TW554640B - Sputtered cathode having a heavy alkaline metal halide in an organic light-emitting device structure - Google Patents

Sputtered cathode having a heavy alkaline metal halide in an organic light-emitting device structure Download PDF

Info

Publication number
TW554640B
TW554640B TW091117887A TW91117887A TW554640B TW 554640 B TW554640 B TW 554640B TW 091117887 A TW091117887 A TW 091117887A TW 91117887 A TW91117887 A TW 91117887A TW 554640 B TW554640 B TW 554640B
Authority
TW
Taiwan
Prior art keywords
layer
cathode
thickness
buffer layer
metal
Prior art date
Application number
TW091117887A
Other languages
Chinese (zh)
Inventor
Joseph Kuru Madathil
Pranab Kumar Raychaudhuri
Ching Wan Tang
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Application granted granted Critical
Publication of TW554640B publication Critical patent/TW554640B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An OLED device, including a substrate, an anode formed of a conductive material over the substrate, an emissive layer having an electroluminescent material provided over the anode, a buffer layer provided over the emissive layer and containing a halide of a heavy alkaline metal, and a sputtered layer of a metal or metal alloy selected to function with the buffer layer to inject electrons.

Description

554640 A7 B7 五、發明説明(i ) 本發明係關於有機發光二極體裝置及製造該等裝置之方 法,其係使用一無機緩衝層及一在此無機緩衝層上之噴賤 金屬或金屬合金層。 有機電致發光(OEL)裝置,或已知的有機發光二極體 (OLED)在平面顯示器應用中是有用的。此發光裝置是吸 引人的,因為其可被設計成以高發光效率產生紅色、綠色 及藍色,可以數伏特大小之低驅動電位進行操作並可從斜 角觀看。這些獨特性質係衍生自一基本OLED結構,該結 構包含一小分子有機材料薄膜之多層疊被夾在陽極與陰極 之間。一般渡讓給Tang及其同伴之US_A-4,769,292&US-A-4,885,21 1中已揭示此種結構。一般電致發光(EL)介質係 包含電洞傳送層(HTL)與電子傳送層(ETL)之二元結構, 其中各層厚度一般為數十毫微米(nm)大小。陽極材料通常 為一光學上透明的氧化錫銦(ITO)膜於玻璃上,其也作為 OLED的基板。陰極一般是反射薄膜。電極材料的選擇係 以工作函數為基礎。因為ITO具有高工作函數,故最常使 用其作為陽極。因為Mg:Ag合金具有較低工作函數,因此 其一般被用於作為電子注入接點。含鋰合金如Ai: Li及 LiF/A1接點也可提供有效的電子注入。此裝置發出可見光 以回應施予EL介質之電位差。將一電位差施予電極時,所 注入載體-陽極之電洞及陰極之電子穿過E L介質朝彼此移 動並部分再結合以放出光。 在OLED的製造中係使用氣相沈積法。利用此方法,在 真空室中將有機層以薄膜形態沈積在IT〇玻璃基板上,接 本紙張尺度適用巾國g家標準(CNS) Α4規格(21G><297公爱) · ---554640 A7 B7 V. Description of the invention (i) The present invention relates to organic light emitting diode devices and methods for manufacturing the devices, which uses an inorganic buffer layer and a base metal or metal alloy sprayed on the inorganic buffer layer. Floor. Organic electroluminescence (OEL) devices, or known organic light emitting diodes (OLEDs), are useful in flat display applications. This light-emitting device is attractive because it can be designed to produce red, green, and blue with high light-emitting efficiency, can be operated with a low drive potential of several volts, and can be viewed from an oblique angle. These unique properties are derived from a basic OLED structure that contains multiple layers of a thin film of small organic material sandwiched between an anode and a cathode. This structure is generally disclosed in US_A-4,769,292 & US-A-4,885,21 1 transferred to Tang and his companions. The general electroluminescence (EL) dielectric system includes a binary structure of a hole transport layer (HTL) and an electron transport layer (ETL). The thickness of each layer is generally tens of nanometers (nm). The anode material is usually an optically transparent indium tin oxide (ITO) film on glass, which also serves as the substrate of the OLED. The cathode is typically a reflective film. The choice of electrode material is based on a work function. Because ITO has a high work function, it is most often used as an anode. Because Mg: Ag alloys have a lower work function, they are generally used as electron injection contacts. Li-containing alloys such as Ai: Li and LiF / A1 contacts can also provide effective electron injection. This device emits visible light in response to the potential difference applied to the EL medium. When a potential difference is applied to the electrodes, the injected holes of the carrier-anode and the electrons of the cathode are moved toward each other through the EL medium and partially recombined to emit light. In the manufacture of OLEDs, a vapor deposition method is used. Using this method, the organic layer is deposited on the IT0 glass substrate in a thin film in a vacuum chamber, and the paper size is applicable to the national standard (CNS) Α4 specification (21G > < 297 public love) · ---

裝 ij «i 554640 A7Ij «i 554640 A7

2 著沈積陰極層。在沈積陰極的方法中,頃發現利用電阻加 熱或電子束加熱之真空沈積法是最適合的,因為其不會^ 有機層造成損害。但是,極希望避免這些製造陰極的方 法。這是因為這些製程的效率差。為實現低成本製造,必 須採用並發展一證明是堅固的〇LED製造特有高通量製 程。噴濺曾被用作許多工業中薄膜沈積的選擇方法。均 句、在、及黏合塗佈、短週期時間、低塗佈室保養費及有 效使用材料係在少數噴賤益處中。 喷濺不常實際用於OLED陰極的製造,因為有機層可能 遭受損害及裝置性能的降低。噴濺沈積發生在一高^量及 複雜環境中,其中該環境包含高能中性、電子、正及負離 子及自激態之放光,而該放光可降解具有陰極沈積其上之 有機層。2 Deposit the cathode layer. Among the methods of depositing a cathode, it has been found that a vacuum deposition method using resistance heating or electron beam heating is most suitable because it does not cause damage to the organic layer. However, it is highly desirable to avoid these methods of manufacturing the cathode. This is because these processes are inefficient. To achieve low-cost manufacturing, a proven high-throughput process unique to LED manufacturing must be adopted and developed. Splashing has been used as a method of choice for thin film deposition in many industries. Uniform, in- and adhesive coating, short cycle time, low coating room maintenance costs and effective use of materials are among the few spraying benefits. Sputtering is not often used in the manufacture of OLED cathodes because the organic layers may suffer damage and degrade device performance. Sputter deposition occurs in a high-volume and complex environment, where the environment includes high-energy neutral, electron, positive and negative ions, and self-excited light, which can degrade an organic layer with a cathode deposited thereon.

Liao及其同伴(Appl. Phys. Lett.75,1619[ 1999])利用 X- 射線及紫外線光電子光譜法研究以1〇〇 eV Ar+照射Alq表面 所引發的損害。核心層電子密度曲線揭露部分Aiq分子中 的N-A1及C-0-A1鍵被打斷。價帶結構也有極大改變,其意 味著類金屬導電層的形成。其建議當電子從陰極注入Aiq 層時’這將在OLED中造成非輻射性淬熄,也將造成短 路。 喷濺沈積陰極期間,令Alq表面在數百伏特下接受高劑 量的Ar+撞擊。如Hung及其同伴(j· Appl. Phys. 86, 4607[ 1999])所揭示只需9x1014/平方厘米之劑量就可改變 價帶結構。因此,在Ar氛圍中將陰極噴濺在Alq表面上預 _—____- R - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 554640 A7 ___B7 五、發明説明(3 ) 期會降低裝置的性能。 可藉適當選擇沈積參數將喷濺損害控制在某一程度。歐 洲專利申請案EP 0 876 086 A2、EP 〇 880 305 A1 及EP 〇 880 307 A2,TDK公司的Nakaya及其同伴揭示一種利用噴 濺技術沈積陰極的方法。沈積有機層之後,仍保持真空, 將裝置由蒸發轉移至噴濺室並於該室中將陰極層直接沈積 在電子傳送層上。此陰極是含有〇·1-2〇 a%Li之A1合金,其 中該A1合金另至少包含少量的cu、Mg及Zr中之一,而且 在某些例子中具有保護層。因此所製得無利用緩衝層之 OLED裝置宣稱在有機層/陰極界面處具有極佳黏著力、低 驅動電壓、高效率並呈現較慢的黑點顯影速率。Gr〇the及 其同伴在專利申請案DE 198 07 370 C1中也揭示一種A1 : Li合金之噴濺陰極,其具有相當高的Li含量且具有一或多 個另選自 Mn、Pb、Pd、Si、Sn、Zn、Zr、Cu及 SiC之元 素。在所有這些實例中,無使用緩衝層,但可在較低電壓 下產生電致發光。喷濺損害可藉低沈積速率之使用控制 之。藉噴漱功率的降低預期可容易地減少有機層遭受損 害。但是,在低功率下,沈積速率可能是無法實施地低, 而且喷濺優勢降低,甚至被抵消掉。 為減少高速噴濺陰極期間的損害,電子傳送層上的保護 塗層是有用的。該保護層,或另稱為緩衝層必須堅固得可 有效保護。但是’除了對電漿具抵抗力之外,緩衝層必須 不干擾裝置的操作’而且必須保存裝置的性能。Liao and his companions (Appl. Phys. Lett. 75, 1619 [1999]) used X-ray and ultraviolet photoelectron spectroscopy to study the damage caused by irradiating Alq surface with 100 eV Ar +. The electron density curve of the core layer revealed that the N-A1 and C-0-A1 bonds in some Aiq molecules were broken. The valence band structure has also changed greatly, which means the formation of a metal-like conductive layer. It suggests that when electrons are injected from the cathode into the Aiq layer, this will cause non-radiative quenching in the OLED and will also cause short circuits. During the sputtering deposition of the cathode, the Alq surface was subjected to high doses of Ar + at hundreds of volts. As revealed by Hung and his companions (j. Appl. Phys. 86, 4607 [1999]), only a dose of 9x1014 / cm2 can be used to change the valence band structure. Therefore, the cathode is sputtered on the surface of Alq in Ar atmosphere. Pre -________ R-This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 554640 A7 ___B7 V. Description of the invention (3) Expected to reduce the performance of the device. Splash damage can be controlled to a certain degree by proper selection of deposition parameters. In European patent applications EP 0 876 086 A2, EP 0 880 305 A1 and EP 0 880 307 A2, Nakaya of TDK Corporation and their companions have disclosed a method for depositing a cathode using a sputtering technique. After the organic layer was deposited, the vacuum was maintained, the device was transferred from evaporation to the spray chamber and the cathode layer was directly deposited on the electron transport layer in the chamber. The cathode is an A1 alloy containing 0.1 to 20 a% Li, wherein the A1 alloy further contains at least one of cu, Mg, and Zr, and has a protective layer in some examples. Therefore, the produced OLED device without a buffer layer is claimed to have excellent adhesion at the organic layer / cathode interface, low driving voltage, high efficiency, and a slow black dot development rate. Gröthe and his companions also disclosed in a patent application DE 198 07 370 C1 a sputtering cathode of an A1: Li alloy, which has a relatively high Li content and has one or more alternatives selected from Mn, Pb, Pd, Elements of Si, Sn, Zn, Zr, Cu and SiC. In all of these examples, no buffer layer is used, but electroluminescence can be generated at lower voltages. Splash damage can be controlled by the use of low deposition rates. It is expected that damage to the organic layer can be easily reduced by lowering the spray power. However, at low power, the deposition rate may be unachievably low, and the sputter advantage is reduced or even offset. To reduce damage during high-speed sputtering of the cathode, a protective coating on the electron transport layer is useful. This protective layer, or buffer layer, must be strong enough to protect effectively. However, 'in addition to being resistant to the plasma, the buffer layer must not interfere with the operation of the device' and the performance of the device must be preserved.

Parthasarathy及其同伴(Appl· Phys. Lett· 72,2138[ 1998]) _____ · 6 - 本紙張尺度適用中國國家標準(CNS) A4規格(210x297公爱^" 554640 A7 B7 五、發明説明( ) 4 ’ 提出一種緩衝層在喷濺沈積無金屬陰極期間的應用,其中 違緩衝層係由銅酞花青(Cupc)及鋅酞花青(ZnPc)所組成 的。此緩衝層可防止噴濺製程期間對下面有機層的損害。Parthasarathy and his companions (Appl · Phys. Lett · 72, 2138 [1998]) _____ · 6-This paper size applies to China National Standard (CNS) A4 (210x297 public love ^ " 554640 A7 B7 V. Description of the invention () 4 'Propose a buffer layer application during the sputter deposition of a metal-free cathode, wherein the non-buffering layer is composed of copper phthalocyanine (Cupc) and zinc phthalocyanine (ZnPc). This buffer layer can prevent the sputtering process Damage to the underlying organic layer during this period.

Hung 及其同伴(j· Appl· Phys· 86, 4607[ 1999])揭示 CuPc 緩 衝層之應用,其容許高能量沈積合金陰極。此陰極包含低 工作函數組份Li,而Li被認為擴散穿過緩衝層並在電子傳 送層與緩衝層之間提供一電子注入層。專利申請案EP 〇 982 783 A2,Nakaya及其同伴揭示一種A1 : Li合金之陰 極。該陰極係藉噴濺利用一緩衝層所製得,其中該緩衝層 係由卟啉或并四苯化合物所構成並沈積在電子傳送層與陰 極之間。含有噴濺電極之裝置呈現低驅動電壓、高效率並 抑制黑點的成長。雖然在所有這些參考文獻中陳述可製得 有效的裝置,但無人宣稱可消除噴濺損害。 此外’部分先前技藝裝置結構的缺點是他們無法理想地 適用於可發出不同顏色之全彩裝置中。雖然CuPc在綠色波 長區域中大部分是透明的,但在紅色及藍色波長區域中的 透明度實質上較低。為用於全彩裝置,緩衝層在整個可見 光波長範圍中應具有完全均勻的透明度。另一個不理想的 特徵是有機緩衝層,如酞花青層可能是厚的,需要較長的 沈積時間。 因此,本發明目的係在OLED裝置中提供一種陰極結 構’其在可見光波長範圍中具有相當均勻的應答並可提供 電子注入。 本發明另一個目的係提供一種OLED裝置之陰極結構,Hung and his companions (j. Appl. Phys. 86, 4607 [1999]) revealed the use of CuPc buffers, which allow high-energy deposition of alloy cathodes. This cathode contains the low work function component Li, which is thought to diffuse through the buffer layer and provide an electron injection layer between the electron transport layer and the buffer layer. Patent application EP 〇 982 783 A2, Nakaya and his companions disclose a cathode of A1: Li alloy. The cathode is made by sputtering using a buffer layer, wherein the buffer layer is composed of a porphyrin or a tetracene compound and is deposited between the electron transport layer and the cathode. The device containing the sputtering electrode exhibits low driving voltage, high efficiency, and suppresses the growth of black spots. Although it is stated in all these references that effective devices can be made, no one has claimed to eliminate splash damage. In addition, a disadvantage of some of the prior art device structures is that they are not ideally suited for full-color devices that can emit different colors. Although CuPc is mostly transparent in the green wavelength region, the transparency is substantially lower in the red and blue wavelength regions. For use in full-color devices, the buffer layer should have completely uniform transparency throughout the visible wavelength range. Another undesirable feature is that organic buffer layers, such as phthalocyanine layers, may be thick and require longer deposition times. Therefore, the object of the present invention is to provide a cathode structure 'in an OLED device which has a fairly uniform response in the visible wavelength range and can provide electron injection. Another object of the present invention is to provide a cathode structure of an OLED device.

本紙張尺度適用中國國家標準(CNS) A4規格(21〇x297公釐 554640 A7This paper size applies to China National Standard (CNS) A4 (21 × 297mm 554640 A7

其可在噴濺沈積陰極層期間提供極大保護以防捐害。 上述目的可在-0LED裝置中達到,其中該〇led裝置包 含: a) 一基板 b) 一該基板上由導電材料所形成之陽極; c) 一該陽極層上所提供具有電致發光材料之發光層; d) 一該發光層上所提供包含重鹼金屬_化物之緩衝 層;及 e) 一該緩衝層上所提供之金屬或金屬合金噴濺層,其 中該喷濺層係經過選擇以與該緩衝層用於注入電子。 本發明優點為可減少噴濺期間對有機層之損害,容許以 高沈積速率製造陰極。 本發明另一個優點為緩衝層/噴濺層陰極對全彩裝置而 言是理想的。 圖1概要地顯現OLED裝置的層結構; 圖2為喷濺M g陰極裝置之性能隨RbF緩衝層厚度而變的 圖形; 圖3為喷濺Mg陰極裝置之性能隨CsF緩衝層厚度而變的 圖形; 圖4為喷濺M g陰極裝置之性能隨KF緩衝層厚度而變的圖 形; 圖5為喷濺Mg陰極裝置之性能隨LiF緩衝層厚度而變的 圖形; 圖6為喷濺A1陰極裝置之性能隨CsF緩衝層厚度而變的圖 _ * 8 - ^紙張尺度適财@ ®家料(CNS) A4規格(210 X 2的公爱) 裝 訂 554640 A7 B7 五、發明説明(< ) 6 形;及 圖7為噴濺A1陰極裝置之性能隨RbF緩衝層厚度而變的 圖形。 整個明確描述中,使用頭字語以表示不同層的名字及有 機發光二極體裝置的操作特徵。將他們列在表1以供參 考0 表1 OLED 有機發光二極體 ITO 氧化銦錫 HIL 電洞注入層 HTL 電洞傳送層 EML 發光層 ETL 電子傳送層 NPB 4,咎雙[N-(l-莕基)-N-苯基胺基]聯苯基(NPB) Alq 參-(8 -經基峻p林)銘 LiF 氟化鋰 CsF 氟化绝 RbF It化如 KF 氟化鉀 Mg 鎂 A1 鋁 現在轉至圖1,本發明的OLED裝置100包含基板101、陽 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) -9 - 554640 A7 B7 五、發明説明(7 ) 極102、電洞注入層(HIL)103、電洞傳送層(HTL)104、發 光層(EML)105、電子傳送層(ETL)106、緩衝層107及喷濺 陰極108。操作時,經由導體110將陽極與陰極連接至電壓 源109並令電流通過該有機層,造成OLED裝置放光或電致 發光。視陽極與陰極的光學透明度而定,可從陽極側或陰 極側見到電致發光。電致發光的強度係視通過OLED裝置 之電流大小而定,因此其係視有機層之發光及電特性以及 陽極102和噴濺陰極108的電荷注入性質而定。 構成OLED裝置之各層的組成及功能係描述於下。 基板101可包括玻璃、陶瓷或塑膠。因為OLED裝置的製 造不需要高溫製程,任何可承受100°C大小之製程溫度的 基板皆可使用,其包括大部分的熱塑膠。基板可採用硬 板、撓曲板或曲面形式。基板101可包含具電子背板之支 撐物,因此包括具有電子定址及開關元件之活性基質基 板。此活性基質基板之實例包括具有CMOS電路元件之單 晶碎晶圓、具有南溫聚$夕薄膜電晶體之基板、具有低溫聚 矽薄膜電晶體之基板。熟諳此技者將了解可使用其他電路 元件以定址及驅動OLED裝置。 在將相對於陰極之正電壓施予OLED時,陽極1 02的功能 係提供注入電洞至有機層中。例如,在一般渡讓的1;3-八-4,720,432中曾顯示氧化銦錫(ITO)可形成有效的陽極,因 為其具有相當高的工作函數。因為ITO膜本身是透明的, 塗有ITO之玻璃可提供OLED裝置之製造一極佳支撐物。其 他適合的陽極材料包括高工作函數金屬如Au、Pt、Pd或這 _-10-_ 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 554640 A7 B7 五、發明説明( 些金屬之合金。 電洞注入層(HIL) 103的功能係提供增加電洞從陽極1 注入有機層之效率。例如,在一般所渡讓之un 4,885,21 1中曾顯示porphorinic或酞花青化合物可用作電洞 注入層103,造成發光效率及操作安定性提高。其他較佳 HIL材料包括CFx,其為一種利用電漿強化氣相沈積法所沈 積之氟化聚合物,其中X係小於或等於2並大於〇。CFx的製 備方法及特性曾被揭示於一般所渡讓之US-A-6,208,077 中。 電洞傳送層(HTL) 104的功能係提供傳送電洞至發光層 (EML) 105。HTL材料包括一般渡讓之us_A-4,720,432中所 揭示的各類芳族胺。較佳HTL材料種類係包括式(1)之四芳 基二胺。 jIt provides great protection against spoilage during the sputter deposition of the cathode layer. The above object can be achieved in a -0LED device, wherein the OLED device includes: a) a substrate b) an anode formed of a conductive material on the substrate; c) an electroluminescent material provided on the anode layer Luminescent layer; d) a buffer layer containing a heavy alkali metal compound provided on the luminescent layer; and e) a metal or metal alloy spray layer provided on the buffer layer, wherein the spray layer is selected to And this buffer layer is used to inject electrons. The advantage of the present invention is that damage to the organic layer during sputtering can be reduced, and the cathode can be manufactured at a high deposition rate. Another advantage of the present invention is that the buffer / spray layer cathode is ideal for full-color devices. Figure 1 outlines the layer structure of an OLED device; Figure 2 is a graph of the performance of a sputtering Mg cathode device as a function of the thickness of the RbF buffer layer; Figure 3 is a graph of the performance of a sputtering Mg cathode device as a function of the thickness of the CsF buffer layer Figures; Figure 4 is a graph of the performance of the sputtering Mg cathode device as a function of the thickness of the KF buffer layer; Figure 5 is a graph of the performance of the sputtering Mg cathode device as a function of the thickness of the LiF buffer layer; The performance of the device as a function of the thickness of the CsF buffer layer _ * 8-^ Paper size is suitable @@ 家 料 (CNS) A4 size (210 X 2 public love) Binding 554640 A7 B7 V. Description of the invention (<) Figure 6; and Figure 7 is a graph of the performance of the sputtering A1 cathode device as a function of the thickness of the RbF buffer layer. Throughout the explicit description, the initials are used to indicate the names of the different layers and the operating characteristics of the organic light emitting diode device. They are listed in Table 1 for reference. Table 1 OLED Organic Light Emitting Diode ITO Indium Tin Oxide HIL Hole Injection Layer HTL Hole Transport Layer EML Light Emitting Layer ETL Electron Transport Layer NPB 4, 双双 [N- (l- (Fluorenyl) -N-phenylamino] biphenyl (NPB) Alq gins- (8-Jin Ji-Pin) Ming LiF lithium fluoride CsF fluorinated insulation RbF It chemical such as KF potassium fluoride Mg magnesium A1 aluminum Turning now to FIG. 1, the OLED device 100 of the present invention includes a substrate 101, and the paper size of the paper is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) -9-554640 A7 B7 V. Description of the invention (7) Pole 102 Hole injection layer (HIL) 103, hole transport layer (HTL) 104, light emitting layer (EML) 105, electron transport layer (ETL) 106, buffer layer 107, and sputtering cathode 108. During operation, the anode and cathode are connected to the voltage source 109 via the conductor 110 and a current is passed through the organic layer, causing the OLED device to emit light or electroluminescence. Depending on the optical transparency of the anode and cathode, electroluminescence can be seen from either the anode side or the cathode side. The intensity of electroluminescence depends on the amount of current passing through the OLED device, so it depends on the light emission and electrical characteristics of the organic layer and the charge injection properties of the anode 102 and the sputtering cathode 108. The composition and function of the layers constituting the OLED device are described below. The substrate 101 may include glass, ceramic, or plastic. Because the manufacturing of OLED devices does not require high-temperature processes, any substrate that can withstand a process temperature of 100 ° C can be used, including most thermoplastics. The base plate can be in the form of a rigid plate, a flex plate, or a curved surface. The substrate 101 may include a support having an electronic backplane, and thus includes an active matrix substrate having electronic addressing and switching elements. Examples of the active matrix substrate include a single crystal chip wafer having a CMOS circuit element, a substrate having a South-temperature polysilicon thin film transistor, and a substrate having a low-temperature polysilicon thin film transistor. Those skilled in the art will understand that other circuit elements can be used to address and drive OLED devices. When a positive voltage relative to the cathode is applied to the OLED, the function of the anode 102 is to provide an injection hole into the organic layer. For example, in general transfers 1; 3-eight-4,720,432 it has been shown that indium tin oxide (ITO) can form an effective anode because of its relatively high work function. Because the ITO film itself is transparent, ITO-coated glass can provide an excellent support for the manufacture of OLED devices. Other suitable anode materials include high work function metals such as Au, Pt, Pd or this _-10-_ This paper size applies to China National Standard (CNS) A4 specifications (210X 297 mm) 554640 A7 B7 V. Description of the invention (some Metal alloy. The function of the hole injection layer (HIL) 103 is to increase the efficiency of hole injection into the organic layer from the anode 1. For example, porphorinic or phthalocyanine compounds have been shown in unlicensed un 4,885,21 1 Can be used as hole injection layer 103, resulting in improved luminous efficiency and operational stability. Other preferred HIL materials include CFx, which is a fluorinated polymer deposited by plasma enhanced vapor deposition, where X is less than or It is equal to 2 and greater than 0. The preparation method and characteristics of CFx have been disclosed in US-A-6,208,077, which is generally transferred. The function of the hole transport layer (HTL) 104 is to provide a hole to the light emitting layer (EML) 105 HTL materials include the various aromatic amines disclosed in us_A-4,720,432, which are generally transferred. Preferred HTL material types include tetraaryldiamines of formula (1). J

Ar1 At2 \ /Ar1 At2 \ /

N-L-N / \N-L-N / \

At Αχ3 (I) 其中At Αχ3 (I) where

Ar、Ar1、Ar2KAr3係獨立地選自苯基、聯苯基及莕基部 份; L為二價伸莕基部份或dn ; d為伸苯基部份; ___________-11- 本紙張尺度適财國國家標準(CNS) Μ規格(21GX297公爱)~ --" 554640 A7 B7 五、發明説明( η為一從1至4之整數;及Ar, Ar1, Ar2KAr3 are independently selected from the group consisting of phenyl, biphenyl and fluorenyl; L is a divalent fluorenyl moiety or dn; d is a phenylene moiety; ___________- 11- National Standard of Finance (CNS) M specifications (21GX297 public love) ~-" 554640 A7 B7 V. Description of the invention (η is an integer from 1 to 4; and

Ar、Ar1、Ar2及Ar3中至少一個為莕基部份。 所選可用(含有溶凝芳族環)的芳族三級胺如下: 4,4’-雙[Ν-(1·莕基)·Ν-苯基胺基]聯苯基(npb) 4,4"-雙[1^(1-莕基)-小苯基胺基]-對-三聯苯基 4,4’-雙[>1-(2-莕基)-;^苯基胺基]聯苯基 1,5-雙[1^(1-莕基)-:^-苯基胺基]莕 4,4’-雙[Ν-(2-芘基)-Ν-苯基胺基]聯苯基 4,4f-雙[Ν-(2-二莕嵌苯基)-Ν-苯基胺基]聯苯基 2.6- 雙(二-對甲苯基胺基)莕 2.6- 雙[二-(1-萘基)胺基]萘 圖1之發光層105的功能係提供電洞與電子在此層中再結 合的結果所產生之光放射。發光層之較佳具體實施例包含 摻有一或多種螢光染料之主體材料。利用此主體_摻雜物組 合物,可建得一極有效的OLED裝置。同時,EL裝置的顏 色可利用一般主體材料中不同放射波長之螢光染料調整 之。一般讓渡給Tang及其同伴之US-A-4,769,292中極詳細 地描述此利用Alq作為主體材料之〇LED裝置的摻雜劑組 合。如一般讓渡給Tang及其同伴之US-A-4,769,292中所提 出的,發光層可包含綠色發光摻雜材料、藍色發光摻雜材 料或紅色發光摻雜材料。 車又佳主體材料包括螯合金屬為,例如Al、Mg、Li、Zn之 8-。查琳醇(8-q’uin〇iin〇i)金屬螯合化合物類。另一類較佳主 體材料包括如一般讓渡給811丨及其同伴之1;1八_5,935,721中At least one of Ar, Ar1, Ar2, and Ar3 is a fluorenyl moiety. The available aromatic tertiary amines (containing fused aromatic rings) are as follows: 4,4'-bis [N- (1 · fluorenyl) · N-phenylamino] biphenyl (npb) 4, 4 " -bis [1 ^ (1-fluorenyl) -small phenylamino] -p-terphenyl 4,4'-bis [> 1- (2-fluorenyl)-; ^ phenylamino ] Biphenyl 1,5-bis [1 ^ (1-fluorenyl)-: ^-phenylamino] fluorene 4,4'-bis [N- (2-fluorenyl) -N-phenylamino ] Biphenyl 4,4f-bis [N- (2-Dimethylphenyl) -N-phenylamino] biphenyl2.6-bis (di-p-tolylamino) fluorene2.6-bis [bis -(1-naphthyl) amino] naphthalene The function of the light emitting layer 105 in FIG. 1 is to provide light emission as a result of recombination of holes and electrons in this layer. Preferred embodiments of the light emitting layer include a host material doped with one or more fluorescent dyes. With this host-dopant composition, an extremely efficient OLED device can be built. At the same time, the color of EL devices can be adjusted with fluorescent dyes of different emission wavelengths in general host materials. US-A-4,769,292, which is generally assigned to Tang and his companions, describes this dopant combination of LED devices using Alq as the host material in great detail. As mentioned in US-A-4,769,292, which is generally assigned to Tang and his companions, the light emitting layer may include a green light emitting doping material, a blue light emitting doping material, or a red light emitting doping material. Car body materials include chelating metals such as 8- of Al, Mg, Li, and Zn. Charinol (8-q'uinoiioi) metal chelate compounds. Another type of preferred host material includes as usual transfer to 811 丨 and its companion 1; 1 _5,935,721

554640 A7 B7 五、發明説明(12 在下列實例中,對應所列頭字語之適當結構及操作參數 應參考表1。 基本有機EL介質係由沈積在75亳微米NPB電洞傳送層 (HTL)上之60毫微米Alq發光及電子傳送(EML/ETL)層所 組成的。在真2塗佈器中以單泵浦抽氣運轉塗佈NpB及Alq 層。然後將樣品轉移至多功能塗佈器中,並於該處依適當 順序沈積剩餘層以產生各種裝置構型。該多功能塗佈器裝 有蒸發船鎢及掛銷和喷錢槍。驗金屬自化物係蒸發自電阻 加熱船鎢’而控制裝置(也稱為標準品或標準陰極電池)之 A1係在咼真空中藉電子束加熱自掛鋼蒸發。對於喷賤,將 以30 SCCM流動之純空氣回填沈積室以維持一固定壓力, 一般為16 mT(毫托)。喷濺沈積係藉將DC電力施予純Mg* A1標的物完成。Mg的沈積速率在80瓦下為ι·2毫微米/秒, 而且Α1的沈積速率在丨00瓦下為υ毫微米/秒。承認沈積速 率可容易地藉選擇喷濺參數控制之。雖然使用單一標的物 進行噴錢’但可同時使用多個標的物之噴賤以增加製程通 量。可使用RF取代DC作為替換電力來源。認為一具有較 佳性質之合金層可用於取代金屬層。也了解數個標的物之 共噴濺可用於取代單一合金標的物之噴濺以調整合金層的 組成。 利用PR650輻射計可測得裝置的發光度係隨電流而變。 表及圖形中所列之驅動電壓V(伏特)及發光度乙((:(1/平方米) 是這些在相當於20毫安培/平方米之電流通過裝置時所測 得0 -15- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)554640 A7 B7 5. Description of the invention (12 In the following examples, the appropriate structure and operating parameters corresponding to the listed initials should refer to Table 1. The basic organic EL medium is deposited on a 75 亳 micron NPB hole transport layer (HTL). It consists of 60nm Alq light emitting and electron transport (EML / ETL) layer. In a true 2 coater, the NpB and Alq layers are coated with a single pump pumping operation. Then the sample is transferred to a multifunctional coater And the remaining layers are deposited there in the proper order to produce various device configurations. The multifunctional applicator is equipped with an evaporation ship tungsten and a pin and a money spray gun. The metal test compound is evaporated from the resistance heating ship tungsten 'and A1 of the control device (also known as the standard product or standard cathode battery) is heated by electron beams in a radon vacuum to evaporate from the hanging steel. For spraying, pure air flowing at 30 SCCM will be backfilled to the deposition chamber to maintain a fixed pressure. Generally 16 mT (mtorr). Sputter deposition is accomplished by applying DC power to a pure Mg * A1 target. The deposition rate of Mg is ι · 2 nm / s at 80 watts, and the deposition rate of A1 is at 00 Below watts is υ nm / s. Admits deposition rate It can be easily controlled by choosing spray parameters. Although a single target is used for spraying money, but multiple targets can be sprayed at the same time to increase process throughput. RF can be used instead of DC as an alternative power source. It is considered that one has The alloy layer with better properties can be used to replace the metal layer. It is also known that the co-spattering of several targets can be used to replace the spraying of a single alloy target to adjust the composition of the alloy layer. The luminosity of the device can be measured using a PR650 radiometer. Depends on the current. The driving voltage V (volts) and luminosity B ((: (1 / m 2)) listed in the table and graph are measured when a current equivalent to 20 mA / m 2 passes through the device. Get 0 -15- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 554640 A7 B7 五、發明説明(13 ) 實例1 在表2中,匯編數種本發明裝置之裝置結構及性能,其 中包括控制裝置的結構及性能。裝置2〇至24之1丁〇、HIL、 HTL及EML/ETL層是相同的,而且有機層係在單泵浦抽氣 運轉中沈積。具有標準陰極之控制裝置2〇所呈現的發光度 為565 cd/平方米,其操作電壓為5·9伏特,其中該標準陰 極係由60毫微米厚A1層於〇·5毫微米LiF層上組成的。假設 此裝置在陰極沈積期間無任何損害。裝置2 1不具緩衝層; 60毫微米厚之Mg層係直接噴濺在Alq ETL層上。此裝置如 其相對於控制裝置20之不尋常的高操作電壓及低效率所證 明,呈現嚴重下降的性能。由於喷濺“§期間所引起的損 害,降低是非常有可能的,就如已知熱力蒸發Mg可在A1q ETL層上製造有效的電子注入接點。相對於控制裝置2〇, 裝置21在操作電壓上的提高量及發光效率上的損失分別為 5.2伏特及77%。裝置22係具有1毫微米厚之RbF層,在這些 與裝置2 1相同之條件下將60毫微米厚之Mg層喷濺其上。裝 置22顯示發光度為538 cd/平方米,操作電壓為6·5伏特, 指示明顯優於裝置2 1之性能。此改善被認為係源自於RbF 在喷賤沈積Mg塗覆層期間所提供的保護。但是,裝置22的 性能係低於控制裝置20。在裝置23的結構中,所併入是一 2毫微米厚的RbF緩衝層。裝置23之較厚緩衝層提供較佳保 護以防噴滅損害並呈現優於裝置22之操作電壓及發光度。 裝置23的操作電壓及發光效率實際上係等於標準裝置汕的 這些性質。將RbF厚度增加至3毫微米無法進一步改善裝置Equipment 554640 A7 B7 V. Description of the invention (13) Example 1 In Table 2, the device structures and performances of several devices of the invention are compiled, including the structure and performance of the control device. The devices 20 to 24, 1 to 10, HIL, HTL, and EML / ETL layers are the same, and the organic layer is deposited during a single pumping operation. The control device 20 with a standard cathode exhibits a luminosity of 565 cd / m 2 and an operating voltage of 5.9 volts. The standard cathode is a 60 nm thick A1 layer on a 0.5 nm LiF layer. consist of. It is assumed that the device did not suffer any damage during cathode deposition. The device 21 does not have a buffer layer; a 60 nm-thick Mg layer is directly sprayed on the Alq ETL layer. This device exhibits severely degraded performance as evidenced by its unusually high operating voltage and low efficiency relative to the control device 20. Due to the damage caused during the "§ splattering, the reduction is very possible, as it is known that thermal evaporation of Mg can produce an effective electron injection contact on the A1q ETL layer. Compared to the control device 20, the device 21 is in operation The increase in voltage and the loss in luminous efficiency are 5.2 volts and 77%, respectively. Device 22 has a 1 nm thick RbF layer, and a 60 nm thick Mg layer is sprayed under the same conditions as device 21 Splattered on it. Device 22 showed a luminosity of 538 cd / m 2 and an operating voltage of 6.5 volts, indicating a significantly better performance than device 21 1. This improvement is thought to be due to the RbF coating deposited on the Mg coating The protection provided during the layer. However, the performance of the device 22 is lower than that of the control device 20. In the structure of the device 23, a 2 nm thick RbF buffer layer is incorporated. The thicker buffer layer of the device 23 provides better Good protection against blowout damage and exhibits better operating voltage and luminosity than device 22. The operating voltage and luminous efficiency of device 23 are actually equal to these properties of standard devices. Increasing the thickness of RbF to 3 nm cannot be further improved Device

裝 訂Binding

554640 A7 B7 五、發明説明(14 ) 的性能。在裝置20、23及24中,性能上的小差異最有可能 係由於裝置結構變化及測量不準度的緣故。因此,約2毫 微米厚之RbF緩衝層可消除或減少噴濺沈積Mg塗覆層期間 的損害。隨RbF緩衝層厚度而變化之喷濺裝置以及控制裝 置的性能也表示於圖2。觀察到對於Mg噴濺,最佳RbF緩 衝層厚度係大於1毫微米並可能低於3毫微米。 表2 各種RbF緩衝層上具有噴濺Mg陰極及具有LiF/Al標準陰極 之OLED裝置的結構、層厚及性能 裝置 編珑 裝置 類型 陽極 ITO 厚度 (毫微米) HIL CFx 厚度 (毫微米) HTL NPB 厚度 (毫微米) EMUETL Alq 厚度 (毫微米) LiF 厚度 (毫微米) 緩衝 RbF 厚度 (毫微米) 所蒸發之陰極 AI 厚度 (毫微米) 所噴濺之陰極Mg 厚度 (毫微米) 驅動電壓 (伏特) 發光度 (cd/平方米) 20 控制 42 1.0 75 60 0.5 60 5.9 565 21 喷濺Mg险極 42 1.0 75 60 0.0 60 11.1 129 22 噴濺!^;陰極 42 1.0 75 60 1.0 60 6.5 538 23 噴濺Mg险極 42 1.0 75 60 2.0 60 6.1 581 24 陰極 42 1.0 75 60 3.0 60 6.3 607 實例2554640 A7 B7 5. The performance of the invention (14). In devices 20, 23, and 24, small differences in performance are most likely due to changes in device structure and measurement inaccuracies. Therefore, a RbF buffer layer of about 2 nm thick can eliminate or reduce damage during spray deposition of the Mg coating layer. The performance of the sputtering device and the control device which varies with the thickness of the RbF buffer layer is also shown in FIG. 2. It has been observed that for Mg sputtering, the optimal RbF buffer layer thickness is greater than 1 nm and may be less than 3 nm. Table 2 Structure, layer thickness and performance of OLED devices with sputtered Mg cathodes and OLED devices with LiF / Al standard cathodes on various RbF buffer layers Device type Anode ITO thickness (nm) HIL CFx thickness (nm) HTL NPB Thickness (nm) EMUETL Alq Thickness (nm) LiF Thickness (nm) Buffer RbF Thickness (nm) Cathode AI Thickness (nm) Evaporated Cathode Mg Thickness (nm) Driving Voltage (Volts) ) Luminance (cd / m 2) 20 Control 42 1.0 75 60 0.5 60 5.9 565 21 Spray Mg Danger 42 1.0 75 60 0.0 60 11.1 129 22 Splash! ^; Cathode 42 1.0 75 60 1.0 60 6.5 538 23 Spray Splash Mg Danger 42 1.0 75 60 2.0 60 6.1 581 24 Cathode 42 1.0 75 60 3.0 60 6.3 607 Example 2

在表3中,匯編數種本發明裝置之裝置結構及性能,其 包括控制裝置的結構及性能。裝置30至34之ITO、HIL、 HTL·及EMUETL·層是相同白勺。具有標準陰極之控伟|J裝置30 所呈現的發光度為603 cd/平方米,其操作電壓為5.7伏 特,其中該標準陰極係由60毫微米厚A1層於0.5毫微米LiF -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 554640 A7 B7 五、發明説明( 層上組成的。假設此裝置在陰極沈積期間無任何損害。裝 置31不具緩衝層;60毫微米厚之Mg層係直接噴濺在Aiq ETL層上。如此裝置相對於控制裝置3〇之不尋常的高操作 電壓及低效率所證明的,此裝置數據建議噴濺對EL介質造 成嚴重損害。裝置31在操作電壓上的提高量及發光效率上 的損失分別為5.4伏特及79%。裝置32具有0.5毫微米厚之 CsF層,在這些與裝置31相同之條件下將6〇毫微米厚之Mg 層噴濺其上。裝置32顯示發光度為479 cd/平方米,操作電 壓為7·2伏特,指示明顯優於裝置3丨之性能。此改善被認為 係源自於CsF層在噴濺沈積Mg塗覆層期間所提供的保護。 但是’裝置32的性能係低於控制裝置3〇。在裝置33的結構 中,所併入是一 1.5毫微米厚的CsF緩衝層。裝置33之較厚 緩衝層提供較佳保護以防噴濺損害並呈現優於裝置32之操 作電壓及發光度。但是,裝置33的操作電壓及發光度不等 於這些標準裝置30的性質,指示噴濺損害仍存在In Table 3, the device structure and performance of several kinds of the device of the present invention are compiled, including the structure and performance of the control device. The ITO, HIL, HTL ·, and EMUETL · layers of the devices 30 to 34 are the same. Controlled with a standard cathode | J Device 30 exhibits a luminosity of 603 cd / m 2 and an operating voltage of 5.7 volts. The standard cathode consists of a 60 nm thick A1 layer on 0.5 nm LiF -17- Paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 554640 A7 B7 V. Description of invention (composed of layers. Assume that the device has no damage during cathode deposition. Device 31 does not have a buffer layer; 60 millimeters The micron-thick Mg layer is directly sprayed on the Aiq ETL layer. As evidenced by the unusually high operating voltage and low efficiency of the device relative to the control device 30, this device data suggests that the spraying can cause serious damage to the EL medium. The increase in the operating voltage and the loss in luminous efficiency of the device 31 are 5.4 volts and 79%, respectively. The device 32 has a 0.5 nm thick CsF layer. Under these same conditions as the device 31, the thickness of the 60 nm The Mg layer was spattered on it. Device 32 showed a luminosity of 479 cd / m 2 and an operating voltage of 7.2 volts, indicating a significantly better performance than device 3. This improvement is believed to be due to the CsF layer being spattered During Mg coating deposition The protection provided. However, the performance of the device 32 is lower than the control device 30. In the structure of the device 33, a 1.5 nm thick CsF buffer layer is incorporated. The thicker buffer layer of the device 33 provides better protection In order to prevent splash damage and exhibit better operating voltage and luminosity than device 32. However, the operating voltage and luminosity of device 33 are not equal to the properties of these standard devices 30, indicating that splash damage still exists

0 將 CsF 厚度增加至3毫微米可進一步改善裝置的性能。裝置34的 性能似乎與控制裝置30相同。此數據建議裝置34中的噴濺 才貝害實際上已被消除。裝置3〇與34之間性能上的小差異最 有可说係因裝置結構變化及測量不準度之故。因此,約3 毫微米厚之CsF緩衝層可消除或減少噴濺沈積Mgs覆層期 間的彳貝害。隨CsF緩衝層厚度而變之喷濺裝置以及控制裝 置的性能也表示於圖3中❶觀察到對於Mg喷濺,最佳CsF 緩衝層厚度係大於1 ·5毫微米並可能約3毫微米。0 Increasing the CsF thickness to 3 nm can further improve device performance. The performance of the device 34 appears to be the same as that of the control device 30. This data suggests that the splatter damage in the device 34 has actually been eliminated. The small difference in performance between the devices 30 and 34 is most likely due to changes in the device structure and measurement inaccuracy. Therefore, a CsF buffer layer of about 3 nanometers thick can eliminate or reduce the shellfish damage during the sputter-deposited Mgs coating. The performance of the sputtering device and the control device as a function of the thickness of the CsF buffer layer is also shown in Figure 3. It is observed that for Mg sputtering, the optimal CsF buffer layer thickness is greater than 1.5 nm and possibly about 3 nm.

554640 A7 B7 五、發明説明( 表3 各種CsF緩衝層上具有噴濺Mg陰極及具有LiF/A1標準陰極 之OLED裝置的結構、層厚及性能 裝置 編號 裝置 類型 暘極 ITO 厚度 (毫微米) HIL CFx 厚度 (毫微米) HTL NPB 厚度 (毫微米) EML/ETL Alq 厚度 (毫微米) LiF 厚度 (毫微米) 緩衝 CsF 厚度 (毫微米) 所蒸發之陰極 A1 厚度 (毫微米) 所喷政之陰極Mg 厚度 (毫微米) 驅動電壓 (伏特) 發光度 (cd/平方米) 30 控制 42 1.0 75 60 0.5 60 5.7 603 31 喷濺Mg陰極 42 1.0 75 60 0.0 60 11.1 129 32 喷濺Mg晗極 42 1.0 75 60 0.5 60 7.2 479 33 喷濺Mg陰極 42 1.0 75 60 1.5 60 6.3 549 34 喷濺Mg喰極 42 1.0 75 60 3.0 60 6.0 610554640 A7 B7 V. Description of the invention (Table 3 Structure, layer thickness and performance of OLED devices with Mg cathode and LiF / A1 standard cathodes on various CsF buffer layers Device type Device type ITO thickness (nm) HIL CFx thickness (nm) HTL NPB thickness (nm) EML / ETL Alq thickness (nm) LiF thickness (nm) Buffered CsF thickness (nm) Evaporated cathode A1 thickness (nm) Sprayed cathode Mg Thickness (nm) Driving voltage (volts) Luminance (cd / m2) 30 Control 42 1.0 75 60 0.5 60 5.7 603 31 Spray Mg cathode 42 1.0 75 60 0.0 60 11.1 129 32 Spray Mg cathode 42 1.0 75 60 0.5 60 7.2 479 33 Mg cathode 42 1.0 75 60 1.5 60 6.3 549 34 Mg cathode 42 1.0 75 60 3.0 60 6.0 610

裝 實例3 在表4中,匯編數種本發明裝置之裝置結構及性能,其 包括控制裝置的結構及性能。裝置40至44之ITO、HIL、 HTL及EML/ETL層是相同的,而且有機層係在單泵浦抽氣 運轉中沈積。此實例的ITO塗層係不同於這些實例1及2裝 置中所用的。具有標準陰極之控制裝置40所呈現的發光度 為811 cd/平方米,其操作電壓為7.1伏特,其中該標準陰 極係由60毫微米厚A1層於0.5毫微米LiF層上組成。假設此 裝置在陰極沈積期間無任何損害。裝置41具有0.5毫微米厚 之KF層,60毫微米厚之Mg層被噴濺其上。裝置41顯示發 光度只有664 cd/平方米,操作電壓為8.0伏特,指示0.5毫 微米KF緩衝層無法提供足夠保護以防喷濺損害EL介質。 __-19-_ 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 554640 A7 B7 五、發明説明(i7 ) 相對於控制裝置40,裝置41在操作電壓上的提高量及發光 效率上的損失分別為0.9伏特及18%。將KF緩衝層厚度增 加至1.0毫微米可改善發光效率,除了發光度呈持平之外。 但是,超過1.5毫微米,電壓呈現顯著增加。此實例之最佳 喷濺裝置,裝置42的發光度係超出控制裝置的96%,但其 電壓係比控制裝置40高0.8伏特。因此約1毫微米厚之KF緩 衝層可減少噴濺沈積Mg塗覆層期間的損害。隨KF緩衝層 厚度而變之噴濺裝置以及控制裝置的性能也表示於圖4 中。觀察到對於Mg噴濺,最佳KF緩衝層厚度係約1至1.5毫 微米。 表4 各種KF緩衝層上具有喷濺Mg陰極及具有LiF/ A1標準陰極 之OLED裝置的結構、層厚及性能 裝置 編珑 裝置 類型 陽極 ITO 厚度 (毫微米) HIL CFx 厚度 (毫微米) HTL NPB 厚度 (毫微米) EML/ETL Alq 厚度 (毫微米) LiF 厚度 (毫微米) 緩衝 KF 厚度 (毫微米) 所蒸發之喰極 A1 厚度 (毫微米) 所喷濺之晗極Mg 厚度 (毫微米) 驅動電壓 (伏特) 發光度 (cd/平方米) 40 控制 85 1 75 60 0.5 60 7.1 811 41 噴濺Mg晗柽 85 1 75 60 0.5 60 8.0 664 42 喷濺\^喰極 85 1 75 60 1.0 60 7.9 780 43 嘴濺Mg陰極 85 1 75 60 1.5 60 7.9 765 44 85 1 75 60 2.5 60 8.7 779 實例4 表5包含另一組LiF緩衝層上具有噴濺Mg陰極之裝置及具 有標準陰極之控制裝置的裝置結構及性能。而且,裝置50 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) ~ 20 ~ 554640 A7Installation Example 3 In Table 4, the device structures and performances of several devices of the present invention are compiled, including the structure and performance of the control device. The ITO, HIL, HTL, and EML / ETL layers of the devices 40 to 44 are the same, and the organic layer is deposited during a single pumping operation. The ITO coating of this example is different from those used in the devices of Examples 1 and 2. The control device 40 with a standard cathode exhibits a luminance of 811 cd / m 2 and an operating voltage of 7.1 volts. The standard cathode is composed of a 60 nm thick A1 layer on a 0.5 nm LiF layer. It is assumed that the device did not suffer any damage during cathode deposition. The device 41 has a 0.5 nm thick KF layer, and a 60 nm thick Mg layer is sprayed thereon. The device 41 showed a luminosity of only 664 cd / m 2 and an operating voltage of 8.0 volts, indicating that the 0.5 nm KF buffer layer did not provide sufficient protection against splash damage to the EL medium. __- 19-_ This paper size is in accordance with Chinese National Standard (CNS) A4 (210X 297 mm) 554640 A7 B7 V. Description of the invention (i7) Compared to the control device 40, the increase in the operating voltage of the device 41 and the light emission The losses in efficiency are 0.9 volts and 18%. Increasing the thickness of the KF buffer layer to 1.0 nm can improve the luminous efficiency, except that the luminosity is flat. However, beyond 1.5 nm, the voltage shows a significant increase. In the best sputtering device of this example, the luminosity of the device 42 exceeds 96% of the control device, but its voltage is 0.8 volts higher than that of the control device 40. Therefore, a KF buffer layer of about 1 nanometer thickness can reduce damage during spray deposition of Mg coatings. The performance of the spraying device and the control device as a function of the thickness of the KF buffer layer is also shown in FIG. 4. It has been observed that for Mg sputtering, the optimal KF buffer layer thickness is about 1 to 1.5 nm. Table 4 Structure, layer thickness and performance of OLED devices with sputtered Mg cathodes and LiF / A1 standard cathodes on various KF buffer layers Device type anode thickness ITO thickness (nm) HIL CFx thickness (nm) HTL NPB Thickness (Nm) EML / ETL Alq Thickness (Nm) LiF Thickness (Nm) Buffer KF Thickness (Nm) Thickness of evaporated electrode A1 (Nm) Thickness of sprayed electrode Mg (Nm) Driving voltage (volts) Luminance (cd / m2) 40 Control 85 1 75 60 0.5 60 7.1 811 41 Spray Mg 晗 柽 85 1 75 60 0.5 60 8.0 664 42 Splash \ ^ 喰 pole 85 1 75 60 1.0 60 7.9 780 43 Mg cathode spout 85 1 75 60 1.5 60 7.9 765 44 85 1 75 60 2.5 60 8.7 779 Example 4 Table 5 contains another set of devices with Mg cathodes sprayed on the LiF buffer layer and control devices with standard cathodes Device structure and performance. In addition, the paper size of the device is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) ~ 20 ~ 554640 A7

至55之1丁〇、HIL、HTL及EML/ETL層是相同的。具有標準 陰極之標準電池,裝置50所呈現的發光度為610 Cd/平方 米,其操作電壓為6·6伏特,其中該標準陰極係由6〇毫微米 厚A1層於〇·5毫微米LiF層上所組成的。裝置51不具緩衝 層,60毫微米厚之]^§層係直接噴濺在Alq etl層上。如裝 置51相對於標準電池,裝置5〇之不尋常的高操作電壓及低 放率所证明,裝置5 1的數據建議噴濺嚴重損害EL介質,其 中假設裝置50在陰極沈積期間無任何損害。裝置52具有〇.5 毫微米厚之LiF層,60毫微米厚之Mg層係被喷濺其上。裝 置52顯示發光度只有449 cd/平方米,操作電壓為8·2伏 特,指示0.5毫微米之LiF緩衝層無法提供足夠保護以防噴 濺損害EL介質。將LiF緩衝層厚度增加至1〇毫微米可改善 發光效率,但顯露電壓變差。進一步增加LiF的厚度使操 作電壓單方面增加,但發光效率持平。具有最厚緩衝層之 噴濺裝置,裝置55的發光度為控制裝置5〇的87% ,但其操 作電壓比控制裝置高約3伏特。具有〇 5毫微米緩衝層之噴 濺裝置呈現此系列中最低電壓,但其電壓係比控制裝置高 1 · 5伏特,且其發光度只有控制裝置的Μ %❶隨[π緩衝層 厚度而變之噴濺裝置以及控制裝置的性能也表示於圖5 中。從表2至5及圖2至5可觀察到對於Mg噴濺,以UF作為 緩衝層的效率係比CsF、RbF或KF低。 554640 A7 B7 五、發明説明( 表5 具有LiF/A1標準陰極及各種LiF緩衝層上具有噴濺Mg陰極 之OLED裝置的 ί結構、^ I厚及性能 裝置 編號 裝置 類型 陽極 ITO 厚度 (毫微米) HIL CFx 厚度 (毫微米) HTL NPB 厚度 (毫微米) EML/ETL Alq 厚度 (毫微米) LiF 厚度 (毫微米) 緩衝 CsF 厚度 (毫微米) 所蒸發之陰極 A1 厚度 (毫微米) 所喷濺之险極Mg 厚度 (毫微米) 驅動電壓 (伏特) 發光度 (cd/平方米) 50 控制 42 1.0 75 60 0.5 60 6.6 610 51 喷濺Mg陰極 42 1.0 75 60 0.0 60 11.1 129 52 喷濺Mg陰極 42 1.0 75 60 0.5 60 8.2 449 53 喷濺Mg陰極 42 1.0 75 60 1.0 60 8.5 499 54 喷濺Mg陰極 42 1.0 75 60 2.0 60 9.0 531 55 喷濺Mg陰極 42 1.0 75 60 3.0 60 9.5 532 實例5 在表6中,匯編數種本發明裝置之裝置結構及性能,其 包括控制裝置的結構及性能。裝置60至65之ITO、HIL、 nTL·及EML/ETL·層是相同的。具有標準陰極之控制裝置00 所呈現的發光度為526 cd/平方米,其操作電壓為6.2伏 特,其中該標準陰極係由60毫微米厚之A1層於0.5毫微米 LiF層上所組成的。假設此裝置在陰極沈積期間無任何損 害。裝置61不具緩衝層;60毫微米厚之A1層係直接噴濺在 Alq ETL層上。此裝置如其相對於控制裝置60之不尋常的 高操作電壓及低效率所證明,呈現嚴重下降的性能。由於 A1的高工作函數,並且可能有來自噴濺損害的貢獻,此降 低是非常有可能的。裝置6 1在操作電壓上的提高量及發光 _-22-_ 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 554640From 1 to 55, the HIL, HTL, and EML / ETL layers are the same. For a standard battery with a standard cathode, the luminance displayed by the device 50 is 610 Cd / m 2 and its operating voltage is 6.6 volts. The standard cathode consists of a 60 nm thick A1 layer and 0.5 nm LiF. Made up of layers. The device 51 does not have a buffer layer, and is 60 nm thick. The layer is directly sprayed on the Alq etl layer. As evidenced by the unusually high operating voltage and low emission rate of device 51 relative to standard batteries, device 50, device 51's data suggest that the EL medium is severely sputtered, with the assumption that device 50 does not suffer any damage during cathode deposition. The device 52 has a 0.5 nm-thick LiF layer, and a 60 nm-thick Mg layer is sprayed thereon. The device 52 showed a luminosity of only 449 cd / m 2 and an operating voltage of 8.2 volts, indicating that a 0.5 nm LiF buffer layer could not provide sufficient protection against splash damage to the EL medium. Increasing the thickness of the LiF buffer layer to 10 nm can improve the luminous efficiency, but the exposure voltage becomes worse. Increasing the thickness of LiF further increased the operating voltage unilaterally, but the luminous efficiency was flat. The splatter with the thickest buffer layer, the luminosity of the device 55 is 87% of the control device 50, but its operating voltage is about 3 volts higher than the control device. The splash device with a buffer layer of 0.05 nm exhibits the lowest voltage in this series, but its voltage is 1.5 volts higher than the control device, and its luminosity is only Μ% of the control device. The performance of the spraying device and the control device is also shown in FIG. 5. From Tables 2 to 5 and Figures 2 to 5, it can be observed that the efficiency of using UF as a buffer layer for Mg sputtering is lower than that of CsF, RbF, or KF. 554640 A7 B7 V. Description of the invention (Table 5) Structure, thickness and performance of OLED devices with LiF / A1 standard cathodes and various LiF buffer layers with Mg cathodes splashed. Device numbering device type anode ITO thickness (nm) HIL CFx thickness (nm) HTL NPB thickness (nm) EML / ETL Alq thickness (nm) LiF thickness (nm) Buffer CsF thickness (nm) Evaporated cathode A1 thickness (nm) Sprayed Dangerous Mg thickness (nm) Driving voltage (volts) Luminance (cd / m2) 50 Control 42 1.0 75 60 0.5 60 6.6 610 51 Spray Mg cathode 42 1.0 75 60 0.0 60 11.1 129 52 Spray Mg cathode 42 1.0 75 60 0.5 60 8.2 449 53 Mg cathode 42 1.0 75 60 1.0 60 8.5 499 54 Mg cathode 42 1.0 75 60 2.0 60 9.0 531 55 Mg cathode 42 1.0 75 60 3.0 60 9.5 532 Example 5 is shown in the table In 6, the device structure and performance of several devices of the present invention are compiled, including the structure and performance of the control device. The ITO, HIL, nTL ·, and EML / ETL · layers of devices 60 to 65 are the same. Control with standard cathode Device 00 The displayed luminosity is 526 cd / m 2 and its operating voltage is 6.2 volts. The standard cathode consists of a 60 nm thick A1 layer on a 0.5 nm LiF layer. It is assumed that this device is during cathode deposition No damage. The device 61 does not have a buffer layer; the 60 nm thick A1 layer is sprayed directly on the Alq ETL layer. This device is severe as demonstrated by its unusually high operating voltage and low efficiency compared to the control device 60 Degraded performance. Due to the high work function of A1, and possible contribution from splash damage, this reduction is very possible. Device 61 1 increase in operating voltage and luminescence _-22-_ This paper size applies China National Standard (CNS) A4 (210X 297mm) 554640

效率上的損失分別為51伏特及39%。裝置62具有i毫微米 厚<CsF層,在這些與裝置61相同之條件下將6〇毫微米厚 之A1層噴濺其上。裝置62顯示發光度為398 cd/平方米,操 作電壓為7.0伏特,指示明顯優於裝置61之彳生能。此改善被 認為係源自於CsF層在噴濺沈積A1塗覆層期間所提供的保 護。但是,裝置62的性能係低於控制裝置6〇。在裝置〇的 結構中,所併入是一 2毫微米厚的CsF緩衝層。裝置63之較 厚緩衝層提供較佳保護以防噴濺損害並呈現優於裝置62之 操作電壓及發光度。但是,裝置63的操作電壓及發光度係 不等於這些標準裝置60的性質,指示喷濺損害仍存在。將 CsF的厚度增加至3毫微米(裝置64)無法進一步改善裝置的 性能。裝置64與控制60的性能是相等的。此數據建議裝置 64中的噴賤損害貫際上已被消除。在裝置6〇與中性能上 的小差異最有可能係因裝置結構上的變化及測量不準度之 故。將CsF的厚度增加至4毫微米無法進一步增加發光效率 並輕微提高操作電壓。因此,约3毫微米厚之CsF緩衝層可 消除或減少噴濺沈積A1塗覆層期間的損害。隨CsF緩衝層 厚度而變之噴濺裝置以及控制裝置的性能也表示於圖6 中。觀祭到對於A1噴濺,最佳CsF緩衝層厚度係大於3毫微 米並可能低於4毫微米。 ______- 23 二 本紙張尺度適用中國國家標準(CNS) Α4規格(210Χ 297公釐)The losses in efficiency are 51 volts and 39%, respectively. The device 62 has a layer of i nm thickness < CsF, and a 60 nm layer of A1 was sputtered thereon under the same conditions as the device 61. The device 62 showed a luminous intensity of 398 cd / m 2 and an operating voltage of 7.0 volts, indicating that it was significantly better than the energy generation of the device 61. This improvement is thought to be due to the protection provided by the CsF layer during the sputter deposition of the Al coating. However, the performance of the device 62 is lower than that of the control device 60. In the device 0 structure, a 2 nm thick CsF buffer layer is incorporated. The thicker buffer layer of device 63 provides better protection against splash damage and exhibits better operating voltage and luminosity than device 62. However, the operating voltage and luminosity of the device 63 are not equal to the properties of these standard devices 60, indicating that splash damage is still present. Increasing the thickness of CsF to 3 nm (device 64) does not further improve device performance. The performance of the device 64 and the control 60 is equal. This data suggests that the spray damage in device 64 has been substantially eliminated. The small difference between the device 60 and the medium performance is most likely due to changes in the device structure and measurement inaccuracy. Increasing the thickness of CsF to 4 nm cannot further increase the luminous efficiency and slightly increase the operating voltage. Therefore, a CsF buffer layer of about 3 nanometers thick can eliminate or reduce damage during spray deposition of the Al coating layer. The performance of the sputtering device and the control device as a function of the thickness of the CsF buffer layer is also shown in FIG. 6. It is observed that for A1 splash, the optimal CsF buffer layer thickness is greater than 3 nm and may be less than 4 nm. ______- 23 2. This paper size applies to China National Standard (CNS) Α4 size (210 × 297 mm)

裝 訂Binding

554640 A7 B7 五、發明説明(21 表6 各種CsF緩衝層上具有噴濺A1陰極及具有LiF/A1標準陰極 之OLED裝置的 結構、為 !厚及性能 裝置 編號 裝置 類型 陽極 ITO 厚度 (毫微米) HIL CFx 厚度 (毫微米) HTL NPB 厚度 (毫微米) EML/ETL Alq 厚度 (毫微米) LiF 厚度 (毫微米) 緩衝 CsF 厚度 (毫微米) 所蒸發之陰極 A1 厚度 (毫微米) 所喷政之陰極AI 厚度 (毫微米) 驅動電壓 (伏特) 發光度 (cd/平方米) 60 控制 42 1.0 75 60 0.5 60 6.2 526 61 喷濺AI陰極 42 1.0 75 60 60 11.3 321 62 喷濺A1陰極 42 1.0 75 60 1.0 60 7.0 398 63 噴濺AI陰極 42 1.0 75 60 2.0 60 6.5 466 64 喷濺AJ陰極 42 1.0 75 60 3.0 60 6.2 530 65 噴濺A丨陰極 42 1.0 75 60 4.0 60 6.8 523 實例6 在表7中,匯編數種本發明裝置之裝置結構及性能,其 包括控制裝置之結構及性能。裝置70至75之ITO、HIL、 HTL及EML/ETL層是相同的,而且有機層係在單泵浦抽氣 運轉中沈積。表7中所呈現的是裝置相對於控制裝置70的 性能。圖7中的圖形顯示隨RbF層厚度而變之正規化發光度 及電壓降低量。正規化發光度及電壓降低量係定義如下。 若L為裝置的發光度,V為裝置的驅動電壓,Le為控制裝置 的發光度,V。為控制裝置的驅動電壓,然後正規化發光度 為L/Le,電壓降低量為V-Ve。明顯地,對於控制電池,正 規化發光度為1,電壓降低量是0。該控制電池具有一標準 陰極,其係由60毫微米厚之A1層於0.5毫微米LiF層上所組 -24 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 55464〇 A7 B7 i、發明説明554640 A7 B7 V. Description of the invention (21 Table 6 Structures of OLED devices with splashed A1 cathodes and LiF / A1 standard cathodes on various CsF buffer layers, thickness and performance Device numbering device type anode ITO thickness (nm) HIL CFx thickness (nm) HTL NPB thickness (nm) EML / ETL Alq thickness (nm) LiF thickness (nm) CsF thickness (nm) Evaporated cathode A1 thickness (nm) Cathodic cathode AI thickness (nm) Driving voltage (volts) Luminance (cd / m2) 60 Control 42 1.0 75 60 0.5 60 6.2 526 61 Spray AI cathode 42 1.0 75 60 60 11.3 321 62 Spray A1 cathode 42 1.0 75 60 1.0 60 7.0 398 63 Splash AI cathode 42 1.0 75 60 2.0 60 6.5 466 64 Splash AJ cathode 42 1.0 75 60 3.0 60 6.2 530 65 Splash A 丨 cathode 42 1.0 75 60 4.0 60 6.8 523 Example 6 is shown in Table 7 Assemble the device structure and performance of several devices of the invention, including the structure and performance of the control device. The ITO, HIL, HTL and EML / ETL layers of devices 70 to 75 are the same, and the organic layer is in a single pump Angry Transfer deposition. Table 7 shows the performance of the device relative to the control device 70. The graph in Figure 7 shows the normalized luminosity and voltage reduction as a function of the thickness of the RbF layer. The normalized luminosity and voltage reduction The system definition is as follows: If L is the luminosity of the device, V is the driving voltage of the device, Le is the luminosity of the control device, V. is the driving voltage of the control device, and then the normalized luminosity is L / Le, and the voltage reduction is V-Ve. Obviously, for the control battery, the normalized luminosity is 1, and the voltage drop is 0. The control battery has a standard cathode, which is composed of a 60 nm thick A1 layer on a 0.5 nm LiF layer. Group-24-This paper size applies Chinese National Standard (CNS) A4 (210X 297 mm) 55464〇A7 B7 i. Description of the invention

成的。假汉控制裝置在陰極沈積期間無任何損害。裝置?! 不具緩衝層;60¾微米厚之八丨層係直接噴濺在etl層 上。此裝置如其不尋常之高電壓降低量及低正規化發光度 所證明,呈現嚴重下降之性能。由於A1之高工作函數,= 且可能有來自噴濺損害的貢獻,此低性能是可能的。電壓 降低量及正規化發光度分別為5_丨伏特及〇·54。裝置72具有 0.5毫微米厚之RbF層,在這些與裝置71相同之條件下將⑽ 毫微米厚之A1層喷濺其上。裝置72顯示電壓降低量為2.5伏 特正規化發光度為〇 · 71,指示明顯優於裝置71之性能。 此改善被認為係源自於RbF層在噴濺沈積A1塗覆層期間所 提供的保護。但是,裝置72的性能係低於控制裝置7〇。在 裝置73的結構中,所併入是一 15微米厚的RbF緩衝層。裝 置73之較厚緩衝層提供較佳保護以防噴濺損害並呈現優於 裝置72之操作電壓及發光度。但是,裝置73的電壓降低量 及正規化發光度值係不等於這些控制裝置7〇的性質,指示 噴濺損害仍存在。將RbF的厚度增加至2·5毫微米(裝置74) 可進一步改善裝置的性能。裝置74與控制裝置7〇的性能顯 露非$相似。此數據建議裝置74中的噴濺損害被大幅降 低。在裝置70與74之間性能上的小差異最有可能係由於裝 置結構上的變化及測量不準度的緣故。將RbF的厚度增加 至3·5愛微米可輕微增加發光效率但大幅提高操作電壓。因 此’約2.5亳微米之RbF緩衝層可減少噴濺沈積μ塗覆層期 間的知害。從圖7可觀察到對於A1噴濺,最佳RbF緩衝層厚 度為約3亳微米。Into. The dummy controls did not suffer any damage during the cathode deposition. Device? ! No buffer layer; eight layers of 60¾ micron thickness are directly sprayed on the etl layer. This device exhibits severely degraded performance, as evidenced by its unusually high voltage drop and low normalized luminosity. This low performance is possible due to the high work function of A1, = and possible contribution from splash damage. The amount of voltage reduction and normalized luminosity were 5 丨 volts and 0.54, respectively. The device 72 has a 0.5 nm thick RbF layer, and a ⑽nm thick A1 layer is sputtered thereon under the same conditions as the device 71. The device 72 showed that the voltage drop was 2.5 volts and the normalized luminosity was 0.71, indicating a significantly better performance than the device 71. This improvement is thought to be due to the protection provided by the RbF layer during the sputter deposition of the Al coating. However, the performance of the device 72 is lower than that of the control device 70. In the structure of the device 73, a 15 micron thick RbF buffer layer is incorporated. The thicker buffer layer of device 73 provides better protection against splash damage and exhibits better operating voltage and luminosity than device 72. However, the amount of voltage drop and the normalized luminosity value of the device 73 are not equal to the properties of these control devices 70, indicating that splash damage is still present. Increasing the thickness of RbF to 2.5 nm (device 74) can further improve device performance. The performance of the device 74 and the control device 70 is not very similar. This data suggests that splash damage in the device 74 is greatly reduced. Small differences in performance between devices 70 and 74 are most likely due to changes in device structure and measurement inaccuracies. Increasing the thickness of RbF to 3.5 μm can slightly increase the luminous efficiency but greatly increase the operating voltage. Therefore, an RbF buffer layer of about 2.5 亳 m can reduce the harm during the sputter deposition of the coating layer. It can be observed from Fig. 7 that for A1 sputtering, the optimal RbF buffer layer thickness is about 3 µm.

554640 A7 B7 五、發明説明(23 表7 各種RbF緩衝層上具有噴濺A1陰極及具有LiF/Al標準陰極 之OLED裝置的 丨結相 r ' λ I厚及性能 裝置 編號 裝置 類型 陽極 ITO 厚度 (毫微米) HIL CFx 厚度 (毫微米) HTL NPB 厚度 (毫微米) EML/ETL AJq 厚度 (毫微米) LiF 厚度 (毫微米) 緩衝 CsF 厚度 (毫微米) 所蒸發之陰極 A1 厚度 (毫微米) 所喷爽之陰極A1 厚度 (毫微米) 電壓降低量 (伏特) 正規化 發光度 70 控制 42 1.0 75 60 0.5 60 0.0 100 71 喷濺AI险極 42 1.0 75 60 60 5.1 0.54 72 噴濺A1陰極 42 1.0 75 60 0.5 60 2.5 0.71 73 噴濺A1陰極 42 1.0 75 60 1.5 60 1.0 0.86 74 嘴濺A1陰極 42 1.0 75 60 2.5 60 0.7 0.91 75 喷濺AI陰極 42 1.0 75 60 3.5 60 1.9 1.02 上述實例顯示一沈積在Alq電子傳送層上之超薄層可在 噴濺沈積A1與Mg塗覆層期間提供EL介質極大保護,其中 該超薄層包含一驗金屬氟>化物。根據本發明,包含重驗金 屬鹵化物之緩衝層可非常有效地保護有機EL介質以防喷濺 沈積陰極塗覆層期間之損害。注意此數毫微米厚之緩衝層 實際上可消除噴濺損害。噴濺陰極裝置的性質本質上可等 於具有蒸發LiF/Al陰極之控制裝置。 本發明其他特徵係被包含於下。 緩衝層的厚度係小於10毫微米但大於0毫微米之OLED裝 置。 緩衝層的厚度係小於5毫微米但大於0.5毫微米之OLED裝 置。 _-?B-_ 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)554640 A7 B7 V. Description of the invention (23 Table 7 Various junction RbF buffer layers with sputtering A1 cathode and OLED device with LiF / Al standard cathode 丨 junction phase r 'λ I thickness and performance device number device type anode ITO thickness ( Nm) HIL CFx thickness (nm) HTL NPB thickness (nm) EML / ETL AJq thickness (nm) LiF thickness (nm) CsF thickness (nm) Evaporated cathode A1 thickness (nm) Sprayed cathode A1 thickness (nm) Voltage drop (volts) Normalized luminosity 70 Control 42 1.0 75 60 0.5 60 0.0 100 71 Spray AI danger 42 1.0 75 60 60 5.1 0.54 72 Spray A1 cathode 42 1.0 75 60 0.5 60 2.5 0.71 73 Splash A1 cathode 42 1.0 75 60 1.5 60 1.0 0.86 74 Mouth splash A1 cathode 42 1.0 75 60 2.5 60 0.7 0.91 75 Splash AI cathode 42 1.0 75 60 3.5 60 1.9 1.02 The above example shows a deposition The ultra-thin layer on the Alq electron transport layer provides great protection for the EL medium during the sputter deposition of the A1 and Mg coatings, where the ultra-thin layer contains a metal fluoride> compound. According to the present invention, The metal halide buffer layer can very effectively protect the organic EL medium from damage during sputtering deposition of the cathode coating. Note that this nanometer-thick buffer layer can virtually eliminate splash damage. Properties of the sputtering cathode device In essence, it can be equal to the control device with evaporated LiF / Al cathode. Other features of the present invention are included below. The thickness of the buffer layer is less than 10 nm but greater than 0 nm. OLED device. OLED devices with a micron but greater than 0.5 nm. _-? B-_ This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

第號專利申請案 as ’中文申讀%利範圍替換本⑼年7月)SNo. Patent Application as ’Chinese application %% of scope of interest replaces July this year) S 申請專利範圍Patent application scope 1. 一種OLED裝置,其包含·· a) 基板; b) 該基板上由導電材料所形成之陽極; c) 該陽極層上所提供具有電致發光材料之發 層; ’、 d) 該發光層上所提供包含重驗金屬齒化物之緩衝 層;及 e) 該緩衝層上所提供之金屬或金屬合金嘴賤層, 其中該喷濺層係經過選擇以與該緩衝層用於注入電子。 2·如申請專利範圍第丨項之0LED裝置,其中該重鹼金屬函 化物包括CsF、RbF、KF或其組合。 3.如申請專利範圍第2項之OLED裝置,其中該緩衝層的厚 度係小於10毫微米,但大於〇毫微米。 4·如申請專利範圍第2項之〇LED裝置,其中該緩衝層的厚 度係小於5毫微米,但大於〇.5毫微米。 5·如申請專利範圍第丨項之〇LED裝置,其中該金屬包含鋁 或鍰或其組合。 6·如申請專利範圍第丨項之〇LED裝置,其中該金屬進一步 包含矽、钪、鈦、鉻、錳、鋅、釔、锆及銓或其金屬合 金。 7·如申請專利範圍第丨項之〇LED裝置,其中該發光層包含 Alq 〇 8·如申請專利範圍第丨項之〇LED裝置,其中該發光層包含 一或多種發光摻雜材料。 本紙張尺度適;?!中_家標準(CNS) A4規格(21Gχ 297公梦)1. An OLED device comprising: a) a substrate; b) an anode formed of a conductive material on the substrate; c) a light-emitting layer provided with an electroluminescent material on the anode layer; ', d) the light emission A buffer layer including retest metal dents is provided on the layer; and e) a base layer of metal or metal alloy mouth provided on the buffer layer, wherein the sputtering layer is selected to be used with the buffer layer to inject electrons. 2. The 0LED device according to item 丨 of the patent application scope, wherein the heavy alkali metal functional compound includes CsF, RbF, KF or a combination thereof. 3. The OLED device according to item 2 of the patent application, wherein the thickness of the buffer layer is less than 10 nm, but greater than 0 nm. 4. The LED device according to item 2 of the patent application range, wherein the thickness of the buffer layer is less than 5 nm, but greater than 0.5 nm. 5. The LED device according to item 1 of the patent application scope, wherein the metal comprises aluminum or thorium or a combination thereof. 6. The LED device according to item 1 of the patent application scope, wherein the metal further comprises silicon, hafnium, titanium, chromium, manganese, zinc, yttrium, zirconium, and hafnium or a metal alloy thereof. 7. The LED device according to item 丨 of the patent application, wherein the light-emitting layer comprises Alq. 8 · The LED device according to item 丨 of the patent application, wherein the light-emitting layer comprises one or more light-emitting doping materials. The size of this paper is suitable;?! Medium _ Home Standard (CNS) A4 size (21Gχ 297 public dream) 裝 訂Binding 554640 A BCD 申請專利範圍 9·—種OLED裝置,其包含: a) 基板; b) 該基板上由導電材料所形成之陽極; c ) 該陽極層上所提供之電洞注入層; d) 該電洞注入層上所提供之電洞傳送層; e) 該電洞傳送層上所提供具有電致發光材料之發 光層; 0 該發光層上所提供之電子傳送層; g) 該電子傳送層上所提供包含重鹼金屬齒化物之 緩衝層;及 h) 該緩衝層上所提供之金屬或金屬合金噴濺層, 其中該噴濺層係經過選擇以與該緩衝層用於注入電子9。 10·—種製造OLED裝置之方法,其包括下列步驟: a) 提供基板; b) 在該基板上形成導電材料之陽極; C)在該陽極層上沈積具有電致發光材艇、 麻· 听种又發光 /g , d) 在該發光層上形成包含重鹼金屬南彳 層;及 ㈤化物I緩衝 e) 在該緩衝層上噴濺金屬或金屬合金層。 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)554640 A BCD application patent scope 9 · An OLED device, including: a) a substrate; b) an anode formed of a conductive material on the substrate; c) a hole injection layer provided on the anode layer; d) the Hole transport layer provided on the hole injection layer; e) a light emitting layer provided with an electroluminescent material on the hole transport layer; 0 an electron transport layer provided on the light emitting layer; g) the electron transport layer A buffer layer comprising heavy alkali metal dents provided above; and h) a metal or metal alloy spray layer provided on the buffer layer, wherein the spray layer is selected to be used with the buffer layer for injecting electrons 9. 10 · —A method for manufacturing an OLED device, comprising the following steps: a) providing a substrate; b) forming an anode of a conductive material on the substrate; C) depositing an electroluminescent material on the anode layer It emits light / g, d) forming a layer containing a heavy alkali metal sulfonium on the light emitting layer; and a halide I buffer e) spraying a metal or metal alloy layer on the buffer layer. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
TW091117887A 2001-09-19 2002-08-08 Sputtered cathode having a heavy alkaline metal halide in an organic light-emitting device structure TW554640B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/956,411 US20030129447A1 (en) 2001-09-19 2001-09-19 Sputtered cathode having a heavy alkaline metal halide-in an organic light-emitting device structure

Publications (1)

Publication Number Publication Date
TW554640B true TW554640B (en) 2003-09-21

Family

ID=25498215

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091117887A TW554640B (en) 2001-09-19 2002-08-08 Sputtered cathode having a heavy alkaline metal halide in an organic light-emitting device structure

Country Status (6)

Country Link
US (1) US20030129447A1 (en)
EP (1) EP1296386A3 (en)
JP (1) JP2003109770A (en)
KR (1) KR20030025208A (en)
CN (1) CN1409413A (en)
TW (1) TW554640B (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249357A (en) * 2001-12-18 2003-09-05 Sony Corp Display device manufacturing method and display device
JPWO2004064453A1 (en) * 2003-01-10 2006-05-18 株式会社半導体エネルギー研究所 Light emitting device and manufacturing method thereof
TW579610B (en) * 2003-01-30 2004-03-11 Epistar Corp Nitride light-emitting device having adhered reflective layer
US6875320B2 (en) * 2003-05-05 2005-04-05 Eastman Kodak Company Highly transparent top electrode for OLED device
GB2404284B (en) * 2003-07-10 2007-02-21 Dainippon Printing Co Ltd Organic electroluminescent element
JP4799176B2 (en) * 2003-07-24 2011-10-26 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
JP4567962B2 (en) * 2003-07-25 2010-10-27 三洋電機株式会社 Electroluminescence element and electroluminescence panel
CN100433377C (en) * 2003-09-05 2008-11-12 晶元光电股份有限公司 Nitride lighting element with sticking reflecting layer
KR100484017B1 (en) * 2003-11-11 2005-04-20 주식회사 에이디피엔지니어링 Loadlock chamber of fpd manufacturing machine
CN1330015C (en) * 2004-01-14 2007-08-01 北京交通大学 An unorganic/organic composite structure white light emitting display
US7141924B2 (en) * 2004-05-07 2006-11-28 Au Optronics Corporation Multi-layer cathode in organic light-emitting devices
CN100431194C (en) * 2004-10-18 2008-11-05 财团法人工业技术研究院 Cathode structure for inversion type organic luminous assembly
KR100685414B1 (en) 2004-11-05 2007-02-22 삼성에스디아이 주식회사 Organic light emitting display device and fabricating method of the same
US20060115673A1 (en) * 2004-12-01 2006-06-01 Au Optronics Corporation Organic light emitting device with improved electrode structure
CN100420066C (en) * 2005-03-25 2008-09-17 友达光电股份有限公司 Organic electroluminescent element and display device including the same
TWI321966B (en) * 2005-03-25 2010-03-11 Au Optronics Corp Organic electro-luminescence device and method of manufacturing the same
JP4629715B2 (en) 2006-12-06 2011-02-09 韓國電子通信研究院 OLED element
JP5456282B2 (en) * 2008-08-13 2014-03-26 淳二 城戸 Organic electroluminescence device
CN102709475A (en) * 2012-06-01 2012-10-03 吉林大学 Organic semiconductor device by using alkali metal rubidium compound as buffer layer or electron injection layer
US10439156B2 (en) * 2013-05-17 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, lighting device, and electronic device
KR102323243B1 (en) * 2015-07-22 2021-11-08 삼성디스플레이 주식회사 Organic light emitting diode and organic light emitting diode display including the same
CN106981579A (en) * 2017-04-12 2017-07-25 京东方科技集团股份有限公司 A kind of OLED, its preparation method and related device
CN111244317B (en) * 2018-11-27 2022-06-07 海思光电子有限公司 Light emitting device and terminal equipment
CN113748530A (en) * 2019-04-29 2021-12-03 应用材料公司 Improved top-emitting device with active organic film and method for processing substrate
CN110165067A (en) * 2019-07-01 2019-08-23 南方科技大学 A kind of all-transparent is inverted quantum dot light emitting device, preparation method and display device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885211A (en) * 1987-02-11 1989-12-05 Eastman Kodak Company Electroluminescent device with improved cathode
US4720432A (en) * 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US5677572A (en) * 1996-07-29 1997-10-14 Eastman Kodak Company Bilayer electrode on a n-type semiconductor
US5776622A (en) * 1996-07-29 1998-07-07 Eastman Kodak Company Bilayer eletron-injeting electrode for use in an electroluminescent device
US5645948A (en) * 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
GB2331765A (en) * 1997-12-01 1999-06-02 Cambridge Display Tech Ltd Sputter deposition onto organic material using neon as the discharge gas
US5935721A (en) * 1998-03-20 1999-08-10 Eastman Kodak Company Organic electroluminescent elements for stable electroluminescent
US6208077B1 (en) * 1998-11-05 2001-03-27 Eastman Kodak Company Organic electroluminescent device with a non-conductive fluorocarbon polymer layer
US6020078A (en) * 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
US6579629B1 (en) * 2000-08-11 2003-06-17 Eastman Kodak Company Cathode layer in organic light-emitting diode devices
US6551725B2 (en) * 2001-02-28 2003-04-22 Eastman Kodak Company Inorganic buffer structure for organic light-emitting diode devices

Also Published As

Publication number Publication date
US20030129447A1 (en) 2003-07-10
CN1409413A (en) 2003-04-09
EP1296386A3 (en) 2007-10-03
JP2003109770A (en) 2003-04-11
EP1296386A2 (en) 2003-03-26
KR20030025208A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
TW554640B (en) Sputtered cathode having a heavy alkaline metal halide in an organic light-emitting device structure
US6551725B2 (en) Inorganic buffer structure for organic light-emitting diode devices
TW497283B (en) Improved cathode layer in organic light-emitting diode devices
US6797129B2 (en) Organic light-emitting device structure using metal cathode sputtering
US7309956B2 (en) Top-emitting OLED device with improved-off axis viewing performance
JP5149497B2 (en) Organic light emitting device
US8241467B2 (en) Making a cathode structure for OLEDs
TW200423798A (en) Organic light emitting diode (OLED) display with improved light emission using a metallic anode
Jiang et al. White-emitting organic diode with a doped blocking layer between hole-and electron-transporting layers
WO2011010696A1 (en) Organic electroluminescent element
TW200541406A (en) Organic light emitting device having improved stability
KR100721571B1 (en) Organic light emitting device and fabrication method of the same
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
EP1369937A2 (en) Sputtered cathode for an organic light-emitting device having an alkali metal compound in the device structure
US6917158B2 (en) High-qualty aluminum-doped zinc oxide layer as transparent conductive electrode for organic light-emitting devices
JP2002313582A (en) Light emitting element and display device
TW200425536A (en) Forming an OLED device with a performance-enhancing layer
JP3492535B2 (en) Organic thin film EL device and method of manufacturing the same
JPH11121172A (en) Organic el element
US20050175770A1 (en) Fabricating an electrode for use in organic electronic devices
KR20030096884A (en) Organic Electroluminescent Device
JP2003017271A (en) Organic electroluminescent element
JP2008218430A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent