TW418590B - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
TW418590B
TW418590B TW087104475A TW87104475A TW418590B TW 418590 B TW418590 B TW 418590B TW 087104475 A TW087104475 A TW 087104475A TW 87104475 A TW87104475 A TW 87104475A TW 418590 B TW418590 B TW 418590B
Authority
TW
Taiwan
Prior art keywords
aluminum
electron
layer
lithium
electrode
Prior art date
Application number
TW087104475A
Other languages
Chinese (zh)
Inventor
Kenji Nakatani
Isamu Kobori
Michio Arai
Kazutoshi Ohhisa
Masami Mori
Original Assignee
Tdk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corp filed Critical Tdk Corp
Application granted granted Critical
Publication of TW418590B publication Critical patent/TW418590B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Abstract

The invention provides an organic EL device comprising a hole injecting electrode, and at least one organic layer disposed between the electrodes, wherein the electron injecting electrode is comprised of an AlLi alloy containing 0.4-14 at% of lithium deposited by a sputtering process. This improves the film formability and adhesion at the interface between the electron injecting electrode and the organic layer, realizing an organic EL device featuring a high luminance, high efficiency, long lifetime, and high display quality.

Description

經濟部中央標準局貝Η消f合作社印製 ___B7 _五、發明説明(1 ) 技藝範圍 本發明係關於一種有機化合物的有機電發光裝置( E L )及製備彼之方法,更明確的說是一種電子插入電極 及彼之製備方法。 技藝背景 最近有關有機電發光裝置(E L )的硏究非常活躍。 有機電發光裝置(E L )的基本構造包括由塗錫氧化銦( I TO )等製成的透明電極或孔洞插入電極,將孔洞運送 材料(例如:三苯基二胺(T P D ))經蒸發後在其上形 成之薄膜、將螢光材料(例如:羥基喹啉鋁錯合物( A 1 Q 3 ))沉積在其上而形成的發光層、及其上由低功 函數金屬(例如:鎂)形成的金屬電極或電子插入電極。 此有機電發光裝置(EL)吸引人之處是大約1 0伏特的 趨動電壓即能達成範圍介於數百至數萬1 〇,〇 〇 0 c d / m2之間的高發光強度。 此有機電發光裝置(E L )之電子插入電極所使用之 材料,以能有效的將更多電子插入發光層或電子插入及運 送層爲最有效率。換句話說,較低功函數之材料適於作爲 電子插入電極。已知許多材料具有低功函數,可作爲電子 插入電極或有機電發光裝置(EL)。例如 j p - A 15595/1990揭示的電子插入電極由 多種鹼金屬外之金屬組成,其中至少兩種金屬之功函數小 於 4 e V,例如:M g A g = 本紙it尺度適用中國國家榡隼(CNS } A4規格(210X297公t ) . A . --,-------¢------IT------^ (請先閱讀背面之注意事項.·&寫本頁) 經濟部中央橾準局員工消費合作社印裝 418590 A7 __._B7 五、發明説明(2 ) 鹼金屬是具低功函數之較佳材料,如描述於 USP 3, 173,050及3, 382,394之鹼 金屬實施例N a及K。但使用鹼金屬之電極具高度活性1 其化學性質不穩定,因此安全性及可靠性比使用Mg A g 或其他類似的電子插入電極差。 目前有許多改進鹼金屬電子插入電極及包括電子插入 電極之鋁鋰合金的方法,例如描述於 JP-A 165771/1985,212287/ 1992,121172/1993,及 159882/ 1 9 9 3。以下之專利描述鋰之濃度及製備鋁鋰合金的方 法。(1) JP — A 165771/1985 揭示之鋰 濃度介於3 6至99 . 8wt% (1至99wt%)之 間,較佳者介於29 . 5至79 . lwt%(10至50 wt%)之間,實施例中描述之鋁鋰合金含15.8至 79 . lwt% (4 . 8至50wt%)之鋰。所有此類 的鋁鋰合金是用蒸發製程沉積。(2) J P - A 2 1 2287/1 992描述之鋰濃度至少爲 ,較佳者介於6至3〇wt%,實施例中描述之 鋁鋰合金含2 8w t %之鋰。雖然實施例中報告此類之鋁 鋰合金是用蒸發製程製備,但亦可經抗熱共蒸發' 電子束 蒸發及噴濺沉積而形成薄膜。(3) J P — A 121 172/1993揭示之鋰濃度介於 0.0377 至 0.38wt%(0.01 至 0.1: 100之重量比),而實施例中描述之鋁鋰合金含 本紙張尺度適用中國國家標準(CNS ) A4現格(210X 297公釐)_ c . —---------妙衣------ΐτ------m (請先閱讀背面之注意事項寫本頁) 經濟部中央標準局員工消費合作社印製 418590 A7 B7五、發明说明(3 ) 0.060 至 0.31wt%(0.016 至 0·08: 1 0 0之重量比)之鋰、經抗熱蒸發或電子束蒸發製程製 備而成。較佳之濃度至多含1 5 . 9wt% (至多50 : 1000之重量比),而實施例中描述之鋁鋰合金形成之 薄膜含29.5至61.8wt%(10至30wt%) 之鋰。(4) JP-A 159882/1993掲示之 鋰濃度介於5至9 〇w t % *而實施例中描述之鋁鋰合金 含鋰濃度介於1 6至6 〇w t %,經鋰來源及電子束蒸發 之其他來源的雙來源蒸發法方用抗熱蒸發製程形成薄膜。 然而上述之鋁鍵合金電極(1) 、(3)及(4)是 僅用真空蒸發的方法形成薄膜。至於鋁鋰合金電極(2 ) 是用真空蒸發的方法及噴濺製程製備,但實施例中只用真 空蒸發的方法,並無描述噴濺製程之範例。 當進行真空蒸發製程時,鋁鋰合金是鋰蒸發之來源。 因爲單獨使用鋰時,其化學穩定性、形成薄膜之能力及附 著力均差。然而兩種金屬有不同之蒸氣壓,所以必須使用 雙來源蒸發或和鋁進行共蒸發。雙來源蒸發不易控制沈澱 物之成分,而且不易使各批號產品達成最適成分的一致性 。因此沈澱物之鋰濃度介於1 6至7 9w t % ’並無一致 性。較高之鋰濃度會造成化學的不穩定性’損害沈澱物形 成薄膜之能力及附著力,使裝置的特性降低。沈澱物之品 質亦不具一致性。相反的,若蒸發是用蒸發來源進行’則 鋰濃度爲0 . 3 8w t %或更低。此合金具高功函數’低 電子噴射效能很難製造出具有實用特性之裝置。 ----------批农------,玎------線 (請先閲讀背面之注意事項寫本頁) 本紙張尺度適用中國國家標車(CNS ) Μ規格U10 X 297公釐)_g. 經濟部中央標準局員工消費合作社印袈 418590 A7 __________Β7 五、發明説明(4 ) 同時以真空蒸發製程形成之電子插入電極,其薄膜密 度小,對有機層介面的黏著性差,會降低效能、使用壽命 及E L裝置之顯示品質(降低發光的效能,電極剝落及產 生黑點)。 此外,鋰或類似具低功函數的材料對氧氣及濕氣有高 反應性,而進料的步驟及補充材料一般均在空氣下進行, 所以材料表面會形成氧化物。爲提高電子插入電極之品質 ’在蒸發前最好去除氧化物塗層。去除氧化物塗層的程序 非常困難,因爲氧化物的蒸發溫度較金屬元素低或蒸氣壓 較金屬元素高,因此不易形成具有高品質純金屬薄膜的電 子插入電極。此外,若蒸發的薄膜在電子插入電極及有機 層介面間或電子插入電極內形成氧化物,因爲產生的電極 和金屬元素間有不同的功函數及導電性而不會得到E L的 特性。此外,在實際生產的關點上亦有許多問題:例如若 短期在沉積區域交換或補充蒸發材料難以控制成分及薄膜 厚度及品質的一致性;若沉積速度增加則會造成薄膜品質 在成分控制上、重現性及一致性的問題。 本發明之揭示 本發明的目的係關於具高發光強度 '高效能、使用壽 命長、高顯示品質的有機電發光裝置(EL),改進電子 插入電極和有機層間形成薄膜之能力及附著力。 本發明之目標可由以下(1 )至(4 )定義之構造完 成。 本紙張又度適用中國國家標準(CNS ) Λ4規格(210X 297公犮) ---------批衣------1T------^ (請先閲讀背面之注意事項r^寫本頁) 418590 A7 B7 五、發明説明(5 ) (1 ) 一種有機電發光裝置,該裝置包括一種孔洞插入電 極、電子插入電極 '及至少一層置於電極間的有機層,該 電子插入電極由鋁鋰合金組成,經噴濺製程製備而成,含 〇.4至14wt%之鋰沉積。 (2 ) —種製備有機電發光裝置的方法,其中電子插入電 極置於(1 )前,由噴濺製程用鋁鋰合金作靶沉積後製備 而成。 (3 )_種依據(2 )製備有機電發光裝置的方法,其中 噴濺製程包括改變薄膜形成氣體之壓力,其範圍介於 0 . 1至5 Pa ,以改變電子插入電極中鋰沉積之濃度, 其範圍介於0.4至14wt%。 (4 ) 一種依據(2 )製備有機電發光裝置的方法,其中 噴濶製程是D C噴濺製程。 圖形簡述 圖1是說明構成一種有機電發光裝置(E L )範例之 槪略圖。 主要元件對照表 2 1 基板 22 孔洞插入電極 2 3 孔洞插入及運送層 2 4 發光和電子插入及運送層 25 電子插入電極 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐) I —I I I I I I t 裝— - (讀先閱讀背面之注意事項..-咎寫本頁) 丁 -3 經濟部中夾榡準扃負工消費合作社印掣 185五、發明説明(6 ) 2 6 保護層 A7 B7 實現本發明之最佳模式 以下將詳細描述本發明之構造。 本發明之有機裝置包括一種孔洞插入電極 種電子 經 ★ 部 中 央 .標 準 局 員 工 消 費 合 作 社· 印 製 插入電極、及至少一種位在電極間之有機 入電極由鋁鋰合金組成,經噴濺製程製備 W t %之鋰沉積a 使用噴濺製程有許多優點。和蒸發製 •噴濺製程形成的電子插入電極薄膜能改 之附著力,噴濺的原子及原子群能得到較 發生遷移效應。同時因爲在真空下,表面 效的在噴濺前移除,吸附在有機層介面的 效的用逆噴濺法移除,因此可以形成淸潔 介面及淸潔之電極,因而製造出品質高及 電發光裝置(EL)。此外,即使作爲靶 氣壓不同,靶及薄膜沉積間之成分僅發生 此可以排除蒸發製程上因爲材料蒸氣壓不 »在生產上,噴濺製程亦較蒸發製程優良 供料,所以產生厚度及品質均勻的薄膜。 因爲噴濺製程形成的電子插入電極是 以和稀疏包裝的蒸發薄膜比較下,濕氣的 最低,因此能產生化學穩定性高及使用壽 光裝置(E L )。 層,其中電子插 含0 . 4至1 4 程相互 進有機 高的動 的氧化 濕氣及 之電極 效能穩 的混合 些微之 同所產 ,因爲 比較之下 層間介面 能,因此 物層可有 氧氣可有 -有機層 定的有機 材料其蒸 變化,因 生的限制 不必長期 密集的薄膜•所 入侵程度能降至 命長的有機電發 --------扣衣------1Τ------.^ (請先閱讀背面之注意事項rv,寫本頁) 本紙浪尺度逋用中國國家標準(CNS ) A4規格(2IOX 297公釐) -9- 經濟部中央標準局員工消費合作社印製 4 185 90 at _Β7_五、發明説明(7 ) 電子插入電極之銘鋰合金含鋰0 . 4至14wt%* 較佳者介於0 · 4至6 . 5wt% (6 . 5除外),更佳 者介於0.4至5wt%(5除外),再更佳者介於 0 · 4至4 · 5wt%,最佳者介於0 . 4至4wt%* 尤其是0 . 4至3wt%,或者較佳者介於6 . 5至14 wt%,更佳者介於7至1 2wt%。若含鋰過高,電子 插入電極之沉積便顯得較不穩定。若含鋰太低,則喪失本 發明之優點。若要增強發光的發光強度,較佳之方法是調 高鋰濃度,若要增進趨動電壓之穩定性,較佳之方法是調 低鋰濃度。 同時較佳之鋰含童爲0 . 8至12wt%。鋰含量爲 0 . 8 至 2 . 8wt%,尤其是 1 . 5 至 2 · 5wt%時 有較佳驅動電壓(即電壓上升)的穩定性。鋰含量爲 3 - 2至12wt%時有較佳的發光強度。從增加發光強 度及降低驅動電壓和電壓上升的觀點而言,鋰含量爲 3.5至l〇wt%,尤其是3.5至9wt%較佳。 除了鋁和鋰之外,此合金可含至少一種之C u、Mg 、Zr 、Fe 、S i 、0等,含量至多5wt%之添加劑 或附帶的組成物》 形成的電子插入電極可具有梯度構造,鋰濃度隨薄膜 厚度的方向而變化,鋰元素在靠近有機層介面最多,而鋁 元素在靠近另一表面最多。此濃度梯度能確保鋰元素在須 要電子插入功能的有機層介面上有較高之濃度、較低之功 函數《因爲鋰元素在較低濃度時接觸空氣的另一表面上常 --.-------朴衣------,玎-------^ (請先閱讀背面之注意事項寫本頁} 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X29?公釐) 10 - 經濟部中央橾準局員工消費合作社印製 A7 B7五、發明説明(8 ) 有高反應性發生,所以能改善電子插入電極的穩定性,同 時維持電子噴射之高效能。 梯度濃度之鋰元素能產生電子插入電極,在較佳的具 體實施例中,噴濺壓力之控制將描述於後,例如同時用鋁 鋰合金噴濺靶及鋁金屬靶,並個別的控制其沉積速度。除 了由連續的梯度濃度組成外,薄膜亦可由混合各種不同不 連續或階梯式鋰元素比例的混合物組成。 噴濺製程之噴濺氣體壓力,較佳者介於0.1至5 P a 。將噴濺氣體壓力控制在此範圍內,能得到上述定義 之鋁鋰合金之鋰濃度。同時薄膜沉積時,將噴濺氣體壓力 在此範圍內改變,能輕易得到上述定義具有梯度鋰濃度之 電子插入電極。 噴濺氣體可以是傳統噴濺裝置使用的惰性氣體,在反 應性噴濺製程中除了惰性的氣體外亦可使用反應性氣體, 例如:Ns、H2、〇2、。 噴濺製程是用R F電源、D C噴濺製程之高頻率噴濺 製程,尤其是使用脈衝式D C噴濺製程較佳,因爲薄膜沉 積的速度控制易於將有機電發光裝置(E L )構造之損害 降至最低》DC噴濺裝置之電源較佳者介於0 . 1至10 W/cm2間,特佳者爲0 · 5至7W/cnf。薄膜沉積的 速度較佳者介於0 . 1至lOOnm/mi η .間,特佳 者爲 1 至 3〇nin/mi η。 電子插入電極薄膜之厚度要足以進行電子噴射,至少 要有1 nm,較佳者至少要有3 nm。厚度的上限不重要 -----------裝------訂------線 (請先閱讀背面之注意事項-V填寫本頁) 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X 297公釐) 娌濟部中央標準局貝工消費合作社印製 418590 A7 _____B7 五、發明説明(9 ) ’一般薄膜厚度介於大約3 nm至大約5 0 0 nm。 本發明的一種有機電發光裝置(E L )中,電子插入 電極至少含一種氧化物、氮化物及碳化物之材料,可作爲 在上述之反應性噴濺製程中的薄膜保護。因此保護薄膜的 起始材料和形成電子插入電極的材料雖然亦可使用不同成 分之材料或刪除一、兩種成分的相同材料,其成分最好一 致。使用和電子插入電極相同的或類似的材料時,保護薄 膜和電子插入電極間可形成連續的介面。 氧化物之含氧量、氮化物之含氮量或碳化物之含碳量 隨其計量而有所不同,比例介於0 . 5至2倍之間。 至於靶之材料,較佳者和電子插入電極相同=當要形 成氧化物時,反應性氣體是〇2及CO ;當要形成氮化物時 ,反應性氣體是N2、NH3、NO、N〇2、及N2〇 :而 要形成碳化物時,反應性氣體是CH4、C2H2、及 C2H4。此類反應性氣體可單獨使用或使用兩種以上的混 合。 保護薄膜的厚度必須足以避免濕氣、氧氣或有機溶劑 進入,較佳者至少有5 0 nm,更佳者至少有1 0 0 nm ,最佳者介於100至1,OOOnm之間。 電子插入電極及保護薄膜之總厚度不重要,一般大約 爲100至大約1 ,OOOnm。 此保護薄膜能進一步有效的避免電子插入電極氧化, 能更長期穩定的驅動有機電發光裝置(EL)。 依據本發明製造的有機E L發光裝,在基板及其上的 本紙張尺度適用十國國家標隼(CNS ) Λ4規格(210x297公釐).\2 - ----------裝------1T------^ (請先閱讀背面之注意事項‘寫本頁〕 4 18 5 9 υ a? _Β7_ 五、發明説明(1〇 ) 電子插入電極具有孔洞插入電極。此裝置更包括至少一種 帶電的運送層及至少一種各自插入電極間的發光層,及一 種最上層的保護層"充電運送層可以省略。電子插入電極 由金屬、化合物或具低功函數之合金組成,並經前述之噴 濺製程沉積,此孔洞插入電極經噴濺製程而沉積上一層塗 錫的氧化銦(ΙΤΟ)、塗鋅的氧化銦(ΙΖΟ)、 2nO、Sn〇2、ΙΝ2〇3或其類似物後構成。 圖1是說明依據本發明製造的有機E L發光裝置的一 個範例。圖1的EL裝置包括一種孔洞插入電極22、孔 洞插入及運送層2 3、發光和電子插入及運送層2 4、電 子插入電極2 5、及保護層2 6,在基板2 1上依描述之 次序依序沉積。 本發明之有機電發光裝置(E L )不限於此處描述之 構造,可以有各種其他的變化。例如自身可形成一種發光 層並插入發光層及電子插入電極間之電子插入及運送層。 視須要,此孔洞插入及運送層2 3可和發光層混合。 經濟部中央梯準局員工消費合作社印聚 以前述之方法所形成之電子插入電極,其有機材料層 (例如:發光層)可經真空蒸發或類似的方法形成,孔洞 插入電極可經蒸發或噴濺的方法形成。視須要各薄膜用遮 蔽蒸發或適當的技藝製模,例如:薄膜形成後用蝕刻法藉 以完成須要的發光形態。於進一步的具體實施例中,基板 支持薄膜電晶體(TFT),各薄膜依TFT的形態形成 ,因此不須進一歩的處理即能提供顯示及驅動形態= 至於孔洞插入電極之材料及厚度,較佳者至少能經 -13- 本紙伕尺度適用中國國家標準(CNS ) A4規格(公t ) 經濟部中央標準局員工消費合作社印製 4阳9〇 A7 B7 五、發明説明(11 ) 電極發射8 0 %之’放射光。較佳者爲透明傳導性的氧化物 薄膜。例如,薄膜上含任何一種塗錫的氧化銦(I TO) 、塗鋅的氧化銦(IZO)、氧化銦(in2〇3)、氧化 錫(S η 〇2)及氧化鋅(Ζ η 0)等有用之主要組成物》 此類氧化物含其固有之氧化計量。雖然氧氣全量有某些變 化,ΙΤ0 —般含ΙΝ2〇3及Sn〇2之計量成分。 Sn〇2對I N2〇3之混合比較佳者介於1至2〇wt% ,更佳者介於5至1 2wt%。Z nO對I N2〇3之混合 比較佳者介於12至32wt%。 較佳者使用噴濺製程形成孔洞插入電極。噴濺製程是 用RF電源之高頻率噴濺製程,雖然DC噴濺製程,當要 控制沉積薄膜孔洞插入電極及薄膜之物性時,較佳製程是 脈衝式D C噴濺製程。 電極形成後’保護薄膜可用有機材料形成,例如: S i 0 X或有機材料例如:鐵氟龍。保護薄膜可以是透明 的或不透明的’其厚度大約5 0至1 ,2 0 0 nm。和上 述反應性噴濺製程分離後,保護薄膜亦可經噴灑或蒸發製 程形成。 此外’此較佳之裝置可形成密封或包膠層以避免有機 層及電極氧化。避免濕氣進入之密封層是經貼上密封板後 形成,例如:經黏貼樹脂層,例如:商用之低濕氣光硬化 的膠黏劑薄片、環氧基膠黏劑、聚矽氧烷膠黏劑、或交聯 的乙烯-乙烯基乙酸酯共聚物膠黏劑之玻璃板。亦可使用 金屬板及塑膠板。 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210X297公釐) -14 - ---------^------1T------^ (請先閱讀背面之注意事項了%寫本頁) 418590 Λ 7 Β7 經濟部中央標準局貝工消f合作社印裂 五、發明説明(12 ) 以下將描述本發明之有機電發光裝置(E L )所包括 的有機材料層α 發光層具插入、運送孔洞及電子功能、及重組孔洞及 電子產生激發器。較佳的發光層爲相對電中性的化合物。 孔洞插入及運送層的功.能可促進孔洞自孔洞插入電極 噴射、穩定的運送孔洞,並阻礙電子輸送。電子插入及運 送層的功能可促進電子自電子插入電極噴射、穩定的運送 電子,並阻礙孔洞輸送。此類薄層能有效的增加孔洞及電 子插入發光層的數目,並於其間形成孔洞及電子,最適化 重組區域以改善發光效能》 發光層、孔洞插入及運送層、及電子插入及運送層之 厚度並不重要,隨其形成之技藝而變*較佳的厚度介於大 約5 nm至大約500nm,尤其是大約10nm至大約 3 0 0 n m。 孔涧插入及運送層和電子插入及運送層之厚度等於或 介於大約1/1 0倍至大約1 0倍之發光層厚度,視其組 合/發光區域之設計而定。當電子或孔洞插入及運送層分 成插入層及運送層,較佳之插入層至少有1 nm厚,而運 送層至少有1 n m厚。插入層厚度之上限一般大約爲 5 0 0 nm,而運送層大約爲5 0 0 nm »當提供雙插入 /運送層時則施用相同厚度之薄膜。 本發明的有機電發光裝置(E L )之發光層含螢光材 料’該材料是具發光能力之化合物。螢光的材料是至少一 種選自揭示於JP-A 264692/1988之化合 Π 裝-- (請先閱讀背面之注意事項7¾寫本頁) 訂 線 本紙張尺度適用中囤國家標準(CNS ) A4規格(210X 297公釐) -15- 經濟部中央標準局貝工消費合作社印製 4 185 90 A7 Λ7 B7 五、發明説明(13 ) 物,例如:喹吖啶酮、莒、及苯乙醯基染料;喹啉衍生物 1例如:具8 —羥基哇啉或其衍生物作爲配基之金屬錯合 物染料,例如:三(8 -羥基喹啉基)鋁及包括四苯基丁 二烯、蒽、二萘嵌苯、苛、及1 2_鄰苯二甲醯哌芮酮( perinone)衍生物。其它可使用的材料如描述於Japanese Patent Application No. 1 10569Π 994中的苯基蒽衍生物及描 述於 J a p a n e s e P a t e n t A ρ p 1 i c a t i ο η Ν ο · 11 4· 4 5 6 /1 9 9 4 的四芳族 烴基乙烯衍生物。 較佳的化合物是能和具發光主材料組合,作爲摻雜物 化合物。於此具體實施例中,發光層之化合物含量較佳者 介於重量之0.01至10%,尤其是0.1至5%。使 用組合化合物之主材料,可改變主材料之發光波長,使發 光位移至較長之波長並改進發光的功效及裝置的穩定性。 至於主材料,較佳者爲羥基喹啉基錯合物,含8 _羥 基喹啉或其衍生物作爲配基之鋁錯合物則更佳。此類之鋁 錯合物揭示於JP — A 264692/1988 ' 255190/1991、70733/1993、 258859/1993 及 215874/1994。 說明之實施例包括三(8 —羥基喹啉基)鋁、二(8 一羥基喹啉基)鎂、二(苯并{ f丨-8—羥基鸣啉基) 辞、二(2 —甲基—8-經基嗤啉基)錦氧化物、三(8 一羥基喹啉基)銦、三(5 -甲基_8 —羥基喹啉基)銘 、8 -羥基喹啉基鋰、三(5 —氯基—g —羥基喹啉基) 鎵、二(5 -氯基—8 —羥基喹啉基)鈣、5 ,7-二氯 本紙張尺度適用中國國家標準(CNS > A4規格(2〖〇X 297公釐) -16- -I iji I I n ; I - n I It - n T n _ _ n-----n (請先閱讀背面之注意事項/‘寫本頁) 經濟部中央標準局員工消費合作社印聚 4 185 90 A7 ______B7 _____ 五、發明説明(14 ) 基一8~羥基喹啉基鋁二三(5 ,7 一二溴基—羥基 羥基喹啉基)鋁、及聚〔鋅(丨丨)一二(8 —羥基—5 一喹啉基)甲烷〕。 除了 8 -經基喹啉或其衍生物之外’鋁錯合物亦可具 有其他配基。實施例包括二(2 -甲基一 8 —羥基喹啉基 )(酚基)鋁(皿)、二(2 —甲基一 8_羥基喹啉基) (鄰一甲酚基)鋁(m)、二(2 —甲基_8_羥基喹啉 基)(鄰一甲酚基)鋁(m)、二(2 —甲基_8_羥基 喹啉基)(對—甲酚基)鋁(m)、二(2_甲基-8 — 羥基喹啉基)(鄰一苯基酚基)鋁(m)、二(2 -甲基 _8羥基喹啉基)(間一苯基酚基)鋁(m)、二(2 — 甲基一8 —羥基喹啉基)(對一苯基酚基)鋁(m)、二 (2 —甲基_8_羥基喹啉基)(2,3_二甲基酚基) 鋁(m)、二(2 —甲基_8_羥基喹啉基)(2,6 — 二甲基酚基)鋁(ΙΠ)、二(2_甲基_8_羥基哇啉基 )(3 ,4 —二甲基酚基)鋁(瓜)、二(2~甲基_8 _羥基喹啉基)(3,5 —二甲基酚基)鋁(瓜)、二( 2甲基—8 —羥基喹啉基)(3,5_:—tert—T 基酚基)鋁(m)、二(2 -甲基—8 —羥基喹啉基)( 2,6 —二苯基酚基)鋁(in)、二(2 -甲基-8-羥 基喹啉基)(2,4,6 —三苯基酚基)鋁(Π)、二( 2 -甲基—8羥基卩奎啉基)(2 ,3 ,6_三甲基酚基) 鋁(ΙΠ)、二(2 —甲基—8_羥基曈啉基)(2,3, 5 ,6 —四甲基酚基)鋁(瓜),二(2-甲基—8-羥 本紙張尺度適用中國國家標準(CNS ) Λ4規格(2IOX.297公趁)-17 - ---------ΐ衣------ir------.^ (請先閱讀背面之注意事項萝^寫本頁) 經濟部中央標準局負工消f合作社印5i 4 18 5 9 0 a? B7__五、發明説明(15 ) 基喹啉基)(1—萘酚基)鋁(皿)、二(2 —甲基一 8 -羥基喹琳基)(2—萘酚基)鋁(π)、二(2,4-二甲基—8—羥基ti奎啉基)(鄰—苯基酚基)鋁(瓜)、 二(2,4 一二甲基—8羥基鸣啉基)(對一苯基酚基) ( HI )、二(2,4 —二甲基_8_經基嗤啉基)(間 —苯基酚基)鋁(瓜)、二(2’ 4_二甲基_8_羥基 喹啉基)(3,5 —二甲基酚基)鋁(瓜)、二(2,4 一二甲基一 8羥基喹啉基)(3,5_:_tert—T 基酚基)鋁(瓜)、二(2_甲基一4_乙基_8_羥基 喹啉基)(對一甲酚基)鋁(II)、二(2 -甲基一4 — 甲氧基一 8 —羥基喹琳基)(對一苯基酚基)鋁(m)、 二(2 —甲基一5 —氰基—8~羥基喹啉基)(鄰_甲酚 基)鋁(瓜)、及2甲基一6-三氟甲基一 8 —羥基喹啉 基)(2 —萘酚基)鋁(m)。 亦可包括二(2 —甲基一8~羥基喹啉基)鋁(瓜) 一 V -氧基一二(2 —甲基_8_羥基喹啉基)鋁(Π) 、二¢2 ’ 4 一二甲基—8 -羥基喹啉基)鋁(ΠΙ)_// 一氧基二(2 ,4 一二甲基—8 —羥基喹啉基)鋁(m) 、二(4 一乙基一2 —甲基一8 -羥基喹啉基)鋁(瓜) 一〆一氧基一二(4 —乙基一2甲基—8_羥基喹啉基) 鋁(m)、二(2 —甲基-4甲氧基羥基喹啉基)鋁(m )_// 一氧基一二(2 —甲基—4_甲氧基羥基ϋ奎啉基) 鋁(瓜)、二(5 —氰基一2 —甲基一 8 —羥基喹啉基) 鋁(m) — # —氧基一二(2_甲基一 4 一甲氧基羥基喹 —-------,----裝------訂———,---線 (諳先閲讀背面之注意事項/'%寫本頁) 本紙浪反度通用中國囷家標準(CNS) ―~~|8~^ 經濟部中央標準局貞工消贤合作社印製 418590 A7 ______B7_ 五、發明説明(16) ~ 啉基)鋁(n) -y—氧基一二(5 —氰基一 2 —甲基-8_羥基α奎啉基)鋁(m)、及二(2 -甲基_5 —三氟 甲基一8—羥基哮啉基)鋁(瓜)—氧基_二(2-甲基—5-三氟甲基—8_羥基喹啉基)鋁(m)。 其他主要的材料爲苯基蒽衍生物(描述於Japanese Patent Application No· 1 1 0569/1 994 )及四芳族烴基乙烯衍 生物(描述於 J a p a n e s e P a t e n t A p p 1 i c a t i ο η Ν ο · 1 14 4 5 6 /19 9 4 )° 發光層亦可作爲電子插入及運送層。在此例中,較佳 者爲三(8 -羥基喹啉基)鋁(ΠΙ)等。此類螢光的材料 可蒸發。 視須要,此發光層亦可爲至少一種孔洞插入及運送化 合物和至少一種電子插入及運送化合物混合物之混合層, 其中較佳者含摻雜物。於此混合層中,化合物之含量較佳 者介於重量之0.01至20%間,尤其是0.1至15 %之間。 於此混合層中,載體產生跳躍傳導路徑,使載體向主 極性物質移動而抑制載體向相反的極性噴射,使有機化合 物較不易受損,因此可延長裝置壽命。混合層倂入前述之 摻雜物後,可改變混合層之發光波長,使發光位移至較長 的波長並改善發光的強度及裝置的穩定性。 混合層所使用之孔洞插入和運送之化合物及電子插入 和運送之化合物可選自下述的孔洞插入和運送層之化合物 及電子插入和運送層之化合物。尤其較佳之孔洞插入和運 --.-------,.裝------訂--„------線 (請先閣讀背面之注意事項弄填寫本頁} 本紙朵尺度適用令國國家標準(CNS ) A4规格(210x297公釐) -19- A7 418590 B7 五、發明説明(17) 送層之化合物係選自具有強烈螢光之胺衍生物,例如:三 苯基二胺衍生物(孔洞運送材料)、苯乙醯基胺衍生物及 具芳香族稠環的胺衍生物。 較佳之電子插入及運送化合物選自喹啉衍生物及具8 -羥基喳啉或其衍生物爲配基之金屬錯合物,尤其是三( 8_羥基喹啉基)鋁(A i q 3)。上述之苯基蒽衍生物 及四芳族烴基乙烯衍生物亦爲較佳之化合物。 較隹之孔洞插入及運送層化合物係選自具有強烈螢光 之胺衍生物,例如:三苯基二胺衍生物(孔洞運送材料) 、苯乙酷基胺衍生物及具芳香族的稠環之胺衍生物。 較佳之混合比可視載體密度及載體流動性而定。一般 較佳的孔洞插入及運送化合物對電子插入及運送化合物之 重量比介於大約1/99至大約99/1 ,更佳者介於大 約1 0/9 0至大約9 0/1 0最佳者大約2 0/8 0至 大約8 0 / 2 0。 混合層之厚度以介於單分子層厚度及少於有機化合物 層厚度之間較佳,爲1至8 5 nm,更佳者介於5至6 0 nm、最佳者爲5至5 0 nm。 較佳之混合層經共沉積製程以便將不同來源之化合物 蒸發後而形成。若化合物有大致相同或非常接近的蒸氣壓 或蒸發溫度,則可預先混合於一個共同蒸發皿一起蒸發。 雖然亦可容許島狀之化合物,但此二化合物的均勻混合是 較佳的混合層。一般發光層是經蒸發製程將有機螢光的材 料或分散塗層之樹脂黏結劑形成預定厚度之發光層。 本紙張尺度通用中國國家標準(CNS ) Λ4規格(210x297公釐) --.-------------ΐτ——„-----線’ (請先閱讀背面之注意事項再填寫本頁) 經"部中央標準局K工消贽合作社印12 •20- 經濟部中央標準局只工消費合作社印袈 4 1RR90 A7 __B7_ 五、發明説明(18) 孔洞插入及運送層可採用各種有機化合物,例如揭示 於:JP-A 295695/1988' 191694 /1990 '792/1991、234681/ 1993、239455/1993 '299174/ 1993、126225/1995、126226/ 1995 '100172/1996、及 E P 0650955A1。範例爲四芳族烴基對二胺基 聯苯化合物(三芳族烴基二胺或三苯基二胺:TPD)、 芳香族的三級胺、腙衍生物、咔唑衍生物 '三氮唑衍生物 、咪唑衍生物、具胺基之氧雜二氮唑衍生物、及聚噻吩。 可使用兩種或多種此類之化合物,於組合使用時可形成分 隔或混合之薄層。 當孔洞插入及運送層形成分隔的孔洞插入層及孔洞運 送層時,可由孔洞插入及運送層常見的化合物中選擇兩種 或多種化合物作適當組合。較佳的薄層是將具較低離子電 位之化合物層置於陽極(例如I TO)附近。較佳的亦可 使用在陽極表面具良好的薄膜形成能力之化合物作爲薄層 。提供多重孔洞插入及運送.層時亦可賦予薄層次序。此薄 層之次序可有效的降低驅動電壓及避免電流流失及黑點的 發生。製造此裝置是使用蒸發法,薄膜形成之厚薄大約爲 均勻的1至1 0 nm且無針孔,甚至在孔洞插入層中使用 具低離子電位及能吸收可見光之化合物時亦能防止放射光 色調之改變及再吸收之效能下降。如同發光層,孔洞插入 及運送層可藉由將上述化合物蒸發後而形成。 本紙浪尺度適用中國國家標準(CNS ) Λ4規格(210Χ297公趋) . 裝 訂丨丨—----線 (請先閱讀背面之·λί意事項再續寫本頁) -21 - 4 18590 經濟部中央標羋局兵工消费合作社印" A7 B7__五、發明説明(19) 可選擇性的使用電子插入及運送層,該層的材料可以 是包括具8 -羥基嗤啉或其衍生物作爲配基之喹啉衍生物 的有機金屬錯合物,例如:三(8_羥基鸣啉基)鋁、氧 雜二氮唑衍生物、二萘嵌苯衍生物、吡啶衍生物、嘧啶衍 生物、曈喏啉衍生物、二苯基醌衍生物、及氮取代的薄衍 生物。此電子插入及運送層可作爲發光層。此例中使用三 (8 —羥基喹啉基)鋁較佳。類似發光層,電子插入及運 送層可經蒸發或類似的方法形成。 當電子插入及運送層係分別形成電子插入層及電子運 送層時,兩種或多種選自適當組合的化合物可作爲電子插 入及運送層。就這一點而言,電子親和力較大之化合物層 依序置於陰極附近。此薄層之次序亦可應用於多重電子插 入及運送層。 基板之構成岢使用透明的或半透明的材料,例如:玻 璃、石英或樹脂,其中自基板邊放射光。此基板可提供彩 色濾光器薄膜、含螢光的材料之色彩轉換薄膜或介電質反 射薄膜以控制放射光的色彩。在可逆堆疊構造的例子中, 基板可爲透明的或不透明的,而陶瓷可作爲不透明的基板 0 此處之彩色濾光器薄膜可以是彩色濾光器1作爲液晶 顯示器或其類似物。彩色濾光器的性質可依有機電發光裝 置(E L )放射之光線調整成最適化之萃取效能及彩色純 度。 較佳的彩色濾光器能濾除被E L裝置材料及螢光轉換 !*-------d------IT—-------線‘ (請先聞讀背面之注意事項再从寫本頁) 本紙悵尺度適用中國國家標苹(CNS } Λ4規格(210X297公釐) -22- 經满部中央標莘局员工消費合竹社印取 418590 A7 B7五、發明説明(2〇) 層所吸收之短波長光線,因而改善裝置的光線抗性及顯示 器的對比。 光學薄膜,例如:多層介電質薄膜,可替代彩色濾光 器。 螢光轉換濾光器薄膜藉由吸收電發光能將放射光的色 彩轉換,並使薄膜的螢光材料發出放射光。螢光轉換濾光 器薄膜由三種成分形成,分別爲:黏結劑、螢光的材料、 及吸光材料。 基本上可使用具高螢光量子產率的螢光材料並須在電 冷光的波長範圍展現強烈的吸光。實用上,雷射染料很恰 當。可使用若丹明化合物、二萘嵌苯化合物、青色素化合 物、鄰苯二甲醯青色素化合物(包括次一鄰苯二甲醯青色 素)、萘醯亞胺化合物、稠環碳氫化合物、稠異環化合物 、苯乙醯基化合物、及香豆素化合物。 黏結劑選自不會引起螢光消光的材料,較佳之材料能 用照相平版印刷或印刷技藝精巧地製模。此類較佳之材料 不會在I TO沈澱時損壞。 當螢光的材料吸收了短波長光線時可視須要去除此吸 光材料。吸光材料亦可選自不會引起螢光消光之螢光材料 於形成孔洞插入及運送層、發光層、及電子插入及運 送層時,較佳者是使用真空蒸發製程,因爲可以得到均一 的薄膜。使用真空蒸發得到的均一薄膜是非結晶形的或者 顆粒大小低於0 . 1 # m。若顆粒大小高於0 . 1 # m, (請先閱讀背面之注意事項再填寫本頁) _裝 本紙張尺度適闲中國國家標準(CNS ) Λ4規格(2【0Χ297公浼) -23 - 418590 A7 B7_____ 五、發明説明(21) 則會發生不均勻的發光,而裝置之驅動電壓會上升,降低 電價之噴射效能。 (請先閱讀背面之注意事項再填寫本頁) 真空蒸發的條件並不重要,較佳之真空爲1 0— 4P a 或較低,而蒸發速度大約爲〇 . 〇 1至1 nm/s e c。 較佳者在真空中形成連續的薄層,因爲此空中形成的連續 薄層能避免薄層間之雜質吸附,因此有更佳之效能。同時 可降低裝置之驅動電壓避免黑點之發生。 於具體實施例其中,各層經真空蒸發後形成含二種或 多種化合物之單層,其中各化合物須控制個別的溫度進行 共同沉積。 本發明之有機電發光裝置(E L ) —般爲D C驅動型 ,亦可爲A C或脈衝驅動型。應用之電壓一般爲大約2至 2 0伏特。 實施例 本發明用以下之實施例及比較實施例加以說明。 經濟部中央標埤局兵工消费合作社印聚 實施例 1 於矽晶片上,用鋁鋰合金樣品A (鋰濃度爲4 . 2 wt%)及鋁鋰合金樣品B (鋰濃度爲8 · Owt%)作 爲靶,經D C噴濺製程形成沉積厚度爲3 〇 〇 nm之鋁鋰 合金薄膜。噴濺壓力及沉積速率示於表1。使用氬作爲噴 濺氣體,輸入功率爲1 〇 〇瓦,靶的直徑大小爲4英吋, 而基板和靶間之距離爲9 0 m m。 本紙張尺度述用1丨’國闯家標皁(CNS ) Λ4规格(210x297公趋) -24- 185 90 Λ7 ____B7 五、發明説明(22 ) 表 1 噴濺壓力 (Pa) 沉積速度 (n m / m i η L i濃度 •) 樣品A (w t % ) 樣品B 0 · .3 1 0 2 .4 4 •7 1 · 0 8 · 4 3 8 7 _ • 0 2 0 6 · 3 4 •6 8 ' 7 3 . 0 4 9 4 •9 9 '3 4 - 5 3 3 5 •6 10 .8 經濟部中央標準局員工消費合作杜印製 薄膜成分經I CP檢驗後結果示於表1。表1証實單 一靶成分上形成之電子插入電極,其上沈澱物之鋰濃度可 經各種噴濺壓力控制。 實施例2 將經噴濺製程形成的1 0 0 nm厚、具透明圖案之 I TO電極(孔洞插入電極)的玻璃基板用超音波在中性 的兩性介面活性劑、丙酮、及乙醇中淸洗,自沸騰的乙醇 中抽出、乾燥,用UV/03淸洗表面,然後置於真空蒸發 室內之架子上,抽至1xlO_4Pa或更低之真空。然後 將4,4’ ,4”—三(N—(3 —甲基苯基)一N_苯 基胺基)三苯基胺(縮寫爲m — MTDATA)在沉積速 率0 . 2nm/s e c .下蒸發至厚度爲4〇nm,形成 孔洞插入層。保持真空下,將Ν,Ν’ 一二苯基一Ν, -----------..裝------訂——^——----線 {请先閱讀背面之注意事項声4·寫本頁) 本紙張尺度適用中國國家標準(CNS ) Λ4規格(210Χ 297公1 ) -25- 經濟部中央標準局員工消費合作社印聚 185 9 0 A7 B7 _ 五、發明説明(23 ) N 1 -m —甲苯基 ~4 ’4,—二胺基一1,1,—二苯 基(縮寫爲TPD)在沉積速率〇 . 2nm/sec .下 蒸發至厚度爲3 5 nm,形成孔洞運送層。保持真空下’ 將A 1 q 3在沉積速率0 2nm/s e c 下蒸發至厚 度爲5 0 nm,形成發光/電子插入及運送層。保持真空 下,將E L裝置構造基板從真空蒸發室移至噴濺裝置。用 氬作爲噴濺氣體、輸入功率爲1 〇 〇瓦經D C噴濺製程將 具備7.3wt%鋰濃度之鋁鋰合金薄膜沉積至厚度 200nm。噴濺壓力是1.OPa ,噴濺氣體是氬、輸 入功率是1 0 0瓦、靶之大小爲直徑4英吋 '基板和靶之 間距爲9 0 m m。 在乾燥的氬氣下,對該有機電發光裝置(E L )施用 D C電壓,此裝置在1 4V及8 2 5mA/c πί下所產生 的最大發光強度爲38,000cd/mm2。在固定的電 流密度1 OmA/cnf下連續驅動,起始發光強度在 6 . 6V下爲5 6 0 c d/mm2,發光強度半生期爲 650小時,半生期間驅動電壓上升爲2 . IV。至 2 0 0小時才發現超過1 0 0 # m大小之黑點。結果示於 表2之樣品No . 4。 實施例 3 除了電子插入電極是將鋁鋰合金薄膜沉積之鋰濃度從 2 改變至 0 · 81wt%、2 . 2wt%、5 . 2wt% 、10 · 4wt%、及11 . 4wt%後而形成之外,有 ---------^--裝------訂---.---線 (請先閱讀背面之注意事項/4寫本頁) 本紙張尺度適用中國國家栳皁(CNS ) Λ4規格(210X297公趁) -26- 418590 Λ7 B7 經濟部中央標準局貝工消費合作社印製 五、發明説明(24 ) 機電發光裝置(E L )樣品依實施例2之方法製造。 各樣品在固定電流密度下連續驅動並測量電壓及發光 之強度。於所有的樣品中,發出的是綠光(放射最大波長 Amax 530nm)。測量發光強度之半生期、半生 期間驅動電壓之上升、及超過1 Ο 0 大小之黑點產生 的時間。結果示於表2。 比較實施例1 除了電子插入電極是用真空共蒸發Mg A g (沉積速 率比10 : 1) A而形成之外,用實施例2的方法製造此 裝置。如實施例2般進行評估,發現最大的發光強度在 15V' 500mA/cms 下是 18,OOOcd/mrri 。在電流密度1 OmA/c irf下連續驅動,起始發光強度 在6 . 9V下是470cd/mm2,發光強度之半生期是 400小時,半生期間驅動電壓上升是2.6V。在96 小時發現黑點發生大小超過1 0 0 // m,如表2。 比較實施例2 除了電子插入電極是用真空共蒸發之鋁鋰(鋰濃度 2 8w t %)形成的之外,如實施例2之方法製造此裝置 。如實施例2般進行評估。起始發光強度於7 . 4 V下是 470c d/mm3,發光強度半生期是3 00小時,半生 期間驅動電壓之上升是3 . 6 V。在4 8小時發現黑點發 生大小超過1 0 0 ,如表2。 ----------;--f------π!-„——.----^ (請先閱讀背面之注意事項-?=%,寫本頁) 本紙張尺度適用中國國家橾準{ CNS ) Λ4现格Ul〇x297公竣) -27- 4 185 90 Λ7 B7 五、發明説明(25 ) 表 2 連續驅 發光強度 黑點發 樣品鋰濃度動電壓發光強度半生期電壓上升生時間 編號 (wt %) (V) (cd/mm2) (小時) (V) (小時) 1 0.81 6.9 510 650 1.2 200 2 2.2 6.8 510 650 1.1 250 3 5.2 6.6 510 650 1,3 250 4 7.3 6.6 560 650 1.5 250 5 10.4 6.6 560 650 2.1 200 6 1 1.4 6.6 550 650 2.1 200 7 * MgAg 6.9 470 400 2.6 96 8* 28 7.4 470 300 3.6 48 ^ 比較實施例 表2証實本發明之樣品在發光強度、發光強度半生期 、電壓上升及黑點發生上均優於比較的樣品。 工業上之應用 具電子插入電極之有機電發光裝置(E L )在有機層 介面上有優良之附著力,其電子噴射效能良好且發光特性 有所改良,對有機層不致產生損害,能抑制黑點發生,並 無損其效能。 本紙浪尺度適用申國國家標準(CNS ) Λ4規格(210X 297公趋) ----------裝------訂——-I.---線 (請先閱讀背面之注意事項声彡,寫本頁) 經濟部中央標準局負工消費合作社印装 -28-Printed by the Central Bureau of Standards of the Ministry of Economic Affairs, printed by Cooperatives _B7 _V. Description of the Invention (1) Technical Scope The present invention relates to an organic electroluminescent device (EL) of an organic compound and a method for preparing the same, more specifically, An electron insertion electrode and a method for preparing the same. Technical background Recently, research on organic electroluminescence devices (EL) is very active. The basic structure of an organic electroluminescent device (EL) includes a transparent electrode made of tin-coated indium oxide (ITO) or a hole-inserted electrode, and the hole-transporting material (for example, triphenyldiamine (TPD)) is evaporated. A thin film formed thereon, a light-emitting layer formed by depositing a fluorescent material (for example: hydroxyquinoline aluminum complex (A 1 Q 3)) thereon, and a low work function metal (for example: magnesium ) Formed metal electrode or electron insertion electrode. An attractive feature of this organic electroluminescence device (EL) is that a driving voltage of about 10 volts can achieve a high luminous intensity ranging from hundreds to tens of thousands of 100,000 c d / m2. The material used for the electron insertion electrode of the organic electroluminescent device (EL) is to be able to efficiently insert more electrons into the light emitting layer or the electron insertion and transport layer as the most efficient material. In other words, a material with a lower work function is suitable as an electron insertion electrode. Many materials are known to have low work functions and can be used as electron insertion electrodes or organic electroluminescent devices (EL). For example, the electron insertion electrode disclosed by jp-A 15595/1990 is composed of a variety of metals other than alkali metals, and the work function of at least two metals is less than 4 e V, for example: M g A g = the paper's it scale is applicable to the Chinese country 榡 隼 ( CNS} A4 specification (210X297 male t).  A.  -, ------- ¢ ------ IT ------ ^ (Please read the notes on the back first. (&Amp; write this page) Printed by the Consumer Cooperatives of the Central Government Bureau of the Ministry of Economic Affairs 418590 A7 __. _B7 V. Description of the invention (2) Alkali metal is a better material with a low work function, as described in USP 3, 173,050 and 3, 382,394 for alkali metal examples Na and K. However, electrodes using alkali metals are highly active1 and their chemical properties are unstable, so their safety and reliability are worse than using Mg Ag or other similar electron insertion electrodes. There are many methods for improving alkali metal electron insertion electrodes and aluminum-lithium alloys including the electron insertion electrodes, such as described in JP-A 165771/1985, 212287/1992, 121172/1993, and 159882/1193. The following patents describe lithium concentration and a method for preparing an aluminum-lithium alloy. (1) JP — A 165771/1985 reveals lithium concentrations ranging from 36 to 99.  8wt% (1 to 99wt%), preferably 29.  5 to 79.  Between lwt% (10 to 50 wt%), the aluminum-lithium alloy described in the examples contains 15. 8 to 79.  lwt% (4.  8 to 50 wt%) of lithium. All such aluminum-lithium alloys are deposited using an evaporation process. (2) The lithium concentration described in J P-A 2 1 2287/1 992 is at least 5%, preferably between 6 and 30% by weight. The aluminum-lithium alloy described in the examples contains 28% by weight of lithium. Although it is reported in the examples that such an aluminum-lithium alloy is prepared by an evaporation process, a thin film can also be formed by heat-resistant co-evaporation 'electron beam evaporation and sputtering deposition. (3) The lithium concentration revealed by J P — A 121 172/1993 is between 0. 0377 to 0. 38wt% (0. 01 to 0. 1: 100 weight ratio), and the aluminum-lithium alloy described in the examples contains the paper standard applicable to China National Standard (CNS) A4 (210X 297 mm) _ c.  —--------- Wonderful clothes ---------- τ ------ m (Please read the notes on the back to write this page first) Printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 418590 A7 B7 V. Description of the Invention (3) 0. 060 to 0. 31wt% (0. 016 to 0 · 08: 1 0 0 weight ratio) lithium, prepared by heat-resistant evaporation or electron beam evaporation process. The preferred concentration is at most 1 5.  9wt% (up to 50: 1000 weight ratio), and the aluminum-lithium alloy-forming film described in the examples contains 29. 5 to 61. 8wt% (10 to 30wt%) lithium. (4) JP-A 159882/1993 shows that the lithium concentration is between 5 and 90% by weight * while the aluminum-lithium alloy described in the examples has a lithium concentration between 16 and 60% by weight. The dual-source evaporation method of other sources of evaporation uses a heat-resistant evaporation process to form a thin film. However, the above-mentioned aluminum-bonded alloy electrodes (1), (3), and (4) are formed into a thin film only by vacuum evaporation. As for the aluminum-lithium alloy electrode (2), which is prepared by a vacuum evaporation method and a sputtering process, only vacuum evaporation is used in the embodiment, and an example of the sputtering process is not described. When the vacuum evaporation process is performed, the aluminum-lithium alloy is the source of lithium evaporation. Because when lithium is used alone, its chemical stability, ability to form a thin film, and adhesion are all poor. However, the two metals have different vapor pressures, so dual-source evaporation or co-evaporation with aluminum must be used. Dual-source evaporation is not easy to control the composition of the precipitate, and it is not easy to achieve the consistency of the optimal composition of each batch of products. Therefore, the lithium concentration of the precipitate is inconsistent between 16 and 79 w t% ′. A higher lithium concentration will cause chemical instability ' to impair the ability of the precipitate to form a thin film and its adhesion, and reduce the characteristics of the device. The quality of the precipitate is also not consistent. In contrast, if evaporation is performed using an evaporation source ’, the lithium concentration is 0.  3 8w t% or less. This alloy has a high work function 'and a low electron ejection efficiency, making it difficult to manufacture devices with practical characteristics. ---------- Approved farmers ------, 玎 ------ line (Please read the notes on the back to write this page first) This paper size applies to China National Standard Vehicle (CNS) Μ size U10 X 297 mm) _g.  Employees ’Cooperative Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs, India 418590 A7 __________B7 V. Description of the invention (4) The electron insertion electrode formed by the vacuum evaporation process at the same time has a small film density and poor adhesion to the organic layer interface, which will reduce performance and service life And the display quality of EL devices (reduced luminous efficacy, electrode peeling and black spots). In addition, lithium or similar materials with a low work function have high reactivity to oxygen and moisture, and the feeding step and supplementary materials are generally performed in air, so oxides will form on the surface of the material. To improve the quality of the electron insertion electrode, it is best to remove the oxide coating before evaporation. The process of removing the oxide coating is very difficult because the evaporation temperature of the oxide is lower than the metal element or the vapor pressure is higher than the metal element, so it is not easy to form an electron insertion electrode with a high-quality pure metal film. In addition, if the evaporated film forms an oxide between the electron insertion electrode and the organic layer interface or in the electron insertion electrode, the characteristics of the EL will not be obtained because of the different work function and conductivity between the generated electrode and the metal element. In addition, there are also many problems at the point of actual production: for example, if it is difficult to control the composition and consistency of film thickness and quality if the evaporation material is exchanged or replenished in the deposition area for a short period of time, if the deposition speed is increased, the film quality will be controlled by the composition , Reproducibility and consistency issues. DISCLOSURE OF THE INVENTION The object of the present invention is to improve the ability and adhesion of electrons to form a thin film between an electrode and an organic layer with high luminous intensity, high efficiency, long service life, and high display quality organic electroluminescent device (EL). The object of the present invention can be achieved by a structure defined by the following (1) to (4). This paper is again applicable to the Chinese National Standard (CNS) Λ4 specification (210X 297 cm) --------- Approved clothing ------ 1T ------ ^ (Please read the Precautions r ^ Write this page) 418590 A7 B7 V. Description of the invention (5) (1) An organic electroluminescent device comprising a hole insertion electrode, an electron insertion electrode 'and at least one organic layer placed between the electrodes, The electron insertion electrode is composed of an aluminum-lithium alloy, and is prepared by a sputtering process, containing 0. 4 to 14 wt% of lithium deposited. (2) A method for preparing an organic electroluminescence device, wherein an electron insertion electrode is placed before (1), and is prepared by depositing an aluminum-lithium alloy as a target in a sputtering process. (3) _ A method for preparing an organic electroluminescent device according to (2), wherein the sputtering process includes changing the pressure of the film-forming gas, which ranges from 0.  1 to 5 Pa to change the concentration of lithium deposited in the electron insertion electrode, which ranges from 0. 4 to 14 wt%. (4) A method for preparing an organic electroluminescent device according to (2), wherein the spray process is a DC spray process. Brief Description of the Drawings Fig. 1 is a schematic diagram illustrating an example of an organic electroluminescent device (EL). Comparison table of main components 2 1 Substrate 22 Hole insertion electrode 2 3 Hole insertion and transportation layer 2 4 Luminescence and electron insertion and transportation layer 25 Electron insertion electrode This paper is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) I —IIIIII t 装 —-(Read the precautions on the back first. . -Brief write this page) Ding-3 185 of the Ministry of Economic Affairs of the People's Republic of China 185, the description of the invention (6) 2 6 Protective layer A7 B7 The best mode for implementing the present invention will be described in detail below. structure. The organic device of the present invention includes a hole-inserted electrode and an electronic meridian. The standard bureau's consumer co-operative agency · Print Insertion electrodes and at least one organic interposition electrode between the electrodes consist of an aluminum-lithium alloy, and a W t% lithium deposit is prepared by a sputtering process. There are many advantages to using a sputtering process. And evaporation system • Electron insertion electrode film formed by the sputtering process can change the adhesion, and the atoms and atomic groups that are sprayed can get a more migration effect. At the same time, under vacuum, the surface effect is removed before the sputtering, and the effect absorbed on the organic layer interface is removed by the reverse sputtering method. Therefore, a clean interface and a clean electrode can be formed. Electroluminescent device (EL). In addition, even if the target gas pressure is different, the components between the target and the film deposition only occur. This can exclude the evaporation process because the material vapor pressure is not »In production, the sputtering process is also better than the evaporation process, so the thickness and quality are uniform Thin film. Because the electron insertion electrode formed by the sputtering process has the lowest moisture content compared with the thin film of the evaporated film, it can produce high chemical stability and use a lifetime light device (EL). Layer where the electron interpolates contains 0.  4 to 1 to 4 passes each other. Organic high dynamic oxidizing humidity and electrode performance are stable and slightly different. Because the interlayer interface energy is compared, the physical layer can have oxygen or organic layers. The material changes in steam, due to the limitation of life, it is not necessary to have a long-term dense film. The degree of invasion can be reduced to a long-lived organic hair. . ^ (Please read the precautions on the back, rv, write this page) This paper uses the Chinese National Standard (CNS) A4 specification (2IOX 297 mm). -9- Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 4 185 90 At _Β7_ V. Description of the invention (7) Lithium alloy containing lithium for electrode insertion.  4 to 14 wt% * preferably between 0.4 to 6.  5wt% (6.  Except 5), more preferably between 0. 4 to 5wt% (except 5), more preferably between 0 · 4 to 4 · 5wt%, the best is between 0.  4 to 4wt% * especially 0.  4 to 3wt%, or preferably between 6.  5 to 14 wt%, more preferably 7 to 12 wt%. If the lithium content is too high, the deposition of the electron insertion electrode becomes unstable. If the lithium content is too low, the advantages of the present invention are lost. To increase the luminous intensity of light emission, the preferred method is to increase the lithium concentration, and to improve the stability of the actuation voltage, the preferred method is to decrease the lithium concentration. At the same time, the preferred lithium content is 0.  8 to 12 wt%. The lithium content is 0.  8 to 2.  8wt%, especially 1.  5 to 2 · 5wt% has better driving voltage stability (ie, voltage rise). It has better luminous intensity when the lithium content is 3-2 to 12% by weight. From the viewpoint of increasing the light emission intensity and decreasing the driving voltage and voltage rise, the lithium content is 3. 5 to 10 wt%, especially 3. 5 to 9 wt% is preferred. In addition to aluminum and lithium, this alloy may contain at least one of Cu, Mg, Zr, Fe, Si, 0, etc., with an additive content of up to 5 wt% or an additional composition. The formed electron insertion electrode may have a gradient structure The lithium concentration changes with the thickness of the film. The lithium element is most near the interface of the organic layer, and the aluminum element is most near the other surface. This concentration gradient can ensure that the lithium element has a higher concentration and a lower work function on the interface of the organic layer that requires an electron insertion function, because the lithium element often contacts the air on the other surface at a lower concentration. ------- Pu Yi ------, 玎 ------- ^ (Please read the notes on the back to write this page first) This paper size is applicable to China National Standard (CNS) A4 (210X29? Mm) 10-Printed by A7 B7, Consumer Cooperatives of the Central Bureau of Quasi-Staff of the Ministry of Economic Affairs 5. Description of the invention (8) High reactivity occurs, so the stability of the electron insertion electrode can be improved while maintaining the high efficiency of electron injection Yes. Gradient concentration of lithium element can generate electron insertion electrode. In a preferred embodiment, the control of the sputtering pressure will be described later, such as spraying a target with an aluminum-lithium alloy and an aluminum metal target at the same time, and controlling them individually. Its deposition rate. In addition to consisting of a continuous gradient concentration, the film can also be composed of a mixture of various discontinuous or stepwise lithium element mixtures. The pressure of the sputtering gas during the sputtering process, preferably between 0. 1 to 5 P a. By controlling the sputtering gas pressure within this range, the lithium concentration of the aluminum-lithium alloy as defined above can be obtained. At the same time, when the film deposition is performed, the pressure of the sputtering gas is changed within this range, and the electron insertion electrode with a gradient lithium concentration as defined above can be easily obtained. The spraying gas may be an inert gas used in a conventional spraying device. In addition to the inert gas in a reactive spraying process, a reactive gas may also be used, such as Ns, H2, 02, and the like. The sputtering process is a high-frequency sputtering process using an RF power supply and a DC sputtering process. Especially, a pulsed DC sputtering process is preferred because the speed control of the thin film deposition is easy to reduce the damage of the organic electroluminescent device (EL) structure. The lowest power of the `` minimum '' DC spray device is between 0.  From 1 to 10 W / cm2, particularly preferred is from 0.5 to 7 W / cnf. The better film deposition speed is between 0 and 0.  1 to 100 nm / mi η. In the meantime, it is particularly preferable that it is 1 to 30 nin / mi η. The thickness of the electron-inserting electrode film is sufficient for electron injection, at least 1 nm, and preferably at least 3 nm. The upper limit of the thickness is not important ----------- install ------ order ------ line (please read the precautions on the back first -V to fill in this page) This paper size is applicable to China National Standard (CNS) Λ4 Specification (210X 297 mm) Printed by the Central Laboratories of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, 418590 A7 _____B7 V. Description of the invention (9) 'General film thickness is between about 3 nm and about 50 nm . In an organic electroluminescence device (EL) of the present invention, the electron insertion electrode contains at least one oxide, nitride, and carbide material, which can be used as a thin film protection in the reactive sputtering process described above. Therefore, although the starting material of the protective film and the material for forming the electron insertion electrode can also use materials of different components or delete one or two components of the same material, their components are preferably consistent. When using the same or similar material as the electron insertion electrode, a continuous interface can be formed between the protective film and the electron insertion electrode. The oxygen content of oxides, nitrogen content of nitrides or carbon content of carbides varies with their measurement, and the ratio is between 0.  5 to 2 times. As for the material of the target, it is preferably the same as the electron insertion electrode = when the oxide is to be formed, the reactive gas is 0 2 and CO; when the nitride is to be formed, the reactive gas is N 2, NH 3, NO, No 2 And N2O: When carbides are to be formed, the reactive gases are CH4, C2H2, and C2H4. These reactive gases may be used alone or in a mixture of two or more. The thickness of the protective film must be sufficient to prevent moisture, oxygen, or organic solvents from entering, preferably at least 50 nm, more preferably at least 100 nm, and most preferably between 100 and 1,000 nm. The total thickness of the electron insertion electrode and the protective film is not important, and is generally about 100 to about 1,000 nm. The protective film can further effectively prevent the electron insertion electrode from being oxidized, and can drive the organic electroluminescent device (EL) more stably for a longer period of time. The organic EL light-emitting device manufactured in accordance with the present invention is adapted to the size of the national standard 适用 (CNS) Λ4 (210x297 mm) on the substrate and the paper size. \ 2----------- 装 ------ 1T ------ ^ (Please read the precautions on the back first to write this page) 4 18 5 9 υ a? _Β7_ Five Explanation of the invention (10) The electron insertion electrode has a hole insertion electrode. This device further includes at least one charged transport layer and at least one light-emitting layer inserted between the electrodes, and an uppermost protective layer " charge transport layer can be omitted. The electron insertion electrode consists of a metal, a compound, or an alloy with a low work function, and is deposited by the aforementioned sputtering process. This hole insertion electrode is deposited by a sputtering process to deposit a layer of tin-coated indium oxide (ITO), zinc-coated It is composed of indium oxide (IZO), 2nO, Sn02, IN203, or the like. FIG. 1 illustrates an example of an organic EL light-emitting device manufactured according to the present invention. The EL device of FIG. 1 includes a hole-insertion electrode 22 The hole insertion and transport layer 2 3. The light emitting and electron insertion and transport layer 2 4. The electron insertion electrode 25 and the protective layer 26 are sequentially deposited on the substrate 21 in the order described. Organic electroluminescence of the present invention The device (EL) is not limited to the configuration described here, but Various other changes. For example, a light emitting layer can be formed by itself and inserted between the light emitting layer and the electron insertion and transport layer between the electrodes. If necessary, this hole insertion and transport layer 23 can be mixed with the light emitting layer. The electronic insertion electrode formed by the above-mentioned method of the consumer cooperative of the staff of the Bureau can be formed by vacuum evaporation or a similar method of the organic material layer (such as a light-emitting layer), and the hole insertion electrode can be formed by evaporation or spraying. Depending on the need, each film is molded by masking evaporation or appropriate techniques, such as: after the film is formed, the required light-emitting form is completed by etching. In a further specific embodiment, the substrate supports a thin film transistor (TFT). It can be displayed and driven without further processing. As for the material and thickness of the hole-insertion electrode, the better one can pass at least -13- Chinese paper standard (CNS) A4 specification ( T) Printed by the Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 4A 90A7 B7 V. Description of the invention (11) Electrode emission 80% of the emitted light. Preferred is a transparent conductive oxide film. For example, the film contains any of tin-coated indium oxide (I TO), zinc-coated indium oxide (IZO), indium oxide (in2 〇3), tin oxide (S η 〇2) and zinc oxide (Z η 0) and other useful main composition. "This type of oxide contains its inherent amount of oxidation. Although there are some changes in the total amount of oxygen, ITO 0-generally contains Quantitative ingredients of IN2 03 and Sn 2. The better mixing of Sn 2 to I N 2 0 3 is between 1 and 20 wt%, and the better is between 5 and 12 2 wt%. Z nO vs 1 N 2 2 A better mixture of 3 is between 12 and 32 wt%. It is preferable to use a sputtering process to form holes to insert electrodes. The sputtering process is a high-frequency sputtering process using an RF power source. Although the DC sputtering process is used to control the physical properties of the deposited film holes, the electrodes and the thin film, the preferred process is the pulsed DC sputtering process. After the electrode is formed, the protective film may be formed of an organic material, such as S i 0 X or an organic material such as Teflon. The protective film may be transparent or opaque ' and has a thickness of about 50 to 1,200 nm. After being separated from the reactive spraying process, the protective film can also be formed by spraying or evaporation process. In addition, this preferred device can form a seal or an encapsulation layer to avoid oxidation of the organic layer and the electrode. The sealing layer to prevent moisture from entering is formed by pasting the sealing plate, such as: pasting the resin layer, such as: commercial low-moisture light-hardening adhesive sheets, epoxy-based adhesives, polysiloxane adhesives Agent, or glass plate of crosslinked ethylene-vinyl acetate copolymer adhesive. Metal and plastic plates can also be used. This paper size applies to Chinese National Standard (CNS) Λ4 specification (210X297 mm) -14---------- ^ ------ 1T ------ ^ (Please read the (Notes on this page are written on this page) 418590 Λ 7 Β7 Printed by the Central Bureau of Standards, Ministry of Economic Affairs, Bei Gong Xiao, F. Cooperative Press 5. Invention Description (12) The organic material layer included in the organic electroluminescent device (EL) of the present invention will be described below The α light-emitting layer has the functions of inserting and transporting holes and electrons, and recombining holes and electron generating exciters. A preferred light emitting layer is a relatively electrically neutral compound. Hole insertion and transport work. It can promote the injection of holes from the holes into the electrode, stably transport the holes, and hinder the transport of electrons. The function of the electron insertion and transport layer can promote the ejection of electrons from the electron insertion electrode, stably transport electrons, and hinder hole transport. Such thin layers can effectively increase the number of holes and electrons inserted into the light-emitting layer, and form holes and electrons therebetween, and optimize the recombination area to improve the light-emitting efficiency. The thickness is not important and varies with the formation technique. The preferred thickness is between about 5 nm to about 500 nm, especially about 10 nm to about 300 nm. The thickness of the hole inserting and transporting layer and the electron inserting and transporting layer is equal to or between about 1/10 times and about 10 times the thickness of the light emitting layer, depending on the design of the combination / light emitting area. When the electron or hole insertion and transport layer is divided into an insertion layer and a transport layer, the preferred insertion layer is at least 1 nm thick and the transport layer is at least 1 nm thick. The upper limit of the thickness of the intercalation layer is generally about 500 nm, and the transport layer is about 500 nm. »When a dual intercalation / transportation layer is provided, a film of the same thickness is applied. The light-emitting layer of the organic electroluminescence device (E L) of the present invention contains a fluorescent material ', which is a compound having a light-emitting ability. Fluorescent material is at least one selected from the chemical composition disclosed in JP-A 264692/1988-(Please read the note on the back first 7¾ write this page) Alignment The paper standard is applicable to the national standard (CNS) A4 Specifications (210X 297 mm) -15- Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 4 185 90 A7 Λ7 B7 V. Description of the invention (13), such as quinacridone, pyrene, and phenethylfluorenyl Dyes; quinoline derivatives 1 such as: metal complex dyes with 8-hydroxywalvaline or its derivatives as ligands, such as tris (8-hydroxyquinolinyl) aluminum and including tetraphenylbutadiene, Anthracene, perylene, caustic, and perinone derivatives. Other useful materials are described in Japanese Patent Application No.  1 10569Π 994 The phenylanthracene derivative and the tetraaromatic hydrocarbylethylene derivative described in J a p a n e s e P a t e n t A ρ p 1 i c a t i ο η Ν ο · 11 4 · 4 5 6/1 9 9 4. The preferred compound is a compound that can be combined with a luminescent host material as a dopant compound. In this embodiment, the compound content of the light-emitting layer is preferably between 0. 01 to 10%, especially 0. 1 to 5%. Using the main material of the compound compound can change the light emission wavelength of the main material, shift the light emission to a longer wavelength and improve the efficacy of light emission and the stability of the device. As for the main material, a hydroxyquinolinyl complex is preferred, and an aluminum complex containing 8-hydroxyquinoline or a derivative thereof is more preferred. Such aluminum complexes are disclosed in JP-A 264692/1988 '255190/1991, 70733/1993, 258859/1993 and 215874/1994. The illustrated examples include tris (8-hydroxyquinolinyl) aluminum, bis (8-hydroxyquinolinyl) magnesium, bis (benzo {f 丨 -8-hydroxysolinolinyl), bis (2-methyl —8-Cyclopyridinyl) bromide oxide, tris (8-hydroxyquinolinyl) indium, tris (5-methyl-8-hydroxyquinolinyl), 8-hydroxyquinolinyllithium, tris ( 5-chloro-g-hydroxyquinolinyl) gallium, di (5-chloro-8-hydroxyquinolinyl) calcium, 5,7-dichloro This paper is sized to Chinese National Standards (CNS > A4 specifications ( 2 〖〇X 297mm) -16- -I iji II n; I-n I It-n T n _ _ n ----- n (Please read the notes on the back first / 'write this page) Economy Employees' Cooperatives of the Central Bureau of Standards of the People's Republic of China 4 185 90 A7 ______B7 _____ V. Description of the invention (14) 8-hydroxyquinolinyl aluminum 2-3 (5,7-dibromo-hydroxyhydroxyquinolinyl) aluminum, And poly [zinc (丨 丨) -bis (8-hydroxy-5-quinolinyl) methane]. In addition to 8-quinylquinoline or its derivative, the aluminum complex can also have other ligands. Implementation Examples include bis (2-methyl-8-hydroxy (Phenyl) (phenol) aluminum (dish), bis (2-methyl-8-hydroxyquinolinyl) (o-cresol) aluminum (m), bis (2-methyl-8-hydroxyquinoline) (Ortho-cresol) aluminum (m), bis (2-methyl-8-hydroxyquinolinyl) (p-cresol) aluminum (m), bis (2-methyl-8-hydroxy) Quinolinyl) (o-phenylphenolyl) aluminum (m), bis (2-methyl-8hydroxyquinolinyl) (m-phenylphenolyl) aluminum (m), bis (2-methyl-1 8-hydroxyquinolyl) (p-phenylphenolyl) aluminum (m), bis (2-methyl-8-hydroxyquinolyl) (2,3-dimethylphenolyl) aluminum (m), Bis (2-methyl_8_hydroxyquinolinyl) (2,6-dimethylol) aluminum (II), bis (2-methyl_8_hydroxyquinolinyl) (3,4-bis Methylphenol-based) aluminum (melon), bis (2-methyl-8-hydroxyquinolinyl) (3,5-dimethylphenol-based) aluminum (melon), bis (2-methyl-8-hydroxyquinol) (Phenyl) (3,5 _:-tert-T-based phenol) aluminum (m), bis (2-methyl-8-hydroxyquinolinyl) (2,6-diphenylphenol) aluminum (in) , Bis (2-methyl-8-hydroxyquinolinyl) (2 , 4,6-triphenylphenolyl) aluminum (Π), bis (2-methyl-8hydroxyfluorquinolyl) (2,3,6-trimethylphenolyl) aluminum (ΙΠ), bis ( 2-methyl-8-hydroxyfluorinyl) (2,3,5,6-tetramethylphenol) aluminum (melon), bis (2-methyl-8-hydroxy) This paper applies Chinese national standards ( CNS) Λ4 specification (2IOX. 297 males) -17---------- ΐ 衣 ------ ir ------. ^ (Please read the precautions on the back ^ write this page) The Central Bureau of Standards of the Ministry of Economic Affairs, Cooperative Press 5i 4 18 5 9 0 a? B7__V. Description of the invention (15) Quinolinyl) (1 —Naphthol) aluminum (dish), bis (2-methyl-8-hydroxyquinolinyl) (2-naphthol) aluminum (π), bis (2,4-dimethyl-8-hydroxyti Quinolinyl) (o-phenylphenolyl) aluminum (melon), bis (2,4-dimethyl-8 hydroxyquinolinyl) (p-phenylphenolyl) (HI), bis (2,4 —Dimethyl_8_Cyridinyl) (m-phenylphenol) aluminum (melon), bis (2 '4_dimethyl_8_hydroxyquinolinyl) (3,5 —dimethyl Phenol-based) aluminum (melon), bis (2,4-dimethyl- 8-hydroxyquinolinyl) (3,5 _: _ tert-T-based phenol-based) aluminum (melon), bis (2-methyl-1 _Ethyl_8_hydroxyquinolyl) (p-cresolyl) aluminum (II), bis (2-methyl-4-methoxy-8-hydroxyquinolinyl) (p-phenylphenolyl ) Aluminum (m), bis (2-methyl-1, 5-cyano-8 ~ hydroxyquinolinyl) (o-cresol) aluminum (melon), and 2methyl-6-trifluoromethyl-8—Hydroxyquinolyl) (2-naphthol) aluminum (m). Can also include bis (2-methyl-8 ~ hydroxyquinolinyl) aluminum (melon) -V-oxy-bis (2-methyl-8-hydroxyquinolinyl) aluminum (Π), di ¢ 2 ' 4 dimethyl-8-hydroxyquinolinyl) aluminum (ΠΙ) _ // oxydi (2,4 dimethyl-8-hydroxyquinolinyl) aluminum (m), bis (4-ethyl 2-methyl- 8-hydroxyquinolinyl) aluminum (melon) monoammonium-oxy-di (4-ethyl-2 methyl-8-hydroxyquinolinyl) aluminum (m), di (2) —Methyl-4methoxyhydroxyquinolinyl) aluminum (m) _ // monooxybis (2-methyl-4_methoxyhydroxyfluorquinolyl) aluminum (melon), di (5 —Cyano—2 —methyl — 8 —hydroxyquinolinyl) Aluminum (m) — # —Oxydi (2 —methyl — 4 —methoxyhydroxyquinol — — ---,- --- Installation ------ Order ------, --- Line (谙 Please read the precautions on the back / '% write this page) This paper's wave inversion is in accordance with the Common Chinese Standard (CNS) ― ~~ | 8 ~ ^ Printed by Zhengong Xiaoxian Cooperative of Central Standards Bureau of the Ministry of Economic Affairs 418590 A7 ______B7_ V. Description of the invention (16) ~ Porphyrinyl aluminum (n) -y-oxyl-2 (5 -cyano-2 -methyl) -8_hydroxyl Α-quinolinyl) aluminum (m), and bis (2-methyl_5-trifluoromethyl-8-hydroxylolinyl) aluminum (melon) -oxy_di (2-methyl-5- Trifluoromethyl-8-hydroxyquinolinyl) aluminum (m). Other main materials are phenylanthracene derivatives (described in Japanese Patent Application No. 1 1 0569/1 994) and tetraaromatic hydrocarbyl ethylene derivatives (described in Japanese Patent Atent A pp 1 icati ο η Ν ο · 1 14 4 5 6/19 9 4) ° The light emitting layer can also be used as an electron insertion and transport layer. In this example, tris (8-hydroxyquinolinyl) aluminum (II) is preferred. Such fluorescent materials can evaporate. If necessary, the light-emitting layer may also be a mixed layer of at least one hole-insertion and transport compound and at least one electron-insertion and transport compound mixture, preferably one containing a dopant. In this mixed layer, the content of the compound is preferably between 0. 01 to 20%, especially 0. Between 1 and 15%. In this mixed layer, the carrier generates a jumping conduction path, which moves the carrier toward the main polar substance and suppresses the carrier from ejecting to the opposite polarity, making the organic compound less susceptible to damage, and thus extending the life of the device. After the mixed layer is doped with the aforementioned dopant, the light emission wavelength of the mixed layer can be changed, the light emission can be shifted to a longer wavelength, and the intensity of light emission and the stability of the device can be improved. The compound for hole insertion and transportation and the compound for electron insertion and transportation used in the mixed layer may be selected from the compounds for the hole insertion and transportation layer and the compound for the electron insertion and transportation layer described below. Especially better hole insertion and operation-. ------- ,. Packing ------ ordering-„------ line (please read the notes on the back to fill in this page first) The paper size is applicable to the national standard (CNS) A4 size (210x297 mm) -19- A7 418590 B7 V. Description of the invention (17) The layer-feeding compound is selected from amine derivatives with strong fluorescence, such as triphenyldiamine derivatives (hole transport materials), and phenethylfluorenylamine derivatives Compounds and amine derivatives with aromatic condensed rings. Preferred electron insertion and transport compounds are selected from quinoline derivatives and metal complexes with 8-hydroxyxoline or its derivatives as ligands, especially tris (8 _Hydroxyquinolinyl) aluminum (A iq 3). The phenylanthracene derivatives and tetraaromatic hydrocarbylethylene derivatives described above are also preferred compounds. The compounds of the pore insertion and transport layer are selected from those with strong fluorescence Amine derivatives, such as: triphenyldiamine derivatives (hole transport materials), phenethylamine derivatives and amine derivatives with aromatic fused rings. The preferred mixing ratio is based on the carrier density and carrier fluidity. It is generally better to insert and transport compounds through holes and electrons. The weight ratio of the compound to be sent is between about 1/99 to about 99/1, more preferably between about 1 0/9 0 to about 9 0/1 0 and the best is about 2 0/8 0 to about 8 0/2 0. The thickness of the mixed layer is preferably between the thickness of the monomolecular layer and less than the thickness of the organic compound layer, which is 1 to 8 5 nm, more preferably 5 to 60 nm, and most preferably 5 to 5 0 nm. A better mixed layer is formed by a co-deposition process to evaporate compounds from different sources. If the compounds have approximately the same or very close vapor pressure or evaporation temperature, they can be mixed in a common evaporation dish and evaporated in advance. Although Island-like compounds can also be tolerated, but uniform mixing of these two compounds is a better mixed layer. Generally, the light-emitting layer is an organic fluorescent material or a resin binder of a dispersion coating formed into a light-emitting layer of a predetermined thickness through an evaporation process. The paper size is in accordance with the Chinese National Standard (CNS) Λ4 specification (210x297 mm)-. ------------- ΐτ —— „----- Line '(Please read the notes on the back before filling out this page) 12 • 20-Industrial Cooperative Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 4 1RR90 A7 __B7_ V. Description of the Invention (18) Various organic compounds can be used in the hole insertion and transportation layer, as disclosed in JP-A 295695/1988 '191694 / 1990 '792/1991, 234681/1993, 239455/1993' 299174/1993, 126225/1995, 126226/1995 '100172/1996, and EP 0650955A1. Examples are tetraaromatic hydrocarbyl p-diaminobiphenyl compounds (triaromatic Hydrocarbyldiamine or triphenyldiamine: TPD), aromatic tertiary amines, fluorene derivatives, carbazole derivatives, triazole derivatives, imidazole derivatives, oxodiazepine derivatives with amine groups , And polythiophene. Two or more of these compounds can be used, which can form separated or mixed thin layers when used in combination. When the hole insertion and transport layer forms a separate hole insertion layer and hole transport layer, it can be inserted by holes. And two common compounds selected from the common compounds in the transport layer . The preferred thin layer is to place a compound layer with a lower ion potential near the anode (such as I TO). It is also preferable to use a compound with a good film forming ability on the anode surface as a thin layer. Provide multiple holes Insertion and shipping. Layers can also be given a thin layer order. The order of the thin layers can effectively reduce the driving voltage and avoid current loss and black spots. The device is manufactured using an evaporation method. The thickness of the thin film is about 1 to 10 nm, and there are no pinholes. Even when a compound with a low ion potential and capable of absorbing visible light is used in the hole insertion layer, the color tone of the emitted light can be prevented. The effect of change and reabsorption decreases. Like the light emitting layer, the hole insertion and transport layer can be formed by evaporating the above compounds. The scale of this paper applies the Chinese National Standard (CNS) Λ4 specification (210 × 297).  Binding 丨 丨 -------- Line (please read the λί Italian matter on the back before continuing to write this page) -21-4 18590 Printed by the Military Industry Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs " A7 B7__ V. Description of the Invention (19) The electron insertion and transport layer can be selectively used. The material of this layer may be an organometallic complex including a quinoline derivative having 8-hydroxyxoline or its derivative as a ligand, such as: ( 8_Hydroxyquinolinyl) aluminum, oxadiazolium derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, perylene derivatives, diphenylquinone derivatives, and nitrogen-substituted thin derivative. This electron insertion and transport layer can be used as a light emitting layer. In this case, tris (8-quinolinyl) aluminum is preferred. Like the light emitting layer, the electron insertion and transport layer can be formed by evaporation or a similar method. When the electron insertion and transport layer is formed into an electron insertion layer and an electron transport layer, respectively, two or more kinds of compounds selected from a proper combination may be used as the electron insertion and transport layer. In this regard, a compound layer having a larger electron affinity is sequentially placed near the cathode. The order of this thin layer can also be applied to multiple electronic insertion and transport layers. The structure of the substrate: Use transparent or translucent materials, such as glass, quartz, or resin, where light is emitted from the side of the substrate. This substrate can provide a color filter film, a color conversion film containing a fluorescent material, or a dielectric reflection film to control the color of the emitted light. In the example of the reversible stacked structure, the substrate may be transparent or opaque, and ceramic may be used as the opaque substrate. The color filter film here may be the color filter 1 as a liquid crystal display or the like. The properties of the color filter can be adjusted to the optimal extraction efficiency and color purity according to the light emitted by the organic electroluminescent device (EL). The better color filter can filter out the EL device material and fluorescence conversion! * ------- d ------ IT --------- line '(Please read first (Notes on the back are written from this page.) The paper size is applicable to the Chinese national standard (CNS) Λ4 specification (210X297 mm) -22- Printed by the Central Bureau of Standards Bureau staff consumption Hezhu Club 418590 A7 B7 Description of the invention The short wavelength light absorbed by the (20) layer improves the light resistance of the device and the contrast of the display. Optical films, such as multilayer dielectric films, can replace color filters. Fluorescence conversion filters The film can convert the color of the radiated light by absorbing electroluminescence, and make the fluorescent material of the film emit radiant light. The fluorescent conversion filter film is formed of three components: a binder, a fluorescent material, and light absorption Materials. Basically, fluorescent materials with high fluorescence quantum yield must exhibit strong light absorption in the wavelength range of electro-cold light. Practically, laser dyes are suitable. Rhodamine compounds and perylene compounds can be used. , Cyanine pigment compound, phthalate cyanine pigment compound ( Including hypophthalic cyanocyanine), naphthalene imine compounds, fused ring hydrocarbons, fused heterocyclic compounds, phenethylfluorinated compounds, and coumarin compounds. The binder is selected from the group that does not cause fluorescence Matte materials, better materials can be exquisitely moulded by photolithography or printing techniques. Such better materials will not be damaged when I TO precipitates. When the fluorescent material absorbs short-wavelength light, it may be necessary to remove this light absorption Materials. The light-absorbing material can also be selected from fluorescent materials that do not cause fluorescence extinction. When forming the hole insertion and transport layer, the light-emitting layer, and the electron insertion and transport layer, it is preferable to use a vacuum evaporation process because it can obtain uniformity. Thin film. The uniform thin film obtained by vacuum evaporation is amorphous or the particle size is less than 0.  1 # m. If the particle size is higher than 0.  1 # m, (Please read the notes on the back before filling in this page) _Chinese paper standard (CNS) Λ4 specification (2 [0 × 297 public 浼) -23-418590 A7 B7_____ 5. Description of the invention ( 21) Non-uniform light emission will occur, and the driving voltage of the device will increase, reducing the injection efficiency of the electricity price. (Please read the precautions on the back before filling this page) The conditions of vacuum evaporation are not important, the preferred vacuum is 10-4 Pa or lower, and the evaporation speed is about 0.  〇 1 to 1 nm / s e c. It is preferable to form a continuous thin layer in a vacuum, because the continuous thin layer formed in the air can avoid the adsorption of impurities between the thin layers, and therefore has better performance. At the same time, the driving voltage of the device can be reduced to avoid the occurrence of black spots. In a specific embodiment, each layer is vacuum-evaporated to form a single layer containing two or more compounds, wherein each compound must be controlled for individual temperature for co-deposition. The organic electroluminescence device (E L) of the present invention is generally a DC driving type, and may also be an AC or pulse driving type. The applied voltage is typically about 2 to 20 volts. Examples The present invention is illustrated by the following examples and comparative examples. The Central Bureau of Standards of the Ministry of Economic Affairs, the Military Industrial Cooperatives Cooperative Printed Example 1 on a silicon wafer, using aluminum lithium alloy sample A (lithium concentration of 4.  2 wt%) and aluminum-lithium alloy sample B (with a lithium concentration of 8 · Owt%) as targets, and an aluminum-lithium alloy film with a thickness of 300 nm was formed by a DC sputtering process. The spray pressure and deposition rate are shown in Table 1. Argon was used as the sputtering gas, the input power was 100 watts, the diameter of the target was 4 inches, and the distance between the substrate and the target was 90 mm. The dimensions of this paper use 1 丨 'National Chuangjia Standard Soap (CNS) Λ4 specification (210x297 common trend) -24- 185 90 Λ7 ____B7 V. Description of the invention (22) Table 1 Spray pressure (Pa) Deposition speed (nm / mi η L i concentration •) Sample A (wt%) Sample B 0 ·. 3 1 0 2. 4 4 • 7 1 · 0 8 · 4 3 8 7 _ • 0 2 0 6 · 3 4 • 6 8 '7 3.  0 4 9 4 • 9 9 '3 4-5 3 3 5 • 6 10. 8 Consumption cooperation by employees of the Central Bureau of Standards of the Ministry of Economic Affairs Du printed The composition of the film after I CP inspection is shown in Table 1. Table 1 confirms that the lithium concentration of the electron insertion electrode formed on a single target component can be controlled by various sputtering pressures. Example 2 A 100 nm-thick glass substrate with a transparent patterned I TO electrode (hole insertion electrode) formed by a sputtering process was washed with a neutral amphoteric surfactant, acetone, and ethanol using ultrasonic waves. Draw out from boiling ethanol, dry, wash the surface with UV / 03, and then place it on a shelf in a vacuum evaporation chamber, and draw it to a vacuum of 1xlO_4Pa or lower. Then, 4,4 ', 4 "-tris (N- (3-methylphenyl) -N-phenylamino) triphenylamine (abbreviated as m-MTDATA) was deposited at a rate of 0.  2nm / s e c. It was then evaporated to a thickness of 40 nm to form a hole insertion layer. While maintaining the vacuum, the N, N'-diphenyl-N, -----------. . Packing ------ order-^ ------ line {Please read the notes on the back first 4 · write this page) This paper size is applicable to China National Standard (CNS) Λ4 specifications (210 × 297 male 1 ) -25- Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs, India Poly 185 9 0 A7 B7 _ V. Description of the invention (23) N 1 -m —tolyl ~ 4 '4, —diamine-1,1, —2 Phenyl (abbreviated as TPD) at a deposition rate of 0.1.  2nm / sec. Evaporate to a thickness of 3 5 nm to form a hole transport layer. Under vacuum, A 1 q 3 was evaporated to a thickness of 50 nm at a deposition rate of 0 2 nm / s e c to form a light emitting / electron insertion and transport layer. While maintaining the vacuum, the EL device structure substrate was moved from the vacuum evaporation chamber to the sputtering device. Using argon as the sputtering gas and an input power of 1000 watts, the DC sputtering process will have 7. An aluminum-lithium alloy film having a lithium concentration of 3 wt% was deposited to a thickness of 200 nm. The spray pressure is 1. OPa, the sputtering gas is argon, the input power is 100 watts, and the size of the target is 4 inches in diameter. The distance between the substrate and the target is 90 mm. A D C voltage was applied to the organic electroluminescence device (E L) under dry argon gas, and the maximum luminous intensity generated by the device at 14 V and 8 2 5 mA / c π was 38,000 cd / mm2. Continuously driven at a fixed current density of 10 mA / cnf, the initial luminous intensity is 6.  5 6 0 c d / mm2 at 6V, the luminous intensity is 650 hours during the half-life, and the driving voltage rises to 2 during the half-life.  IV. It was not until 2000 hours that black dots larger than 100 # m were found. The results are shown in Sample No. in Table 2.  4. Example 3 In addition to the electron insertion electrode, the lithium concentration of the aluminum-lithium alloy film deposited was changed from 2 to 0.81 wt%, 2.  2wt%, 5.  2wt%, 10.4wt%, and 11.  In addition to 4wt%, there are --------- ^-installation ------ order ---. --- Line (Please read the notes on the back / 4 to write this page) This paper size is applicable to China National Soap Soap (CNS) Λ4 specification (210X297) while -26- 418590 Λ7 B7 Shellfish Consumption of the Central Standards Bureau of the Ministry of Economic Affairs Printed by the cooperative V. Description of the invention (24) Electromechanical light-emitting device (EL) samples were manufactured according to the method of Example 2. Each sample was continuously driven at a fixed current density and the voltage and luminous intensity were measured. In all samples, green light was emitted (radiation maximum wavelength Amax 530nm). Measure the half-life of luminous intensity, the rise of driving voltage during the half-life, and the time when black dots exceeding 100 ° are generated. The results are shown in Table 2. Comparative Example 1 This device was manufactured by the method of Example 2 except that the electron insertion electrode was formed by vacuum co-evaporation of Mg A g (deposition rate ratio 10: 1) A. Evaluation was performed as in Example 2, and the maximum luminous intensity was found to be 18,000 cd / mrri at 15 V '500 mA / cms. Continuously driven at a current density of 1 OmA / c irf, the initial luminous intensity is 6.  It is 470cd / mm2 at 9V, the half-life of the luminous intensity is 400 hours, and the drive voltage rises during the half-life is 2. 6V. It was found that the occurrence of black spots exceeded 96 0 m in 96 hours, as shown in Table 2. Comparative Example 2 This device was manufactured in the same manner as in Example 2 except that the electron insertion electrode was formed by vacuum co-evaporation of aluminum lithium (lithium concentration: 28 wt%). Evaluation was performed as in Example 2. The initial luminous intensity is at 7.  It is 470c d / mm3 at 4 V, the luminous intensity is 300 hours during the half-life, and the drive voltage rises during the half-life is 3.  6 V. At 48 hours, it was found that the occurrence of black spots exceeded 100, as shown in Table 2. ----------; --f ------ π!-„——. ---- ^ (Please read the precautions on the back-? =%, Write this page) This paper size is applicable to the Chinese national standard (CNS) Λ4 is now Ulxx297 (completion completed) -27- 4 185 90 Λ7 B7 V. Description of the invention (25) Table 2 Continuous driving luminous intensity black spot hair samples Lithium concentration Dynamic voltage Luminous intensity Half-life voltage rise generation time number (wt%) (V) (cd / mm2) (hour) (V) (hour) 1 0. 81 6. 9 510 650 1. 2 200 2 2. 2 6. 8 510 650 1. 1 250 3 5. 2 6. 6 510 650 1,3 250 4 7. 3 6. 6 560 650 1. 5 250 5 10. 4 6. 6 560 650 2. 1 200 6 1 1. 4 6. 6 550 650 2. 1 200 7 * MgAg 6. 9 470 400 2. 6 96 8 * 28 7. 4 470 300 3. 6 48 ^ Comparative Examples Table 2 confirms that the samples of the present invention are superior to the comparative samples in terms of luminous intensity, half-life of luminous intensity, voltage rise, and occurrence of black spots. Industrial applications Organic electroluminescent devices (EL) with electron insertion electrodes have excellent adhesion on the interface of the organic layer, their electron ejection efficiency is good, and their luminous properties are improved, which does not cause damage to the organic layer and can suppress black spots Occurred without compromising its effectiveness. The scale of this paper applies to the National Standard of China (CNS) Λ4 specification (210X 297 public trend) ---------- Installation ------ Order ——- I. --- line (Please read the note on the back first, write this page) Printed by the Consumer Standards Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs -28-

Claims (1)

六、申請專利範圍 1 . 一種有機電發光裝置,該裝置包括孔洞插入電極 、電子插入電極、及至少一種位於電極間之有機層’該電 子插入電極係由含0.4至14wt%之鋰組成的鋁鋰合 金經噴濺製程沉積製備而成。 2 . —種製備有機電發光裝置的方法,其中電子插入 電極如申請專利範圍第1項所述,用鋁鋰合金作爲靶經噴 濺製程沉積。 3 .如申請專利範圍第2項之一種製備有機電發光裝 置的方法,其中此噴濺製程包括將薄膜形成之氣體壓力改 爲介於0 . 1至5 Pa之間,以便將沉積於電子插入電極 之鋰濃度改爲介於0 . 4至14wt%» 4 .如申請專利範圍第2項之一種製備有機電發光裝 置的方法,其中噴濺製程是D C噴濺製程。 --------'參------ΐτ--------0 (請先閱讀背面之注意事項再蟻寫本頁) 經濟部中央標孳局員工消f合作社印装 本紙張尺度適用中國國家標準(CNS ) A4规格(2!0X297公釐)-29 -6. Scope of patent application 1. An organic electroluminescent device comprising a hole-insertion electrode, an electron-insertion electrode, and at least one organic layer between the electrodes. The electron-insertion electrode consists of aluminum containing 0.4 to 14 wt% lithium Lithium alloy is prepared by sputtering process deposition. 2. A method for preparing an organic electroluminescent device, wherein the electron insertion electrode is deposited by a sputtering process using an aluminum-lithium alloy as a target as described in item 1 of the patent application scope. 3. A method for preparing an organic electroluminescent device according to item 2 of the scope of patent application, wherein the sputtering process includes changing the gas pressure of the film formation to between 0.1 and 5 Pa in order to deposit the electrons into the electron insertion device. The lithium concentration of the electrode is changed to 0.4 to 14% by weight »4. As a method for preparing an organic electroluminescent device according to item 2 of the patent application scope, the sputtering process is a DC sputtering process. -------- '参 ------ ΐτ -------- 0 (Please read the precautions on the back before writing this page) Staff Cooperatives, Central Bureau of Standards, Ministry of Economic Affairs The size of printed paper is applicable to China National Standard (CNS) A4 (2! 0X297mm) -29-
TW087104475A 1997-04-25 1998-03-25 Organic electroluminescent device TW418590B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12322097 1997-04-25

Publications (1)

Publication Number Publication Date
TW418590B true TW418590B (en) 2001-01-11

Family

ID=14855182

Family Applications (1)

Application Number Title Priority Date Filing Date
TW087104475A TW418590B (en) 1997-04-25 1998-03-25 Organic electroluminescent device

Country Status (2)

Country Link
KR (1) KR19980081742A (en)
TW (1) TW418590B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288420B1 (en) * 1999-06-04 2007-10-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
US6565996B2 (en) * 2001-06-06 2003-05-20 Eastman Kodak Company Organic light-emitting device having a color-neutral dopant in a hole-transport layer and/or in an electron-transport layer
JP2003249357A (en) * 2001-12-18 2003-09-05 Sony Corp Display device manufacturing method and display device
TWI272874B (en) * 2002-08-09 2007-02-01 Semiconductor Energy Lab Organic electroluminescent device
US7696682B2 (en) 2005-06-27 2010-04-13 Samsung Electronics Co., Ltd. Organic light emitting device using Mg—Ag thin film and manufacturing method thereof

Also Published As

Publication number Publication date
KR19980081742A (en) 1998-11-25

Similar Documents

Publication Publication Date Title
TW497283B (en) Improved cathode layer in organic light-emitting diode devices
TWI651433B (en) Metal oxide film, organic electroluminescence device having the film, solar cell and organic solar cell
TWI393480B (en) Organic light emitting diode and method of manufacturing the same
TW554640B (en) Sputtered cathode having a heavy alkaline metal halide in an organic light-emitting device structure
JP2003031371A (en) Organic electroluminescent element and blue light emitting element
JP4871901B2 (en) Organic electroluminescent device comprising a transparent conductive oxide film cathode and method for producing the same
TW200403953A (en) An organic light-emitting device structure using metal cathode sputtering
CN109950424B (en) OLED thin film packaging layer and preparation method thereof
US9455417B2 (en) Split electrode for organic devices
JP3984190B2 (en) Organic EL device
JP2006253113A (en) Organic electroluminescence device and method of manufacturing the same
TW201004010A (en) Organic light emitting diode device
TW423263B (en) Organic electroluminescent device
TW508972B (en) Method of depositing aluminum-lithium alloy cathode in organic light emitting devices
TW432898B (en) Organic electroluminescent light emitting devices
JP2011034917A (en) Organic electroluminescent element
JPH1167444A (en) Organic el element
TW200402247A (en) Sputtered cathode for an organic light-emitting device having an alkali metal compound in the device structure
WO1998024272A1 (en) Organic el element
TW418590B (en) Organic electroluminescent device
JPH11126689A (en) Manufacture of organic electroluminescent element and organic el element
JPH11329746A (en) Organic el element
JPH04117485A (en) Electroluminescent element
JP4527089B2 (en) Electroluminescent device and light emitting device using the electroluminescent device
JPH11121172A (en) Organic el element