TW432198B - The static capacitor type strain detector with the used same - Google Patents

The static capacitor type strain detector with the used same Download PDF

Info

Publication number
TW432198B
TW432198B TW089113557A TW89113557A TW432198B TW 432198 B TW432198 B TW 432198B TW 089113557 A TW089113557 A TW 089113557A TW 89113557 A TW89113557 A TW 89113557A TW 432198 B TW432198 B TW 432198B
Authority
TW
Taiwan
Prior art keywords
interdigital
substrate
antenna structure
strain
scope
Prior art date
Application number
TW089113557A
Other languages
English (en)
Inventor
Toru Ueno
Kazuya Mori
Tetsuo Yoshida
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11196003A external-priority patent/JP2001021308A/ja
Priority claimed from JP24851699A external-priority patent/JP2001074569A/ja
Priority claimed from JP24887699A external-priority patent/JP4242977B2/ja
Priority claimed from JP26021899A external-priority patent/JP4394212B2/ja
Priority claimed from JP26182399A external-priority patent/JP2001082909A/ja
Application filed by Tokin Corp filed Critical Tokin Corp
Application granted granted Critical
Publication of TW432198B publication Critical patent/TW432198B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/22Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/144Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors with associated circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/148Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors using semiconductive material, e.g. silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/106Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving electrostatic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Details Of Aerials (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

^32198 五、新型說明: 【新型所屬之技術領域】 本創作侧於-種天線結構,特別是關於一種可以抗, 蔽、增加頻寬且收發頻率穩定之天線結構。 几金屬屏 【先前技術】
按,隨著近年來無線通訊的快速發展,在_日t 線通訊技術的細已經是無所不在了,在天線的性能中無 漸提高’不但要求天線尺寸的簡單縮小化,且必二从逐 外界干㈣可以在金屬物體表面上正常制、增加收==圍蔽 ...1 ·. 線設計並無法滿足 而求,也往往造成使用者之困擾。 有鏗於此,如储上频失加簡除,即林_作人所欲 解決之技姻誠之所m本賴作人基料年從事相關 產品設計的經驗,有感於上述傳統用品之不便,經多年苦心孤讀 /曰匕研九’ 4作改良’終於可以摒除傳統天線結構之諸多缺點, 成功研發完成本案’並使本創作得崎生,明進功效者。 【新型内容】 有鑑於上述之缺點’本創作係提供一種天線結構,包括一用 以收發訊號之輻射體’魏射體具有電性連接之-練本體與一 自該輕射本體延伸出來之延伸臂,且於該輻射本_對之二侧, 刀別叹有向下延伸並且與該輻射本體電性連接之—饋人部以及一 接地部。 上述之天線結構,較佳的是該饋入部以及接地部係分別與 一接地金屬片電性連接。 如上述之天線結構,較佳的是該接地金屬片係為—平面型接 地金屬片。 如上述之天線結構,較佳岐該接地金屬片係為—彎折型接 地金屬片。 如上述之天線結構,較佳的是該饋入部電性連接有一傳輸 線’用以傳輸訊號。 ’ 如上述之天躲構’較料是該補本義為矩形。 如上述之天線結構,較佳的是該輻射本體係為幾何圖形。 如上述之天線結構,較佳的是該延伸臂係具有至少一次以上 之彎折。 如上述之天線結構,較佳的是該延伸臂末端係呈螺旋倒鉤狀。 本創作之主要目的在於提供一種可以抗金屬屏蔽而有效屏蔽 外界干擾之天線結構。 本創作之次要目的在於提供一種收發頻率穩定、提高天線效 月匕之天線結構。 本創作之另一目的在於提供一種可以增加頻寬之天線結構。 【實施方式】 為使貴審查委員方便瞭解本創作之其他特徵内容與優點, 及其所達成之功效能夠更為顯現,茲將本創作配合附圖,詳細說 明如下: 請參閱第-圖’其縣本創作之立體結構示,如圖所示, 本創作之天線結構10包括-肋收發峨之輻射體u,輕射體 U具有電性連接之-輕射本體lu與一自輕射本體Ul延伸出來 之延伸臂112 ’且於輕射本體lu才目對之二側,分職有向下延伸 並且與輕射本體111電性連接之—饋人部12以及—接地部η,其 中饋入部12以及接地部13係分別與—接地金屬片15電性連接, 饋入。IU2電性連接有-傳輸線14,用以傳輸訊號,圖中所示之 ,地金屬片15係為-平面型接地金屬片,延伸臂112係具有一次 弓折而輕射本體111可為矩形或其他幾何圖形。藉由本創作之 天線結構10而可達到抗金屬屏蔽、增加頻寬且收發頻率穩定之目 的。 明參閱第—圖’其係為本創作之__實補立體結構示意圖, 如圖所不’本創作天線結構2〇之接地金屬片16係可為—彎折型 接地金屬片’用以便於安裝設置該天線結構2〇。 _凊參閱第三圖,其係為本創作之另_實施例示意圖,如圖所 不本創作之延伸臂係可具有至少一次以上之彎折,而圖中所示 之延伸臂113係具有二次彎折。 請參閱第四圖,其係為本創作之又—實施例示意圖,如圖所 不,本創作之延伸料只可從如第—圖_本體m所示之處延 中如第四圖所不之延伸臂114也可以從輻射本體⑴之另—端 延伸。 _明參閱第五冑’其係為本創作之再一實施例示意圖,如圖所 T本到作之廷伸|也可以是如圖所示之延伸臂⑴❿呈現,延 伸臂115末端係呈螺旋倒鉤狀。 ,,請參閱第六®、第七圖及第八《,其係分縣本齡之X-Y 平面、X-Z平面及γ-ζ平面之輻射場型圖,其中每一圖式顯示當本 創作分別於2.4GHz、2.45 GHz、2. 5 GHz時之輻射場侧,如圖 所不’本創倾此實_ 2.微# χ—γ平面之雛賴效果為 2. 25dBi ’ X-Z平面之健輻射效果輕娜丨,γ ζ平面之較佳輕 射效果為3. 69dBi。 上列詳細綱麵對本鮮之—可行實_之具體說明,惟 該實施例並制嫌制相狀專圍,凡未麟本創作技藝 精神所為之等效實施或變更,均應包含於本案之專利範圍中。 綜上所述,本案不但在技術思想上確屬創新,並能較習用物 品增進上料項功效,應已充分符合新雛及進步性之法定創作 專利要件,妥依法提出申請,懇請貴局核准本件新型專利申請 案,以勵創作,至感德便。 【圖式簡單說明】 第一圖係為本創作之立體結構示意圖。 第二圖係為本創作之一實施例立體結構示意圖。 M432198 第三圖係為本創作之另一實施例示意圖。 第四圖係為本創作之又一實施例示意圖。 第五圖係為本創作之再一實施例示意圖。 第六圖係為本創作之X-Y平面輻射場型圖。 第七圖係為本創作之X-Z平面輻射場型圖。 第八圖係為本創作之Y-Z平面輻射場型圖。 【主要元件符號說明】 10、20天線結構 11輻射體 111輻射本體 112、113、114、115 延伸臂 12饋入部 13接地部 14傳輸線 15、16接地金屬片

Claims (1)

  1. 六、申請專利範圍: L種天線結構,包括一用以收發訊號之輻射體,該輻射體具 有電性連接之一輻射本體與一自該輻射本體延伸出來之延伸 I且於該輕射本體相對之二側,分別設有向下延伸並且與 該輻射本體電性連接之一饋入部以及一接地部。 2. 如申請專利範圍第1項所述之天線結構,其中該饋入部以及 接地部係分別與一接地金屬片電性連接。 3. 如申請專利範圍第2項所述之天線結構,其中該接地金屬片 係為一平面型接地金屬片。 4·如申請專利範圍第2項所述之天線結構,其中該接地金屬片 係為一彎折型接地金屬片。 5.如申請專利範圍第丨項所述之天線結構,其中該饋入部電性 連接有一傳輸線,用以傳輸訊號。 如申明專利範圍第1項所述之天線結構,其中該輕射本體係 為矩形。 7. 如申請專利範圍第丨項所述之天線結構,財該输本體係 為幾何圖形。 8. 如申請專利範圍第1項所述之天線結構,其中該延伸臂係具 有至少一次以上之彎折。 9. 如申請專利範圍第8項所述之天線結構,其中該延伸臂末端 係呈螺旋倒鉤狀。 8
TW089113557A 1999-07-09 2000-07-07 The static capacitor type strain detector with the used same TW432198B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP11196003A JP2001021308A (ja) 1999-07-09 1999-07-09 静電容量式歪センサ
JP24851699A JP2001074569A (ja) 1999-09-02 1999-09-02 平板型静電容量式捩り歪みセンサ
JP24887699A JP4242977B2 (ja) 1999-09-02 1999-09-02 円柱型静電容量式捩り歪みセンサ
JP26021899A JP4394212B2 (ja) 1999-09-14 1999-09-14 加速度センサ
JP26182399A JP2001082909A (ja) 1999-09-16 1999-09-16 静電容量式歪センサ

Publications (1)

Publication Number Publication Date
TW432198B true TW432198B (en) 2001-05-01

Family

ID=27529135

Family Applications (1)

Application Number Title Priority Date Filing Date
TW089113557A TW432198B (en) 1999-07-09 2000-07-07 The static capacitor type strain detector with the used same

Country Status (6)

Country Link
US (1) US6532824B1 (zh)
EP (1) EP1113252A4 (zh)
KR (1) KR100421304B1 (zh)
CN (1) CN1157594C (zh)
TW (1) TW432198B (zh)
WO (1) WO2001004593A1 (zh)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961299B4 (de) * 1999-12-18 2009-04-30 Robert Bosch Gmbh Sensor zur Erkennung des Klopfens bei einer Brennkraftmaschine
AU2001223396A1 (en) * 2000-02-01 2001-08-14 Disetronic Licensing Ag Container and device for administering a substance
AU2001223397A1 (en) * 2000-02-01 2001-08-14 Disetronic Licensing Ag Configurable device and method for releasing a substance
US6518083B2 (en) * 2001-01-31 2003-02-11 Nippon Telegraph And Telephone Corporation Surface shape recognition sensor and method of manufacturing the same
DE10139158C1 (de) * 2001-08-09 2003-04-17 Siemens Dematic Ag Bauelemente-Erfassungsvorrichtung, Bauelemente-Zuführvorrichtung und Verfahren zum Zuführen von Bauelementen mittels einer Bauelemente-Zuführvorrichtung
ATE485763T1 (de) * 2002-12-14 2010-11-15 Univ Tsinghua Res Inst Vorrichtung und verfahren zur überwachung der zusammensetzung des körpers durch bestimmung der dielektrizitätskonstante und der impedanz des körpers basiert auf digitaler frequenzabtastung
EP1654522A4 (en) * 2003-08-12 2007-05-09 Heung Joon Park LOAD-MEASURING CONVERTER WITH ELASTIC STRUCTURE AND MEASURING DEVICE WITH INDUCED VOLTAGE AND LOAD MEASUREMENT SYSTEM THEREWITH
GB0323781D0 (en) * 2003-10-10 2003-11-12 Bodycage Ltd Safety helmet
DE10360309B4 (de) * 2003-12-18 2015-01-22 Horst Ahlers Resistiver Dehnungssensor
US7644628B2 (en) * 2005-12-16 2010-01-12 Loadstar Sensors, Inc. Resistive force sensing device and method with an advanced communication interface
WO2006010037A2 (en) 2004-07-08 2006-01-26 Deborah Schenberger Strain monitoring system and apparatus
US20060030062A1 (en) * 2004-08-05 2006-02-09 Jun He Micromachined wafer strain gauge
US7204162B2 (en) * 2004-11-23 2007-04-17 Delphi Technologies, Inc. Capacitive strain gauge
DE102005002057B4 (de) * 2005-01-14 2007-05-31 Nicol, Klaus, Prof. Dr. Sensor zur Messung der Verteilung einer Flächenpressung
US7509870B2 (en) * 2005-10-26 2009-03-31 Orthodata Technologies Llc MEMS capacitive bending and axial strain sensor
US7728492B2 (en) 2005-12-19 2010-06-01 Physical Logic Ag Piezoelectric composite material
US8104358B1 (en) * 2006-01-23 2012-01-31 University Of Puerto Rico High sensitivity passive wireless strain sensor
JP2008089412A (ja) * 2006-10-02 2008-04-17 Matsushita Electric Works Ltd 圧力センサ
DE112008000578B4 (de) * 2007-03-23 2014-05-22 Murata Mfg. Co., Ltd. Antenne und Funkkommunikationsvorrichtung
DE102007044225A1 (de) * 2007-09-17 2009-03-19 Liebherr-Werk Nenzing Gmbh, Nenzing Vorrichtung zum Messen mechanischer Größen, Verfahren zum Messen mechanischer Größen sowie Verwendung einer Vorrichtung zum Messen mechanischer Größen
EP2065681A1 (en) * 2007-11-30 2009-06-03 Paramata Limited Sensing system and method
US20090158856A1 (en) * 2007-12-23 2009-06-25 Divyasimha Harish Capacitive strain gauge system and method
US20090229369A1 (en) * 2008-03-17 2009-09-17 Siew-Seong Tan Capacitor Compensation Structure and Method for a Micro-Electro-Mechanical System
US7784366B2 (en) * 2008-07-29 2010-08-31 Motorola, Inc. Single sided capacitive force sensor for electronic devices
US7545119B1 (en) 2008-07-31 2009-06-09 International Business Machines Corporation Sensor incorporated into energy storage device package
US8342031B2 (en) * 2008-10-27 2013-01-01 The Regents Of The University Of California Capacitive strain sensor
US8225677B2 (en) * 2008-11-06 2012-07-24 Northeastern University Capacitive sensor, system, and method for measuring parameters of a two-phase flow
US8564310B2 (en) * 2009-08-18 2013-10-22 3M Innovative Properties Company Capacitive oil quality monitoring sensor with fluorinated barrier coating
KR101085489B1 (ko) 2009-10-16 2011-11-21 박흥준 온도에 의한 오차를 보정하기 위한 유도 전압을 이용한 하중 측정 트랜스듀서 및 그 트랜스듀서를 이용한 하중 측정 시스템
CN102062652A (zh) * 2009-11-12 2011-05-18 无锡千里信步精密机电科技有限公司 应用混入微小构造体的柔软感应材料的压力传感器装置及压力信号感应方法
US8633916B2 (en) 2009-12-10 2014-01-21 Apple, Inc. Touch pad with force sensors and actuator feedback
JP5800897B2 (ja) * 2010-06-15 2015-10-28 スリーエム イノベイティブ プロパティズ カンパニー 可変静電容量センサ及びその作製方法
DE102011078557A1 (de) * 2011-07-01 2013-01-03 Endress + Hauser Gmbh + Co. Kg Verfahren zum Betreiben eines Absolut- oder Relativdrucksensors mit einem kapazitiven Wandler
DE102012005262B4 (de) 2012-03-15 2014-11-06 Forschungszentrum Jülich GmbH Sensoranordnung aus Trägersubstrat und ferroelektrischer Schicht
KR101480752B1 (ko) * 2012-03-30 2015-01-09 한국과학기술원 표면 형상 측정 장치
RU2507474C1 (ru) * 2012-08-07 2014-02-20 Открытое акционерное общество "Авангард" Индукционный датчик положения
US9250143B2 (en) * 2012-09-19 2016-02-02 College Park Industries, Inc. Multicapacitor force/moment sensor arrays
CN102980508A (zh) * 2012-11-21 2013-03-20 昆山北极光电子科技有限公司 一种自动平衡的机械形变测量方法
CN102997834B (zh) * 2012-12-12 2016-05-25 山东建筑大学 一种共面电容传感器的非导电介质薄膜厚度在线检测装置
CN104034251B (zh) * 2013-03-06 2016-12-28 中国科学院合肥物质科学研究院 一种微米尺度材料应变检测装置及其检测方法
DE102013114734A1 (de) * 2013-12-20 2015-07-09 Endress + Hauser Gmbh + Co. Kg Kapazitive Druckmesszelle mit mindestens einem Temperatursensor und Druckmessverfahren
JP6364886B2 (ja) * 2014-03-31 2018-08-01 大日本印刷株式会社 包装袋の変形の検出方法
CA2901026C (en) 2014-08-19 2020-11-24 Western Michigan University Research Foundation Helmet impact monitoring system
KR101665187B1 (ko) * 2014-09-22 2016-10-13 한국과학기술원 환경 정보 센서 회로 및 환경 정보 측정 장치
EP3010315A1 (en) 2014-10-16 2016-04-20 Nokia Technologies OY A deformable apparatus and method
EP3009822B1 (en) * 2014-10-16 2017-06-21 Nokia Technologies OY A deformable apparatus and method
EP3211364B1 (en) * 2014-10-22 2020-02-19 Bando Chemical Industries, Ltd. Capacitance sensor
CN105720964A (zh) * 2014-12-02 2016-06-29 天津富纳源创科技有限公司 压力侦测按钮、控制器以及压力侦测按钮的操作方法
KR101739791B1 (ko) * 2015-05-11 2017-05-26 주식회사 하이딥 압력 센싱 장치, 압력 검출기 및 이들을 포함하는 장치
CN105021120B (zh) * 2015-07-06 2019-07-19 电子科技大学 一种电容应变传感器及其制备方法
CN105066870B (zh) * 2015-08-13 2017-09-22 浙江工业大学 可测量表面应变轴向偏导的轴向偏差全桥双叉指型金属应变片
CN105180793B (zh) * 2015-08-13 2017-07-25 浙江工业大学 可测量表面应变横向偏导的横向偏差全桥全叉指型金属应变片
US10067007B2 (en) * 2015-09-02 2018-09-04 Oculus Vr, Llc Resistive-capacitive deformation sensor
US9666661B2 (en) * 2015-09-08 2017-05-30 Taiwan Semiconductor Manufacturing Company, Ltd. Coplanar metal-insulator-metal capacitive structure
WO2017075201A1 (en) * 2015-10-30 2017-05-04 Northwestern University Dielectrostrictive sensors for shear stress measurement, process monitoring, and quality examination of viscoelastic materials
CN105241585B (zh) * 2015-11-12 2017-08-18 桂林电子科技大学 一种基于银导电胶的电容式传感器装置及其制作方法
CN105423900B (zh) * 2015-12-04 2017-12-05 浙江工业大学 可测量单侧片外横向偏导的横向分布六敏感栅全桥三叉指金属应变片
CN105423906B (zh) * 2015-12-04 2017-12-05 浙江工业大学 可测量单侧片外横向偏导的横向分布五敏感栅边叉指金属应变片
CN105547133B (zh) * 2015-12-04 2017-12-05 浙江工业大学 可测量单侧片外轴向偏导的轴向分布五敏感栅边叉指金属应变片
CN105547531B (zh) * 2016-01-19 2018-07-06 东南大学 一种高灵敏电容式压力传感器及其制作方法
US10842667B2 (en) * 2016-02-17 2020-11-24 Tramec Termico Technologies, L.L.C. Self-regulating heater
CN105823411B (zh) * 2016-03-18 2019-02-22 苏州椒图电子有限公司 一种曲面轮廓测量方法
CN106092430B (zh) * 2016-06-16 2018-11-16 清华大学深圳研究生院 一种梳齿电容式压力传感器
CN106247920B (zh) * 2016-07-07 2019-02-12 中国计量大学 一种基于弹性基底夹心叉指电容的表面应变检测器件
US10637108B1 (en) 2016-12-09 2020-04-28 Cornell Dubilier Marketing, Inc. Apparatus for detecting expansion of an energy storage device case
US10612991B1 (en) * 2017-08-25 2020-04-07 Fluke Corporation High dynamic range capacitive pressure sensor
JP6988469B2 (ja) 2017-12-27 2022-01-05 株式会社デンソー 歪み検出装置およびそれを用いた診断装置
CN108414126A (zh) * 2018-01-22 2018-08-17 江苏军物联网股份有限公司 一种焊接工位压力监测系统和监测方法
TWI659217B (zh) * 2018-03-27 2019-05-11 國立交通大學 無線被動應變感測器
CN109238519B (zh) * 2018-10-22 2024-03-15 河北工业大学 一种混合式柔性触觉传感器
US11189536B2 (en) * 2018-12-31 2021-11-30 Micron Technology, Inc. Method and apparatus for on-chip stress detection
CN109786430B (zh) * 2019-02-22 2021-01-26 京东方科技集团股份有限公司 一种柔性显示面板及显示装置
JP7272836B2 (ja) * 2019-03-19 2023-05-12 住友重機械工業株式会社 センサ、センサ固定構造
CN109883316B (zh) * 2019-03-22 2021-01-29 中国科学院力学研究所 一种电阻式应变传感器及应变测量方法
US11021950B2 (en) * 2019-06-06 2021-06-01 Probe Technology Services, Inc. Production-logging sensor
US11399587B2 (en) 2019-06-12 2022-08-02 The Board Of Trustees Of Western Michigan University Pressure monitoring system for helmets
US11762517B2 (en) * 2019-06-19 2023-09-19 Nissha Co., Ltd. Touch panel
US11494147B2 (en) 2019-06-26 2022-11-08 Microsoft Technology Licensing, Llc Sensing bending of multiple joints
CN110487168B (zh) * 2019-08-29 2024-03-01 清华大学深圳研究生院 单向弯曲敏感传感器及其制备方法
CN111189563B (zh) * 2020-01-07 2021-08-10 西安电子科技大学 一种压力检测装置及系统
US11662820B2 (en) 2020-01-08 2023-05-30 Dell Products, Lp System for a solid-state keyboard and touchpad providing haptic feedback
US11579695B2 (en) 2020-01-31 2023-02-14 Dell Products, Lp System and method for generating sound effects on fingertips with piezoelectric actuators of a haptic keyboard
US10936073B1 (en) 2020-01-31 2021-03-02 Dell Products, Lp System and method for generating high-frequency and mid-frequency audible sound via piezoelectric actuators of a haptic keyboard
US11106772B2 (en) 2020-01-31 2021-08-31 Dell Products, Lp System and method for continuous user identification via piezo haptic keyboard and touchpad dynamics
US11079849B1 (en) 2020-01-31 2021-08-03 Dell Products, Lp System for extended key actions and haptic feedback and optimized key layout for a solid-state keyboard and touchpad
US10860112B1 (en) 2020-01-31 2020-12-08 Dell Products, Lp System for a solid-state keyboard and touchpad with a single sheet cover for providing haptic feedback
US11067269B1 (en) 2020-01-31 2021-07-20 Dell Products, Lp System and method for backlight integration with electrical contact foil in piezoelectric haptic keyboard
US11106286B2 (en) 2020-01-31 2021-08-31 Dell Products, Lp System and method for mood detection via piezo haptic keyboard dynamics
US11294469B2 (en) 2020-01-31 2022-04-05 Dell Products, Lp System and method for processing user input via a reconfigurable haptic interface assembly for displaying a modified keyboard configuration
US11079816B1 (en) 2020-01-31 2021-08-03 Dell Products, Lp System and method for vapor chamber directional heat dissipation for a piezoelectric keyboard assembly
US11301053B2 (en) 2020-01-31 2022-04-12 Dell Products, Lp System for providing haptic feedback across full palm rest in fixed position of information handling system
US11175745B2 (en) 2020-01-31 2021-11-16 Dell Products, Lp System and method for application of piezo electric haptic keyboard personal typing profile
US11093048B1 (en) 2020-01-31 2021-08-17 Dell Products, Lp System for modified key actions and haptic feedback for smart typing assist with a solid-state keyboard and touchpad
CN111208317B (zh) 2020-02-26 2021-07-02 深迪半导体(绍兴)有限公司 Mems惯性传感器及应用方法和电子设备
WO2021188708A1 (en) 2020-03-17 2021-09-23 Arris Enterprises Llc Ceramic based strain detector
CN111664968A (zh) * 2020-07-15 2020-09-15 襄阳臻芯传感科技有限公司 一种陶瓷电容式压力传感器的制作方法
CN113340476B (zh) * 2021-05-08 2023-10-27 昆山朗德森机电科技有限公司 一种二维解耦力矩触觉传感器及mems制备方法
CN114111697B (zh) * 2021-11-26 2023-07-25 中国电建集团成都勘测设计研究院有限公司 一种倾倒变形体监测预警装置及监测预警方法
FR3130786B1 (fr) * 2021-12-17 2023-12-15 Nanomade Labs Micro-capteur à électrodes interdigitées
CN114353916A (zh) * 2022-01-10 2022-04-15 江苏大学 一种基于柔性电容式传感器的质量测量装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434519B2 (zh) * 1973-08-31 1979-10-27
US4188651A (en) * 1978-03-27 1980-02-12 Sprague Electric Company Ceramic capacitor with surface electrodes
JPS5837799A (ja) 1981-08-05 1983-03-05 ワイケイケイ株式会社 荷重感知マツト
US4422127A (en) * 1981-12-15 1983-12-20 Electronic Concepts, Inc. Substantially small sized wound capacitor and manufacturing method therefor
JPS5954904A (ja) 1982-09-24 1984-03-29 Hitachi Ltd 容量型ひずみゲ−ジ
US4479392A (en) 1983-01-03 1984-10-30 Illinois Tool Works Inc. Force transducer
DE3634855C1 (de) * 1986-10-13 1988-03-31 Peter Seitz Kapazitive Messanordnung zur Bestimmung von Kraeften und/oder Druecken
DE58900556D1 (de) * 1988-08-11 1992-01-23 Siemens Ag Messaufnehmer fuer laengen- oder abstandsaenderungen, insbesondere fuer beruehrungslose messung von drehmomenten an rotierenden wellen.
US5233213A (en) 1990-07-14 1993-08-03 Robert Bosch Gmbh Silicon-mass angular acceleration sensor
CH685214A5 (fr) * 1991-10-15 1995-04-28 Hans Ulrich Meyer Capteur capacitif de position.
US5608246A (en) * 1994-02-10 1997-03-04 Ramtron International Corporation Integration of high value capacitor with ferroelectric memory
WO1996005492A1 (de) * 1994-08-16 1996-02-22 Siemens Aktiengesellschaft Kraft- oder dehnungssensor
US5827980A (en) 1994-08-16 1998-10-27 Siemens Aktiengesellschaft Force or extension sensor
FR2732467B1 (fr) * 1995-02-10 1999-09-17 Bosch Gmbh Robert Capteur d'acceleration et procede de fabrication d'un tel capteur
US5610528A (en) 1995-06-28 1997-03-11 International Business Machines Corporation Capacitive bend sensor
JP3525400B2 (ja) 1995-10-17 2004-05-10 Necトーキン株式会社 力検出装置
US5804065A (en) * 1995-11-17 1998-09-08 The United States Of America As Represented By The Secretary Of Agriculture Control apparatus for marine animals
US6222376B1 (en) * 1999-01-16 2001-04-24 Honeywell International Inc. Capacitive moisture detector and method of making the same

Also Published As

Publication number Publication date
US6532824B1 (en) 2003-03-18
WO2001004593A8 (en) 2001-04-12
CN1321243A (zh) 2001-11-07
EP1113252A1 (en) 2001-07-04
WO2001004593A1 (fr) 2001-01-18
CN1157594C (zh) 2004-07-14
KR100421304B1 (ko) 2004-03-09
KR20010074988A (ko) 2001-08-09
EP1113252A4 (en) 2001-09-19

Similar Documents

Publication Publication Date Title
TW432198B (en) The static capacitor type strain detector with the used same
EP3608751B1 (en) Foldable electronic device including antenna integrated with the frame of the housing
CN105340129B (zh) 具有新型天线结构的移动终端
US10431912B2 (en) CPU socket contact for improving bandwidth throughput
TWI657619B (zh) 平面天線模組及電子裝置
US7671811B2 (en) Antenna device with ground plane coupled to conductive portion of an electronic device
US10211533B2 (en) Dual band printed antenna
CN105762512A (zh) 一种天线
CN108879070B (zh) 一种电子设备
CN108832292B (zh) 一种天线及电子设备
US8059042B2 (en) Shorted monopole antenna
EP3718168B1 (en) Antenna, antenna arrangement, and electronic device
KR20210073999A (ko) 인쇄회로기판 및 이를 포함하는 전자 장치
US9466878B2 (en) Multi-band antenna
WO2021169500A1 (zh) 终端
JP6602513B2 (ja) アンテナ装置
TW202118143A (zh) 單天線系統
Wong et al. WWAN/LTE handset antenna with shaped circuit board, battery, and metal midplate
TWI291783B (en) Antenna device having coupled feeding unit
TWI807673B (zh) 電子裝置與天線結構
US11158932B2 (en) Full screen electronic device and antenna thereof
CN104681993A (zh) 天线装置
CN221102419U (zh) 无线适配器
CN107394379A (zh) 一种移动终端及移动终端天线
CN218215653U (zh) 终端设备

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent