如美國專利案號為第5, 374, 836號之N-通 道高電流費米-場效電晶體被解釋。將被那些熟知相關技 藝之人士所瞭解地是該P-通道費米-場效電晶體可以藉由 該N區域及P區域之導電性·的反轉而獲得。 如圖1所解釋,高電流費米-場效電晶體2〇由具有第一導 電類別,此處為P-型之半導體基板21而製造,包含基板表 面21a。第二導電類別’此處為N-型之該費米-槽區域22在 基板内21之表面2 1 a上形成。具有空間隔開的源區域和汲 區域分別為第二導電類別,此處為型在費米—槽區域22 内之表面21a上形成。將被那些熟知相關技藝之人士所瞭 解地是該源區域和汲區域亦可以在表面21 a内之切開形 成。 該閘絕緣層26被形成在基板上介於具有空間隔開的源區 域23和没區域24之間的表面2 la上。如那些熟知相關技藝 之人士所瞭解,該閘絕緣層通·常為雙氧化矽。然而,氣^匕C: \ My Docmnents \ 54708. Ptd page 19 * 432636 Five 'invention description (π) where q is 1.6xl0-ig Coulomb and K is 1.38χ1 (Γ23 Joule / K. The second predetermined depth (YQ) It is equal to: y = I ^ L ·. (3). \ ^ Α (α + 1) where is equal to 2ii &f; f + kT / qLn (α) 'and f is the Fermi potential of the semiconductor substrate. High current cost The structure of the meter-field-effect transistor is now referred to FIG. 1. For example, the N-channel high-current Fermi-field-effect transistor of U.S. Pat. It is understood that the P-channel Fermi-field-effect transistor can be obtained by the conductivity and inversion of the N and P regions. As explained in FIG. 1, the high-current Fermi-field-effect transistor 2 Manufactured from a semiconductor substrate 21 having a first conductivity type, here a P-type, including a substrate surface 21a. A second conductivity category 'here the N-type Fermi-groove region 22 is on the surface of the substrate 21 2 1 a. The spaced-apart source and drain regions are respectively of the second conductive type, and here are formed on the surface 21a within the fermi-groove region 22. They will be formed by those Those skilled in the relevant art understand that the source region and the drain region can also be formed by incision in the surface 21 a. The gate insulating layer 26 is formed on the substrate between the source region 23 and the non-region 24 having space separation. The surface is between 2 la. As understood by those skilled in the relevant art, the gate insulation layer is usually double silicon dioxide. However, gas

C:\MyDocuuients\54708.ptd 第 20 頁 r 臞4 3 2 6 3 e 五、發明說明(18) 矽及其他絕緣體亦可以被使用β 該問極被形成在閘絕緣層26上,基板2丨之反面。該閘極 較佳地是包含第一導電類別,此處為ρ_型之多晶矽(多晶 石夕)閘極層2 8 °該導體閘極層通常為金屬閘極層2 9被形成 在面對問絕緣層26之多晶矽閘極28上。源極31和汲極32通 常為金屬亦分別被形成在源區域23和汲區域24上。 第一導電類別,此處為Ρ-型之該基板觸點3 3亦被形成在 基板2 1内,如所示在費米—槽内部或是槽外部。如圖所 示’該基板觸點33被摻雜第一導電類別,此處為ρ_型,且 可包含很重的摻雜區域33a及很輕的摻雜區域33b。該基板 電極34建立電觸點至該基板。 先前參考圖1說明之結構相當於如美國專利案號為第 5, 1 94, 923號及第5,369,295號之低電容費米-場效電晶體 之結構。如已經在這些應用說明之結構,該通道3 6被建立 於源區域23與汲區域24之間。由該表面21a之通道的深 度’在圖1中標示為Yf ;而由該通道底部至費米—槽22底部 之深度,在圖1中標示為Υα ;與該基板2 1之摻雜位準、槽 區域以及多晶石夕閘極28 —起被選擇而使用上述等式(2)與 (3)之關係以提供高效能、低電容場效電晶體。 仍參考圖1 ’第二導電類別,此處為Ν -型之該源注入器 區域3 7 a被提供於鄰接源區域2 3且面對該汲區域。該源注 入器區域37a藉由控制載子被注入至通道36之深度而提供 高電流費米-場效電晶體。該源注入器區域37a可以只介於 源區域23與沒區域24之間延伸*。該源注入區域較佳地是圍C: \ MyDocuuients \ 54708.ptd Page 20r 臞 4 3 2 6 3 e 5. Description of the invention (18) Silicon and other insulators can also be used. The question is formed on the gate insulation layer 26, the substrate 2 丨The opposite. The gate preferably comprises a first conductive type, here polycrystalline silicon (polycrystalline stone) gate layer of the ρ_ type. The conductor gate layer is usually a metal gate layer 29, which is formed on the surface. Interrogating the polysilicon gate 28 on the insulating layer 26. Source 31 and drain 32, which are usually metal, are also formed on source region 23 and drain region 24, respectively. The first conductive type, the substrate contact 3 3 here, which is a P-type, is also formed in the substrate 21, as shown in the inside of the Fermi-slot or outside the slot. As shown in the figure, the substrate contact 33 is doped with a first conductivity type, which is a p-type here, and may include a heavily doped region 33a and a lightly doped region 33b. The substrate electrode 34 establishes an electrical contact to the substrate. The structure previously described with reference to FIG. 1 is equivalent to the structure of low-capacitance Fermi-field-effect transistors such as U.S. Patent Nos. 5, 1 94, 923 and 5,369, 295. As already structured in these application notes, the channel 36 is established between the source region 23 and the drain region 24. The depth of the channel from the surface 21a is indicated as Yf in FIG. 1; and the depth from the bottom of the channel to the bottom of the Fermi-slot 22 is indicated as Υα in FIG. 1; , Trench region, and polycrystalline silicon gate 28 are selected to use the relationship of equations (2) and (3) above to provide a high-efficiency, low-capacitance field-effect transistor. Still referring to FIG. 1 'the second conductivity category, the source injector region 37a of the N-type here is provided adjacent to the source region 23 and faces the drain region. The source injector region 37a provides a high-current Fermi-field-effect transistor by controlling the depth at which carriers are injected into the channel 36. The source injector region 37a may extend only between the source region 23 and the sub-region 24 *. The source injection area is preferably

C:\My Documents\54708.ptdC: \ My Documents \ 54708.ptd

第2i頁 酽4326 3 6 五、發明說明(19) 繞該源區域23而形成源注入器槽區域37,如圖1中所解 釋。源區域2 3可以完全被源注入器槽區域3 7在側邊及底面 圍繞。另一方面’源區域23可以被源注入器槽區域37在側 邊圍繞’但是可能在底部穿越源注入器槽區域37。而仍為 另一方面’該源注入器區域37a可以延伸至基板21内,而 至介於費米-槽22與基板21之間的接面。該汲注入器區域 3 8a,較佳地是汲注入器槽區域38亦被提供。 源注入器區域37a没注入器區域38a或是源注入器槽區域 3 7與 >及注入器槽區域3 8,較佳地是以第二導電類別,此處 為N-型之介於費米-槽22之很低的摻雜位準與源23及汲24 之很高的摻雜質位準之間的摻雜質位準來摻雜。於是,如 圖1中所解釋,費米-槽22被標示為N ;源注入器槽區域37 與汲注入器槽區域3 8被標示為N+ ;而源區域2 3與汲區域2 4 被標示為N++ ;該單一接面電晶體因此被形成。 該咼電流費米-場效電晶體提供大約為最新技藝之場效 電晶體4倍之驅動電流。閘電容則大約為傳統場效電晶體 裝置的一半。該源注入器槽區域37的摻雜濃度控制載子被 注入至通道區域3 6之深度,通常為大約1 0 0 〇埃。該源注入 器槽區域37的摻雜濃度通常為2E18,而較佳地是具有至少 與注入之大多數載子的最大深度一樣大。另一方面,該源 注入槽區域可以延伸至與費米-槽區域2 2 —樣深以將次臨 界漏電流變的最小,如以下所述。將要顯示的是注入至該 通道36之載子濃度不能超過面對汲之源注入器區域37a的 摻雜濃度。面對汲及源注入器瘂域3 7 a的部分寬度通常是Page 2i 酽 4326 3 6 V. Description of the invention (19) A source injector slot region 37 is formed around the source region 23, as explained in FIG. The source region 23 can be completely surrounded by the source injector slot region 37 on the sides and bottom. On the other hand, the 'source region 23 may be surrounded by the source injector slot region 37' but may pass through the source injector slot region 37 at the bottom. On the other hand, the source implanter region 37a may extend into the substrate 21 to the interface between the fermi-groove 22 and the substrate 21. The sinker area 38a, preferably the sinker area 38 is also provided. The source injector region 37a is not the injector region 38a or the source injector slot region 37 and > and the injector slot region 38 is preferably the second conductive type, which is between N-type and Doping is performed between a very low doping level of the meter-groove 22 and a very high doping level of the source 23 and the drain 24. Thus, as explained in FIG. 1, the Fermi-slot 22 is labeled N; the source injector slot region 37 and the drain injector slot region 38 are labeled N +; and the source region 23 and the drain region 2 4 are labeled Is N ++; the single junction transistor is thus formed. This pseudo-current Fermi-field-effect transistor provides approximately four times the drive current of the latest technology field-effect transistor. The gate capacitance is about half that of a conventional field effect transistor device. The dopant concentration control carriers of the source implanter trench region 37 are implanted to the depth of the channel region 36, which is usually about 100 angstroms. The dopant concentration of the source-injector trench region 37 is typically 2E18, and preferably has at least as much as the maximum depth of most carriers implanted. On the other hand, the source injection slot area can be extended to the same depth as the Fermi-slot area 2 2 to minimize the secondary critical leakage current, as described below. It will be shown that the concentration of carriers injected into the channel 36 cannot exceed the doping concentration of the source-injector region 37a facing the source. The part of the width facing the sink and source injector 痖 domain 3 7 a is usually

C:\My Documents\547〇8.ptdC: \ My Documents \ 547〇8.ptd

第22 I r ·4 326 3 6 五、發明說明(20) 在0. 0 5-0. 15 的範圍内》源區域23與汲區域24的摻雜濃 度通常是分別為1E19或是更大。該費米-槽22之深度 ' =<^ + 1)將近2 200埃而具有摻雜濃度將近為1.8£;164 如圖1所示,該高電流費米-場效電晶體2 2亦包含在基板 表面21a上之閘側壁格板41 ’由鄰接源注入器區域37a延伸 至鄰接多晶矽閘極2 8。閘側壁格板41較佳地是由鄰接汲注 入區域38a延伸至鄰接多晶矽閘極2 8。特別是,如圖1所 示’閘側壁格板41由多晶發閘極側壁2 8 a延伸並分別壓在 源注入器區域37a和汲注入器區域38a上。較佳地是,閘側 壁格板41圍繞該多晶矽閘極28。亦為較佳地是,如以下之 詳細討論’該閘絕緣層2 6延伸至源注入器區域3 7 a上面且 該没注入器區域3 8 a在基板表面21 a上,閘側壁格板41亦延 伸至源注入器區域37a與汲注入器區域38a上。 該閘側壁格板41將費米-場效電晶體的失止電壓變低並 增加其飽和電流,其方式將在下文中詳細說明。較佳地 是’該閘側壁格板是一絕緣體’具有大於閘絕緣層2 6的電 容率。因此,例如假使該閘絕緣層26是雙氧化矽時,該閘 側壁格板較佳地是氮化矽;該閘侧壁格板是一絕緣體,具 有大於氮化矽的電容率。 如圖1所示’該閘側壁格板41亦可以延伸至源區域2 3與 没區域24 ’且源極31與汲極32亦分別被形成在閘側壁格板 區域的延伸内。傳統的場氧化物或是其他的絕緣體4 2區域 分離該源、汲以及基板觸點。亦為那些熟知相關技藝之人 士所瞭解的是,雖然該閘側壁略板41的外部表面41a被解No. 22 I r · 4 326 3 6 V. Description of the invention (20) Within the range of 0. 5-0. 15 "The doping concentrations of the source region 23 and the drain region 24 are usually 1E19 or more, respectively. The depth of the Fermi-groove 22 '= < ^ + 1) is almost 2 200 Angstroms and has a doping concentration of nearly £ 1.8; 164 As shown in Figure 1, the high-current Fermi-field-effect transistor 2 2 is also The gate sidewall grid 41 ′ included on the substrate surface 21 a extends from the adjacent source implanter region 37 a to the adjacent polysilicon gate 28. The gate sidewall grid 41 preferably extends from the adjacent sink region 38a to the adjacent polysilicon gate 28. In particular, as shown in Fig. 1, the gate grid 41 extends from the poly-gate gate sidewall 28a and is pressed on the source injector region 37a and the drain injector region 38a, respectively. Preferably, the gate-side wall grid 41 surrounds the polycrystalline silicon gate 28. It is also preferable that, as discussed in detail below, the gate insulation layer 2 6 extends above the source injector region 3 7 a and the non-injector region 3 8 a is on the substrate surface 21 a, and the gate sidewall grid 41 It also extends over the source and drain regions 37a and 38a. The gate side grid plate 41 lowers the stopping voltage of the Fermi-field-effect transistor and increases its saturation current. The manner will be described in detail below. It is preferable that 'the gate side wall grid is an insulator' having a capacitance larger than that of the gate insulating layer 26. Therefore, for example, if the gate insulating layer 26 is double silicon oxide, the gate sidewall grid is preferably silicon nitride; the gate sidewall grid is an insulator having a permittivity greater than that of silicon nitride. As shown in FIG. 1 ', the gate sidewall grid 41 can also extend to the source region 23 and the region 24', and the source 31 and the drain electrode 32 are also formed in the extension of the gate sidewall grid region, respectively. A conventional field oxide or other insulator 4 2 region separates the source, drain, and substrate contacts. It is also understood by those who are familiar with the related arts that although the outer surface 41a of the shutter side plate 41 is solved

C:\My Docuinents\54708. ptd 第23頁 繼4326 3 6 五、發明說明(21) 釋為彎面成橫裁面,其他的形狀亦可以被使用,如線性外 部表面以產生三角形橫截面或是正交外部表面以產生長方 形橫截面。 低漏電流費米-臨界場效電晶體 現在參考圖2A與2B,具有短通道之費米-場效電晶體仍 產生低漏電流,如美國專利案號為第5, 374, 836號現在將 被說明。這些裝置將由此處參考為|,低漏電流費米—場效電 晶體"。圖2A之該低漏電流費米-場效電晶體5 〇包含第一導 電類別,此處為P-型導電類別之底部漏電流控制區域5 1, 並以相對於基板21為高之濃度摻雜。於是’在圖2A中被標 示為P+。圖2B之該低漏電流費米-場效電晶體60包含延伸 之源注入器區域37a與汲注入器區域38a,較佳地是延伸至 該費米-槽22深度。 現在參考圖2A ’底部漏電流控制區域51由介於源區域23 與沒區域2 4對立端延伸之間而延伸橫跨該基板21,並由該 費米-槽22深度上方往費米—槽22深度之下方而延伸至該基 板内。較佳地是,其位於下方,並與該費米-通道3 6對 齋。為與上述之等式一致,由費米—通道36至低部漏電流 控制區域51上方之深度已經被標號為Yfl。圖μ之費米-場 效電晶體的其餘部分和圖1中的說明相同,除了所解釋的 短通道以外《將為那些熟知相關技藝之人士所瞭解的是, 注入器區域37a與注入器區域38a及/或注入器槽區域37與 注入器槽區域3 8可以被省略;閘側壁格板區域4丨亦可以被 省略以提供不具圖2 A裝置的高嚅流性質之低漏電流、低電C: \ My Docuinents \ 54708. Ptd page 23 following 4326 3 6 V. Description of the invention (21) Interpreted as a curved surface into a cross-section, other shapes can also be used, such as a linear external surface to create a triangular cross-section or Are orthogonal outer surfaces to produce a rectangular cross section. Low leakage current Fermi-critical field effect transistor Now referring to FIGS. 2A and 2B, a Fermi-field effect transistor with a short channel still generates low leakage current. For example, US Patent No. 5, 374, 836 will now Be explained. These devices will be referred to here as |, Low Leakage Current Fermi-Field Effect Transistors ". The low leakage current Fermi-field-effect transistor 5 of FIG. 2A includes a first conductivity type, here is the bottom leakage current control region 51 of the P-type conductivity type, and is doped at a higher concentration than the substrate 21 miscellaneous. 'Is then indicated as P + in Fig. 2A. The low-leakage current Fermi-field-effect transistor 60 of FIG. 2B includes an extended source-injector region 37a and a drain-injector region 38a, preferably extending to the depth of the Fermi-slot 22. Referring now to FIG. 2A, the bottom leakage current control region 51 extends between the source region 23 and the opposite end of the region 24 and extends across the substrate 21, and from above the depth of the fermi-groove 22 to the fermi-groove 22 Extends below the depth into the substrate. Preferably, it is located below and is fastened to the Fermi-channel 36. In accordance with the above equation, the depth from the Fermi-channel 36 to the lower part of the leakage current control region 51 has been designated Yfl. The rest of the Fermi-field-effect transistor in Figure μ is the same as the description in Figure 1. Except for the short channel explained, "It will be understood by those skilled in the relevant art that the injector region 37a 38a and / or injector slot area 37 and injector slot area 38 can be omitted; gate side wall grid area 4 丨 can also be omitted to provide low leakage current and low electricity without the high current flow characteristics of the device of FIG. 2A

C:\My Docuinents\54708. ptd 第24頁 *432636 五 '發明說明(22) 容 '短通道費米-場效電晶體》 該底部漏電流控制區域5 1在維持低擴散耗盡電容時將短 通道費米-場效電晶體,即那些具有通道大約為〇.5/ζπι或 更少之費米-場效電晶體的汲感應注入變低=> 例如’在5伏 特時’將維持漏電流為3E-13A或更少。 該底部漏電流控制區域可以使用等式(2)及(3)設計,其 中Y〇為通道至底部漏電流控制區域上方的深度,如圖2A與 2Β所示《因數α為介於底部漏電流控制區域5丨之摻雜質f 與費来槽22之N推雜質之間的比率。較佳地α是被設定為 在底部漏電流控制區域内大約0. 1 5,即在該閘2 8以下。在 該源區域23與汲區域24以下,α被設定為大約1.0以將擴 散耗盡電容最小化。換句話說,該基板21與費米-槽22之 換雜;農度在該源區域與汲區域以下大約相等。於是,如上 述之參數,寬度為0. 5微米之通道在底部漏電流控制區域 51之摻雜濃度大約為5Ε17且夠深而足以在槽-區域給予5伏 特之沒與源擴散電位時支撐部分耗盡。 現在參考圖2Β,該底部漏電流控制區域之另一種設計延 伸源注入器區域37a與汲注入器區域38a之深度較佳地是至 費呆-槽深度(Yf + Yfl)。如圖2B所示,該源注入器槽37與汲 注入器槽38之完整深度可以被延伸,較佳地是至費求:槽 22之深度。介於該注入槽3?與38底部與費米-槽以之間^ 分開距離較佳地是小於該通道長度的一半且較佳地是趨近 於〇。在這些條件下,注入槽37與38具有大約15£18/^^3 的摻雜質濃度。該基板觸點區嘴33b之深度較佳地是亦被C: \ My Docuinents \ 54708. Ptd Page 24 * 432636 Five 'Invention Notes (22) Capacitance' Short Channel Fermi-Field Effect Transistor "The bottom leakage current control region 5 1 will be maintained while maintaining low diffusion depletion capacitance Short-channel Fermi-Field-Effect Transistors, that is, those with Fermi-Field-Effect Transistors with a channel of approximately 0.5 / ζπm or less, will have a lower drain-injection => For example, 'at 5 volts' will be maintained The leakage current is 3E-13A or less. The bottom leakage current control region can be designed using equations (2) and (3), where Y0 is the depth from the channel to the bottom leakage current control region, as shown in Figures 2A and 2B. The ratio between the dopant f in the control region 5 and the N-th impurity in the Frei slot 22 is controlled. Preferably, α is set to about 0.1 5 in the bottom leakage current control region, that is, below the gate 28. Below the source region 23 and the drain region 24, α is set to about 1.0 to minimize the diffusion depletion capacitance. In other words, the substrate 21 and the fermi-groove 22 are mixed; the agronomy is approximately equal to the source region and below the drain region. Therefore, as described above, the doping concentration of the channel with a width of 0.5 micron in the bottom leakage current control region 51 is about 5E17 and is deep enough to support the portion when the trench-region is given a potential of 5 volts without the source diffusion potential. Exhausted. Referring now to FIG. 2B, another design of the bottom leakage current control region extends the depth of the source injector region 37a and the sink injector region 38a to preferably the Fell-Slot depth (Yf + Yfl). As shown in FIG. 2B, the complete depth of the source injector groove 37 and the sink injector groove 38 may be extended, preferably to the depth of the groove 22. The separation distance between the bottom of the injection grooves 3? And 38 and the Fermi-slot is preferably less than half the length of the channel and preferably approaches 0. Under these conditions, the implantation grooves 37 and 38 have a dopant concentration of about 15 £ 18 / ^^ 3. The depth of the substrate contact area mouth 33b is preferably also

第25頁 C:\My Documents\54708, ptd *432636 五、發明說明(23) 延伸至趨近該費米-槽深度。圖2B之該費米—場效電晶體6〇 除了被解釋的短通道以外,其餘的部分與圖丨令所說明的 相同。 等高-槽費米-臨界場效電晶體 現在參考圖3 ’如美國專利案號為第5, 543, 654號之N_通 道等高-槽費米場效電晶體被解釋。那些熟知相關技藝之 人士所瞭解的是P-通道費米場效電晶體可以藉由轉換該卜 區域與p-區域的導電類別而獲得。如圖3所解釋,等高—槽 費米-場效電晶體20’類似於圖1中之高電流費米-場效電晶 體’除了存在等商-槽22而非圖1中之槽22以外,該等高一 槽22具有均勻的槽深度。雖然注入槽與注入器區域可以存 在,但是並不顯現。 仍舊參考圖3 ’等高-槽22,具有由該基板表面21a至具有 空間隔開之源區域23與汲區域24至少其中之—以下的 預定深度\。該等高-槽22’具有由該基板表面21a至通道 36以下的第二預定深度γζ。如該發明,a不同於Υι,且較 佳地是2小於Y〗以建立該等高-槽22,從另一方面陳述是, 介於槽22’與基板21之間的接面被往下推離該源區域與沒 區域2 4,由相對於在通道下之槽-場效電晶體準則,以減 低該源/沒擴散電容並因此允許等高-槽費米—場效電曰體 在低電麼操作-·一-,一—------------- 2 2’可能指只在源區域23或是汲區域24下被等高以產生非 對稱裝置。然而,較佳地是在源區域23或是沒區域24下之 對稱裝置被形成。 ·Page 25 C: \ My Documents \ 54708, ptd * 432636 V. Description of the invention (23) Extend to approach the Fermi-slot depth. The Fermi-field-effect transistor 60 of FIG. 2B is the same as that explained in the drawing except for the short channel explained. Contour-Slot Fermi-Critical Field-Effect Transistor Now, referring to FIG. 3 ', a high-slot Fermi field-effect transistor such as the N_channel US Pat. No. 5,543,654 is explained. Those skilled in the art know that P-channel Fermi field-effect transistors can be obtained by switching the conductivity type between the Bu region and the p- region. As explained in FIG. 3, the contour-groove Fermi-field-effect transistor 20 'is similar to the high-current Fermi-field-effect transistor' in FIG. In addition, the height one groove 22 has a uniform groove depth. Although the injection slot and injector area can exist, they do not appear. Still referring to FIG. 3 ', the contour-groove 22 has a predetermined depth from the substrate surface 21a to at least one of the source region 23 and the drain region 24 spaced apart. The height-groove 22 'has a second predetermined depth? Ζ from the substrate surface 21a to below the channel 36. As in the invention, a is different from Υι, and preferably 2 is less than Y, to establish the height-slots 22. On the other hand, it is stated that the interface between the slot 22 'and the substrate 21 is downward. Push away from the source area and the no-area 2 4 by the slot-field effect transistor criterion below the channel to reduce the source / no-diffusion capacitance and therefore allow contour-groove Fermi-field-effect electricity What to do with low power-·--, 1 -------------- 2 2 'may mean that the source region 23 or the drain region 24 is contoured to generate an asymmetric device. However, it is preferable that a symmetrical device is formed under the source region 23 or the sub-region 24. ·

C:\My Docuinents\54708. ptdC: \ My Docuinents \ 54708. Ptd

第26頁 Γ 14 32 6 3 t> 五、發明說明(24) 基於美國專利案號為第5, 194, 923號與第5,369,295號之 低電容費米-場效電晶體準則,該第二預定深度Y2被選 擇。這些準測決定該深度Yf與\,Yf與\並如上述之說明— 起形成該第二預定深度γ2。 該第一預定深度(Υ!)被選擇大於第二預定深度γ2。較佳 地是’當0電壓被分別應用於源觸點3丨與汲觸點32時,該 第一預定深度亦被選擇以耗盡介於第―預定深度\與源及 /汲之間的槽區域22,。因此,較佳地是被標號為γη的完整 區域分別在0源偏壓或是q汲偏壓下完全地耗盡。基於此準 則,Υ;由下式決定:.Page 26 Γ 14 32 6 3 t > V. Description of the invention (24) Based on the low-capacitance Fermi-field-effect transistor guidelines of US Patent Nos. 5,194,923 and 5,369,295, the first Two predetermined depths Y2 are selected. These precision measurements determine the depths Yf and \, Yf and \ and form the second predetermined depth γ2 together as described above. The first predetermined depth (Υ!) Is selected to be larger than the second predetermined depth γ2. Preferably, when the 0 voltage is applied to the source contact 3 丨 and the drain contact 32, respectively, the first predetermined depth is also selected to deplete between the first predetermined depth \ and the source and / drain. Slot area 22 ,. Therefore, it is preferable that the complete regions labeled γη are completely depleted at a source bias of 0 or a drain of q, respectively. Based on this rule, Υ; is determined by:

(4) 其中i\ub為基板21的摻雜質濃度,而Ν槽為等高_槽22, 的摻雜質濃度。 短通道費米-場效電晶體 現在參考圖4,如申請案序號為第08/50 5, 085號之短通 道Ν-通道費米-場效電晶體被解釋。那些熟知相關技藝之 士 士所瞭解的是Ρ-通道之短通道費米—場效電晶體可以藉 由將Ν與Ρ區域之導電類別加以轉換而獲得。如圖4所示, 費米-槽22由基板21延伸第—深度(Yf+Y。)。具空間隔開之 源區域23與汲區域24分別為於槽區域内,顯示為區域… 與24a。然而’該源區域23與没區域24亦分別由基板表面(4) where i \ ub is the dopant concentration of the substrate 21, and the N-channel is the dopant concentration of the equal height_channel 22 ,. Short-Channel Fermi-Field-Effect Transistor Referring now to FIG. 4, if the application number is 08/50 5, 085, the short-channel N-channel Fermi-field-effect transistor is explained. Those who are familiar with the related art know that the short channel Fermi-field effect transistor of the P-channel can be obtained by converting the conductivity types of the N and P regions. As shown in FIG. 4, the Fermi-groove 22 extends a first depth (Yf + Y.) From the substrate 21. The spatially separated source region 23 and the drain region 24 are respectively in the trough region, shown as regions ... and 24a. However, the source region 23 and the no-region 24 are also covered by the substrate surface.

C:\My Documents\54708, ptdC: \ My Documents \ 54708, ptd

1 fc432636 五、發明說明¢25) 21a延伸至超越該槽深度。該源區域23與汲區域24亦分別 沿著基板表面21a橫向延伸至超越該槽區域。 s亥通道咏度Yf以及槽深度YQ當該問極為臨界電位時被選 擇以將由基板表面至深度Yf的通道3 6内垂直於基扳表面之 靜電場最小化。如已說明,這些深度亦較佳地被選擇以產 生場效電晶體兩倍於半導體基板21費米電位之臨界電壓。 這些深度亦被選擇以允許第二導電類別之載子由源區域2 3 流通至没區域2 4,在應用至閘極之電位超越場效電晶懸之 臨界電壓時’由深度Yf向基板表面21a延伸。載子在基板 表面下之通道區域内由源區域23流通至汲區域24。於是, 雖然不是最佳化,在圖4之裝置仍可以產生遠大於傳統 MOSFET之飽和電流’並使在關閉狀態時之閘電容具有明顯 之減低。汲電容變得類似於傳統MOSFET裝置。 在圖4中將被瞭解的是,在深度方向延伸而超越該槽區 域之源區域23與;·及區域24正父於該基板表面21a,並在橫 向平行於該基板表面21 a。然而,為了將寄生侧壁電容減 少,該槽22κ較佳地是在橫向延伸超越該源區域23與汲區 域24,因此源區域23與汲區域24只在深度方向投影穿越該 槽。 現在參考圖5,如申請案序號為第08/505, 085號之短通 道Ν -通道費米-場效電晶體的第二具體實施例之本發明被 解釋。電晶體20"’除了源延伸區域23b與汲延伸區域24b分 別被提供在基板21内之基板表面21a上而鄰接源區域23’與 汲區域24·並延伸至通道36内以外,類似於圖4之電晶體1 fc432636 V. Description of the invention ¢ 25) 21a extends beyond the depth of the groove. The source region 23 and the drain region 24 also extend laterally along the substrate surface 21a beyond the groove region. The channel yong degree Yf and the groove depth YQ are selected to minimize the electrostatic field perpendicular to the surface of the substrate in the channel 36 from the substrate surface to the depth Yf when the critical potential is reached. As already explained, these depths are also preferably selected to produce a field-effect transistor with a threshold voltage that is twice the Fermi potential of the semiconductor substrate 21. These depths are also selected to allow carriers of the second conductive type to flow from the source region 2 3 to the non-region 2 4. When the potential applied to the gate electrode exceeds the threshold voltage of the field effect transistor, the depth Yf is applied to the substrate surface. 21a extends. The carrier flows from the source region 23 to the drain region 24 in a channel region below the surface of the substrate. Therefore, although it is not optimized, the device in FIG. 4 can still generate a saturation current 'much larger than that of a conventional MOSFET and significantly reduce the gate capacitance in the off state. Sinking capacitance becomes similar to traditional MOSFET devices. It will be understood in Fig. 4 that the source region 23 and the region extending in the depth direction beyond the groove region; and the region 24 is exactly on the substrate surface 21a and is parallel to the substrate surface 21a in the transverse direction. However, in order to reduce the parasitic sidewall capacitance, the slot 22K preferably extends laterally beyond the source region 23 and the drain region 24, so the source region 23 and the drain region 24 project through the slot only in the depth direction. Referring now to FIG. 5, the present invention is explained as a second embodiment of the short channel N-channel Fermi-field-effect transistor with the application serial number 08/505, 085. The transistor 20 " is similar to FIG. 4 except that the source extension region 23b and the drain extension region 24b are provided on the substrate surface 21a in the substrate 21 and adjacent to the source region 23 ′ and the drain region 24 and extend into the channel 36, similar to FIG. Transistor

C:\My Documents\54708, ptd 第28頁 P4326 3 6 五、發明說明(26) 20" ^ 如圖5所示’源延伸區域23b與沒延伸區域24b分別以源 區域23’與汲區域24’相同之摻雜濃度而被大大地摻雜 (N〃)。將被瞭解地是,源延伸區域23b與汲延伸區域24b不 是如傳統MOSFET裝置小小地摻雜之結構。而是,以源區域 與淡區域相同之掺雜?農度大大地較佳地被摻雜以為了實際 減低該漏並改良飽和電流。 由於如上述之充電共享’該源延伸區域23b與汲延伸區 域24b減低汲電壓靈敏度。不幸地是,圖5之裝置一般將不 顯現如圖1與圖2封閉的源區域與没區域之低電容。將被那 些熟知相關技藝之人士所瞭解的是,為了預留該源延伸區 域23b與ϊ及延伸區域24b之大小,一重的、慢速移動之摻雜 物如砷或是銦較佳地被使用於該源延伸區域與汲延伸區 域’而非通常使用於該源區域與沒區域之輕的、快速移動 元素。 包含汲場終端之短通道費米-場效電晶體 包含汲場終端區域之短通道費米-場效電晶體的結構, 此處被視為Vina卜場效電晶體,如申請案序號為第 0 8 / 5 9 7,711號’現在將被說明。將被那些熟知相關技藝之 人士所瞭解的是,P-通道Vina卜場效電晶體可以藉由轉 N -區域與P-區域的導電類別而獲得。 1' 圖6與圖7分別解釋該Vinal -場效電晶體的第—及第二具 體實施例。如圖6所示,Vinai-場效電晶體6〇包含一第一… 導電類別此處為P-型的半導體嗟板21。將被那些熟知相關C: \ My Documents \ 54708, ptd Page 28 P4326 3 6 V. Description of the Invention (26) 20 " ^ As shown in Figure 5, 'source extended area 23b and non-extended area 24b are source area 23' and drain area 24, respectively. 'The same doping concentration is greatly doped (N〃). It will be understood that the source extension regions 23b and the drain extension regions 24b are not structured as smallly doped as a conventional MOSFET device. Instead, do the same doping in the source and light regions? Fertility is much better doped in order to actually reduce the leakage and improve the saturation current. Due to the charging sharing as described above, the source extension region 23b and the drain extension region 24b reduce the sensitivity of the drain voltage. Unfortunately, the device of Fig. 5 will generally not exhibit the low capacitance of the closed source region and no region of Fig. 1 and Fig. 2. Those skilled in the art will understand that in order to reserve the size of the source extension regions 23b, plutonium and extension regions 24b, a heavy, slow-moving dopant such as arsenic or indium is preferably used. Light, fast-moving elements in the source and drain extension regions, rather than the source and drain regions typically used. The structure of the short-channel Fermi-field-effect transistor including the drain-field terminal includes the short-channel Fermi-field-effect transistor of the drain-field terminal region, which is considered to be a Vinab field-effect transistor. 0 8/5 9 7,711 'will now be explained. As will be understood by those familiar with the relevant arts, P-channel Vina field-effect transistors can be obtained by switching the conductivity type of the N- and P-regions. 1 'FIG. 6 and FIG. 7 explain the first and second specific embodiments of the Vinal-field effect transistor, respectively. As shown in FIG. 6, the Vinai-field-effect transistor 60 includes a first ... conductive semiconductor plate 21 of the P-type here. Will be relevant

M3263 6M3263 6

解的是,該半導體基板21亦可以包含-個 1疋/二/成在大塊半導體基板上,所以基板表面 道/Λ Λ 外延層的外部表面·^,而非在大塊半 導體基板的外部表面上β 仍參考圖6,第二導電類別的(此處為卜型)第一槽區域 62被形成在基板21的基板表面2ia上,並由該基板表面21a 延伸第-深度Y3至基板内。第一導電類別,此處為p型的 第二槽區域64被包含在第一槽區域62内。第二槽區域“由 該基板表面21 a延伸第二深度Ya至基板内,而且第二深度ι 小於第一深度Ya。在第一槽區域62内的第二槽區域64亦夂可2 以在橫向延伸超越該第一槽區域62。第二槽區域64形成該 汲場終端(DFT)區域亦將在下文說明。第一導電類別,此 處為卜型的第三槽區域66被包含在第二槽區域64内。該第 二槽區域66由該基板表面延伸第一深度A至基板21内,其 中該第三深度Yi小於第二深度。第三槽區域66較佳地是形 成在外延層内,將在下文說明。 仍參考圖6 ’第二導電類別(此處為N + )的源區域23與沒 區域24分別被形成在該第一槽區域62内並由基板表面2 ia 延伸第四深度丫4至基板内。如圖6所示’第四深度丫4大於第 三深度Yi。如圖6所示,第四深度Y4亦大於第三深度?2,但 是小於第一深度¥3。於是,該源區域23與汲區域24分別延 伸穿越第三槽區域66與第二槽區域64而至第一槽區域62 内。如圖7所示之Vinal -場效電晶體60’之第二具體實施例 中,該第四深度Y4大於第三深度L,但是小於第二深度The solution is that the semiconductor substrate 21 can also include a 1 疋 / 二 / 成 on a large semiconductor substrate, so the substrate surface track / Λ Λ external surface of the epitaxial layer, rather than outside the large semiconductor substrate Still referring to FIG. 6 on the surface β, the first groove region 62 of the second conductive type (here, a b-type) is formed on the substrate surface 2ia of the substrate 21, and extends from the substrate surface 21a to a depth of -3 into the substrate . A first conductivity type, here a p-type second trench region 64 is contained in the first trench region 62. The second groove region “extends from the substrate surface 21 a to a second depth Ya into the substrate, and the second depth ι is smaller than the first depth Ya. The second groove region 64 in the first groove region 62 may also Extending laterally beyond the first slot region 62. The second slot region 64 forming the DFT region will also be described below. The first conductive type, here a third slot region 66 of a Bu shape is included in the first Two groove regions 64. The second groove region 66 extends from the substrate surface to a first depth A to the substrate 21, wherein the third depth Yi is smaller than the second depth. The third groove region 66 is preferably formed in an epitaxial layer. The source region 23 and the no-region 24 of the second conductivity type (here, N +) are formed in the first groove region 62 and extend from the substrate surface 2 ia. Four depths Ya4 into the substrate. As shown in FIG. 6, the fourth depth Ya4 is greater than the third depth Yi. As shown in FIG. 6, the fourth depth Y4 is also greater than the third depth? 2, but less than the first depth ¥ 3. Therefore, the source region 23 and the drain region 24 extend through the third slot region 66 and the second slot region, respectively. Region 64 to the first groove region 62. In the second specific embodiment of the Vinal-field effect transistor 60 'shown in FIG. 7, the fourth depth Y4 is greater than the third depth L, but smaller than the second depth.

C:\My Documents\54708.ptd 苐30頁 14326 3 6 五、發明說明(28) Y2 ’所以該源區域與汲區域延伸穿越第三槽區域66而至第 二槽區域64内,但是並不穿越第一槽區域62。 圖6與圖7的Vinal -場效電晶體6〇及60,亦分別包含閘絕 緣層26及包含第一導電類別此處為p型的polycrystalline 矽層之2 8閘極。源觸點31 '閘觸點2 9與汲觸點3 2亦如已說 明之被包含。該基板觸點34亦被包含》該基板觸點顯現在 基板表面21a ’但是亦可以如前述之具體實施例被形成在 鄰接基板表面21a處。 圖6與圖7的Vina卜場效電晶體60及60’亦可以由基板21 内的層方面來說明之’該層延伸至介於源區域23與汲區域 24之間。當由此觀點來看時,第三槽66產生第二導電類別 之第一層6 6a在基板内的基板表面,該層由基板表面延伸 第一深度丫,至基板内。第二槽64產生第一導電類別之第二 層64a在基板内,該層由源區域23延伸至汲區域24,且由 基板表面延伸第一深度丫!至第二深度Y2而延伸至基板内。 第二層64a如下文說明作用為汲場終端機構。第一槽62產 生第二導電類別之第三層62a在基板内,該層由源區域23 延伸至沒區域24,且由基板表面延伸第二深度丫2至第三深 度\而延伸至基板内。 當由此方式看待時,在圊6之具體實施例中,該第三層 62a亦由源底部23a延伸至汲底部24a,以區域62b指示。在 圖7之具體實施例中,該第二層64a與第三層62a二者均由 源底部23a延伸至汲底部24a,分別以區域64b與62b顯現。 圖6與圖7的Vinal -場效電晶禮60及60’亦可以被視為槽一C: \ My Documents \ 54708.ptd 苐 Page 30 14326 3 6 V. Description of the invention (28) Y2 'So the source area and the drain area extend through the third slot area 66 to the second slot area 64, but they are not Pass through the first slot area 62. The Vinal-field-effect transistors 60 and 60 of FIGS. 6 and 7 also include a gate insulating layer 26 and a 28 gate including a polycrystalline silicon layer of a p-type here and a first conductivity type, respectively. Source contacts 31 'gate contacts 29 and drain contacts 32 are also included as described. The substrate contact 34 is also included. The substrate contact appears on the substrate surface 21a ', but may be formed adjacent to the substrate surface 21a as in the foregoing specific embodiment. The Vina field effect transistors 60 and 60 'of FIG. 6 and FIG. 7 can also be described by the layers in the substrate 21. The layer extends between the source region 23 and the drain region 24. When viewed from this point of view, the third groove 66 generates a first layer 66a of the second conductivity type in the substrate surface within the substrate, and this layer extends from the substrate surface by a first depth ya to the substrate. The second slot 64 generates a second layer 64a of the first conductivity type in the substrate. This layer extends from the source region 23 to the drain region 24, and extends a first depth from the substrate surface! It extends into the substrate to the second depth Y2. The second layer 64a functions as a drain terminal mechanism as explained below. The first groove 62 generates a third layer 62a of the second conductivity type in the substrate. This layer extends from the source region 23 to the non-region 24, and extends from the surface of the substrate to a second depth ^ 2 to a third depth \ and extends into the substrate. . When viewed in this way, in the specific embodiment of Figure 6, the third layer 62a also extends from the source bottom 23a to the drain bottom 24a, indicated by the area 62b. In the specific embodiment of Fig. 7, the second layer 64a and the third layer 62a both extend from the source bottom 23a to the drain bottom 24a, and appear as regions 64b and 62b, respectively. The Vinal-field effect crystal crystals 60 and 60 ′ of FIG. 6 and FIG. 7 can also be regarded as slot one.

C:\My Documents\54708. ptd 第31頁 1-4326 3 6 五、發明說明(29) 場效電晶體,包含原—始槽之中的抗-摻雜掩埋槽64。另一 方面,Vina 1-場效電晶體可以被視為包含在通道區域6 6a 下方第一導電類別掩埋層64a的槽-場效電晶體。將在下文 詳細說明的是,第二槽64包含第二層64a作用為汲場終端 機構(DFT)以藉由防止應用之汲_偏壓造成載子由源區域注 入至通道區域内或是通道區域下。於是,第二槽與第二 層64a亦可以被視為汲場終端機構(DFT)區域。 圖6與圖7之Vina卜場效電晶體60與60a之操作在申請案 序號為第08/597, 711號中說明,而將不在此處再次說明。 費米-場效電晶體之低電壓操作 說明本發明之金屬閘費米-場效電晶體之前,將說明低 電壓操作之一般考量。 _ 等式5反應場效電晶體之最大可變飽和電流。當該操作 電壓Vd於低功率應用或是小電晶體體積變小時,量接 近於零,且可能限制可以產生的電流。 , wC: \ My Documents \ 54708. Ptd page 31 1-4326 3 6 V. Description of the invention (29) The field effect transistor includes the anti-doped buried trench 64 in the original-origin trench. On the other hand, the Vina 1-field-effect transistor can be regarded as a trench-field-effect transistor including the first conductive type buried layer 64a below the channel region 66a. As will be described in detail below, the second slot 64 contains a second layer 64a which functions as a DFT to prevent carriers from being injected into the channel region or channel from the source region by preventing the applied drain bias. Area. Therefore, the second slot and the second layer 64a can also be regarded as a DFT area. The operation of the Vina field-effect transistors 60 and 60a of FIGS. 6 and 7 is described in the application serial number 08/597, 711, and will not be described again here. Low-Voltage Operation of Fermi-Field-Effect Transistors Before describing the metal-gate Fermi-FET of the present invention, general considerations of low-voltage operation will be explained. _ Equation 5 reflects the maximum variable saturation current of a field effect transistor. When the operating voltage Vd is reduced in low-power applications or small transistors, the amount is close to zero and may limit the current that can be generated. , w

Idsa, = 2 一 〇 where 4 =匕=匕 (5) 在知通迢費米-場效電晶體裝置中,該臨界電壓可以高 於M0SFET匹配大小裝置之臨界電a。此情況為了克服在f 米-場效電晶體中較在表面通道内或是傳統掩埋通道 M0SFET裝置更明顯的二维效應可以是計畫性的。只要%為 較鉍界電壓vt大時(例如vd^3Vt),在費米_場效電晶體之 通道内的已增加橫向栽子速度呵以產生較高飽和電流。Idsa, = 2 〇 where 4 = = = 匕 (5) In a well-known Fermi-field-effect transistor device, the threshold voltage can be higher than the threshold voltage a of a MOSFET matched size device. In order to overcome this situation, it may be planned to overcome the two-dimensional effect that is more obvious in the f m-field effect transistor than in the surface channel or the traditional buried channel MOSFET device. As long as% is greater than the bismuth boundary voltage vt (for example, vd ^ 3Vt), the lateral plant speed in the channel of the Fermi field effect transistor has been increased to generate a higher saturation current.

C:\My Documents\54708. ptd 第32頁 *432636 五、發明說明(30) ' ~ ---- =式6在費米—場效電晶體之臨界電壓後面的項目。 不η 逮省略,其為短通道效應之結果)通常包含:個 不同的電壓分量: V.+V.+V.+V^AV,C: \ My Documents \ 54708. Ptd page 32 * 432636 V. Description of the invention (30) '~ ---- = Equation 6 is behind the threshold voltage of Fermi-field-effect transistor. Do not omit it, which is the result of the short channel effect) usually contains: different voltage components: V. + V. + V. + V ^ AV,

kTm(^ J) 2?ε 凡 乂 .⑹ 2 ΛkTm (^ J) 2? ε where 乂 .⑹ 2 Λ

Mrtl 等式6的四個分量在圖8中以圖形顯現。圖8解釋類似於 圖4之短通道費米—場效電晶體。為了容易解釋,該槽深度 Yf + Ye被設定為與源/汲深度Xj。 又 參考圖8,V!由介於繞線與p_犁多晶矽閘以及繞線與在 費采-槽結構下之p -槽區域之間的觸點電位差而形成。^ 量化在費米〜槽:P-槽接面以下橫跨耗盡區域所感應之電 壓。Vs代表橫跨費米_槽本身之電壓。在長通道内,此電 壓包含在費米-槽:P-槽接面以上的耗盡區域以及介於接 面感應區域與矽表面之間因閘場而成的耗盡。最後,V4量 化於Va定義之區域内終止充電時•因多晶矽閘產生之開而樺 跨閘氧化物產生之電壓。The four components of Mrtl equation 6 are graphically shown in FIG. 8. FIG. 8 illustrates a short-channel Fermi-field-effect transistor similar to that of FIG. 4. For ease of explanation, the slot depth Yf + Ye is set to the source / drain depth Xj. Referring again to FIG. 8, V! Is formed by the contact potential difference between the winding and the p_plough polysilicon gate, and between the winding and the p-slot region under the Fescher-slot structure. ^ Quantify the voltage induced across the depletion area below the Fermi ~ Slot: P-Slot junction. Vs represents the voltage across the Fermi slot. In a long channel, this voltage is contained in the depletion region above the Fermi-Slot: P-Slot junction and the depletion due to the gate field between the interface sensing region and the silicon surface. Finally, V4 quantifies the voltage generated by the cross-gate oxide due to the opening of the polycrystalline silicon gate when charging is terminated in the area defined by Va.

第33頁 C:\My Docuraents\54708. ptdPage 33 C: \ My Docuraents \ 54708.ptd

野4 3263 SWild 4 3263 S

五、發明說明(31) 積體電路之場效電晶體的整合密度持 以期望繼續於可預見之將來。由於將大小二趨向可 未以了’通常亦可期待減低該電晶體的操作 微 制在較小的通道長度下。電晶體臨界 1寺控 是可期待的。 电嶝的專1之減低亦 減低該場效電晶體臨界電壓的—種 摻雜密度u變低。此技術將Vl項的值變低:將不;=的 ?〇 C"乂上之位準以防止蕭特基屏障接觸以及 關閉時將poly耗量最小化。超過的多元耗盡 、 道費米-場效電晶體裝置内上升的漏位準。、 -通 在Ν_ = 1·〇χ1〇2。以及NweU為3.〇,1〇】6時,解'將 約+ 0.210伏特。當使用多晶矽時,此電壓可能是\的最= 值。不幸的是,這將會產生臨界電壓不足的減低^ ^ 當短通道裝置於低沒顛壓操作時,該臨界電壓亦將被 低以產生明顯的飽和電流。圖9顯現由商業的二^ 裝置模擬程式所模擬的IdVg曲線。 ’‘ ” 該模擬的電晶體產生在圖9之曲線解釋藉由增加γ 、費 米-槽結構之深度以減低該臨界電壓的企圖。^有^電曰曰 體具有4 rim閘氧化物與0. 25微米之抽長閘長度。該電子^莫 擬利用1. 8伏特之汲電壓。為此目的,vt被定義為及電流& 到達5. 0xl(T7安培/微米時的閘電壓。該值在^^曲線上二 現為圓圈。 π 該啟始裝置(圖9之最右方)"以〇‘95伏特電壓而具有極5. Description of the invention (31) The integration density of field effect transistors of integrated circuits is expected to continue in the foreseeable future. Since the size two trend can be changed, it is usually expected to reduce the operation of the transistor to a smaller channel length. Transistor critical 1 control is expected. The reduction of the special 1 of the electric chirp also reduces the threshold voltage of the field effect transistor—a kind of doping density u becomes lower. This technique lowers the value of the Vl term: it will not; the above-mentioned level of C? To prevent Schottky barrier contact and minimize poly consumption when closed. Exceeds the multi-element depletion, and increases the leakage level in the Fermi-FET device. ,-通 at N_ = 1 × 〇χ102. And when NweU is 3.0, 10], the solution will be about +0.210 volts. When using polycrystalline silicon, this voltage may be the highest value. Unfortunately, this will result in a reduction of insufficient threshold voltage. ^ When the short-channel device is operated at low voltage, the threshold voltage will also be lowered to generate a significant saturation current. Figure 9 shows the IdVg curve simulated by a commercial two-device simulator. '' The simulated transistor is generated in the curve of Figure 9 to explain the attempt to reduce the critical voltage by increasing the depth of the γ, Fermi-slot structure. ^ You have a body with 4 rim gate oxide and 0 25 micron drawn gate length. The electron is not intended to use a draw voltage of 1.8 volts. For this purpose, vt is defined as the gate voltage at which the current & reaches 5.0xl (T7 amps / micron.) The value is now a circle on the ^^ curve. Π The starting device (far right of Fig. 9) " has a pole voltage of 0'95 volts.

C:\My Documents\54708. ptd 第34頁 r 1432636 五、發明說明(32) 佳的短通道特徵。不幸的是,如此高的Vt產生電晶體寬度 為每一微米之2 2 5微安培之驅動電流。這結果不會較傳統 之MOSFET裝置為佳。該低電流是由於等式5項目Vd-Vt之 故。 臨界電壓之減低亦可以藉由增加該費米-槽深度而完 成。如圖9所示,當槽深度被增加時,該次臨界振幅在開 始之二步驟保持與啟始曲線相同。然而,一旦vt已經被降 低至接近0·80伏特時,該次臨界振幅開始隨著連續步驟而 降低。此情況造成因臨界之減低而使漏電流之增加。該次 臨界振幅之位移的發生是因為較深的槽結構由於該汲較源 相對於槽結構之深度為較複雜而變成對二維效應漸為敏 感。 假設漏需求為小於1. Ο χ 1. 〇_12安培/微米,以此技術之最 小臨界為0.75伏特。在此位準產生之驅動電流為315微安 培/微米’有4 0 %之改良,但是更大的加速可以戲劇性地增 加效能。不幸的是,此臨界電壓可能不夠低。 另一種減低臨界的技術是增加費米-槽摻雜密度而不用 增加I。此技術之結果如圖1 〇弱勢。如所期望之結果,增 加費米-槽摻雜密度可以延遲二維效應之開始,因為較薄 之槽提供一些防護汲感應注入(D 11 )之量測。然而當vt被 減低時,次臨界振幅仍有明顯之減低,假設設定idss設定 為小於1. 0x1 (Γ12安培/微米時,臨界電壓為0.65伏特。驅 動電流之適度增加可以隨臨界電壓之另一 1 〇 〇 mV之減低而 獲得。使用此技術而產生的模冁電流為2 9 9微安培/微来,C: \ My Documents \ 54708. Ptd page 34 r 1432636 V. Description of the invention (32) Excellent short channel characteristics. Unfortunately, such a high Vt produces a drive current with a transistor width of 225 microamperes per micrometer. This result is no better than traditional MOSFET devices. This low current is due to the equation Vd-Vt. The reduction of the threshold voltage can also be accomplished by increasing the Fermi-groove depth. As shown in Fig. 9, when the groove depth is increased, the subcritical amplitude remains the same as the starting curve in the first two steps. However, once vt has been reduced to close to 0.80 volts, this subcritical amplitude begins to decrease with successive steps. This situation results in an increase in leakage current due to a decrease in the threshold. The displacement of this critical amplitude occurs because the deeper groove structure becomes more sensitive to the two-dimensional effect because the depth of the sink source relative to the groove structure is more complicated. It is assumed that the leakage demand is less than 1.0 χ 1.0 -12 amps / micron, and the minimum threshold for this technique is 0.75 volts. The drive current generated at this level is 315 microamps / micron ', a 40% improvement, but greater acceleration can dramatically increase performance. Unfortunately, this threshold voltage may not be low enough. Another technique to reduce the criticality is to increase the Fermi-channel doping density without increasing I. The results of this technique are shown in Figure 10. Weaknesses. As expected, increasing the Fermi-trench doping density can delay the onset of the two-dimensional effect because the thinner trenches provide some measure of the protection against the drain-induced implantation (D 11). However, when vt is reduced, the subcritical amplitude is still significantly reduced. Assuming that idss is set to less than 1.0x1 (Γ12 amps / micron), the critical voltage is 0.65 volts. A modest increase in the driving current can follow another It is obtained by a reduction of 100 mV. The mode current generated by using this technology is 299 microamperes per microsecond.

C : \Hy Docuuients\54708. ptdC: \ Hy Docuuients \ 54708. Ptd

第35頁 14 32 6 3 6 五 '發明說明(33) 雖然該臨界較低100 mV,仍較藉由增加槽深度而浐得之電 流精低。此結果是由於伴隨通道内之較高摻雜的^由載子 之行動性減低之故。 於是,用於減低臨界電壓之這些技術可能產生漏電流增 加之花費、驅動電流之減少及/或其他效應如產生不需;'要曰 之蕭特基接觸。這些分析可能在產生低電壓費米_場效電 晶體時不被接受。 金屬閘費米-場效電晶體 如本發明,該費米-場效電晶體之臨界電壓可以藉由在 費米-場效電晶體内使用金屬閘而非抗-掺雜多閘被S減低, 而不需過份地增加漏電流及/或過份地減低飽和電流。 圖11解釋金屬閘費米-場效電晶體之具體實施例。此具 體實施例在美國專利序號為第5, 543, 654號之N—通道,短 通道費来-場效電晶體之後做成式樣’該電晶體如本發明 之圖4解釋。然而’由那些熟知相關技藝之人士所認知的 是金屬閘費米-場效電晶體之技術可以應用於所有的電晶 體以將有關之臨界電壓變低。 如圖11所示,金屬閘費米-場效電晶體丨〗〇包含金屬閘 28’ ,而非圖4之P-型多晶矽閘28與閘電極層29。為了容易 解釋起見,電晶體11〇的其他元件不從圖4更改。於是,如 圖11所示’該金屬閘2 8,被直接包含在閘絕緣層2 6上。以 不同方式陳述,該電晶體110的金屬閘28不含有直接在閘 絕緣層2 6上摻雜的多晶矽。因此,該觸點電位不受多晶硬 的費来-電位控制。所要了解的《是,該金屬閘可以包含多Page 35 14 32 6 3 6 5 'Explanation of the invention (33) Although the threshold is lower than 100 mV, it is still lower than the current precision obtained by increasing the depth of the groove. This result is due to the reduced mobility of the carriers associated with the higher doping in the channel. As a result, these techniques for reducing the threshold voltage may result in increased leakage current costs, reduced drive currents, and / or other effects if not required; 'Schottky contact to be said. These analyses may not be accepted when producing low-voltage Fermi FETs. Metal Gate Fermi-Field Effect Transistor According to the present invention, the threshold voltage of the Fermi-Field effect transistor can be reduced by S by using a metal gate instead of an anti-doped multi-gate in the Fermi-field effect transistor. Without excessively increasing the leakage current and / or excessively reducing the saturation current. FIG. 11 illustrates a specific embodiment of a metal gate Fermi-field effect transistor. This specific embodiment is patterned after the N-channel, short-channel fee-field effect transistor of U.S. Patent No. 5,543,654 is made into a pattern. The transistor is explained in FIG. 4 of the present invention. However, what is recognized by those who are familiar with the related art is that the technology of the metal gate Fermi-field effect transistor can be applied to all the transistors to lower the relevant threshold voltage. As shown in FIG. 11, the metal gate Fermi-field effect transistor includes a metal gate 28 'instead of the P-type polycrystalline silicon gate 28 and the gate electrode layer 29 of FIG. For ease of explanation, other elements of the transistor 110 are not changed from FIG. 4. Then, as shown in FIG. 11, the metal gate 28 is directly contained on the gate insulating layer 26. Stated differently, the metal gate 28 of the transistor 110 does not contain polycrystalline silicon doped directly on the gate insulating layer 26. Therefore, the contact potential is not controlled by the polycrystalline hard Fresnel-potential. What you need to know is that the metal gate can contain multiple

C:\My D〇cuments\54708. ptd 第36頁 ,432636 五、發明說明(34) '~~~ ------ 層,其中直接在閘絕緣層上的—層為不含有摻雜質 妙。 』夕晶 金屬閘28,將費米_場效電晶體之臨界電壓變低 、 地招致其他損耗的能力現在將說明。如以上所說不過分 於被使用於防止蕭特基障礙之最小的多晶矽摻雜位準^由 具有較低的界限。然而,其他的材料可以和 f ,而 起使用以從I項移去此限制。 、‘質~ 特定地是,金屬、矽化物或是其他具有接近矽帶隙 工作函數的金屬合金可以明顯地減低費米-場效電晶體心 臨界電壓而不過分地增加不利的二維效應。 假使金屬、矽化物或是其他非半導體被使用為問材料, 用於V!的等式(6 )被修正為反應工作函數之不同而 材料之接觸電位: 其中於gate為用於該閘之材料的工作函數而&為石夕之中間間 隙C内在的)位準或是4. 8 5伏特。 圖1 2顯現一些可以使用為費米—場效電晶體閘結構之材 料的工作函數。具有接近4. 8 5伏特的材料特別較佳被採用 於費来-場效電晶體閘結構,因為可以形成對稱的N _通道 或P —通道裝置相對較低的臨界。較佳地是,具有介於P -型 石夕與N -型矽工作函數的金屬或是金屬合金被使用,如圖ηC: \ My D〇cuments \ 54708. Ptd page 36, 432636 V. Description of the invention (34) '~~~ ------ layer, where the layer directly on the gate insulation layer-layer does not contain doping Quality is wonderful. Xijing Metal Gate 28, the ability to lower the threshold voltage of Fermi FETs and cause other losses to ground will now be explained. As mentioned above, the minimal polycrystalline silicon doping level used to prevent the Schottky barrier has a lower limit. However, other materials can be used in conjunction with f to remove this restriction from item I. ‘Quality ~ In particular, metals, silicides, or other metal alloys with working functions close to the band gap of silicon can significantly reduce the critical voltage of Fermi-field-effect transistor cores without excessively increasing adverse two-dimensional effects. If a metal, silicide, or other non-semiconductor is used as the material, the equation (6) for V! Is modified to reflect the difference in working function and the contact potential of the material: where gate is the material used for the gate And the working function of & is the internal level of the intermediate gap C of Shi Xi) or 4. 8 5 volts. Figure 12 shows the working functions of some materials that can be used as Fermi-field-effect thyristor structures. Materials with close to 4.85 volts are particularly preferred for use in the field-effect thyristor structure because a relatively low criticality can be formed for a symmetrical N-channel or P-channel device. Preferably, a metal or metal alloy having a work function between P-type Shi Xi and N-type silicon is used, as shown in Figure η

第37頁 C:\My D〇cuiaents\54708. ptd ,432636 五、發明說明(35) 中的虚線所示。 圖13模擬圖9與10中相同之模擬的高臨界N-通道電晶 體’使用不同的閘村料並顯現該臨界電壓如何因V】的變化 而移動。圖13指示具不同的閘材料啟始電壓為0· 95伏特的 裝置。所有的基板剖面與接面沒有改變。如圖所示,不同 的IdVs曲線只有位移1的電壓分量。所有的曲線具有相等 的次臨界振幅值。 閘材料的適當選擇因此可以產生具高臨界關閉狀態效能 參數的低臨界費米-場效電晶體。該金屬閘費米-場效電晶 體獨特地具有另一種閘工作函數的優點。特別是,由於在 Vt時垂直靜電場的反作用,假使該工作函數接近於型與 P-型多晶矽之間的中間範圍時,該費米-場效電晶體可以 將具單一閘材料的N-通道與P-通道裝置加以最佳化。 具有工作函數接近4. 85伏特且已經被使用於MOSFET技術 的材料包含鎢、矽化鎢、鎳、鈷以及矽化鈷。圖9與圖1〇 相同的N-通道電晶體的模擬使用鎢作為閘材料,產生飽和 電流由225微安培/微米增加至423微安培/微米而不改變 DIBL或是次臨界sw i ng。圖14以對數刻度顯現該id、曲線, 使用最佳化於費米-槽深度的p -型多晶矽與如上述之鎢閘 模擬的費米-槽摻雜。如所示,該臨界電壓可以戲劇地變 低’且金屬閘結構之較佳的次臨界振幅可以獲得。圖丨5以 、線性刻度顯現相同的關係^ 為了解釋如本發明相對於閘工作函數工程的變低之臨界 電壓的衝擊’一些反向器結構之大信號暫態反應被模擬。Page 37 C: \ My Docuiaents \ 54708. Ptd, 432636 5. The dotted line in the description of the invention (35). Fig. 13 simulates the same simulated high critical N-channel electrical crystals' shown in Figs. 9 and 10 using different gate materials and shows how the threshold voltage moves due to a change in V]. Figure 13 indicates a device with different starting materials for the starting voltage of 0.95 volts. All substrate sections and junctions remain unchanged. As shown in the figure, the different IdVs curves have only a voltage component shifted by one. All curves have equal subcritical amplitude values. Proper selection of the gate material can therefore produce a low critical Fermi-field effect transistor with high critical off-state efficiency parameters. The metal gate Fermi-field-effect electric crystal has the unique advantage of another gate working function. In particular, due to the reaction of the vertical electrostatic field at Vt, if the working function is close to the middle range between P-type and P-type polycrystalline silicon, the Fermi-field-effect transistor can convert the N-channel with a single gate material. Optimized with P-channel device. Materials that have a work function close to 4.85 volts and have been used in MOSFET technology include tungsten, tungsten silicide, nickel, cobalt, and cobalt silicide. The simulation of the same N-channel transistor in Fig. 9 using Fig. 10 uses tungsten as the gate material, and the saturation current is increased from 225 microamperes / micron to 423 microamperes / micron without changing DIBL or subcritical sw ng. Figure 14 shows the id and curve on a logarithmic scale, using p-type polycrystalline silicon optimized for the Fermi-groove depth and the Fermi-groove doping simulated by the tungsten gate as described above. As shown, this threshold voltage can be dramatically lowered 'and a better subcritical amplitude of the metal gate structure can be obtained. Figure 5 shows the same relationship with the linear scale. In order to explain the impact of the lower threshold voltage on the working function engineering of the present invention, the large-signal transient response of some inverter structures is simulated.

D〇cuinents\54708.ptd 第 38 頁 *4326 3 6 五、發明說明(36) '—---~~~. 傳統CMOS、多晶矽閘費米_場效電晶體與金屬閘費来_ 電晶體,比較被執行。代表三種模擬的圖示顯現於㈣' 中。固定負載電容為〇〇5 fF被使用於模擬單一反向器之 有效的最大閘電容,亦即扇出為}。使用於這些 置之通道長度均為〇, 4微米,而閘氧化物厚度為6〇埃:為 使用於比較目的,該供應電壓為2. 5伏特,因為m〇sfet裝 置被設計此電壓值。該M〇SFET模擬的直流裝置且有 t 量測特徵。 Μ 以混合模式併合模擬器模擬反向器允許電路元件以傳統 的、工業標準集中分析模式或是依據物理裝置結構之完全 二維數值解答加以模式化。因此,仍不具備集令分析模式 的緊要裝置可以在熟悉之電路模擬環境用數值分析傳統裝 置與電路元件。如在傳統電路分析程式中,標準電路分析 包含DC、AC及/或可以用併合模擬器執行的大信號暫態棋 擬0 、 對這些模擬而言’只有大信號暫態模擬被執行,因為單 獨裝置DC特徵以經由該裝置模擬所熟知。對各反向器而 言’該供應電壓被以足夠之延遲斜坡方式上升至Vd而允許 該電路節點安定至輸入為低的啟始DC狀態。該輸入之後被 脈衝為高電壓然後為低電壓,並再次以足夠長的延遲時間 允許所有的節點到達穩定狀態。 所形成的輸出響應被一起顯示在圖17中。不同的延遲特 徵亦可以見到。可以見到傳統的費米—場效電晶體反向器 較之M0SFET ’顯示明顯改良後啲上升及下降時間,而金屬D〇cuinents \ 54708.ptd Page 38 * 4326 3 6 V. Description of the invention (36) '----- ~~~. Traditional CMOS, polycrystalline silicon gate Fermi _ field effect transistor and metal gate fee _ transistor The comparison is performed. Icons representing the three simulations appear in ㈣ '. The fixed load capacitance of 005 fF is used to simulate the effective maximum gate capacitance of a single inverter, that is, fanout is}. The channel lengths used in these devices were all 0.4 micrometers and the gate oxide thickness was 60 angstroms. For comparison purposes, the supply voltage was 2.5 volts because the MOSFET device was designed for this voltage value. The MOSFET simulates a DC device and has t-measurement characteristics. Μ Simulating the inverter in a hybrid mode merge simulator allows circuit elements to be modeled in a traditional, industry-standard centralized analysis mode or based on a complete two-dimensional numerical solution of the physical device structure. Therefore, the critical devices that still do not have a set analysis mode can numerically analyze traditional devices and circuit components in a familiar circuit simulation environment. For example, in traditional circuit analysis programs, standard circuit analysis includes DC, AC, and / or large-signal transient simulations that can be performed with a merge simulator. For these simulations, 'only large-signal transient simulations are performed because The device DC characteristics are well known through the device simulation. For each inverter, the supply voltage is ramped up to Vd with a sufficient delay ramp to allow the circuit node to settle to the starting DC state where the input is low. This input is then pulsed to a high voltage and then a low voltage, and again with a sufficiently long delay time to allow all nodes to reach a steady state. The resulting output response is shown together in Figure 17. Different delay characteristics can also be seen. It can be seen that the traditional Fermi-field-effect transistor inverter shows significantly improved 啲 rise and fall time compared to M0SFET ’, while the metal

C:\My Documents\54708. ptd 第39頁 *432636 五、發明說明(3Ό 閘費米-場效電晶體提供更進一步的改良。 具中間間隙工作功能材料之使用於閘極允許裝置通道為 内植設計,所以臨界可以被降低至合理值。結果,更加速 電壓(Vgs-Vt)可以藉由裝置提供以驅動固定具電容的負 載。介於傳統費采-場效電晶體與金屬閘費米-場效電晶體 之間的改良差異,亦可以使供應電壓本質地增加至接近或 是低於1.5伏特《有據於此’改良的低電壓操作可以提供 於費米-場效電晶體。 在圖式及規範中,已經揭示本發明之較佳具體實施例, 而且雖然使用特定的項目’也只是一般及說明的用意而不 是用於限制的目的,本發明的範圍將在下列之申請專利 圍中陳述。 &C: \ My Documents \ 54708. Ptd page 39 * 432636 V. Description of the invention (3Ό Gate Fermi-Field Effect Transistor provides further improvement. The use of materials with intermediate gap working function in the gate allows the device channel to be inside Plant design, so the criticality can be reduced to a reasonable value. As a result, a more accelerated voltage (Vgs-Vt) can be provided by the device to drive the load with a fixed capacitor. It lies between traditional Fei-field-effect transistor and metal gate Fermi -The improved difference between field-effect transistors can also increase the supply voltage substantially to or below 1.5 volts. "According to this, improved low-voltage operation can be provided for Fermi-field-effect transistors. In the drawings and specifications, the preferred embodiments of the present invention have been disclosed, and although the use of specific items is only for general and illustrative purposes, and not for limiting purposes, the scope of the present invention will be covered by the following patent applications. Statement in &

Claims (1)

.聲 4¾ f-王'^4326 3 6 87114493 β年歹月日 修正_ 六、申請專利範圍 1. 一種費米-臨界場效電晶體(Fermi-FET),包括: 在積體電路基板内具有空間隔開的源極與汲極區域; 在積體電路基板内介於空間隔開的源極與汲極區域之 間的費米-場效電晶體通道; ^ 介於空間隔開的源極與汲極區域之間在該積體電路基 板上的閘絕緣層;以及 直接在閘絕緣層上的金屬閘。 2. 如申請專利範圍第1項之費米-場效電晶體更包括: 在積體電路基板内該費米-場效電晶體通道之下的費 米-場效電晶體槽。 3. 如申請專利範圍第1項之費米-場效電晶體,其中該金 屬閘包括金屬合金閘。 4. 如申請專利範圍第3項之費米-場效電晶體,其中該金 屬合金閘包括矽化金屬閘。 5. 如申請專利範圍第1項之費米-場效電晶體,其中該金 屬閘更包括具有工作函數介於P -型多晶矽與N-型多晶矽之 閘的金屬。 6. 如申請專利範圍第5項之費米-場效電晶體,其中該金 屬閘更包括具有大約為4. 8 5伏特的工作函數。 7. 如申請專利範圍第1項之費米-場效電晶體,具有小於 大約為0.5伏特的臨界電壓。 8. 一種費米-臨界場效電晶體(Fermi-FET)包括: 在積體電路基板内具有空間隔開的源極與汲極區域; 在積體電路基板内介於空間隔開的源極與汲極區域之.Sound 4¾ f-Wang '^ 4326 3 6 87114493 Amendment on the date of β_6. Application for patent scope 1. A Fermi-critical field effect transistor (Fermi-FET), which includes: Space-separated source and drain regions; Fermi-field-effect transistor channels between space-separated source and drain regions in integrated circuit substrates; ^ space-separated source A gate insulating layer on the integrated circuit substrate and a drain region; and a metal gate directly on the gate insulating layer. 2. If the Fermi-field-effect transistor of item 1 of the patent application scope further includes: a Fermi-field-effect transistor slot under the fermi-field-effect transistor channel in the integrated circuit substrate. 3. For the Fermi-Field-Effect Transistor under the scope of patent application, the metal gate includes a metal alloy gate. 4. For the Fermi-Field-Effect Transistor under item 3 of the patent application, wherein the metal alloy gate includes a silicided metal gate. 5. The fermi-field-effect transistor of item 1 of the patent application, wherein the metal gate further includes a metal having a gate having a work function between P-type polycrystalline silicon and N-type polycrystalline silicon. 6. The fermi-field-effect transistor according to item 5 of the patent application, wherein the metal gate further includes a work function having a voltage of approximately 4.8 5 volts. 7. The Fermi-Field Effect Transistor as described in the first patent application, has a critical voltage of less than about 0.5 volts. 8. A Fermi-critical field-effect transistor (Fermi-FET) comprising: a space-separated source and drain region in a integrated circuit substrate; a space-separated source in a integrated circuit substrate With drain region O:\54\54708.ptc 第1頁 2000.09.21.041 ίΛ 3 2 6 3 6 _案號87114493 cFf年尸月上上日 修正_ \、申請專利範圍 間的費米-場效電晶體通道, 介於空間隔開的源極與汲極區域之間在該積體電路基 板上的閘絕緣層;以及 直接在閘絕緣層上,不具摻雜多晶矽的閘層。 9. 如申請專利範圍第8項之費米-場效電晶體,更包括: 在積體電路基板内該費米-場效電晶體通道之下的費 米-場效電晶體槽。 10. 如申請專利範圍第8項之費米-場效電晶體,其中該不 具摻雜多晶矽的閘層包括金屬閘層。 11. 如申請專利範圍第1 0項之費米-場效電晶體,其中該 金屬閘層包括金屬合金閘層。 12. 如申請專利範圍第1 1項之費米-場效電晶體,其中該 金屬合金閘層包括矽化金屬閘層。 13. 如申請專利範圍第8項之費米-場效電晶體,其中該不 具摻雜多晶矽的閘層包括工作函數介於P-型多晶矽與N-型 多晶妙之間的材料。 14. 如申請專利範圍第1 3項之費米-場效電晶體,其中該 材料包括工作函數具有大約為4. 8 5伏特的材料。 15. 如申請專利範圍第8項之費米-場效電晶體,具有小於 大約為0.5伏特的臨界電壓。 16. —種費米-場效電晶體(Fermi-FET),包括: 在積體電路基板内具有空間隔開的源極與汲極區域; 在積體電路基板内介於空間隔開的源極與汲極區域之 間的費米-場效電晶體通道;O: \ 54 \ 54708.ptc Page 1 2000.09.21.041 ίΛ 3 2 6 3 6 _Case No. 87114493 Amendment on the last day of the cFf year _ \, Fermi-field effect transistor channel between patent applications, A gate insulating layer on the integrated circuit substrate between the spaced-apart source and drain regions; and a gate layer directly on the gate insulating layer without doped polycrystalline silicon. 9. For example, the Fermi-field-effect transistor of item 8 of the patent application scope further includes: a Fermi-field-effect transistor slot under the fermi-field-effect transistor channel in the integrated circuit substrate. 10. The Fermi-field-effect transistor of item 8 of the patent application, wherein the gate layer not doped with polycrystalline silicon includes a metal gate layer. 11. The Fermi-field-effect transistor of claim 10, wherein the metal gate layer includes a metal alloy gate layer. 12. The fermi-field-effect transistor according to item 11 of the application, wherein the metal alloy gate layer includes a silicided metal gate layer. 13. The Fermi-field-effect transistor of item 8 of the patent application, wherein the gate layer without doped polycrystalline silicon includes a material having a work function between P-type polycrystalline silicon and N-type polycrystalline silicon. 14. The Fermi-field-effect transistor as claimed in item 13 of the patent application, wherein the material includes a material having a work function of approximately 4. 8 volts. 15. The Fermi-field-effect transistor of item 8 of the patent application has a critical voltage of less than about 0.5 volts. 16. A Fermi-FET, comprising: a spaced source and a drain region in a integrated circuit substrate; a spaced source in a integrated circuit substrate Fermi-field-effect transistor channel between the electrode and the drain region; O:\54\54708.ptc 第2頁 2000. 09.21.042 3 6 _案號 87114493 // 年 f 月 J二日_ί±^__ 六、申請專利範圍 介於空間隔開的源極與汲極區域之間在該積體電路基 板上的閘絕緣層;以及 在該閘絕緣層上具有工作函數介於Ρ -型多晶矽與Ν -型 多晶矽之間的閘。 — 17. 如申請專利範圍第1 6項之費米-場效電晶體,更包 括: 在積體電路基板内該費米-場效電晶體通道之下的費 米-場效電晶體槽。 18. 如申請專利範圍第1 6項之費米-場效電晶體,其中該 閘包括金屬閘。 19. 如申請專利範圍第1 8項之費米-場效電晶體,其中該 金屬閘層包括金屬合金閘。 20. 如申請專利範圍第1 9項之費米-場效電晶體,其中該 金屬合金閘層包括矽化金屬閘。 21. 如申請專利範圍第1 6項之費米-場效電晶體,其中該 閘包括具有工作函數大約為4. 8 5伏特的材料。 22. 如申請專利範圍第1 6項之費米-場效電晶體,具有小 於大約為0.5伏特的臨界電壓。O: \ 54 \ 54708.ptc Page 2 2000. 09.21.042 3 6 _Case No. 87114493 // F / J / 2 / 2014_ί ± ^ __ VI. The scope of patent application is between the source and sink separated by space A gate insulating layer between the electrode regions on the integrated circuit substrate; and a gate having a work function between P-type polycrystalline silicon and N-type polycrystalline silicon on the gate insulating layer. — 17. If the Fermi-Field-Effect Transistor under item 16 of the scope of patent application, further includes: a Fermi-Field-Effect transistor slot under the Fermi-Field-effect transistor channel in the integrated circuit substrate. 18. The Fermi-field-effect transistor of item 16 in the patent application, wherein the gate includes a metal gate. 19. The Fermi-field-effect transistor of claim 18, wherein the metal gate layer includes a metal alloy gate. 20. The Fermi-field-effect transistor according to item 19 of the application, wherein the metal alloy gate layer comprises a silicided metal gate. 21. The Fermi-field-effect transistor as claimed in item 16 of the patent application, wherein the gate comprises a material having a working function of approximately 4. 8 volts. 22. The Fermi-field-effect transistor of item 16 in the patent application has a critical voltage of less than about 0.5 volts. O:\54\54708.ptc 第3頁 2000. 09.21.043O: \ 54 \ 54708.ptc Page 3 2000. 09.21.043
TW87114493A 1997-09-26 1998-09-01 Metal gate fermi-threshold field effect transistor TW432636B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US93821397A 1997-09-26 1997-09-26

Publications (1)

Publication Number Publication Date
TW432636B true TW432636B (en) 2001-05-01

Family

ID=25471111

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87114493A TW432636B (en) 1997-09-26 1998-09-01 Metal gate fermi-threshold field effect transistor

Country Status (4)

Country Link
JP (1) JP2002527882A (en)
AU (1) AU9499698A (en)
TW (1) TW432636B (en)
WO (1) WO1999017371A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6918300A (en) * 1999-09-24 2001-04-30 Intel Corporation A nonvolatile memory device with a high work function floating-gate and method of fabrication
US6518618B1 (en) 1999-12-03 2003-02-11 Intel Corporation Integrated memory cell and method of fabrication
US6555872B1 (en) * 2000-11-22 2003-04-29 Thunderbird Technologies, Inc. Trench gate fermi-threshold field effect transistors
US6888739B2 (en) * 2002-06-21 2005-05-03 Micron Technology Inc. Nanocrystal write once read only memory for archival storage
US7221586B2 (en) 2002-07-08 2007-05-22 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129983A (en) * 1978-03-31 1979-10-08 Fujitsu Ltd Manufacture of semiconductor device
JPS54129984A (en) * 1978-03-31 1979-10-08 Fujitsu Ltd Manufacture of semiconductor device
JPS54129982A (en) * 1978-03-31 1979-10-08 Fujitsu Ltd Semiconductor device
JPH0620129B2 (en) * 1980-01-14 1994-03-16 株式会社半導体エネルギー研究所 Semiconductor device
JPS62219966A (en) * 1986-03-22 1987-09-28 Toshiba Corp Semiconductor device
US4990974A (en) * 1989-03-02 1991-02-05 Thunderbird Technologies, Inc. Fermi threshold field effect transistor
JP3043791B2 (en) * 1990-09-28 2000-05-22 株式会社東芝 Method for manufacturing semiconductor device
US5369295A (en) * 1992-01-28 1994-11-29 Thunderbird Technologies, Inc. Fermi threshold field effect transistor with reduced gate and diffusion capacitance
JPH04348531A (en) * 1991-05-27 1992-12-03 Oki Electric Ind Co Ltd Manufacture of field effect transistor
US5814869A (en) * 1992-01-28 1998-09-29 Thunderbird Technologies, Inc. Short channel fermi-threshold field effect transistors
DE69429656T2 (en) * 1993-02-23 2002-10-17 Thunderbird Tech Inc FERMI THRESHOLD VOLTAGE FIELD EFFECT TRANSISTOR WITH HIGH SATURATION CURRENT AND LOW LEAKAGE CURRENT
JPH09321276A (en) * 1996-05-28 1997-12-12 Fujitsu Ltd Insulated gate electric field-effect transistor

Also Published As

Publication number Publication date
JP2002527882A (en) 2002-08-27
AU9499698A (en) 1999-04-23
WO1999017371A1 (en) 1999-04-08

Similar Documents

Publication Publication Date Title
JP4439593B2 (en) Fermi threshold field effect transistor and method of manufacturing the same
CN110785855B (en) Lateral fin type electrostatic induction transistor
JP4132070B2 (en) Contour-formed tab-fermi threshold field effect transistor and method of manufacturing the same
KR100840630B1 (en) Trench gate fermi-threshold field effect transistors and methods of fabricating the same
Djeffal et al. A two-dimensional analytical analysis of subthreshold behavior to study the scaling capability of nanoscale graded channel gate stack DG MOSFETs
JP4338784B2 (en) Short channel Fermi threshold field effect transistor
Fasarakis et al. Analytical modeling of threshold voltage and interface ideality factor of nanoscale ultrathin body and buried oxide SOI MOSFETs with back gate control
JP2002530873A (en) Offset drain type Fermi threshold field effect transistor
Chauhan et al. Recent advances in negative capacitance FinFETs for low-power applications: a review
Xu et al. Novel 14-nm scallop-shaped FinFETs (S-FinFETs) on bulk-Si substrate
Amin et al. Enhanced analog performance of doping-less dual material and gate stacked architecture of junctionless transistor with high-k spacer
Tanaka et al. A sub-0.1-/spl mu/m grooved gate MOSFET with high immunity to short-channel effects
TW432636B (en) Metal gate fermi-threshold field effect transistor
Xi et al. Total ionization dose effects of N-type tunnel field effect transistor (TFET) with ultra-shallow pocket junction
Bhuyan et al. Linear pocket profile based threshold voltage model for sub-100 nm n-MOSFET
Yoon et al. Single-event transient characteristics of vertical gate-all-around junctionless field-effect transistor on bulk substrate
Suseno et al. Design of double gate vertical MOSFET using Silicon On Insulator (SOI) technology
Maiti et al. Structural innovation for better MOSFET performance suitable for low power application
Yamamoto et al. Decananometer surrounding gate transistor (SGT) scalability by using an intrinsically-doped body and gate work function engineering
Kaity et al. Ground plane electrostatically doped junctionless tunnel field effect transistor: Process immune design for suppressed ambipolarity
JP3472283B2 (en) Field effect transistor
Sahu et al. Scalability and process induced variation analysis of polarity controlled silicon nanowire transistor
Mishra et al. Grooved-gate silicon-on-nothing (SON) MOSFET: evidence for suppressing SCEs
Nigar et al. A Charge Plasma Based Dual Buried Gates Power MOSFET With Improved Figure of Merits
Polishchuk et al. Hot-carrier reliability comparison for pMOSFETs with ultrathin silicon-nitride and silicon-oxide gate dielectrics

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees