TW418496B - Method of protecting sidewall of photosensitive low-dielectric interlayer via - Google Patents

Method of protecting sidewall of photosensitive low-dielectric interlayer via Download PDF

Info

Publication number
TW418496B
TW418496B TW88106285A TW88106285A TW418496B TW 418496 B TW418496 B TW 418496B TW 88106285 A TW88106285 A TW 88106285A TW 88106285 A TW88106285 A TW 88106285A TW 418496 B TW418496 B TW 418496B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric constant
metal structure
photosensitive low
low dielectric
Prior art date
Application number
TW88106285A
Other languages
Chinese (zh)
Inventor
Lai-Ju Chen
Jung-Liang Jang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW88106285A priority Critical patent/TW418496B/en
Application granted granted Critical
Publication of TW418496B publication Critical patent/TW418496B/en

Links

Abstract

A method of protecting a sidewall of a photosensitive low-dielectric interlayer via comprises using a photosensitive low-dielectric layer as the intermediate insulating layer of a metal interconnect structure; directly exposing a specific region of the photosensitive low-dielectric layer in order to convert the material into a material that is not soluble to certain solvents while the unexposed regions on the same layer can be selectively removed to form the desired via; protecting the exposed surface of the photosensitive low-dielectric layer by depositing of silicon oxide and anisotropically dry etching to form a silicon oxide barrier layer on the inside of the via and cover the upper surface of the photosensitive low-dielectric layer with a layer of silicon oxide.

Description

418496 五、發明說明d)418496 V. Description of invention d)

/ 本發明有關於半導體元件製程,尤其是指在介電層上 形成通孔’使下層導電層顯露出來的製程。 (2) iLlL技術說明 半導艘工業不斷努力提高半導體元件的性能,同時也 努力維持或甚至降低其製造成本,而次微米或更微小型化 的半導體工業技術能同時滿足高性能及低成本的目的。元 件的微小化可使破壞性能的電阻及電容降低,而改良元件 性能。另外在特定尺寸的基底上的次微米元件,具有更高 的元件密度’因而降低特定半導體晶片的製造成本。 微小型化的達成歸因於特殊半導體製程的進展,如微 影和乾蝕刻製程。不但是使用更複雜的曝光技術,而且發 展更靈敏的感光材料使次微米影像能成形於光阻層上。另 外’發展更進步的乾蝕刻工具及製程,使成形於光阻層上 的微影能成功轉移至下層材料上,以便製造更進步的半導 體元件。不過,除了加強半導體製程訓練外,仍需將特定 的製程最佳化’以降低半導體元件的製造成本。 在半導體製造領域中,通孔製程是與成本及性能最佳 化有關的。隨著元件尺寸的縮小,在介電層上製作次微米 的通孔是更加固難。光阻層中的次微米微影是作為製作次 微米通孔時乾蝕刻製程的遮罩,光阻製程不僅是昂貴的製The present invention relates to a process for manufacturing a semiconductor device, and particularly to a process of forming a through hole in a dielectric layer to expose a lower conductive layer. (2) iLlL technology shows that the semi-conductor industry continuously strives to improve the performance of semiconductor components, and also strives to maintain or even reduce its manufacturing costs. Sub-micron or micro-miniaturized semiconductor industry technologies can meet both high performance and low cost. purpose. The miniaturization of the device can reduce the resistance and capacitance which destroy the performance, and improve the device performance. In addition, sub-micron devices on a substrate of a specific size have a higher device density ', thereby reducing the manufacturing cost of a specific semiconductor wafer. The miniaturization was achieved due to advances in special semiconductor processes, such as lithography and dry etching processes. Not only does it use more complex exposure techniques, but it also develops more sensitive photosensitive materials that enable sub-micron images to be formed on photoresist layers. In addition, the development of more advanced dry etching tools and processes enables the lithography formed on the photoresist layer to be successfully transferred to the underlying material in order to manufacture more advanced semiconductor components. However, in addition to strengthening semiconductor process training, it is still necessary to optimize specific processes' to reduce the manufacturing cost of semiconductor components. In the field of semiconductor manufacturing, the through-hole process is related to cost and performance optimization. As component sizes shrink, it becomes more difficult to make sub-micron vias in the dielectric layer. The sub-micron lithography in the photoresist layer is used as a mask for the dry etching process when making sub-micron through holes. The photoresist process is not only an expensive process.

第4頁 4 184 96 五、發明說明(2) ----------- 會對曝露出來的金屬表面造成意外的傷害,原因 疋〶形成通孔時,移除光阻形狀所用的反應物及製程造成 的。本發明將說明一種在介電層上形成通孔的新穎製程, 曝露下層金屬的互連構造,不過本發明的通孔開通製程無 需使用昂貴的光阻料。藉由直接曝光及選擇性移除裸露 的區域,在感光性低介電常數層上形成通孔。不過與傳統 光阻製程不同的是,感光性低介電常數層是不移除的,當 通孔以金屬充填後,感光性低介電常數層成為中間介電 層,位於上下金屬内連線結構之間。本發明另提出一選擇 性的製程’即利用化學氣相沉積法在通孔側面鍵著絕緣隔 層’以保護侧邊裸露出來的感光性低介電常數層不受後續 步驟影響。已往技術如Chang等人在美國專利第 5, 559, 055號中述及的使用低介電常數材料充填兩金屬線 間的隔層,但並未說明使用感光性低介電常數層作為中間 介電層,而且也未在不使用感光性光阻材料下作為形成通 孔的材料。 發明總述 本發明之一目的是在介電層中形成通孔,使下層的内 速線金屬結構之上表面能裸露出來。 本發明另一 9的是利用光阻的形狀,經由直接曝光和 顯影的步驟在感光性低介電常數層中形成通孔。 本發明再一目的是在感光性低介電常數層中形成的通 孔側面形成絕緣保護隔層°Page 4 4 184 96 V. Description of the invention (2) ----------- It may cause unexpected damage to the exposed metal surface. The reason is that it is used to remove the shape of the photoresist when forming a through hole. Caused by reactants and processes. The present invention will explain a novel process for forming a through hole in a dielectric layer, exposing the interconnection structure of the underlying metal, but the through hole opening process of the present invention does not require the use of expensive photoresist materials. Through direct exposure and selective removal of the exposed areas, vias are formed in the photosensitive low dielectric constant layer. However, unlike the traditional photoresist process, the photosensitive low dielectric constant layer is not removed. When the via is filled with metal, the photosensitive low dielectric constant layer becomes an intermediate dielectric layer, which is located on the upper and lower metal interconnects. Between structures. The present invention further proposes an alternative process, that is, a chemical vapor deposition method is used to bond an insulating spacer layer on the side of the through hole to protect the photosensitive low dielectric constant layer exposed from the side from the subsequent steps. Previous technologies such as Chang et al. In US Patent No. 5,559, 055 used low dielectric constant materials to fill the interlayer between two metal wires, but did not describe the use of a photosensitive low dielectric constant layer as an intermediate. The electrical layer is also not used as a material for forming a through hole without using a photosensitive photoresist material. SUMMARY OF THE INVENTION An object of the present invention is to form a through hole in a dielectric layer, so that the upper surface of the inner speed line metal structure of the lower layer can be exposed. Another aspect of the present invention is the use of the shape of a photoresist to form a through hole in a photosensitive low dielectric constant layer through the steps of direct exposure and development. Another object of the present invention is to form an insulating protective barrier layer on the side surface of a via hole formed in a photosensitive low dielectric constant layer.

418493 五、發明說明(3) ' -- 根據本發明,說明一種製程,在感先性低介電常數層 中形成通孔’但不使用光阻製程。提供一種下層的内連線 金屬結構,然後加上一感光性低介電常數層,經由直接曝 光的方式’在感光性低介電常數層上形成所要的通孔圖 案。而未曝光的感光性低介電常數層,則經濕蝕刻選擇性 地移除,以得到想要的通孔,使下層内連線金屬結構的上 表面能裸露出來。接著進行絕緣層的化學性沉積、平坦化 以及經過非等向反應性離子蝕刻(R IE)步驟,使通孔側 壁上形成絕緣隔層,除此之外,餘留部分絕緣層覆蓋在感 光性低介電常數層的上表面。最後,以鍍著方式在通孔内 充填金屬用以保護絕緣隔層。 本發明的第二種方式為在沉積感光性低介電常數層 後,經平坦化步驟,接著進行圖案製程,其包括在感光性 低介電常數層上的及未曝露區域進行曝光及顯影的過程, 以形成通孔。然後利用與前面實例所用的相同鍍著及非等 向反應性離子蝕刻CRIE)製程,在通孔内部侧壁上形成 緣隔層。 V ’ _圖式簡述 本發明的目的及其他優點參考所附圖式以優& 整說明,圖式中: & 第1囷至第8圖為本發明第一實例之橫載面示意圖其 中不使用光阻製程,而在感光性低介電常數層上形成具 絕緣隔層保護的通孔。 '418493 V. Description of the invention (3) '-According to the present invention, a process is described in which through holes are formed in the pre-sensing low dielectric constant layer' but a photoresist process is not used. A lower interconnect metal structure is provided, and then a photosensitive low-dielectric constant layer is added to form a desired through-hole pattern on the photosensitive low-dielectric constant layer through direct exposure. The unexposed photosensitive low dielectric constant layer is selectively removed by wet etching to obtain the desired through hole, so that the upper surface of the underlying interconnect metal structure can be exposed. Next, the insulating layer is chemically deposited, planarized, and anisotropically reactive ion etching (R IE) steps are performed to form an insulating barrier layer on the sidewall of the through hole. In addition, the remaining insulating layer covers the photosensitive layer. The upper surface of the low dielectric constant layer. Finally, the vias are plated with metal to protect the insulation barrier. The second method of the present invention is that after the photosensitive low dielectric constant layer is deposited, the planarization step is followed by a patterning process, which includes exposing and developing the photosensitive low dielectric constant layer and the unexposed areas. Process to form vias. A marginal barrier layer is then formed on the inner sidewalls of the vias using the same plating and anisotropic reactive ion etching (CRIE) process as used in the previous examples. V '_ Schematic description of the purpose and other advantages of the present invention with reference to the attached drawings for a & entire description, in the drawings: & 1 to 8 are schematic cross-sectional views of the first example of the present invention Wherein, a photoresist process is not used, and a through-hole protected by an insulating spacer is formed on the photosensitive low dielectric constant layer. '

4 18在 93 —-----------—--- ---- 五、發明說明(4) 第9圖至第1 1圖為本發明第二實例之橫載面示意圖, 其中在形成通孔前進行感光性低介電常數層的平坦化。 較佬實例說明 現將詳細說明一種不使用光阻而在感光性低介電常數 層中形成通孔的方法。第1圖概要地示出在半導體底材1上 的内連線金屬結構3、上覆絕緣層2。内連線金屬結構3可 用以接觸動態元件區(圖上未示出),如金屬氧化物半導體 場效電晶體(MOSFET)、半導體底材1中的源極與汲極 區、通孔接觸區(未示出)、絕緣層2等。内連線金屬結構3 亦可經由絕緣層2内的通孔,連結下層的内連線金屬結構 (未示出)、下層的絕緣層2。半導體底材1是由p型<1〇〇>晶 元方向的單晶矽晶元形成.絕緣層2為氧化矽層,其可利 用低壓化學氣相沉積法(LPCVD)或電漿加強的化學氣相沉 積法(PECVD)獲得。絕緣層2可為硼磷矽玻璃(BPSG)或是碟 矽玻璃(PSG)。内速線金屬結構3可為鋁合金,或是高熔 點的金屬,如鎢、銅等,其可利用電漿沉積法或化學氣相 沉積法形成,然後再經微影與蚀刻製程來製作。 其次施加一感光性低介電常數層4a,如圖2所示,其 厚度約為20 00埃到8 00 0埃。感光性低介電常數層4a 可為 CHEMAT- β 或是 benzocylobutene (BCB)或其它感 光性低介電常數材料。BCB為負性感光層,即曝露區或交 速區’在特定的溶劑中不溶解,而非曝露區則在該同一溶 劑中可移除。這些材料的介電常數約在1.3到3.0之4 18 at 93 ------------------- ---- V. Description of the invention (4) Figures 9 to 11 are schematic diagrams of the cross section of the second example of the present invention. Wherein, the planarization of the photosensitive low dielectric constant layer is performed before forming the via hole. Comparative Example Explanation A method for forming a through hole in a photosensitive low dielectric constant layer without using a photoresist will now be described in detail. FIG. 1 schematically shows an interconnect metal structure 3 and an overlying insulating layer 2 on a semiconductor substrate 1. As shown in FIG. The interconnect metal structure 3 can be used to contact the dynamic device region (not shown in the figure), such as a metal oxide semiconductor field effect transistor (MOSFET), a source and drain region in a semiconductor substrate 1, and a via contact region (Not shown), insulating layer 2 and the like. The interconnecting metal structure 3 may also be connected to the underlying interconnecting metal structure (not shown) and the underlying insulating layer 2 through through holes in the insulating layer 2. The semiconductor substrate 1 is formed of a single crystal silicon wafer in the p-type < 100 > crystal orientation. The insulating layer 2 is a silicon oxide layer, which can be reinforced by low pressure chemical vapor deposition (LPCVD) or plasma. By chemical vapor deposition (PECVD). The insulating layer 2 may be borophosphosilicate glass (BPSG) or silicon-on-silicon glass (PSG). The inner velocity line metal structure 3 may be an aluminum alloy or a high melting point metal such as tungsten, copper, etc., which may be formed by a plasma deposition method or a chemical vapor deposition method, and then fabricated by a lithography and etching process. Next, a photosensitive low dielectric constant layer 4a is applied, as shown in FIG. 2, and has a thickness of about 20,000 angstroms to 8000 angstroms. The photosensitive low dielectric constant layer 4a may be CHEMAT-β or benzocylobutene (BCB) or other photosensitive low dielectric constant materials. BCB is a negative light-sensitive layer, that is, an exposed area or a speeding area 'is not dissolved in a specific solvent, and a non-exposed area is removable in the same solvent. The dielectric constant of these materials is between 1.3 and 3.0

418496 五、發明說明(5) 間’可作為内連線金屬結構間的絕緣層。使用所需的鉻膜 板,直接在CHEMAT- B或“8或其它感光性低介電常數材料 的感光層4a上曝光’在鉻膜板中的開口中曝光,對於 CHEMAT- β使用波長在19〇到ι95奈米的深紫外 線’而對於BCB則使用波長在36〇到37〇奈米(nm)的I 光線’其曝光劑量均為〇到8〇()毫焦耳/cin2 ,產生曝 光區4a之父連’而留下一未曝光及不交連的區❶,如圖3 所示。對CHEMAT-B層而言,非交連區4b比曝光的區4a更 容易溶解於甲苯中(對於BCB層來說,非交連的區4b比曝 光的區4a更容易溶解於三曱苯中)。因此使用三甲苯或曱 笨完成非交連區4b的選擇性移除,形成通孔5,如第4圖中 所示。在不使用光阻製程下,形成通孔5,並使内連線金 屬結構3的上表面顯露出來。以前所用的傳統光阻製程包 括:在光阻層中形成所要的通孔影像,然後再經乾蝕刻的 步驟’將通孔影像轉移到下層的絕緣層。此種昂貴的製程 然後使用氧電漿製程去除光阻層。此去除光阻的過程會對 裸露在通孔下層的内連線金屬結構造成不必要的氧化及傷 害。然而使用感光性低介電常數層,其不僅留下成為部分 結構’減少光阻製程的成本,而且不會對裸露的金屬結構 造成氧化及傷害。 第5圖到第8圖概要性地示出以界面材料來形成感光性 低介電常數層的鈍化及保護作用的製程。在第5圖中,使 用PECVD或高密度電漿的化學氣相沉積法(HDPCVD)沉積一 層氧化矽絕緣層,在感光性低介電常數層4a的上表面沉418496 V. Description of the invention (5) The 'can be used as an insulation layer between interconnected metal structures. Using the required chrome film, directly expose it on CHEMAT-B or "8 or other photosensitive low-dielectric constant material photosensitive layer 4a. 'Exposure in the opening in the chrome film. For CHEMAT-β use a wavelength of 19 Deep ultraviolet rays of 〇 to ι95 nanometers, and I rays with a wavelength of 36 to 37 nanometers (nm) are used for BCB, and their exposure doses are all 0 to 80 (millijoules / cin2), resulting in an exposed area 4a. Father's connection, leaving an unexposed and non-crosslinked region, as shown in Figure 3. For the CHEMAT-B layer, the non-crosslinked region 4b is more soluble in toluene than the exposed region 4a (for the BCB layer For example, the non-crosslinked region 4b is easier to dissolve in triphenylbenzene than the exposed region 4a.) Therefore, the selective removal of the non-crosslinked region 4b using xylene or fluorene is used to form the through hole 5, as shown in Figure 4 As shown in the figure. Without using a photoresist process, a through hole 5 is formed, and the upper surface of the interconnect metal structure 3 is exposed. The traditional photoresist process used previously includes: forming a desired through hole in the photoresist layer. Image, and then dry-etch the step 'transfer the through-hole image to the underlying insulating layer. The expensive process then uses an oxygen plasma process to remove the photoresist layer. This photoresist removal process will cause unnecessary oxidation and damage to the interconnect metal structures exposed under the vias. However, a photosensitive low dielectric constant layer is used. It will not only remain a part of the structure, which reduces the cost of the photoresist process, but also does not cause oxidation and damage to the bare metal structure. Figures 5 to 8 schematically show the use of interface materials to form a low-sensitivity interfacial material. The process of passivation and protection of the dielectric constant layer. In Figure 5, a PECVD or high-density chemical vapor deposition (HDPCVD) method is used to deposit a silicon oxide insulating layer on the photosensitive low dielectric constant layer 4a. Upper surface sink

4 ^δ43Β 五·、發明說明(6) 積厚度2000埃到8000埃的絕緣層6a,同時在通孔5内 的感光性低介電常數層4a曝露的表面上沉積厚度200埃 到1 0 0 0埃的絕緣層6 b。第6圖示出其後利用化學機械研磨 法作表面平坦化,產生平滑的絕緣層δ a的上表面,使因感 光性低介電常數層4a所產生的橫越下層内連線金屬結構3 的不平坦低陷之處平坦化。 第7圖示出使用三氟曱炫(CHF3)為餘刻劑的非等向反 應性離子蝕刻法(RIE)以去除通孔5下層的絕緣層6b,並 形成通孔5側壁的絕緣層6 b,裸露出内連線金屬結構3的上 表面。接著如第8圖所示,形成一上層内連線金屬結構7, 與通孔5中的下層内連線金屬結構3接觸。上層内連線金屬 結構7為一種鋁合金,採用射頻濺鍍法沉積,而使用傳統 微影及以氣為蝕刻劑的反應性離子蝕刻法形成圖案。上層 内連線金屬結構7亦可為高炼點的金屬材料,如鶴或鋼, 其可使用LPCVD法鍍著,再經由傳統的微影及RIE蝕刻 法形成所要的圖案。現在感光性低介電常數層切全部被通 孔5内的絕緣隔層6b及感光性低介電常數層4a上表面的絕 緣層6a與内連線金屬結構7隔開而受到保護。 第9圖到第11圖為本發明的第二實例,其特色是在沉 積絕緣層並於通孔5内侧形成絕緣隔層之前將感光性低介 電常數層4a加以平坦化。第9圖是在形成通孔5後,對感光 性低介電常數層4a施以化學機械研磨程序(CMP)。因感光 性低介電常數層4a塗覆於下層内連線金屬結構3之上,而 產生的橫越下層内連線金屬結構3及這些結構之間的崎嶇4 ^ δ43B V. Description of the invention (6) The insulating layer 6a with a thickness of 2000 angstroms to 8000 angstroms is deposited on the exposed surface of the photosensitive low dielectric constant layer 4a in the through hole 5 at a thickness of 200 angstroms to 1 0 0 0 angstrom insulation layer 6 b. FIG. 6 shows that the surface is subsequently planarized by a chemical mechanical polishing method to produce a smooth upper surface of the insulating layer δ a, and the metal structure 3 is formed across the lower interconnecting line caused by the photosensitive low dielectric constant layer 4 a. The unevenness and depression are flattened. FIG. 7 shows an anisotropic reactive ion etching (RIE) method using trifluorofluoride (CHF3) as a post-etching agent to remove the insulating layer 6b under the via 5 and form the insulating layer 6 on the sidewall of the via 5 b. The upper surface of the interconnect metal structure 3 is exposed. Then, as shown in FIG. 8, an upper-layer interconnect metal structure 7 is formed to be in contact with the lower-layer interconnect metal structure 3 in the through hole 5. The upper interconnecting metal structure 7 is an aluminum alloy, which is deposited by radio frequency sputtering, and is patterned using conventional lithography and reactive ion etching using gas as an etchant. The upper interconnecting metal structure 7 can also be a high-refined metal material, such as crane or steel, which can be plated using the LPCVD method and then formed into a desired pattern by conventional lithography and RIE etching methods. The photosensitive low dielectric constant layer is now completely protected by the insulating interlayer 6b in the through hole 5 and the insulating layer 6a on the upper surface of the photosensitive low dielectric constant layer 4a from the interconnect metal structure 7. 9 to 11 are second examples of the present invention, which are characterized in that the photosensitive low-dielectric constant layer 4a is planarized before an insulating layer is deposited and an insulating spacer is formed inside the through hole 5. Fig. 9 shows a step of applying a chemical mechanical polishing (CMP) to the photosensitive low dielectric constant layer 4a after the formation of the through hole 5. The photosensitive low-dielectric-constant layer 4a is coated on the lower interconnecting metal structure 3, and the resulting traverses the lower interconnecting metal structure 3 and the ruggedness between these structures.

418496 五、發明說明(7) 不平的上表面,經由CMP製程使其平整。第1 〇圖中再次地 使用PECVD或HDPCVD法在通孔5的側壁上沉積一層氧化 發層,然後再利用非等向反應性離子蝕刻法,以三氟甲烷 (CHF3)為蝕刻劑,在通孔5内側形成絕緣隔層6b,並在平 坦化的感光性低介電常數層4a上表面形成絕緣層6a,兩者 的厚度分別約為2 0 0 0埃到8 0 0 0埃及2 0 0埃到1 〇 〇 〇 埃。第11圖為最後步驟,在通孔5内形成上層内連線金屬 結構7,與下層的内連線金屬結構3接觸。内連線金屬結構 7的材質及製程均與本發明第一實例相同。形成通孔5時使 用非光阻製程的優點是,其經由絕緣層6 a及絕緣隔層6 b的 保護作用,避免感光性低介電常數層4 a受到後續的上覆物 質或製程的傷害5 本發明雖已參考優選實例加以說明,但請瞭解本行專 業人士可以在不偏離本發明之精神與範圍下作出各種變 化》418496 V. Description of the invention (7) The uneven upper surface is smoothed by the CMP process. In Fig. 10, a PECVD or HDPCVD method is used to deposit an oxide layer on the sidewall of the via 5 again, and then anisotropic reactive ion etching is used, and trifluoromethane (CHF3) is used as an etchant. An insulating barrier layer 6b is formed inside the hole 5, and an insulating layer 6a is formed on the planarized upper surface of the photosensitive low dielectric constant layer 4a, and the thicknesses of the two are about 2 0 0 Angstroms to 8 0 0 0 Egypt 2 0 0 Angstroms to 1000 Angstroms. FIG. 11 is the final step. An upper-layer interconnect metal structure 7 is formed in the through hole 5 to be in contact with a lower-layer interconnect metal structure 3. The material and manufacturing process of the interconnected metal structure 7 are the same as those of the first example of the present invention. The advantage of using a non-photoresistive process when forming the through hole 5 is that it protects the photosensitive low dielectric constant layer 4 a from subsequent overlying substances or processes through the protective effect of the insulating layer 6 a and the insulating spacer 6 b. 5 Although the present invention has been described with reference to preferred examples, please understand that professionals in the bank can make various changes without departing from the spirit and scope of the present invention.

Claims (1)

4 1 8 4 9 6 六、申琦專利範圍 i·—種在半導體底材上的絕緣層中形成通孔之方法,包含 下列步驟: 準備該半導體底材,其中含有動態元件區,並形成一 絕緣層覆蓋動態元件區; 在該絕緣層上形成一第一内連線金屬結構; 在該第一内連線金屬結構上及未被該第一内連線金屬 結構所覆蓋的該絕緣層上,塗佈一感光性低介電常數層; 將該感光性低介電常數層之一第一區直接接受光源照 射而形成不可溶解的材質,而在一第二區中留下一未曝光 的可溶區,直接覆蓋在該第一内連線金屬結構上; 在該第二區選擇性移除可溶解材質,使感光性低介電 常數層中形成該通孔,並使該第一内連線金屬結構的上表 面裸露出來; 分別在該感光性低介電常數層上表面、通孔側邊的感 光性低介電常數層、及通孔内下層所裸露出來的該第一内 連線金屬結構的上表面,沉積一層氧化矽層; 在該氧化矽層覆蓋於該感光性低介電常數層之處作平 坦化而形成一平滑的上表面; 使用非等向性乾姓刻*在該通孔侧壁上形成氧化梦隔 層,以及形成一第二内連線金屬結構’該第二内連線金属 結構的第一部分在該通孔内,該第二内連線金屬結構的第 二部分在覆蓋於該感光性低介電常數層上表面的氧化矽層 上。 2.如申請專利範圍第1項之方法,其中該動態元件區可為4 1 8 4 9 6 VI. Shen Qi's patent scope i · A method for forming a through hole in an insulating layer on a semiconductor substrate, including the following steps: preparing the semiconductor substrate, which contains a dynamic element region, and forming a An insulating layer covers the dynamic element region; a first interconnect metal structure is formed on the insulating layer; on the first interconnect metal structure and on the insulating layer not covered by the first interconnect metal structure Coating a photosensitive low dielectric constant layer; directly irradiating a light source to a first region of the photosensitive low dielectric constant layer to form an insoluble material, and leaving an unexposed in a second region The soluble region directly covers the first interconnecting metal structure; the soluble material is selectively removed in the second region, so that the through hole is formed in the photosensitive low dielectric constant layer, and the first inner The upper surface of the connecting metal structure is exposed; the first interconnect is exposed on the upper surface of the photosensitive low-dielectric constant layer, the photosensitive low-dielectric constant layer on the side of the via, and the lower layer inside the via, respectively. Upper surface of wire metal structure Deposit a silicon oxide layer; planarize where the silicon oxide layer covers the photosensitive low dielectric constant layer to form a smooth upper surface; use a non-isotropic dry name to engraved * on the side wall of the through hole Forming an oxidized dream barrier and forming a second interconnecting metal structure 'a first portion of the second interconnecting metal structure is in the through hole, and a second portion of the second interconnecting metal structure is covering the On the silicon oxide layer on the upper surface of the photosensitive low dielectric constant layer. 2. The method according to item 1 of the patent application scope, wherein the dynamic element area may be 418496 六、申請專利範圍 該半導體底材的源極與;及極區。 3. 如申請專利範圍第1項之方法,其甲該動態元件區為金 屬結構 4. 如申請專利範圍第1項之方法,其中該第一内連線金屬 結構可為鋁合金、鎢金屬或銅金屬結構。 5 ·如申請專利範圍第1項之方法,其中該感光性低介電常 數層為benzocylobutene (BCB),介電常數約為2.5到 3 . 0之間,其厚度約為2 〇 〇 〇埃到8 0 0 0埃。 6.如申請專利範圍第1項之方法,其中對該感光性低介電 常數層直接曝光所使用的光線波長,對BCB為360到 370奈米(nm),其曝光劑量均為〇到800毫焦耳 /cm2,以形成該非溶解性材質。 7_如申請專利範圍第1項之方法,其中該可溶解材質的選 擇性移除所使用的溶劑,對BCB層的非曝光區為三甲苯, 以形成該通孔。 8_如申請專利範圍第1項之方法,其中該氧化矽層使用 PECVD或HDPCVD法沉積,在該感光性低介電常數層的上 表面約厚200 0埃到8 0 00埃,在該通孔側邊的感光性低 介電常數層上,厚度約為200埃到1000埃。 如申請專利範圍第1項之方法,其中以三氟甲烷(CHF3) 為姓刻劑,利用非等向反應性離子蝕刻法,在該通孔侧邊 形成氧化矽隔層。 10‘如申請專利範圍第1項之方法,其中該第二内連線金屬 結構為鋁合金、鎢金屬或銅金屬結構。418496 6. Scope of patent application Source and source of the semiconductor substrate; and polar region. 3. If the method of applying for the scope of the first item of the patent, the dynamic component area is a metal structure. 4. If the method of applying for the scope of the first item of the patent, the first interconnecting metal structure may be aluminum alloy, tungsten metal or Copper metal structure. 5. The method according to item 1 of the patent application range, wherein the photosensitive low dielectric constant layer is benzocylobutene (BCB), the dielectric constant is between 2.5 and 3.0, and the thickness is about 2000 Angstroms to 8 0 0 0 Angstroms. 6. The method according to item 1 of the patent application range, wherein the wavelength of light used for direct exposure of the photosensitive low dielectric constant layer is 360 to 370 nanometers (nm) for BCB, and the exposure dose is 0 to 800. Millijoules / cm2 to form the insoluble material. 7_ The method of claim 1 in the scope of patent application, wherein the solvent used in the selective removal of the dissolvable material is xylene to the non-exposed area of the BCB layer to form the through hole. 8_ The method of claim 1, wherein the silicon oxide layer is deposited by PECVD or HDPCVD, and the upper surface of the photosensitive low dielectric constant layer is about 200 angstroms to 800 angstroms thick. The thickness of the photosensitive low dielectric constant layer on the side of the hole is about 200 angstroms to 1,000 angstroms. For example, the method of applying for the first item of the patent scope, in which trifluoromethane (CHF3) is used as an engraving agent and a non-isotropic reactive ion etching method is used to form a silicon oxide barrier layer on the side of the through hole. 10'The method of claim 1 in which the second interconnecting metal structure is an aluminum alloy, tungsten metal, or copper metal structure. 第12頁Page 12 11. 一種不使用光阻製程在感先性低介電常數層上製造通 孔並在該通孔内側形成氧化矽隔層之方法,包含下 驟: 形成一第一内連線金屬結構; 在該^一内連線金屬結構上及未被該第一内連線金屬結構 所覆蓋的下層上’沉積該感光性低介電常數層; 利用化學機械研磨法,在該感光性低介電常數層上面 形成一平坦的表面; 將該感光性低介電常數層之一第一區直接接受光源照 射而形成不可溶解的材質,而留下該感光性低介電常數層 之直接覆蓋在該第一内連線金屬結構上之第二區不受曝 光; 在該感光性低介電常數層選擇性移除該未曝光的第二 區’在該感光性低介電常數層上形成該通孔,並使該第一 内連線金屬結構的上表面裸露出來; 沉積一層氧化矽層; 對該氧化矽層作非等向性蝕刻,在該通孔侧壁上形成 該氧化矽隔層;以及 形成一第二内連線金眉結構,在該通孔中與該第一内 連線金屬結構的上表面接觸。 12.如申請專利範圍第11項之方法,其中該第一内連線金 屬結構可為鋁合金、鎢金屬或銅金屬結構。 ’ 1 3.如申請專利範圍第11項之方法,其中該感光性低介電 常數層為benzocylobutene (BCB),介電常數約為2,511. A method for manufacturing a through hole on a presensing low dielectric constant layer without using a photoresist process and forming a silicon oxide barrier layer inside the through hole, comprising the steps of: forming a first interconnect metal structure; The photosensitive low dielectric constant layer is deposited on the first interconnected metal structure and on the lower layer not covered by the first interconnected metal structure; the chemically low dielectric constant is deposited on the photosensitive low dielectric constant by a chemical mechanical polishing method. A flat surface is formed on the layer; a first region of one of the photosensitive low dielectric constant layers is directly irradiated with a light source to form an insoluble material, and the photosensitive low dielectric constant layer is directly covered on the first A second region on an interconnected metal structure is not exposed; the unexposed second region is selectively removed in the photosensitive low-dielectric constant layer; and the via hole is formed in the photosensitive low-dielectric constant layer. And expose the upper surface of the first interconnect metal structure; deposit a silicon oxide layer; anisotropically etch the silicon oxide layer to form the silicon oxide spacer on the side wall of the through hole; and Form a second inner Gold eyebrow line structure, in contact with the upper surface of the connecting structure of the first metal within the through hole. 12. The method according to claim 11 in which the first interconnecting metal structure can be an aluminum alloy, tungsten metal, or copper metal structure. ′ 1 3. The method according to item 11 of the patent application range, wherein the photosensitive low dielectric constant layer is benzocylobutene (BCB), and the dielectric constant is about 2,5 第13頁 4iaAqq 4^8498 一 _ ______ 六、申請專利範圍 到3. 〇之間,其厚度約為2〇 〇〇埃到8000埃。 1 4,如申請專利範圍第11項之方法,其中該非溶解性材質 是直接將該感光性低介電常數層之一區域曝光而形成’其 所使用的光線波長,對BCB為360到370奈米(nm) ’其 曝光劑量均為0到800毫焦耳/cm2。 1 5.如申請專利範圍第11項之方法,其中在該感光性低介 電常數層中選擇性移除該可溶解材質而形成該通孔,所使 用的溶劑對未曝光的BCB層為三甲苯。 1 6.如申請專利範圍第11項之方法,其中該通孔内侧的氧 化矽層是以PECVD或HDPCVD法獲致,其厚度約為2 00埃 到1000 埃。 1 7.如申請專利範圍第11項之方法,其中在該通孔内側形 成該氧化矽隔層,以三氟甲烷(CHF3)為蝕刻劑,對該氧化 矽隔層施以非等向反應性離子蝕刻程序而形成。 18·如申請專利範圍第1項之方法,其中該第二内連線金屬 結構為鋁合金、鎢金屬或銅金屬結構》Page 13 4iaAqq 4 ^ 8498 A _ ______ VI. The scope of patent application is between 3.0 and 3.0, and its thickness is about 2000 angstroms to 8000 angstroms. 14. The method according to item 11 of the scope of patent application, wherein the non-soluble material is directly exposed to an area of the photosensitive low dielectric constant layer to form 'the wavelength of light used for the BCB of 360 to 370 nanometers. Meters (nm) 'are all exposure doses from 0 to 800 millijoules / cm2. 15. The method according to item 11 of the scope of patent application, wherein the soluble material is selectively removed in the photosensitive low dielectric constant layer to form the through hole, and the solvent used is three times for the unexposed BCB layer. Toluene. 16. The method according to item 11 of the patent application, wherein the silicon oxide layer inside the through hole is obtained by PECVD or HDPCVD, and has a thickness of about 200 angstroms to 1,000 angstroms. 1 7. The method according to item 11 of the scope of patent application, wherein the silicon oxide barrier layer is formed inside the through hole, and trifluoromethane (CHF3) is used as an etchant to apply anisotropic reactivity to the silicon oxide barrier layer. Ion etch process. 18. The method according to item 1 of the scope of patent application, wherein the second interconnecting metal structure is an aluminum alloy, tungsten metal or copper metal structure " 第14頁Page 14
TW88106285A 1999-04-20 1999-04-20 Method of protecting sidewall of photosensitive low-dielectric interlayer via TW418496B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88106285A TW418496B (en) 1999-04-20 1999-04-20 Method of protecting sidewall of photosensitive low-dielectric interlayer via

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88106285A TW418496B (en) 1999-04-20 1999-04-20 Method of protecting sidewall of photosensitive low-dielectric interlayer via

Publications (1)

Publication Number Publication Date
TW418496B true TW418496B (en) 2001-01-11

Family

ID=21640367

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88106285A TW418496B (en) 1999-04-20 1999-04-20 Method of protecting sidewall of photosensitive low-dielectric interlayer via

Country Status (1)

Country Link
TW (1) TW418496B (en)

Similar Documents

Publication Publication Date Title
US6319821B1 (en) Dual damascene approach for small geometry dimension
US7256136B2 (en) Self-patterning of photo-active dielectric materials for interconnect isolation
US7364836B2 (en) Dual damascene process
US6083822A (en) Fabrication process for copper structures
JP3501280B2 (en) Manufacturing method of semiconductor device
US20020155693A1 (en) Method to form self-aligned anti-via interconnects
US6093632A (en) Modified dual damascene process
US6521542B1 (en) Method for forming dual damascene structure
US6114235A (en) Multipurpose cap layer dielectric
JPH09312336A (en) Connection hole formation method
US6465157B1 (en) Dual layer pattern formation method for dual damascene interconnect
JP4675534B2 (en) Protecting underlying wiring layers during dual damascene processing
TWI288459B (en) A dual-damascene process for manufacturing semiconductor device
US6281115B1 (en) Sidewall protection for a via hole formed in a photosensitive, low dielectric constant layer
US5827780A (en) Additive metalization using photosensitive polymer as RIE mask and part of composite insulator
TW418496B (en) Method of protecting sidewall of photosensitive low-dielectric interlayer via
KR0124144B1 (en) Semiconductor device including silicon ladder resin layer
JP2003124309A (en) Method of forming via and trench in copper dual damascene process
US7556916B2 (en) Method for burying resist and method for manufacturing semiconductor device
KR20210021335A (en) Process for tuning via profile in dielectric material
JP2872086B2 (en) Method for manufacturing semiconductor device
US11776924B2 (en) Method of manufacturing semiconductor device
JPH1174174A (en) Manufacture of semiconductor device
JPH06120219A (en) Forming method of metal wiring
JPH06224188A (en) Integrated circuit manufacture

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees